WorldWideScience

Sample records for errors coupling-constant constraints

  1. Goldberger-Treiman constraint criterion for hyperon coupling constants

    International Nuclear Information System (INIS)

    General, Ignacio J.; Cotanch, Stephen R.

    2004-01-01

    The generalized Goldberger-Treiman relation is combined with the Dashen-Weinstein sum rule to provide a constraint equation between the g KΣN and g KΛN coupling constants. A comprehensive examination of the published phenomenological and theoretical hyperon couplings has yielded a much smaller set of values, spanning the intervals 0.80≤g KΣN /√(4π)≤2.72 and -3.90≤g KΛN /√(4π)≤-1.84, consistent with this criterion. The broken SU F (3) and Goldberger-Treiman hyperon couplings satisfy the constraint along with predictions from a Taylor series extrapolation using the same momentum variation as exhibited by g πNN

  2. Future CMB cosmological constraints in a dark coupled universe

    CERN Document Server

    Martinelli, Matteo; Melchiorri, Alessandro; Mena, Olga

    2010-01-01

    Cosmic Microwave Background satellite missions as the on-going Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.

  3. The variation of the fine-structure constant from disformal couplings

    Energy Technology Data Exchange (ETDEWEB)

    De Bruck, Carsten van; Mifsud, Jurgen [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: njnunes@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, PT1749-016 Lisboa (Portugal)

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  4. The variation of the fine-structure constant from disformal couplings

    International Nuclear Information System (INIS)

    De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J.

    2015-01-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory

  5. Coupling constants deduced for the resonances in kaon photo-production

    International Nuclear Information System (INIS)

    Cheoun, M. K.; Kim, K. S.; Choi, T. K.

    2004-01-01

    We deduced the coupling constants of nucleon and hyperon resonances, which participate in kaon productions as intermediate states that are formed by electro-magnetic probes and that finally decay into hadronic final states. We used an isobaric model based on an effective Lagrangian approach to describe the processes, in which relevant coupling constants regarding related resonances are effectively determined by fitting available experimental data. Our scheme to deduce the coupling constants was as follows: First, we calculated the lower and the upper limits on the coupling constants by using the experimental decay data available until now and/or theoretical predictions, such as those from quark models and SU(3) symmetry. Second, we exploited those limits as physical constraints on our fitting scheme for the kaon photo-production data. Finally, the deduced values and regions of the coupling constants, which satisfy not only the reaction data but also the decay data, are presented as figures with respect to the strong and the electro-magnetic coupling constants, and their multiplicative values. Our results for the coupling constants give physical values that are more restricted than those allowed by the experimental data nowadays.

  6. New QCD sum rules for nucleon axial-vector coupling constants

    International Nuclear Information System (INIS)

    Lee, F.X.; Leinweber, D.B.; Jin, X.

    1997-01-01

    Two new sets of QCD sum rules for the nucleon axial-vector coupling constants are derived using the external-field technique and generalized interpolating fields. An in-depth study of the predicative ability of these sum rules is carried out using a Monte Carlo based uncertainty analysis. The results show that the standard implementation of the QCD sum rule method has only marginal predicative power for the nucleon axial-vector coupling constants, as the relative errors are large. The errors range from approximately 50% to 100% compared to the nucleon mass obtained from the same method, which has only a 10%- 25% error. The origin of the large errors is examined. Previous analyses of these coupling constants are based on sum rules that have poor operator product expansion convergence and large continuum contributions. Preferred sum rules are identified and their predictions are obtained. We also investigate the new sum rules with an alternative treatment of the problematic transitions which are not exponentially suppressed in the standard treatment. The alternative treatment provides exponential suppression of their contributions relative to the ground state. Implications for other nucleon current matrix elements are also discussed. copyright 1997 The American Physical Society

  7. Measurement of the strong coupling constant using τ decays

    Science.gov (United States)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.

  8. Precision determination of the strong coupling constant within a global PDF analysis

    NARCIS (Netherlands)

    Ball, Richard D.; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Kassabov, Zahari; Rojo, Juan; Slade, Emma; Ubiali, Maria

    2018-01-01

    We present a determination of the strong coupling constant $\\alpha_s(m_Z)$ based on the NNPDF3.1 determination of parton distributions, which for the first time includes constraints from jet production, top-quark pair differential distributions, and the $Z$ $p_T$ distributions using exact NNLO

  9. RNA structure and scalar coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.

  10. Solar constraints on new couplings between electromagnetism and gravity

    International Nuclear Information System (INIS)

    Solanki, S.K.; Preuss, O.; Haugan, M.P.; Gandorfer, A.; Povel, H.P.; Steiner, P.; Stucki, K.; Bernasconi, P.N.; Soltau, D.

    2004-01-01

    The unification of quantum field theory and general relativity is a fundamental goal of modern physics. In many cases, theoretical efforts to achieve this goal introduce auxiliary gravitational fields, ones in addition to the familiar symmetric second-rank tensor potential of general relativity, and lead to nonmetric theories because of direct couplings between these auxiliary fields and matter. Here, we consider an example of a metric-affine gauge theory of gravity in which torsion couples nonminimally to the electromagnetic field. This coupling causes a phase difference to accumulate between different polarization states of light as they propagate through the metric-affine gravitational field. Solar spectropolarimetric observations are reported and used to set strong constraints on the relevant coupling constant k: k 2 2

  11. Meson-baryon coupling constants from a chiral-invariant SU(3) Lagrangian and application to NN scattering

    International Nuclear Information System (INIS)

    Stoks, V.G.J.

    1997-01-01

    We present a chiral-invariant meson-baryon Lagrangian which describes the interactions of the baryon octet with the lowest-mass meson nonets. The nonlinear realization of the chiral symmetry generates pair-meson interaction vertices. The corresponding pair-meson coupling constants can all be expressed in terms of the meson-nucleon-nucleon pseudovector, scalar, and vector coupling constants, and their corresponding F/(F+D) ratios, and for which empirical estimates are given. We show that it is possible to construct an NN potential of reasonable quality satisfying these theoretical and empirical constraints. (orig.)

  12. Isocurvature constraints on portal couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kainulainen, Kimmo; Nurmi, Sami; Vaskonen, Ville [Department of Physics, University of Jyväskylä, P.O.Box 35 (YFL), FI-40014 University of Jyväskylä (Finland); Tenkanen, Tommi; Tuominen, Kimmo, E-mail: kimmo.kainulainen@jyu.fi, E-mail: sami.t.nurmi@jyu.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi, E-mail: ville.vaskonen@jyu.fi [Department of Physics, University of Helsinki P.O. Box 64, FI-00014, Helsinki (Finland)

    2016-06-01

    We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We then use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: m {sub DM}/GeV ∼< 0.2λ{sub s}{sup 3/8} ( H {sub *}/10{sup 11} GeV){sup −3/2}. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.

  13. Charge dependence of the pion-nucleon coupling constant

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2015-07-01

    Full Text Available On the basis of the Yukawa potential we study the pion-nucleon coupling constants for the neutral and charged pions assuming that nuclear forces at low energies are mainly determined by the exchange of virtual pions. We obtain the charged pseudovector pion-nucleon coupling constant f2π± = 0.0804(7 by making the use of experimental low-energy scattering parameters for the singlet pp- and np-scattering, and also by use of the neutral pseudovector pion-nucleon coupling constant f2π0 = 0.0749(7. Corresponding value of the charged pseudoscalar pion-nucleon coupling constant g2π0 / 4π = 14.55(13 is also determined. This calculated value of the charged pseudoscalar pion-nucleon coupling constant is in fully agreement with the experimental constant g2π0 / 4π = 14.52(26 obtained by the Uppsala Neutron Research Group. Our results show considerable charge splitting of the pion-nucleon coupling constant.

  14. Errorful and errorless learning: The impact of cue-target constraint in learning from errors.

    Science.gov (United States)

    Bridger, Emma K; Mecklinger, Axel

    2014-08-01

    The benefits of testing on learning are well described, and attention has recently turned to what happens when errors are elicited during learning: Is testing nonetheless beneficial, or can errors hinder learning? Whilst recent findings have indicated that tests boost learning even if errors are made on every trial, other reports, emphasizing the benefits of errorless learning, have indicated that errors lead to poorer later memory performance. The possibility that this discrepancy is a function of the materials that must be learned-in particular, the relationship between the cues and targets-was addressed here. Cued recall after either a study-only errorless condition or an errorful learning condition was contrasted across cue-target associations, for which the extent to which the target was constrained by the cue was either high or low. Experiment 1 showed that whereas errorful learning led to greater recall for low-constraint stimuli, it led to a significant decrease in recall for high-constraint stimuli. This interaction is thought to reflect the extent to which retrieval is constrained by the cue-target association, as well as by the presence of preexisting semantic associations. The advantage of errorful retrieval for low-constraint stimuli was replicated in Experiment 2, and the interaction with stimulus type was replicated in Experiment 3, even when guesses were randomly designated as being either correct or incorrect. This pattern provides support for inferences derived from reports in which participants made errors on all learning trials, whilst highlighting the impact of material characteristics on the benefits and disadvantages that accrue from errorful learning in episodic memory.

  15. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  16. Globally Coupled Chaotic Maps with Constant Force

    International Nuclear Information System (INIS)

    Li Jinghui

    2008-01-01

    We investigate the motion of the globally coupled maps (logistic map) with a constant force. It is shown that the constant force can cause multi-synchronization for the globally coupled chaotic maps studied by us.

  17. Planck intermediate results. XXIV. Constraints on variation of fundamental constants

    CERN Document Server

    Ade, P A R; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Burigana, C.; Butler, R.C.; Calabrese, E.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Couchot, F.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J.M.; Dole, H.; Dore, O.; Dupac, X.; Ensslin, T.A.; Eriksen, H.K.; Fabre, O.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, A.H.; Jones, W.C.; Keihanen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.M.; Lasenby, A.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Mandolesi, N.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G.W.; Prunet, S.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L.D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Uzan, J.P.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-01-01

    Any variation of the fundamental physical constants, and more particularly of the fine structure constant, $\\alpha$, or of the mass of the electron, $m_e$, would affect the recombination history of the Universe and cause an imprint on the cosmic microwave background angular power spectra. We show that the Planck data allow one to improve the constraint on the time variation of the fine structure constant at redshift $z\\sim 10^3$ by about a factor of 5 compared to WMAP data, as well as to break the degeneracy with the Hubble constant, $H_0$. In addition to $\\alpha$, we can set a constraint on the variation of the mass of the electron, $m_{\\rm e}$, and on the simultaneous variation of the two constants. We examine in detail the degeneracies between fundamental constants and the cosmological parameters, in order to compare the limits obtained from Planck and WMAP and to determine the constraining power gained by including other cosmological probes. We conclude that independent time variations of the fine structu...

  18. Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Tosi, Mia; Vanini, Sara; Ventura, Sandro; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarli, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-06-26

    The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7$~\\mathrm{TeV}$ was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0$~\\mathrm{fb}^{-1}$. The measurement covers a phase space up to 2$~\\mathrm{TeV}$ in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass $M_{\\mathrm{Z}}$ is determined to be $\\alpha_S(M_{\\mathrm{Z}}) = 0.1185 \\pm 0.0019\\,(\\mathrm{exp})\\,^{+0.0060}_{-0.0037}\\,(\\mathrm{theo})$, which is in a...

  19. Constraints on Alternate Universes: Stars and habitable planets with different fundamental constants

    OpenAIRE

    Adams, Fred C.

    2015-01-01

    This paper develops constraints on the values of the fundamental constants that allow universes to be habitable. We focus on the fine structure constant $\\alpha$ and the gravitational structure constant $\\alpha_G$, and find the region in the $\\alpha$-$\\alpha_G$ plane that supports working stars and habitable planets. This work is motivated, in part, by the possibility that different versions of the laws of physics could be realized within other universes. The following constraints are enforce...

  20. Animal movement constraints improve resource selection inference in the presence of telemetry error

    Science.gov (United States)

    Brost, Brian M.; Hooten, Mevin B.; Hanks, Ephraim M.; Small, Robert J.

    2016-01-01

    Multiple factors complicate the analysis of animal telemetry location data. Recent advancements address issues such as temporal autocorrelation and telemetry measurement error, but additional challenges remain. Difficulties introduced by complicated error structures or barriers to animal movement can weaken inference. We propose an approach for obtaining resource selection inference from animal location data that accounts for complicated error structures, movement constraints, and temporally autocorrelated observations. We specify a model for telemetry data observed with error conditional on unobserved true locations that reflects prior knowledge about constraints in the animal movement process. The observed telemetry data are modeled using a flexible distribution that accommodates extreme errors and complicated error structures. Although constraints to movement are often viewed as a nuisance, we use constraints to simultaneously estimate and account for telemetry error. We apply the model to simulated data, showing that it outperforms common ad hoc approaches used when confronted with measurement error and movement constraints. We then apply our framework to an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the marine environment and adjacent coastlines.

  1. New constraints on variations of the fine structure constant from CMB anisotropies

    International Nuclear Information System (INIS)

    Menegoni, Eloisa; Melchiorri, Alessandro; Galli, Silvia; Bartlett, James G.; Martins, C. J. A. P.

    2009-01-01

    We demonstrate that recent measurements of cosmic microwave background temperature and polarization anisotropy made by the ACBAR, QUAD, and BICEP experiments substantially improve the cosmological constraints on possible variations of the fine structure constant in the early universe. This data, combined with the five year observations from the WMAP mission, yield the constraint α/α 0 =0.987±0.012 at 68% C.L. The inclusion of the new Hubble Space Telescope constraints on the Hubble constant further increases the accuracy to α/α 0 =1.001±0.007 at 68% C.L., bringing possible deviations from the current value below the 1% level and improving previous constraints by a factor of ∼3.

  2. Renormalization group equations with multiple coupling constants

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1975-01-01

    The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given

  3. Non-perturbative computation of the strong coupling constant on the lattice

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin; Wolff, Ulli

    2015-01-01

    We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.

  4. Reduction Of Constraints For Coupled Operations

    International Nuclear Information System (INIS)

    Raszewski, F.; Edwards, T.

    2009-01-01

    The homogeneity constraint was implemented in the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) to help ensure that the current durability models would be applicable to the glass compositions being processed during DWPF operations. While the homogeneity constraint is typically an issue at lower waste loadings (WLs), it may impact the operating windows for DWPF operations, where the glass forming systems may be limited to lower waste loadings based on fissile or heat load limits. In the sludge batch 1b (SB1b) variability study, application of the homogeneity constraint at the measurement acceptability region (MAR) limit eliminated much of the potential operating window for DWPF. As a result, Edwards and Brown developed criteria that allowed DWPF to relax the homogeneity constraint from the MAR to the property acceptance region (PAR) criterion, which opened up the operating window for DWPF operations. These criteria are defined as: (1) use the alumina constraint as currently implemented in PCCS (Al 2 O 3 (ge) 3 wt%) and add a sum of alkali constraint with an upper limit of 19.3 wt% (ΣM 2 O 2 O 3 constraint to 4 wt% (Al 2 O 3 (ge) 4 wt%). Herman et al. previously demonstrated that these criteria could be used to replace the homogeneity constraint for future sludge-only batches. The compositional region encompassing coupled operations flowsheets could not be bounded as these flowsheets were unknown at the time. With the initiation of coupled operations at DWPF in 2008, the need to revisit the homogeneity constraint was realized. This constraint was specifically addressed through the variability study for SB5 where it was shown that the homogeneity constraint could be ignored if the alumina and alkali constraints were imposed. Additional benefit could be gained if the homogeneity constraint could be replaced by the Al 2 O 3 and sum of alkali constraint for future coupled operations processing based on projections from Revision 14 of

  5. Constraints on alternate universes: stars and habitable planets with different fundamental constants

    International Nuclear Information System (INIS)

    Adams, Fred C.

    2016-01-01

    This paper develops constraints on the values of the fundamental constants that allow universes to be habitable. We focus on the fine structure constant α and the gravitational structure constant α G , and find the region in the α-α G plane that supports working stars and habitable planets. This work is motivated, in part, by the possibility that different versions of the laws of physics could be realized within other universes. The following constraints are enforced: [A] long-lived stable nuclear burning stars exist, [B] planetary surface temperatures are hot enough to support chemical reactions, [C] stellar lifetimes are long enough to allow biological evolution, [D] planets are massive enough to maintain atmospheres, [E] planets are small enough in mass to remain non-degenerate, [F] planets are massive enough to support sufficiently complex biospheres, [G] planets are smaller in mass than their host stars, and [H] stars are smaller in mass than their host galaxies. This paper delineates the portion of the α-α G plane that satisfies all of these constraints. The results indicate that viable universes—with working stars and habitable planets—can exist within a parameter space where the structure constants α and α G vary by several orders of magnitude. These constraints also provide upper bounds on the structure constants (α,α G ) and their ratio. We find the limit α G /α ∼< 10 −34 , which shows that habitable universes must have a large hierarchy between the strengths of the gravitational force and the electromagnetic force

  6. Constraints on alternate universes: stars and habitable planets with different fundamental constants

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Fred C., E-mail: fca@umich.edu [Physics Department, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States)

    2016-02-01

    This paper develops constraints on the values of the fundamental constants that allow universes to be habitable. We focus on the fine structure constant α and the gravitational structure constant α{sub G}, and find the region in the α-α{sub G} plane that supports working stars and habitable planets. This work is motivated, in part, by the possibility that different versions of the laws of physics could be realized within other universes. The following constraints are enforced: [A] long-lived stable nuclear burning stars exist, [B] planetary surface temperatures are hot enough to support chemical reactions, [C] stellar lifetimes are long enough to allow biological evolution, [D] planets are massive enough to maintain atmospheres, [E] planets are small enough in mass to remain non-degenerate, [F] planets are massive enough to support sufficiently complex biospheres, [G] planets are smaller in mass than their host stars, and [H] stars are smaller in mass than their host galaxies. This paper delineates the portion of the α-α{sub G} plane that satisfies all of these constraints. The results indicate that viable universes—with working stars and habitable planets—can exist within a parameter space where the structure constants α and α{sub G} vary by several orders of magnitude. These constraints also provide upper bounds on the structure constants (α,α{sub G}) and their ratio. We find the limit α{sub G}/α ∼< 10{sup −34}, which shows that habitable universes must have a large hierarchy between the strengths of the gravitational force and the electromagnetic force.

  7. Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide

    DEFF Research Database (Denmark)

    Kjær, Hanna; Nielsen, Monia R.; Pagola, Gabriel I.

    2012-01-01

    In this paper we present the so far most extended investigation of the calculation of the coupling constant polarizability of a molecule. The components of the coupling constant polarizability are derivatives of the NMR indirect nuclear spin-spin coupling constant with respect to an external elec...

  8. Development of safety analysis and constraint detection techniques for process interaction errors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chin-Feng, E-mail: csfanc@saturn.yzu.edu.tw [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China); Tsai, Shang-Lin; Tseng, Wan-Hui [Computer Science and Engineering Dept., Yuan-Ze University, Taiwan (China)

    2011-02-15

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  9. Development of safety analysis and constraint detection techniques for process interaction errors

    International Nuclear Information System (INIS)

    Fan, Chin-Feng; Tsai, Shang-Lin; Tseng, Wan-Hui

    2011-01-01

    Among the new failure modes introduced by computer into safety systems, the process interaction error is the most unpredictable and complicated failure mode, which may cause disastrous consequences. This paper presents safety analysis and constraint detection techniques for process interaction errors among hardware, software, and human processes. Among interaction errors, the most dreadful ones are those that involve run-time misinterpretation from a logic process. We call them the 'semantic interaction errors'. Such abnormal interaction is not adequately emphasized in current research. In our static analysis, we provide a fault tree template focusing on semantic interaction errors by checking conflicting pre-conditions and post-conditions among interacting processes. Thus, far-fetched, but highly risky, interaction scenarios involve interpretation errors can be identified. For run-time monitoring, a range of constraint types is proposed for checking abnormal signs at run time. We extend current constraints to a broader relational level and a global level, considering process/device dependencies and physical conservation rules in order to detect process interaction errors. The proposed techniques can reduce abnormal interactions; they can also be used to assist in safety-case construction.

  10. The impact of a sustainability constraint on the mean-tracking error efficient frontier

    NARCIS (Netherlands)

    Boudt, K.M.R.; Cornelissen, J.; Croux, C.

    2013-01-01

    Most socially responsible investment funds combine a sustainability objective with a tracking error constraint. We characterize the impact of a sustainability constraint on the mean-tracking error efficient frontier and illustrate this on a universe of US stocks for the period 2003-2010. © 2013

  11. Strong coupling constant extraction from high-multiplicity Z +jets observables

    Science.gov (United States)

    Johnson, Mark; Maître, Daniel

    2018-03-01

    We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS Z +2 ,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the world average and with uncertainties commensurate with other next-to-leading order extractions at hadron colliders. Our most conservative result for the strong coupling constant is αS(MZ)=0.117 8-0.0043+0.0051 .

  12. The holographic dictionary for Beta functions of multi-trace coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Aharony, Ofer [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Gur-Ari, Guy [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305 (United States); Klinghoffer, Nizan [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel)

    2015-05-06

    Field theories with weakly coupled holographic duals, such as large N gauge theories, have a natural separation of their operators into ‘single-trace operators’ (dual to single-particle states) and ‘multi-trace operators’ (dual to multi-particle states). There are examples of large N gauge theories where the beta functions of single-trace coupling constants all vanish, but marginal multi-trace coupling constants have non-vanishing beta functions that spoil conformal invariance (even when all multi-trace coupling constants vanish). The holographic dual of such theories should be a classical solution in anti-de Sitter space, in which the boundary conditions that correspond to the multi-trace coupling constants depend on the cutoff scale, in a way that spoils conformal invariance. We argue that this is realized through specific bulk coupling constants that lead to a running of the multi-trace coupling constants. This fills a missing entry in the holographic dictionary.

  13. Long-range carbon-proton spin-spin coupling constants in conformational analysis

    International Nuclear Information System (INIS)

    Spoormaker, T.

    1979-01-01

    The author has collected a reliable set of data on long range 13 C- 1 H coupling constants in aliphatic compounds and developed the use of long range 13 C- 1 H coupling constants as a tool in the conformational analysis of aliphatic compounds. An empirical determination of the torsion angle dependence of the vicinal 13 C- 1 H coupling constant for model compounds is described and the dependence of long range 13 C- 1 H coupling constants on the electronegativity of substituents attached to the coupling pathway reported for the monohalogen substituted ethanes and propanes. The electronegativity dependence of the vicinal 13 C- 1 H coupling was studied in monosubstituted propanes whose substituents are elements from the first row of the periodic table and it is shown that the vicinal 13 C- 1 H coupling constant in aliphatic systems is a constitutive property. The geminal 13 C- 1 H coupling constants in ethyl, isopropyl and tert-butyl compounds, which have been substituted by an element of the first row of the periodic table or a haline atom, are reported and the influence of electronegative substituents on the vicinal 13 C- 1 H coupling constants in the individual rotamers of 13 CH 3 -C(X)H-C(Y)H- 1 H fragments discussed. The application of long range 13 C- 1 H coupling constants to the conformational analysis of CMP-N-Acetylneuraminic acid and 2,6-dichloro-1,4-oxathiane is described. (Auth.)

  14. Behaviour of coupling constants at high temperature in supersymmetric theories

    International Nuclear Information System (INIS)

    Swee Ping Chia.

    1986-04-01

    An analysis is presented of the temperature dependence of the coupling constants using the improved one-loop approximation in the Wess-Zumino model and the supersymmetric O(N) model. It is found that all the coupling constants, both bosonic (Φ 4 type) and Yukawa, approach constant nonzero values as T→∞. The asymptotic values of the bosonic couplings are slightly smaller than the corresponding zero-temperature values, and those of the Yukawa couplings are the same as the zero-temperature values. (author)

  15. The holomorphicity of the gauge coupling constant in supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Li, H.

    1993-01-01

    Holomorphicity is the analytical dependence of the gauge coupling function, f = 1/g 2 + Θ/8π 2 , on the chiral fields in supergravity and supersymmetric gauge theories. The holomorphic property of 1/g 2 in supersymmetric gauge theories is studied by calculating its dependence on the mass matrix. The general representations of the mass matrix allowed by the constraints of gauge invariance is considered, and calculate the one- and two-loop corrections to 1/g 2 for both super QED and super Yang-Mills theories. For the massive mass matrix it is shown that one- and two-loop corrections to the gauge coupling constant are holomorphic. The reason for two-loop holomorphicity is that the second order logarithmic terms cancel out. For the mass matrix with at least one zero mode, it is recognized that there are two distinct cases which we call pseudo massive and intrinsically massless. For the case of pseudo mass matrix, the reducible representation of the gauge group is (i) complex with equal numbers of irreducible representations and their conjugates, (ii) real, or (iii) pseudo-real. Even though there are massless modes, it is found that the dependence of the gauge coupling constant on the mass matrix is holomorphic. This holomorphicity follows because the mass matrix can be perturbed to regularize the infrared divergence. For the case of intrinsically massless mass matrix, a reducible complex representation with unequal numbers of irreducible representations and their conjugates. The author shows that loop corrections to the gauge coupling constant are non-holomorphic. The reason is an infrared momentum cutoff is used which spins holomorphicity. The results show that, for the pseudo massive case, even though there is an infrared divergence, the one- and two-loop corrections are still holomorphic. Hence, it is concluded that non-holomorphicity is caused by the unbalanced numbers of families and antifamilies in the complex representation

  16. Strong coupling constant from Adler function in lattice QCD

    Science.gov (United States)

    Hudspith, Renwick J.; Lewis, Randy; Maltman, Kim; Shintani, Eigo

    2016-09-01

    We compute the QCD coupling constant, αs, from the Adler function with vector hadronic vacuum polarization (HVP) function. On the lattice, Adler function can be measured by the differential of HVP at two different momentum scales. HVP is measured from the conserved-local vector current correlator using nf = 2 + 1 flavor Domain Wall lattice data with three different lattice cutoffs, up to a-1 ≈ 3.14 GeV. To avoid the lattice artifact due to O(4) symmetry breaking, we set the cylinder cut on the lattice momentum with reflection projection onto vector current correlator, and it then provides smooth function of momentum scale for extracted HVP. We present a global fit of the lattice data at a justified momentum scale with three lattice cutoffs using continuum perturbation theory at 𝒪(αs4) to obtain the coupling in the continuum limit at arbitrary scale. We take the running to Z boson mass through the appropriate thresholds, and obtain αs(5)(MZ) = 0.1191(24)(37) where the first is statistical error and the second is systematic one.

  17. The Frame Constraint on Experimentally Elicited Speech Errors in Japanese

    Science.gov (United States)

    Saito, Akie; Inoue, Tomoyoshi

    2017-01-01

    The so-called syllable position effect in speech errors has been interpreted as reflecting constraints posed by the frame structure of a given language, which is separately operating from linguistic content during speech production. The effect refers to the phenomenon that when a speech error occurs, replaced and replacing sounds tend to be in the…

  18. Coupling constants (Tdn) and (Td*n) for local potentials

    International Nuclear Information System (INIS)

    Belyaev, V.B.; Irgaziev, B.F.; Orlov, Yu.V.

    1976-01-01

    The coupling constants (Tdn) and (Td*n) are found solving the Faddeev equations with local potentials. It is shown that the polinomial extrapolation of the wave function to the nonphysical region of the variable Q 2 turns not to be sure for determination of the coupling constants

  19. Minimum Time Trajectory Optimization of CNC Machining with Tracking Error Constraints

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-01-01

    Full Text Available An off-line optimization approach of high precision minimum time feedrate for CNC machining is proposed. Besides the ordinary considered velocity, acceleration, and jerk constraints, dynamic performance constraint of each servo drive is also considered in this optimization problem to improve the tracking precision along the optimized feedrate trajectory. Tracking error is applied to indicate the servo dynamic performance of each axis. By using variable substitution, the tracking error constrained minimum time trajectory planning problem is formulated as a nonlinear path constrained optimal control problem. Bang-bang constraints structure of the optimal trajectory is proved in this paper; then a novel constraint handling method is proposed to realize a convex optimization based solution of the nonlinear constrained optimal control problem. A simple ellipse feedrate planning test is presented to demonstrate the effectiveness of the approach. Then the practicability and robustness of the trajectory generated by the proposed approach are demonstrated by a butterfly contour machining example.

  20. Determination of the π3He3H coupling constant

    International Nuclear Information System (INIS)

    Nichitiu, F.; Sapozhnikov, M.G.

    1977-01-01

    Despersion relations for the real part of the antisymmetric amplitude of the π +-3 He scattering have been used in order to determine the π 3 He 3 H coupling constant. The coupling constant value determined by this method is larger than the elementary pion-nucleon coupling constant, but is in good agreement with the value obtained by another method. The obtained value is f 2 sub(π 3 He 3 H) = 0.12+-0.01. Shown is the importance of using the Coulomb corrections for dispersion relation calculations because the value of π 3 He 3 H coupling constant obtained with corrected total cross sections is larger by about 0.014 than the one obtained without these corrections. The best energy ranges for future π 3 He experiments are commented

  1. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. V. The direct carbon-carbon coupling constants in the vinyl group

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1988-03-10

    The direct spin-spin coupling constants in the vinyl group were measured in 100 mono-substituted ethylene derivatives. The inductive effect of the substituent was found to be the major factor in the variation of this constant and, in some cases, the stereospecific effect of the unshared electron pairs of heteratoms makes a significant contribution to the /sup 13/C-/sup 13/C coupling constants.

  2. Mimicking the cosmological constant: Constant curvature spherical solutions in a nonminimally coupled model

    International Nuclear Information System (INIS)

    Bertolami, Orfeu; Paramos, Jorge

    2011-01-01

    The purpose of this study is to describe a perfect fluid matter distribution that leads to a constant curvature region, thanks to the effect of a nonminimal coupling. This distribution exhibits a density profile within the range found in the interstellar medium and an adequate matching of the metric components at its boundary. By identifying this constant curvature with the value of the cosmological constant and superimposing the spherical distributions arising from different matter sources throughout the universe, one is able to mimic a large-scale homogeneous cosmological constant solution.

  3. Calculation of the Green functions by the coupling constant dispersion relations

    International Nuclear Information System (INIS)

    Bogomalny, E.B.

    1977-01-01

    The discontinuities of the Green functions on the cut in the complex plane of the coupling constant are calculated by the steepest descent method. The saddle points are given by the solutions of the classical field equations at those values of the coupling constant for which the classical theory has no ground state. The Green functions at the physical values of the coupling constant are determined by dispersion relations. (Auth.)

  4. Three-vector, statistical theory of errors and the Planck constant

    International Nuclear Information System (INIS)

    Demers, P.

    1981-01-01

    The paper confirms an assertion of Pappas: T3 is not an Euclidean vector, it behaves like delta 3, a statistical error made of 3 component errors. T3 and delta 3 are 3-vectors, obeying Poincare's group for rotation, not for translation. The idea of T3 adds to the affinities between time, entropy, probability and Planck's constant, besides offering a proof of the non-existence of tachyons. (author)

  5. Nuclear spin content and constraints on exotic spin-dependent couplings

    International Nuclear Information System (INIS)

    Kimball, D F Jackson

    2015-01-01

    There are numerous recent and ongoing experiments employing a variety of atomic species to search for couplings of atomic spins to exotic fields. In order to meaningfully compare these experimental results, the coupling of the exotic field to the atomic spin must be interpreted in terms of the coupling to electron, proton, and neutron spins. Traditionally, constraints from atomic experiments on exotic couplings to neutron and proton spins have been derived using the single-particle Schmidt model for nuclear spin. In this model, particular atomic species are sensitive to either neutron or proton spin couplings, but not both. More recently, semi-empirical models employing nuclear magnetic moment data have been used to derive new constraints for non-valence nucleons. However, comparison of such semi-empirical models to detailed large-scale nuclear shell model calculations and analysis of known physical effects in nuclei show that existing semi-empirical models cannot reliably be used to predict the spin polarization of non-valence nucleons. The results of our re-analysis of nuclear spin content are applied to searches for exotic long-range monopole–dipole and dipole–dipole couplings of nuclei leading to significant revisions of some published constraints. (paper)

  6. Running couplings and operator mixing in the gravitational corrections to coupling constants

    International Nuclear Information System (INIS)

    Anber, Mohamed M.; Donoghue, John F.; El-Houssieny, Mohamed

    2011-01-01

    The use of a running coupling constant in renormalizable theories is well known, but the implementation of this idea for effective field theories with a dimensional coupling constant is, in general, less useful. Nevertheless, there are multiple attempts to define running couplings, including the effects of gravity, with varying conclusions. We sort through many of the issues involved, most particularly the idea of operator mixing and also the kinematics of crossing, using calculations in Yukawa and λφ 4 theories as illustrative examples. We remain in the perturbative regime. In some theories with a high permutation symmetry, such as λφ 4 , a reasonable running coupling can be defined. However, in most cases, such as Yukawa and gauge theories, a running coupling fails to correctly account for the energy dependence of the interaction strength. As a by-product we also contrast on-shell and off-shell renormalization schemes and show that operators which are normally discarded, such as those that vanish by the equations of motion, are required for off-shell renormalization of effective field theories. Our results suggest that the inclusion of gravity in the running of couplings is not useful or universal in the description of physical processes.

  7. The (φ4)3+1 theory with infinitesimal bare coupling constants

    International Nuclear Information System (INIS)

    Yotsuyanagi, I.

    1987-01-01

    We study the (φ 4 ) 3+1 theory by means of a variational method improved with a BCS-type vacuum state. We examine the theory with both negative and positive infinitesimal bare coupling constants, where the theory has been suggested to exist nontrivially and stably in the infinite ultraviolet cutoff limit. When the cutoff is sent to infinity, we find the instability of the vacuum energy at the end point value of the variational parameter in the case of the negative bare coupling constant. For the positive bare coupling constant, we can renormalize the vacuum energy without using the extremal condition with respect to the variational mass parameter. We do not find an instability for the whole range of parameters including the end point. We still have a possibility that the theory with this bare coupling constant is nontrivial and stable. (orig.)

  8. How precisely can the difference method determine the $\\pi$NN coupling constant?

    CERN Document Server

    Loiseau, B

    2000-01-01

    The Coulomb-like backward peak of the neutron-proton scattering differentialcross section is due to one-pion exchange. Extrapolation to the pion pole ofprecise data should allow to obtain the value of the charged pion-nucleoncoupling constant. This was classically attempted by the use of a smoothphysical function, the Chew function, built from the cross section. To improveaccuracy of such an extrapolation one has introduced a difference method. Itconsists of extrapolating the difference between the Chew function based onexperimental data and that built from a model where the pion-nucleon couplingis exactly known. Here we cross-check to which precision can work this novelextrapolation method by applying it to differences between models and betweendata and models. With good reference models and for the 162 MeV neutron-protonUppsala single energy precise data with a normalisation error of 2.3 , thevalue of the charged pion-nucleon coupling constant is obtained with anaccuracy close to 1.8

  9. Spectra of magnetic chain graphs: coupling constant perturbations

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Manko, S. S.

    2015-01-01

    Roč. 48, č. 12 (2015), s. 125302 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum graph * magnetic field * coupling constant perturbation * eigenvalues in gaps * weak coupling Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015

  10. Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant

    Energy Technology Data Exchange (ETDEWEB)

    Martins, C.J.A.P.; Pinho, A.M.M.; Alves, R.F.C. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Pino, M. [Institut Domènech i Montaner, C/Maspujols 21-23, 43206 Reus (Spain); Rocha, C.I.S.A. [Externato Ribadouro, Rua de Santa Catarina 1346, 4000-447 Porto (Portugal); Wietersheim, M. von, E-mail: Carlos.Martins@astro.up.pt, E-mail: Ana.Pinho@astro.up.pt, E-mail: up201106579@fc.up.pt, E-mail: mpc_97@yahoo.com, E-mail: cisar97@hotmail.com, E-mail: maxivonw@gmail.com [Institut Manuel Sales i Ferré, Avinguda de les Escoles 6, 43550 Ulldecona (Spain)

    2015-08-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation. Specifically, current data tightly constrains a combination of ζ and the present dark energy equation of state w{sub 0}. Moreover, in these models the new degree of freedom inevitably couples to nucleons (through the α dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are typically stronger than the current direct ones. We discuss the model-dependence of our results and briefly comment on how the forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints.

  11. Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Pinho, A.M.M.; Alves, R.F.C.; Pino, M.; Rocha, C.I.S.A.; Wietersheim, M. von

    2015-01-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation. Specifically, current data tightly constrains a combination of ζ and the present dark energy equation of state w 0 . Moreover, in these models the new degree of freedom inevitably couples to nucleons (through the α dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are typically stronger than the current direct ones. We discuss the model-dependence of our results and briefly comment on how the forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints

  12. gsub(ωrhoπ) coupling constant from QCD sum rules

    International Nuclear Information System (INIS)

    Eletsky, V.L.; Ioffe, B.L.; Kogan, Ya.I.

    1982-01-01

    QCD sum rules for the vertex function of two vector and one axial vector currents are used to calculate the gsub(ωrhoπ) coupling constant (where gsub(ωrhoπ) is a transition coupling constant for ω → rhoπ process). The obtained value, gsub(ωrhoπ) approximately 17 GeV -1 is in a good agreement with experimental data

  13. Observational constraints on f(T) gravity from varying fundamental constants

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Rafael C.; Bonilla, Alexander [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil); Pan, Supriya [Indian Institute of Science Education and Research, Kolkata, Department of Physical Sciences, Mohanpur, West Bengal (India); Saridakis, Emmanuel N. [Pontificia Universidad de Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); National Technical University of Athens, Physics Division, Athens (Greece); Baylor University, CASPER, Physics Department, Waco, TX (United States)

    2017-04-15

    We use observations related to the variation of fundamental constants, in order to impose constraints on the viable and most used f(T) gravity models. In particular, for the fine-structure constant we use direct measurements obtained by different spectrographic methods, while for the effective Newton constant we use a model-dependent reconstruction, using direct observational Hubble parameter data, in order to investigate its temporal evolution. We consider two f(T) models and we quantify their deviation from Λ CDM cosmology through a sole parameter. Our analysis reveals that this parameter can be slightly different from its Λ CDM value, however, the best-fit value is very close to the Λ CDM one. Hence, f(T) gravity is consistent with observations, nevertheless, as every modified gravity, it may exhibit only small deviations from Λ CDM cosmology, a feature that must be taken into account in any f(T) model-building. (orig.)

  14. Coupling-constant flows and dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Yamagishi, H.

    1981-01-01

    The Coleman-Weinberg theory is reformulated in terms of flows in coupling-constant space. It is shown that the existence of dynamical symmetry breaking is governed essentially by the b functions. An application is made to the massless Weinberg-Salam model

  15. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response

    Directory of Open Access Journals (Sweden)

    Takahiro eSoshi

    2015-01-01

    Full Text Available Post-error slowing is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms. Neural correlates of post-error processing were examined using event-related potentials (ERPs. Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS. Behavioral results demonstrated that the commission error for No-go trials was 15%, but post-error slowing did not take place immediately. Delayed post-error slowing was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to post-error slowing. Stimulus-locked N2 was negatively correlated with post-error slowing and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater post-error slowing and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and post-error slowing did not occur quickly. Furthermore, post-error slowing and its neural correlate (N2 were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke

  16. Mobility and Position Error Analysis of a Complex Planar Mechanism with Redundant Constraints

    Science.gov (United States)

    Sun, Qipeng; Li, Gangyan

    2018-03-01

    Nowadays mechanisms with redundant constraints have been created and attracted much attention for their merits. The mechanism of the redundant constraints in a mechanical system is analyzed in this paper. A analysis method of Planar Linkage with a repetitive structure is proposed to get the number and type of constraints. According to the difference of applications and constraint characteristics, the redundant constraints are divided into the theoretical planar redundant constraints and the space-planar redundant constraints. And the calculation formula for the number of redundant constraints and type of judging method are carried out. And a complex mechanism with redundant constraints is analyzed of the influence about redundant constraints on mechanical performance. With the combination of theoretical derivation and simulation research, a mechanism analysis method is put forward about the position error of complex mechanism with redundant constraints. It points out the direction on how to eliminate or reduce the influence of redundant constraints.

  17. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response.

    Science.gov (United States)

    Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki

    2014-01-01

    Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors.

  18. Can coupling constants be related

    International Nuclear Information System (INIS)

    Nandi, Satyanarayan; Ng, Wing-Chiu.

    1978-06-01

    We analyze the conditions under which several coupling constants in field theory can be related to each other. When the relation is independent of the renormalization point, the relation between any g and g' must satisfy a differential equation as follows from the renormalization group equations. Using this differential equation, we investigate the criteria for the feasibility of a power-series relation for various theories, especially the Weinberg-Salam type (including Higgs bosons) with an arbitrary number of quark and lepton flavors. (orig./WL) [de

  19. Class of very simple gauge theories which remain renormalizable even in the limit of infinite gauge coupling constant

    International Nuclear Information System (INIS)

    Kaptanoglu, S.

    1983-01-01

    A class of local gauge theories based on compact semisimple Lie groups is studied in the limit of infinite gauge coupling constant (g = infinity). In general, in this limit, the gauge fields become auxiliary in all gauge theories, and the system develops a richer structure of constraints. Unfortunately for most gauge theories, this limit turns out to be too singular to quantize and the theory ceases to be renormalizable. For a special class of gauge theories, however, where there are no fermions and there is only one multiplet of scalars in the adjoint representation, we prove that a consistent renormalizable quantum theory exists even in this very singular limit. We trace this exceptional behavior to a new local translationlike symmetry in the functional space that this class of gauge models possesses in the limit of infinite gauge coupling constant. By carrying out the constraint analysis, evaluating the Faddeev-Popov-Senjanovic determinant, and doing the functional integrations over the canonical momenta, the gauge fields, and most of the components of the scalar fields, we obtain an extremely simple result with no non-Abelian structure left in it. For example, for the group SU(2), the final answer reduces to the theory of a one-component self-interacting real phi 4 scalar field theory. Throughout this paper, we use functional methods and make no approximations; our results are nonperturbative and exact. We also discuss some of the possible implications of our results

  20. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    Science.gov (United States)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  1. Density-dependent coupling constants and charge symmetry breaking

    International Nuclear Information System (INIS)

    Barreiro, L.A.

    2001-01-01

    The effect of the medium in the coupling constants implicate in a charge symmetry breaking on nuclear interactions. The amount of energy due to this modification can explain the Nolen-Schiffer anomaly. (author)

  2. Running coupling constants of the Luttinger liquid

    International Nuclear Information System (INIS)

    Boose, D.; Jacquot, J.L.; Polonyi, J.

    2005-01-01

    We compute the one-loop expressions of two running coupling constants of the Luttinger model. The obtained expressions have a nontrivial momentum dependence with Landau poles. The reason for the discrepancy between our results and those of other studies, which find that the scaling laws are trivial, is explained

  3. Sensitivity of the model error parameter specification in weak-constraint four-dimensional variational data assimilation

    Science.gov (United States)

    Shaw, Jeremy A.; Daescu, Dacian N.

    2017-08-01

    This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.

  4. S-duality constraint on higher-derivative couplings

    International Nuclear Information System (INIS)

    Garousi, Mohammad R.

    2014-01-01

    The Riemann curvature correction to the type II supergravity at eight-derivative level in string frame is given as e"−"2"ϕ(t_8t_8R"4+(1/4)ϵ_8ϵ_8R"4). For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t_2_n from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality

  5. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Science.gov (United States)

    Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergei N.; Jensen, Per

    2015-12-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant's equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  6. Non-minimally coupled varying constants quantum cosmologies

    International Nuclear Information System (INIS)

    Balcerzak, Adam

    2015-01-01

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability of transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase

  7. S-duality constraint on higher-derivative couplings

    Energy Technology Data Exchange (ETDEWEB)

    Garousi, Mohammad R. [Department of Physics, Ferdowsi University of Mashhad,P.O. Box 1436, Mashhad (Iran, Islamic Republic of)

    2014-05-22

    The Riemann curvature correction to the type II supergravity at eight-derivative level in string frame is given as e{sup −2ϕ}(t{sub 8}t{sub 8}R{sup 4}+(1/4)ϵ{sub 8}ϵ{sub 8}R{sup 4}). For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t{sub 2n} from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality.

  8. A new scheme for the running coupling constant in gauge theories using Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Kurachi, Masafumi [Los Alamos National Laboratory; Bilgici, Erek [AUSTRIA; Flachi, Antonion [KYOTO UNIV; Itou, Etsuko [KOGAKUIN UNIV; David Lin, C J [NATIONAL CHIAO-TUNG UNIV; Matsufuru, Hideo [KEK; Ohki, Hiroshi [KYOTO UNIV; Onogi, Tetsuya [KYOTO UNIV; Yamazaki, Takeshi [UNIV OF TSUKUBA

    2009-01-01

    We propose a new renormalization scheme of the running coupling constant in general gauge theories defined by using the Wilson loops. The renormalized coupling constant is obtained from the Cretz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter calculation is performed by adopting the zeta-function resummation techniques. We make a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with relatively small number of gauge configurations.

  9. Varying Constants, Gravitation and Cosmology

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Uzan

    2011-03-01

    Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.

  10. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de [Fakultät Mathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Yachmenev, Andrey; Yurchenko, Sergei N. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.

  11. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    International Nuclear Information System (INIS)

    Adam, Ahmad Y.; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2015-01-01

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH 3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH 3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role

  12. PDF constraints and extraction of the strong coupling constant from the inclusive jet cross section at 7 TeV

    CERN Document Server

    CMS Collaboration

    2013-01-01

    The recent CMS measurement of the inclusive jet cross section at 7~TeV extends the accessible phase space in jet transverse momentum up to 2 TeV and ranges up to 2.5 in absolute jet rapidity. At the same time the experimental uncertainties are smaller than in previous publications such that these data constrain the parton distribution functions of the proton, notably for the gluon at high fractions of the proton momentum, and provide valuable input to determine the strong coupling at high momentum scales. The impact on the extraction of the parton distribution functions is investigated. Using predictions from theory at next-to-leading order, complemented with electroweak corrections, the strong coupling constant is determined from the inclusive jet cross section to be $\\alpha_S(M_Z) = 0.1185 \\pm 0.0019\\,\\mathrm{(exp.)} \\pm 0.0028\\,\\mathrm{(\\mathrm{PDF})} \\pm 0.0004\\,\\mathrm{(\\mathrm{NP})} ^{+0.0055}_{-0.0022}\\,\\mathrm{(\\mathrm{scale})}$, which is in agreement with the world average.

  13. Spacetime-varying couplings and Lorentz violation

    International Nuclear Information System (INIS)

    Kostelecky, V. Alan; Lehnert, Ralf; Perry, Malcolm J.

    2003-01-01

    Spacetime-varying coupling constants can be associated with violations of local Lorentz invariance and CPT symmetry. An analytical supergravity cosmology with a time-varying fine-structure constant provides an explicit example. Estimates are made for some experimental constraints

  14. Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan

    2018-04-01

    In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.

  15. Number of generations related to coupling constants by confusion

    International Nuclear Information System (INIS)

    Bennett, D.L.; Nielsen, H.B.

    1987-01-01

    In the context of random dynamics, the mechanism of confusion is used to obtain a relation between the number of generations and standard model coupling constants. Preliminary results predict the existence of four generations. (orig.)

  16. Determination of the pion-nucleon coupling constant

    International Nuclear Information System (INIS)

    Samaranayake, V.K.

    1977-06-01

    Forward dispersion relations are used to determine the pion-nucleon coupling constant and S-wave scattering lengths using a least squares fit with additional parameters introduced to take account of the uncertainties in the calculation of dispersion integrals. The values obtained are: f 2 = (78.0+- 2.1).10 -3 , a 1 -a 3 = (272.4+- 12.3).10 -3 , a 1 +2a 3 = (15.1+-10.4).10 -3

  17. Experimental test of the flavor independence of the quark-gluon coupling constant

    International Nuclear Information System (INIS)

    Althoff, M.; Braunschweig, W.; Kirschfink, F.J.; Luebelsmeyer, K.; Martyn, H.U.; Rimkus, J.; Rosskamp, P.; Sander, H.G.; Schmitz, D.; Siebke, H.; Wallraff, W.; Duchovni, E.; Karshon, U.; Mikenberg, G.; Mir, R.; Revel, D.; Ronat, E.; Shapira, A.; Yekutieli, G.; Baranko, G.; Barklow, T.; Caldwell, A.; Cherney, M.; Izen, J.M.; Mermikides, M.; Rudolph, G.; Strom, D.; Takashima, M.; Venkataramania, H.; Wicklund, E.; Sau Lan Wu; Zobernig, G.; Eisenberg, Y.; Eskreys, A.; Gather, K.; Hultschig, H.; Joos, P.; Koetz, U.; Kowalski, H.; Ladage, A.; Loehr, B.; Lueke, D.; Maettig, P.; Maettig, P.; Notz, D.; Nowak, R.J.; Pyrlik, J.; Rushton, M.; Schuette, W.; Trines, D.; Wolf, G.; Xiao, C.

    1984-01-01

    Reconstruction of charged Dsup(*)'s produced inclusively in e + e - annhilations at c.m. energies near 34.4 GeV is accomplished in the decay modes Dsup(*+) -> D 0 π + -> K - π + π 0 π + and Dsup(*+) -> D 0 π + -> K - π + π - π + π + and their charge conjugates. Using these and previously reported Dsup(*+) -> D 0 π + -> K - π + π + and Dsup(*+) -> D 0 π + -> K - π + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, αsub(s)sup(c)/αsub(s) = 1.00 +- 0.20 +- 0.20. Our result provides evidence that the quark-gluon coupling constant is independent of flavor. (orig.)

  18. Synchronization of linearly coupled unified chaotic systems based on linear balanced feedback scheme with constraints

    International Nuclear Information System (INIS)

    Chen, H.-H.; Chen, C.-S.; Lee, C.-I

    2009-01-01

    This paper investigates the synchronization of unidirectional and bidirectional coupled unified chaotic systems. A balanced coupling coefficient control method is presented for global asymptotic synchronization using the Lyapunov stability theorem and a minimum scheme with no constraints/constraints. By using the result of the above analysis, the balanced coupling coefficients are then designed to achieve the chaos synchronization of linearly coupled unified chaotic systems. The feasibility and effectiveness of the proposed chaos synchronization scheme are verified via numerical simulations.

  19. Precision determination of the πN scattering lengths and the charged πNN coupling constant

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Thomas, A.W.

    2000-01-01

    We critically evaluate the isovector GMO sumrule for the charged πNN coupling constant using recent precision data from π - p and π - d atoms and with careful attention to systematic errors. From the π - d scattering length we deduce the pion-proton scattering lengths ((1)/(2))(a π - p + a π - n ) = (-20 ± 6(statistic)±10 (systematic) ·10 -4 m -1 π c and ((1)/(2))(a π - p - a π - n ) = (903 ± 14) · 10 -4 m -1 π c . From this a direct evaluation gives g 2 c (GMO)/4π = 14.20 ± 0.07 (statistic)±0.13(systematic) or f 2 c /4π = 0.0786 ± 0.0008

  20. Precision determination of the $\\pi N$ scattering lengths and the charged $\\pi NN$ coupling constant

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2000-01-01

    We critically evaluate the isovector GMO sumrule for the charged $\\pi N N$ coupling constant using recent precision data from $\\pi ^-$p and $\\pi^-$d atoms and with careful attention to systematic errors. From the $\\pi ^-$d scattering length we deduce the pion-proton scattering lengths ${1/2}(a_{\\pi ^-p}+a_{\\pi ^-n})=(-20\\pm 6$(statistic)$ \\pm 10$ (systematic))~$\\cdot 10^{-4}m_{\\pi_c}^{-1}$ and ${1/2}(a_{\\pi ^-p}-a_{\\pi ^-n})=(903 \\pm 14)\\cdot 10^{-4}m_{\\pi_c}^{-1}$. From this a direct evaluation gives $g^2_c(GMO) =14.20\\pm 0.07$(statistic)$\\pm 0.13$(systematic) or $f^2_c= 0.0786\\pm 0.0008$.

  1. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    Energy Technology Data Exchange (ETDEWEB)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  2. Coupling constant corrections in a holographic model of heavy ion collisions

    NARCIS (Netherlands)

    Grozdanov, Sašo; Schee, Wilke van der

    2017-01-01

    We initiate a holographic study of coupling-dependent heavy ion collisions by analysing for the first time the effects of leading-order, inverse coupling constant corrections. In the dual description, this amounts to colliding gravitational shock waves in a theory with curvature-squared terms. We

  3. Universality of Planck's constant and a constraint from the absence of ℏ-induced neutrino mixing

    Science.gov (United States)

    Llanes-Estrada, Felipe J.

    2014-03-01

    You have probably often set ℏ = 1 but for what particle? I revisit here the possibility of a non-universal Planck-constant. Anomaly cancellation suggests that all particles in the same family perceive the same ℏ at fixed charges e, gw, gs; the difference between the muon's and the electron's (and thus the first and second families) can be tightly constrained by the muon's anomalous magnetic moment, but constraints are weaker for the third family. Neutrino mixing could have proceeded a priori not only by the Lagrangian neutrino mass-term, but also by the kinetic term if Planck's constant was not equal for all three species. An experimental constraint follows as such contributions, characterized by oscillations proportional to the energy, as opposed to the inverse energy, have been generically analyzed in the past. This provides at the same time support for gauge invariance. On the other hand if ℏ differs among particles while fixing the fine structure constants αem, αs, etc. instead of the charges, it affects the muonic atom puzzle without much constrain from g - 2 . Based on arXiv:1312.3566. Supported by spanish grants FPA2011-27853-C02-01 and CPAN.

  4. String-coupling constant and dilaton vacuum expectation value in string field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    1987-01-01

    In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)

  5. Estimates and Standard Errors for Ratios of Normalizing Constants from Multiple Markov Chains via Regeneration.

    Science.gov (United States)

    Doss, Hani; Tan, Aixin

    2014-09-01

    In the classical biased sampling problem, we have k densities π 1 (·), …, π k (·), each known up to a normalizing constant, i.e. for l = 1, …, k , π l (·) = ν l (·)/ m l , where ν l (·) is a known function and m l is an unknown constant. For each l , we have an iid sample from π l , · and the problem is to estimate the ratios m l /m s for all l and all s . This problem arises frequently in several situations in both frequentist and Bayesian inference. An estimate of the ratios was developed and studied by Vardi and his co-workers over two decades ago, and there has been much subsequent work on this problem from many different perspectives. In spite of this, there are no rigorous results in the literature on how to estimate the standard error of the estimate. We present a class of estimates of the ratios of normalizing constants that are appropriate for the case where the samples from the π l 's are not necessarily iid sequences, but are Markov chains. We also develop an approach based on regenerative simulation for obtaining standard errors for the estimates of ratios of normalizing constants. These standard error estimates are valid for both the iid case and the Markov chain case.

  6. Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical

    Science.gov (United States)

    Adam, Ahmad; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.

    2014-06-01

    Electronic contributions to molecular properties are often considered as the major factor and usually reported in the literature without ro-vibrational corrections. However, there are many cases where the nuclear motion contributions are significant and even larger than the electronic contribution. In order to obtain accurate theoretical predictions, nuclear motion effects on molecular properties need to be taken into account. The computed isotropic hyperfine coupling constants for the nonvibrating methyl radical CH_3 are far from the experimental values. For CH_3, we have calculated the vibrational-state-dependence of the isotropic hyperfine coupling constant in the electronic ground state. The vibrational wavefunctions used in the averaging procedure were obtained variationally with the TROVE program. Analytical representations for the potential energy surfaces and the hyperfine coupling constant surfaces are obtained in least-squares fitting procedures. Thermal averaging has been carried out for molecules in thermal equilibrium, i.e., with Boltzmann-distributed populations. The calculation methods and the results will be discussed in detail.

  7. Coupling constants and the nonrelativistic quark model with charmonium potential

    International Nuclear Information System (INIS)

    Chaichian, M.; Koegerler, R.

    1978-01-01

    Hadronic coupling constants of the vertices including charm mesons are calculated in a nonrelativistic quark model. The wave functions of the mesons which enter the corresponding overlap integrals are obtained from the charmonium picture as quark-antiquark bound state solutions of the Schroedinger equation. The model for the vertices takes into account in a dynamical way the SU 4 breakings through different masses of quarks and different wave functions in the overlap integrals. All hadronic vertices involving scalar, pseudoscalar, vector, pseudovector and tensor mesons are calculated up to an overall normalization constant. Regularities among the couplings of mesons and their radial excitations are observed: i) Couplings decrease with increasing order of radial excitations; ii) In general they change sign if a particle is replaced by its next radial excitation. The k-dependence of the vertices is studied. This has potential importance in explaining the unorthodox ratios in different decay channels. Having got the hadronic couplings radiative transitions are obtained with the current coupled to mesons and their recurrences. The resulting width values are smaller than those conventionally obtained in the naive quark model. The whole picture is only adequate for nonrelativistic configurations, as for the members of the charmonium- or of the UPSILON-family and most calculations have been done for transitions among charmed states. To see how far nonrelativistic concepts can be applied, couplings of light mesons are also considered. (author)

  8. Constraints on the gravitational constant from observations of white dwarfs

    International Nuclear Information System (INIS)

    Blinnikov, S.I.

    1978-01-01

    Recently some authors have questioned whether Newton's law of gravitation is actually true on scales less than 1 km. The available constraints on the gravitational constant show that its laboratory value G 0 may differ from the value at infinity Gsub(infinity) by approximately 40%. Long (1976) reported experimental evidence for departures from Newton's law. In this note it is shown that the difference between G 0 and Gsub(infinity) modifies the mass-radius relation of degenerate stars. The observations of white dwarfs are consistent with the theory of stellar evolution only if G 0 differs from Gsub(infinity) by not more than approximately 10%. This estimate may be improved by a higher accuracy of observations. (Auth.)

  9. Precise strength of the $\\pi$NN coupling constant

    CERN Document Server

    Ericson, Torleif Eric Oskar; Rahm, J; Blomgren, J; Olsson, N; Thomas, A W

    1998-01-01

    We report here a preliminary value for the piNN coupling constant deduced from the GMO sumrule for forward piN scattering. As in our previous determination from np backward differential scattering cross sections we give a critical discussion of the analysis with careful attention not only to the statistical, but also to the systematic uncertainties. Our preliminary evaluation gives $g^2_c$(GMO) = 13.99(24).

  10. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion.

    Science.gov (United States)

    Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  11. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    International Nuclear Information System (INIS)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-01-01

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton

  12. Capillary electrophoresis - inductively coupled plasma mass spectrometry (CE-ICPMS) coupling to assess pentavalent actinides thermodynamic constants

    International Nuclear Information System (INIS)

    Topin, S.; Baglan, N.; Aupiais, J.

    2009-01-01

    Full text: Aiming to investigate plutonium speciation at trace levels, we coupled capillary electrophoresis, a high resolution separation technique with inductively coupled plasma mass spectrometry, a detector with high sensitivity for plutonium. The research work performed to optimize the coupling is discussed based on the following criteria: the migration time, the resolution and the detection limit. The capabilities of the analytical tool are demonstrated by determining thermodynamic constants for pentavalent plutonium, and neptunium as a reference, in the presence of inorganic ligands. (author)

  13. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  14. Continuous quantum error correction for non-Markovian decoherence

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Brun, Todd A.

    2007-01-01

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximately follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics

  15. Coupled variations of fundamental couplings and primordial nucleosynthesis

    International Nuclear Information System (INIS)

    Coc, Alain; Nunes, Nelson J.; Olive, Keith A.; Uzan, Jean-Philippe; Vangioni, Elisabeth

    2006-10-01

    The effect of variations of the fundamental nuclear parameters on big-bang nucleosynthesis are modeled and discussed in detail taking into account the interrelations between the fundamental parameters arising in unified theories. Considering only 4 He, strong constraints on the variation of the neutron lifetime, neutron-proton mass difference are set. These constraints are then translated into constraints on the time variation of the Yukawa couplings and the fine structure constant. Furthermore, we show that a variation of the deuterium binding energy is able to reconcile the 7 Li abundance deduced from the WMAP analysis with its spectroscopically determined value while maintaining concordance with D and 4 He. (authors)

  16. Strong-coupling constant at three loops in momentum subtraction scheme

    International Nuclear Information System (INIS)

    Chetyrkin, K.G.; Russian Academy of Sciences, Moscow; Kniehl, B.A.; Steinhauser, M.

    2008-12-01

    In this paper we compute the three-loop corrections to the β function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM β function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)

  17. Strong-coupling constant at three loops in momentum subtraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Chetyrkin, K.G. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik]|[Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research; Kniehl, B.A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Steinhauser, M. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik

    2008-12-15

    In this paper we compute the three-loop corrections to the {beta} function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM {beta} function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)

  18. gVSγ coupling constant in light cone QCD

    International Nuclear Information System (INIS)

    Aydin, C.; Keskin, F.; Yilmaz, A. H.; Aydin, S. H.

    2011-01-01

    We recalculated the coupling constants g φσγ , g φa 0 γ , g ωσγ , g a 0 ωγ , g ρσγ , and g a 0 ργ by taking into account the contributions of the three-particle up to twist-4 distribution amplitudes of the photon involving quark-gluon and quark-anti-quark-photon fields in the light-cone sum-rule framework.

  19. Precise strength of the πNN coupling constant

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Rahm, J.; Blomgren, J.; Olsson, N.; Thomas, A. W.

    1999-01-01

    We report here a preliminary value for the πNN coupling constant deduced from the Goldberger-Miyazawa-Oehme sum rule for forward πN scattering. As in our previous determination from np backward differential scattering cross sections we give a critical discussion of the analysis with careful attention not only to the statistical, but also to the systematic uncertainties. Our preliminary evaluation gives g 2 c =13.99(24)

  20. Causal vs. analytic constraints on anomalous quartic gauge couplings

    International Nuclear Information System (INIS)

    Vecchi, L.

    2007-01-01

    We derive one loop constraints on the anomalous quartic gauge couplings using a general non-forward dispersion relation for the elastic scattering amplitude of two longitudinally polarized vector bosons. We show that for exactly chiral theories more stringent bounds can be obtained by the assumption that the underlying theory satisfies the causality principle of Special Relativity

  1. Causal vs. Analytic constraints on anomalous quartic gauge couplings

    OpenAIRE

    Vecchi, Luca

    2007-01-01

    We derive one loop constraints on the anomalous quartic gauge couplings using a general non-forward dispersion relation for the elastic scattering amplitude of two longitudinally polarized vector bosons. We compare this result with another one derived by the assumption that the underlying theory satisfies the causality principle of Special Relativity and show that this latter is more constraining.

  2. Scale solutions and coupling constant in electrodynamics of vector particles

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Boos, E.E.; Kurennoy, S.S.

    1980-01-01

    A new approach in nonrenormalizable gauge theories is studied, the electrodynamics of vector particles being taken as an example. One and two-loop approximations in Schwinger-Dyson set of equations are considered with account for conditions imposed by gauge invariance. It is shown, that solutions with scale asymptotics can occur in this case but only for a particular value of coupling constant. This value in solutions obtained is close to the value of the fine structure constant α=1/137

  3. The thermal coupling constant and the gap equation in the λ φ 4D model

    International Nuclear Information System (INIS)

    Ananos, G.N.J.; Malbouisson, A.P.C.; Svaiter, N.F.

    1998-05-01

    By the concurrent use of two different resummation methods, the composite operator formalism and the Dyson-Schwinger equation, we re-examine the behaviour at finite temperature of the O(N)-symmetric λψ 4 model in a generic D-dimensional Euclidean space. In the cases D = 3 and D = 4, an analysis of the thermal behaviour of the renormalized squared mass and coupling constant are done for all temperatures. It results that the thermal renormalized squared mass is positive and increases monotonically with the temperature. The behavior of the thermal coupling constant is quite different in odd or even dimensional space. In D = 3, the thermal coupling constant decreases up to a minimum value different from zero and ten grows up monotonically as the temperature increases. In the case D = 4, it is found that the thermal renormalized coupling constant tends in the high temperature limit to a constant asymptotic value. Also for general D-dimensional Euclidean space, we are able to obtain a formula for the critical temperature of the second order phase transition. This formula agrees with previous known values at D = 3 and D 4. (author)

  4. Exploring AdS waves via nonminimal coupling

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Hassaiene, Mokhtar

    2006-01-01

    We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS space restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal-coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal-coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a nonperturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity

  5. Muon capture on nuclei and the induced pseudoscalar coupling constant

    International Nuclear Information System (INIS)

    Hasinoff, M.D.

    1996-11-01

    Ordinary and radiative muon capture reactions are reviewed with regards to the evidence for a renormalization of the induced pseudoscalar coupling constant inside the nucleus. Emphasis is placed on the new results which have become available since the WEIN-92 conference. (authors)

  6. Direct determinations of the πNN coupling constants

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; ); Loiseau, B.

    1998-01-01

    A novel extrapolation method has been used to deduce directly the charged πNN coupling constant from backward np differential scattering cross sections. The extracted value, g c 2 = 14.52(026)is higher than the indirectly deduced values obtained in nucleon-nucleon energy-dependent partial-wave analyses. Our preliminary direct value from a reanalysis of the GMO sum-rule points to an intermediate value of g c 2 about 13.97(30). (author)

  7. Renormalization group summation, spectrality constraints, and coupling constant analyticity for phenomenological applications of two-point correlators in QCD

    International Nuclear Information System (INIS)

    Pivovarov, A.A.

    2003-01-01

    The analytic structure in the strong coupling constant that emerges for some observables in QCD after duality averaging of renormalization-group-improved amplitudes is discussed, and the validity of the infrared renormalon hypothesis for the determination of this structure is critically reexamined. A consistent description of peculiar features of perturbation theory series related to hypothetical infrared renormalons and corresponding power corrections is considered. It is shown that perturbation theory series for the spectral moments of two-point correlators of hadronic currents in QCD can explicitly be summed in all orders using the definition of the moments that avoids integration through the infrared region in momentum space. Such a definition of the moments relies on the analytic properties of two-point correlators in the momentum variable that allows for shifting the integration contour into the complex plane of the momentum. For definiteness, an explicit case of gluonic current correlators is discussed in detail

  8. Freezing of the QCD coupling constant and the pion form factor

    International Nuclear Information System (INIS)

    Aguilar, A.C.; Mihara, A.; Natale, A.A.

    2003-01-01

    The possibility that the QCD coupling constant (α s ) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the 'frozen' the QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment. (author)

  9. COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS

    International Nuclear Information System (INIS)

    Mota, David F.; Winther, Hans A.

    2011-01-01

    In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to ΛCDM, but can in some special cases enhance the growth of the linear perturbations at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.

  10. Diagnosis of transverse coupling errors in a storage ring

    International Nuclear Information System (INIS)

    Bagley, P.; Rubin, D.

    1987-01-01

    In a coupled lattice excitation of either one of the two transverse normal modes will generally excite both horizontal and vertical motion at an observation point. A measurement of the relative phase and amplitude of the two components permits a partial reconstruction of the off-diagonal elements of the full turn transfer matrix. At each of the nearly 100 beam position detectors in CESR the coupled transfer matrices are measured. A fit of plausible sources of coupling to the data can improve our understanding of lattice errors and permit an optimization of the rotated quad, solenoid compensation scheme

  11. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    International Nuclear Information System (INIS)

    Kertzscher, Gustavo; Andersen, Claus E.; Siebert, Frank-Andre; Nielsen, Soren Kynde; Lindegaard, Jacob C.; Tanderup, Kari

    2011-01-01

    Background and purpose: The feasibility of a real-time in vivo dosimeter to detect errors has previously been demonstrated. The purpose of this study was to: (1) quantify the sensitivity of the dosimeter to detect imposed treatment errors under well controlled and clinically relevant experimental conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. Materials and methods: Phantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed treatment errors, including interchanged pairs of afterloader guide tubes and 2-20 mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al 2 O 3 :C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated at three dose levels: dwell position, source channel, and fraction. The error criterion incorporated the correlated source position uncertainties and other sources of uncertainty, and it was applied both for the specific phantom patient plans and for a general case (source-detector distance 5-90 mm and position uncertainty 1-4 mm). Results: Out of 20 interchanged guide tube errors, time-resolved analysis identified 17 while fraction level analysis identified two. Channel and fraction level comparisons could leave 10 mm dosimeter displacement errors unidentified. Dwell position dose rate comparisons correctly identified displacements ≥5 mm. Conclusion: This phantom study demonstrates that Al 2 O 3 :C real-time dosimetry can identify applicator displacements ≥5 mm and interchanged guide tube errors during PDR and HDR brachytherapy. The study demonstrates the shortcoming of a constant error criterion and the advantage of a statistical error criterion.

  12. Determination of the pion-nucleon coupling constant and scattering lengths

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2002-01-01

    We critically evaluate the isovector GMO sum rule for forward pion-nucleon scattering using the recent precision measurements of negatively charged pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data a pseudoscalar coupling constant of 14.17+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0786(11). This value is intermediate between that of indirect methods and the direct determination from backward neutron-proton differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the negatively charged pion-proton and pion-neutron scattering lengths with high precision. The symmetric sum gives 0.0017+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one 0.0900+-0.0003(statistical)+-0.0013(systematic), both in units of inverse charged pi...

  13. Conditions for the absence of infinite renormalization in masses and coupling constants

    International Nuclear Information System (INIS)

    Terrab, E.S.C.

    1985-01-01

    A model of scalar, pseudo-scalar and spin 1/2 particle interaction is studied. After reformulation of the problem in function of auxiliary fields, perturbative calculations up to one loop are developed, finding out certain relations among characteristics constants of system, which assure (until the considered order) the absence of infinite renormalization in masses and coupling constants. (M.C.K.) [pt

  14. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    International Nuclear Information System (INIS)

    Hrycyna, Orest; Szydłowski, Marek

    2015-01-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory

  15. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    Energy Technology Data Exchange (ETDEWEB)

    Hrycyna, Orest [Theoretical Physics Division, National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Kraków (Poland)

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.

  16. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  17. Temperature dependence of (+)-catechin pyran ring proton coupling constants as measured by NMR and modeled using GMMX search methodology

    Science.gov (United States)

    Fred L. Tobiason; Stephen S. Kelley; M. Mark Midland; Richard W. Hemingway

    1997-01-01

    The pyran ring proton coupling constants for (+)-catechin have been experimentally determined in deuterated methanol over a temperature range of 213 K to 313 K. The experimental coupling constants were simulated to 0.04 Hz on the average at a 90 percent confidence limit using a LAOCOON method. The temperature dependence of the coupling constants was reproduced from the...

  18. Direct 13C-1H coupling constants in the vinyl group of 1-vinylpyrazoles

    International Nuclear Information System (INIS)

    Afonin, A.V.; Voronov, V.K.; Es'kova, L.A.; Domnina, E.S.; Petrova, E.V.; Zasyad'ko, O.V.

    1987-01-01

    In a continuation of a study of the rotational isomerism of 1-vinylpyrazoles, they studied the direct 13 C- 1 H coupling constants in the vinyl group of 1-vinylpyrazole, 1-vinyl-4-bromopyrazole, 1-vinyl-3-methylpyrazole, 1-vinyl-5-methylpyrazole, 1-vinyl-3,5-dimethylpyrazole, and 1-vinyl-4-nitro-3,5-dimethylpyrazole. The 13 C- 1 H direct coupling constants in the vinyl group of 1-vinylpyrazoles are stereo-specific and vary with change in the conformer ratio

  19. Self-consistent calculation of the coupling constant in the Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Cherny, A.Yu.; Brand, J.

    2004-01-01

    A method is proposed for a self-consistent evaluation of the coupling constant in the Gross-Pitaevskii equation without involving a pseudopotential replacement. A renormalization of the coupling constant occurs due to medium effects and the trapping potential, e.g., in quasi-1D or quasi-2D systems. It is shown that a simplified version of the Hartree-Fock-Bogoliubov approximation leads to a variational problem for both the condensate and a two-body wave function describing the behavior of a pair of bosons in the Bose-Einstein condensate. The resulting coupled equations are free of unphysical divergences. Particular cases of this scheme that admit analytical estimations are considered and compared to the literature. In addition to the well-known cases of low-dimensional trapping, crossover regimes can be studied. The values of the kinetic, interaction, external, and release energies in low dimensions are also evaluated and contributions due to short-range correlations are found to be substantial

  20. Decay Constants of B and D Mesons from Non-pertubatively Improved Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Bowler; L. Del Debbio; J.M. Flynn; G.N, Lacagnina; V.I. Lesk; C.M. Maynard; D.G. Richards

    2000-07-01

    The decay constants of B and D mesons are computed in quenched lattice QCD at two different values of the coupling. The action and operators are ? (a) improved with non-perturbative coefficients where available. The results and systematic errors are discussed in detail. Results for vector decay constants, flavour symmetry breaking ratios of decay constants, the pseudoscalar-vector mass splitting and D meson masses are also presented.

  1. Side-Scan Sonar Image Mosaic Using Couple Feature Points with Constraint of Track Line Positions

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2018-06-01

    Full Text Available To obtain large-scale seabed surface image, this paper proposes a side-scan sonar (SSS image mosaic method using couple feature points (CFPs with constraint of track line positions. The SSS geocoded images are firstly used to form a coarsely mosaicked one and the overlapping areas between adjacent strip images can be determined based on geographic information. Inside the overlapping areas, the feature point (FP detection and registration operation are adopted for both strips. According to the detected CFPs and track line positions, an adjustment model is established to accommodate complex local distortions as well as ensure the global stability. This proposed method effectively solves the problem of target ghosting or dislocation and no accumulated errors arise in the mosaicking process. Experimental results show that the finally mosaicked image correctly reflects the object distribution, which is meaningful for understanding and interpreting seabed topography.

  2. EFFECT OF MEASUREMENT ERRORS ON PREDICTED COSMOLOGICAL CONSTRAINTS FROM SHEAR PEAK STATISTICS WITH LARGE SYNOPTIC SURVEY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Bard, D.; Chang, C.; Kahn, S. M.; Gilmore, K.; Marshall, S. [KIPAC, Stanford University, 452 Lomita Mall, Stanford, CA 94309 (United States); Kratochvil, J. M.; Huffenberger, K. M. [Department of Physics, University of Miami, Coral Gables, FL 33124 (United States); May, M. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); AlSayyad, Y.; Connolly, A.; Gibson, R. R.; Jones, L.; Krughoff, S. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Ahmad, Z.; Bankert, J.; Grace, E.; Hannel, M.; Lorenz, S. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Haiman, Z.; Jernigan, J. G., E-mail: djbard@slac.stanford.edu [Department of Astronomy and Astrophysics, Columbia University, New York, NY 10027 (United States); and others

    2013-09-01

    We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST Image Simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST.

  3. The behaviour of effective coupling constants in 'finite' grand unification theories in curved spacetime

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Odintsov, S.D.; Lichtzier, I.M.

    1989-01-01

    The question of the behaviour of effective coupling constants in one-loop 'finite' grand unification theories in curved spacetime is investigated. It is shown that in strong gravitational fields the effective coupling constant, corresponding to the parameter of non-minimal interaction of scalar and gravitational fields, tends to the conformal value or increases in an exponential fashion. The one-loop effective potential is obtained with accuracy to linear curvature terms. It is shown that, in external supergravity, supersymmetric finite theories admit asymptotic conformal invariance. (Author)

  4. Constraints on a possible variation of the fine structure constant from galaxy cluster data

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, R.F.L. [Departamento de Física, Universidade Estadual da Paraíba, 58429-500, Campina Grande – PB (Brazil); Landau, S.J.; Sánchez G, I.E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and IFIBA, CONICET, Ciudad Universitaria – PabI, Buenos Aires 1428 (Argentina); Alcaniz, J.S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro – RJ (Brazil); Busti, V.C., E-mail: holanda@uepb.edu.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br, E-mail: isg.cos@gmail.com, E-mail: vinicius.busti@astro.iag.usp.br [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, 05508-090, São Paulo – SP (Brazil)

    2016-05-01

    We propose a new method to probe a possible time evolution of the fine structure constant α from X-ray and Sunyaev-Zel'dovich measurements of the gas mass fraction ( f {sub gas}) in galaxy clusters. Taking into account a direct relation between variations of α and violations of the distance-duality relation, we discuss constraints on α for a class of dilaton runaway models. Although not yet competitive with bounds from high- z quasar absorption systems, our constraints, considering a sample of 29 measurements of f {sub gas}, in the redshift interval 0.14 < z < 0.89, provide an independent estimate of α variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α variation obtained in the present analysis.

  5. Constraints on the trilinear Higgs self coupling from precision observables

    Energy Technology Data Exchange (ETDEWEB)

    Degrassi, G. [Dipartimento di Matematica e Fisica, Università di Roma Tre andINFN - Sezione di Roma Tre,I-00146 Rome (Italy); Fedele, M. [Dipartimento di Fisica, Università di Roma “La Sapienza” andINFN - Sezione di Roma,I-00185 Rome (Italy); Giardino, P.P. [Physics Department, Brookhaven National Laboratory,Upton, New York 11973 (United States)

    2017-04-27

    We present the constraints on the trilinear Higgs self coupling that arise from loop effects in the W boson mass and the effective sine predictions. We compute the contributions to these precision observables of two-loop diagrams featuring an anomalous trilinear Higgs self coupling. We explicitly show that the same anomalous contributions are found if the analysis of m{sub W} and sin{sup 2} θ{sub eff}{sup lep} is performed in a theory in which the scalar potential in the Standard Model Lagrangian is modified by an (in)finite tower of (Φ{sup †}Φ){sup n} terms with Φ the Higgs doublet. We find that the bounds on the trilinear Higgs self coupling from precision observables are competitive with those coming from Higgs pair production.

  6. Constant-roll tachyon inflation and observational constraints

    Science.gov (United States)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  7. Isospin breaking in the pion-nucleon coupling constant and the nucleon-nucleon scattering length

    Directory of Open Access Journals (Sweden)

    V. A. Babenko

    2016-08-01

    Full Text Available Charge independence breaking (CIB in the pion-nucleon coupling constant and the nucleon-nucleon scattering length is considered on the basis of the Yukawa meson theory. CIB effect in these quantities is almost entirely explained by the mass difference between the charged and the neutral pions. Therewith charge splitting of the pion-nucleon coupling constant is almost the same as charge splitting of the pion mass. Calculated difference between the proton-proton and the neutron-proton scattering length in this case comprises ∼90% of the experimental value.

  8. New constraints on time-dependent variations of fundamental constants using Planck data

    Science.gov (United States)

    Hart, Luke; Chluba, Jens

    2018-02-01

    Observations of the cosmic microwave background (CMB) today allow us to answer detailed questions about the properties of our Universe, targeting both standard and non-standard physics. In this paper, we study the effects of varying fundamental constants (i.e. the fine-structure constant, αEM, and electron rest mass, me) around last scattering using the recombination codes COSMOREC and RECFAST++. We approach the problem in a pedagogical manner, illustrating the importance of various effects on the free electron fraction, Thomson visibility function and CMB power spectra, highlighting various degeneracies. We demonstrate that the simpler RECFAST++ treatment (based on a three-level atom approach) can be used to accurately represent the full computation of COSMOREC. We also include explicit time-dependent variations using a phenomenological power-law description. We reproduce previous Planck 2013 results in our analysis. Assuming constant variations relative to the standard values, we find the improved constraints αEM/αEM, 0 = 0.9993 ± 0.0025 (CMB only) and me/me, 0 = 1.0039 ± 0.0074 (including BAO) using Planck 2015 data. For a redshift-dependent variation, αEM(z) = αEM(z0) [(1 + z)/1100]p with αEM(z0) ≡ αEM, 0 at z0 = 1100, we obtain p = 0.0008 ± 0.0025. Allowing simultaneous variations of αEM(z0) and p yields αEM(z0)/αEM, 0 = 0.9998 ± 0.0036 and p = 0.0006 ± 0.0036. We also discuss combined limits on αEM and me. Our analysis shows that existing data are not only sensitive to the value of the fundamental constants around recombination but also its first time derivative. This suggests that a wider class of varying fundamental constant models can be probed using the CMB.

  9. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    International Nuclear Information System (INIS)

    Poleshchuk, O. K.; Branchadell, V.; Ritter, R. A.; Fateev, A. V.

    2008-01-01

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  10. Quadrupole coupling constants and isomeric Moessbauer shifts for halogen-containing gold, platinum, niobium, tantalum and antimony compounds

    Energy Technology Data Exchange (ETDEWEB)

    Poleshchuk, O. K., E-mail: poleshch@tspu.edu.ru [Tomsk State Pedagogical University (Russian Federation); Branchadell, V. [Universitat Autonoma de Barcelona, Departament de Quimica (Spain); Ritter, R. A.; Fateev, A. V. [Tomsk State Pedagogical University (Russian Federation)

    2008-01-15

    We have analyzed by means of Density functional theory calculations the nuclear quadrupole coupling constants of a range of gold, antimony, platinum, niobium and tantalum compounds. The geometrical parameters and halogen nuclear quadrupole coupling constants obtained by these calculations substantially corresponded to the data of microwave and nuclear quadrupole resonance spectroscopy. An analysis of the quality of the calculations that employ pseudo-potentials and all-electron basis sets for the halogen compounds was carried out. The zero order regular approximation (ZORA) method is shown to be a viable alternative for the calculation of halogen coupling constants in molecules. In addition, the ZORA model, in contrast to the pseudo-potential model, leads to realistic values of all metal nuclear quadrupole coupling constants. From Klopman's approach, it follows that the relationship between the electrostatic bonding and covalent depends on the nature of the central atom. The results on Moessbauer chemical shifts are also in a good agreement with the coordination number of the central atom.

  11. γ parameter and Solar System constraint in chameleon-Brans-Dicke theory

    International Nuclear Information System (INIS)

    Saaidi, Kh.; Mohammadi, A.; Sheikhahmadi, H.

    2011-01-01

    The post Newtonian parameter is considered in the chameleon-Brans-Dicke model. In the first step, the general form of this parameter and also effective gravitational constant is obtained. An arbitrary function for f(Φ), which indicates the coupling between matter and scalar field, is introduced to investigate validity of solar system constraint. It is shown that the chameleon-Brans-Dicke model can satisfy the solar system constraint and gives us an ω parameter of order 10 4 , which is in comparable to the constraint which has been indicated in [19].

  12. Statistical orientation fluctuations: constant angular momentum versus constant rotational frequency constraints

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A L [Tulane Univ., New Orleans, LA (United States)

    1992-08-01

    Statistical orientation fluctuations are calculated with two alternative assumptions: the rotational frequency remains constant as the shape orientation fluctuates; and, the average angular momentum remains constant as the shape orientation fluctuates. (author). 2 refs., 3 figs.

  13. Propagation of error from parameter constraints in quantitative MRI: Example application of multiple spin echo T2 mapping.

    Science.gov (United States)

    Lankford, Christopher L; Does, Mark D

    2018-02-01

    Quantitative MRI may require correcting for nuisance parameters which can or must be constrained to independently measured or assumed values. The noise and/or bias in these constraints propagate to fitted parameters. For example, the case of refocusing pulse flip angle constraint in multiple spin echo T 2 mapping is explored. An analytical expression for the mean-squared error of a parameter of interest was derived as a function of the accuracy and precision of an independent estimate of a nuisance parameter. The expression was validated by simulations and then used to evaluate the effects of flip angle (θ) constraint on the accuracy and precision of T⁁2 for a variety of multi-echo T 2 mapping protocols. Constraining θ improved T⁁2 precision when the θ-map signal-to-noise ratio was greater than approximately one-half that of the first spin echo image. For many practical scenarios, constrained fitting was calculated to reduce not just the variance but the full mean-squared error of T⁁2, for bias in θ⁁≲6%. The analytical expression derived in this work can be applied to inform experimental design in quantitative MRI. The example application to T 2 mapping provided specific cases, depending on θ⁁ accuracy and precision, in which θ⁁ measurement and constraint would be beneficial to T⁁2 variance or mean-squared error. Magn Reson Med 79:673-682, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Reducing WCET Overestimations by Correcting Errors in Loop Bound Constraints

    Directory of Open Access Journals (Sweden)

    Fanqi Meng

    2017-12-01

    Full Text Available In order to reduce overestimations of worst-case execution time (WCET, in this article, we firstly report a kind of specific WCET overestimation caused by non-orthogonal nested loops. Then, we propose a novel correction approach which has three basic steps. The first step is to locate the worst-case execution path (WCEP in the control flow graph and then map it onto source code. The second step is to identify non-orthogonal nested loops from the WCEP by means of an abstract syntax tree. The last step is to recursively calculate the WCET errors caused by the loose loop bound constraints, and then subtract the total errors from the overestimations. The novelty lies in the fact that the WCET correction is only conducted on the non-branching part of WCEP, thus avoiding potential safety risks caused by possible WCEP switches. Experimental results show that our approach reduces the specific WCET overestimation by an average of more than 82%, and 100% of corrected WCET is no less than the actual WCET. Thus, our approach is not only effective but also safe. It will help developers to design energy-efficient and safe real-time systems.

  15. A constraint on the distance dependence of the gravitational constant

    International Nuclear Information System (INIS)

    Hut, P.

    1981-01-01

    Extended supergravity theories predict the existence of vector and scalar bosons, besides the gravitation, which in the static limit couple to the mass. An example is the gravitation, leading to antigravity. If these bosons have a small mass (approx. -4 eV), an observable Yukawa term would be present in the gravitational potential in the newtonian limit. This can be parametrized by a distance dependent effective gravitational constant G(γ). Defining G 0 = G (10 cm) and Gsub(e) = G (10 3 km), the comparison between theory and observations of the white dwarf Sirius B results in Gsub(c)/G 0 = 0.98 +- 0.08. (orig.)

  16. Observational constraints on holographic dark energy with varying gravitational constant

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jianbo; Xu, Lixin [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China); Saridakis, Emmanuel N. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Setare, M.R., E-mail: lvjianbo819@163.com, E-mail: msaridak@phys.uoa.gr, E-mail: rezakord@ipm.ir, E-mail: lxxu@dlut.edu.cn [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of)

    2010-03-01

    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ we find Ω{sub Λ0} = 0.72{sup +0.03}{sub −0.03}, Ω{sub k0} = −0.0013{sup +0.0130}{sub −0.0040}, c = 0.80{sup +0.19}{sub −0.14} and Δ{sub G}≡G'/G = −0.0025{sup +0.0080}{sub −0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w{sub 0} = −1.04{sup +0.15}{sub −0.20}.

  17. How Precisely can we Determine the $\\piNN$ Coupling Constant from the Isovector GMO Sum Rule?

    CERN Document Server

    Loiseau, B; Thomas, A W

    1999-01-01

    The isovector GMO sum rule for zero energy forward pion-nucleon scattering iscritically studied to obtain the charged pion-nucleon coupling constant usingthe precise negatively charged pion-proton and pion-deuteron scattering lengthsdeduced recently from pionic atom experiments. This direct determination leadsto a pseudoscalar charged pion-nucleon coupling constant of 14.23 +- 0.09(statistic) +- 0.17 (systematic). We obtain also accurate values for thepion-nucleon scattering lengths.

  18. Global synchronization in arrays of delayed neural networks with constant and delayed coupling

    International Nuclear Information System (INIS)

    Cao Jinde; Li Ping; Wang Weiwei

    2006-01-01

    This Letter investigates the global exponential synchronization in arrays of coupled identical delayed neural networks (DNNs) with constant and delayed coupling. By referring to Lyapunov functional method and Kronecker product technique, some sufficient conditions are derived for global synchronization of such systems. These new synchronization criteria offer some adjustable matrix parameters, which is of important significance in the design and applications of such coupled DNNs, and the results improve and extend the earlier works. Finally, an example is given to illustrate the theoretical results

  19. Neural network error correction for solving coupled ordinary differential equations

    Science.gov (United States)

    Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

    1992-01-01

    A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

  20. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kalnins, E G [Department of Mathematics and Statistics, University of Waikato, Hamilton (New Zealand); Miller, W Jr; Post, S [School of Mathematics, University of Minnesota, Minneapolis, MN 55455 (United States)], E-mail: miller@ima.umn.edu

    2010-01-22

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  1. Coupling constant metamorphosis and Nth-order symmetries in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Kalnins, E G; Miller, W Jr; Post, S

    2010-01-01

    We review the fundamentals of coupling constant metamorphosis (CCM) and the Staeckel transform, and apply them to map integrable and superintegrable systems of all orders into other such systems on different manifolds. In general, CCM does not preserve the order of constants of the motion or even take polynomials in the momenta to polynomials in the momenta. We study specializations of these actions which preserve polynomials and also the structure of the symmetry algebras in both the classical and quantum cases. We give several examples of non-constant curvature third- and fourth-order superintegrable systems in two space dimensions obtained via CCM, with some details on the structure of the symmetry algebras preserved by the transform action.

  2. Constraints on Anomalous Quartic Gauge Boson Couplings from $\

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    Anomalous quartic couplings between the electroweak gauge bosons may contribute to the vv gamma gamma and qq gamma gamma final states produced in e+e- collisions. This analysis uses the LEP2 OPAL data sample at centre-of-mass energies up to 209 GeV. Event selections identify vv gamma gamma and qq gamma gamma events in which the two photons are reconstructed within the detector acceptance. The cross-section for the process e+e- -> qq gamma gamma is measured. Averaging over all energies, the ratio of the observed e+e- -> qq gamma gamma cross-section to the Standard Model expectation is R(data/SM) = 0.92 +- 0.07 +- 0.04 where the errors represent the statistical and systematic uncertainties respectively. The vv gamma gamma and qq gamma gamma data are used to constrain possible anomalous W+W- gamma gamma and ZZ gamma gamma couplings. Combining with previous OPAL results from the W+W- gamma final state, the 95% confidence level limits on the anomalous coupling parameters aoz, acz, aow and acw are found to be: -0.0...

  3. Observation of H-bond mediated 3hJH2H3coupling constants across Watson-Crick AU base pairs in RNA

    International Nuclear Information System (INIS)

    Luy, Burkhard; Richter, Uwe; DeJong, Eric S.; Sorensen, Ole W.; Marino, John P.

    2002-01-01

    3h J H2H3 trans-hydrogen bond scalar coupling constants have been observed for the first time in Watson-Crick AU base pairs in uniformly 15 N-labeled RNA oligonucleotides using a new 2h J NN -HNN-E. COSY experiment. The experiment utilizes adenosine H2 (AH2) for original polarization and detection, while employing 2h J NN couplings for coherence transfer across the hydrogen bonds (H-bonds). The H3 protons of uracil bases are unperturbed throughout the experiment so that these protons appear as passive spins in E. COSY patterns. 3h J H2H3 coupling constants can therefore be accurately measured in the acquisition dimension from the displacement of the E. COSY multiplet components, which are separated by the relatively large 1 J H3N3 coupling constants in the indirect dimension of the two-dimensional experiment. The 3h J H2H3 scalar coupling constants determined for AU base pairs in the two RNA hairpins examined here have been found to be positive and range in magnitude up to 1.8 Hz. Using a molecular fragment representation of an AU base pair, density functional theory/finite field perturbation theory (DFT/FPT) methods have been applied to attempt to predict the relative contributions of H-bond length and angular geometry to the magnitude of 3h J H2H3 coupling constants. Although the DFT/FPT calculations did not reproduce the full range of magnitude observed experimentally for the 3h J H2H3 coupling constants, the calculations do predict the correct sign and general trends in variation in size of these coupling constants. The calculations suggest that the magnitude of the coupling constants depends largely on H-bond length, but can also vary with differences in base pair geometry. The dependency of the 3h J H2H3 coupling constant on H-bond strength and geometry makes it a new probe for defining base pairs in NMR studies of nucleic acids

  4. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine

    Energy Technology Data Exchange (ETDEWEB)

    San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es [Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid (Spain)

    2016-08-28

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.

  5. Constraints on nonconformal couplings from the properties of the cosmic microwave background radiation.

    Science.gov (United States)

    van de Bruck, Carsten; Morrice, Jack; Vu, Susan

    2013-10-18

    Certain modified gravity theories predict the existence of an additional, nonconformally coupled scalar field. A disformal coupling of the field to the cosmic microwave background (CMB) is shown to affect the evolution of the energy density in the radiation fluid and produces a modification of the distribution function of the CMB, which vanishes if photons and baryons couple in the same way to the scalar. We find the constraints on the couplings to matter and photons coming from the measurement of the CMB temperature evolution and from current upper limits on the μ distortion of the CMB spectrum. We also point out that the measured equation of state of photons differs from w(γ)=1/3 in the presence of disformal couplings.

  6. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Rasmus; Sauer, Stephan P. A. [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-31

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  7. The effective baryon-lepton coupling constant and the parity of leptons

    International Nuclear Information System (INIS)

    Lucha, W.; Stremnitzer, H.

    1981-01-01

    Using a phenomenological ansatz for the Lagrangian of baryon- and lepton-number violating interactions the effective baryon-lepton coupling constant is calculated within the framework of a relativistic quark model. Apart from a calculation of B-number violating cross-sections and decays this ansatz allows for a definition of the parity of leptons relative to baryons. (Auth.)

  8. The nucleon axial isoscalar coupling constant and the Bjorken sum rule

    International Nuclear Information System (INIS)

    Belyaev, V.M.; Ioffe, B.L.; Kogan, Ya.I.

    1984-01-01

    The nucleon coupling constant with the axial isoscalar current entering the Bjorken sum rule for the deep inelastic scattering of polarized electrons on a polarized target is calculated in nonperturbative QCD. The result, gsub(A)sup(s) approximately 0.5, is about a factor of two smaller as compared to that of the SU(6) symmetric quark model

  9. Brief comments on Jackiw-Teitelboim gravity coupled to Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Giribet, Gaston E

    2003-06-07

    The Jackiw-Teitelboim gravity with non-vanishing cosmological constant coupled to Liouville theory is considered as a non-critical string on d dimensional flat spacetime. In terms of this interpretation of the model as a consistent string theory, it is discussed as to how the presence of a cosmological constant leads one to consider additional constraints on the parameters of the theory, even though the conformal anomaly is independent of the cosmological constant. The constraints agree with the necessary conditions required to ensure that the tachyon field turns out to be a primary prelogarithmic operator within the context of the worldsheet conformal field theory. Thus, the linearized tachyon field equation allows one to impose the diagonal condition for the interaction term. We analyse the neutralization of the Liouville mode induced by the coupling to the Jackiw-Teitelboim Lagrangian. The standard free field prescription leads one to obtain explicit expressions for three-point functions for the case of vanishing cosmological constant in terms of a product of Shapiro-Virasoro integrals; this fact is a consequence of the mentioned neutralization effect.

  10. Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G

    International Nuclear Information System (INIS)

    DeSalvo, Riccardo

    2015-01-01

    Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested. - Highlights: • Source of discrepancies on universal gravitational constant G measurements. • Collective motion of dislocations results in breakdown of Hook's law. • Self-organized criticality produce non-predictive shifts of equilibrium point. • New dissipation mechanism different from loss angle and viscous models is necessary. • Mitigation measures proposed may bring coherence to the measurements of G

  11. Chiral symmetry effect on the pion-nucleon coupling constant; O efeito da simetria quiral na constante de acoplamento pion-nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Vanilse da Silva

    1997-12-31

    In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear {sigma}- model. First, we introduce the linear {sigma}-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+{pi}{sub NN}(q{sup 2}) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear {sigma}-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear {sigma}-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of g{sub {pi}nn} (q{sup 2}) and of the mean square radius. (author) 21 refs., 17 figs., 4 tabs.

  12. S3 HMBC hetero: Spin-State-Selective HMBC for accurate measurement of long-range heteronuclear coupling constants

    DEFF Research Database (Denmark)

    Hoeck, Casper; Gotfredsen, Charlotte Held; Sørensen, Ole W.

    2017-01-01

    A novel method, Spin-State-Selective (S3) HMBC hetero, for accurate measurement of heteronuclear coupling constants is introduced. The method extends the S3 HMBC technique for measurement of homonuclear coupling constants by appending a pulse sequence element that interchanges the polarization...

  13. Using Weighted Constraints to Diagnose Errors in Logic Programming--The Case of an Ill-Defined Domain

    Science.gov (United States)

    Le, Nguyen-Thinh; Menzel, Wolfgang

    2009-01-01

    In this paper, we introduce logic programming as a domain that exhibits some characteristics of being ill-defined. In order to diagnose student errors in such a domain, we need a means to hypothesise the student's intention, that is the strategy underlying her solution. This is achieved by weighting constraints, so that hypotheses about solution…

  14. Adjoint-Based a Posteriori Error Estimation for Coupled Time-Dependent Systems

    KAUST Repository

    Asner, Liya; Tavener, Simon; Kay, David

    2012-01-01

    We consider time-dependent parabolic problem s coupled across a common interface which we formulate using a Lagrange multiplier construction and solve by applying a monolithic solution technique. We derive an adjoint-based a posteriori error representation for a quantity of interest given by a linear functional of the solution. We establish the accuracy of our error representation formula through numerical experimentation and investigate the effect of error in the adjoint solution. Crucially, the error representation affords a distinction between temporal and spatial errors and can be used as a basis for a blockwise time-space refinement strategy. Numerical tests illustrate the efficacy of the refinement strategy by capturing the distinctive behavior of a localized traveling wave solution. The saddle point systems considered here are equivalent to those arising in the mortar finite element technique for parabolic problems. © 2012 Society for Industrial and Applied Mathematics.

  15. Updated constraints on spatial variations of the fine-structure constant

    Directory of Open Access Journals (Sweden)

    A.M.M. Pinho

    2016-05-01

    Full Text Available Recent work by Webb et al. has provided indications of spatial variations of the fine-structure constant, α, at a level of a few parts per million. Using a dataset of 293 archival measurements, they further show that a dipole provides a statistically good fit to the data, a result subsequently confirmed by other authors. Here we show that a more recent dataset of dedicated measurements further constrains these variations: although there are only 10 such measurements, their uncertainties are considerably smaller. We find that a dipolar variation is still a good fit to the combined dataset, but the amplitude of such a dipole must be somewhat smaller: 8.1±1.7 ppm for the full dataset, versus 9.4±2.2 ppm for the Webb et al. data alone, both at the 68.3% confidence level. Constraints on the direction on the sky of such a dipole are also significantly improved. On the other hand the data can't yet discriminate between a pure spatial dipole and one with an additional redshift dependence.

  16. Possible generalization of the method of evolution in the coupling constant

    International Nuclear Information System (INIS)

    Belyaev, V.B.; Solovtsova, O.P.

    1980-01-01

    Two possible generalizations of the method of evolution in the coupling constant are presented. The consideration is given for a concrete case of the three-body problem: the πd scattering at the zeroth pion energy. It is shown that two approaches provide the value for the πd scattering length which is close to that obtained by solving the Faddeev equations [ru

  17. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium

    DEFF Research Database (Denmark)

    Rusakov, Yury Yu; Krivdin, Leonid B.; Østerstrøm, Freja From

    2013-01-01

    This paper documents a very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for the medium sized organotellurium molecules. The 125Te-1H spin-spin coupling...... constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels in a good agreement with experiment. A new full-electron basis set av3z-J for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations...... of spin-spin coupling constants involving tellurium, was developed. The SOPPA methods show much better performance as compared to 15 those of DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while...

  18. The renormalised π NN coupling constant and the P-wave phase shifts in the cloudy bag model

    International Nuclear Information System (INIS)

    Pearce, B.C.; Afnan, I.R.

    1986-02-01

    Most applications of the cloudy bag model to π N scattering involve unitarising the bare diagrams arising from the Lagrangian by iterating in a Lippmann-Schwinger equation. However analyses of the renormalisation of the coupling constant proceed by iterating the Lagrangian to a given order in the bare coupling constant. These two different approaches means there is an inconsistency between the calculation of phase shifts and the calculation of renormalisation. A remedy to this problem is presented that has the added advantage of improving the fit to the phase shifts in the P 11 channel. This is achieved by using physical values of the coupling constant in the crossed diagram which reduces the repulsion rather than adds attraction. This approach can be justified by examining equations for the π π N system that incorporate three-body unitarity

  19. Measurement of the strong interaction coupling constant αs by jet study in the H1 experiment

    International Nuclear Information System (INIS)

    Squinabol, F.

    1997-01-01

    The H1 experiment allows to study hadronic jets produced in deep inelastic lepton (27.5 GeV) scattering off protons (820 GeV). The coupling constant of the strong interaction α s can be extracted from the measurement of the 2-jets rate in the final state. The use of the JADE algorithm is optimal for events with high energy transfer (100-4,000 GeV 2 ), corresponding to the 1994 and 1995 data. The error on α s (M Z 0 2 ) is dominated by the uncertainty from the hadronic energy measurement and the experimental resolution effects on jets. The theoretical error is dominated by the renormalization scale dependence. The final result is (M Z 0 2 ) 0.118 -0.008 +0.008 . This analysis is extended to smaller momentum transfers (25-100 GeV 2 ) using the factorizable K t algorithm, taking the transferred momentum as energy scale of the particle re-clustering. The result α s (M Z 0 2 ) 0.117 -0.008 +0.009 is compatible with the previous one. The precision of the measurement performed in this thesis is 7%. A precision of 4% could be achieved after progresses in the theoretical framework and/or after a significant increase of the luminosity. (author)

  20. S3 HMBC: Spin-State-Selective HMBC for accurate measurement of homonuclear coupling constants. Application to strychnine yielding thirteen hitherto unreported JHH

    DEFF Research Database (Denmark)

    Kjaerulff, Louise; Benie, Andrew J.; Hoeck, Casper

    2016-01-01

    A novel method, Spin-State-Selective (S3) HMBC, for accurate measurement of homonuclear coupling constants is introduced. As characteristic for S3 techniques, S3 HMBC yields independent subspectra corresponding to particular passive spin states and thus allows determination of coupling constants ...... are demonstrated by an application to strychnine where thirteen JHH coupling constants not previously reported could be measured....

  1. Normalization constraint for variational bounds on fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.; Milton, G.W.

    1985-01-01

    A careful reexamination of the formulation of Prager's original variational principle for viscous flow through porous media has uncovered a subtle error in the normalization constraint on the trial functions. Although a certain surface integral of the true pressure field over the internal surface area always vanishes for isotropic materials, the corresponding surface integral for a given trial pressure field does not necessarily vanish but has nevertheless been previously neglected in the normalization. When this error is corrected, the form of the variational estimate is actually simpler than before and furthermore the resulting bounds have been shown to improve when the constant trial functions are used in either the two-point or three-point bounds

  2. Restrictions on the masses and coupling constants of excited intermediate bosons

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Nogteva, A.V.

    1985-01-01

    The properties of the intermediate bosons are discussed in the framework of composite models which include not only the W +- and Z 0 bosons but also their excited states with large masses. The influence of the excited states on the values of the masses of the W +- and Z 0 bosons is investigated. Restrictions on the masses and coupling constants of the excited intermediate bosons are obtained

  3. The /sup 13/C-/sup 13/C spin-spin coupling constants and the conformational equilibrium of alkyl phenyl sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Krividin, L.B.; Kalabin, G.A.

    1985-08-10

    The authors measure the direct geminal and vicinal spinspin coupling constants between the C-13 nuclei of the phenyl group in the series of alkyl phenyl sulfides C/sub 6/H/sub 5/SR. It was shown that the variation in most of the discussed constants is determined by the ratio of the planar and orthogonal conformers. Linear relationships were obtained between the C-13-C-13 constants and the fractions of the planar conformer. The C-13-C-13 spin-spin coupling constants in the planar and orthogonal conformers of the compounds were calculated by means of empirical relationships.

  4. Perturbation theory at large order in more than one coupling constant for a field theory with fermions

    International Nuclear Information System (INIS)

    Chowdhury, A.R.; Roy, T.

    1980-01-01

    We have considered the problem of evaluating the large order estimates of perturbation theory in a quantum field theory with more than one coupling constant. The theory considered is four dimensional and possesses instanton-type solutions. It contains a Boson field coupled with a Fermion through the usual g anti psi psi phi type interaction, along with the self-interaction of the Boson lambda phi 4 . Our analysis reveals a phenomenon not observed in a theory with only one coupling constant. One gets different kinds of behavior in different regions of the (lambda, g) plane. The results are quite encouraging for the application to more realistic field theories

  5. Observational Constraints on Quark Matter in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.

  6. E-ELT constraints on runaway dilaton scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, M. [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120, Heidelberg (Germany); Calabrese, E. [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Martins, C.J.A.P., E-mail: m.martinelli@thphys.uni-heidelberg.de, E-mail: erminia.calabrese@physics.ox.ac.uk, E-mail: carlos.martins@astro.up.pt [Centro de Astrofìsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2015-11-01

    We use a combination of simulated cosmological probes and astrophysical tests of the stability of the fine-structure constant α, as expected from the forthcoming European Extremely Large Telescope (E-ELT), to constrain the class of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We consider three different scenarios for the dark sector couplings in the model and discuss the observational differences between them. We improve previously existing analyses investigating in detail the degeneracies between the parameters ruling the coupling of the dilaton field to the other components of the universe, and studying how the constraints on these parameters change for different fiducial cosmologies. We find that if the couplings are small (e.g., α{sub b} = α{sub V} ∼ 0) these degeneracies strongly affect the constraining power of future data, while if they are sufficiently large (e.g., α{sub b} ∼> 10{sup −5}−α{sub V} ∼> 0.05, as in agreement with current constraints) the degeneracies can be partially broken. We show that E-ELT will be able to probe some of this additional parameter space.

  7. Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods.

    Science.gov (United States)

    Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G

    2014-01-27

    Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.

  8. Relativistic DFT calculations of hyperfine coupling constants in the 5d hexafluorido complexes

    DEFF Research Database (Denmark)

    Haase, Pi Ariane Bresling; Repisky, Michal; Komorovsky, Stanislav

    2018-01-01

    We have investigated the performance of the most popular relativistic density functional theory methods, zeroth order regular approximation (ZORA) and 4-component Dirac-Kohn-Sham (DKS), in the calculation of the recently measured hyperfine coupling constants of ReIV and IrIV in their hexafluorido...

  9. Should the coupling constants be mass dependent in the relativistic mean field models

    International Nuclear Information System (INIS)

    Levai, P.; Lukacs, B.

    1986-05-01

    Mass dependent coupling constants are proposed for baryonic resonances in the relativistic mean field model, according to the mass splitting of the SU-6 multiplet. With this choice the negative effective masses are avoided and the system remains nucleon dominated with moderate antidelta abundance. (author)

  10. 13C, 1H spin-spin coupling constants. Pt. 4

    International Nuclear Information System (INIS)

    Aydin, R.; Guenther, H.

    1979-01-01

    One-bond, geminal, and vicinal 13 C, 1 H coupling constants have been determined for adamantane using α-and β-[D]adamantane and the relation sup(n)J( 13 C, 1 H)=6,5144sup(n)J( 13 C, 2 H) for the conversion of the measured sup(n)J( 13 C, 2 H) values. It is shown that the magnitude of 3 Jsub(trans) is strongly influenced by the substitution pattern. Relative H,D isotope effects for 13 C chemical shifts are given. (orig.) [de

  11. Constraints on variations in inflaton decay rate from modulated preheating

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, Arindam [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-64 (India); Modak, Kamakshya Prasad, E-mail: arindam.mazumdar@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-64 (India)

    2016-06-01

    Modulated (p)reheating is thought to be an alternative mechanism for producing super-horizon curvature perturbations in CMB. But large non-gaussianity and iso-curvature perturbations produced by this mechanism rule out its acceptability as the sole process responsible for generating CMB perturbations. We explore the situation where CMB perturbations are mostly generated by usual quantum fluctuations of inflaton during inflation, but a modulated coupling constant between inflaton and a secondary scalar affects the preheating process and produces some extra curvature perturbations. If the modulating scalar field is considered to be a dark matter candidate, coupling constant between the fields has to be unnaturally fine tuned in order to keep the local-form non-gaussianity and the amplitude of iso-curvature perturbations within observational limit; otherwise parameters of the models have to be tightly constrained. Those constraints imply that the curvature perturbations generated by modulated preheating should be less than 15% of the total observed CMB perturbations. On the other hand if the modulating scalar field is not a dark matter candidate, parameters of the models could not be constrained, but the constraints on the maximum amount of the curvature perturbations coming from modulated preheating remain valid.

  12. Constraints on variations in inflaton decay rate from modulated preheating

    International Nuclear Information System (INIS)

    Mazumdar, Arindam; Modak, Kamakshya Prasad

    2016-01-01

    Modulated (p)reheating is thought to be an alternative mechanism for producing super-horizon curvature perturbations in CMB. But large non-gaussianity and iso-curvature perturbations produced by this mechanism rule out its acceptability as the sole process responsible for generating CMB perturbations. We explore the situation where CMB perturbations are mostly generated by usual quantum fluctuations of inflaton during inflation, but a modulated coupling constant between inflaton and a secondary scalar affects the preheating process and produces some extra curvature perturbations. If the modulating scalar field is considered to be a dark matter candidate, coupling constant between the fields has to be unnaturally fine tuned in order to keep the local-form non-gaussianity and the amplitude of iso-curvature perturbations within observational limit; otherwise parameters of the models have to be tightly constrained. Those constraints imply that the curvature perturbations generated by modulated preheating should be less than 15% of the total observed CMB perturbations. On the other hand if the modulating scalar field is not a dark matter candidate, parameters of the models could not be constrained, but the constraints on the maximum amount of the curvature perturbations coming from modulated preheating remain valid.

  13. Renormalization group analysis of the temperature dependent coupling constant in massless theory

    International Nuclear Information System (INIS)

    Yamada, Hirofumi.

    1987-06-01

    A general analysis of finite temperature renormalization group equations for massless theories is presented. It is found that in a direction where momenta and temperature are scaled up with their ratio fixed the coupling constant behaves in the same manner as in zero temperature and that asymptotic freedom at short distances is also maintained at finite temperature. (author)

  14. Neutrino mass constraints on β decay

    International Nuclear Information System (INIS)

    Ito, Takeyasu M.; Prezeau, Gary

    2005-01-01

    Using the general connection between the upper limit on the neutrino mass and the upper limits on certain types of non-standard-model interactions that can generate loop corrections to the neutrino mass, we derive constraints on some non-standard-model d→ue - ν interactions. When cast into limits on n→pe - ν coupling constants, our results yield constraints on scalar and tensor weak interactions improved by more than an order of magnitude over the current experimental limits. When combined with the existing limits, our results yield vertical bar C S /C V vertical bar or approx. 5x10 -3 , vertical bar C S ' /C V vertical bar or approx. 5x10 -3 , vertical bar C T /C A vertical bar -2 , and vertical bar C T ' /C A vertical bar -2

  15. Nuclear matter studies with density-dependent meson-nucleon coupling constants

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Tjon, J.A.; Banerjee, M.K.; Tjon, J.A.

    1997-01-01

    Due to the internal structure of the nucleon, we should expect, in general, that the effective meson nucleon parameters may change in nuclear medium. We study such changes by using a chiral confining model of the nucleon. We use density-dependent masses for all mesons except the pion. Within a Dirac-Brueckner analysis, based on the relativistic covariant structure of the NN amplitude, we show that the effect of such a density dependence in the NN interaction on the saturation properties of nuclear matter, while not large, is quite significant. Due to the density dependence of the g σNN , as predicted by the chiral confining model, we find, in particular, a looping behavior of the binding energy at saturation as a function of the saturation density. A simple model is described, which exhibits looping and which is shown to be mainly caused by the presence of a peak in the density dependence of the medium modified σN coupling constant at low density. The effect of density dependence of the coupling constants and the meson masses tends to improve the results for E/A and density of nuclear matter at saturation. From the present study we see that the relationship between binding energy and saturation density may not be as universal as found in nonrelativistic studies and that more model dependence is exhibited once medium modifications of the basic nuclear interactions are considered. copyright 1997 The American Physical Society

  16. Fourier-positivity constraints on QCD dipole models

    Directory of Open Access Journals (Sweden)

    Bertrand G. Giraud

    2016-09-01

    Full Text Available Fourier-positivity (F-positivity, i.e. the mathematical property that a function has a positive Fourier transform, can be used as a constraint on the parametrization of QCD dipole-target cross-sections or Wilson line correlators in transverse position space r. They are Bessel transforms of positive transverse momentum dependent gluon distributions. Using mathematical F-positivity constraints on the limit r→0 behavior of the dipole amplitudes, we identify the common origin of the violation of F-positivity for various, however phenomenologically convenient, dipole models. It is due to the behavior r2+ϵ, ϵ>0 softer, even slightly, than color transparency. F-positivity seems thus to conflict with the present dipole formalism when it includes a QCD running coupling constant α(r.

  17. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    Science.gov (United States)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  18. Spatially coupled low-density parity-check error correction for holographic data storage

    Science.gov (United States)

    Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro

    2017-09-01

    The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.

  19. $K^{\\pm}n$ forward dispersion relations and the KN$\\Sigma$ coupling constant

    CERN Document Server

    Baillon, Paul; Ferro-Luzzi, M; Jenni, Peter; Perreau, J M; Tripp, R D; Ypsilantis, Thomas; Déclais, Y; Séguinot, Jacques

    1976-01-01

    Recent measurements of the K/sup -/n forward scattering amplitude at 1.2, 1.4, 2.6 GeV/c are used in a once-subtracted dispersion relation to determine the value of the KN Sigma coupling constant. The result is g/sub Sigma //sup 2/=1.9+or-3.2, in agreement with the prediction of the SU(3) theory.

  20. ROBUST KALMAN FILTERING FOR SYSTEMS UNDER NORM BOUNDED UNCERTAINTIES IN ALL SYSTEM MATRICES AND ERROR COVARIANCE CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    XIA Yuanqing; HAN Jingqing

    2005-01-01

    This paper concerns robust Kalman filtering for systems under norm bounded uncertainties in all the system matrices and error covariance constraints. Sufficient conditions are given for the existence of such filters in terms of Riccati equations. The solutions to the conditions can be used to design the filters. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed design procedure.

  1. Coupling of system thermal–hydraulics and Monte-Carlo code: Convergence criteria and quantification of correlation between statistical uncertainty and coupled error

    International Nuclear Information System (INIS)

    Wu, Xu; Kozlowski, Tomasz

    2015-01-01

    Highlights: • Coupling of Monte Carlo code Serpent and thermal–hydraulics code RELAP5. • A convergence criterion is developed based on the statistical uncertainty of power. • Correlation between MC statistical uncertainty and coupled error is quantified. • Both UO 2 and MOX single assembly models are used in the coupled simulation. • Validation of coupling results with a multi-group transport code DeCART. - Abstract: Coupled multi-physics approach plays an important role in improving computational accuracy. Compared with deterministic neutronics codes, Monte Carlo codes have the advantage of a higher resolution level. In the present paper, a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, Serpent, is coupled with a thermal–hydraulics safety analysis code, RELAP5. The coupled Serpent/RELAP5 code capability is demonstrated by the improved axial power distribution of UO 2 and MOX single assembly models, based on the OECD-NEA/NRC PWR MOX/UO 2 Core Transient Benchmark. Comparisons of calculation results using the coupled code with those from the deterministic methods, specifically heterogeneous multi-group transport code DeCART, show that the coupling produces more precise results. A new convergence criterion for the coupled simulation is developed based on the statistical uncertainty in power distribution in the Monte Carlo code, rather than ad-hoc criteria used in previous research. The new convergence criterion is shown to be more rigorous, equally convenient to use but requiring a few more coupling steps to converge. Finally, the influence of Monte Carlo statistical uncertainty on the coupled error of power and thermal–hydraulics parameters is quantified. The results are presented such that they can be used to find the statistical uncertainty to use in Monte Carlo in order to achieve a desired precision in coupled simulation

  2. Constraints on Higgs boson couplings from a combination of ATLAS and CMS measurements

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Combined ATLAS and CMS measurements of the Higgs boson production and decay rates as well as constraints on its couplings to vector bosons and fermions are presented. This combination is based on the analysis of five production processes and of the H → ZZ,WW, γγ, ττ, bb and μμ decay modes using the LHC Run-1 data. After a pedagogical introduction to the Higgs coupling interpretation framework and the combination procedure, the combined Higgs boson production and decay rates of the two experiments are presented within the context of two generic parameterisations: one based on ratios of cross sections and branching ratios and the other based on ratios of coupling modifiers, introduced within the context of a leading-order Higgs boson coupling framework. Several interpretations of the results with more model-dependent parameterisations, derived from the generic ones, are also presented.

  3. On the sub-model errors of a generalized one-way coupling scheme for linking models at different scales

    Science.gov (United States)

    Zeng, Jicai; Zha, Yuanyuan; Zhang, Yonggen; Shi, Liangsheng; Zhu, Yan; Yang, Jinzhong

    2017-11-01

    Multi-scale modeling of the localized groundwater flow problems in a large-scale aquifer has been extensively investigated under the context of cost-benefit controversy. An alternative is to couple the parent and child models with different spatial and temporal scales, which may result in non-trivial sub-model errors in the local areas of interest. Basically, such errors in the child models originate from the deficiency in the coupling methods, as well as from the inadequacy in the spatial and temporal discretizations of the parent and child models. In this study, we investigate the sub-model errors within a generalized one-way coupling scheme given its numerical stability and efficiency, which enables more flexibility in choosing sub-models. To couple the models at different scales, the head solution at parent scale is delivered downward onto the child boundary nodes by means of the spatial and temporal head interpolation approaches. The efficiency of the coupling model is improved either by refining the grid or time step size in the parent and child models, or by carefully locating the sub-model boundary nodes. The temporal truncation errors in the sub-models can be significantly reduced by the adaptive local time-stepping scheme. The generalized one-way coupling scheme is promising to handle the multi-scale groundwater flow problems with complex stresses and heterogeneity.

  4. Performance of wave function and density functional methods for water hydrogen bond spin-spin coupling constants.

    Science.gov (United States)

    García de la Vega, J M; Omar, S; San Fabián, J

    2017-04-01

    Spin-spin coupling constants in water monomer and dimer have been calculated using several wave function and density functional-based methods. CCSD, MCSCF, and SOPPA wave functions methods yield similar results, specially when an additive approach is used with the MCSCF. Several functionals have been used to analyze their performance with the Jacob's ladder and a set of functionals with different HF exchange were tested. Functionals with large HF exchange appropriately predict 1 J O H , 2 J H H and 2h J O O couplings, while 1h J O H is better calculated with functionals that include a reduced fraction of HF exchange. Accurate functionals for 1 J O H and 2 J H H have been tested in a tetramer water model. The hydrogen bond effects on these intramolecular couplings are additive when they are calculated by SOPPA(CCSD) wave function and DFT methods. Graphical Abstract Evaluation of the additive effect of the hydrogen bond on spin-spin coupling constants of water using WF and DFT methods.

  5. The different time course of phonotactic constraint learning in children and adults: Evidence from speech errors.

    Science.gov (United States)

    Smalle, Eleonore H M; Muylle, Merel; Szmalec, Arnaud; Duyck, Wouter

    2017-11-01

    Speech errors typically respect the speaker's implicit knowledge of language-wide phonotactics (e.g., /t/ cannot be a syllable onset in the English language). Previous work demonstrated that adults can learn novel experimentally induced phonotactic constraints by producing syllable strings in which the allowable position of a phoneme depends on another phoneme within the sequence (e.g., /t/ can only be an onset if the medial vowel is /i/), but not earlier than the second day of training. Thus far, no work has been done with children. In the current 4-day experiment, a group of Dutch-speaking adults and 9-year-old children were asked to rapidly recite sequences of novel word forms (e.g., kieng nief siet hiem ) that were consistent with phonotactics of the spoken Dutch language. Within the procedure of the experiment, some consonants (i.e., /t/ and /k/) were restricted to the onset or coda position depending on the medial vowel (i.e., /i/ or "ie" vs. /øː/ or "eu"). Speech errors in adults revealed a learning effect for the novel constraints on the second day of learning, consistent with earlier findings. A post hoc analysis at the trial level showed that learning was statistically reliable after an exposure of 120 sequence trials (including a consolidation period). However, children started learning the constraints already on the first day. More precisely, the effect appeared significantly after an exposure of 24 sequences. These findings indicate that children are rapid implicit learners of novel phonotactics, which bears important implications for theorizing about developmental sensitivities in language learning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Spectrophotometric determination of association constant

    DEFF Research Database (Denmark)

    2016-01-01

    Least-squares 'Systematic Trial-and-Error Procedure' (STEP) for spectrophotometric evaluation of association constant (equilibrium constant) K and molar absorption coefficient E for a 1:1 molecular complex, A + B = C, with error analysis according to Conrow et al. (1964). An analysis of the Charge...

  7. The πHe3H3 coupling constant estimation using the Chew-Low equation

    International Nuclear Information System (INIS)

    Mach, R.; Nichitiu, F.

    1976-01-01

    A semi-phenomenological analysis of the π +- He 3 elastic scattering at 98, 120, 135 and 156 Mev is presented. An information of the πHe 3 H 3 coupling constant using the Chew-Low plot for the P 33 partial wave is obtained. (author)

  8. The πHe3H3 coupling constant estimation using the Chew-Low equation

    International Nuclear Information System (INIS)

    Mach, R.; Nichitiu, F.

    1975-01-01

    In this paper it is presented an estimation of the πHe 3 H 3 coupling constant using the Chew-Low equation and a semi-phenomenological analysis of the π -+ He 3 elastic differential cross sections at 98, 120, 135 and 156 MeV

  9. On the usefulness of the 't Hooft and Adler transformations of the running coupling constant in perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Hagiwara, K.

    1982-01-01

    It is argued that the 't Hooft transformation of the running coupling constant, in which the two-loop renormalization group (RG) function becomes exact, will be useful in the framework of perturbative quantum chromodynamics at least to three-loop order. On the other hand, the coupling constant expansion obtained by the Adler transformation, in which the RG equation takes its one-loop form, may suffer from large corrections in a finite order. (orig.)

  10. Schwarzian derivative treatment of the quantum second-order supersymmetry anomaly, and coupling-constant metamorphosis

    Energy Technology Data Exchange (ETDEWEB)

    Plyushchay, Mikhail S., E-mail: mikhail.plyushchay@usach.cl

    2017-02-15

    A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.

  11. Schwarzian derivative treatment of the quantum second-order supersymmetry anomaly, and coupling-constant metamorphosis

    International Nuclear Information System (INIS)

    Plyushchay, Mikhail S.

    2017-01-01

    A canonical quantization scheme applied to a classical supersymmetric system with quadratic in momentum supercharges gives rise to a quantum anomaly problem described by a specific term to be quadratic in Planck constant. We reveal a close relationship between the anomaly and the Schwarzian derivative, and specify a quantization prescription which generates the anomaly-free supersymmetric quantum system with second order supercharges. We also discuss the phenomenon of a coupling-constant metamorphosis that associates quantum systems with the first-order supersymmetry to the systems with the second-order supercharges.

  12. Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints

    Directory of Open Access Journals (Sweden)

    Shu-Min Lu

    2017-01-01

    Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.

  13. Search for the Single Production of Doubly-Charged Higgs Bosons and Constraints on their Couplings from Bhabha Scattering

    CERN Document Server

    Abbiendi, G; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Groll, M.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Krieger, P.; von Krogh, J.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, G.W.; Wilson, D.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2003-01-01

    A search for single production of doubly-charged Higgs bosons has been performed using 600.7 pb^-1 of e+e- collision data with sqrt(s)=189--209GeV collected by the OPAL detector at LEP. No evidence for the existence of H++/-- is observed. Upper limits on the Yukawa coupling of the H++/-- to like-signed electron pairs are derived. Additionally, indirect constraints on the Yukawa coupling from Bhabha scattering, where the H++/-- would contribute via t-channel exchange, are derived for M(H++/--) < 2TeV. These are the first results for both a single production search and constraints from Bhabha scattering reported from LEP.

  14. Perturbation theory and coupling constant analyticity in two-dimensional field theories

    International Nuclear Information System (INIS)

    Simon, B.

    1973-01-01

    Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)

  15. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Andersen, Claus Erik; Siebert, Frank-André

    2011-01-01

    treatment errors, including interchanged pairs of afterloader guide tubes and 2–20mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al2O3:C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated...

  16. Data assimilation with inequality constraints

    Science.gov (United States)

    Thacker, W. C.

    If values of variables in a numerical model are limited to specified ranges, these restrictions should be enforced when data are assimilated. The simplest option is to assimilate without regard for constraints and then to correct any violations without worrying about additional corrections implied by correlated errors. This paper addresses the incorporation of inequality constraints into the standard variational framework of optimal interpolation with emphasis on our limited knowledge of the underlying probability distributions. Simple examples involving only two or three variables are used to illustrate graphically how active constraints can be treated as error-free data when background errors obey a truncated multi-normal distribution. Using Lagrange multipliers, the formalism is expanded to encompass the active constraints. Two algorithms are presented, both relying on a solution ignoring the inequality constraints to discover violations to be enforced. While explicitly enforcing a subset can, via correlations, correct the others, pragmatism based on our poor knowledge of the underlying probability distributions suggests the expedient of enforcing them all explicitly to avoid the computationally expensive task of determining the minimum active set. If additional violations are encountered with these solutions, the process can be repeated. Simple examples are used to illustrate the algorithms and to examine the nature of the corrections implied by correlated errors.

  17. Self-recognition: a constraint on the formation of electrical coupling in neurons.

    Science.gov (United States)

    Guthrie, P B; Lee, R E; Rehder, V; Schmidt, M F; Kater, S B

    1994-03-01

    Electrical coupling between specific neurons is important for proper function of many neuronal circuits. Identified cultured neurons from the snail Helisoma show a strong correlation between electrical coupling and presence of gap junction plaques in freeze-fracture replicas. Gap junction plaques, however, were never seen between overlapping neurites from a single neuron, even though those same neurites formed gap junctions with neurites from another essentially identical identified neuron. This observation suggests that a form of self-recognition inhibits reflexive gap junction formation between sibling neurites. When one or both of those growth cones had been physically isolated from the neuronal cell body, both electrical coupling and gap junction plaques, between growth cones from the same neuron, were observed to form rapidly (within 30 min). Thus, inhibition of electrical coupling between sibling neurites apparently depends on cytoplasmic continuity between neurites, and not the molecular composition of neurite membrane. The formation of gap junctions is not likely due to the isolation process; rather, the physical isolation appears to release an inhibition of reflexive gap junction formation. These data demonstrate the existence of a previously unknown constraint on the formation of electrical synapses.

  18. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-01-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation ...

  19. Chemically induced dynamic nuclear polarization in systems containing large hyperfine coupling constants

    International Nuclear Information System (INIS)

    Roth, H.D.; Hutton, R.S.; Hwang, Kuochu; Turro, N.J.; Welsh, K.M.

    1989-01-01

    Nuclear spin polarization effects induced in radical pairs with one or more strong ( 13 C) hyperfine coupling constants have been evaluated. The pairs were generated by photoinduced α-cleavage or hydrogen abstraction reactions of carbonyl compounds. Several examples illustrate how changes in the magnetic field strength (H 0 ) and the g-factor difference (Δg) affect the general appearance of the resulting CIDNP multiplets. The results bear out an earlier caveat concerning the qualitative interpretation of CIDNP effects observed for multiplets

  20. Bounds on the g/sub K//sub N//sub Σ/ 2 coupling constant from positivity and charge-exchange data

    International Nuclear Information System (INIS)

    Antolin, J.

    1987-01-01

    Positivity of the imaginary part of the forward K - n elastic amplitude on the unphysical cut allows the calculation of bounds on the g/sub K//sub N//sub Σ/ 2 coupling constant using the forward differential cross sections of the charge-exchange reaction K - p→K-bar 0 n, the scarce K - n real-part data, and a Stieltjes parametrization of the K - p real-part data. The bounds on the coupling constant are 2.11 2 - n amplitude: (0.35 +- 0.05) +- (0.16 +- 0.04)i GeV/c

  1. Radiative muon capture and induced pseudoscalar coupling constant in nuclear matter

    International Nuclear Information System (INIS)

    Cheoun, Myung Ki; Kim, K S; Choi, T K

    2003-01-01

    Radiative muon capture is studied to investigate the induced pseudoscalar coupling constant g P in nuclear matter. According to the recent TRIUMF experiment for μ - p → nν μ γ, the g P was surprisingly larger than the value obtained from μ - p → nν μ experiment by as much as 44%. The result may affect seriously theoretical interpretations of the experimental results for the radiative muon captures in finite nuclei. In view of the recent TRIUMF result, the radiative muon capture in nuclear matter is revisited in a framework of the relativistic mean field theory

  2. The GMO sumrule and the πNN coupling constant

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Thomas, A.W.

    2000-01-01

    The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π - p and π - d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data g c 2 (GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or f c 2 / 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π - p and π - d scattering lengths our analysis leads also to accurate values for (1/2)(a π - p +a π - n ) and (1/2) (a π - p -a π - n ). (orig.)

  3. The GMO Sumrule and the πNN Coupling Constant

    Science.gov (United States)

    Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.

    The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π-p and π-d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data gc2(GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or fc2/ 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π-p and π-d scattering lengths our analysis leads also to accurate values for (1/2)(aπ-p+aπ-n) and (1/2) (aπ-p-aπ-n).

  4. Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems

    KAUST Repository

    Whiteley, J. P.

    2011-05-09

    Mathematical models in many fields often consist of coupled sub-models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub-models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss-Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss-Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non-linear coupled fluid-temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss-Seidel iteration. © 2011 John Wiley & Sons, Ltd.

  5. Error bounds on block Gauss-Seidel solutions of coupled multiphysics problems

    KAUST Repository

    Whiteley, J. P.; Gillow, K.; Tavener, S. J.; Walter, A. C.

    2011-01-01

    Mathematical models in many fields often consist of coupled sub-models, each of which describes a different physical process. For many applications, the quantity of interest from these models may be written as a linear functional of the solution to the governing equations. Mature numerical solution techniques for the individual sub-models often exist. Rather than derive a numerical solution technique for the full coupled model, it is therefore natural to investigate whether these techniques may be used by coupling in a block Gauss-Seidel fashion. In this study, we derive two a posteriori bounds for such linear functionals. These bounds may be used on each Gauss-Seidel iteration to estimate the error in the linear functional computed using the single physics solvers, without actually solving the full, coupled problem. We demonstrate the use of the bound first by using a model problem from linear algebra, and then a linear ordinary differential equation example. We then investigate the effectiveness of the bound using a non-linear coupled fluid-temperature problem. One of the bounds derived is very sharp for most linear functionals considered, allowing us to predict very accurately when to terminate our block Gauss-Seidel iteration. © 2011 John Wiley & Sons, Ltd.

  6. Measurement of the strong coupling constant αs with hadronic jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    Gouzevitch, Maxime

    2008-12-01

    In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant α s . The jets have been selected in the NC DIS events at large momentum transvers 150 2 2 within the limits of the detector acceptance -0.8 Lab T B >5. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on α s (m Z ) has been obtained with the combination ob the three observables at Q 2 >150 GeV 2 : α s (m Z )=0.1180±0.0007(exp.) -0.0034 +0.0050 (th.)±0.0017 (pdf.).

  7. Signatures of van der Waals binding: A coupling-constant scaling analysis

    Science.gov (United States)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  8. New definitions of pointing stability - ac and dc effects. [constant and time-dependent pointing error effects on image sensor performance

    Science.gov (United States)

    Lucke, Robert L.; Sirlin, Samuel W.; San Martin, A. M.

    1992-01-01

    For most imaging sensors, a constant (dc) pointing error is unimportant (unless large), but time-dependent (ac) errors degrade performance by either distorting or smearing the image. When properly quantified, the separation of the root-mean-square effects of random line-of-sight motions into dc and ac components can be used to obtain the minimum necessary line-of-sight stability specifications. The relation between stability requirements and sensor resolution is discussed, with a view to improving communication between the data analyst and the control systems engineer.

  9. Top and Higgs mass predictions in supersymmetric SU(5) model with big top quark Yukawa coupling constant

    International Nuclear Information System (INIS)

    Krasnikov, N.V.; Rodenberg, R.

    1993-01-01

    From the requirement of the absence of the Landau pole singularity for the effective top quark Yukawa coupling constant up to Planck scale in SU(5) supersymmetric model we find an upper bound m t ≤ 187 GeV for the top quark mass. For the SU(5) fixed point renormalization group solution for top quark Yukawa coupling constant which can be interpreted as the case of composite superhiggs we find that m t ≥ 140 GeV. Similar bound takes place in all models with big anti h t (m t ). For m t ≤ 160 GeV we find also that the Higgs boson is lighter than m Z and hence it can be discovered at LEP2

  10. Affine group formulation of the Standard Model coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)

    2014-04-15

    In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.

  11. Optimal consumption—portfolio problem with CVaR constraints

    International Nuclear Information System (INIS)

    Zhang, Qingye; Gao, Yan

    2016-01-01

    The optimal portfolio selection is a fundamental issue in finance, and its two most important ingredients are risk and return. Merton's pioneering work in dynamic portfolio selection emphasized only the expected utility of the consumption and the terminal wealth. To make the optimal portfolio strategy be achievable, risk control over bankruptcy during the investment horizon is an indispensable ingredient. So, in this paper, we consider the consumption-portfolio problem coupled with a dynamic risk control. More specifically, different from the existing literature, we impose a dynamic relative CVaR constraint on it. By the stochastic dynamic programming techniques, we derive the corresponding Hamilton–Jacobi–Bellman (HJB) equation. Moreover, by the Lagrange multiplier method, the closed form solution is provided when the utility function is a logarithmic one. At last, an illustrative empirical study is given. The results show the distinct difference of the portfolio strategies with and without the CVaR constraints: the proportion invested in the risky assets is reduced over time with CVaR constraint instead of being constant without CVaR constraints. This can provide a good decision-making reference for the investors.

  12. SQSQh: 1H-detected SQ-SQ Experiment for Determination of Signed Silicon-Carbon Coupling Constants

    Czech Academy of Sciences Publication Activity Database

    Blechta, Vratislav; Schraml, Jan

    2010-01-01

    Roč. 48, č. 6 (2010), s. 464-470 ISSN 0749-1581 R&D Projects: GA AV ČR IAA400720706 Institutional research plan: CEZ:AV0Z40720504 Keywords : nmr * sqsq sequence * sign of coupling constant Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.247, year: 2010

  13. Repeated speech errors: evidence for learning.

    Science.gov (United States)

    Humphreys, Karin R; Menzies, Heather; Lake, Johanna K

    2010-11-01

    Three experiments elicited phonological speech errors using the SLIP procedure to investigate whether there is a tendency for speech errors on specific words to reoccur, and whether this effect can be attributed to implicit learning of an incorrect mapping from lemma to phonology for that word. In Experiment 1, when speakers made a phonological speech error in the study phase of the experiment (e.g. saying "beg pet" in place of "peg bet") they were over four times as likely to make an error on that same item several minutes later at test. A pseudo-error condition demonstrated that the effect is not simply due to a propensity for speakers to repeat phonological forms, regardless of whether or not they have been made in error. That is, saying "beg pet" correctly at study did not induce speakers to say "beg pet" in error instead of "peg bet" at test. Instead, the effect appeared to be due to learning of the error pathway. Experiment 2 replicated this finding, but also showed that after 48 h, errors made at study were no longer more likely to reoccur. As well as providing constraints on the longevity of the effect, this provides strong evidence that the error reoccurrences observed are not due to item-specific difficulty that leads individual speakers to make habitual mistakes on certain items. Experiment 3 showed that the diminishment of the effect 48 h later is not due to specific extra practice at the task. We discuss how these results fit in with a larger view of language as a dynamic system that is constantly adapting in response to experience. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  15. The strong coupling constant of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih

    2010-01-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  16. Learning Read-constant Polynomials of Constant Degree modulo Composites

    DEFF Research Database (Denmark)

    Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt

    2011-01-01

    Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...

  17. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    Energy Technology Data Exchange (ETDEWEB)

    Avgoustidis, A. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E. [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Luzzi, G., E-mail: tavgoust@gmail.com, E-mail: Carlos.Martins@astro.up.pt, E-mail: mmonteiro@fc.up.pt, E-mail: up110370652@alunos.fc.up.pt, E-mail: gluzzi@lal.in2p3.fr [Laboratoire de l' Accélérateur Linéaire, Université de Paris-Sud, CNRS/IN2P3, Bâtiment 200, BP 34, 91898 Orsay Cedex (France)

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  18. Design of a master Fastbus for the data acquisition of the DELPHI external detector. Measurement of the strong interaction coupling constant in the Z neutral boson hadronic decay

    International Nuclear Information System (INIS)

    Chorowicz, V.

    1990-05-01

    The thesis was prepared at the Delphi experiment. The work, performed in the LPNHE-Paris group, consists of two steps: the data acquisition at the Delphi External Detector and the analysis of the hadronic data, in order to extract the coupling constant of the strong interactions at √s = 91 GeV. In the first part of the thesis, the constraints relating to the data acquisition and the Delphi output are discussed. The data acquisition system of the External Detector and the implementation of the AM29000 on the main Fastbus are described. The AM29000 is a RISC type processor, which can support the high frequencies expected from the beam luminosity increase at LEP. This module will replace front end freeing monitor which is presently controlled by a 68020 microprocessor. In the second part of the thesis, the data acquired at Delphi from September to December 1989 is analyzed. The investigation is focused on the hadronic events in order to obtain the Standard Model basic parameter: the Λ QCD , which determines the energy dependence of the strong interactions coupling constant. A method based on the measurement of the energy-energy correlations in the hadronic jets is used and the results are discussed. The Λ QCD value is obtained by fitting the theoretical expected value to the distribution of the energy-energy correlations asymmetry [fr

  19. Intrinsic errors in transporting a single-spin qubit through a double quantum dot

    Science.gov (United States)

    Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.

    2017-07-01

    Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.

  20. The inductively coupled plasma as a source for the measurement of fundamental spectroscopic constants

    International Nuclear Information System (INIS)

    Farnsworth, P.B.

    1993-01-01

    Inductively coupled plasmas (ICPs) are stable, robust sources for the generation of spectra from neutral and singly ionized atoms. They are used extensively for analytical spectrometry, but have seen limited use for the measurement of fundamental spectroscopic constants. Several properties of the ICP affect its suitability for such fundamental measurements. They include: spatial structure, spectral background, noise characteristics, electron densities and temperatures, and the state of equilibrium in the plasma. These properties are particularly sensitive to the means by which foreign atoms are introduced into the plasma. With some departures from the operating procedures normally used in analytical measurements, the ICP promise to be a useful source for the measurement of fundamental atomic constants. (orig.)

  1. Analysis of error-correction constraints in an optical disk

    Science.gov (United States)

    Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David

    1996-07-01

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  2. On Geometric Probability, Holography, Shilov Boundaries and the Four Physical Coupling Constants of Nature

    Directory of Open Access Journals (Sweden)

    Castro C.

    2005-07-01

    Full Text Available By recurring to Geometric Probability methods, it is shown that the coupling constants, αEM; αW; αC associated with Electromagnetism, Weak and the Strong (color force are given by the ratios of the ratios of the measures of the Shilov boundaries Q2=S1×RP1; Q3=S2×RP1; S5, respectively, with respect to the ratios of the measures μ[Q5]/μN[Q5] associated with the 5D conformally compactified real Minkowski spacetime ˉ M5 that has the same topology as the Shilov boundary Q5 of the 5 complex-dimensional poly-disc D5. The homogeneous symmetric complex domain D5=SO(5,2/SO(5×SO(2 corresponds to the conformal relativistic curved 10 real-dimensional phase space H10 associated with a particle moving in the 5D Anti de Sitter space AdS5. The geometric coupling constant associated to the gravitational force can also be obtained from the ratios of the measures involving Shilov boundaries. We also review our derivation of the observed vacuum energy density based on the geometry of de Sitter (Anti de Sitter spaces.

  3. Minimal scalar-less matter-coupled supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Agata, Gianguido, E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau (France); Ferrara, Sergio [Theory Unit, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Zwirner, Fabio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Theory Unit, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2016-01-10

    We build the minimal supergravity model where the nilpotent chiral goldstino superfield is coupled to a chiral matter superfield, realising a different non-linear representation through a mixed nilpotency constraint. The model describes the spontaneous breaking of local supersymmetry in the presence of a generically massive Majorana fermion, but in the absence of elementary scalars. The sign and the size of the cosmological constant, the spectrum and the four-fermion interactions are controlled by suitable parameters.

  4. Minimal scalar-less matter-coupled supergravity

    CERN Document Server

    Dall'Agata, Gianguido; Zwirner, Fabio

    2016-01-01

    We build the minimal supergravity model where the nilpotent chiral goldstino superfield is coupled to a chiral matter superfield, realising a different non-linear representation through a mixed nilpotency constraint. The model describes the spontaneous breaking of local supersymmetry in the presence of a generically massive Majorana fermion, but in the absence of elementary scalars. The sign and the size of the cosmological constant, the spectrum and the four-fermion interactions are controlled by suitable parameters.

  5. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    Energy Technology Data Exchange (ETDEWEB)

    Sergyeyev, Artur, E-mail: Artur.Sergyeyev@math.slu.cz [Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava (Czech Republic)

    2012-06-04

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  6. Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs

    International Nuclear Information System (INIS)

    Sergyeyev, Artur

    2012-01-01

    In the present Letter we extend the multiparameter coupling constant metamorphosis, also known as the generalized Stäckel transform, from Hamiltonian dynamical systems to general finite-dimensional dynamical systems and ODEs. This transform interchanges the values of integrals of motion with the parameters these integrals depend on but leaves the phase space coordinates intact. Sufficient conditions under which the transformation in question preserves integrability and a simple formula relating the solutions of the original system to those of the transformed one are given. -- Highlights: ► We consider the multiparameter coupling constant metamorphosis (MCCM). ► The latter is also known as the generalized Stäckel transform. ► This transform is extended to general (non-Hamiltonian) finite-dimensional dynamical systems. ► The extended transform preserves integrability just as the original MCCM. ► A simple formula for transforming solutions under MCCM is given.

  7. Leading hadronic contributions to the running of the electroweak coupling constants from lattice QCD

    International Nuclear Information System (INIS)

    Burger, Florian; Jansen, Karl; Petschlies, Marcus; Pientka, Grit

    2015-12-01

    The quark-connected leading-order hadronic contributions to the running of the electromagnetic fine structure constant, α QED , and the weak mixing angle, θ W , are determined by a four-flavour lattice QCD computation with twisted mass fermions. Full agreement of the results with a phenomenological analysis is observed with an even comparable statistical uncertainty. We show that the uncertainty of the lattice calculation is dominated by systematic effects which then leads to significantly larger errors than obtained by the phenomenological analysis.

  8. gDsDK*0 and gBsDK*0 coupling constants in QCD sum rules

    International Nuclear Information System (INIS)

    Şahin, S; Sundu, H; Azizi, K

    2012-01-01

    In the present study, we calculate the strong coupling constants g D s DK* 0 (800) and g B s DK* 0 (800) within the three-point QCD sum rules approach. We evaluate the correlation function of the considered vertices taking into account both D[B] and K* 0 (800) mesons as off-shell states.

  9. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. I. New method of determining the configuration of oximes and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1986-07-10

    It was shown that the direct /sup 13/C-/sup 13/C spin-spin coupling constants can be used for the unambiguous identification of the configurational isomers of oximes and their derivatives. The stereospecificity of the constants is explained by the additional contribution from the unshared electron pair of the nitrogen atom to the spin-spin coupling constant between the adjacent carbon nuclei in the cis position.

  10. Error analysis for a monolithic discretization of coupled Darcy and Stokes problems

    KAUST Repository

    Girault, V.

    2014-01-01

    © de Gruyter 2014. The coupled Stokes and Darcy equations are approximated by a strongly conservative finite element method. The discrete spaces are the divergence-conforming velocity space with matching pressure space such as the Raviart-Thomas spaces. This work proves optimal error estimate of the velocity in the L2 norm in the domain and on the interface. Lipschitz regularity of the interface is sufficient to obtain the results.

  11. Variance-Constrained Robust Estimation for Discrete-Time Systems with Communication Constraints

    Directory of Open Access Journals (Sweden)

    Baofeng Wang

    2014-01-01

    Full Text Available This paper is concerned with a new filtering problem in networked control systems (NCSs subject to limited communication capacity, which includes measurement quantization, random transmission delay, and packets loss. The measurements are first quantized via a logarithmic quantizer and then transmitted through a digital communication network with random delay and packet loss. The three communication constraints phenomena which can be seen as a class of uncertainties are formulated by a stochastic parameter uncertainty system. The purpose of the paper is to design a linear filter such that, for all the communication constraints, the error state of the filtering process is mean square bounded and the steady-state variance of the estimation error for each state is not more than the individual prescribed upper bound. It is shown that the desired filtering can effectively be solved if there are positive definite solutions to a couple of algebraic Riccati-like inequalities or linear matrix inequalities. Finally, an illustrative numerical example is presented to demonstrate the effectiveness and flexibility of the proposed design approach.

  12. Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD)

    DEFF Research Database (Denmark)

    Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.

    1998-01-01

    We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster sing...

  13. Study of coupled-cluster correlations on electromagnetic transitions and hyperfine structure constants of W VI

    International Nuclear Information System (INIS)

    Bhowmik, Anal; Majumder, Sonjoy; Roy, Sourav; Dutta, Narendra Nath

    2017-01-01

    This work presents precise calculations of important electromagnetic transition amplitudes along with details of their many-body correlations using the relativistic coupled-cluster method. Studies of hyperfine interaction constants, useful for plasma diagnostics, with this correlation exhaustive many-body approach, are another important area of this work. The calculated oscillator strengths of allowed transitions, amplitudes of forbidden transitions and lifetimes are compared with the other theoretical results wherever available and they show a good agreement. Hyperfine constants of different isotopes of W VI, presented in this paper, will be helpful in gaining an accurate picture of the abundances of this element in different astronomical bodies. (paper)

  14. The effect of interacting dark energy on local measurements of the Hubble constant

    International Nuclear Information System (INIS)

    Odderskov, Io; Baldi, Marco; Amendola, Luca

    2016-01-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ 8 . It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ 8 in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  15. The effect of interacting dark energy on local measurements of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Odderskov, Io [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, Aarhus C (Denmark); Baldi, Marco [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat 6/2, I-40127, Bologna (Italy); Amendola, Luca, E-mail: isho07@phys.au.dk, E-mail: marco.baldi5@unibo.it, E-mail: l.amendola@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-05-01

    In the current state of cosmology, where cosmological parameters are being measured to percent accuracy, it is essential to understand all sources of error to high precision. In this paper we present the results of a study of the local variations in the Hubble constant measured at the distance scale of the Coma Cluster, and test the validity of correcting for the peculiar velocities predicted by gravitational instability theory. The study is based on N-body simulations, and includes models featuring a coupling between dark energy and dark matter, as well as two ΛCDM simulations with different values of σ{sub 8}. It is found that the variance in the local flows is significantly larger in the coupled models, which increases the uncertainty in the local measurements of the Hubble constant in these scenarios. By comparing the results from the different simulations, it is found that most of the effect is caused by the higher value of σ{sub 8} in the coupled cosmologies, though this cannot account for all of the additional variance. Given the discrepancy between different estimates of the Hubble constant in the universe today, cosmological models causing a greater cosmic variance is something that we should be aware of.

  16. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    Science.gov (United States)

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Pich, A. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, I. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Departamento de Ciencias Físicas, Matemáticas y de la Computación,Universidad CEU Cardenal Herrera,c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València (Spain); Sanz-Ciller, J.J. [Departamento de Física Teórica, Instituto de Física Teórica,Universidad Autónoma de Madrid - CSIC,c/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain)

    2014-01-28

    Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W{sup +}W{sup −} and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.

  18. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  19. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    Science.gov (United States)

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  20. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Science.gov (United States)

    Cho, Daeheum; Ko, Kyoung Chul; Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi; Nakai, Hiromi; Lee, Jin Yong

    2015-01-01

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH&HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  1. Effect of Hartree-Fock exact exchange on intramolecular magnetic coupling constants of organic diradicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Daeheum; Ko, Kyoung Chul; Lee, Jin Yong, E-mail: jinylee@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Ikabata, Yasuhiro; Wakayama, Kazufumi; Yoshikawa, Takeshi [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Nakai, Hiromi, E-mail: nakai@waseda.jp [Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0075 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-01-14

    The intramolecular magnetic coupling constant (J) of diradical systems linked with five- or six-membered aromatic rings was calculated to obtain the scaling factor (experimental J/calculated J ratio) for various density functional theory (DFT) functionals. Scaling factors of group A (PBE, TPSSh, B3LYP, B97-1, X3LYP, PBE0, and BH and HLYP) and B (M06-L, M06, M06-2X, and M06-HF) were shown to decrease as the amount of Hartree-Fock exact exchange (HFx) increases, in other words, overestimation of calculated J becomes more severe as the HFx increases. We further investigated the effect of HFx fraction of DFT functional on J value, spin contamination, and spin density distributions by comparing the B3LYP analogues containing different amount of HFx. It was revealed that spin contamination and spin densities at each atom increases as the HFx increases. Above all, newly developed BLYP-5 functional, which has 5% of HFx, was found to have the scaling factor of 1.029, indicating that calculated J values are very close to that of experimental values without scaling. BLYP-5 has potential to be utilized for accurate evaluation of intramolecular magnetic coupling constant (J) of diradicals linked by five- or six-membered aromatic ring couplers.

  2. Constraints on inflation revisited. An analysis including the latest local measurement of the Hubble constant

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui-Yun [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)

    2017-12-15

    We revisit the constraints on inflation models by using the current cosmological observations involving the latest local measurement of the Hubble constant (H{sub 0} = 73.00 ± 1.75 km s{sup -1} Mpc{sup -1}). We constrain the primordial power spectra of both scalar and tensor perturbations with the observational data including the Planck 2015 CMB full data, the BICEP2 and Keck Array CMB B-mode data, the BAO data, and the direct measurement of H{sub 0}. In order to relieve the tension between the local determination of the Hubble constant and the other astrophysical observations, we consider the additional parameter N{sub eff} in the cosmological model. We find that, for the ΛCDM+r+N{sub eff} model, the scale invariance is only excluded at the 3.3σ level, and ΔN{sub eff} > 0 is favored at the 1.6σ level. Comparing the obtained 1σ and 2σ contours of (n{sub s},r) with the theoretical predictions of selected inflation models, we find that both the convex and the concave potentials are favored at 2σ level, the natural inflation model is excluded at more than 2σ level, the Starobinsky R{sup 2} inflation model is only favored at around 2σ level, and the spontaneously broken SUSY inflation model is now the most favored model. (orig.)

  3. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Conto, J.M. de; Carretta, J.M.; Gomez-Martinez, Y.; Micoud, R.

    2008-01-01

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  4. A New Experiment for the Measurement of nJ(C,P) Coupling Constants Including 3J(C4'i,Pi) and 3J(C4'i,Pi+1) in Oligonucleotides

    International Nuclear Information System (INIS)

    Richter, Christian; Reif, Bernd; Woerner, Karlheinz; Quant, Stefanie; Marino, John P.; Engels, Joachim W.; Griesinger, Christian; Schwalbe, Harald

    1998-01-01

    A new experiment for the measurement of nJ(C,P) coupling constants along the phosphodiester backbone in RNA and DNA based on a quantitative-J HCP experiment is presented. In addition to coupling constants, in which a carbon atom couples to only one phosphorus atom, both the intraresidual 3J(C4'i,Pi) and the sequential 3J(C4'i,Pi+1) for the C4' resonances that couple to two phosphorus atoms can be obtained. Coupling constants obtained by this new method are compared to values obtained from the P-FIDS experiment. Together with 3J(H,P) coupling constants measured using the P-FIDS experiment, the backbone angles β and element of can be determined

  5. Vanishing chiral couplings in the large-NC resonance theory

    International Nuclear Information System (INIS)

    Portoles, Jorge; Rosell, Ignasi; Ruiz-Femenia, Pedro

    2007-01-01

    The construction of a resonance theory involving hadrons requires implementing the information from higher scales into the couplings of the effective Lagrangian. We consider the large-N C chiral resonance theory incorporating scalars and pseudoscalars, and we find that, by imposing LO short-distance constraints on form factors of QCD currents constructed within this theory, the chiral low-energy constants satisfy resonance saturation at NLO in the 1/N C expansion

  6. Uppsala neutron-proton scattering measurements and the πNN coupling constant

    International Nuclear Information System (INIS)

    Olsson, N.; Blomgren, J.; Conde, H.; Dangtip, S.; Elmgren, K.; Rahm, J.; Roennqvist, T.; Zorro, R.; Loiseau, B.

    2000-01-01

    The differential np scattering cross section has been measured at 96 MeV and 162 MeV at backward angles at the neutron beam facility of the The Svedberg Laboratory in Uppsala. The angular distributions have been normalized to the experimental total np cross section. Between 150 and 180 , the angular distributions are steeper than for most previous measurements and nucleon-nucleon potential predictions, but for all the angular range covered, the data agree very well in shape with the recent PSI data. At 180 , the difference versus older data amounts to about 10%, implying serious consequences because of the fundamental importance of this cross section. Values of the charged πNN coupling constant have been extracted from the data. (orig.)

  7. Determination of the ratio of axial-vector-to-vector weak coupling constants for beta decay of triton

    CERN Document Server

    Akulov, Y A

    2002-01-01

    Data on the chemical shifts of half-lives for atomic and molecular tritium were used to determine the ratio of axial-vector-to-vector weak coupling constants for beta decay of triton (G sub A /G sub V) sub t = -1.2646 +- 0.0035

  8. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  9. Error studies for SNS Linac. Part 1: Transverse errors

    International Nuclear Information System (INIS)

    Crandall, K.R.

    1998-01-01

    The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)

  10. Measurement of WW production with the ATLAS detector and constraints on associated triple gauge couplings

    CERN Document Server

    Liu, JB; The ATLAS collaboration

    2013-01-01

    The measurement of the WW diboson production cross section in proton proton interactions with the ATLAS experiment is presented. The measurement is performed using W boson fully leptonical decays including ee, emu and mumu final states associated with large missing energy. Measured total and differential cross sections of WW production are compared to NLO predictions of the standard model. Leading lepton pT distribution is used to place constraints on anomalous triple gauge boson couplings.

  11. A Simulation Analysis of Errors in the Measurement of Standard Electrochemical Rate Constants from Phase-Selective Impedance Data.

    Science.gov (United States)

    1987-09-30

    RESTRICTIVE MARKINGSC Unclassif ied 2a SECURIly CLASSIFICATION ALIIMOA4TY 3 DIS1RSBj~jiOAVAILAB.I1Y OF RkPORI _________________________________ Approved...of the AC current, including the time dependence at a growing DME, at a given fixed potential either in the presence or the absence of an...the relative error in k b(app) is ob relatively small for ks (true) : 0.5 cm s-, and increases rapidly for ob larger rate constants as kob reaches the

  12. J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution

    International Nuclear Information System (INIS)

    Furrer, Julien; John, Michael; Kessler, Horst; Luy, Burkhard

    2007-01-01

    The access to weak alignment media has fuelled the development of methods for efficiently and accurately measuring residual dipolar couplings (RDCs) in NMR-spectroscopy. Among the wealth of approaches for determining one-bond scalar and RDC constants only J-modulated and J-evolved techniques retain maximum resolution in the presence of differential relaxation. In this article, a number of J-evolved experiments are examined with respect to the achievable minimum linewidth in the J-dimension, using the peptide PA 4 and the 80-amino-acid-protein Saposin C as model systems. With the JE-N-BIRD d,X -HSQC experiment, the average full-width at half height could be reduced to approximately 5 Hz for the protein, which allows the additional resolution of otherwise unresolved peaks by the active (J+D)-coupling. Since RDCs generally can be scaled by the choice of alignment medium and alignment strength, the technique introduced here provides an effective resort in cases when chemical shift differences alone are insufficient for discriminating signals. In favorable cases even secondary structure elements can be distinguished

  13. 1,2-Difluoroethane: the angular dependance on 1J(CF) coupling constants is independent of hyperconjugation.

    Science.gov (United States)

    Freitas, Matheus P; Bühl, Michael; O'Hagan, David

    2012-02-28

    1,2-Difluoroethane is widely recognised to adopt a lower energy gauche rather than anti conformation; this gauche effect has its origin in hyperconjugation; however, surprisingly the (1)J(CF) coupling constant is not influenced by hyperconjugation; instead, its magnitude changes with the overall molecular dipole. This journal is © The Royal Society of Chemistry 2012

  14. Cosmological constants and variations

    International Nuclear Information System (INIS)

    Barrow, John D

    2005-01-01

    We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that is consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying alpha cosmologies is outlined in the light of all the observational constraints. We also discuss some of the consequences of varying 'constants' for oscillating universes and show by means of exact solutions that they appear to evolve monotonically in time even though the scale factor of the universe oscillates

  15. Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits

    Science.gov (United States)

    Buterakos, Donovan; Throckmorton, Robert E.; Das Sarma, S.

    2018-01-01

    In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all 24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices where coupling among many qubits will become relevant.

  16. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  17. Loss of incoherence and determination of coupling constants in quantum gravity

    International Nuclear Information System (INIS)

    Giddings, S.B.; Strominger, A.

    1988-01-01

    The wave function of an interacting 'family' of one large 'parent' and many Planck-sized 'baby' universes is computed in a semiclassical approximation using an adaptation of Hartle-Hawking initial conditions. A recently discovered gravitational instanton which exists for general relativity coupled to axions is employed. The outcome of a single experiment in the parent universe is in general described by a mixed state, even if the initial state is pure. However, a sequence of measurements rapidly collapses the wave function of the family of universes into one of an infinite number of 'coherent' states for which quantum incoherence is not observed in the parent universe. This provides a concrete illustration of an unexpected phenomena whose existence has been argued for on quite general grounds by Coleman: Quantum incoherence due to information loss to baby universes is not experimentally observable. We further argue that all coupling constants governing dynamics in the parent universe depend on the parameters describing the particular coherent state into which the family wave function collapses. In particular, generically terms that violate any global symmetries will be induced in the effective action for the parent universe. These last results have much broader applicability than our specific model. (orig.)

  18. Coupled dark matter-dark energy in light of near universe observations

    International Nuclear Information System (INIS)

    Honorez, Laura Lopez; Reid, Beth A.; Verde, Licia; Jimenez, Raul; Mena, Olga

    2010-01-01

    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified — and thus can be probed by a combination of tests for the expansion history and the growth of structure —, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inconsistency between reconstructed expansion history and growth may not uniquely indicate deviations from GR. Our low redshift constraints arise from cosmic velocities, redshift space distortions and dark matter abundance in galaxy voids. We find that current data constrain the dimensionless coupling to be |ξ| < 0.2, but prospects from forthcoming data are for a significant improvement. Future, precise measurements of the Hubble constant, combined with high-precision constraints on the growth of structure, could provide the key to rule out dark coupling models which survive other tests. We shall exploit as well weak equivalence principle violation arguments, which have the potential to highly disfavour a broad family of coupled models

  19. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. II. Conformational structure of vinyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Bzhezovskii, V.M.; Kalabin, G.A.

    1986-10-10

    The /sup 13/C-/sup 13/C spin-spin coupling constants between the carbon nuclei of the vinyl group were measured for a series of vinyl ethers. It was established that the unshared electron pairs of the oxygen atom can make a substantial stereospecific contribution to the direct /sup 13/C-/sup 13/C constants of the adjacent nuclei. The observed effect was used to establish the conformational structure of the compounds.

  20. Robust a Posteriori Error Control and Adaptivity for Multiscale, Multinumerics, and Mortar Coupling

    KAUST Repository

    Pencheva, Gergina V.

    2013-01-01

    We consider discretizations of a model elliptic problem by means of different numerical methods applied separately in different subdomains, termed multinumerics, coupled using the mortar technique. The grids need not match along the interfaces. We are also interested in the multiscale setting, where the subdomains are partitioned by a mesh of size h, whereas the interfaces are partitioned by a mesh of much coarser size H, and where lower-order polynomials are used in the subdomains and higher-order polynomials are used on the mortar interface mesh. We derive several fully computable a posteriori error estimates which deliver a guaranteed upper bound on the error measured in the energy norm. Our estimates are also locally efficient and one of them is robust with respect to the ratio H/h under an assumption of sufficient regularity of the weak solution. The present approach allows bounding separately and comparing mutually the subdomain and interface errors. A subdomain/interface adaptive refinement strategy is proposed and numerically tested. © 2013 Society for Industrial and Applied Mathematics.

  1. Constraints of the variation of fundamental couplings and sensitivity of the equation of state of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, M. Angeles, E-mail: mperezga@usal.es [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca, E-37008 Salamanca (Spain); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-12-05

    We discuss the coupled variations of the gravitational, strong and electroweak coupling constants and the current knowledge of the nuclear equation of state based on heavy ion collision experiments and neutron star mass-radius relationship. In particular we focus in our description on phenomenological parameters, R, relating variations in the quantum chromodynamics scale {Lambda}{sub QCD} and the fine structure constant {alpha}, and S, relating variations of v, the Higgs vacuum expectation value and the Yukawa couplings, h, in the quark sector. This parametrization is valid for any model where gauge coupling unification occurs at some (unspecified) high energy scale. From a physically motivated set of equations of state for dense matter we obtain the constrained parameter phase space (R,S) in high density nuclear environments. This procedure is complementary to (although currently less powerful than) those used in low-density conditions. For variations of {Delta}{alpha}/{alpha}=0.005 we find that the obtained constrained parameter lies on a strip region in the (R,S) plane that partially overlaps some of the allowed values of parameters derived from primordial abundances. This may be of interest in the context of unification scenarios where a dense phase of the universe may have existed at early times.

  2. Improved ensemble-mean forecast skills of ENSO events by a zero-mean stochastic model-error model of an intermediate coupled model

    Science.gov (United States)

    Zheng, F.; Zhu, J.

    2015-12-01

    To perform an ensemble-based ENSO probabilistic forecast, the crucial issue is to design a reliable ensemble prediction strategy that should include the major uncertainties of a forecast system. In this study, we developed a new general ensemble perturbation technique to improve the ensemble-mean predictive skill of forecasting ENSO using an intermediate coupled model (ICM). The model uncertainties are first estimated and analyzed from EnKF analysis results through assimilating observed SST. Then, based on the pre-analyzed properties of the model errors, a zero-mean stochastic model-error model is developed to mainly represent the model uncertainties induced by some important physical processes missed in the coupled model (i.e., stochastic atmospheric forcing/MJO, extra-tropical cooling and warming, Indian Ocean Dipole mode, etc.). Each member of an ensemble forecast is perturbed by the stochastic model-error model at each step during the 12-month forecast process, and the stochastical perturbations are added into the modeled physical fields to mimic the presence of these high-frequency stochastic noises and model biases and their effect on the predictability of the coupled system. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-yr retrospective forecast experiments. The two forecast schemes are differentiated by whether they considered the model stochastic perturbations, with both initialized by the ensemble-mean analysis states from EnKF. The comparison results suggest that the stochastic model-error perturbations have significant and positive impacts on improving the ensemble-mean prediction skills during the entire 12-month forecast process. Because the nonlinear feature of the coupled model can induce the nonlinear growth of the added stochastic model errors with model integration, especially through the nonlinear heating mechanism with the vertical advection term of the model, the

  3. Gauss-Bonnet coupling constant as a free thermodynamical variable and the associated criticality

    International Nuclear Information System (INIS)

    Xu, Wei; Xu, Hao; Zhao, Liu

    2014-01-01

    The thermodynamic phase space of Gauss-Bonnet (GB) AdS black holes is extended, taking the inverse of the GB coupling constant as a new thermodynamic pressure P GB . We studied the critical behavior associated with P GB in the extended thermodynamic phase space at fixed cosmological constant and electric charge. The result shows that when the black holes are neutral, the associated critical points can only exist in five dimensional GB-AdS black holes with spherical topology, and the corresponding critical exponents are identical to those for the Van der Waals system. For charged GB-AdS black holes, it is shown that there can be only one critical point in five dimensions (for black holes with either spherical or hyperbolic topologies), which also requires the electric charge to be bounded within some appropriate range; while in d < 5 dimensions, there can be up to two different critical points at the same electric charge, and the phase transition can occur only at temperatures which are not in between the two critical values. (orig.)

  4. Constraints on long-range spin-gravity and monopole-dipole couplings of the proton

    Science.gov (United States)

    Jackson Kimball, Derek F.; Dudley, Jordan; Li, Yan; Patel, Dilan; Valdez, Julian

    2017-10-01

    Results of a search for a long-range monopole-dipole coupling between the mass of the Earth and rubidium (Rb) nuclear spins are reported. The experiment simultaneously measures the spin precession frequencies of overlapping ensembles of 85Rb and 87Rb atoms contained within an evacuated, antirelaxation-coated vapor cell. The nuclear structure of the Rb isotopes makes the experiment particularly sensitive to spin-dependent interactions of the proton. The spin-dependent component of the gravitational energy of the proton in the Earth's field is found to be smaller than 3 ×10-18 eV , improving laboratory constraints on long-range monopole-dipole interactions by over 3 orders of magnitude.

  5. Theoretical inputs and errors in the new hadronic currents in TAUOLA

    International Nuclear Information System (INIS)

    Roig, P.; Nugent, I. M.; Przedzinski, T.; Shekhovtsova, O.; Was, Z.

    2012-01-01

    The new hadronic currents implemented in the TAUOLA library are obtained in the unified and consistent framework of Resonance Chiral Theory: a Lagrangian approach in which the resonances exchanged in the hadronic tau decays are active degrees of freedom included in a way that reproduces the low-energy results of Chiral Perturbation Theory. The short-distance QCD constraints on the imaginary part of the spin-one correlators yield relations among the couplings that render the theory predictive. In this communication, the obtaining of the two- and three-meson form factors is sketched. One of the criticisms to our framework is that the error may be as large as 1/3, since it is a realization of the large-N C limit of QCD in a meson theory. A number of arguments are given which disfavor that claim pointing to smaller errors, which would explain the phenomenological success of our description in these decays. Finally, other minor sources of error and current improvements of the code are discussed.

  6. Theoretical inputs and errors in the new hadronic currents in TAUOLA

    CERN Document Server

    Roig, P; Przedzinski, T; Shekhovtsova, O; Was, Z

    2012-01-01

    The new hadronic currents implemented in the TAUOLA library are obtained in the unified and consistent framework of Resonance Chiral Theory: a Lagrangian approach in which the resonances exchanged in the hadronic tau decays are active degrees of freedom included in a way that reproduces the low-energy results of Chiral Perturbation Theory. The short-distance QCD constraints on the imaginary part of the spin-one correlators yield relations among the couplings that render the theory predictive. In this communication, the obtaining of the two- and three-meson form factors is sketched. One of the criticisms to our framework is that the error may be as large as 1/3, since it is a realization of the large-N_C limit of QCD in a meson theory. A number of arguments are given which disfavor that claim pointing to smaller errors, which would explain the phenomenological success of our description in these decays. Finally, other minor sources of error and current improvements of the code are discussed.

  7. Fundamental constraints on some event data

    International Nuclear Information System (INIS)

    Watson, I.A.

    1986-01-01

    A modified version of Searle's theory of the structure of human action has been explained and applied to man machine interaction. The comprehensiveness of the theory has been demonstrated, in particular its explanation of human performance and that its consistency with current theories of human error for which it provides an overall setting. The importance of the mental component of human error is highlighted and the constraints that this puts on the collection analysis and use of human error data. Examples have been given to illustrate and apply the theory ranging from considerations of the tenuousness of the link between safety goals and data to simple valve operations. Two approaches which recognise the constraints shown by the theory have been explained. (orig./DG)

  8. Nuclear spin-spin coupling constants of linear carbon chains terminated by coronene molecules: a first principles study

    International Nuclear Information System (INIS)

    Oliveira, Joao Paulo Cavalcante; Mota, F. de Brito; Rivelino, Roberto

    2011-01-01

    Full text. Carbon nano wires made of long linear atomic chains have attracted considerable interest due to their potential applications in nano electronics. We report a density-functional-theory study of the nuclear spin-spin coupling constants for nano assemblies made of two coronene molecules bridged by carbon linear chains, considering distinct sizes and spin multiplicities. Also, we examine the effects of two terminal conformations (syn and anti) of the terminal anchor pieces on the magnetic properties of the carbon chains via 13 C NMR calculations. Our results reveal that simplified chemical models such as those based on cumulenes or polyynes are not appropriate to describe the linear chains with sp 2 terminations. For these types of atomic chains, the electronic ground state of the even-numbered chains can be singlet or triplet, whereas the ground state of the odd-numbered chains can be doublet or quartet. We discuss how the 13 C NMR chemical shift absorption is affected by increasing the size and changing the parity of the linear carbon chains. We have found that the J coupling constants between the carbon atoms in the linear chains present a well-defined pattern, in good accordance with our electronic structure calculations. For example, in the -C 4 - units we obtain couplings of 43.8, 114.5, 84.6, 114.5, and 43.8 Hz from one end to the other

  9. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle's Motion Sensors.

    Science.gov (United States)

    Karamat, Tashfeen B; Atia, Mohamed M; Noureldin, Aboelmagd

    2015-09-22

    Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers' measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer's errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF) is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories' data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance.

  10. ATA and the electron phonon coupling constant in calculating TA of super conducting alloys [Paper No. : V-2

    International Nuclear Information System (INIS)

    Chatterjee, P.; Chatterjee, S.

    1978-01-01

    The theoretical formula of McMillan has been very successful in explaining the superconducting transition temperature. In this theory the electron-phonon coupling constant was very difficult to calculate from a purely theoretical stand point until Gyorffy and Gaspari gave a theoretical formulation from the multiple scattering point of view. This theory has been very successful in explaining Tsub(c) of many superconducting elements and compounds. For the disordered solid, such as substitution alloys, this theory fails because of the breakdown of the translational symmetry used in the multiple scattering theory of Gyorffy and Gaspari. This problem can however be solved if we average the Green's function in random phase approximation (ATA). In this work we have reformulated Gyorffy and Gaspari's expression of the electron phonon coupling constant in the random phase approximation. This theory has been utilised to alloys of Nb and Mo with different concentrations. The agreement between theory and experiment appears to be very good. (author)

  11. Calculation of exchange coupling constants in triply-bridged dinuclear Cu(II) compounds based on spin-flip constricted variational density functional theory.

    Science.gov (United States)

    Seidu, Issaka; Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2012-03-08

    The performance of the second-order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) for the calculation of the exchange coupling constant (J) is assessed by application to a series of triply bridged Cu(II) dinuclear complexes. A comparison of the J values based on SF-CV(2)-DFT with those obtained by the broken symmetry (BS) DFT method and experiment is provided. It is demonstrated that our methodology constitutes a viable alternative to the BS-DFT method. The strong dependence of the calculated exchange coupling constants on the applied functionals is demonstrated. Both SF-CV(2)-DFT and BS-DFT affords the best agreement with experiment for hybrid functionals.

  12. A Relative View on Tracking Error

    NARCIS (Netherlands)

    W.G.P.M. Hallerbach (Winfried); I. Pouchkarev (Igor)

    2005-01-01

    textabstractWhen delegating an investment decisions to a professional manager, investors often anchor their mandate to a specific benchmark. The manager’s exposure to risk is controlled by means of a tracking error volatility constraint. It depends on market conditions whether this constraint is

  13. The cosmological constant, branes and non-geometry

    International Nuclear Information System (INIS)

    Gautason, Fridhrik Freyr

    2014-01-01

    In this thesis we derive an equation for the classical cosmological constant in general string compactifications by employing scaling symmetries present in string theory. We find that in heterotic string theory, a perturbatively small, but non-vanishing, cosmological constant is impossible unless non-perturbative and/or string loop corrections are taken into account. In type II string theory we show that the classical cosmological constant is given by a sum of two terms, the source actions evaluated on-shell, and a certain combination of non-vanishing fluxes integrated over spacetime. In many cases we can express the classical cosmological constant in terms of only the source contributions by exploiting two scaling symmetries. This result can be used in two ways. First one can simply predict the classical cosmological constant in a given setup without solving all equations of motion. A second application is to give constraints on the near brane behavior of supergravity fields when the cosmological constant is known. In particular we motivate that energy densities of some fields diverge in the well-known KKLT scenario for de Sitter solutions in type IIB string theory. More precisely, we show, using our results and minimal assumptions, that energy densities of the three-form fluxes diverge in the near-source region of internal space. This divergence is unusual, since these fields do not directly couple to the source, and has been interpreted as a hint of instability of the solution. In the last chapter of the thesis we discuss the worldvolume actions of exotic five-branes. Using a specific chain of T- and S-dualities in a spacetime with two circular isometries, we derive the DBI and WZ actions of the so-called 5 2 2 - and 5 2 3 -brane. These actions describe the dynamics of the branes as well as their couplings to the ten-dimensional gauge potentials. We propose a modified Bianchi identity for the non-geometric Q-flux due to one of the branes. Q-flux often appears

  14. Universal constraints on axions from inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ricardo Z.; Sloth, Martin S. [CP-Origins, Center for Cosmology and Particle Physics Phenomenology,University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)

    2014-12-19

    We consider the presence of an axion like particle, σ, with a generic CP violating axial coupling of the form (α σ/f)FF-tilde, where F{sub μν} is the gauge field strength of a generic abelian U(1) gauge group, not necessarily associated with the standard electromagnetism, and f is the decay constant of the axion. It has previously been demonstrated that if the axion is identified with the inflaton, such an interaction can lead to measurable cosmological signatures (non-Gaussian modifications of the curvature perturbation spectrum) depending on the parameter ξ=α σ-dot /(fH). In the present paper we will show that the generation of curvature perturbation at horizon crossing due to the axial coupling has a universal form and remains unmodified in terms of the ξ parameter even if the axion, σ, is not identified with the inflaton. As a consequence, it does not appear to be possible to generate CMB tensor perturbations through this mechanism, larger than the vacuum ones, without violating the observational constraints unless we combine this mechanism with a curvaton or if the σ field becomes heavy and decays during inflation. Even in this last case there are non-trivial constraints coming from the slow-roll evolution of the curvature perturbation on super horizon scales which should be taken into account. We also comment on implications for inflationary models where axions play an important role as, for example, models of natural inflation where more than one axion are included and models where the curvaton is an axion.

  15. Measurement of 2J(H,C)- and 3J(H,C)-coupling constants by α/β selective HC(C)H-TOCSY

    International Nuclear Information System (INIS)

    Duchardt, Elke; Richter, Christian; Reif, Bernd; Glaser, Steffen J.; Engels, Joachim W.; Griesinger, Christian; Schwalbe, Harald

    2001-01-01

    A new heteronuclear NMR pulse sequence for the measurement of n J(C,H) coupling constants, the α/βselective HC(C)H-TOCSY, is described. It is shown that the S 3 E element (Meissner et al., 1997a,b) can be used to obtain spin state selective coherence transfer in molecules, in which adjacent CH moieties are labeled with 13 C. Application of the α/β selective HC(C)H-TOCSY to a 10nt RNA tetraloop 5'-CGCUUUUGCG-3', in which the four uridine residues are 13 C labeled in the sugar moiety, allowed measurement of two bond and three bond J(C,H) coupling constants, which provide additional restraints to characterize the sugar ring conformation of RNA in cases of conformational averaging

  16. Orbital classical solutions, non-perturbative phenomena and singularity at the zero coupling constant point

    International Nuclear Information System (INIS)

    Vourdas, A.

    1982-01-01

    We try to extend previous arguments on orbital classical solutions in non-relativistic quantum mechanics to the 1/4lambda vertical stroke phi vertical stroke 4 complex relativistic field theory. The single valuedness of the Green function in the semiclassical (Planksche Konstante → 0) limit leads to a Bohr-Sommerfeld quantization. A path integral formalism for the Green functions analogous to that in non-relativistic quantum mechanics is employed and a semiclassical approach which uses our classical solutions indicates non-perturbative effects. They reflect an esub(1/lambda) singularity at the zero coupling constant point. (orig.)

  17. Fine-structure constant: Is it really a constant

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    It is often claimed that the fine-structure ''constant'' α is shown to be strictly constant in time by a variety of astronomical and geophysical results. These constrain its fractional rate of change alpha-dot/α to at least some orders of magnitude below the Hubble rate H 0 . We argue that the conclusion is not as straightforward as claimed since there are good physical reasons to expect alpha-dot/α 0 . We propose to decide the issue by constructing a framework for a variability based on very general assumptions: covariance, gauge invariance, causality, and time-reversal invariance of electromagnetism, as well as the idea that the Planck-Wheeler length (10 -33 cm) is the shortest scale allowable in any theory. The framework endows α with well-defined dynamics, and entails a modification of Maxwell electrodynamics. It proves very difficult to rule it out with purely electromagnetic experiments. In a cosmological setting, the framework predicts an alpha-dot/α which can be compatible with the astronomical constraints; hence, these are too insensitive to rule out α variability. There is marginal conflict with the geophysical constraints: however, no firm decision is possible because of uncertainty about various cosmological parameters. By contrast the framework's predictions for spatial gradients of α are in fatal conflict with the results of the Eoetvoes-Dicke-Braginsky experiments. Hence these tests of the equivalence principle rule out with confidence spacetime variability of α at any level

  18. Radiative muon capture and renormalization of the induced pseudoscalar coupling constant in nuclei

    International Nuclear Information System (INIS)

    Hasinoff, M.D.; Armstrong, D.S.; Azuelos, G.

    1992-08-01

    Radiative Muon Capture (RMC), μ - Z → ν μ (Z - 1)γ, is a weak semi-leptonic process which is particularly sensitive to the induced pseudoscalar coupling constant, g p , of the weak hadronic current. After a brief introduction and review of the general theoretical background relevant to RMC, the most recent data from TRIUMF and PSI are presented and compared to the latest theoretical calculations. The extracted g p values are compared to the PCAC prediction for RMC on a free proton to determine whether or not there is any significant renormalization of g p inside the nuclear medium. A progress report on the TRIUMF RMC experiment on hydrogen is also presented. refs., 12 figs., 3 tabs

  19. Inverse Scattering, the Coupling Constant Spectrum, and the Riemann Hypothesis

    International Nuclear Information System (INIS)

    Khuri, N. N.

    2002-01-01

    It is well known that the s-wave Jost function for a potential, λV, is an entire function of λ with an infinite number of zeros extending to infinity. For a repulsive V, and at zero energy, these zeros of the 'coupling constant', λ, will all be real and negative, λ n (0) n n =1/2+iγ n . Thus, finding a repulsive V whose coupling constant spectrum coincides with the Riemann zeros will establish the Riemann hypothesis, but this will be a very difficult and unguided search.In this paper we make a significant enlargement of the class of potentials needed for a generalization of the above idea. We also make this new class amenable to construction via inverse scattering methods. We show that all one needs is a one parameter class of potentials, U(s;x), which are analytic in the strip, 0≤Res≤1, Ims>T 0 , and in addition have an asymptotic expansion in powers of [s(s-1)] -1 , i.e. U(s;x)=V 0 (x)+gV 1 (x)+g 2 V 2 (x)+...+O(g N ), with g=[s(s-1)] -1 . The potentials V n (x) are real and summable. Under suitable conditions on the V n 's and the O(g N ) term we show that the condition, ∫ 0 ∞ vertical bar f 0 (x) vertical bar 2 V 1 (x) dx≠0, where f 0 is the zero energy and g=0 Jost function for U, is sufficient to guarantee that the zeros g n are real and, hence, s n =1/2+iγ n , for γ n ≥T 0 .Starting with a judiciously chosen Jost function, M(s,k), which is constructed such that M(s,0) is Riemann's ξ(s) function, we have used inverse scattering methods to actually construct a U(s;x) with the above properties. By necessity, we had to generalize inverse methods to deal with complex potentials and a nonunitary S-matrix. This we have done at least for the special cases under consideration.For our specific example, ∫ 0 ∞ vertical bar f 0 (x) vertical bar 2 V 1 (x) dx=0 and, hence, we get no restriction on Img n or Res n . The reasons for the vanishing of the above integral are given, and they give us hints on what one needs to proceed further. The problem

  20. Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results

    Science.gov (United States)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Dzuba, V. A.; Churchill, C. W.; Prochaska, J. X.; Barrow, J. D.; Wolfe, A. M.

    2001-11-01

    An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar (QSO) absorption-line spectra with laboratory spectra provides a sensitive probe for variability of the fine-structure constant, α, over cosmological time-scales. We have previously developed and applied a new method providing an order-of-magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-α absorption systems. We also reanalyse our previous lower-redshift data and confirm our initial results. The constraints on α come from simultaneous fitting of absorption lines of subsets of the following species: Mgi, Mgii, Alii, Aliii, Siii, Crii, Feii, Niii and Znii. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range [formmu2]0.5quote above is the raw value, not corrected for any of these systematic effects. The only significant systematic effects so far identified, if removed from our data, would lead to a more significant deviation of [formmu5]Δα/α from zero.

  1. Solar system constraints on disformal gravity theories

    International Nuclear Information System (INIS)

    Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy

    2015-01-01

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology

  2. On relaxing the Mangasarian-Fromovitz constraint qualification

    Czech Academy of Sciences Publication Activity Database

    Kruger, A.Y.; Minchenko, L.; Outrata, Jiří

    2014-01-01

    Roč. 18, č. 1 (2014), s. 171-189 ISSN 1385-1292 R&D Projects: GA ČR GAP402/12/1309 Institutional support: RVO:67985556 Keywords : Nonlinear programming * Regularity conditions * Constraint qualifications * Lagrange multipliers * Mangasarian–Fromovitz constraint qualification * Constant rank constraint qualification Subject RIV: BA - General Mathematics Impact factor: 0.679, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/outrata-0426110.pdf

  3. An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle’s Motion Sensors

    Science.gov (United States)

    Karamat, Tashfeen B.; Atia, Mohamed M.; Noureldin, Aboelmagd

    2015-01-01

    Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers’ measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer’s errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF) is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories’ data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance. PMID:26402680

  4. The determination of the weak neutral current coupling constants and limits on the electromagnetic properties of the muon neutrino

    International Nuclear Information System (INIS)

    Callas, J.L.

    1987-05-01

    The goal of this thesis is to determine experimentally the cross section for nu/sub μ/e → nu/sub μ/e scattering from a sample of over 100 expected nu/sub μ/e → nu/sub μ/e events collected by the E734 neutrino detector in BNL wide band neutrino beam. By combining these results with results from an anti-neutrino determination of the cross section for anti nu/sub μ/e → anti nu/sub μ/e scattering in the form of a ratio of cross sections, the weak coupling constants for the electron, g/sub V/ and g/sub A/ can be determined in a model independent way to within a four fold ambiguity where three of the ambiguities can be eliminated by results from e + e - experiments. The predictions of the Standard Model for the weak coupling constants can then be tested and a precise determination of the electroweak mixing parameter, sin 2 θ/sub W/ can be made

  5. Galaxy Cluster Shapes and Systematic Errors in the Hubble Constant as Determined by the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sulkanen, Martin E.; Joy, M. K.; Patel, S. K.

    1998-01-01

    Imaging of the Sunyaev-Zei'dovich (S-Z) effect in galaxy clusters combined with the cluster plasma x-ray diagnostics can measure the cosmic distance scale to high accuracy. However, projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight will introduce systematic errors in the Hubble constant, H$-O$, because the true shape of the cluster is not known. This effect remains present for clusters that are otherwise chosen to avoid complications for the S-Z and x-ray analysis, such as plasma temperature variations, cluster substructure, or cluster dynamical evolution. In this paper we present a study of the systematic errors in the value of H$-0$, as determined by the x-ray and S-Z properties of a theoretical sample of triaxial isothermal 'beta-model' clusters, caused by projection effects and observer orientation relative to the model clusters' principal axes. The model clusters are not generated as ellipsoids of rotation, but have three independent 'core radii', as well as a random orientation to the plane of the sky.

  6. On the calculation of {sup 3}J{sub {alpha}{beta}}-coupling constants for side chains in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Denise [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland); Allison, Jane R. [Massey University Albany, Centre for Theoretical Chemistry and Physics, Institute for Natural Sciences (New Zealand); Eichenberger, Andreas P.; Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.ch [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland)

    2012-07-15

    Structural knowledge about proteins is mainly derived from values of observables, measurable in NMR spectroscopic or X-ray diffraction experiments, i.e. absorbed or scattered intensities, through theoretically derived relationships between structural quantities such as atom positions or torsional angles on the one hand and observable quantities such as squared structure factor amplitudes, NOE intensities or {sup 3}J-coupling constants on the other. The standardly used relation connecting {sup 3}J-couplings to torsional angles is the Karplus relation, which is used in protein structure refinement as well as in the evaluation of simulated properties of proteins. The accuracy of the simple and generalised Karplus relations is investigated using side-chain structural and {sup 3}J{sub {alpha}{beta}}-coupling data for three different proteins, Plastocyanin, Lysozyme, and FKBP, for which such data are available. The results show that the widely used Karplus relations are only a rough estimate for the relation between {sup 3}J{sub {alpha}{beta}}-couplings and the corresponding {chi}{sub 1}-angle in proteins.

  7. Dissipative quantum error correction and application to quantum sensing with trapped ions.

    Science.gov (United States)

    Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A

    2017-11-28

    Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  8. On the Convergence of the ccJ-pVXZ and pcJ-n Basis Sets in CCSD Calculations of Nuclear Spin-Spin Coupling Constants

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2018-01-01

    The basis set convergence of nuclear spin-spin coupling constants (SSCC) calculated at the coupled cluster singles and doubles (CCSD) level has been investigated for ten difficult molecules. Eight of the molecules contain fluorine atoms and nine contain double or triple bonds. Results obtained...

  9. Electron-muon puzzle and the electromagnetic coupling constant

    International Nuclear Information System (INIS)

    Jehle, H.

    1977-01-01

    On the basis of a heuristic model we argued in an earlier paper (paper C of this series) electric field (and of course the magnetic field, too) of a lepton or of a quark may be formulated in terms of a closed loop of quantized magnetic flux whose alternative forms (''loopforms'') are superposed with probability amplitudes so as to represent the electromagnetic field of that lepton or quark. The Zitterbewegung of a single stationary (''elementary'') particle suggests a kind of quasiextension, which is assumed, in the present theory, to permit concepts of structuralization of the electromagnetic field even for leptons. Mesons and baryons may be represented by linked quantized flux loops, i.e., quark loops (as in paper B). The central problem now (in this paper D) is to formulate those probability-amplitude distributions in terms of wave functions to characterize the internal structure of the lepton or quark in question. As probability-amplitude functions one may choose bases of irreducible representations of the group with respect to which the model is to be invariant. It is seen that this implies the SO(4) group. As both the electron-muon mass ratio and the electromagnetic coupling constant depend, in this flux-quantization model, on the correct formulation of the structuralization of probability-amplitude distributions, we should expect to get an insight into both these puzzles from finding the right probability-amplitude wave functions. Furthermore, it is seen that this same structuralization of probability-amplitude distributions also permits one to estimate the rate of weak interactions, thus relating them to electromagnetic interactions

  10. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    Science.gov (United States)

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  11. Identifying Error in AUV Communication

    National Research Council Canada - National Science Library

    Coleman, Joseph; Merrill, Kaylani; O'Rourke, Michael; Rajala, Andrew G; Edwards, Dean B

    2006-01-01

    Mine Countermeasures (MCM) involving Autonomous Underwater Vehicles (AUVs) are especially susceptible to error, given the constraints on underwater acoustic communication and the inconstancy of the underwater communication channel...

  12. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  13. Determination of the pion-nucleon coupling constant and scattering lengths

    International Nuclear Information System (INIS)

    Ericson, T.E.O.; Loiseau, B.; Thomas, A.W.

    2002-01-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π - p and π - d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g c 2 (GMO)/4π=14.11±0.05(statistical)±0.19(systematic) or f c 2 /4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (a π - p +a π - n )/2=[-12±2(statistical)±8(systematic)]x10 -4 m π -1 and (a π - p -a π - n )/2=[895±3(statistical)±13 (systematic)]x10 -4 m π -1 . For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length

  14. Bardeen-Cooper-Schrieffer universal constants generalized

    International Nuclear Information System (INIS)

    Hazaimeh, A.H.

    1992-01-01

    Weak- and moderate-coupling BCS superconductivity theory is shown to admit a more general T c formula, wherein T c approaches zero somewhat faster than with the familiar BCS T c -formula. This theory leads to a departure from the universal behavior of the gap-to-T c ratio and is consistent with some recent empirical values for exotic superconductors. This ratio is smaller than the universal BCS value of 3.53 in a way which is consistent with weak electron-boson coupling. Similarly, other universal constants related to specific heat and critical magnetic field are modified. In this dissertation, The author investigates the latter constants for weak-coupling and moderate-coupling and carry out detailed comparisons with experimental data for the cuprates and with the corresponding predictions of strong-coupling theory. This effort is to elucidate the nature of these superconductors with regards to coupling strength within an electron-boson mechanism

  15. The BFKL Pomeron with running coupling constant: how much of its hard nature survives?

    International Nuclear Information System (INIS)

    Haakman, L.P.A.; Kancheli, O.V.; Koch, J.H.

    1998-01-01

    We discuss the BFKL equation with a running gauge coupling and identify in its solutions the contributions originating from different transverse momentum scales. We show that for a running coupling constant the distribution of the gluons making up the BFKL pomeron shifts to smaller transverse momenta so that the dominant part of pomeron can have a non-perturbative origin. It is demonstrated how this soft physics enters into the BFKL solution through the boundary condition. We consider twokinematical regimes leading to different behaviour of the rapidity andtransverse momentum dependence of the gluon distribution. In the diffusion approximation to the BFKL kernel with running α s , we find a sequence of poles which replaces the cut for fixed α s . The second regime corresponds to the singular part of the kernel, which gives the dominant contribution in the limit of very large transverse momenta. Finally, a simple more general picture is obtained for the QCD pomeron in hard processes: it is of soft, non-perturbative nature, but has hard ends of DGLAP type. (orig.)

  16. A modified CAS-CI approach for an efficient calculation of magnetic exchange coupling constants

    Science.gov (United States)

    Fink, Karin; Staemmler, Volker

    2013-09-01

    A modification of the conventional wavefunction-based CAS-CI method for the calculation of magnetic exchange coupling constants J in small molecules and transition metal complexes is presented. In general, CAS-CI approaches yield much too small values for J since the energies of the important charge transfer configurations are calculated with the ground state orbitals and are therefore much too high. In the present approach we improve these energies by accounting for the relaxation of the orbitals in the charge transfer configurations. The necessary relaxation energies R can be obtained in separate calculations using mononuclear or binuclear model systems. The method is applied to a few examples, small molecules, binuclear transition metal complexes, and bulk NiO. It allows to obtaining fairly reliable estimates for J at costs that are not higher than those of conventional CAS-CI calculations. Therefore, extended and very time-consuming perturbation theory (PT2), configuration interaction (CI), or coupled cluster (CC) schemes on top of the CAS-CI calculation can be avoided and the modified CAS-CI (MCAS-CI) approach can be applied to rather large systems.

  17. Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    Sakuma, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  18. New limits on coupled dark energy model after Planck 2015

    Science.gov (United States)

    Li, Hang; Yang, Weiqiang; Wu, Yabo; Jiang, Ying

    2018-06-01

    We used the Planck 2015 cosmic microwave background anisotropy, baryon acoustic oscillation, type-Ia supernovae, redshift-space distortions, and weak gravitational lensing to test the model parameter space of coupled dark energy. We assumed the constant and time-varying equation of state parameter for dark energy, and treated dark matter and dark energy as the fluids whose energy transfer was proportional to the combined term of the energy densities and equation of state, such as Q = 3 Hξ(1 +wx) ρx and Q = 3 Hξ [ 1 +w0 +w1(1 - a) ] ρx, the full space of equation of state could be measured when we considered the term (1 +wx) in the energy exchange. According to the joint observational constraint, the results showed that wx = - 1.006-0.027+0.047 and ξ = 0.098-0.098>+0.026 for coupled dark energy with a constant equation of state, w0 = -1.076-0.076+0.085, w1 = - 0.069-0.319+0.361, and ξ = 0.210-0.210+0.048 for a variable equation of state. We did not get any clear evidence for the coupling in the dark fluids at 1 σ region.

  19. Effect of the nitrogen unshared electron pair on the direct /sup 13/C-/sup 13/C spin-spin coupling constant of a neighboring bond in oximes

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, V.V.; Krivdin, L.B.; Kalabin, G.A.; Trofimov, B.A.

    1986-11-20

    The authors have previously established that the direct /sup 13/C-/sup 13/C coupling constants are stereospecific relative to the orientation of unshared electron pairs (UEP) of nitrogen and oxygen atoms. Here they show that the nitrogen UEP produces a positive contribution to the direct /sup 13/C-/sup 13/C coupling constant of an adjacent syn-periplanar carbon-carbon bond and not to a negative contribution of the corresponding constant of the anti-periplanar bond. Thus, the observed effect is not a consequence of the interaction of the heteroatom UEP with the anti-bonding orbital of the adjacent anti-periplanar bond (n/sub o-o/* interaction) as in the case of anomeric and related effects.

  20. Constraints on hyperon couplings from neutron star equations of state

    CERN Document Server

    Miyazaki, K

    2005-01-01

    Based on the constituent quark picture of baryons and taking into account the contributions of isovector and strange mesons, we have developed the extended Zimanyi-Moszkowski model of dense baryon matter for studying neutron star (NS) equations of state (EOSs). Four sets of meson-hyperons coupling constants are investigated. The first is characterized by strong attractive N\\Sigma interaction while the others have repulsive N\\Sigma interactions. The second is characterized by strong attractive \\Lambda\\Lambda interaction. The third has weak \\Lambda\\Lambda but strong attractive \\Sigma\\Sigma interactions. The last one has much weaker \\Sigma\\Sigma interaction than the third one. By systematic analyses of the EOSs and mass sequences of NSs, it has been found that the strong attractive N\\Sigma, \\Lambda\\Lambda and \\Sigma\\Sigma interactions are ruled out. The result is consistent to the most recent information on hyperon interactions from the experimental and theoretical i! nvestigations of hypernuclei.

  1. Axial coupling constant of the nucleon for two flavours of dynamical quarks in finite and infinite volume

    International Nuclear Information System (INIS)

    Khan, A.A.; Goeckeler, M.; Haegler, P.

    2006-03-01

    We present data for the axial coupling constant g A of the nucleon obtained in lattice QCD with two degenerate flavours of dynamical non-perturbatively improved Wilson quarks. The renormalisation is also performed non-perturbatively. For the analysis we give a chiral extrapolation formula for g A based on the small scale expansion scheme of chiral effective field theory for two degenerate quark flavours. Applying this formalism in a finite volume we derive a formula that allows us to extrapolate our data simultaneously to the infinite volume and to the chiral limit. Using the additional lattice data in finite volume we are able to determine the axial coupling of the nucleon in the chiral limit without imposing the known value at the physical point. (Orig.)

  2. Axial coupling constant of the nucleon for two flavours of dynamical quarks in finite and infinite volume

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.A.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen (DE). Physik-Department, Theoretische Physik] (and others)

    2006-03-15

    We present data for the axial coupling constant g{sub A} of the nucleon obtained in lattice QCD with two degenerate flavours of dynamical non-perturbatively improved Wilson quarks. The renormalisation is also performed non-perturbatively. For the analysis we give a chiral extrapolation formula for g{sub A} based on the small scale expansion scheme of chiral effective field theory for two degenerate quark flavours. Applying this formalism in a finite volume we derive a formula that allows us to extrapolate our data simultaneously to the infinite volume and to the chiral limit. Using the additional lattice data in finite volume we are able to determine the axial coupling of the nucleon in the chiral limit without imposing the known value at the physical point. (Orig.)

  3. Evaluation of the strong coupling constant {alpha}{sub s} using the ATLAS inclusive jet cross-section data

    Energy Technology Data Exchange (ETDEWEB)

    Malaescu, B. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Starovoitov, P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-03-15

    We perform a determination of the strong coupling constant using the latest ATLAS inclusive jet cross section data, from proton-proton collisions at {radical}(s)=7 TeV, and their full information on the bin-to-bin correlations. Several procedures for combining the statistical information from the different data inputs are studied and compared. The theoretical prediction is obtained using NLO QCD, and it also includes non-perturbative corrections. Our determination uses inputs with transverse momenta between 45 and 600 GeV, the running of the strong coupling being also tested in this range. Good agreement is observed when comparing our result with the world average at the Z-boson scale, as well as with the most recent results from the Tevatron. (orig.)

  4. Updated constraints on self-interacting dark matter from Supernova 1987A

    Science.gov (United States)

    Mahoney, Cameron; Leibovich, Adam K.; Zentner, Andrew R.

    2017-08-01

    We revisit SN1987A constraints on light, hidden sector gauge bosons ("dark photons") that are coupled to the standard model through kinetic mixing with the photon. These constraints are realized because excessive bremsstrahlung radiation of the dark photon can lead to rapid cooling of the SN1987A progenitor core, in contradiction to the observed neutrinos from that event. The models we consider are of interest as phenomenological models of strongly self-interacting dark matter. We clarify several possible ambiguities in the literature and identify errors in prior analyses. We find constraints on the dark photon mixing parameter that are in rough agreement with the early estimates of Dent et al. [arXiv:1201.2683.], but only because significant errors in their analyses fortuitously canceled. Our constraints are in good agreement with subsequent analyses by Rrapaj & Reddy [Phys. Rev. C 94, 045805 (2016)., 10.1103/PhysRevC.94.045805] and Hardy & Lasenby [J. High Energy Phys. 02 (2017) 33., 10.1007/JHEP02(2017)033]. We estimate the dark photon bremsstrahlung rate using one-pion exchange (OPE), while Rrapaj & Reddy use a soft radiation approximation (SRA) to exploit measured nuclear scattering cross sections. We find that the differences between mixing parameter constraints obtained through the OPE approximation or the SRA approximation are roughly a factor of ˜2 - 3 . Hardy & Laseby [J. High Energy Phys. 02 (2017) 33., 10.1007/JHEP02(2017)033] include plasma effects in their calculations finding significantly weaker constraints on dark photon mixing for dark photon masses below ˜10 MeV . We do not consider plasma effects. Lastly, we point out that the properties of the SN1987A progenitor core remain somewhat uncertain and that this uncertainty alone causes uncertainty of at least a factor of ˜2 - 3 in the excluded values of the dark photon mixing parameter. Further refinement of these estimates is unwarranted until either the interior of the SN1987A progenitor is

  5. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    Science.gov (United States)

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Probing gravitational non-minimal coupling with dark energy surveys

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, Chongqing (China); National Tsing Hua University, Department of Physics, Hsinchu (China); National Center for Theoretical Sciences, Hsinchu (China); Lee, Chung-Chi [National Center for Theoretical Sciences, Hsinchu (China); Wu, Yi-Peng [Academia Sinica, Institute of Physics, Taipei (China)

    2017-03-15

    We investigate observational constraints on a specific one-parameter extension to the minimal quintessence model, where the quintessence field acquires a quadratic coupling to the scalar curvature through a coupling constant ξ. The value of ξ is highly suppressed in typical tracker models if the late-time cosmic acceleration is driven at some field values near the Planck scale. We test ξ in a second class of models in which the field value today becomes a free model parameter. We use the combined data from type-Ia supernovae, cosmic microwave background, baryon acoustic oscillations and matter power spectrum, to weak lensing measurements and find a best-fit value ξ > 0.289 where ξ = 0 is excluded outside the 95% confidence region. The effective gravitational constant G{sub eff} subject to the hint of a non-zero ξ is constrained to -0.003 < 1 - G{sub eff}/G < 0.033 at the same confidence level on cosmological scales, and it can be narrowed down to 1 - G{sub eff}/G < 2.2 x 10{sup -5} when combining with Solar System tests. (orig.)

  7. Methods of Run-Time Error Detection in Distributed Process Control Software

    DEFF Research Database (Denmark)

    Drejer, N.

    of generic run-time error types, design of methods of observing application software behaviorduring execution and design of methods of evaluating run time constraints. In the definition of error types it is attempted to cover all relevant aspects of the application softwaree behavior. Methods of observation......In this thesis, methods of run-time error detection in application software for distributed process control is designed. The error detection is based upon a monitoring approach in which application software is monitored by system software during the entire execution. The thesis includes definition...... and constraint evaluation is designed for the modt interesting error types. These include: a) semantical errors in data communicated between application tasks; b) errors in the execution of application tasks; and c) errors in the timing of distributed events emitted by the application software. The design...

  8. Analysis of constant-head well tests in nonporous fractured rock

    International Nuclear Information System (INIS)

    Doe, T.; Remer, J.

    1981-01-01

    If one compares the results of steady analyses and transient flowrate analyses, the error in assuming steady flow is less than an order of magnitude for reasonable values of storativity, and this error can be minimized through proper choice of radius of influence. Although the steady flow assumptions do not result in large errors in the calculation of permeability, careful design of constant-head well tests can yield not only storativity, but also qualitative information on the areal extent of permeable zones or fractures tested. Constant-head well tests have several major advantages over other well test techniques in low permeability rock. Unlike pump tests, wellbore storage effects are virtually nonexistant. Provided low-flow measurement apparatus is available, constant-level tests are far more rapid than slug tests and, unlike pulse tests, compliance of equipment is not a factor, since the system is maintained at constant pressure throughout the test

  9. The ATLAS Measurements of Jet Production and the Strong Coupling Constant

    CERN Document Server

    Sawyer, Lee; The ATLAS collaboration

    2017-01-01

    The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density in the parton distribution function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8 TeV and 13 TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the dijet cross section at a center-of-mass energy of 13 TeV as a function of the dijet invariant mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (...

  10. Analysis of errors of radiation relay, (1)

    International Nuclear Information System (INIS)

    Koyanagi, Takami; Nakajima, Sinichi

    1976-01-01

    The statistical error of liquid level controlled by radiation relay is analysed and a method of minimizing the error is proposed. This method comes to the problem of optimum setting of the time constant of radiation relay. The equations for obtaining the value of time constant are presented and the numerical results are shown in a table and plotted in a figure. The optimum time constant of the upper level control relay is entirely different from that of the lower level control relay. (auth.)

  11. Reverberant acoustic energy in auditoria that comprise systems of coupled rooms

    Science.gov (United States)

    Summers, Jason E.

    2003-11-01

    A frequency-dependent model for reverberant energy in coupled rooms is developed and compared with measurements for a 1:10 scale model and for Bass Hall, Ft. Worth, TX. At high frequencies, prior statistical-acoustics models are improved by geometrical-acoustics corrections for decay within sub-rooms and for energy transfer between sub-rooms. Comparisons of computational geometrical acoustics predictions based on beam-axis tracing with scale model measurements indicate errors resulting from tail-correction assuming constant quadratic growth of reflection density. Using ray tracing in the late part corrects this error. For mid-frequencies, the models are modified to account for wave effects at coupling apertures by including power transmission coefficients. Similarly, statical-acoustics models are improved through more accurate estimates of power transmission measurements. Scale model measurements are in accord with the predicted behavior. The edge-diffraction model is adapted to study transmission through apertures. Multiple-order scattering is theoretically and experimentally shown inaccurate due to neglect of slope diffraction. At low frequencies, perturbation models qualitatively explain scale model measurements. Measurements confirm relation of coupling strength to unperturbed pressure distribution on coupling surfaces. Measurements in Bass Hall exhibit effects of the coupled stage house. High frequency predictions of statistical acoustics and geometrical acoustics models and predictions of coupling apertures all agree with measurements.

  12. Constant-roll (quasi-)linear inflation

    Science.gov (United States)

    Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.

    2018-05-01

    In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.

  13. How does pressure gravitate? Cosmological constant problem confronts observational cosmology

    Science.gov (United States)

    Narimani, Ali; Afshordi, Niayesh; Scott, Douglas

    2014-08-01

    An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (``highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ4 = 0.105 ± 0.049 (+highL CMB), or ζ4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ4=), and also among different data sets.

  14. How does pressure gravitate? Cosmological constant problem confronts observational cosmology

    International Nuclear Information System (INIS)

    Narimani, Ali; Scott, Douglas; Afshordi, Niayesh

    2014-01-01

    An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ 4  = 0.105 ± 0.049 (+highL CMB), or ζ 4  = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ 4 =), and also among different data sets

  15. A quadri-constant fraction discriminator

    International Nuclear Information System (INIS)

    Wang Wei; Gu Zhongdao

    1992-01-01

    A quad Constant Fraction (Amplitude and Rise Time Compensation) Discriminator Circuit is described, which is based on the ECL high-speed dual comparator AD 9687. The CFD (ARCD) is of the constant fraction timing type (the amplitude and rise time compensation timing type) employing a leading edge discriminator to eliminate error triggers caused by noises. A timing walk measurement indicates a timing walk of less than +- 150 ps from -50 mV to -5 V

  16. Ab initio calculations and experimental measurement of the deuterium quadrupole coupling constant in Na2PDO3

    International Nuclear Information System (INIS)

    Trudeau, J.D.; Schwartz, J.L.; Farrar, T.C.

    1991-01-01

    The deuterium quadrupole coupling constant, χ D , in the PDO 3 2- anion has been measured in solution by NMR spin-lattice (T 1 ) relaxation time measurements and it has been calculated via ab initio methods. The experimental value of 94.7 ± 0.5 kHz is in excellent agreement with the ab initio value of 95.0 kHz. The activation energy for the ion reorientation is 2.23 ± 0.01 kJ mol -1

  17. Wormholes and the cosmological constant problem.

    Science.gov (United States)

    Klebanov, I.

    The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.

  18. Constrained least squares methods for estimating reaction rate constants from spectroscopic data

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H.F.M.; Hoefsloot, H.C.J.; Smilde, A.K.

    2002-01-01

    Model errors, experimental errors and instrumental noise influence the accuracy of reaction rate constant estimates obtained from spectral data recorded in time during a chemical reaction. In order to improve the accuracy, which can be divided into the precision and bias of reaction rate constant

  19. Systematics of constant roll inflation

    Science.gov (United States)

    Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.

    2018-02-01

    We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.

  20. Nonlinear quantum gravity on the constant mean curvature foliation

    International Nuclear Information System (INIS)

    Wang, Charles H-T

    2005-01-01

    A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analysed as nonlinear quantum minisuperspaces in the context of the proposed theory

  1. Atomic transition energies and the variation of the fine-structure constant α

    International Nuclear Information System (INIS)

    Borschevsky, Anastasia; Eliav, Ephraim; Ishikawa, Yasuyuki; Kaldor, Uzi

    2006-01-01

    Relativistic energy shifts of atomic excitation energies, showing the dependence of these energies on the value of the fine-structure constant α, are needed to extract past changes in α from spectra of distant quasars. These shifts are calculated by the Fock-space coupled cluster method and its extrapolated intermediate Hamiltonian extension, which allow high-accuracy treatment of electron correlation. The accuracy of the method is tested by comparing 33 transition energies in heavy atoms (obtained with the laboratory α) with experiment; the average error is 258 cm -1 , and the largest error is 711 cm -1 . This may be compared with an average error of 432 cm -1 and a maximum error of 2150 cm -1 in the work of Dzuba et al., who reported most of the available energy shift calculations. The enhanced accuracy is due to more extensive inclusion of electron correlation. To obtain the energy shifts, we repeated the calculations with different values of α (within 0.1% of the current value). Our shifts differ by up to 30% from the values given by Dzuba et al., with an average difference of 9%. Based on the better quality of the present-day excitation energies, we believe the energy shifts reported here are more accurate than earlier work

  2. Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jae Hyeok [YITP, Stony Brook; Essig, Rouven [YITP, Stony Brook; McDermott, Samuel D. [Fermilab

    2018-03-02

    We consider the constraints from Supernova 1987A on particles with small couplings to the Standard Model. We discuss a model with a fermion coupled to a dark photon, with various mass relations in the dark sector; millicharged particles; dark-sector fermions with inelastic transitions; the hadronic QCD axion; and an axion-like particle that couples to Standard Model fermions with couplings proportional to their mass. In the fermion cases, we develop a new diagnostic for assessing when such a particle is trapped at large mixing angles. Our bounds for a fermion coupled to a dark photon constrain small couplings and masses <200 MeV, and do not decouple for low fermion masses. They exclude parameter space that is otherwise unconstrained by existing accelerator-based and direct-detection searches. In addition, our bounds are complementary to proposed laboratory searches for sub-GeV dark matter, and do not constrain several "thermal" benchmark-model targets. For a millicharged particle, we exclude charges between 10^(-9) to a few times 10^(-6) in units of the electron charge; this excludes parameter space to higher millicharges and masses than previous bounds. For the QCD axion and an axion-like particle, we apply several updated nuclear physics calculations and include the energy dependence of the optical depth to accurately account for energy loss at large couplings. We rule out a hadronic axion of mass between 0.1 and a few hundred eV, or equivalently bound the PQ scale between a few times 10^4 and 10^8 GeV, closing the hadronic axion window. For an axion-like particle, our bounds disfavor decay constants between a few times 10^5 GeV up to a few times 10^8 GeV. In all cases, our bounds differ from previous work by more than an order of magnitude across the entire parameter space. We also provide estimated systematic errors due to the uncertainties of the progenitor.

  3. CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS

    International Nuclear Information System (INIS)

    Vikhlinin, A.; Forman, W. R.; Jones, C.; Murray, S. S.; Kravtsov, A. V.; Burenin, R. A.; Voevodkin, A.; Ebeling, H.; Hornstrup, A.; Nagai, D.; Quintana, H.

    2009-01-01

    Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with (z) = 0.55 derived from 400 deg 2 ROSAT serendipitous survey and 49 brightest z ∼ 0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Ω Λ > 0 with a ∼5σ significance, and constrains the dark energy equation-of-state parameter to w 0 = -1.14 ± 0.21, assuming a constant w and a flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain w 0 = -0.991 ± 0.045 (stat) ±0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos Σm ν M h and σ 8 from the low-redshift cluster mass function.

  4. CAL3JHH: a Java program to calculate the vicinal coupling constants (3J H,H) of organic molecules.

    Science.gov (United States)

    Aguirre-Valderrama, Alonso; Dobado, José A

    2008-12-01

    Here, we present a free web-accessible application, developed in the JAVA programming language for the calculation of vicinal coupling constant (3J(H,H)) of organic molecules with the H-Csp3-Csp3-H fragment. This JAVA applet is oriented to assist chemists in structural and conformational analyses, allowing the user to calculate the averaged 3J(H,H) values among conformers, according to its Boltzmann populations. Thus, the CAL3JHH program uses the Haasnoot-Leeuw-Altona equation, and, by reading the molecule geometry from a protein data bank (PDB) file format or from multiple pdb files, automatically detects all the coupled hydrogens, evaluating the data needed for this equation. Moreover, a "Graphical viewer" menu allows the display of the results on the 3D molecule structure, as well as the plotting of the Newman projection for the couplings.

  5. np scattering measurements at 162 MeV and the πNN coupling constant

    International Nuclear Information System (INIS)

    Rahm, J.; Blomgren, J.; Conde, H.; Dangtip, S.; Elmgren, K.; Olsson, N.; Roennqvist, T.; Zorro, R.; Ringbom, A.; Tibell, G.; Jonsson, O.; Nilsson, L.; Renberg, P.U.; Ericson, T.E.O.; Loiseau, B.

    1999-01-01

    The differential np scattering cross sections has been measured at 162 MeV in the angular range θ c.m. = 72 angle - 180 angle, using the neutron beam facility at the Svedberg Laboratory in Uppsala. Special attention was paid to the absolute normalization of the data. In the angular range 150 angle - 180 angle, the data are steeper then those of most previous measurements and predictions from energy-dependent partial-wave analyses, or nucleon-nucleon potentials. Moreover, a value of the charged πNN coupling constant, g π± 2 = 14.52 ± 0.26 (f π± 2 = 0.0803 ± 0.0014), is deduced from the data, using a novel extrapolation method. This is in good agreement with the classical text book value, but higher than those determined in recent partial-wave analyses of the nucleon-nucleon data base. (authors)

  6. PSYCHE CPMG-HSQMBC: An NMR Spectroscopic Method for Precise and Simple Measurement of Long-Range Heteronuclear Coupling Constants.

    Science.gov (United States)

    Timári, István; Szilágyi, László; Kövér, Katalin E

    2015-09-28

    Among the NMR spectroscopic parameters, long-range heteronuclear coupling constants convey invaluable information on torsion angles relevant to glycosidic linkages of carbohydrates. A broadband homonuclear decoupled PSYCHE CPMG-HSQMBC method for the precise and direct measurement of multiple-bond heteronuclear couplings is presented. The PSYCHE scheme built into the pulse sequence efficiently eliminates unwanted proton-proton splittings from the heteronuclear multiplets so that the desired heteronuclear couplings can be determined simply by measuring frequency differences between peak maxima of pure antiphase doublets. Moreover, PSYCHE CPMG-HSQMBC can provide significant improvement in sensitivity as compared to an earlier Zangger-Sterk-based method. Applications of the proposed pulse sequence are demonstrated for the extraction of (n)J((1)H,(77)Se) and (n)J((1)H,(13)C) values, respectively, in carbohydrates; further extensions can be envisioned in any J-based structural and conformational studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Constraints on an annihilation signal from a core of constant dark matter density around the milky way center with H.E.S.S.

    Science.gov (United States)

    Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M-H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H-S

    2015-02-27

    An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9  h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300  GeV to ∼10  TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24}  cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4  TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.

  8. An investigation of coupling of the internal kink mode to error field correction coils in tokamaks

    International Nuclear Information System (INIS)

    Lazarus, E.A.

    2013-01-01

    The coupling of the internal kink to an external m/n = 1/1 perturbation is studied for profiles that are known to result in a saturated internal kink in the limit of a cylindrical tokamak. It is found from three-dimensional equilibrium calculations that, for A ≈ 30 circular plasmas and A ≈ 3 elliptical shapes, this coupling of the boundary perturbation to the internal kink is strong; i.e., the amplitude of the m/n = 1/1 structure at q = 1 is large compared with the amplitude applied at the plasma boundary. Evidence suggests that this saturated internal kink, resulting from small field errors, is an explanation for the TEXTOR and JET measurements of q 0 remaining well below unity throughout the sawtooth cycle, as well as the distinction between sawtooth effects on the q-profile observed in TEXTOR and DIII-D. It is proposed that this excitation, which could readily be applied with error field correction coils, be explored as a mechanism for controlling sawtooth amplitudes in high-performance tokamak discharges. This result is then combined with other recent tokamak results to propose an L-mode approach to fusion in tokamaks. (paper)

  9. Joint Schemes for Physical Layer Security and Error Correction

    Science.gov (United States)

    Adamo, Oluwayomi

    2011-01-01

    The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…

  10. Proof of confinement of static quarks in 3-dimensional U(1) lattice gauge theory for all values of the coupling constant

    International Nuclear Information System (INIS)

    Goepfert, M.; Mack, G.

    1981-07-01

    We study the 3-dimensional pure U(1) lattice gauge theory with Villain action which is related to the 3-dimensional Z-ferro-magnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constant g 2 , and obeys and bound α >= const x msub(D)β -1 for small ag 2 , with β = 4π 2 /g 2 and m 2 sub(D) = (2β/a 3 )esup(-βupsiloncb(0)/2) (a = lattice spacing). A continuum limit a → 0, msub(D) fixed, exists and represents a scalar free field theory of mass msub(D). The string tension αmsub(D) -2 in physical units tends to infinite in this limit. Characteristic differences in the behavior of the model for large and small coupling constant ag 2 are found. Renormalization group aspects are discussed. (orig.)

  11. Analysis of the interactions between difluoroacetylene and one or two hydrogen fluoride molecules based on calculated spin–spin coupling constants

    DEFF Research Database (Denmark)

    Provasi, Patricio F.; Caputo, María Cristina; Sauer, Stephan P. A.

    2012-01-01

    A theoretical study of FCCF:(HF)n complexes, with n = 1 and 2, has been carried out by means of ab initio computational methods. Two types of complexes are formed: those with FH···p interactions and those with FH···FC hydrogen bonds. The indirect spin–spin coupling constants have been calculated ...

  12. f(R) constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Motohashi, Hayato [Universidad de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics, RAS, Moscow (Russian Federation); National Research University Higher School of Economics, Moscow (Russian Federation)

    2017-08-15

    The previously introduced class of two-parametric phenomenological inflationary models in general relativity in which the slow-roll assumption is replaced by the more general, constant-roll condition is generalized to the case of f(R) gravity. A simple constant-roll condition is defined in the original Jordan frame, and exact expressions for a scalaron potential in the Einstein frame, for a function f(R) (in the parametric form) and for inflationary dynamics are obtained. The region of the model parameters permitted by the latest observational constraints on the scalar spectral index and the tensor-to-scalar ratio of primordial metric perturbations generated during inflation is determined. (orig.)

  13. CCD image sensor induced error in PIV applications

    Science.gov (United States)

    Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.

    2014-06-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.

  14. CCD image sensor induced error in PIV applications

    International Nuclear Information System (INIS)

    Legrand, M; Nogueira, J; Vargas, A A; Ventas, R; Rodríguez-Hidalgo, M C

    2014-01-01

    The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (∼0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described. (paper)

  15. Nonlinear error dynamics for cycled data assimilation methods

    International Nuclear Information System (INIS)

    Moodey, Alexander J F; Lawless, Amos S; Potthast, Roland W E; Van Leeuwen, Peter Jan

    2013-01-01

    We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at t k , k = 1, 2, 3, …, with a first guess given by the state propagated via a dynamical system model M k from time t k−1 to time t k . In particular, for nonlinear dynamical systems M k that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ‖e k ‖ ≔ ‖x (a) k − x (t) k ‖ between the estimated state x (a) and the true state x (t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system M k under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ‖e k ‖, depending on the size δ of the observation error, the reconstruction operator R α , the observation operator H and the Lipschitz constants K (1) and K (2) on the lower and higher modes of M k controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c‖R α ‖δ with some constant c. Since ‖R α ‖ → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz ‘63 system. (paper)

  16. A power-law coupled three-form dark energy model

    Science.gov (United States)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He

    2018-02-01

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.

  17. A power-law coupled three-form dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2018-02-15

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω{sub m0} and the present three-form field κX{sub 0} gives stringent constraints on the coupling constant, -0.017 < λ < 0.047 (2σ confidence level), by which we present the model's applicable parameter range. (orig.)

  18. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlö gl, Udo; Shelykh, I. A.

    2009-01-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  19. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlögl, Udo

    2009-07-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  20. Size constraints on a Majorana beam-splitter interferometer: Majorana coupling and surface-bulk scattering

    Science.gov (United States)

    Røising, Henrik Schou; Simon, Steven H.

    2018-03-01

    Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system is Majorana interferometry. Here we consider two possibly conflicting constraints on the size of such an interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in the center of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical samples may have no size window in which the Majorana interferometer can operate, implying that a new generation of more highly insulating samples must be explored.

  1. IMAGE ACQUISITION CONSTRAINTS FOR PANORAMIC FRAME CAMERA IMAGING

    Directory of Open Access Journals (Sweden)

    H. Kauhanen

    2012-07-01

    Full Text Available The paper describes an approach to quantify the amount of projective error produced by an offset of projection centres in a panoramic imaging workflow. We have limited this research to such panoramic workflows in which several sub-images using planar image sensor are taken and then stitched together as a large panoramic image mosaic. The aim is to simulate how large the offset can be before it introduces significant error to the dataset. The method uses geometrical analysis to calculate the error in various cases. Constraints for shooting distance, focal length and the depth of the area of interest are taken into account. Considering these constraints, it is possible to safely use even poorly calibrated panoramic camera rig with noticeable offset in projection centre locations. The aim is to create datasets suited for photogrammetric reconstruction. Similar constraints can be used also for finding recommended areas from the image planes for automatic feature matching and thus improve stitching of sub-images into full panoramic mosaics. The results are mainly designed to be used with long focal length cameras where the offset of projection centre of sub-images can seem to be significant but on the other hand the shooting distance is also long. We show that in such situations the error introduced by the offset of the projection centres results only in negligible error when stitching a metric panorama. Even if the main use of the results is with cameras of long focal length, they are feasible for all focal lengths.

  2. Generalized Gaussian Error Calculus

    CERN Document Server

    Grabe, Michael

    2010-01-01

    For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...

  3. Efficient, Robust and Constant-Round Distributed RSA Key Generation

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Mikkelsen, Gert Læssøe

    2010-01-01

    We present the first protocol for distributed RSA key generation which is constant round, secure against malicious adversaries and has a negligibly small bound on the error probability, even using only one iteration of the underlying primality test on each candidate number.......We present the first protocol for distributed RSA key generation which is constant round, secure against malicious adversaries and has a negligibly small bound on the error probability, even using only one iteration of the underlying primality test on each candidate number....

  4. A natural cosmological constant from chameleons

    International Nuclear Information System (INIS)

    Nastase, Horatiu; Weltman, Amanda

    2015-01-01

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  5. A natural cosmological constant from chameleons

    Directory of Open Access Journals (Sweden)

    Horatiu Nastase

    2015-07-01

    Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.

  6. A natural cosmological constant from chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)

    2015-07-30

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  7. Optimal Constant-Stress Accelerated Degradation Test Plans Using Nonlinear Generalized Wiener Process

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2016-01-01

    Full Text Available Accelerated degradation test (ADT has been widely used to assess highly reliable products’ lifetime. To conduct an ADT, an appropriate degradation model and test plan should be determined in advance. Although many historical studies have proposed quite a few models, there is still room for improvement. Hence we propose a Nonlinear Generalized Wiener Process (NGWP model with consideration of the effects of stress level, product-to-product variability, and measurement errors for a higher estimation accuracy and a wider range of use. Then under the constraints of sample size, test duration, and test cost, the plans of constant-stress ADT (CSADT with multiple stress levels based on the NGWP are designed by minimizing the asymptotic variance of the reliability estimation of the products under normal operation conditions. An optimization algorithm is developed to determine the optimal stress levels, the number of units allocated to each level, inspection frequency, and measurement times simultaneously. In addition, a comparison based on degradation data of LEDs is made to show better goodness-of-fit of the NGWP than that of other models. Finally, optimal two-level and three-level CSADT plans under various constraints and a detailed sensitivity analysis are demonstrated through examples in this paper.

  8. LEP constraints on grand unified theories

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    1993-01-01

    Recent developments on grand unified theories (GUTs) in the context of the LEP measurements of the coupling constants are reviewed. The three coupling constants at the electroweak scale have been measured at LEP quite precisely. One can allow these couplings to evolve with energy following the renormalization group equations for the various groups and find out whether all the coupling constants meet at any energy. It was pointed out that the minimal SU(5) grand unified theory fails to satisfy this test. However, various extensions of the theory are still allowed. These extensions include (i) supersymmetric SU(5) GUT, with some arbitrariness in the susy breaking scale arising from the threshold corrections, (ii) non-susy SU(5) GUTs with additional fermions as well as Higgs multiplets, which has masses of the order of TeV, and (iii) non-renormalizable effect of gravity with a fine tuned relation among the coupling constants at the unification energy. The LEP results also constrain GUTs with an intermediate symmetry breaking scale. By adjusting the intermediate symmetry breaking scale, one usually can have unification, but these theories get constrained. For example, the left-right symmetric theories coming from GUTs can be broken only at energies higher than about ∼10 10 GeV. This implies that if right handed gauge bosons are found at energies lower than this scale, then that will rule out the possibility of grand unification. Another recent interesting development on the subject, namely, low energy unification, is discussed in this context. All the coupling constants are unified at energies of the order of ∼10 8 GeV when they are embedded in an SU(15)GUT, with some particular symmetry breaking pattern. But even in this case the results of the intermediate symmetry breaking scale remain unchanged. (author). 16 refs., 3 figs

  9. Finding Deadlocks of Event-B Models by Constraint Solving

    DEFF Research Database (Denmark)

    Hallerstede, Stefan; Leuschel, Michael

    we propose a constraint-based approach to nding deadlocks employing the ProB constraint solver to nd values for the constants and variables of formal models that describe a deadlocking state. We discuss the principles of the technique implemented in ProB's Prolog kernel and present some results...

  10. Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.

    Science.gov (United States)

    Donnini, Serena; Ullmann, R Thomas; Groenhof, Gerrit; Grubmüller, Helmut

    2016-03-08

    In constant pH molecular dynamics simulations, the protonation states of titratable sites can respond to changes of the pH and of their electrostatic environment. Consequently, the number of protons bound to the biomolecule, and therefore the overall charge of the system, fluctuates during the simulation. To avoid artifacts associated with a non-neutral simulation system, we introduce an approach to maintain neutrality of the simulation box in constant pH molecular dynamics simulations, while maintaining an accurate description of all protonation fluctuations. Specifically, we introduce a proton buffer that, like a buffer in experiment, can exchange protons with the biomolecule enabling its charge to fluctuate. To keep the total charge of the system constant, the uptake and release of protons by the buffer are coupled to the titration of the biomolecule with a constraint. We find that, because the fluctuation of the total charge (number of protons) of a typical biomolecule is much smaller than the number of titratable sites of the biomolecule, the number of buffer sites required to maintain overall charge neutrality without compromising the charge fluctuations of the biomolecule, is typically much smaller than the number of titratable sites, implying markedly enhanced simulation and sampling efficiency.

  11. The Hubble Constant

    Directory of Open Access Journals (Sweden)

    Neal Jackson

    2015-09-01

    Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  12. Diffusion Processes Satisfying a Conservation Law Constraint

    Directory of Open Access Journals (Sweden)

    J. Bakosi

    2014-01-01

    Full Text Available We investigate coupled stochastic differential equations governing N nonnegative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires a set of fluctuating variables to be nonnegative and (if appropriately normalized sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the nonnegativity and the unit-sum conservation law constraints are satisfied as the variables evolve in time. We investigate the consequences of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.

  13. Probing gravitational non-minimal coupling with dark energy surveys

    International Nuclear Information System (INIS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Wu, Yi-Peng

    2017-01-01

    We investigate observational constraints on a specific one-parameter extension to the minimal quintessence model, where the quintessence field acquires a quadratic coupling to the scalar curvature through a coupling constant ξ. The value of ξ is highly suppressed in typical tracker models if the late-time cosmic acceleration is driven at some field values near the Planck scale. We test ξ in a second class of models in which the field value today becomes a free model parameter. We use the combined data from type-Ia supernovae, cosmic microwave background, baryon acoustic oscillations and matter power spectrum, to weak lensing measurements and find a best-fit value ξ > 0.289 where ξ = 0 is excluded outside the 95% confidence region. The effective gravitational constant G_e_f_f subject to the hint of a non-zero ξ is constrained to -0.003 < 1 - G_e_f_f/G < 0.033 at the same confidence level on cosmological scales, and it can be narrowed down to 1 - G_e_f_f/G < 2.2 x 10"-"5 when combining with Solar System tests. (orig.)

  14. Coupler tuning for constant gradient travelling wave accelerating structures

    International Nuclear Information System (INIS)

    Guo Xingkun; Ma Yanyun; Wang Xiulong

    2013-01-01

    The method of the coupler tuning for the constant gradient traveling wave accelerating structure was described and the formula of coupling coefficient p was deduced on the basis of analyzing the existing methods for the constant impedance traveling wave accelerating structures and coupling-cavity chain equivalent circuits. The method and formula were validated by the simulation result by CST and experiment data. (authors)

  15. The contributions of human factors on human error in Malaysia aviation maintenance industries

    Science.gov (United States)

    Padil, H.; Said, M. N.; Azizan, A.

    2018-05-01

    Aviation maintenance is a multitasking activity in which individuals perform varied tasks under constant pressure to meet deadlines as well as challenging work conditions. These situational characteristics combined with human factors can lead to various types of human related errors. The primary objective of this research is to develop a structural relationship model that incorporates human factors, organizational factors, and their impact on human errors in aviation maintenance. Towards that end, a questionnaire was developed which was administered to Malaysian aviation maintenance professionals. Structural Equation Modelling (SEM) approach was used in this study utilizing AMOS software. Results showed that there were a significant relationship of human factors on human errors and were tested in the model. Human factors had a partial effect on organizational factors while organizational factors had a direct and positive impact on human errors. It was also revealed that organizational factors contributed to human errors when coupled with human factors construct. This study has contributed to the advancement of knowledge on human factors effecting safety and has provided guidelines for improving human factors performance relating to aviation maintenance activities and could be used as a reference for improving safety performance in the Malaysian aviation maintenance companies.

  16. Revisiting the decoupling effects in the running of the Cosmological Constant

    International Nuclear Information System (INIS)

    Antipin, Oleg; Melic, Blazenka

    2017-01-01

    We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given. (orig.)

  17. Revisiting the decoupling effects in the running of the Cosmological Constant

    Energy Technology Data Exchange (ETDEWEB)

    Antipin, Oleg; Melic, Blazenka [Rudjer Boskovic Institute, Division of Theoretical Physics, Zagreb (Croatia)

    2017-09-15

    We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given. (orig.)

  18. Constraints on a parity-even/time-reversal-odd interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2000-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement, one of the results of the CPLEAR experiment. What is the situation then with regard to time-reversal-invariance non-conservation in systems other than the neutral kaon system? Two classes of tests of time-reversal-invariance need to be distinguished: the first one deals with parity violating (P-odd)/time-reversal-invariance non-conserving (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron. This in turn provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is 10 -4 times the weak interaction strength. Limits on a P-even/T-odd interaction are much less stringent. The better constraint stems also from the measurement of the electric dipole moment of the neutron. Of all the other tests, measurements of charge-symmetry breaking in neutron-proton elastic scattering provide the next better constraint. The latter experiments were performed at TRIUMF (at 477 and 347 MeV) and at IUCF (at 183 MeV). Weak decay experiments (the transverse polarization of the muon in K + →π 0 μ + ν μ and the transverse polarization of the positrons in polarized muon decay) have the potential to provide comparable or possibly better constraints

  19. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    Science.gov (United States)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  20. Using LDPC Code Constraints to Aid Recovery of Symbol Timing

    Science.gov (United States)

    Jones, Christopher; Villasnor, John; Lee, Dong-U; Vales, Esteban

    2008-01-01

    A method of utilizing information available in the constraints imposed by a low-density parity-check (LDPC) code has been proposed as a means of aiding the recovery of symbol timing in the reception of a binary-phase-shift-keying (BPSK) signal representing such a code in the presence of noise, timing error, and/or Doppler shift between the transmitter and the receiver. This method and the receiver architecture in which it would be implemented belong to a class of timing-recovery methods and corresponding receiver architectures characterized as pilotless in that they do not require transmission and reception of pilot signals. Acquisition and tracking of a signal of the type described above have traditionally been performed upstream of, and independently of, decoding and have typically involved utilization of a phase-locked loop (PLL). However, the LDPC decoding process, which is iterative, provides information that can be fed back to the timing-recovery receiver circuits to improve performance significantly over that attainable in the absence of such feedback. Prior methods of coupling LDPC decoding with timing recovery had focused on the use of output code words produced as the iterations progress. In contrast, in the present method, one exploits the information available from the metrics computed for the constraint nodes of an LDPC code during the decoding process. In addition, the method involves the use of a waveform model that captures, better than do the waveform models of the prior methods, distortions introduced by receiver timing errors and transmitter/ receiver motions. An LDPC code is commonly represented by use of a bipartite graph containing two sets of nodes. In the graph corresponding to an (n,k) code, the n variable nodes correspond to the code word symbols and the n-k constraint nodes represent the constraints that the code places on the variable nodes in order for them to form a valid code word. The decoding procedure involves iterative computation

  1. Efficient decoding of random errors for quantum expander codes

    OpenAIRE

    Fawzi , Omar; Grospellier , Antoine; Leverrier , Anthony

    2017-01-01

    We show that quantum expander codes, a constant-rate family of quantum LDPC codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Z\\'emor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottes...

  2. Irreversible Thermodynamics of the Universe: Constraints from Planck Data

    International Nuclear Information System (INIS)

    Saha, Subhajit; Chakraborty, Subenoy; Biswas, Atreyee

    2014-01-01

    The present work deals with irreversible universal thermodynamics. The homogenous and isotropic flat model of the universe is chosen as open thermodynamical system and nonequilibrium thermodynamics comes into picture. For simplicity, entropy flow is considered only due to heat conduction. Further, due to Maxwell-Cattaneo modified Fourier law for nonequilibrium phenomenon, the temperature satisfies damped wave equation instead of heat conduction equation. Validity of generalized second law of thermodynamics (GSLT) has been investigated for universe bounded by apparent or event horizon with cosmic substratum as perfect fluid with constant or variable equation of state or interacting dark species. Finally, we have used three Planck data sets to constrain the thermal conductivity λ and the coupling parameter b 2 . These constraints must be satisfied in order for GSLT to hold for universe bounded by apparent or event horizons

  3. R4 terms in supergravities via T -duality constraint

    Science.gov (United States)

    Razaghian, Hamid; Garousi, Mohammad R.

    2018-05-01

    It has been speculated in the literature that the effective actions of string theories at any order of α' should be invariant under the Buscher rules plus their higher covariant-derivative corrections. This may be used as a constraint to find effective actions at any order of α', in particular, the metric, the B -field, and the dilaton couplings in supergravities at order α'3 up to an overall factor. For the simple case of zero B -field and diagonal metric in which we have done the calculations explicitly, we have found that the constraint fixes almost all of the seven independent Riemann curvature couplings. There is only one term which is not fixed, because when metric is diagonal, the reduction of two R4 terms becomes identical. The Riemann curvature couplings that the T -duality constraint produces for both type II and heterotic theories are fully consistent with the existing couplings in the literature which have been found by the S-matrix and by the sigma-model approaches.

  4. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback.

    Directory of Open Access Journals (Sweden)

    Ing-Shiou Hwang

    Full Text Available Discharge patterns from a population of motor units (MUs were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF. In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13-35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band.

  5. OPTIMAL CONTROL OF A NONLINEAR COUPLED ELECTROMAGNETIC INDUCTION HEATING SYSTEM WITH POINTWISE STATE CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    Irwin Yousept

    2010-07-01

    Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.

  6. Review of Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    S. Fukano, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  7. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  8. Quantum effects induced by a gap in the spectrum of atom-bath coupling constants: ''Freezing'' of atomic decay and monochromatic collective radiation

    International Nuclear Information System (INIS)

    Mogilevtsev, D.S.; Kilin, S.Ya.

    1994-08-01

    A specific kind of inhibition of atomic decay (''freezing of decay) and intense monochromatic collective radiation are predicted for a single two-level atom and for a system of atoms interacting with the field bath having the gap in the spectrum of coupling constants. (author). 10 refs, 5 figs

  9. Cosmological constant--the weight of the vacuum

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    2003-01-01

    Recent cosmological observations suggest the existence of a positive cosmological constant Λ with the magnitude Λ(Gℎ/c 3 )∼10 -123 . This review discusses several aspects of the cosmological constant both from the cosmological (Sections 1-6) and field theoretical (Sections 7-11) perspectives. After a brief introduction to the key issues related to cosmological constant and a historical overview, a summary of the kinematics and dynamics of the standard Friedmann model of the universe is provided. The observational evidence for cosmological constant, especially from the supernova results, and the constraints from the age of the universe, structure formation, Cosmic Microwave Background Radiation (CMBR) anisotropies and a few others are described in detail, followed by a discussion of the theoretical models (quintessence, tachyonic scalar field, ...) from different perspectives. The latter part of the review (Sections 7-11) concentrates on more conceptual and fundamental aspects of the cosmological constant like some alternative interpretations of the cosmological constant, relaxation mechanisms to reduce the cosmological constant to the currently observed value, the geometrical structure of the de Sitter spacetime, thermodynamics of the de Sitter universe and the role of string theory in the cosmological constant problem

  10. Detected-jump-error-correcting quantum codes, quantum error designs, and quantum computation

    International Nuclear Information System (INIS)

    Alber, G.; Mussinger, M.; Beth, Th.; Charnes, Ch.; Delgado, A.; Grassl, M.

    2003-01-01

    The recently introduced detected-jump-correcting quantum codes are capable of stabilizing qubit systems against spontaneous decay processes arising from couplings to statistically independent reservoirs. These embedded quantum codes exploit classical information about which qubit has emitted spontaneously and correspond to an active error-correcting code embedded in a passive error-correcting code. The construction of a family of one-detected-jump-error-correcting quantum codes is shown and the optimal redundancy, encoding, and recovery as well as general properties of detected-jump-error-correcting quantum codes are discussed. By the use of design theory, multiple-jump-error-correcting quantum codes can be constructed. The performance of one-jump-error-correcting quantum codes under nonideal conditions is studied numerically by simulating a quantum memory and Grover's algorithm

  11. A Study of the $Q^{2}$ Dependence of the QCD Coupling Constant from the Transverse Momentum of Jets in Deep Inelastic Muon Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Janet Marie [Harvard U.

    1993-01-01

    Experiment 665 at Fermilab is the first deep inelastic scattering experiment to obtain data in a kinematic range where jets can be identified on an event-by-event basis. In this thesis, using the average squared transverse momentum of the jets produced in deep inelastic muon scattering, a quantity is calculated which Perturbative QCD predicts to be equal to $\\alpha_3$ the strong coupling constant. The quantity is studied as a function of $Q^2$, the negative 4-momentum squared of the virtual photon, for 3 < $Q^2$ < 25 $GeV^2$. The data a.re shown to be consistent with the predictions of PQCD with $\\Lambda ^{\\eta_f = 4}_{DIS}$ = 359 ± 31 (stat) ± 149 (sys) MeV. However this may have a significant theoretical error due to uncalculated higher order corrections. This thesis provides a detailed description of the characteristics of the identified jets. The transverse momentum due to fragmentation is measured to be ($P^2_{\\tau}frag$) = 0.0820 ±0.002(stat) ±0.005(sys). Using naive assumptions about the jets, the intrinsic transverse momentum is measured to be ($k^2_{\\tau}$) = 0.27 ±0.01 (stat) ±0.03 (sys) Gev·2

  12. Nonlinear Model Predictive Control with Constraint Satisfactions for a Quadcopter

    Science.gov (United States)

    Wang, Ye; Ramirez-Jaime, Andres; Xu, Feng; Puig, Vicenç

    2017-01-01

    This paper presents a nonlinear model predictive control (NMPC) strategy combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling errors of the control-oriented model of full dynamics can be transformed into the inequality constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the updated constraints generated by constraint satisfactions. Finally, the simulation results applied to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.

  13. Toward making the constraint hypersurface an attractor in free evolution

    International Nuclear Information System (INIS)

    Fiske, David R.

    2004-01-01

    When constructing numerical solutions to systems of evolution equations subject to a constraint, one must decide what role the constraint equations will play in the evolution system. In one popular choice, known as free evolution, a simulation is treated as a Cauchy problem, with the initial data constructed to satisfy the constraint equations. This initial data are then evolved via the evolution equations with no further enforcement of the constraint equations. The evolution, however, via the discretized evolution equations introduce constraint violating modes at the level of truncation error, and these constraint violating modes will behave in a formalism dependent way. This paper presents a generic method for incorporating the constraint equations into the evolution equations so that the off-constraint dynamics are biased toward the constraint satisfying solutions

  14. Consistent constraints on the Standard Model Effective Field Theory

    International Nuclear Information System (INIS)

    Berthier, Laure; Trott, Michael

    2016-01-01

    We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.

  15. Conformal coupling associated with the Noether symmetry and its connection with the ΛCDM dynamics

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2013-01-01

    The aim of this work is to investigate a non-minimally coupled scalar field model through the Noether symmetry approach, with the radiation, matter and cosmological constant eras being analyzed. The Noether symmetry condition allows a conformal coupling and by means of a change of coordinates in the configuration space the field equations can be reduced to a single equation, which is of the form of the Friedmann equation for the ΛCDM model. In this way, it is formally shown that the dynamical system can furnish solutions with the same form as those of the ΛCDM model, although the theory here considered is physically different from the former. The conserved quantity associated with the Noether symmetry can be related to the kinetic term of the scalar field and could constrain the possible deviations of the model from the ΛCDM picture. Observational constraints on the variation of the gravitational constant can be imposed on the model through the initial condition of the scalar field. (paper)

  16. Planck intermediate results XXIV. Constraints on variations in fundamental constants

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    2015-01-01

    cosmological probes. We conclude that independent time variations of the fine structure constant and of the mass of the electron are constrained by Planck to Δ Α/Α = (3.6±3.7) x 10-3 and Δ me/me = (4 ±11) x 10-3 at the 68% confidence level. We also investigate the possibility of a spatial variation of the fine...

  17. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser.

    Science.gov (United States)

    Cui, Cunxing; Feng, Qibo; Zhang, Bin; Zhao, Yuqiong

    2016-03-21

    A novel method for simultaneously measuring six degree-of-freedom (6DOF) geometric motion errors is proposed in this paper, and the corresponding measurement instrument is developed. Simultaneous measurement of 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser is accomplished for the first time to the best of the authors' knowledge. Dual-frequency laser beams that are orthogonally linear polarized were adopted as the measuring datum. Positioning error measurement was achieved by heterodyne interferometry, and other 5DOF geometric motion errors were obtained by fiber collimation measurement. A series of experiments was performed to verify the effectiveness of the developed instrument. The experimental results showed that the stability and accuracy of the positioning error measurement are 31.1 nm and 0.5 μm, respectively. For the straightness error measurements, the stability and resolution are 60 and 40 nm, respectively, and the maximum deviation of repeatability is ± 0.15 μm in the x direction and ± 0.1 μm in the y direction. For pitch and yaw measurements, the stabilities are 0.03″ and 0.04″, the maximum deviations of repeatability are ± 0.18″ and ± 0.24″, and the accuracies are 0.4″ and 0.35″, respectively. The stability and resolution of roll measurement are 0.29″ and 0.2″, respectively, and the accuracy is 0.6″.

  18. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    Science.gov (United States)

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  19. Prediction-error variance in Bayesian model updating: a comparative study

    Science.gov (United States)

    Asadollahi, Parisa; Li, Jian; Huang, Yong

    2017-04-01

    In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model

  20. Minimizing Symbol Error Rate for Cognitive Relaying with Opportunistic Access

    KAUST Repository

    Zafar, Ammar

    2012-12-29

    In this paper, we present an optimal resource allocation scheme (ORA) for an all-participate(AP) cognitive relay network that minimizes the symbol error rate (SER). The SER is derived and different constraints are considered on the system. We consider the cases of both individual and global power constraints, individual constraints only and global constraints only. Numerical results show that the ORA scheme outperforms the schemes with direct link only and uniform power allocation (UPA) in terms of minimizing the SER for all three cases of different constraints. Numerical results also show that the individual constraints only case provides the best performance at large signal-to-noise-ratio (SNR).

  1. Exploring the Structure of a DNA Hairpin with the Help of NMR Spin-Spin Coupling Constants: An Experimental and Quantum Chemical Investigation

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Vacek, Jaroslav; Hobza, Pavel; Žídek, L.; Sklenář, V.; Cremer, D.

    2002-01-01

    Roč. 106, - (2002), s. 10242-10250 ISSN 1089-5639 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA * help of NMR spin-spin coupling constants * quantum chemical investigation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.765, year: 2002

  2. On the model dependence of the determination of the strong coupling constant in second order QCD from e+e--annihilation into hadrons

    International Nuclear Information System (INIS)

    Achterberg, O.; D'Agostini, G.; Apel, W.D.; Engler, J.; Fluegge, G.; Forstbauer, B.; Fries, D.C.; Fues, W.; Gamerdinger, K.; Henkes, T.; Hopp, G.; Krueger, M.; Kuester, H.; Mueller, H.; Randoll, H.; Schmidt, G.; Schneider, H.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kruse, U.; Lierl, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Bonneaud, G.; Colas, P.; Cordier, A.; Davier, M.; Fournier, D.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Laplanche, F.; Le Diberder, F.; Mallik, U.; Ros, E.; Veillet, J.J.; Behrend, H.J.; Fenner, H.; Schachter, M.J.; Schroeder, V.; Sindt, H.

    1983-12-01

    Hadronic events obtained with the CELLO detector at PETRA are compared with second order QCD predictions using different models for the fragmentation of quarks and gluons into hadrons. We find that the model dependence in the determination of the strong coupling constant persists when going from first to second order QCD calculations. (orig.)

  3. Structure of the (0+,1+) mesons Bs0 and Bs1, and the strong coupling constant gBs0BK and gBs1B*K

    International Nuclear Information System (INIS)

    Wang, Z. G.

    2008-01-01

    In this article, we take the point of view that the bottomed (0 + ,1 + ) mesons B s0 and B s1 are the conventional bs meson and calculate the strong coupling constants g B s0 BK and g B s1 B*K with the light-cone QCD sum rules. The numerical values of strong coupling constants g B s1 B*K and g B s0 BK are very large and support the hadronic dressing mechanism. Just like the scalar mesons f 0 (980), a 0 (980), D s0 and axial-vector meson D s1 , the (0 + ,1 + ) bottomed mesons B s0 and B s1 may have small bs kernels of the typical bs meson size. The strong couplings to the hadronic channels (or the virtual mesons loops) may result in smaller masses than the conventional bs mesons in the potential quark models and enrich the pure bs states with other components.

  4. Causality Constraints in Conformal Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...

  5. Causality constraints in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)

    2016-05-17

    Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.

  6. Improvement to the D0 luminosity monitor constant

    International Nuclear Information System (INIS)

    Bantley, J.

    1996-03-01

    The D0 experiment has previously calculated its luminosity using the visible cross section (luminosity monitor constant) for its Level 0 trigger, σ L0 = 48.2 mb, based on the world average pp inelastic cross sections at √s = 1.8 TeV. The error on luminosity had been set at 12%. Recent studies using the MBR and DTUJET Monte Carlo event generators and unbiased D0 data samples have resulted in a more precise determination of the D0 luminosity monitor constant. The result, σ L0 = 46.7 ± 2.5 mb, lowers the central value by 3.1% and reduces the error to 5.4%. 12 refs., 7 figs., 9 tabs

  7. Alteration of the ground state by external magnetic fields. [External field, coupling constant ratio, static tree level approximation

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics

    1976-03-22

    By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.

  8. LHC MD2877: Beam-beam long range impact on coupling measurements

    CERN Document Server

    Wenninger, Jorg; Carlier, Felix Simon; Coello De Portugal - Martinez Vazquez, Jaime Maria; Fuchsberger, Kajetan; Hostettler, Michi; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; Valuch, Daniel; Garcia-Tabares Valdivieso, Ana; CERN. Geneva. ATS Department

    2018-01-01

    The LHC is now operating with a tune separation of ∼0.004 in collision. This puts tight constraints on the allowed transverse coupling since a |C−| larger than a fraction of the fractional tune split may lead to beam instabilities. In the last years a new tool based on the ADT used in a similar way as an AC-dipole to excite the beam was developed. The ADT AC-dipole gives coherent oscillations without increasing the beam emittance. These oscillations are analyzed automatically to obtain the value of the coupling. A coupling measurement campaign was done in 2017 and while the correction converged and stayed rather constant over time it was observed that depending on the target bunch and filling scheme the results could vary by Δ|C−| ∼ 0.002. In this MD report we investigated 3 different bunches, one with Long Range Beam-Beam (LRBB) in IPs 1 and 5, one with LRBB in all IPs and one with no LRBB. The results indicate that there are differences in coupling between the bunches experiencing different LR...

  9. Prediction of acid dissociation constants of organic compounds using group contribution methods

    DEFF Research Database (Denmark)

    Zhou, Teng; Jhamb, Spardha; Liang, Xiaodong

    2018-01-01

    data-points with average absolute error of 0.23; (b) a non-linear GC model for organic compounds using 1622 data-points with average absolute error of 1.18; (c) an artificial neural network (ANN) based GC model for the organic compounds with average absolute error of 0.17. For each of the developed......In this paper, group contribution (GC) property models for the estimation of acid dissociation constants (Ka) of organic compounds are presented. Three GC models are developed to predict the negative logarithm of the acid dissociation constant pKa: (a) a linear GC model for amino acids using 180...

  10. On the Angular Dependence of the Vicinal Fluorine-Fluorine Coupling Constant in 1,2-Difluoroethane:  Deviation from a Karplus-like Shape.

    Science.gov (United States)

    Provasi, Patricio F; Sauer, Stephan P A

    2006-07-01

    The angular dependence of the vicinal fluorine-fluorine coupling constant, (3)JFF, for 1,2-difluoroethane has been investigated with several polarization propagator methods. (3)JFF and its four Ramsey contributions were calculated using the random phase approximation (RPA), its multiconfigurational generalization, and both second-order polarization propagator approximations (SOPPA and SOPPA(CCSD)), using locally dense basis sets. The geometries were optimized for each dihedral angle at the level of density functional theory using the B3LYP functional and fourth-order Møller-Plesset perturbation theory. The resulting coupling constant curves were fitted to a cosine series with 8 coefficients. Our results are compared with those obtained previously and values estimated from experiment. It is found that the inclusion of electron correlation in the calculation of (3)JFF reduces the absolute values. This is mainly due to changes in the FC contribution, which for dihedral angles around the trans conformation even changes its sign. This sign change is responsible for the breakdown of the Karplus-like curve.

  11. On time variation of fundamental constants in superstring theories

    International Nuclear Information System (INIS)

    Maeda, K.I.

    1988-01-01

    Assuming the action from the string theory and taking into account the dynamical freedom of a dilaton and its coupling to matter fluid, the authors show that fundamental 'constants' in string theories are independent of the 'radius' of the internal space. Since the scalar related to the 'constants' is coupled to the 4-dimensional gravity and matter fluid in the same way as in the Jordan-Brans Dicke theory with ω = -1, it must be massive and can get a mass easily through some symmetry breaking mechanism (e.g. the SUSY breaking due to a gluino condensation). Consequently, time variation of fundamental constants is too small to be observed

  12. Measurement of the strong coupling constant {alpha}{sub s} with hadronic jets in deep inelastic scattering; Mesure de la constante de couplage forte {alpha}{sub s} avec les jets hadroniques en diffusion inelastique profonde

    Energy Technology Data Exchange (ETDEWEB)

    Gouzevitch, Maxime

    2008-12-15

    In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant {alpha}{sub s}. The jets have been selected in the NC DIS events at large momentum transvers 1505. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on {alpha}{sub s}(m{sub Z}) has been obtained with the combination ob the three observables at Q{sup 2}>150 GeV{sup 2}: {alpha}{sub s}(m{sub Z})=0.1180{+-}0.0007(exp.){sub -0.0034}{sup +0.0050}(th.){+-}0.0017(pdf.).

  13. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    International Nuclear Information System (INIS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH 4 , NH 3 , H 2 O, SiH 4 , PH 3 , SH 2 , C 2 H 2 , C 2 H 4 , and C 2 H 6 . The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states

  14. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.

    Science.gov (United States)

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2014-05-01

    Four-component relativistic calculations of (77)Se-(13)C spin-spin coupling constants have been performed in the series of selenium heterocycles and their parent open-chain selenides. It has been found that relativistic effects play an essential role in the selenium-carbon coupling mechanism and could result in a contribution of as much as 15-25% of the total values of the one-bond selenium-carbon spin-spin coupling constants. In the overall contribution of the relativistic effects to the total values of (1)J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin-orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second-order polarization propagator approach (CC2) with the four-component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of (1)J(Se,C). Solvent effects in the values of (1)J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2-78.4) are next to negligible decreasing negative (1)J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of (77)Se-(13)C spin-spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1-0.2-Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis

    Directory of Open Access Journals (Sweden)

    D. Béal

    2010-02-01

    Full Text Available In biogeochemical models coupled to ocean circulation models, vertical mixing is an important physical process which governs the nutrient supply and the plankton residence in the euphotic layer. However, vertical mixing is often poorly represented in numerical simulations because of approximate parameterizations of sub-grid scale turbulence, wind forcing errors and other mis-represented processes such as restratification by mesoscale eddies. Getting a sufficient knowledge of the nature and structure of these errors is necessary to implement appropriate data assimilation methods and to evaluate if they can be controlled by a given observation system.

    In this paper, Monte Carlo simulations are conducted to study mixing errors induced by approximate wind forcings in a three-dimensional coupled physical-biogeochemical model of the North Atlantic with a 1/4° horizontal resolution. An ensemble forecast involving 200 members is performed during the 1998 spring bloom, by prescribing perturbations of the wind forcing to generate mixing errors. The biogeochemical response is shown to be rather complex because of nonlinearities and threshold effects in the coupled model. The response of the surface phytoplankton depends on the region of interest and is particularly sensitive to the local stratification. In addition, the statistical relationships computed between the various physical and biogeochemical variables reflect the signature of the non-Gaussian behaviour of the system. It is shown that significant information on the ecosystem can be retrieved from observations of chlorophyll concentration or sea surface temperature if a simple nonlinear change of variables (anamorphosis is performed by mapping separately and locally the ensemble percentiles of the distributions of each state variable on the Gaussian percentiles. The results of idealized observational updates (performed with perfect observations and neglecting horizontal correlations

  16. Design of quadrature mirror filter bank using Lagrange multiplier method based on fractional derivative constraints

    Directory of Open Access Journals (Sweden)

    B. Kuldeep

    2015-06-01

    Full Text Available Fractional calculus has recently been identified as a very important mathematical tool in the field of signal processing. Digital filters designed by fractional derivatives give more accurate frequency response in the prescribed frequency region. Digital filters are most important part of multi-rate filter bank systems. In this paper, an improved method based on fractional derivative constraints is presented for the design of two-channel quadrature mirror filter (QMF bank. The design problem is formulated as minimization of L2 error of filter bank transfer function in passband, stopband interval and at quadrature frequency, and then Lagrange multiplier method with fractional derivative constraints is applied to solve it. The proposed method is then successfully applied for the design of two-channel QMF bank with higher order filter taps. Performance of the QMF bank design is then examined through study of various parameters such as passband error, stopband error, transition band error, peak reconstruction error (PRE, stopband attenuation (As. It is found that, the good design can be obtained with the change of number and value of fractional derivative constraint coefficients.

  17. Disentangling Higgs-Top Couplings in Associated Production

    CERN Document Server

    Ellis, John; Sakurai, Kazuki; Takeuchi, Michihisa

    2014-01-01

    In the presence of CP violation, the Higgs-top coupling may have both scalar and pseudoscalar components, $\\kappa_t$ and ${\\tilde \\kappa_t}$, which are bounded indirectly but only weakly by the present experimental constraints on the Higgs-gluon-gluon and Higgs-$\\gamma$-$\\gamma$ couplings, whereas upper limits on electric dipole moments provide strong additional indirect constraints on ${\\tilde \\kappa_t}$, if the Higgs-electron coupling is similar to that in the Standard Model and there are no cancellations with other contributions. We discuss methods to measure directly the scalar and pseudoscalar Higgs-top couplings by measurements of Higgs production in association with ${\\bar t} t$, single $t$ and single ${\\bar t}$ at the LHC. Measurements of the total cross sections are very sensitive to variations in the Higgs-top couplings that are consistent with the present indirect constraints, as are invariant mass distributions in ${\\bar t} t H$, $tH$ and ${\\bar t} H$ final states. We also investigate the addition...

  18. Random synaptic feedback weights support error backpropagation for deep learning

    Science.gov (United States)

    Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.

    2016-01-01

    The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning. PMID:27824044

  19. Error Modeling and Design Optimization of Parallel Manipulators

    DEFF Research Database (Denmark)

    Wu, Guanglei

    /backlash, manufacturing and assembly errors and joint clearances. From the error prediction model, the distributions of the pose errors due to joint clearances are mapped within its constant-orientation workspace and the correctness of the developed model is validated experimentally. ix Additionally, using the screw......, dynamic modeling etc. Next, the rst-order dierential equation of the kinematic closure equation of planar parallel manipulator is obtained to develop its error model both in Polar and Cartesian coordinate systems. The established error model contains the error sources of actuation error...

  20. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF{sub 6} molecules, X = S, Se, Te, Mo, and W

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Demissie, Taye B. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland)

    2014-05-21

    We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  1. Approximate Q.C.D. lower bound for the bag constant B

    International Nuclear Information System (INIS)

    Nielsen, H.B.

    1978-01-01

    Using an article by Savvidy from 1977 in which a state in Q.C.D. with lower energy than the perturbative vacuum was found, the author calculates an approximate lower bound for the M.I.T. bag constant B relative to the Q.C.D. coupling parameter Λ. With an M.I.T. bag constant Bsup(1/4)=145 MeV the author finds Λsub(P)<=0.89 GeV when the propagator of the gluon is used to renormalize the coupling constant. (Auth.)

  2. Effect of Microstructure Constraints on the Homogenized Elastic Constants of Elastomeric Sylgard/GMB Syntactic Foam.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steck, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Previous numerical studies of Sylgard filled with glass microballoons (GMB) have relied on various microstructure idealizations to achieve a large range of volume fractions with high mesh quality. This study investigates how different microstructure idealizations and constraints affect the apparent homogenized elastic constants in the virgin state of the material, in which all GMBs are intact and perfectly bonded to the Sylgard matrix, and in the fully damaged state of the material in which all GMBs are destroyed. In the latter state, the material behaves as an elastomeric foam. Four microstructure idealizations are considered relating to how GMBs are packed into a representative volume element (RVE): (1) no boundary penetration nor GMB-GMB overlap, (2) GMB-GMB overlap, (3) boundary penetration, and (4) boundary penetration and GMB-GMB overlap. First order computational homogenization with kinematically uniform displacement boundary conditions (KUBCs) was employed to determine the homogenized (apparent) bulk and shear moduli for the four microstructure idealizations in the intact and fully broken GMB material states. It was found that boundary penetration has a significant effect on the shear modulus for microstructures with intact GMBs, but that neither boundary penetration nor GMB overlap have a significant effect on homogenized properties for microstructures with fully broken GMBs. The primary conclusion of the study is that future investigations into Sylgard/GMB micromechanics should either force GMBs to stay within the RVE fully and/or use periodic BCs (PBCs) to eliminate the boundary penetration issues. The implementation of PBCs requires the improvement of existing tools in Sandia’s Sierra/SM code.

  3. Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale.

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F Jackson

    2015-08-21

    New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr(+) ions. For light bosons (mass≤0.1  eV) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |g(A)(e)g(A)(e)/4πℏc|≤1.2×10(-17). Assuming CPT invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.

  4. Perturbation constraint on particle masses in the Weinberg-Salam model with two massless Higgs doublets

    International Nuclear Information System (INIS)

    Inoue, Kenzo; Nakano, Yoshimasa; Kakuto, Akira.

    1980-01-01

    The Weinberg-Salam model with two Higgs doublets is investigated. The spontaneous breakdown of the gauge symmetry is assumed to be produced by the Coleman-Weinberg mechanism, keeping gauge hierarchies in grand unified theories in mind. A discrete symmetry is introduced to secure flavor-diagonal Yukawa interactions of neutral Higgs bosons and the absence of the axion. Bounds on various masses are obtained by imposing coupling constants to lie in a finite range for the validity of the perturbation theory. It will be found that there must be at least one Higgs boson whose mass is lighter than 40 GeV, in order to satisfy the perturbation constraint at the unification mass scale in grand unified theories. (author)

  5. Route constraints model based on polychromatic sets

    Science.gov (United States)

    Yin, Xianjun; Cai, Chao; Wang, Houjun; Li, Dongwu

    2018-03-01

    With the development of unmanned aerial vehicle (UAV) technology, the fields of its application are constantly expanding. The mission planning of UAV is especially important, and the planning result directly influences whether the UAV can accomplish the task. In order to make the results of mission planning for unmanned aerial vehicle more realistic, it is necessary to consider not only the physical properties of the aircraft, but also the constraints among the various equipment on the UAV. However, constraints among the equipment of UAV are complex, and the equipment has strong diversity and variability, which makes these constraints difficult to be described. In order to solve the above problem, this paper, referring to the polychromatic sets theory used in the advanced manufacturing field to describe complex systems, presents a mission constraint model of UAV based on polychromatic sets.

  6. A Model of Self-Monitoring Blood Glucose Measurement Error.

    Science.gov (United States)

    Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio

    2017-07-01

    A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF. The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively. Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature. The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.

  7. Entanglement and Other Nonclassical Properties of Two Two-Level Atoms Interacting with a Two-Mode Binomial Field: Constant and Intensity-Dependent Coupling Regimes

    International Nuclear Information System (INIS)

    Tavassoly, M.K.; Hekmatara, H.

    2015-01-01

    In this paper, we consider the interaction between two two-level atoms and a two-mode binomial field with a general intensity-dependent coupling regime. The outlined dynamical problem has explicit analytical solution, by which we can evaluate a few of its physical features of interest. To achieve the purpose of the paper, after choosing a particular nonlinearity function, we investigate the quantum statistics, atomic population inversion and at last the linear entropy of the atom-field system which is a good measure for the degree of entanglement. In detail, the effects of binomial field parameters, in addition to different initial atomic states on the temporal behavior of the mentioned quantities have been analyzed. The results show that, the values of binomial field parameters and the initial state of the two atoms influence on the nonclassical effects in the obtained states through which one can tune the nonclassicality criteria appropriately. Setting intensity-dependent coupling function equal to 1 reduces the results to the constant coupling case. By comparing the latter case with the nonlinear regime, we will observe that the nonlinearity disappears the pattern of collapse-revival phenomenon in the evolution of Mandel parameter and population inversion (which can be seen in the linear case with constant coupling), however, more typical collapse-revivals will be appeared for the cross-correlation function in the nonlinear case. Finally, in both linear and nonlinear regime, the entropy remains less than (but close to) 0.5. In other words the particular chosen nonlinearity does not critically affect on the entropy of the system. (paper)

  8. Slot-Coupled Barbel Antenna

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Lüthje; Jakobsen, Kaj Bjarne

    2016-01-01

    A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant.......A novel slot-coupled barbel antenna is designed and analyzed. A sensitivity analysis performed in order to improve the bandwidth, while the center frequency is kept constant....

  9. Soft error mechanisms, modeling and mitigation

    CERN Document Server

    Sayil, Selahattin

    2016-01-01

    This book introduces readers to various radiation soft-error mechanisms such as soft delays, radiation induced clock jitter and pulses, and single event (SE) coupling induced effects. In addition to discussing various radiation hardening techniques for combinational logic, the author also describes new mitigation strategies targeting commercial designs. Coverage includes novel soft error mitigation techniques such as the Dynamic Threshold Technique and Soft Error Filtering based on Transmission gate with varied gate and body bias. The discussion also includes modeling of SE crosstalk noise, delay and speed-up effects. Various mitigation strategies to eliminate SE coupling effects are also introduced. Coverage also includes the reliability of low power energy-efficient designs and the impact of leakage power consumption optimizations on soft error robustness. The author presents an analysis of various power optimization techniques, enabling readers to make design choices that reduce static power consumption an...

  10. Solid-state NMR detection of 14N-13C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture.

    Science.gov (United States)

    Middleton, David A

    2011-02-01

    Solid-state nuclear magnetic resonance (SSNMR) is a powerful technique for the structural analysis of amyloid fibrils. With suitable isotope labelling patterns, SSNMR can provide constraints on the secondary structure, alignment and registration of β-strands within amyloid fibrils and identify the tertiary and quaternary contacts defining the packing of the β-sheet layers. Detection of (14)N-(13)C dipolar couplings may provide potentially useful additional structural constraints on β-sheet packing within amyloid fibrils but has not until now been exploited for this purpose. Here a frequency-selective, transfer of population in double resonance SSNMR experiment is used to detect a weak (14)N-(13)C dipolar coupling in amyloid-like fibrils of the peptide H(2)N-SNNFGAILSS-COOH, which was uniformly (13)C and (15)N labelled across the four C-terminal amino acids. The (14)N-(13)C interatomic distance between leucine and asparagine side groups is constrained between 2.4 and 3.8 Å, which allows current structural models of the β-spine arrangement within the fibrils to be refined. This procedure could be useful for the general structural analysis of other proteins in condensed phases and environments, such as biological membranes. Copyright © 2011 John Wiley & Sons, Ltd.

  11. On the stability of fundamental couplings in the Galaxy

    Directory of Open Access Journals (Sweden)

    S.M. João

    2015-10-01

    Full Text Available Astrophysical tests of the stability of Nature's fundamental couplings are a key probe of the standard paradigms in fundamental physics and cosmology. In this report we discuss updated constraints on the stability of the fine-structure constant α and the proton-to-electron mass ratio μ=mp/me within the Galaxy. We revisit and improve upon the analysis by Truppe et al. [1] by allowing for the possibility of simultaneous variations of both couplings and also by combining them with the recent measurements by Levshakov et al. [2]. By considering representative unification scenarios we find no evidence for variations of α at the 0.4 ppm level, and of μ at the 0.6 ppm level; if one uses the [2] bound on μ as a prior, the α bound is improved to 0.1 ppm. We also highlight how these measurements can constrain (and discriminate among several fundamental physics paradigms.

  12. Radiocarbon constraints on the coupled growth of sediment and organic carbon reservoirs in fluvial systems

    Science.gov (United States)

    Torres, M. A.; Kemeny, P. C.; Fischer, W. W.; Lamb, M. P.

    2017-12-01

    Vast amounts of sediments are stored transiently in fluvial deposits as they move in rivers from source to sink. The timescale(s) of transient storage have the potential to set the cadence for biogeochemical reactions to occur in river sediments. However, the extent to which storage modulates the chemical composition of river sediments remains unclear. In case of the organic carbon (OC) cycle, transient sediment storage may leave an imprint in the radiocarbon (14C) content of riverine particulate OC (POC), offering a potential tool to trace the coupling of sediment storage and biogeochemical cycling in river systems. We investigated the modern and ancient budgets of sediments and POC in the Efi Haukadalsá River catchment in West Iceland to provide new empirical constraints on the role of sediment storage in the terrestrial OC cycle. This field site is attractive because the basaltic bedrock is free of rock-derived (i.e. "petrogenic") POC such that bulk 14C measurements can be interpreted more directly as constraints on catchment OC storage timescales. Additionally, Lake Haukadalsvatn at the outlet of the river catchment has captured sediment for nearly 13 ka, which offers a complementary record of the evolution of climate-sediment-OC linkages since deglaciation. New 14C measurements show that bulk POC in fine grained fluvial deposits within the Haukadalsá catchment is remarkably old (model ages between 1 and 10 ka). This evidence for "aged" POC in floodplain storage is consistent with previous measurements from Lake Haukadalsvatn, which show that POC is aged in the river system by thousands of years prior to deposition in the lake. Additionally, our estimate of the mean transit time of sediments through the river system matches the millennial-scale reservoir age of riverine POC derived from 14C, which implies a tight coupling between sediment storage and the OC cycle. We interpret the long-term increase in the 14C reservoir age of riverine POC over the last 10 ka

  13. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  14. Pseudoscalar meson decay constants and couplings, the Witten-Veneziano formula beyond large Nc, and the topological susceptibility

    International Nuclear Information System (INIS)

    Shore, G.M. . E-mail g.m.shore@swansea.ac.uk

    2006-01-01

    The QCD formulae for the radiative decays η,η ' ->γγ, and the corresponding Dashen-Gell-Mann-Oakes-Renner relations, differ from conventional PCAC results due to the gluonic U(1) A axial anomaly. This introduces a critical dependence on the gluon topological susceptibility. In this paper, we revisit our earlier theoretical analysis of radiative pseudoscalar decays and the DGMOR relations and extract explicit experimental values for the decay constants. This is our main result. The flavour singlet DGMOR relation is the generalisation of the Witten-Veneziano formula beyond large N c , so we are able to give a quantitative assessment of the realisation of the 1/N c expansion in the U(1) A sector of QCD. Applications to other aspects of η ' physics, including the relation with the first moment sum rule for the polarised photon structure function g 1 γ , are highlighted. The U(1) A Goldberger-Treiman relation is extended to accommodate SU(3) flavour breaking and the implications of a more precise measurement of the η and η ' -nucleon couplings are discussed. A comparison with the existing literature on pseudoscalar meson decay constants using large-N c chiral Lagrangians is also made

  15. Estimating kinetic mechanisms with prior knowledge I: Linear parameter constraints.

    Science.gov (United States)

    Salari, Autoosa; Navarro, Marco A; Milescu, Mirela; Milescu, Lorin S

    2018-02-05

    To understand how ion channels and other proteins function at the molecular and cellular levels, one must decrypt their kinetic mechanisms. Sophisticated algorithms have been developed that can be used to extract kinetic parameters from a variety of experimental data types. However, formulating models that not only explain new data, but are also consistent with existing knowledge, remains a challenge. Here, we present a two-part study describing a mathematical and computational formalism that can be used to enforce prior knowledge into the model using constraints. In this first part, we focus on constraints that enforce explicit linear relationships involving rate constants or other model parameters. We develop a simple, linear algebra-based transformation that can be applied to enforce many types of model properties and assumptions, such as microscopic reversibility, allosteric gating, and equality and inequality parameter relationships. This transformation converts the set of linearly interdependent model parameters into a reduced set of independent parameters, which can be passed to an automated search engine for model optimization. In the companion article, we introduce a complementary method that can be used to enforce arbitrary parameter relationships and any constraints that quantify the behavior of the model under certain conditions. The procedures described in this study can, in principle, be coupled to any of the existing methods for solving molecular kinetics for ion channels or other proteins. These concepts can be used not only to enforce existing knowledge but also to formulate and test new hypotheses. © 2018 Salari et al.

  16. Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G

    Science.gov (United States)

    DeSalvo, Riccardo

    2015-06-01

    Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested.

  17. Sub-step methodology for coupled Monte Carlo depletion and thermal hydraulic codes

    International Nuclear Information System (INIS)

    Kotlyar, D.; Shwageraus, E.

    2016-01-01

    Highlights: • Discretization of time in coupled MC codes determines the results’ accuracy. • The error is due to lack of information regarding the time-dependent reaction rates. • The proposed sub-step method considerably reduces the time discretization error. • No additional MC transport solutions are required within the time step. • The reaction rates are varied as functions of nuclide densities and TH conditions. - Abstract: The governing procedure in coupled Monte Carlo (MC) codes relies on discretization of the simulation time into time steps. Typically, the MC transport solution at discrete points will generate reaction rates, which in most codes are assumed to be constant within the time step. This assumption can trigger numerical instabilities or result in a loss of accuracy, which, in turn, would require reducing the time steps size. This paper focuses on reducing the time discretization error without requiring additional MC transport solutions and hence with no major computational overhead. The sub-step method presented here accounts for the reaction rate variation due to the variation in nuclide densities and thermal hydraulic (TH) conditions. This is achieved by performing additional depletion and TH calculations within the analyzed time step. The method was implemented in BGCore code and subsequently used to analyze a series of test cases. The results indicate that computational speedup of up to a factor of 10 may be achieved over the existing coupling schemes.

  18. The Effects of Lever Arm (Instrument Offset) Error on GRAV-D Airborne Gravity Data

    Science.gov (United States)

    Johnson, J. A.; Youngman, M.; Damiani, T.

    2017-12-01

    High quality airborne gravity collection with a 2-axis, stabilized platform gravity instrument, such as with a Micro-g LaCoste Turnkey Airborne Gravity System (TAGS), is dependent on the aircraft's ability to maintain "straight and level" flight. However, during flight there is constant rotation about the aircraft's center of gravity. Standard practice is to install the scientific equipment close to the aircraft's estimated center of gravity to minimize the relative rotations with aircraft motion. However, there remain small offsets between the instruments. These distance offsets, the lever arm, are used to define the rigid-body, spatial relationship between the IMU, GPS antenna, and airborne gravimeter within the aircraft body frame. The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, which is collecting airborne gravity data across the U.S., uses a commercial software package for coupled IMU-GNSS aircraft positioning. This software incorporates a lever arm correction to calculate a precise position for the airborne gravimeter. The positioning software must do a coordinate transformation to relate each epoch of the coupled GNSS-IMU derived position to the position of the gravimeter within the constantly-rotating aircraft. This transformation requires three inputs: accurate IMU-measured aircraft rotations, GNSS positions, and lever arm distances between instruments. Previous studies show that correcting for the lever arm distances improves gravity results, but no sensitivity tests have been done to investigate how error in the lever arm distances affects the final airborne gravity products. This research investigates the effects of lever arm measurement error on airborne gravity data. GRAV-D lever arms are nominally measured to the cm-level using surveying equipment. "Truth" data sets will be created by processing GRAV-D flight lines with both relatively small lever arms and large lever arms. Then negative and positive incremental

  19. Strong Nuclear Gravitational Constant and the Origin of Nuclear Planck Scale

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-07-01

    Full Text Available Whether it may be real or an equivalent, existence of strong nuclear gravitational con- stant G S is assumed. Its value is obtained from Fermi’s weak coupling constant as G S = 6 : 9427284 10 31 m 3 / kg sec 2 and thus “nuclear planck scale” is defined. For strong interaction existence of a new integral charged “confined fermion” of mass 105.383 MeV is assumed. Strong coupling constant is the ratio of nuclear planck energy = 11.97 MeV and assumed 105.383 MeV. 1 s = X s is defined as the strong interaction mass gen- erator. With 105.383 MeV fermion various nuclear unit radii are fitted. Fermi’s weak coupling constant, strong interaction upper limit and Bohr radius are fitted at funda- mental level. Considering Fermi’s weak coupling constant and nuclear planck length a new number X e = 294.8183 is defined for fitting the electron, muon and tau rest masses. Using X s , X e and 105 : 32 = 0 : 769 MeV as the Coulombic energy constant = E c , en- ergy coe cients of the semi-empirical mass formula are estimated as E v = 16 : 32 MeV ; E s = 19 : 37 MeV ; E a = 23 : 86 MeV and E p = 11 : 97 MeV where Coulombic energy term contains [ Z ] 2 : Starting from Z = 2 nuclear binding energy is fitted with two terms along with only one energy constant = 0.769 MeV. Finally nucleon mass and its excited levels are fitted.

  20. Resimulation of noise: a precision estimator for least square error curve-fitting tested for axial strain time constant imaging

    Science.gov (United States)

    Nair, S. P.; Righetti, R.

    2015-05-01

    Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.

  1. Where did I go wrong? : explaining errors in business process models

    NARCIS (Netherlands)

    Lohmann, N.; Fahland, D.; Sadiq, S.; Soffer, P.; Völzer, H.

    2014-01-01

    Business process modeling is still a challenging task — especially since more and more aspects are added to the models, such as data lifecycles, security constraints, or compliance rules. At the same time, formal methods allow for a detection of errors in the early modeling phase. Detected errors

  2. Error Resilient Video Compression Using Behavior Models

    Directory of Open Access Journals (Sweden)

    Jacco R. Taal

    2004-03-01

    Full Text Available Wireless and Internet video applications are inherently subjected to bit errors and packet errors, respectively. This is especially so if constraints on the end-to-end compression and transmission latencies are imposed. Therefore, it is necessary to develop methods to optimize the video compression parameters and the rate allocation of these applications that take into account residual channel bit errors. In this paper, we study the behavior of a predictive (interframe video encoder and model the encoders behavior using only the statistics of the original input data and of the underlying channel prone to bit errors. The resulting data-driven behavior models are then used to carry out group-of-pictures partitioning and to control the rate of the video encoder in such a way that the overall quality of the decoded video with compression and channel errors is optimized.

  3. Supersymmetry breaking and determination of the unification gauge coupling constant in string theories

    International Nuclear Information System (INIS)

    Carlos, B. de; Casas, J.A.; Munoz, C.

    1993-01-01

    We study in a systematic and modular invariant way gaugino condensation in the hidden sector as a potential source of hierarchical supersymmetry breaking and a non-trivial potential for the dilaton S whose real part corresponds to the tree-level gauge coupling constant (Re S∝g gut -2 ). For the case of pure Yang-Mills condensation, we show that no realistic results (in particular no reasonable values for Re S) can emerge, even if the hidden gauge group is not simple. However, in the presence of hidden matter (i.e. the most frequent case) there arises a very interesting class of scenarios with two or more hidden condensing groups for which the dilaton dynamically acquires a reasonable value (Re S∝2) and supersymmetry is broken at the correct scale (m 3/2 ∝10 3 GeV) with no need of fine-tuning. Actually, good values for Re S and m 3/2 are correlated. We make an exhaustive classification of the working possibilities. Remarkably, the results are basically independent from the value of δ GS (the contributions from the Green-Schwarz mechanism). The radius of the compactified space also acquires an expectation value, breaking duality spontaneously. (orig.)

  4. Running coupling constant of a gauge theory in the framework of the Schwinger-Dyson equation: Infrared behavior of three-dimensional quantum electrodynamics

    International Nuclear Information System (INIS)

    Kondo, K.

    1997-01-01

    We discuss how to define and obtain the running coupling of a gauge theory in the approach of the Schwinger-Dyson (SD) equation, in order to perform a nonperturbative study of the theory. For this purpose, we introduce the nonlocally generalized gauge fixing into the SD equation, which is used to define the running coupling constant (this method is applicable only to a gauge theory). Some advantages and the validity of this approach are exemplified in QED 3 . This confirms the slowing down of the rate of decrease of the running coupling and the existence of the nontrivial infrared fixed point (in the normal phase) of QED 3 , claimed recently by Aitchison and Mavromatos, without so many of their approximations. We also argue that the conventional approach is recovered by applying the (inverse) Landau-Khalatnikov transformation to the nonlocal gauge result. copyright 1997 The American Physical Society

  5. A complete set of NMR chemical shifts and spin-spin coupling constants for L-Alanyl-L-Alanine zwitterion and analysis of its conformational behavior

    Czech Academy of Sciences Publication Activity Database

    Bouř, Petr; Buděšínský, Miloš; Špirko, Vladimír; Kapitán, Josef; Šebestík, Jaroslav; Sychrovský, Vladimír

    2005-01-01

    Roč. 127, - (2005), 17079-17089 ISSN 0002-7863 R&D Projects: GA AV ČR(CZ) IAA4055104; GA ČR(CZ) GA203/05/0388 Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * chemical shifts * coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.419, year: 2005

  6. Universal effective coupling constant ratios of 3D scalar ϕ4 field theory and pseudo-ϵ expansion

    Directory of Open Access Journals (Sweden)

    Sokolov A. I.

    2016-01-01

    Full Text Available The ratios R2k = g2k/gk − 14 of renormalized coupling constants g2k entering the small-field equation of state approach universal values R*2k at criticality. They are calculated for the three-dimensional λϕ4 field theory within the pseudo-ϵ expansion approach. Pseudo-ϵ expansions for R*6, R*8, R*10 are derived in the five-loop approximation, numerical estimates are obtained with a help of the Padé–Borel–Leroy resummation technique. Its use gives R*6 = 1.6488, the number which perfectly agrees with the most recent lattice result R*6 = 1.649. For the octic coupling the pseudo-ϵ expansion is less favorable numerically. Nevertheless the Padé–Borel–Leroy resummation leads to the estimate R*8 = 0.890 close to the values R*8 = 0.87, R*8 = 0.857 extracted from the lattice and field-theoretical calculations. The pseudo-ϵ expansion for R*10 turns out to have big and rapidly increasing coefficients. This makes correspondent estimates strongly dependent on the Borel–Leroy shift parameter b and prevents proper evaluation of R*10

  7. Correcting quantum errors with entanglement.

    Science.gov (United States)

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  8. Neutron-proton analyzing power at 12 MeV and charged πNN coupling constant

    International Nuclear Information System (INIS)

    Braun, R.T.; Tornow, W.; Gonzalez Trotter, D.E.; Howell, C.R.; Machleidt, R.; Roper, C.D.; Salinas, F.; Setze, H.R.; Walter, R.L.

    1995-01-01

    Recent reanalysis of scattering data by the Nijmegen group has led to new values for the πNN coupling constants, g 2 πdegree /4π and g 2 π± /4π, about 6% smaller than the previously accepted values. The impact of this finding is far reaching. Since the neutron-proton A y (θ) is dominated at low energies by the one-pion-exchange mechanism, accurate np data should provide unique information as to the magnitude of g 2 π± /4π. Using a new experimental setup consisting of a shielded neutron source, a five-pair neutron detector array, a n- 4 He polarimeter, and an intense polarized source with fast spin-flipping capability, we have measured a 15 point angular distribution of the neutron-proton A y (θ) at and incident neutron energy of 12 MeV to a statistical accuracy of 5x10 -4 . We will discuss the data taking procedures, the analysis, and the corrections applied to the data. Preliminary results will be presented

  9. The strong coupling constant: its theoretical derivation from a geometric approach to hadron structure

    International Nuclear Information System (INIS)

    Recami, E.; Tonin-Zanchin, V.

    1991-01-01

    Since more than a decade, a bi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to strong gravity theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength α s, ordinarily called the (perturbative) coupling-constant square, can be evaluated within our theory, and found to decrease (increase) as the distance r decreases (increases). This yields both the confinement of the hadron constituents for large values of r, and their asymptotic freedom [for small values of r inside the hadron]: in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of α s on r which had been previously found only on phenomenological and heuristical grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours about calculating meson mass-spectra. (author)

  10. Development of $Mathematica$ Package 'StandardPhysicalConstants'

    CERN Document Server

    Ezhela, Vladimir V

    2003-01-01

    Here we report on the further development of the 'StandardPhysicalConstants' package which was presented for the first time at the last IMS 2001 conference. We would like to dwell on the following issues: the package structure; current status of the physical constant database; data sourses, current data collection and data structure; the main modules of data management system; the first version of "error propagator"; usage examples of one in calculations for high precision tests of physics theories. The outlook of the future development of the package is also given.

  11. Self-consistency constraints on turbulent magnetic transport and relaxation in collisionless plasma

    International Nuclear Information System (INIS)

    Terry, P.W.; Diamond, P.H.; Hahm, T.S.

    1985-10-01

    Novel constraints on collisionless relaxation and transport in drift-Alfven turbulence are reported. These constraints arise due to the consideration of mode coupling and incoherent fluctuations and the proper application of self-consistency conditions. The result that electrostatic fluctuations alone regulate transport in drift-Alfven turbulence follows directly. Quasilinear transport predictions are discussed in light of these constraints

  12. Graviton fluctuations erase the cosmological constant

    Science.gov (United States)

    Wetterich, C.

    2017-10-01

    Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.

  13. Constraint-based Student Modelling in Probability Story Problems with Scaffolding Techniques

    Directory of Open Access Journals (Sweden)

    Nabila Khodeir

    2018-01-01

    Full Text Available Constraint-based student modelling (CBM is an important technique employed in intelligent tutoring systems to model student knowledge to provide relevant assistance. This paper introduces the Math Story Problem Tutor (MAST, a Web-based intelligent tutoring system for probability story problems, which is able to generate problems of different contexts, types and difficulty levels for self-paced learning. Constraints in MAST are specified at a low-level of granularity to allow fine-grained diagnosis of the student error. Furthermore, MAST extends CBM to address errors due to misunderstanding of the narrative story. It can locate and highlight keywords that may have been overlooked or misunderstood leading to an error. This is achieved by utilizing the role of sentences and keywords that are defined through the Natural Language Generation (NLG methods deployed in the story problem generation. MAST also integrates CBM with scaffolding questions and feedback to provide various forms of help and guidance to the student. This allows the student to discover and correct any errors in his/her solution. MAST has been preliminary evaluated empirically and the results show the potential effectiveness in tutoring students with a decrease in the percentage of violated constraints along the learning curve. Additionally, there is a significant improvement in the results of the post–test exam in comparison to the pre-test exam of the students using MAST in comparison to those relying on the textbook

  14. A far-from-CMC existence result for the constraint equations on manifolds with ends of cylindrical type

    International Nuclear Information System (INIS)

    Leach, Jeremy

    2014-01-01

    We extend the study of the vacuum Einstein constraint equations on manifolds with ends of cylindrical type initiated by Chruściel and Mazzeo (2012) and Chruściel et al (2012 Adv. Theor. Math. Phys. at press) by finding a class of solutions to the fully coupled system on such manifolds. We show that given a Yamabe positive metric g which is conformally asymptotically cylindrical on each end and a 2-tensor K such that (tr g K) 2 is bounded below away from zero and asymptotically constant, then we may find an initial data set ( g-bar , K-bar ) such that g-bar lies in the conformal class of g. (paper)

  15. Principal distance constraint error diffusion algorithm for homogeneous dot distribution

    Science.gov (United States)

    Kang, Ki-Min; Kim, Choon-Woo

    1999-12-01

    The perceived quality of the halftoned image strongly depends on the spatial distribution of the binary dots. Various error diffusion algorithms have been proposed for realizing the homogeneous dot distribution in the highlight and shadow regions. However, they are computationally expensive and/or require large memory space. This paper presents a new threshold modulated error diffusion algorithm for the homogeneous dot distribution. The proposed method is applied exactly same as the Floyd-Steinberg's algorithm except the thresholding process. The threshold value is modulated based on the difference between the distance to the nearest minor pixel, `minor pixel distance', and the principal distance. To do so, calculation of the minor pixel distance is needed for every pixel. But, it is quite time consuming and requires large memory resources. In order to alleviate this problem, `the minor pixel offset array' that transforms the 2D history of minor pixels into the 1D codes is proposed. The proposed algorithm drastically reduces the computational load and memory spaces needed for calculation of the minor pixel distance.

  16. Observational constraints on secret neutrino interactions from big bang nucleosynthesis

    Science.gov (United States)

    Huang, Guo-yuan; Ohlsson, Tommy; Zhou, Shun

    2018-04-01

    We investigate possible interactions between neutrinos and massive scalar bosons via gϕν ¯ν ϕ (or massive vector bosons via gVν ¯γμν Vμ) and explore the allowed parameter space of the coupling constant gϕ (or gV) and the scalar (or vector) boson mass mϕ (or mV) by requiring that these secret neutrino interactions (SNIs) should not spoil the success of big bang nucleosynthesis (BBN). Incorporating the SNIs into the evolution of the early Universe in the BBN era, we numerically solve the Boltzmann equations and compare the predictions for the abundances of light elements with observations. It turns out that the constraint on gϕ and mϕ in the scalar-boson case is rather weak, due to a small number of degrees of freedom (d.o.f.). However, in the vector-boson case, the most stringent bound on the coupling gV≲6 ×10-10 at 95% confidence level is obtained for mV≃1 MeV , while the bound becomes much weaker gV≲8 ×10-6 for smaller masses mV≲10-4 MeV . Moreover, we discuss in some detail how the SNIs affect the cosmological evolution and the abundances of the lightest elements.

  17. Disentangling Higgs-top couplings in associated production

    International Nuclear Information System (INIS)

    Ellis, John; Hwang, Dae Sung; Sakurai, Kazuki; Takeuchi, Michihisa

    2014-01-01

    In the presence of CP violation, the Higgs-top coupling may have both scalar and pseudoscalar components, κ t and κ-tilde t , which are bounded indirectly but only weakly by the present experimental constraints on the Higgs-gluon-gluon and Higgs-γ-γ couplings, whereas upper limits on electric dipole moments provide strong additional indirect constraints on κ-tilde t , if the Higgs-electron coupling is similar to that in the Standard Model and there are no cancellations with other contributions. We discuss methods to measure directly the scalar and pseudoscalar Higgs-top couplings by measurements of Higgs production in association with t-macront, single t and single t-macron at the LHC. Measurements of the total cross sections are very sensitive to variations in the Higgs-top couplings that are consistent with the present indirect constraints, as are invariant mass distributions in t-macrontH, tH and t-macronH final states. We also investigate the additional information on κ t and κ-tilde t that could be obtained from measurements of the longitudinal and transverse t polarization in the different associated production channels, and the t-macront spin correlation in t-macrontH events

  18. Standard Error Computations for Uncertainty Quantification in Inverse Problems: Asymptotic Theory vs. Bootstrapping.

    Science.gov (United States)

    Banks, H T; Holm, Kathleen; Robbins, Danielle

    2010-11-01

    We computationally investigate two approaches for uncertainty quantification in inverse problems for nonlinear parameter dependent dynamical systems. We compare the bootstrapping and asymptotic theory approaches for problems involving data with several noise forms and levels. We consider both constant variance absolute error data and relative error which produces non-constant variance data in our parameter estimation formulations. We compare and contrast parameter estimates, standard errors, confidence intervals, and computational times for both bootstrapping and asymptotic theory methods.

  19. Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development

    Directory of Open Access Journals (Sweden)

    Mungall Christopher J

    2010-10-01

    Full Text Available Abstract Background The Gene Ontology project supports categorization of gene products according to their location of action, the molecular functions that they carry out, and the processes that they are involved in. Although the ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon specificities in some branches. For example, the process 'lactation' is specific to mammals and the location 'mitochondrion' is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors and inconsistencies in automated and manual annotation. Results We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various levels in the ontology. We have also developed an inference system that can be used to check for violations of these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected and removed errors in annotations and improved the structure of the ontology. Conclusions Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system is available for download, and new constraints or proposed changes to constraints can be submitted online at https://sourceforge.net/tracker/?atid=605890&group_id=36855.

  20. Volcanic ash modeling with the NMMB-MONARCH-ASH model: quantification of offline modeling errors

    Science.gov (United States)

    Marti, Alejandro; Folch, Arnau

    2018-03-01

    Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate forecasts that quantify the impacts from volcanic eruptions on infrastructures, air quality, aviation, and climate. The efficiency of response and mitigation actions is directly associated with the accuracy of the volcanic ash cloud detection and modeling systems. Operational forecasts build on offline coupled modeling systems in which meteorological variables are updated at the specified coupling intervals. Despite the concerns from other communities regarding the accuracy of this strategy, the quantification of the systematic errors and shortcomings associated with the offline modeling systems has received no attention. This paper employs the NMMB-MONARCH-ASH model to quantify these errors by employing different quantitative and categorical evaluation scores. The skills of the offline coupling strategy are compared against those from an online forecast considered to be the best estimate of the true outcome. Case studies are considered for a synthetic eruption with constant eruption source parameters and for two historical events, which suitably illustrate the severe aviation disruptive effects of European (2010 Eyjafjallajökull) and South American (2011 Cordón Caulle) volcanic eruptions. Evaluation scores indicate that systematic errors due to the offline modeling are of the same order of magnitude as those associated with the source term uncertainties. In particular, traditional offline forecasts employed in operational model setups can result in significant uncertainties, failing to reproduce, in the worst cases, up to 45-70 % of the ash cloud of an online forecast. These inconsistencies are anticipated to be even more relevant in scenarios in which the meteorological conditions change rapidly in time. The outcome of this paper encourages operational groups responsible for real-time advisories for aviation to consider employing computationally

  1. Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error

    KAUST Repository

    Carroll, Raymond J.

    2011-03-01

    In many applications we can expect that, or are interested to know if, a density function or a regression curve satisfies some specific shape constraints. For example, when the explanatory variable, X, represents the value taken by a treatment or dosage, the conditional mean of the response, Y , is often anticipated to be a monotone function of X. Indeed, if this regression mean is not monotone (in the appropriate direction) then the medical or commercial value of the treatment is likely to be significantly curtailed, at least for values of X that lie beyond the point at which monotonicity fails. In the case of a density, common shape constraints include log-concavity and unimodality. If we can correctly guess the shape of a curve, then nonparametric estimators can be improved by taking this information into account. Addressing such problems requires a method for testing the hypothesis that the curve of interest satisfies a shape constraint, and, if the conclusion of the test is positive, a technique for estimating the curve subject to the constraint. Nonparametric methodology for solving these problems already exists, but only in cases where the covariates are observed precisely. However in many problems, data can only be observed with measurement errors, and the methods employed in the error-free case typically do not carry over to this error context. In this paper we develop a novel approach to hypothesis testing and function estimation under shape constraints, which is valid in the context of measurement errors. Our method is based on tilting an estimator of the density or the regression mean until it satisfies the shape constraint, and we take as our test statistic the distance through which it is tilted. Bootstrap methods are used to calibrate the test. The constrained curve estimators that we develop are also based on tilting, and in that context our work has points of contact with methodology in the error-free case.

  2. Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants

    International Nuclear Information System (INIS)

    Yang Chuiping

    2011-01-01

    We propose a way for generating n-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states with a three-level qubit system and (n-1) four-level qubit systems in a cavity. This proposal does not require identical qubit-cavity coupling constants and thus is tolerant to qubit-system parameter nonuniformity and nonexact placement of qubits in a cavity. The proposal does not require adjustment of the qubit-system level spacings during the entire operation. Moreover, it is shown that entanglement can be deterministically generated using this method and the operation time is independent of the number of qubits. The present proposal is quite general, which can be applied to physical systems such as various types of superconducting devices coupled to a resonator or atoms trapped in a cavity.

  3. Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory

    International Nuclear Information System (INIS)

    Zanzi, Andrea

    2010-01-01

    The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnatural fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.

  4. An inequality relating gauge group coupling constants and the number of generations in a string inspired model

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Bennett, D.L.

    1987-12-01

    Using a model with a regularized (e.g. latticized) Kaluza-Klein space-time at the fundamental scale with Yang-Mills fields in the compactified dimensions, we examine the β-function for a dimensionless expression for the coupling constants g in D-dimensions. In going from the Planck scale of D > 4 down in energy to the scale where D goes from D > 4 to D = 4, it is argued that couplings are weakened by a factor roughly equal to the number of fundamental string regions that can be accommadated in the volume of the compactification space. Subsequently this factor is claimed to be greater than the number of generations by using an argument reminiscent of that often encountered in string model T.O.E. in which various quark and lepton generations are said to correspond to various zero modes of a Weyl operator in the compactifying space. Finally, it is argued that the inequality, which can be shown to be more saturated the larger the gauge group, is already near saturation for the group factors of the SMG. This fact leads to several conclusions: 1. there is not room for many more than 3 generations; 2. G.U.T. can be accommadated only at scales very close to the fundamental scale; 3. No new blossoms are expected to be found in the desert; 4. the compactifying space should not be 'larger than necessary'; 5. at the fundamental scale, couplings are expected to be close to (but not suspiciousely close to) β crit. . (orig./HSI)

  5. Methods of Run-Time Error Detection in Distributed Process Control Software

    DEFF Research Database (Denmark)

    Drejer, N.

    In this thesis, methods of run-time error detection in application software for distributed process control is designed. The error detection is based upon a monitoring approach in which application software is monitored by system software during the entire execution. The thesis includes definition...... and constraint evaluation is designed for the modt interesting error types. These include: a) semantical errors in data communicated between application tasks; b) errors in the execution of application tasks; and c) errors in the timing of distributed events emitted by the application software. The design...... of error detection methods includes a high level software specification. this has the purpose of illustrating that the designed can be used in practice....

  6. Cosmological constraints on radion evolution in the universal extra dimension model

    International Nuclear Information System (INIS)

    Chan, K. C.; Chu, M.-C.

    2008-01-01

    The constraints on the radion evolution in the universal extra dimension (UED) model from cosmic microwave background (CMB) and Type Ia supernovae (SNe Ia) data are studied. In the UED model, where both the gravity and standard model fields can propagate in the extra dimensions, the evolution of the extra-dimensional volume, the radion, induces variation of fundamental constants. We discuss the effects of variation of the relevant constants in the context of UED for the CMB power spectrum and SNe Ia data. We then use the three-year WMAP data to constrain the radion evolution at z∼1100, and the 2σ constraint on ρ/ρ 0 (ρ is a function of the radion, to be defined in the text) is [-8.8,6.6]x10 -13 yr -1 . The SNe Ia gold sample yields a constraint on ρ/ρ 0 , for redshift between 0 and 1, to be [-4.7,14]x10 -13 yr -1 . Furthermore, the constraints from SNe Ia can be interpreted as bounds on the evolution QCD scale parameter, Λ QCD /Λ QCD,0 , [-1.4,2.8]x10 -11 yr -1 , without reference to the UED model.

  7. Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints

    NARCIS (Netherlands)

    Asheim, G.B.; Buchholz, W.; Hartwick, J.M.; Mitra, T.; Withagen, C.A.A.M.

    2007-01-01

    In the Dasgupta–Heal–Solow–Stiglitz (DHSS) model of capital accumulation and resource depletion we show the following equivalence: if an efficient path has constant (gross and net of population growth) savings rates, then population growth must be quasi-arithmetic and the path is a maximin or a

  8. Magnetic field dependent 13C and 1H CIDNP from biradicals. The role of the hyperfine coupling constant

    International Nuclear Information System (INIS)

    Kanter, F.J.J. de; Sagdeev, R.Z.

    1978-01-01

    Magnetic field dependent biradical CIDNP has been observed in the natural abundance 13 C and 1 H NMR spectra taken immediately after irradiation of cyclic ketones in an auxillary magnet. The 13 C field dependence curves differ from the corresponding 1 H curves: The maxima of the curves for the C 11 and C 12 biradicals appear at a higher magnetic field strength, and the 13 C curves are broader than the 1 H curves. These differences are due to the different magnitudes of the hyperfine coupling constants for 13 C and 1 H and can be accounted for by a model based on a stochastic Liouville method which incorporates the dynamics of the biradicals. (Auth.)

  9. Varying constants, black holes, and quantum gravity

    International Nuclear Information System (INIS)

    Carlip, S.

    2003-01-01

    Tentative observations and theoretical considerations have recently led to renewed interest in models of fundamental physics in which certain 'constants' vary in time. Assuming fixed black hole mass and the standard form of the Bekenstein-Hawking entropy, Davies, Davis and Lineweaver have argued that the laws of black hole thermodynamics disfavor models in which the fundamental electric charge e changes. I show that with these assumptions, similar considerations severely constrain 'varying speed of light' models, unless we are prepared to abandon cherished assumptions about quantum gravity. Relaxation of these assumptions permits sensible theories of quantum gravity with ''varying constants,'' but also eliminates the thermodynamic constraints, though the black hole mass spectrum may still provide some restrictions on the range of allowable models

  10. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Amber; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2015-10-07

    We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.

  11. Invisible Z′ and dark matter: LHC vs LUX constraints

    International Nuclear Information System (INIS)

    Arcadi, Giorgio; Mambrini, Yann; Tytgat, Michel H.G.; Zaldívar, Bryan

    2014-01-01

    We consider a simple, yet generic scenario in which a new heavy Z′ gauge boson couples both to SM fermions and to dark matter. In this framework we confront the best LHC limits on an extra gauge boson Z′ to the constraints on couplings to dark matter from direct detection experiments. In particular we show that the LHC searches for resonant production of dileptons and the recent exclusion limits obtained by the LUX collaboration give complementary constraints. Together, they impose strong bounds on the invisible branching ratio and exclude a large part of the parameter space for generic Z′ models. Our study encompasses many possible Z′ models, including SSM, E 6 -inspired or B-L scenario

  12. Contributions of non-intrusive coupling in nonlinear structural mechanics

    International Nuclear Information System (INIS)

    Duval, Mickael

    2016-01-01

    This PhD thesis, part of the ANR ICARE project, aims at developing methods for complex analysis of large scale structures. The scientific challenge is to investigate very localised areas, but potentially critical as of mechanical systems resilience. Classically, representation models, discretizations, mechanical behaviour models and numerical tools are used at both global and local scales for simulation needs of graduated complexity. Global problem is handled by a generic code with topology (plate formulation, geometric approximation...) and behaviour (homogenization) simplifications while local analysis needs implementation of specialized tools (routines, dedicated codes) for an accurate representation of the geometry and behaviour. The main goal of this thesis is to develop an efficient non-intrusive coupling tool for multi-scale and multi-model structural analysis. Constraints of non-intrusiveness result in the non-modification of the stiffness operator, connectivity and the global model solver, allowing to work in a closed source software environment. First, we provide a detailed study of global/local non-intrusive coupling algorithm. Making use of several relevant examples (cracking, elastic-plastic behaviour, contact...), we show the efficiency and the flexibility of such coupling method. A comparative analysis of several optimisation tools is also carried on, and the interacting multiple patches situation is handled. Then, non-intrusive coupling is extended to globally non-linear cases, and a domain decomposition method with non-linear re-localization is proposed. Such methods allowed us to run a parallel computation using only sequential software, on a high performance computing cluster. Finally, we apply the coupling algorithm to mesh refinement with patches of finite elements. We develop an explicit residual based error estimator suitable for multi-scale solutions arising from the non-intrusive coupling, and apply it inside an error driven local mesh

  13. Numerical optimization with computational errors

    CERN Document Server

    Zaslavski, Alexander J

    2016-01-01

    This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s meth...

  14. A constraints-based approach to the acquisition of expertise in outdoor adventure sports

    NARCIS (Netherlands)

    Davids, Keith; Brymer, Eric; Seifert, Ludovic; Orth, Dominic

    2013-01-01

    A constraints-based framework enables a new understanding of expertise in outdoor adventure sports by considering performer-environment couplings through emergent and self-organizing behaviours in relation to interacting constraints. Expert adventure athletes, conceptualized as complex, dynamical

  15. Cosmological constraints on variations of the fine structure constant at the epoch of recombination

    International Nuclear Information System (INIS)

    Menegoni, E; Galli, S; Archidiacono, M; Calabrese, E; Melchiorri, A

    2013-01-01

    In this brief work we investigate any possible variation of the fine structure constant at the epoch of recombination. The recent measurements of the Cosmic Microwave Background anisotropies at arcminute angular scales performed by the ACT and SPT experiments are probing the damping regime of Cosmic Microwave Background fluctuations. We study the role of a mechanism that could affect the shape of the Cosmic Microwave Background angular fluctuations at those scales, namely a change in the recombination process through variations in the fine structure constant α

  16. A periodic review integrated inventory model with controllable setup cost, imperfect items, and inspection errors under service level constraint

    Science.gov (United States)

    Saga, R. S.; Jauhari, W. A.; Laksono, P. W.

    2017-11-01

    This paper presents an integrated inventory model which consists of single vendor and buyer. The buyer managed its inventory periodically and orders products from the vendor to satisfy the end customer’s demand, where the annual demand and the ordering cost were in the fuzzy environment. The buyer used a service level constraint instead of the stock-out cost term, so that the stock-out level per cycle was bounded. Then, the vendor produced and delivered products to the buyer. The vendor had a choice to commit an investment to reduce the setup cost. However, the vendor’s production process was imperfect, thus the lot delivered contained some defective products. Moreover, the buyer’s inspection process was not error-free since the inspector could be mistaken in categorizing the product’s quality. The objective was to find the optimum value for the review period, the setup cost, and the number of deliveries in one production cycle which might minimize the joint total cost. Furthermore, the algorithm and numerical example were provided to illustrate the application of the model.

  17. Autonomous Quantum Error Correction with Application to Quantum Metrology

    Science.gov (United States)

    Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.

    2017-04-01

    We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  18. Observational Constraints on the Nature of the Dark Energy: First Cosmological Results From the ESSENCE Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Wood-Vasey, W.Michael; Miknaitis, G.; Stubbs, C.W.; Jha, S.; Riess, A.G.; Garnavich, P.M.; Kirshner, R.P.; Aguilera, C.; Becker, A.C.; Blackman, J.W.; Blondin, S.; Challis, P.; Clocchiatti, A.; Conley, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Foley, R.J.; Garg, A.; Hicken, M.; Krisciunas, K.; /Harvard-Smithsonian Ctr. Astrophys.

    2007-01-05

    We present constraints on the dark energy equation-of-state parameter, w = P/({rho}c{sup 2}), using 60 Type Ia supernovae (SNe Ia) from the ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat Universe. By including constraints on ({Omega}{sub M}, w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1.05{sub -0.12}{sup +0.13} (stat 1{sigma}) {+-} 0.13 (sys) and {Omega}{sub M} = 0.274{sub -0.020}{sup +0.033} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.96. These results are consistent with those reported by the Super-Nova Legacy Survey in a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic currently with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the SuperNova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1.07{sub -0.09}{sup +0.09} (stat 1{sigma}) {+-} 0.13 (sys), {Omega}{sub M} = 0.267{sub -0.018}{sup +0.028} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.91. The current SNe Ia data are fully consistent with a cosmological constant.

  19. Disentangling Higgs-top couplings in associated production

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London,London WC2R 2LS (United Kingdom); TH Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Hwang, Dae Sung [Department of Physics, Sejong University,Seoul 143-747 (Korea, Republic of); Sakurai, Kazuki; Takeuchi, Michihisa [Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London,London WC2R 2LS (United Kingdom)

    2014-04-01

    In the presence of CP violation, the Higgs-top coupling may have both scalar and pseudoscalar components, κ{sub t} and κ-tilde{sub t}, which are bounded indirectly but only weakly by the present experimental constraints on the Higgs-gluon-gluon and Higgs-γ-γ couplings, whereas upper limits on electric dipole moments provide strong additional indirect constraints on κ-tilde{sub t}, if the Higgs-electron coupling is similar to that in the Standard Model and there are no cancellations with other contributions. We discuss methods to measure directly the scalar and pseudoscalar Higgs-top couplings by measurements of Higgs production in association with t-macront, single t and single t-macron at the LHC. Measurements of the total cross sections are very sensitive to variations in the Higgs-top couplings that are consistent with the present indirect constraints, as are invariant mass distributions in t-macrontH, tH and t-macronH final states. We also investigate the additional information on κ{sub t} and κ-tilde{sub t} that could be obtained from measurements of the longitudinal and transverse t polarization in the different associated production channels, and the t-macront spin correlation in t-macrontH events.

  20. Maxi-sizing the trilinear Higgs self-coupling. How large could it be?

    Energy Technology Data Exchange (ETDEWEB)

    Di Luzio, Luca; Groeber, Ramona; Spannowsky, Michael [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2017-11-15

    In order to answer the question on how much the trilinear Higgs self-coupling could deviate from its Standard Model value in weakly coupled models, we study both theoretical and phenomenological constraints. As a first step, we discuss this question by modifying the Standard Model using effective operators. Considering constraints from vacuum stability and perturbativity, we show that only the latter can be reliably assessed in a model-independent way. We then focus on UV models which receive constraints from Higgs coupling measurements, electroweak precision tests, vacuum stability and perturbativity. We find that the interplay of current measurements with perturbativity already excludes self-coupling modifications above a factor of a few with respect to the Standard Model value. (orig.)

  1. Spin glasses and nonlinear constraints in portfolio optimization

    International Nuclear Information System (INIS)

    Andrecut, M.

    2014-01-01

    We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially large number of optimal portfolios, completely different from each other, and extremely sensitive to any changes in the input parameters of the problem, making the concept of rational decision making questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and we show that from the physics point of view, finding an optimal portfolio amounts to calculating the mean-field magnetizations of a random Ising model with the constraint of a constant magnetization norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical example of a portfolio of several risky common stocks traded on the Nasdaq Market.

  2. Spin glasses and nonlinear constraints in portfolio optimization

    Energy Technology Data Exchange (ETDEWEB)

    Andrecut, M., E-mail: mircea.andrecut@gmail.com

    2014-01-17

    We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially large number of optimal portfolios, completely different from each other, and extremely sensitive to any changes in the input parameters of the problem, making the concept of rational decision making questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and we show that from the physics point of view, finding an optimal portfolio amounts to calculating the mean-field magnetizations of a random Ising model with the constraint of a constant magnetization norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical example of a portfolio of several risky common stocks traded on the Nasdaq Market.

  3. Hysteresis modeling based on saturation operator without constraints

    International Nuclear Information System (INIS)

    Park, Y.W.; Seok, Y.T.; Park, H.J.; Chung, J.Y.

    2007-01-01

    This paper proposes a simple way to model complex hysteresis in a magnetostrictive actuator by employing the saturation operators without constraints. Having no constraints causes a singularity problem, i.e. the inverse matrix cannot be obtained during calculating the weights. To overcome it, a pseudoinverse concept is introduced. Simulation results are compared with the experimental data, based on a Terfenol-D actuator. It is clear that the proposed model is much closer to the experimental data than the modified PI model. The relative error is calculated as 12% and less than 1% with the modified PI Model and proposed model, respectively

  4. Determination of the strong coupling constant $\\alpha_s$ in multijet production with the ATLAS detector at the LHC.

    CERN Document Server

    Llorente Merino, Javier; The ATLAS collaboration

    2018-01-01

    A measurement of transverse energy--energy correlations and its asymmetry in $pp$ collisions recorded by the ATLAS detector at the LHC at $\\sqrt{s} = 8$ TeV is presented. The results are intepreted as a precision test of Quantum Chromodynamics, used to determine the strong coupling constant $\\alpha_s(m_Z)$ and to test asymptotic freedom up to scales close to 1 TeV. A global fit to the transverse energy--energy correlation distributions yields $\\alpha_{\\mathrm{s}}(m_Z) = 0.1162 \\pm 0.0011 \\mbox{ (exp.)}^{+0.0084}_{-0.0070} \\mbox{ (theo.)}$, while a global fit to the asymmetry distributions yields a value of $\\alpha_{\\mathrm{s}}(m_Z) = 0.1196 \\pm 0.0013 \\mbox{ (exp.)}^{+0.0075}_{-0.0045} \\mbox{ (theo.)}$.

  5. Semiclassical analysis of the weak-coupling limit of SU(2) lattice gauge theory: The subspace of constant fields

    International Nuclear Information System (INIS)

    Bartels, J.; Wu, T.T.

    1988-01-01

    This paper contains the first part of a systematic semiclassical analysis of the weak-coupling limit of lattice gauge theories, using the Hamiltonian formulation. The model consists of an N 3 cubic lattice of pure SU(2) Yang-Mills theory, and in this first part we limit ourselves to the subspace of constant field configurations. We investigate the flow of classical trajectories, with a particular emphasis on the existence and location of caustics. There the ground-state wave function is expected to peak. It is found that regions densely filled with caustics are very close to the origin, i.e., in the domain of weak field configurations. This strongly supports the expectation that caustics are essential for quantities of physical interest

  6. Modeling and Experimental Study of Soft Error Propagation Based on Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Wei He

    2016-01-01

    Full Text Available Aiming to estimate SEE soft error performance of complex electronic systems, a soft error propagation model based on cellular automaton is proposed and an estimation methodology based on circuit partitioning and error propagation is presented. Simulations indicate that different fault grade jamming and different coupling factors between cells are the main parameters influencing the vulnerability of the system. Accelerated radiation experiments have been developed to determine the main parameters for raw soft error vulnerability of the module and coupling factors. Results indicate that the proposed method is feasible.

  7. Internal Error Propagation in Explicit Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2014-09-11

    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.

  8. Algorithm for Calculating the Dissociation Constants of Ampholytes in Nonbuffer Systems

    Science.gov (United States)

    Lysova, S. S.; Skripnikova, T. A.; Zevatskii, Yu. E.

    2018-05-01

    An algorithm for calculating the dissociation constants of ampholytes in aqueous solutions is developed on the basis of spectrophotometric data in the UV and visible ranges without pH measurements of a medium and without buffer solutions. The proposed algorithm has been experimentally tested for five ampholytes of different strengths. The relative error of measuring dissociation constants is less than 5%.

  9. Measurement of jet production with the ATLAS detector and extraction of the strong coupling constant

    CERN Document Server

    Sawyer, Lee; The ATLAS collaboration

    2017-01-01

    The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8TeV and 13TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the di-jet cross section at a center-of-mass energy of 13TeV as a function of the di-jet mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (ATEEC) in multi-jet events at a center...

  10. Relativistic coupled-cluster-theory analysis of energies, hyperfine-structure constants, and dipole polarizabilities of Cd+

    Science.gov (United States)

    Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.

    2018-02-01

    Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.

  11. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    Popelis, Yu.Yu.; Liepin'sh, E.E.; Lukevits, E.Ya.

    1986-01-01

    The 1 H, 13 C, and 15 N NMR spectra of 15 N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1 H- 1 H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13 C- 15 N SSCC were determined for 5-trimethylsilylfurfural oxime

  12. Research on the Strategy of Motion Constraint-Aided ZUPT for the SINS Positioning System of a Shearer

    Directory of Open Access Journals (Sweden)

    Hai Yang

    2017-11-01

    Full Text Available The accurate measurement of position and orientation for shearers is a key technology in realizing an automated, fully-mechanized, coal mining face. Since Global Positioning System (GPS signal cannot arrive at the coal mine underground, wireless sensor network positioning system cannot operate stably in the coal mine; thus a strap-down inertial navigation system (SINS is used to measure the position and orientation of the shearer. Aiming at the problem of the SINS accumulative error, this paper proposes a positioning error correction method based on the motion constraint-aided SINS zero velocity updated (ZUPT model. First of all, a stationary state detection model of the shearer is built with median filter based on the acceleration and angular rate measured by the SINS. Secondly, the motion of the shearer is analyzed using coal mining technology, then the motion constraint model of the shearer is established. In addition, the alternate action between the motion constraint model and the ZUPT model is analyzed at the process of movement and cessation of the shearer, respectively; hence, the motion constraint-aided SINS ZUPT model is built. Finally, by means of the experimental platform of the SINS for the shearer, the experimental results show that the maximum position error with the positioning model proposed in this paper is 1.6 m in 180 s, and increases by 92.0% and 88.1% compared with the single motion constraint model and single ZUPT model, respectively. It can then restrain the accumulative error of the SINS effectively.

  13. Study of neutral current coupling constants from tau pair production

    Energy Technology Data Exchange (ETDEWEB)

    IJzerman, M P

    1996-06-25

    This thesis investigates the couplings of the Z boson to the electron and the tau lepton. The cross section {sigma}{sub {tau}}, the forward-backward charge asymmetry A{sub fb,{tau}} and the polarization asymmetry P of the reaction e{sup +}e{sup -}{yields}Z{yields}{tau}{sup +}{tau}{sup -} are determined. These quantities can be precisely calculated in the Standard Model which describes the interactions between elementary particles. This theory predicts the electron and tau couplings to be same. The facilities used to experimentally test this prediction are the L3 detector and the Large Electron Positron collider at CERN. (orig.).

  14. From Cavendish to PLANCK: Constraining Newton's gravitational constant with CMB temperature and polarization anisotropy

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Smoot, George F.; Zahn, Oliver

    2009-01-01

    We present new constraints on cosmic variations of Newton's gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from big bang nucleosynthesis. We found that current CMB data provide constraints at the ∼10% level, that can be improved to ∼3% by including big bang nucleosynthesis data. We show that future data expected from the Planck satellite could constrain G at the ∼1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements.

  15. Coupled assimilation for an intermediated coupled ENSO prediction model

    Science.gov (United States)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  16. Determination of the strong coupling constant α{sub s}(m{sub Z}) in next-to-next-to-leading order QCD using H1 jet cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bertone, V. [Vrije University, Department of Physics and Astronomy, Amsterdam (Netherlands); National Institute for Subatomic Physics (NIKHEF), Amsterdam (Netherlands); Bolz, A.; Britzger, D.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Jung, H.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E.; Zlebcik, R. [DESY, Hamburg (Germany); Cantun Avila, K.B.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Currie, J. [Durham University, Institute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Durham (United Kingdom); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P.Van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Gehrmann, T.; Mueller, K.; Niehues, J.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C.; Huss, A. [ETH Zuerich, Institut fuer Teilchenphysik, Zurich (Switzerland); Gwenlan, C.; Radescu, V. [Oxford University, Department of Physics, Oxford (United Kingdom); Henderson, R.C.W. [University of Lancaster, Department of Physics, Lancaster (United Kingdom); Jung, A.W. [Purdue University, Department of Physics and Astronomy, West Lafayette, IN (United States); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [Queen Mary University of London, School of Physics and Astronomy, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (Canada); Rabbertz, K. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Experimentelle Teilchenphysik (ETP), Karlsruhe (Germany); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (Russian Federation); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Universite de Savoie, CNRS/IN2P3, LAPP, Annecy-le-Vieux (France); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Stella, B. [Universita di Roma Tre, Dipartimento di Fisica, Rome (Italy); INFN Roma 3 (Italy); Sutton, M.R. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Tseepeldorj, B. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (MN); Ulaanbaatar University, Ulaanbaatar (MN); Wegener, D. [TU Dortmund, Institut fuer Physik, Dortmund (DE); Collaboration: H1 Collaboration

    2017-11-15

    The strong coupling constant α{sub s} is determined from inclusive jet and dijet cross sections in neutral-current deep-inelastic ep scattering (DIS) measured at HERA by the H1 collaboration using next-to-next-to-leading order (NNLO) QCD predictions. The dependence of the NNLO predictions and of the resulting value of α{sub s}(m{sub Z}) at the Z-boson mass m{sub Z} are studied as a function of the choice of the renormalisation and factorisation scales. Using inclusive jet and dijet data together, the strong coupling constant is determined to be α{sub s}(m{sub Z}) = 0.1157(20){sub exp}(29){sub th}. Complementary, α{sub s}(m{sub Z}) is determined together with parton distribution functions of the proton (PDFs) from jet and inclusive DIS data measured by the H1 experiment. The value α{sub s}(m{sub Z}) = 0.1142(28){sub tot} obtained is consistent with the determination from jet data alone. The impact of the jet data on the PDFs is studied. The running of the strong coupling is tested at different values of the renormalisation scale and the results are found to be in agreement with expectations. (orig.)

  17. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  18. Hadron masses and decay constants with Wilson quarks at β=5.85 and 6.0

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    We present results of a high statistics calculation of hadron masses and meson decay constants in the quenched approximation to lattice QCD with Wilson quarks at β= 5.85 and 6.0 on 24 3 x54 lattices. We analyze the data paying attention in particular to the systematic errors due to the choice of fitting range and due to the contamination from excited states. We find that the systematic errors for the hadron masses with quarks lighter than the strange quark amount to 1 to 2 times the statistical errors. When the lattice scale is fixed from the ρ meson mass, the masses of the Ω - baryon and the φ meson at two β close-quote s agree with experiment within about one standard deviation. On the other hand, the central value of the nucleon mass at β=6.0 (5.85) is larger than its experimental value by about 15% (20%) and that of the Δ mass by about 15% (4%): Even when the systematic errors are included, the baryon masses at β=6.0 do not agree with experiment. Vector meson decay constants at two values of β agree well with each other and are consistent with experiment for a wide range of the quark mass, when we use current renormalization constants determined nonperturbatively by numerical simulations. The pion decay constant agrees with experiment albeit with large errors. Results for the masses of excited states of the ρ meson and the nucleon are also presented. copyright 1996 The American Physical Society

  19. Transport equivalent diffusion constants for reflector region in PWRs

    International Nuclear Information System (INIS)

    Tahara, Yoshihisa; Sekimoto, Hiroshi

    2002-01-01

    The diffusion-theory-based nodal method is widely used in PWR core designs for reason of its high computing speed in three-dimensional calculations. The baffle/reflector (B/R) constants used in nodal calculations are usually calculated based on a one-dimensional transport calculation. However, to achieve high accuracy of assembly power prediction, two-dimensional model is needed. For this reason, the method for calculating transport equivalent diffusion constants of reflector material was developed so that the neutron currents on the material boundaries could be calculated exactly in diffusion calculations. Two-dimensional B/R constants were calculated using the transport equivalent diffusion constants in the two-dimensional diffusion calculation whose geometry reflected the actual material configuration in the reflector region. The two-dimensional B/R constants enabled us to predict assembly power within an error of 1.5% at hot full power conditions. (author)

  20. Vast Portfolio Selection with Gross-exposure Constraints().

    Science.gov (United States)

    Fan, Jianqing; Zhang, Jingjin; Yu, Ke

    2012-01-01

    We introduce the large portfolio selection using gross-exposure constraints. We show that with gross-exposure constraint the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results in Jagannathan and Ma (2003). We also show that the no-short-sale portfolio can be improved by allowing some short positions. The applications to portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama-French industrial portfolios and the 600 stocks randomly selected from Russell 3000.

  1. UAS stealth: target pursuit at constant distance using a bio-inspired motion camouflage guidance law.

    Science.gov (United States)

    Strydom, Reuben; Srinivasan, Mandyam V

    2017-09-21

    The aim of this study is to derive a guidance law by which an unmanned aerial system(s) (UAS) can pursue a moving target at a constant distance, while concealing its own motion. We derive a closed-form solution for the trajectory of the UAS by imposing two key constraints: (1) the shadower moves in such a way as to be perceived as a stationary object by the shadowee, and (2) the distance between the shadower and shadowee is kept constant. Additionally, the theory presented in this paper considers constraints on the maximum achievable speed and acceleration of the shadower. Our theory is tested through Matlab simulations, which validate the camouflage strategy for both 2D and 3D conditions. Furthermore, experiments using a realistic vision-based implementation are conducted in a virtual environment, where the results demonstrate that even with noisy state information it is possible to remain well camouflaged using the constant distance motion camouflage technique.

  2. On Semi-classical Degravitation and the Cosmological Constant Problems

    CERN Document Server

    Patil, Subodh P

    2010-01-01

    In this report, we discuss a candidate mechanism through which one might address the various cosmological constant problems. We first observe that the renormalization of gravitational couplings (induced by integrating out various matter fields) manifests non-local modifications to Einstein's equations as quantum corrected equations of motion. That is, at the loop level, matter sources curvature through a gravitational coupling that is a non-local function of the covariant d'Alembertian. If the functional form of the resulting Newton's `constant' is such that it annihilates very long wavelength sources, but reduces to $1/M^2_{pl}$ ($M_{pl}$ being the 4d Planck mass) for all sources with cosmologically observable wavelengths, we would have a complimentary realization of the degravitation paradigm-- a realization through which its non-linear completion and the corresponding modified Bianchi identities are readily understood. We proceed to consider various theories whose coupling to gravity may a priori induce no...

  3. Inclusive Σp and pp reactions. How can one learn the nature of π, K, Λ, N exchanges and determine the coupling constants

    International Nuclear Information System (INIS)

    Vasylev, A.M.; Ginzburg, I.F.; Perlovskij, L.I.

    1977-01-01

    Inclusive experiments pp → π + +..., Σp → Λ +..., pp → K + +... are proposed in which it is possible to come very close to the π, K, N, Λ poles. In these experiments it is possible, in principle, to extract the most precise values of the coupling constants KNY, Σ π Λ,... and to state the problem which is the nature of the exchanges. A critical analysis of the pp → π + + ... data is carried out

  4. Receive antenna selection for underlay cognitive radio with instantaneous interference constraint

    KAUST Repository

    Hanif, Muhammad Fainan; Yang, Hongchuan; Alouini, Mohamed-Slim

    2015-01-01

    . These results are then applied to the outage and average bit error rate analysis when the secondary transmitter changes the transmit power in finite discrete levels to satisfy the instantaneous interference constraint at the primary receiver.

  5. Instabilities in dark coupled models and constraints from cosmological data

    CERN Document Server

    Honorez, L Lopez

    2010-01-01

    Coupled dark matter-dark energy systems can suffer from non-adiabatic instabilities at early times and large scales. In these proceedings, we consider two parameterizations of the dark sector interaction. In the first one the energy-momentum transfer 4-vector is parallel to the dark matter 4-velocity and in the second one to the dark energy 4-velocity. In these cases, coupled models which suffer from non-adiabatic instabilities can be identified as a function of a generic coupling Q and of the dark energy equation of state. In our analysis, we do not refer to any particular cosmic field. We confront then a viable class of models in which the interaction is directly proportional to the dark energy density and to the Hubble rate parameter to recent cosmological data. In that framework, we show that correlations between the dark coupling and several cosmological parameters allow for a larger neutrino mass than in uncoupled models.

  6. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.; Haves, Philip; Sohn, Michael D.

    2010-05-30

    Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models are imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.

  7. Near-Optimal Fingerprinting with Constraints

    Directory of Open Access Journals (Sweden)

    Gulyás Gábor György

    2016-10-01

    Full Text Available Several recent studies have demonstrated that people show large behavioural uniqueness. This has serious privacy implications as most individuals become increasingly re-identifiable in large datasets or can be tracked, while they are browsing the web, using only a couple of their attributes, called as their fingerprints. Often, the success of these attacks depends on explicit constraints on the number of attributes learnable about individuals, i.e., the size of their fingerprints. These constraints can be budget as well as technical constraints imposed by the data holder. For instance, Apple restricts the number of applications that can be called by another application on iOS in order to mitigate the potential privacy threats of leaking the list of installed applications on a device. In this work, we address the problem of identifying the attributes (e.g., smartphone applications that can serve as a fingerprint of users given constraints on the size of the fingerprint. We give the best fingerprinting algorithms in general, and evaluate their effectiveness on several real-world datasets. Our results show that current privacy guards limiting the number of attributes that can be queried about individuals is insufficient to mitigate their potential privacy risks in many practical cases.

  8. Measurement of the Strong Coupling Constant $\\alpha_s$ and the Vector and Axial-Vector Spectral Functions in Hadronic Tau Decays

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    The spectral functions of the vector current and the axial-vector current have been measured in hadronic tau decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant alpha_s, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives alpha_s(mtau**2) = 0.348 +- 0.009 +- 0.019 at the tau-mass scale and alpha_s(mz**2) = 0.1219 +- 0.0010 +- 0.0017 at the Z-mass scale. The values obtained for alpha_s(mz**2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The running of the strong coupling between s_0 ~1.3 GeV**2 and s_0 = mtau**2 has been tested from direct fits to the integrated differential hadronic decay rate R_tau. A test of the saturation of QCD sum rules at the tau-mass scale has been...

  9. An advanced Lithium-ion battery optimal charging strategy based on a coupled thermoelectric model

    International Nuclear Information System (INIS)

    Liu, Kailong; Li, Kang; Yang, Zhile; Zhang, Cheng; Deng, Jing

    2017-01-01

    Lithium-ion batteries are widely adopted as the power supplies for electric vehicles. A key but challenging issue is to achieve optimal battery charging, while taking into account of various constraints for safe, efficient and reliable operation. In this paper, a triple-objective function is first formulated for battery charging based on a coupled thermoelectric model. An advanced optimal charging strategy is then proposed to develop the optimal constant-current-constant-voltage (CCCV) charge current profile, which gives the best trade-off among three conflicting but important objectives for battery management. To be specific, a coupled thermoelectric battery model is first presented. Then, a specific triple-objective function consisting of three objectives, namely charging time, energy loss, and temperature rise (both the interior and surface), is proposed. Heuristic methods such as Teaching-learning-based-optimization (TLBO) and particle swarm optimization (PSO) are applied to optimize the triple-objective function, and their optimization performances are compared. The impacts of the weights for different terms in the objective function are then assessed. Experimental results show that the proposed optimal charging strategy is capable of offering desirable effective optimal charging current profiles and a proper trade-off among the conflicting objectives. Further, the proposed optimal charging strategy can be easily extended to other battery types.

  10. Derivation of the fine-structure constant

    International Nuclear Information System (INIS)

    Samec, A.

    1980-01-01

    The fine-structure constant is derived as a dynamical property of quantum electrodynamics. Single-particle solutions of the coupled Maxwell and Dirac equations have a physical charge spectrum. The solutions are used to construct lepton-and quark-like particles. The strong, weak, electromagnetic, and gravitational forces are described as the interactions of complex charges in multiple combinations

  11. The potentiometric and laser RAMAN study of the hydrolysis of uranyl chloride under physiological conditions and the effect of systematic and random errors on the hydrolysis constants

    International Nuclear Information System (INIS)

    Deschenes, L.L.; Kramer, G.H.; Monserrat, K.J.; Robinson, P.A.

    1986-12-01

    The hydrolysis of uranyl ions in 0.15 mol/L (Na)C1 solution at 37 degrees Celsius has been studied by potentiometric titration. The results were consistent with the formation of (UO 2 ) 2 (OH) 2 , (UO 2 ) 3 (OH) 4 , (UO 2 ) 3 (OH) 5 and (UO 2 ) 4 (OH) 7 . The stability constants, which were evaluated using a version of MINIQUAD, were found to be: log β 22 = -5.693 ± 0.007, log β 34 = -11.499 ± 0.024, log β 35 = -16.001 ± 0.050, log β 47 = -21.027 ± 0.051. Laser Raman spectroscopy has been used to identify the products including (UO 2 ) 4 (OH) 7 species. The difficulties in identifying the chemical species in solution and the effect of small errors on this selection has also been investigated by computer simulation. The results clearly indicate that small errors can lead to the selection of species that may not exist

  12. Vanishing cosmological constant in elementary particles theory

    International Nuclear Information System (INIS)

    Pisano, F.; Tonasse, M.D.

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs

  13. Understanding fine structure constants and three generations

    International Nuclear Information System (INIS)

    Bennett, D.L.; Nielsen, H.B.

    1988-02-01

    We put forward a model inspired by random dynamics that relates the smallness of the gauge coupling constants to the number of generations being 'large'. The new element in the present version of our model is the appearance of a free parameter χ that is a measure of the (presumably relatively minor) importance of a term in the plaquette action proportional to the trace in the (1/6, 2, 3) representation of the Standard Model. Calling N gen the number of generations, the sets of allowed (N gen , χN gen )-pairs obtained by imposing the three measured coupling constant values of the Standard Model form three lines. In addition to finding that these lines cross at a single point (as needed for a consistent fit), the intersection occurs with surprising accuracy at the integer N gen = 3 (thereby predicting exactly three generations). It is also encouraging that the parameter χ turns out to be small and positive as expected. (orig.)

  14. A micro-coupling for micro mechanical systems

    Science.gov (United States)

    Li, Wei; Zhou, Zhixiong; Zhang, Bi; Xiao, Yunya

    2016-05-01

    The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy (SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect (TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N • mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature (15 °C) and unclamping action below-5 °C. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and

  15. Comparing the Titrations of Mixed-Acid Solutions Using Dropwise and Constant-Flow Techniques

    Science.gov (United States)

    Charlesworth, Paul; Seguin, Matthew J.; Chesney, David J.

    2003-11-01

    A mixed-acid solution containing hydrochloric and phosphoric acids was used to determine the error associated with performing a real-time titration. The results were compared against those obtained by performing the titration in a more traditional dropwise addition of titrant near the equivalence points. It was found that the real-time techniques resulted in significantly decreased analysis times while maintaining a low experimental error. The constant-flow techniques were implemented into two different levels of chemistry. It was found that students could successfully utilize the modified experiments. Problems associated with the techniques, major sources of error, and their solutions are discussed. In both cases, the use of the constant-flow setup has increased student recollection of key concepts, such as pKa determination, proper indicator choice, and recognizing the shape of specific titration curves by increasing student interest in the experiment.

  16. Direct battery-driven solar LED lighting using constant-power control

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    A direct battery-driven LED lighting technique using constant-power control is proposed in the present study. A system dynamics model of LED luminaire was derived and used in the design of the feedback constant-power control system. The test result has shown that the power of 18. W and 100. W LED luminaires can be controlled accurately with error at 2-5%. A solar LED street lighting system using constant-power and dimming control was designed and built for field test in a remote area. The long-term performance was satisfactory and no any failure since the installation. Since no high-power capacitor is used in the present constant-power control circuit, a longer lifetime is expected. © 2012 Elsevier Ltd.

  17. Planck constraints on holographic dark energy

    International Nuclear Information System (INIS)

    Li, Miao; Zhang, Zhenhui; Li, Xiao-Dong; Ma, Yin-Zhe; Zhang, Xin

    2013-01-01

    We perform a detailed investigation on the cosmological constraints on the holographic dark energy (HDE) model by using the Plank data. We find that HDE can provide a good fit to the Plank high-l (l ∼> 40) temperature power spectrum, while the discrepancy at l ≅ 20-40 found in the ΛCDM model remains unsolved in the HDE model. The Plank data alone can lead to strong and reliable constraint on the HDE parameter c. At the 68% confidence level (CL), we obtain c = 0.508 ± 0.207 with Plank+WP+lensing, favoring the present phantom behavior of HDE at the more than 2σ CL. By combining Plank+WP with the external astrophysical data sets, i.e. the BAO measurements from 6dFGS+SDSS DR7(R)+BOSS DR9, the direct Hubble constant measurement result (H 0 = 73.8 ± 2.4 kms −1 Mpc −1 ) from the HST, the SNLS3 supernovae data set, and Union2.1 supernovae data set, we get the 68% CL constraint results c = 0.484 ± 0.070, 0.474 ± 0.049, 0.594 ± 0.051, and 0.642 ± 0.066, respectively. The constraints can be improved by 2%-15% if we further add the Plank lensing data into the analysis. Compared with the WMAP-9 results, the Plank results reduce the error by 30%-60%, and prefer a phantom-like HDE at higher significant level. We also investigate the tension between different data sets. We find no evident tension when we combine Plank data with BAO and HST. Especially, we find that the strong correlation between Ω m h 3 and dark energy parameters is helpful in relieving the tension between the Plank and HST measurements. The residual value of χ 2 Plank+WP+HST −χ 2 Plank+WP is 7.8 in the ΛCDM model, and is reduced to 1.0 or 0.3 if we switch the dark energy to w model or the holographic model. When we introduce supernovae data sets into the analysis, some tension appears. We find that the SNLS3 data set is in tension with all other data sets; for example, for the Plank+WP, WMAP-9 and BAO+HST, the corresponding Δχ 2 is equal to 6.4, 3.5 and 4.1, respectively. As a comparison

  18. Design of a single-borehole hydraulic test programme allowing for interpretation-based errors

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-07-01

    Hydraulic testing using packers in single boreholes is one of the most important sources of data to safety assessment modelling in connection with the disposal of radioactive waste. It is also one of the most time-consuming and expensive. It is important that the results are as reliable as possible and as accurate as necessary for the use that is made of them. There are many causes of possible error and inaccuracy ranging from poor field practice to inappropriate interpretation procedure. The report examines and attempts to quantify the size of error arising from the accidental use of an inappropriate or inadequate interpretation procedure. In doing so, it can be seen which interpretation procedure or combination of procedures results in least error. Lastly, the report attempts to use the previous conclusions from interpretation to propose forms of field test procedure where interpretation-based errors will be minimised. Hydraulic tests (sometimes known as packer tests) come in three basic forms: slug/pulse, constant flow and constant head. They have different characteristics, some measuring a variable volume of rock (dependent on hydraulic conductivity) and some having a variable duration (dependent on hydraulic conductivity). A combination of different tests in the same interval is seen as desirable. For the purposes of assessing interpretation-based errors, slug and pulse tests are considered together as are constant flow and constant head tests. The same method is used in each case to assess errors. The method assumes that the simplest analysis procedure (cylindrical flow in homogeneous isotropic porous rock) will be used on each set of field data. The error is assessed by calculating synthetic data for alternative configurations (e.g. fissured rock, anisotropic rock, inhomogeneous rock - i.e. skin - etc.) and then analyzing this data using the simplest analysis procedure. 28 refs., 26 figs

  19. Coupling effect on the Berry phase

    Directory of Open Access Journals (Sweden)

    Lijing Tian

    2016-11-01

    Full Text Available The Berry phase has universal applications in various fields. Here, we explore the coupling effect on the Berry phase of a two-level system adiabatically driven by a rotating classical field and interacting with a single quantized mode. Our simulations clearly reveal that the Berry phase change is quadratic proportional to the coupling constant if it is less than the level spacing between neighboring instantaneous eigenstates. Remarkably, if the nearest neighbouring level spacing is comparable with the coupling constant, this simple quadratic dependence is lost. Around this resonance, the Berry phase can be significantly tuned by slightly adjusting the parameters, such as the coupling constant, the frequency of the quantized mode, and the transition frequency. These numerical results, agreeing well with the perturbation theory calculations, provide an alternative approach to tune the Berry phase near the resonance, which is useful in quantum information science, i.e. designing quantum logic gates.

  20. The exact effective couplings of 4D N=2 gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); National Technical Univ. Athens (Greece). Physics Division

    2014-07-15

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.