Error Concealment Method Based on Motion Vector Prediction Using Particle Filters
Directory of Open Access Journals (Sweden)
B. Hrusovsky
2011-09-01
Full Text Available Video transmitted over unreliable environment, such as wireless channel or in generally any network with unreliable transport protocol, is facing the losses of video packets due to network congestion and different kind of noises. The problem is becoming more important using highly effective video codecs. Visual quality degradation could propagate into subsequent frames due to redundancy elimination in order to obtain high compression ratio. Since the video stream transmission in real time is limited by transmission channel delay, it is not possible to retransmit all faulty or lost packets. It is therefore inevitable to conceal these defects. To reduce the undesirable effects of information losses, the lost data is usually estimated from the received data, which is generally known as error concealment problem. This paper discusses packet loss modeling in order to simulate losses during video transmission, packet losses analysis and their impacts on the motion vectors losses.
一种基于人脸对称性的差错掩盖方法%An Error Concealment Method Based on Facial Symmetry
Institute of Scientific and Technical Information of China (English)
赖俊; 张江鑫
2013-01-01
This paper presents an error concealment method based on facial symmetry .We first execute color segmentation , determine the skin color region;then judge the symmetry of this region , conceal symmetry face regions with symmetry algorithm , conceal other regions with adaptive interpolation algorithm .Using JM86 model of H.264 standard to simulate the algorithm , the experimental results show that our method achieves better conceal results when compared with traditional interpolation algorithm .%该文提出一种基于人脸对称性的差错掩盖方法。首先进行肤色分割，判断出肤色区域；然后对检测出的肤色区域进行对称性判断，选出对称的人脸区域并采用人脸对称掩盖算法进行差错掩盖，对其它区域则采用自适应插值算法。采用H．264的JM86模型对算法进行验证，实验结果表明，与传统的插值算法相比，该文算法利用了人脸的对称性，对于对称的人脸区域获得了更好的掩盖效果。
Video error concealment using block matching and frequency selective extrapolation algorithms
P. K., Rajani; Khaparde, Arti
2017-06-01
Error Concealment (EC) is a technique at the decoder side to hide the transmission errors. It is done by analyzing the spatial or temporal information from available video frames. It is very important to recover distorted video because they are used for various applications such as video-telephone, video-conference, TV, DVD, internet video streaming, video games etc .Retransmission-based and resilient-based methods, are also used for error removal. But these methods add delay and redundant data. So error concealment is the best option for error hiding. In this paper, the error concealment methods such as Block Matching error concealment algorithm is compared with Frequency Selective Extrapolation algorithm. Both the works are based on concealment of manually error video frames as input. The parameter used for objective quality measurement was PSNR (Peak Signal to Noise Ratio) and SSIM(Structural Similarity Index). The original video frames along with error video frames are compared with both the Error concealment algorithms. According to simulation results, Frequency Selective Extrapolation is showing better quality measures such as 48% improved PSNR and 94% increased SSIM than Block Matching Algorithm.
JPEG2000-coded image error concealment exploiting convex sets projections.
Atzori, Luigi; Ginesu, Giaime; Raccis, Alessio
2005-04-01
Transmission errors in JPEG2000 can be grouped into three main classes, depending on the affected area: LL, high frequencies at the lower decomposition levels, and high frequencies at the higher decomposition levels. The first type of errors are the most annoying but can be concealed exploiting the signal spatial correlation like in a number of techniques proposed in the past; the second are less annoying but more difficult to address; the latter are often imperceptible. In this paper, we address the problem of concealing the second class or errors when high bit-planes are damaged by proposing a new approach based on the theory of projections onto convex sets. Accordingly, the error effects are masked by iteratively applying two procedures: low-pass (LP) filtering in the spatial domain and restoration of the uncorrupted wavelet coefficients in the transform domain. It has been observed that a uniform LP filtering brought to some undesired side effects that negatively compensated the advantages. This problem has been overcome by applying an adaptive solution, which exploits an edge map to choose the optimal filter mask size. Simulation results demonstrated the efficiency of the proposed approach.
Error Concealment using Data Hiding in Wireless Image Transmission
Directory of Open Access Journals (Sweden)
A. Akbari
2016-11-01
Full Text Available The transmission of image/video over unreliable medium like wireless networks generally results in receiving a damaged image/video. In this paper, a novel image error concealment scheme based on the idea of data hiding and Set Partitioning In Hierarchical Trees (SPIHT coding is investigated. In the encoder side, the coefficients of wavelet decomposed image are partitioned into “perfect trees”. The SPIHT coder is applied to encode each per-fect tree independently and generate an efficiently compressed reference code. This code is then embedded into the coefficients of another perfect tree which is located in a different place, using a robust data hiding scheme based on Quantization Index Modulation (QIM. In the decoder side, if a part of the image is lost, the algorithm extracts the embedded code for reference trees related to this part to reconstruct the lost information. Performance results show that for an error prone transmission, the proposed technique is promising to efficiently conceal the lost areas of the transmitted image.
High-Performance Region-of-Interest Image Error Concealment with Hiding Technique
Directory of Open Access Journals (Sweden)
Shih-Chang Hsia
2010-01-01
Full Text Available Recently region-of-interest (ROI based image coding is a popular topic. Since ROI area contains much more important information for an image, it must be prevented from error decoding while suffering from channel lost or unexpected attack. This paper presents an efficient error concealment method to recover ROI information with a hiding technique. Based on the progressive transformation, the low-frequency components of ROI are encoded to disperse its information into the high-frequency bank of original image. The capability of protection is carried out with extracting the ROI coefficients from the damaged image without increasing extra information. Simulation results show that the proposed method can efficiently reconstruct the ROI image when ROI bit-stream occurs errors, and the measurement of PSNR result outperforms the conventional error concealment techniques by 2 to 5 dB.
Error Concealment for 3-D DWT Based Video Codec Using Iterative Thresholding
DEFF Research Database (Denmark)
Belyaev, Evgeny; Forchhammer, Søren; Codreanu, Marian
2017-01-01
Error concealment for video coding based on a 3-D discrete wavelet transform (DWT) is considered. We assume that the video sequence has a sparse representation in a known basis different from the DWT, e.g., in a 2-D discrete cosine transform basis. Then, we formulate the concealment problem as l1...
Damaged Watermarks Detection in Frequency Domain as a Primary Method for Video Concealment
Directory of Open Access Journals (Sweden)
Robert Hudec
2011-01-01
Full Text Available This paper deals with video transmission over lossy communication networks. The main idea is to develop video concealment method for information losses and errors correction. At the beginning, three main groups of video concealment methods, divided by encoder/decoder collaboration, are briefly described. The modified algorithm based on the detection and filtration of damaged watermark blocks encapsulated to the transmitted video was developed. Finally, the efficiency of developed algorithm is presented in experimental part of this paper.
Error Concealment using Neural Networks for Block-Based Image Coding
Directory of Open Access Journals (Sweden)
M. Mokos
2006-06-01
Full Text Available In this paper, a novel adaptive error concealment (EC algorithm, which lowers the requirements for channel coding, is proposed. It conceals errors in block-based image coding systems by using neural network. In this proposed algorithm, only the intra-frame information is used for reconstruction of the image with separated damaged blocks. The information of pixels surrounding a damaged block is used to recover the errors using the neural network models. Computer simulation results show that the visual quality and the MSE evaluation of a reconstructed image are significantly improved using the proposed EC algorithm. We propose also a simple non-neural approach for comparison.
Sequential error concealment for video/images by weighted template matching
DEFF Research Database (Denmark)
Koloda, Jan; Østergaard, Jan; Jensen, Søren Holdt
2012-01-01
In this paper we propose a novel spatial error concealment algorithm for video and images based on convex optimization. Block-based coding schemes in packet loss environment are considered. Missing macro blocks are sequentially reconstructed by filling them with a weighted set of templates...
Objective Methods for Reliable Detection of Concealed Depression
Directory of Open Access Journals (Sweden)
Cynthia eSolomon
2015-04-01
Full Text Available Recent research has shown that it is possible to automatically detect clinical depression from audio-visual recordings. Before considering integration in a clinical pathway, a key question that must be asked is whether such systems can be easily fooled. This work explores the potential of acoustic features to detect clinical depression in adults both when acting normally and when asked to conceal their depression. Nine adults diagnosed with mild to moderate depression as per the Beck Depression Inventory (BDI-II and Patient Health Questionnaire (PHQ-9 were asked a series of questions and to read a excerpt from a novel aloud under two different experimental conditions. In one, participants were asked to act naturally and in the other, to suppress anything that they felt would be indicative of their depression. Acoustic features were then extracted from this data and analysed using paired t-tests to determine any statistically significant differences between healthy and depressed participants. Most features that were found to be significantly different during normal behaviour remained so during concealed behaviour. In leave-one-subject-out automatic classification studies of the 9 depressed subjects and 8 matched healthy controls, an 88% classification accuracy and 89% sensitivity was achieved. Results remained relatively robust during concealed behaviour, with classifiers trained on only non-concealed data achieving 81% detection accuracy and 75% sensitivity when tested on concealed data. These results indicate there is good potential to build deception-proof automatic depression monitoring systems.
A Concealed Car Extraction Method Based on Full-Waveform LiDAR Data
Directory of Open Access Journals (Sweden)
Chuanrong Li
2016-01-01
Full Text Available Concealed cars extraction from point clouds data acquired by airborne laser scanning has gained its popularity in recent years. However, due to the occlusion effect, the number of laser points for concealed cars under trees is not enough. Thus, the concealed cars extraction is difficult and unreliable. In this paper, 3D point cloud segmentation and classification approach based on full-waveform LiDAR was presented. This approach first employed the autocorrelation G coefficient and the echo ratio to determine concealed cars areas. Then the points in the concealed cars areas were segmented with regard to elevation distribution of concealed cars. Based on the previous steps, a strategy integrating backscattered waveform features and the view histogram descriptor was developed to train sample data of concealed cars and generate the feature pattern. Finally concealed cars were classified by pattern matching. The approach was validated by full-waveform LiDAR data and experimental results demonstrated that the presented approach can extract concealed cars with accuracy more than 78.6% in the experiment areas.
Discretization vs. Rounding Error in Euler's Method
Borges, Carlos F.
2011-01-01
Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
A hybrid frame concealment algorithm for H.264/AVC.
Yan, Bo; Gharavi, Hamid
2010-01-01
In packet-based video transmissions, packets loss due to channel errors may result in the loss of the whole video frame. Recently, many error concealment algorithms have been proposed in order to combat channel errors; however, most of the existing algorithms can only deal with the loss of macroblocks and are not able to conceal the whole missing frame. In order to resolve this problem, in this paper, we have proposed a new hybrid motion vector extrapolation (HMVE) algorithm to recover the whole missing frame, and it is able to provide more accurate estimation for the motion vectors of the missing frame than other conventional methods. Simulation results show that it is highly effective and significantly outperforms other existing frame recovery methods.
Error Parsing: An alternative method of implementing social judgment theory
Crystal C. Hall; Daniel M. Oppenheimer
2015-01-01
We present a novel method of judgment analysis called Error Parsing, based upon an alternative method of implementing Social Judgment Theory (SJT). SJT and Error Parsing both posit the same three components of error in human judgment: error due to noise, error due to cue weighting, and error due to inconsistency. In that sense, the broad theory and framework are the same. However, SJT and Error Parsing were developed to answer different questions, and thus use different m...
Quantifying geocode location error using GIS methods
Directory of Open Access Journals (Sweden)
Gardner Bennett R
2007-04-01
Full Text Available Abstract Background The Metropolitan Atlanta Congenital Defects Program (MACDP collects maternal address information at the time of delivery for infants and fetuses with birth defects. These addresses have been geocoded by two independent agencies: (1 the Georgia Division of Public Health Office of Health Information and Policy (OHIP and (2 a commercial vendor. Geographic information system (GIS methods were used to quantify uncertainty in the two sets of geocodes using orthoimagery and tax parcel datasets. Methods We sampled 599 infants and fetuses with birth defects delivered during 1994–2002 with maternal residence in either Fulton or Gwinnett County. Tax parcel datasets were obtained from the tax assessor's offices of Fulton and Gwinnett County. High-resolution orthoimagery for these counties was acquired from the U.S. Geological Survey. For each of the 599 addresses we attempted to locate the tax parcel corresponding to the maternal address. If the tax parcel was identified the distance and the angle between the geocode and the residence were calculated. We used simulated data to characterize the impact of geocode location error. In each county 5,000 geocodes were generated and assigned their corresponding Census 2000 tract. Each geocode was then displaced at a random angle by a random distance drawn from the distribution of observed geocode location errors. The census tract of the displaced geocode was determined. We repeated this process 5,000 times and report the percentage of geocodes that resolved into incorrect census tracts. Results Median location error was less than 100 meters for both OHIP and commercial vendor geocodes; the distribution of angles appeared uniform. Median location error was approximately 35% larger in Gwinnett (a suburban county relative to Fulton (a county with urban and suburban areas. Location error occasionally caused the simulated geocodes to be displaced into incorrect census tracts; the median percentage
New decoding methods of interleaved burst error-correcting codes
Nakano, Y.; Kasahara, M.; Namekawa, T.
1983-04-01
A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.
Concealing with structured light.
Sun, Jingbo; Zeng, Jinwei; Wang, Xi; Cartwright, Alexander N; Litchinitser, Natalia M
2014-02-13
While making objects less visible (or invisible) to a human eye or a radar has captured people's imagination for centuries, current attempts towards realization of this long-awaited functionality range from various stealth technologies to recently proposed cloaking devices. A majority of proposed approaches share a number of common deficiencies such as design complexity, polarization effects, bandwidth, losses and the physical size or shape requirement complicating their implementation especially at optical frequencies. Here we demonstrate an alternative way to conceal macroscopic objects by structuring light itself. In our approach, the incident light is transformed into an optical vortex with a dark core that can be used to conceal macroscopic objects. Once such a beam passed around the object it is transformed back into its initial Gaussian shape with minimum amplitude and phase distortions. Therefore, we propose to use that dark core of the vortex beam to conceal an object that is macroscopic yet small enough to fit the dark (negligibly low intensity) region of the beam. The proposed concealing approach is polarization independent, easy to fabricate, lossless, operates at wavelengths ranging from 560 to 700 nm, and can be used to hide macroscopic objects providing they are smaller than vortex core.
Internal Error Propagation in Explicit Runge--Kutta Methods
Ketcheson, David I.
2014-09-11
In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.
Error response test system and method using test mask variable
Gender, Thomas K. (Inventor)
2006-01-01
An error response test system and method with increased functionality and improved performance is provided. The error response test system provides the ability to inject errors into the application under test to test the error response of the application under test in an automated and efficient manner. The error response system injects errors into the application through a test mask variable. The test mask variable is added to the application under test. During normal operation, the test mask variable is set to allow the application under test to operate normally. During testing, the error response test system can change the test mask variable to introduce an error into the application under test. The error response system can then monitor the application under test to determine whether the application has the correct response to the error.
Development and validation of the Body Concealment Scale for Scleroderma
Jewett, L.R.; Malcarne, V.L.; Kwakkenbos, C.M.C.; Harcourt, D.; Rumsey, N.; Körner, A.; Steele, R.J.; Hudson, M.; Baron, M.; Haythornthwaite, J.A.; Heinberg, L.; Wigley, F.M.; Thombs, B.D.
2016-01-01
Objective: Body concealment is a component of social avoidance among people with visible differences from disfiguring conditions, including systemic sclerosis (SSc). The study objective was to develop a measure of body concealment related to avoidance behaviors in SSc. Methods: Initial items for the
Internal quality control of RIA with Tonks error calculation method
International Nuclear Information System (INIS)
Chen Xiaodong
1996-01-01
According to the methodology feature of RIA, an internal quality control chart with Tonks error calculation method which is suitable for RIA is designed. The quality control chart defines the value of the allowance error with normal reference range. The method has the simplicity of its performance and directly perceived through the senses. Taking the example of determining T 3 and T 4 , the calculation of allowance error, drawing of quality control chart and the analysis of result are introduced
Error-finding and error-correcting methods for the start-up of the SLC
International Nuclear Information System (INIS)
Lee, M.J.; Clearwater, S.H.; Kleban, S.D.; Selig, L.J.
1987-02-01
During the commissioning of an accelerator, storage ring, or beam transfer line, one of the important tasks of an accelertor physicist is to check the first-order optics of the beam line and to look for errors in the system. Conceptually, it is important to distinguish between techniques for finding the machine errors that are the cause of the problem and techniques for correcting the beam errors that are the result of the machine errors. In this paper we will limit our presentation to certain applications of these two methods for finding or correcting beam-focus errors and beam-kick errors that affect the profile and trajectory of the beam respectively. Many of these methods have been used successfully in the commissioning of SLC systems. In order not to waste expensive beam time we have developed and used a beam-line simulator to test the ideas that have not been tested experimentally. To save valuable physicist's time we have further automated the beam-kick error-finding procedures by adopting methods from the field of artificial intelligence to develop a prototype expert system. Our experience with this prototype has demonstrated the usefulness of expert systems in solving accelerator control problems. The expert system is able to find the same solutions as an expert physicist but in a more systematic fashion. The methods used in these procedures and some of the recent applications will be described in this paper
A straightness error measurement method matched new generation GPS
International Nuclear Information System (INIS)
Zhang, X B; Lu, H; Jiang, X Q; Li, Z
2005-01-01
The axis of the non-diffracting beam produced by an axicon is very stable and can be adopted as the datum line to measure the spatial straightness error in continuous working distance, which may be short, medium or long. Though combining the non-diffracting beam datum-line with LVDT displace detector, a new straightness error measurement method is developed. Because the non-diffracting beam datum-line amends the straightness error gauged by LVDT, the straightness error is reliable and this method is matchs new generation GPS
Internal Error Propagation in Explicit Runge--Kutta Methods
Ketcheson, David I.; Loczi, Lajos; Parsani, Matteo
2014-01-01
of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods
Towards automatic global error control: Computable weak error expansion for the tau-leap method
Karlsson, Peer Jesper; Tempone, Raul
2011-01-01
This work develops novel error expansions with computable leading order terms for the global weak error in the tau-leap discretization of pure jump processes arising in kinetic Monte Carlo models. Accurate computable a posteriori error approximations are the basis for adaptive algorithms, a fundamental tool for numerical simulation of both deterministic and stochastic dynamical systems. These pure jump processes are simulated either by the tau-leap method, or by exact simulation, also referred to as dynamic Monte Carlo, the Gillespie Algorithm or the Stochastic Simulation Slgorithm. Two types of estimates are presented: an a priori estimate for the relative error that gives a comparison between the work for the two methods depending on the propensity regime, and an a posteriori estimate with computable leading order term. © de Gruyter 2011.
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.
Error of image saturation in the structured-light method.
Qi, Zhaoshuai; Wang, Zhao; Huang, Junhui; Xing, Chao; Gao, Jianmin
2018-01-01
In the phase-measuring structured-light method, image saturation will induce large phase errors. Usually, by selecting proper system parameters (such as the phase-shift number, exposure time, projection intensity, etc.), the phase error can be reduced. However, due to lack of a complete theory of phase error, there is no rational principle or basis for the selection of the optimal system parameters. For this reason, the phase error due to image saturation is analyzed completely, and the effects of the two main factors, including the phase-shift number and saturation degree, on the phase error are studied in depth. In addition, the selection of optimal system parameters is discussed, including the proper range and the selection principle of the system parameters. The error analysis and the conclusion are verified by simulation and experiment results, and the conclusion can be used for optimal parameter selection in practice.
Interval sampling methods and measurement error: a computer simulation.
Wirth, Oliver; Slaven, James; Taylor, Matthew A
2014-01-01
A simulation study was conducted to provide a more thorough account of measurement error associated with interval sampling methods. A computer program simulated the application of momentary time sampling, partial-interval recording, and whole-interval recording methods on target events randomly distributed across an observation period. The simulation yielded measures of error for multiple combinations of observation period, interval duration, event duration, and cumulative event duration. The simulations were conducted up to 100 times to yield measures of error variability. Although the present simulation confirmed some previously reported characteristics of interval sampling methods, it also revealed many new findings that pertain to each method's inherent strengths and weaknesses. The analysis and resulting error tables can help guide the selection of the most appropriate sampling method for observation-based behavioral assessments. © Society for the Experimental Analysis of Behavior.
Error Analysis for Fourier Methods for Option Pricing
Hä ppö lä , Juho
2016-01-01
We provide a bound for the error committed when using a Fourier method to price European options when the underlying follows an exponential Levy dynamic. The price of the option is described by a partial integro-differential equation (PIDE
Self-Concealment and Suicidal Behaviors
Friedlander, Adam; Nazem, Sarra; Fiske, Amy; Nadorff, Michael R.; Smith, Merideth D.
2012-01-01
Understanding self-concealment, the tendency to actively conceal distressing personal information from others, may be important in developing effective ways to help individuals with suicidal ideation. No published study has yet assessed the relation between self-concealment and suicidal behaviors. Additionally, most self-concealment research has…
Modeling error distributions of growth curve models through Bayesian methods.
Zhang, Zhiyong
2016-06-01
Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is proposed to flexibly model normal and non-normal data through the explicit specification of the error distributions. A simulation study shows when the distribution of the error is correctly specified, one can avoid the loss in the efficiency of standard error estimates. A real example on the analysis of mathematical ability growth data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 is used to show the application of the proposed methods. Instructions and code on how to conduct growth curve analysis with both normal and non-normal error distributions using the the MCMC procedure of SAS are provided.
Grinding Method and Error Analysis of Eccentric Shaft Parts
Wang, Zhiming; Han, Qiushi; Li, Qiguang; Peng, Baoying; Li, Weihua
2017-12-01
RV reducer and various mechanical transmission parts are widely used in eccentric shaft parts, The demand of precision grinding technology for eccentric shaft parts now, In this paper, the model of X-C linkage relation of eccentric shaft grinding is studied; By inversion method, the contour curve of the wheel envelope is deduced, and the distance from the center of eccentric circle is constant. The simulation software of eccentric shaft grinding is developed, the correctness of the model is proved, the influence of the X-axis feed error, the C-axis feed error and the wheel radius error on the grinding process is analyzed, and the corresponding error calculation model is proposed. The simulation analysis is carried out to provide the basis for the contour error compensation.
Error Estimation and Accuracy Improvements in Nodal Transport Methods
International Nuclear Information System (INIS)
Zamonsky, O.M.
2000-01-01
The accuracy of the solutions produced by the Discrete Ordinates neutron transport nodal methods is analyzed.The obtained new numerical methodologies increase the accuracy of the analyzed scheems and give a POSTERIORI error estimators. The accuracy improvement is obtained with new equations that make the numerical procedure free of truncation errors and proposing spatial reconstructions of the angular fluxes that are more accurate than those used until present. An a POSTERIORI error estimator is rigurously obtained for one dimensional systems that, in certain type of problems, allows to quantify the accuracy of the solutions. From comparisons with the one dimensional results, an a POSTERIORI error estimator is also obtained for multidimensional systems. LOCAL indicators, which quantify the spatial distribution of the errors, are obtained by the decomposition of the menctioned estimators. This makes the proposed methodology suitable to perform adaptive calculations. Some numerical examples are presented to validate the theoretical developements and to illustrate the ranges where the proposed approximations are valid
Medical makeup for concealing facial scars.
Mee, Donna; Wong, Brian J F
2012-10-01
Surgical, laser, and pharmacological therapies are all used to correct scars and surgical incisions, though have limits with respect to how well facial skin can be restored or enhanced. The use of cosmetics has long been a relevant adjunct to all scar treatment modalities. In recent years, technical advancements in the chemistry and composition of cosmetic products have provided the patient with a broader range of products to employ for concealing scars. This review will provide an overview of contemporary methods for concealing facial scars, birthmarks, and pigmentary changes without the use of traditional/dated, heavy appearing camouflage products. Additionally, general guidelines and information will be provided with respect to identifying competent makeup artists for care of the medical patient. The article by no means is meant to be a tutorial, but rather serves as a starting point in this allied field of medicine. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Induction detection of concealed bulk banknotes
Fuller, Christopher; Chen, Antao
2012-06-01
The smuggling of bulk cash across borders is a serious issue that has increased in recent years. In an effort to curb the illegal transport of large numbers of paper bills, a detection scheme has been developed, based on the magnetic characteristics of bank notes. The results show that volumes of paper currency can be detected through common concealing materials such as plastics, cardboard, and fabrics making it a possible potential addition to border security methods. The detection scheme holds the potential of also reducing or eliminating false positives caused by metallic materials found in the vicinity, by observing the stark difference in received signals caused by metal and currency. The detection scheme holds the potential to detect for both the presence and number of concealed bulk notes, while maintaining the ability to reduce false positives caused by metal objects.
Nonlinear error dynamics for cycled data assimilation methods
International Nuclear Information System (INIS)
Moodey, Alexander J F; Lawless, Amos S; Potthast, Roland W E; Van Leeuwen, Peter Jan
2013-01-01
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at t k , k = 1, 2, 3, …, with a first guess given by the state propagated via a dynamical system model M k from time t k−1 to time t k . In particular, for nonlinear dynamical systems M k that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ‖e k ‖ ≔ ‖x (a) k − x (t) k ‖ between the estimated state x (a) and the true state x (t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system M k under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ‖e k ‖, depending on the size δ of the observation error, the reconstruction operator R α , the observation operator H and the Lipschitz constants K (1) and K (2) on the lower and higher modes of M k controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c‖R α ‖δ with some constant c. Since ‖R α ‖ → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz ‘63 system. (paper)
Psychopathy and Physiological Detection of Concealed Information: A review
Directory of Open Access Journals (Sweden)
Bruno Verschuere
2006-03-01
Full Text Available The Concealed Information Test has been advocated as the preferred method for deception detection using the polygraph ("lie detector". The Concealed Information Test is argued to be a standardised, highly accurate psychophysiological test founded on the orienting reflex. The validity of polygraph tests for the assessment of psychopathic individuals has, however, been questioned. Two dimensions are said to underlie psychopathy: emotional detachment and antisocial behaviour. Distinct psychophysiological correlates are hypothesised in these facets of psychopathy. Emotional detachment is associated with deficient fear-potentiated startle, and antisocial behaviour with reduced orienting. Few studies have examined the effect of psychopathy on the validity of the Concealed Information Test. This review suggests that reduced orienting in high antisocial individuals is also found in the Concealed Information Test, thereby threatening its validity. Implications for criminal investigations, possible solutions and directions for future research will be discussed.
Output Error Method for Tiltrotor Unstable in Hover
Directory of Open Access Journals (Sweden)
Lichota Piotr
2017-03-01
Full Text Available This article investigates unstable tiltrotor in hover system identification from flight test data. The aircraft dynamics was described by a linear model defined in Body-Fixed-Coordinate System. Output Error Method was selected in order to obtain stability and control derivatives in lateral motion. For estimating model parameters both time and frequency domain formulations were applied. To improve the system identification performed in the time domain, a stabilization matrix was included for evaluating the states. In the end, estimates obtained from various Output Error Method formulations were compared in terms of parameters accuracy and time histories. Evaluations were performed in MATLAB R2009b environment.
Method for decoupling error correction from privacy amplification
Energy Technology Data Exchange (ETDEWEB)
Lo, Hoi-Kwong [Department of Electrical and Computer Engineering and Department of Physics, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada, M5S 3G4 (Canada)
2003-04-01
In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof.
Method for decoupling error correction from privacy amplification
International Nuclear Information System (INIS)
Lo, Hoi-Kwong
2003-01-01
In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof
Analysis of possible systematic errors in the Oslo method
International Nuclear Information System (INIS)
Larsen, A. C.; Guttormsen, M.; Buerger, A.; Goergen, A.; Nyhus, H. T.; Rekstad, J.; Siem, S.; Toft, H. K.; Tveten, G. M.; Wikan, K.; Krticka, M.; Betak, E.; Schiller, A.; Voinov, A. V.
2011-01-01
In this work, we have reviewed the Oslo method, which enables the simultaneous extraction of the level density and γ-ray transmission coefficient from a set of particle-γ coincidence data. Possible errors and uncertainties have been investigated. Typical data sets from various mass regions as well as simulated data have been tested against the assumptions behind the data analysis.
An in-situ measuring method for planar straightness error
Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie
2018-01-01
According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.
Equation-Method for correcting clipping errors in OFDM signals.
Bibi, Nargis; Kleerekoper, Anthony; Muhammad, Nazeer; Cheetham, Barry
2016-01-01
Orthogonal frequency division multiplexing (OFDM) is the digital modulation technique used by 4G and many other wireless communication systems. OFDM signals have significant amplitude fluctuations resulting in high peak to average power ratios which can make an OFDM transmitter susceptible to non-linear distortion produced by its high power amplifiers (HPA). A simple and popular solution to this problem is to clip the peaks before an OFDM signal is applied to the HPA but this causes in-band distortion and introduces bit-errors at the receiver. In this paper we discuss a novel technique, which we call the Equation-Method, for correcting these errors. The Equation-Method uses the Fast Fourier Transform to create a set of simultaneous equations which, when solved, return the amplitudes of the peaks before they were clipped. We show analytically and through simulations that this method can, correct all clipping errors over a wide range of clipping thresholds. We show that numerical instability can be avoided and new techniques are needed to enable the receiver to differentiate between correctly and incorrectly received frequency-domain constellation symbols.
International Nuclear Information System (INIS)
Nidaira, Kazuo
2008-01-01
International Target Values (ITV) shows random and systematic measurement uncertainty components as a reference for routinely achievable measurement quality in the accountancy measurement. The measurement uncertainty, called error henceforth, needs to be periodically evaluated and checked against ITV for consistency as the error varies according to measurement methods, instruments, operators, certified reference samples, frequency of calibration, and so on. In the paper an error evaluation method was developed with focuses on (1) Specifying clearly error calculation model, (2) Getting always positive random and systematic error variances, (3) Obtaining probability density distribution of an error variance and (4) Confirming the evaluation method by simulation. In addition the method was demonstrated by applying real data. (author)
Error Analysis for Fourier Methods for Option Pricing
Häppölä, Juho
2016-01-06
We provide a bound for the error committed when using a Fourier method to price European options when the underlying follows an exponential Levy dynamic. The price of the option is described by a partial integro-differential equation (PIDE). Applying a Fourier transformation to the PIDE yields an ordinary differential equation that can be solved analytically in terms of the characteristic exponent of the Levy process. Then, a numerical inverse Fourier transform allows us to obtain the option price. We present a novel bound for the error and use this bound to set the parameters for the numerical method. We analyze the properties of the bound for a dissipative and pure-jump example. The bound presented is independent of the asymptotic behaviour of option prices at extreme asset prices. The error bound can be decomposed into a product of terms resulting from the dynamics and the option payoff, respectively. The analysis is supplemented by numerical examples that demonstrate results comparable to and superior to the existing literature.
Yeom, Seokwon
2013-05-01
Millimeter waves imaging draws increasing attention in security applications for weapon detection under clothing. In this paper, concealed object segmentation and three-dimensional localization schemes are reviewed. A concealed object is segmented by the k-means algorithm. A feature-based stereo-matching method estimates the longitudinal distance of the concealed object. The distance is estimated by the discrepancy between the corresponding centers of the segmented objects. Experimental results are provided with the analysis of the depth resolution.
CREME96 and Related Error Rate Prediction Methods
Adams, James H., Jr.
2012-01-01
Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and
Error Analysis of Galerkin's Method for Semilinear Equations
Directory of Open Access Journals (Sweden)
Tadashi Kawanago
2012-01-01
Full Text Available We establish a general existence result for Galerkin's approximate solutions of abstract semilinear equations and conduct an error analysis. Our results may be regarded as some extension of a precedent work (Schultz 1969. The derivation of our results is, however, different from the discussion in his paper and is essentially based on the convergence theorem of Newton’s method and some techniques for deriving it. Some of our results may be applicable for investigating the quality of numerical verification methods for solutions of ordinary and partial differential equations.
Error assessment in recombinant baculovirus titration: evaluation of different methods.
Roldão, António; Oliveira, Rui; Carrondo, Manuel J T; Alves, Paula M
2009-07-01
The success of baculovirus/insect cells system in heterologous protein expression depends on the robustness and efficiency of the production workflow. It is essential that process parameters are controlled and include as little variability as possible. The multiplicity of infection (MOI) is the most critical factor since irreproducible MOIs caused by inaccurate estimation of viral titers hinder batch consistency and process optimization. This lack of accuracy is related to intrinsic characteristics of the method such as the inability to distinguish between infectious and non-infectious baculovirus. In this study, several methods for baculovirus titration were compared. The most critical issues identified were the incubation time and cell concentration at the time of infection. These variables influence strongly the accuracy of titers and must be defined for optimal performance of the titration method. Although the standard errors of the methods varied significantly (7-36%), titers were within the same order of magnitude; thus, viral titers can be considered independent of the method of titration. A cost analysis of the baculovirus titration methods used in this study showed that the alamarblue, real time Q-PCR and plaque assays were the most expensive techniques. The remaining methods cost on average 75% less than the former methods. Based on the cost, time and error analysis undertaken in this study, the end-point dilution assay, microculture tetrazolium assay and flow cytometric assay were found to be the techniques that combine all these three main factors better. Nevertheless, it is always recommended to confirm the accuracy of the titration either by comparison with a well characterized baculovirus reference stock or by titration using two different methods and verification of the variability of results.
CONCEAL TO SURVIVE: RESISTANCE STRATEGIES
Directory of Open Access Journals (Sweden)
Francisca Zuleide Duarte de Souza
2013-04-01
Full Text Available This paper analyzes the strategy of concealment, theoretically bounded by Accetto (2001, and used by Delfina, character in the novel O Alegre Canto da Perdiz of Paulina Chiziane, Mozambican writer. Focuses, among other things, the relationship colonizer versus colonized, discussing the condition of female inferiority that forces a reaction apparently submissive, which assumes the sale of the body and the rejection of their ancestral traditions. To interpret the attitudes of Delfina as a strategy that masks resentment against abusive domain power.
Residual-based Methods for Controlling Discretization Error in CFD
2015-08-24
ccjccjccj iVi Jwxf V dVxf V 1 ,,, )(det)( 1)(1 . (25) where J is the Jacobian of the coordinate transformation and the weights can be found from...179. Layton, W., Lee , H.K., and Peterson, J. (2002). “A Defect-Correction Method for the Incompressible Navier-Stokes Equations,” Applied Mathematics...and Computation, Vol. 129, pp. 1-19. Lee , D. and Tsuei, Y.M. (1992). “A Formula for Estimation of Truncation Errors of Convective Terms in a
Total error components - isolation of laboratory variation from method performance
International Nuclear Information System (INIS)
Bottrell, D.; Bleyler, R.; Fisk, J.; Hiatt, M.
1992-01-01
The consideration of total error across sampling and analytical components of environmental measurements is relatively recent. The U.S. Environmental Protection Agency (EPA), through the Contract Laboratory Program (CLP), provides complete analyses and documented reports on approximately 70,000 samples per year. The quality assurance (QA) functions of the CLP procedures provide an ideal data base-CLP Automated Results Data Base (CARD)-to evaluate program performance relative to quality control (QC) criteria and to evaluate the analysis of blind samples. Repetitive analyses of blind samples within each participating laboratory provide a mechanism to separate laboratory and method performance. Isolation of error sources is necessary to identify effective options to establish performance expectations, and to improve procedures. In addition, optimized method performance is necessary to identify significant effects that result from the selection among alternative procedures in the data collection process (e.g., sampling device, storage container, mode of sample transit, etc.). This information is necessary to evaluate data quality; to understand overall quality; and to provide appropriate, cost-effective information required to support a specific decision
The commission errors search and assessment (CESA) method
Energy Technology Data Exchange (ETDEWEB)
Reer, B.; Dang, V. N
2007-05-15
Errors of Commission (EOCs) refer to the performance of inappropriate actions that aggravate a situation. In Probabilistic Safety Assessment (PSA) terms, they are human failure events that result from the performance of an action. This report presents the Commission Errors Search and Assessment (CESA) method and describes the method in the form of user guidance. The purpose of the method is to identify risk-significant situations with a potential for EOCs in a predictive analysis. The main idea underlying the CESA method is to catalog the key actions that are required in the procedural response to plant events and to identify specific scenarios in which these candidate actions could erroneously appear to be required. The catalog of required actions provides a basis for a systematic search of context-action combinations. To focus the search towards risk-significant scenarios, the actions that are examined in the CESA search are prioritized according to the importance of the systems and functions that are affected by these actions. The existing PSA provides this importance information; the Risk Achievement Worth or Risk Increase Factor values indicate the systems/functions for which an EOC contribution would be more significant. In addition, the contexts, i.e. PSA scenarios, for which the EOC opportunities are reviewed are also prioritized according to their importance (top sequences or cut sets). The search through these context-action combinations results in a set of EOC situations to be examined in detail. CESA has been applied in a plant-specific pilot study, which showed the method to be feasible and effective in identifying plausible EOC opportunities. This experience, as well as the experience with other EOC analyses, showed that the quantification of EOCs remains an issue. The quantification difficulties and the outlook for their resolution conclude the report. (author)
The commission errors search and assessment (CESA) method
International Nuclear Information System (INIS)
Reer, B.; Dang, V. N.
2007-05-01
Errors of Commission (EOCs) refer to the performance of inappropriate actions that aggravate a situation. In Probabilistic Safety Assessment (PSA) terms, they are human failure events that result from the performance of an action. This report presents the Commission Errors Search and Assessment (CESA) method and describes the method in the form of user guidance. The purpose of the method is to identify risk-significant situations with a potential for EOCs in a predictive analysis. The main idea underlying the CESA method is to catalog the key actions that are required in the procedural response to plant events and to identify specific scenarios in which these candidate actions could erroneously appear to be required. The catalog of required actions provides a basis for a systematic search of context-action combinations. To focus the search towards risk-significant scenarios, the actions that are examined in the CESA search are prioritized according to the importance of the systems and functions that are affected by these actions. The existing PSA provides this importance information; the Risk Achievement Worth or Risk Increase Factor values indicate the systems/functions for which an EOC contribution would be more significant. In addition, the contexts, i.e. PSA scenarios, for which the EOC opportunities are reviewed are also prioritized according to their importance (top sequences or cut sets). The search through these context-action combinations results in a set of EOC situations to be examined in detail. CESA has been applied in a plant-specific pilot study, which showed the method to be feasible and effective in identifying plausible EOC opportunities. This experience, as well as the experience with other EOC analyses, showed that the quantification of EOCs remains an issue. The quantification difficulties and the outlook for their resolution conclude the report. (author)
CT diagnosis of concealed rupture of intestine following abdominal trauma
International Nuclear Information System (INIS)
Ji Jiansong; Wei Tiemin; Wang Zufei; Zhao Zhongwei; Tu Jianfei; Fan Xiaoxi; Xu Min
2009-01-01
Objective: To investigate CT findings of concealed rupture of intestine following abdominal trauma. Methods: CT findings of 11 cases with concealed rupture of intestine following abdominal trauma proved by surgery were identified retrospectively. Results: The main special signs included: (1) Free air in 4 cases, mainly around injured small bowel or under the diaphragm, or in the retroperitoneal space or and in the lump. (2) High density hematoma between the intestines or in the bowel wall (4 cases). (3) Bowel wall injury sign, demonstrated as low density of the injured intestinal wall, attenuated locally but relatively enhanced in neighbor wall on enhanced CT. (4) Lump around the injured bowel wall with obvious ring-shaped enhancement (4 cases). Other signs included: (1) Free fluid in the abdominal cavity or between the intestines with blurred borders. (2) Bowel obstruction. Conclusion: CT is valuable in diagnosing concealed rupture of intestine following abdominal trauma. (authors)
Using the CAIR-method to derive cognitive error mechanisms
International Nuclear Information System (INIS)
Straeter, Oliver
2000-01-01
This paper describes an application of the second-generation method CAHR (Connectionism Assessment of Human Reliability; Straeter, 1997) that was developed at the Technical University of Munich and the GRS in the years from 1992 to 1998. The method enables to combine event analysis and assessment and therefore to base human reliability assessment on past experience. The term connectionism' was coined by modeling human cognition on the basis of artificial intelligence models. Connectionism is a term describing methods that represent complex interrelations of various parameters (known for pattern recognition, expert systems, modeling of cognition). The method enables to combine event analysis and assessment on past experience. The paper will demonstrate the application of the method to communication aspects in NPPs (Nuclear Power Plants) and will give some outlooks for further developments. Application of the method to the problem of communication failures, for examples, initial work on communication within the low-power and shut down study for Boiling Water Reactors (BWRs), investigation of communication failures, importance of procedural and verbal communication for different error type and causes for failures in procedural and verbal communication are explained. (S.Y.)
Incremental Volumetric Remapping Method: Analysis and Error Evaluation
International Nuclear Information System (INIS)
Baptista, A. J.; Oliveira, M. C.; Rodrigues, D. M.; Menezes, L. F.; Alves, J. L.
2007-01-01
In this paper the error associated with the remapping problem is analyzed. A range of numerical results that assess the performance of three different remapping strategies, applied to FE meshes that typically are used in sheet metal forming simulation, are evaluated. One of the selected strategies is the previously presented Incremental Volumetric Remapping method (IVR), which was implemented in the in-house code DD3TRIM. The IVR method fundaments consists on the premise that state variables in all points associated to a Gauss volume of a given element are equal to the state variable quantities placed in the correspondent Gauss point. Hence, given a typical remapping procedure between a donor and a target mesh, the variables to be associated to a target Gauss volume (and point) are determined by a weighted average. The weight function is the Gauss volume percentage of each donor element that is located inside the target Gauss volume. The calculus of the intersecting volumes between the donor and target Gauss volumes is attained incrementally, for each target Gauss volume, by means of a discrete approach. The other two remapping strategies selected are based in the interpolation/extrapolation of variables by using the finite element shape functions or moving least square interpolants. The performance of the three different remapping strategies is address with two tests. The first remapping test was taken from a literature work. The test consists in remapping successively a rotating symmetrical mesh, throughout N increments, in an angular span of 90 deg. The second remapping error evaluation test consists of remapping an irregular element shape target mesh from a given regular element shape donor mesh and proceed with the inverse operation. In this second test the computation effort is also measured. The results showed that the error level associated to IVR can be very low and with a stable evolution along the number of remapping procedures when compared with the
A Fast Soft Bit Error Rate Estimation Method
Directory of Open Access Journals (Sweden)
Ait-Idir Tarik
2010-01-01
Full Text Available We have suggested in a previous publication a method to estimate the Bit Error Rate (BER of a digital communications system instead of using the famous Monte Carlo (MC simulation. This method was based on the estimation of the probability density function (pdf of soft observed samples. The kernel method was used for the pdf estimation. In this paper, we suggest to use a Gaussian Mixture (GM model. The Expectation Maximisation algorithm is used to estimate the parameters of this mixture. The optimal number of Gaussians is computed by using Mutual Information Theory. The analytical expression of the BER is therefore simply given by using the different estimated parameters of the Gaussian Mixture. Simulation results are presented to compare the three mentioned methods: Monte Carlo, Kernel and Gaussian Mixture. We analyze the performance of the proposed BER estimator in the framework of a multiuser code division multiple access system and show that attractive performance is achieved compared with conventional MC or Kernel aided techniques. The results show that the GM method can drastically reduce the needed number of samples to estimate the BER in order to reduce the required simulation run-time, even at very low BER.
Theory of the Concealed Information Test
Verschuere, B.; Ben-Shakhar, G.; Verschuere, B.; Ben-Shakhar, G.; Meijer, E.
2011-01-01
It is now well established that physiological measures can be validly used to detect concealed information. An important challenge is to elucidate the underlying mechanisms of concealed information detection. We review theoretical approaches that can be broadly classified in two major categories:
Color image fusion for concealed weapon detection
Toet, A.
2003-01-01
Recent advances in passive and active imaging sensor technology offer the potential to detect weapons that are concealed underneath a person's clothing or carried along in bags. Although the concealed weapons can sometimes easily be detected, it can be difficult to perceive their context, due to the
Induction detection of concealed bulk banknotes
International Nuclear Information System (INIS)
Fuller, Christopher; Chen, Antao
2011-01-01
Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects
On Round-off Error for Adaptive Finite Element Methods
Alvarez-Aramberri, J.
2012-06-02
Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.
On Round-off Error for Adaptive Finite Element Methods
Alvarez-Aramberri, J.; Pardo, David; Paszynski, Maciej; Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.
2012-01-01
Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.
Findings from analysing and quantifying human error using current methods
International Nuclear Information System (INIS)
Dang, V.N.; Reer, B.
1999-01-01
In human reliability analysis (HRA), the scarcity of data means that, at best, judgement must be applied to transfer to the domain of the analysis what data are available for similar tasks. In particular for the quantification of tasks involving decisions, the analyst has to choose among quantification approaches that all depend to a significant degree on expert judgement. The use of expert judgement can be made more reliable by eliciting relative judgements rather than absolute judgements. These approaches, which are based on multiple criterion decision theory, focus on ranking the tasks to be analysed by difficulty. While these approaches remedy at least partially the poor performance of experts in the estimation of probabilities, they nevertheless require the calibration of the relative scale on which the actions are ranked in order to obtain the probabilities of interest. This paper presents some results from a comparison of some current HRA methods performed in the frame of a study of SLIM calibration options. The HRA quantification methods THERP, HEART, and INTENT were applied to derive calibration human error probabilities for two groups of operator actions. (author)
International Nuclear Information System (INIS)
Takagawa, Kenichi; Miyazaki, Takamasa; Gofuku, Akio; Iida, Hiroyasu
2007-01-01
Since many of the adverse events that have occurred in nuclear power plants in Japan and abroad have been related to maintenance or operation, it is necessary to plan preventive measures based on detailed analyses of human errors made by maintenance workers or operators. Therefore, before planning preventive measures, we developed a new method of analyzing human errors. Since each human error is an unsafe action caused by some misjudgement made by a person, we decided to classify them into six categories according to the stage in the judgment process in which the error was made. By further classifying each error into either an omission-type or commission-type, we produced 12 categories of errors. Then, we divided them into the two categories of basic error tendencies and individual error tendencies, and categorized background factors into four categories: imperfect planning; imperfect facilities or tools; imperfect environment; and imperfect instructions or communication. We thus defined the factors in each category to make it easy to identify factors that caused the error. Then using this method, we studied the characteristics of human errors that involved maintenance workers and planners since many maintenance errors have occurred. Among the human errors made by workers (worker errors) during the implementation stage, the following three types were prevalent with approximately 80%: commission-type 'projection errors', omission-type comprehension errors' and commission type 'action errors'. The most common among the individual factors of worker errors was 'repetition or habit' (schema), based on the assumption of a typical situation, and the half number of the 'repetition or habit' cases (schema) were not influenced by any background factors. The most common background factor that contributed to the individual factor was 'imperfect work environment', followed by 'insufficient knowledge'. Approximately 80% of the individual factors were 'repetition or habit' or
Data Analysis & Statistical Methods for Command File Errors
Meshkat, Leila; Waggoner, Bruce; Bryant, Larry
2014-01-01
This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.
Radon measurements-discussion of error estimates for selected methods
International Nuclear Information System (INIS)
Zhukovsky, Michael; Onischenko, Alexandra; Bastrikov, Vladislav
2010-01-01
The main sources of uncertainties for grab sampling, short-term (charcoal canisters) and long term (track detectors) measurements are: systematic bias of reference equipment; random Poisson and non-Poisson errors during calibration; random Poisson and non-Poisson errors during measurements. The origins of non-Poisson random errors during calibration are different for different kinds of instrumental measurements. The main sources of uncertainties for retrospective measurements conducted by surface traps techniques can be divided in two groups: errors of surface 210 Pb ( 210 Po) activity measurements and uncertainties of transfer from 210 Pb surface activity in glass objects to average radon concentration during this object exposure. It's shown that total measurement error of surface trap retrospective technique can be decreased to 35%.
Statistical error estimation of the Feynman-α method using the bootstrap method
International Nuclear Information System (INIS)
Endo, Tomohiro; Yamamoto, Akio; Yagi, Takahiro; Pyeon, Cheol Ho
2016-01-01
Applicability of the bootstrap method is investigated to estimate the statistical error of the Feynman-α method, which is one of the subcritical measurement techniques on the basis of reactor noise analysis. In the Feynman-α method, the statistical error can be simply estimated from multiple measurements of reactor noise, however it requires additional measurement time to repeat the multiple times of measurements. Using a resampling technique called 'bootstrap method' standard deviation and confidence interval of measurement results obtained by the Feynman-α method can be estimated as the statistical error, using only a single measurement of reactor noise. In order to validate our proposed technique, we carried out a passive measurement of reactor noise without any external source, i.e. with only inherent neutron source by spontaneous fission and (α,n) reactions in nuclear fuels at the Kyoto University Criticality Assembly. Through the actual measurement, it is confirmed that the bootstrap method is applicable to approximately estimate the statistical error of measurement results obtained by the Feynman-α method. (author)
James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll
2003-01-01
This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...
An Analysis and Quantification Method of Human Errors of Soft Controls in Advanced MCRs
International Nuclear Information System (INIS)
Lee, Seung Jun; Kim, Jae Whan; Jang, Seung Cheol
2011-01-01
In this work, a method was proposed for quantifying human errors that may occur during operation executions using soft control. Soft controls of advanced main control rooms (MCRs) have totally different features from conventional controls, and thus they may have different human error modes and occurrence probabilities. It is important to define the human error modes and to quantify the error probability for evaluating the reliability of the system and preventing errors. This work suggests a modified K-HRA method for quantifying error probability
Methods of Run-Time Error Detection in Distributed Process Control Software
DEFF Research Database (Denmark)
Drejer, N.
of generic run-time error types, design of methods of observing application software behaviorduring execution and design of methods of evaluating run time constraints. In the definition of error types it is attempted to cover all relevant aspects of the application softwaree behavior. Methods of observation......In this thesis, methods of run-time error detection in application software for distributed process control is designed. The error detection is based upon a monitoring approach in which application software is monitored by system software during the entire execution. The thesis includes definition...... and constraint evaluation is designed for the modt interesting error types. These include: a) semantical errors in data communicated between application tasks; b) errors in the execution of application tasks; and c) errors in the timing of distributed events emitted by the application software. The design...
DEFF Research Database (Denmark)
Chen, Yangyang; Yang, Ming; Long, Jiang
2017-01-01
For motor control applications, the speed loop performance is largely depended on the accuracy of speed feedback signal. M/T method, due to its high theoretical accuracy, is the most widely used in incremental encoder adopted speed measurement. However, the inherent encoder optical grating error...
Ketcheson, David I.
2014-04-11
In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.
Diagnosis of Cognitive Errors by Statistical Pattern Recognition Methods.
Tatsuoka, Kikumi K.; Tatsuoka, Maurice M.
The rule space model permits measurement of cognitive skill acquisition, diagnosis of cognitive errors, and detection of the strengths and weaknesses of knowledge possessed by individuals. Two ways to classify an individual into his or her most plausible latent state of knowledge include: (1) hypothesis testing--Bayes' decision rules for minimum…
Error evaluation of inelastic response spectrum method for earthquake design
International Nuclear Information System (INIS)
Paz, M.; Wong, J.
1981-01-01
Two-story, four-story and ten-story shear building-type frames subjected to earthquake excitaion, were analyzed at several levels of their yield resistance. These frames were subjected at their base to the motion recorded for north-south component of the 1940 El Centro earthquake, and to an artificial earthquake which would produce the response spectral charts recommended for design. The frames were first subjected to 25% or 50% of the intensity level of these earthquakes. The resulting maximum relative displacement for each story of the frames was assumed to be yield resistance for the subsequent analyses at 100% of intensity for the excitation. The frames analyzed were uniform along their height with the stiffness adjusted as to result in 0.20 seconds of the fundamental period for the two-story frame, 0.40 seconds for the four-story frame and 1.0 seconds for the ten-story frame. Results of the study provided the following conclusions: (1) The percentage error in floor displacement for linear behavior was less than 10%; (2) The percentage error in floor displacement for inelastic behavior (elastoplastic) could be as high as 100%; (3) In most of the cases analyzed, the error increased with damping in the system; (4) As a general rule, the error increased as the modal yield resistance decreased; (5) The error was lower for the structures subjected to the 1940 E1 Centro earthquake than for the same structures subjected to an artificial earthquake which was generated from the response spectra for design. (orig./HP)
A Method of Calculating Motion Error in a Linear Motion Bearing Stage
Directory of Open Access Journals (Sweden)
Gyungho Khim
2015-01-01
Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.
A Method of Calculating Motion Error in a Linear Motion Bearing Stage
Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok
2015-01-01
We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715
Estimation of subcriticality of TCA using 'indirect estimation method for calculation error'
International Nuclear Information System (INIS)
Naito, Yoshitaka; Yamamoto, Toshihiro; Arakawa, Takuya; Sakurai, Kiyoshi
1996-01-01
To estimate the subcriticality of neutron multiplication factor in a fissile system, 'Indirect Estimation Method for Calculation Error' is proposed. This method obtains the calculational error of neutron multiplication factor by correlating measured values with the corresponding calculated ones. This method was applied to the source multiplication and to the pulse neutron experiments conducted at TCA, and the calculation error of MCNP 4A was estimated. In the source multiplication method, the deviation of measured neutron count rate distributions from the calculated ones estimates the accuracy of calculated k eff . In the pulse neutron method, the calculation errors of prompt neutron decay constants give the accuracy of the calculated k eff . (author)
Directory of Open Access Journals (Sweden)
Pang Fubin
2015-09-01
Full Text Available In this paper the origin problem of data synchronization is analyzed first, and then three common interpolation methods are introduced to solve the problem. Allowing for the most general situation, the paper divides the interpolation error into harmonic and transient interpolation error components, and the error expression of each method is derived and analyzed. Besides, the interpolation errors of linear, quadratic and cubic methods are computed at different sampling rates, harmonic orders and transient components. Further, the interpolation accuracy and calculation amount of each method are compared. The research results provide theoretical guidance for selecting the interpolation method in the data synchronization application of electronic transformer.
A Posteriori Error Estimation for Finite Element Methods and Iterative Linear Solvers
Energy Technology Data Exchange (ETDEWEB)
Melboe, Hallgeir
2001-10-01
This thesis addresses a posteriori error estimation for finite element methods and iterative linear solvers. Adaptive finite element methods have gained a lot of popularity over the last decades due to their ability to produce accurate results with limited computer power. In these methods a posteriori error estimates play an essential role. Not only do they give information about how large the total error is, they also indicate which parts of the computational domain should be given a more sophisticated treatment in order to reduce the error. A posteriori error estimates are traditionally aimed at estimating the global error, but more recently so called goal oriented error estimators have been shown a lot of interest. The name reflects the fact that they estimate the error in user-defined local quantities. In this thesis the main focus is on global error estimators for highly stretched grids and goal oriented error estimators for flow problems on regular grids. Numerical methods for partial differential equations, such as finite element methods and other similar techniques, typically result in a linear system of equations that needs to be solved. Usually such systems are solved using some iterative procedure which due to a finite number of iterations introduces an additional error. Most such algorithms apply the residual in the stopping criterion, whereas the control of the actual error may be rather poor. A secondary focus in this thesis is on estimating the errors that are introduced during this last part of the solution procedure. The thesis contains new theoretical results regarding the behaviour of some well known, and a few new, a posteriori error estimators for finite element methods on anisotropic grids. Further, a goal oriented strategy for the computation of forces in flow problems is devised and investigated. Finally, an approach for estimating the actual errors associated with the iterative solution of linear systems of equations is suggested. (author)
Statistical method for quality control in presence of measurement errors
International Nuclear Information System (INIS)
Lauer-Peccoud, M.R.
1998-01-01
In a quality inspection of a set of items where the measurements of values of a quality characteristic of the item are contaminated by random errors, one can take wrong decisions which are damageable to the quality. So of is important to control the risks in such a way that a final quality level is insured. We consider that an item is defective or not if the value G of its quality characteristic is larger or smaller than a given level g. We assume that, due to the lack of precision of the measurement instrument, the measurement M of this characteristic is expressed by ∫ (G) + ξ where f is an increasing function such that the value ∫ (g 0 ) is known and ξ is a random error with mean zero and given variance. First we study the problem of the determination of a critical measure m such that a specified quality target is reached after the classification of a lot of items where each item is accepted or rejected depending on whether its measurement is smaller or greater than m. Then we analyse the problem of testing the global quality of a lot from the measurements for a example of items taken from the lot. For these two kinds of problems and for different quality targets, we propose solutions emphasizing on the case where the function ∫ is linear and the error ξ and the variable G are Gaussian. Simulation results allow to appreciate the efficiency of the different considered control procedures and their robustness with respect to deviations from the assumptions used in the theoretical derivations. (author)
Pernot, Pascal; Savin, Andreas
2018-06-01
Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.
Methods of Run-Time Error Detection in Distributed Process Control Software
DEFF Research Database (Denmark)
Drejer, N.
In this thesis, methods of run-time error detection in application software for distributed process control is designed. The error detection is based upon a monitoring approach in which application software is monitored by system software during the entire execution. The thesis includes definition...... and constraint evaluation is designed for the modt interesting error types. These include: a) semantical errors in data communicated between application tasks; b) errors in the execution of application tasks; and c) errors in the timing of distributed events emitted by the application software. The design...... of error detection methods includes a high level software specification. this has the purpose of illustrating that the designed can be used in practice....
Video Error Correction Using Steganography
Robie, David L.; Mersereau, Russell M.
2002-12-01
The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.
Video Error Correction Using Steganography
Directory of Open Access Journals (Sweden)
Robie David L
2002-01-01
Full Text Available The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.
Directory of Open Access Journals (Sweden)
Zbigniew Staroszczyk
2014-12-01
Full Text Available [b]Abstract[/b]. In the paper, the calibrating method for error correction in transfer function determination with the use of DSP has been proposed. The correction limits/eliminates influence of transfer function input/output signal conditioners on the estimated transfer functions in the investigated object. The method exploits frequency domain conditioning paths descriptor found during training observation made on the known reference object.[b]Keywords[/b]: transfer function, band extension, error correction, phase errors
[Half-gloving cordectomy: a modified procedure for concealed penis].
Sun, Wei-Gui; Zheng, Qi-Chuan; Jiang, Kun
2012-06-01
To search for a simple surgical procedure for the treatment of concealed penis that may have better effect and less complications. We used a modified surgical method in the treatment of 58 patients with concealed penis aged from 3 to 15 (mean 6.8) years. The operation was simplified and involved the following steps: wholly unveiling the penis glans, half-degloving the foreskins, cutting off all the adhesive fibers up to the penile suspensory ligaments, and liberating the external penis. The operation was successful in all the patients, with the operative time of 15 -45 (mean 33) minutes, hospital stay of 2 - 5 (mean 3.5) days, but no complications except mild foreskin edema in 5 cases. The external penis was prolonged from 0.5 - 2.8 (mean 1.4) cm preoperatively to 3.2 - 8.5 (mean 3.9) cm postoperatively. The patients were followed up for 1 -3 years, all satisfied with the length and appearance of the penis, and their sexual and reproductive functions were normal. The modified surgical procedure for concealed penis is simple and effective, with desirable outcomes, few postoperative complications and no damage to sexual and reproductive functions.
Cognitive strategies: a method to reduce diagnostic errors in ER
Directory of Open Access Journals (Sweden)
Carolina Prevaldi
2009-02-01
Full Text Available I wonder why sometimes we are able to rapidly recognize patterns of disease presentation, formulate a speedy diagnostic closure, and go on with a treatment plan. On the other hand sometimes we proceed studing in deep our patient in an analytic, slow and rational way of decison making. Why decisions sometimes can be intuitive, while sometimes we have to proceed in a rigorous way? What is the “back ground noise” and the “signal to noise ratio” of presenting sintoms? What is the risk in premature labeling or “closure” of a patient? When is it useful the “cook-book” approach in clinical decision making? The Emergency Department is a natural laboratory for the study of error” stated an author. Many studies have focused on the occurrence of errors in medicine, and in hospital practice, but the ED with his unique operating characteristics seems to be a uniquely errorprone environment. That's why it is useful to understand the underlying pattern of thinking that can lead us to misdiagnosis. The general knowledge of thought processes gives the psysician awareness an the ability to apply different tecniques in clinical decision making and to recognize and avoid pitfalls.
Concealment of Child Sexual Abuse in Sports
Hartill, Mike
2013-01-01
When the sexual abuse of children is revealed, it is often found that other nonabusing adults were aware of the abuse but failed to act. During the past twenty years or so, the concealment of child sexual abuse (CSA) within organizations has emerged as a key challenge for child protection work. Recent events at Pennsylvania State University (PSU)…
Management of concealed penis with modified penoplasty.
Xu, Jian-Guo; Lv, Chuan; Wang, Yu-Chong; Zhu, Ji; Xue, Chun-Yu
2015-03-01
To investigate the effect of penile degloving in combination with penoscrotal angle reconstruction for the correction of concealed penis. A foreskin circumcision incision was made along the coronal sulcus. After a sharp dissection under the superficial layer of tunica albuginea, the penile shaft was degloved to release the fibrous bands of the tunica dartos. Through a longitudinal incision or Z-plasty at the penoscrotal junction, securing of the tunica albuginea to the proximal tunica dartos was performed. The penoscrotal angle was reconstructed. This procedure effectively corrected the concealed penis, while correcting other problems such as phimosis. From August 2008 to August 2013, we performed 41 procedures for concealed penis. Correction was successful in all patients with an improved median length of 2.1 cm in the flaccid state. Follow-up ranged from 6 months to 2 years, and satisfactory cosmetic outcomes were obtained without scars or erectile discomfort. Our technique includes degloving and penoscrotal angle reconstruction, which provides proper visualization for fixation of the penile base. The longitudinal or Z-plasty incision also opened the degloving dead cavity, which was good for drainage. The procedure is straight forward with good functional and cosmetic outcomes and is thus ideal for correction of the concealed penis. Copyright © 2015 Elsevier Inc. All rights reserved.
Modified penoplasty for concealed penis in children.
Yang, Tianyou; Zhang, Liyu; Su, Cheng; Li, Zhongmin; Wen, Yingquan
2013-09-01
To report a modified penoplasty technique for concealed penis in children. Between January 2006 and June 2012, 201 cases of concealed penis were surgically repaired with modified penoplasty. The modified penoplasty technique consisted of 3 major steps: (1) degloved the penile skin and excised the inner prepuce, (2) advanced penoscrotal skin to cover penile shaft, and (3) fixed the penis base and reconstructed the penoscrotal angle. Two hundred one cases of concealed penis were enrolled in this study over a period of 6 years. Mean age at the time of surgery was 5.3 years (range 1-13 years) and mean operative time was 40 minutes (range 30-65minutes). All patients were routinely followed up at 1, 3, and 6 months after surgery. Most patients developed postoperative edema and were resolved within 1 month, whereas 20 cases developed prolonged postoperative edema, especially at the site of frenulum, which took 3 months to be resolved. Ten cases had retraction after surgery. No erection difficulties were recorded. Patients/parents reported better hygiene and improved visualization and accessibility of penis after surgery and were satisfied with the cosmetic outcome. The result of this study shows that the modified penoplasty technique is a simple, safe, and effective procedure for concealed penis with satisfied cosmetic outcome. Copyright © 2013 Elsevier Inc. All rights reserved.
Psychopathy and the detection of concealed information
Verschuere, B.; Verschuere, B.; Ben-Shakhar, G.; Meijer, E.
2011-01-01
The most common application of concealed information detection is crime knowledge assessment in crime suspects. The validity of this application has mainly been investigated in healthy subjects. Criminals may differ in important aspects from healthy subjects. Psychopathy, for example, is quite
College Students' Reasons for Concealing Suicidal Ideation
Burton Denmark, Adryon; Hess, Elaine; Becker, Martin Swanbrow
2012-01-01
Self-reported reasons for concealing suicidal ideation were explored using data from a national survey of undergraduate and graduate students: 558 students indicated that they seriously considered attempting suicide during the previous year and did not tell anyone about their suicidal thoughts. Content analysis of students' qualitative responses…
The Connection between Teaching Methods and Attribution Errors
Wieman, Carl; Welsh, Ashley
2016-01-01
We collected data at a large, very selective public university on what math and science instructors felt was the biggest barrier to their students' learning. We also determined the extent of each instructor's use of research-based effective teaching methods. Instructors using fewer effective methods were more likely to say the greatest barrier to…
Linearly convergent stochastic heavy ball method for minimizing generalization error
Loizou, Nicolas; Richtarik, Peter
2017-01-01
In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss
Mixed Methods Analysis of Medical Error Event Reports: A Report from the ASIPS Collaborative
National Research Council Canada - National Science Library
Harris, Daniel M; Westfall, John M; Fernald, Douglas H; Duclos, Christine W; West, David R; Niebauer, Linda; Marr, Linda; Quintela, Javan; Main, Deborah S
2005-01-01
.... This paper presents a mixed methods approach to analyzing narrative error event reports. Mixed methods studies integrate one or more qualitative and quantitative techniques for data collection and analysis...
Dynamic Error Analysis Method for Vibration Shape Reconstruction of Smart FBG Plate Structure
Directory of Open Access Journals (Sweden)
Hesheng Zhang
2016-01-01
Full Text Available Shape reconstruction of aerospace plate structure is an important issue for safe operation of aerospace vehicles. One way to achieve such reconstruction is by constructing smart fiber Bragg grating (FBG plate structure with discrete distributed FBG sensor arrays using reconstruction algorithms in which error analysis of reconstruction algorithm is a key link. Considering that traditional error analysis methods can only deal with static data, a new dynamic data error analysis method are proposed based on LMS algorithm for shape reconstruction of smart FBG plate structure. Firstly, smart FBG structure and orthogonal curved network based reconstruction method is introduced. Then, a dynamic error analysis model is proposed for dynamic reconstruction error analysis. Thirdly, the parameter identification is done for the proposed dynamic error analysis model based on least mean square (LMS algorithm. Finally, an experimental verification platform is constructed and experimental dynamic reconstruction analysis is done. Experimental results show that the dynamic characteristics of the reconstruction performance for plate structure can be obtained accurately based on the proposed dynamic error analysis method. The proposed method can also be used for other data acquisition systems and data processing systems as a general error analysis method.
Linearly convergent stochastic heavy ball method for minimizing generalization error
Loizou, Nicolas
2017-10-30
In this work we establish the first linear convergence result for the stochastic heavy ball method. The method performs SGD steps with a fixed stepsize, amended by a heavy ball momentum term. In the analysis, we focus on minimizing the expected loss and not on finite-sum minimization, which is typically a much harder problem. While in the analysis we constrain ourselves to quadratic loss, the overall objective is not necessarily strongly convex.
Study of on-machine error identification and compensation methods for micro machine tools
International Nuclear Information System (INIS)
Wang, Shih-Ming; Yu, Han-Jen; Lee, Chun-Yi; Chiu, Hung-Sheng
2016-01-01
Micro machining plays an important role in the manufacturing of miniature products which are made of various materials with complex 3D shapes and tight machining tolerance. To further improve the accuracy of a micro machining process without increasing the manufacturing cost of a micro machine tool, an effective machining error measurement method and a software-based compensation method are essential. To avoid introducing additional errors caused by the re-installment of the workpiece, the measurement and compensation method should be on-machine conducted. In addition, because the contour of a miniature workpiece machined with a micro machining process is very tiny, the measurement method should be non-contact. By integrating the image re-constructive method, camera pixel correction, coordinate transformation, the error identification algorithm, and trajectory auto-correction method, a vision-based error measurement and compensation method that can on-machine inspect the micro machining errors and automatically generate an error-corrected numerical control (NC) program for error compensation was developed in this study. With the use of the Canny edge detection algorithm and camera pixel calibration, the edges of the contour of a machined workpiece were identified and used to re-construct the actual contour of the work piece. The actual contour was then mapped to the theoretical contour to identify the actual cutting points and compute the machining errors. With the use of a moving matching window and calculation of the similarity between the actual and theoretical contour, the errors between the actual cutting points and theoretical cutting points were calculated and used to correct the NC program. With the use of the error-corrected NC program, the accuracy of a micro machining process can be effectively improved. To prove the feasibility and effectiveness of the proposed methods, micro-milling experiments on a micro machine tool were conducted, and the results
Hu, Juju; Hu, Haijiang; Ji, Yinghua
2010-03-15
Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.
A platform-independent method for detecting errors in metagenomic sequencing data: DRISEE.
Directory of Open Access Journals (Sweden)
Kevin P Keegan
Full Text Available We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation, to assess sequencing quality (alternatively referred to as "noise" or "error" within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred. Here, DRISEE is applied to (non amplicon data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs, a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms.
Intra- and interpersonal consequences of experimentally induced concealment
Bouman, T.K.
2003-01-01
Secrecy, concealment, and thought supression are assumed to be important aspects of psychopathology. However, most studies address these from an intrapersonal perspective. This study investigates both the intra- as well as the interpersonal consequences of experimentally induced concealment. Two
Correction of concealed penis with preservation of the prepuce.
Valioulis, I A; Kallergis, I C; Ioannidou, D C
2015-10-01
By definition, congenital concealed penis presents at birth. Children are usually referred to physicians because of parental anxiety caused by their child's penile size. Several surgical procedures have been described to treat this condition, but its correction is still technically challenging. The present study reports a simple surgical approach, which allows preservation of the prepuce. During the last 6 years, 18 children with concealed penis (according to the classification by Maizels et al.) have been treated in the present department (mean age 4.5 years, range 3-12 years). Patients with other conditions that caused buried penis were excluded from the study. The operation was performed through a longitudinal midline ventral incision, which was extended hemi-circumferentially at the penile base. The dysgenetic dartos was identified and its distal part was resected. Dissection of the corpora cavernosa was carried down to the suspensory ligament, which was sectioned. Buck's fascia was fixed to Scarpa's fascia and shaft skin was approximated in the midline. Penoscrotal angle was fashioned by Z-plasty or V-Y plasty. The median follow-up was 24 months (range 8-36). The postoperative edema was mild and resolved within a week. All children had good to excellent outcomes. The median pre-operative to postoperative difference in penile length in the flaccid state was 2.6 cm (range 2.0-3.5). No serious complications or recurrent penile retraction were noted. Recent literature mostly suggests that concealed penis is due to deficient proximal attachments of dysgenetic dartos. Consequences of this include: difficulties in maintaining proper hygiene, balanitis, voiding difficulties with prepuce ballooning and urine spraying, and embarrassment among peers. Surgical treatment for congenital concealed penis is warranted in children aged 3 years or older. The basis of the technique is the perception that in boys with congenital concealed penis, the penile integuments are normal
Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
Du, Shaohong; Sun, Shuyu; Xie, Xiaoping
2015-01-01
A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.
Residual-based a posteriori error estimation for multipoint flux mixed finite element methods
Du, Shaohong
2015-10-26
A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.
Ketcheson, David I.; Loczi, Lajos; Parsani, Matteo
2014-01-01
of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods
Directory of Open Access Journals (Sweden)
Salih Yalcinbas
2016-01-01
Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.
Concealable Stigmatized Identities and Psychological Well-Being
Quinn, Diane M.; Earnshaw, Valerie A.
2013-01-01
Many people have concealable stigmatized identities: Identities that can be hidden from others and that are socially devalued and negatively stereotyped. Understanding how these concealable stigmatized identities affect psychological well-being is critical. We present our model of the components of concealable stigmatized identities including valenced content – internalized stigma, experienced discrimination, anticipated stigma, disclosure reactions, and counter-stereotypic/positive informati...
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
Huang, Weizhang; Kamenski, Lennard; Lang, Jens
2010-03-01
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.
A posteriori error estimator and AMR for discrete ordinates nodal transport methods
International Nuclear Information System (INIS)
Duo, Jose I.; Azmy, Yousry Y.; Zikatanov, Ludmil T.
2009-01-01
In the development of high fidelity transport solvers, optimization of the use of available computational resources and access to a tool for assessing quality of the solution are key to the success of large-scale nuclear systems' simulation. In this regard, error control provides the analyst with a confidence level in the numerical solution and enables for optimization of resources through Adaptive Mesh Refinement (AMR). In this paper, we derive an a posteriori error estimator based on the nodal solution of the Arbitrarily High Order Transport Method of the Nodal type (AHOT-N). Furthermore, by making assumptions on the regularity of the solution, we represent the error estimator as a function of computable volume and element-edges residuals. The global L 2 error norm is proved to be bound by the estimator. To lighten the computational load, we present a numerical approximation to the aforementioned residuals and split the global norm error estimator into local error indicators. These indicators are used to drive an AMR strategy for the spatial discretization. However, the indicators based on forward solution residuals alone do not bound the cell-wise error. The estimator and AMR strategy are tested in two problems featuring strong heterogeneity and highly transport streaming regime with strong flux gradients. The results show that the error estimator indeed bounds the global error norms and that the error indicator follows the cell-error's spatial distribution pattern closely. The AMR strategy proves beneficial to optimize resources, primarily by reducing the number of unknowns solved for to achieve prescribed solution accuracy in global L 2 error norm. Likewise, AMR achieves higher accuracy compared to uniform refinement when resolving sharp flux gradients, for the same number of unknowns
Error analysis in Fourier methods for option pricing for exponential Lévy processes
Crocce, Fabian; Hä ppö lä , Juho; Keissling, Jonas; Tempone, Raul
2015-01-01
We derive an error bound for utilising the discrete Fourier transform method for solving Partial Integro-Differential Equations (PIDE) that describe european option prices for exponential Lévy driven asset prices. We give sufficient conditions
Quantitative analysis of scaling error compensation methods in dimensional X-ray computed tomography
DEFF Research Database (Denmark)
Müller, P.; Hiller, Jochen; Dai, Y.
2015-01-01
X-ray Computed Tomography (CT) has become an important technology for quality control of industrial components. As with other technologies, e.g., tactile coordinate measurements or optical measurements, CT is influenced by numerous quantities which may have negative impact on the accuracy...... errors of the manipulator system (magnification axis). This article also introduces a new compensation method for scaling errors using a database of reference scaling factors and discusses its advantages and disadvantages. In total, three methods for the correction of scaling errors – using the CT ball...
A posteriori error analysis of multiscale operator decomposition methods for multiphysics models
International Nuclear Information System (INIS)
Estep, D; Carey, V; Tavener, S; Ginting, V; Wildey, T
2008-01-01
Multiphysics, multiscale models present significant challenges in computing accurate solutions and for estimating the error in information computed from numerical solutions. In this paper, we describe recent advances in extending the techniques of a posteriori error analysis to multiscale operator decomposition solution methods. While the particulars of the analysis vary considerably with the problem, several key ideas underlie a general approach being developed to treat operator decomposition multiscale methods. We explain these ideas in the context of three specific examples
Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method
DEFF Research Database (Denmark)
Børsting, H.; Knudsen, Morten; Rasmussen, Henrik
1993-01-01
Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....
von Cramon-Taubadel, Noreen; Frazier, Brenda C; Lahr, Marta Mirazón
2007-09-01
Geometric morphometric methods rely on the accurate identification and quantification of landmarks on biological specimens. As in any empirical analysis, the assessment of inter- and intra-observer error is desirable. A review of methods currently being employed to assess measurement error in geometric morphometrics was conducted and three general approaches to the problem were identified. One such approach employs Generalized Procrustes Analysis to superimpose repeatedly digitized landmark configurations, thereby establishing whether repeat measures fall within an acceptable range of variation. The potential problem of this error assessment method (the "Pinocchio effect") is demonstrated and its effect on error studies discussed. An alternative approach involves employing Euclidean distances between the configuration centroid and repeat measures of a landmark to assess the relative repeatability of individual landmarks. This method is also potentially problematic as the inherent geometric properties of the specimen can result in misleading estimates of measurement error. A third approach involved the repeated digitization of landmarks with the specimen held in a constant orientation to assess individual landmark precision. This latter approach is an ideal method for assessing individual landmark precision, but is restrictive in that it does not allow for the incorporation of instrumentally defined or Type III landmarks. Hence, a revised method for assessing landmark error is proposed and described with the aid of worked empirical examples. (c) 2007 Wiley-Liss, Inc.
Local blur analysis and phase error correction method for fringe projection profilometry systems.
Rao, Li; Da, Feipeng
2018-05-20
We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.
Error baseline rates of five sample preparation methods used to characterize RNA virus populations.
Directory of Open Access Journals (Sweden)
Jeffrey R Kugelman
Full Text Available Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic "no amplification" method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a "targeted" amplification method, sequence-independent single-primer amplification (SISPA as a "random" amplification method, rolling circle reverse transcription sequencing (CirSeq as an advanced "no amplification" method, and Illumina TruSeq RNA Access as a "targeted" enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4-5 of all compared methods.
Error of the slanted edge method for measuring the modulation transfer function of imaging systems.
Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu
2018-03-01
The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.
Knowledge-Based Trajectory Error Pattern Method Applied to an Active Force Control Scheme
Directory of Open Access Journals (Sweden)
Endra Pitowarno, Musa Mailah, Hishamuddin Jamaluddin
2012-08-01
Full Text Available The active force control (AFC method is known as a robust control scheme that dramatically enhances the performance of a robot arm particularly in compensating the disturbance effects. The main task of the AFC method is to estimate the inertia matrix in the feedback loop to provide the correct (motor torque required to cancel out these disturbances. Several intelligent control schemes have already been introduced to enhance the estimation methods of acquiring the inertia matrix such as those using neural network, iterative learning and fuzzy logic. In this paper, we propose an alternative scheme called Knowledge-Based Trajectory Error Pattern Method (KBTEPM to suppress the trajectory track error of the AFC scheme. The knowledge is developed from the trajectory track error characteristic based on the previous experimental results of the crude approximation method. It produces a unique, new and desirable error pattern when a trajectory command is forced. An experimental study was performed using simulation work on the AFC scheme with KBTEPM applied to a two-planar manipulator in which a set of rule-based algorithm is derived. A number of previous AFC schemes are also reviewed as benchmark. The simulation results show that the AFC-KBTEPM scheme successfully reduces the trajectory track error significantly even in the presence of the introduced disturbances.Key Words: Active force control, estimated inertia matrix, robot arm, trajectory error pattern, knowledge-based.
A New Error Analysis and Accuracy Synthesis Method for Shoe Last Machine
Directory of Open Access Journals (Sweden)
Bian Xiangjuan
2014-05-01
Full Text Available In order to improve the manufacturing precision of the shoe last machine, a new error-computing model has been put forward to. At first, Based on the special topological structure of the shoe last machine and multi-rigid body system theory, a spatial error-calculating model of the system was built; Then, the law of error distributing in the whole work space was discussed, and the maximum error position of the system was found; At last, The sensitivities of error parameters were analyzed at the maximum position and the accuracy synthesis was conducted by using Monte Carlo method. Considering the error sensitivities analysis, the accuracy of the main parts was distributed. Results show that the probability of the maximal volume error less than 0.05 mm of the new scheme was improved from 0.6592 to 0.7021 than the probability of the old scheme, the precision of the system was improved obviously, the model can be used for the error analysis and accuracy synthesis of the complex multi- embranchment motion chain system, and to improve the system precision of manufacturing.
The use of error and uncertainty methods in the medical laboratory.
Oosterhuis, Wytze P; Bayat, Hassan; Armbruster, David; Coskun, Abdurrahman; Freeman, Kathleen P; Kallner, Anders; Koch, David; Mackenzie, Finlay; Migliarino, Gabriel; Orth, Matthias; Sandberg, Sverre; Sylte, Marit S; Westgard, Sten; Theodorsson, Elvar
2018-01-26
Error methods - compared with uncertainty methods - offer simpler, more intuitive and practical procedures for calculating measurement uncertainty and conducting quality assurance in laboratory medicine. However, uncertainty methods are preferred in other fields of science as reflected by the guide to the expression of uncertainty in measurement. When laboratory results are used for supporting medical diagnoses, the total uncertainty consists only partially of analytical variation. Biological variation, pre- and postanalytical variation all need to be included. Furthermore, all components of the measuring procedure need to be taken into account. Performance specifications for diagnostic tests should include the diagnostic uncertainty of the entire testing process. Uncertainty methods may be particularly useful for this purpose but have yet to show their strength in laboratory medicine. The purpose of this paper is to elucidate the pros and cons of error and uncertainty methods as groundwork for future consensus on their use in practical performance specifications. Error and uncertainty methods are complementary when evaluating measurement data.
HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM
Directory of Open Access Journals (Sweden)
Zahirah Alifia Maulida
2015-01-01
Full Text Available Kecelakaan kerja pada bidang grinding dan welding menempati urutan tertinggi selama lima tahun terakhir di PT. X. Kecelakaan ini disebabkan oleh human error. Human error terjadi karena pengaruh lingkungan kerja fisik dan non fisik.Penelitian kali menggunakan skenario untuk memprediksi serta mengurangi kemungkinan terjadinya error pada manusia dengan pendekatan CREAM (Cognitive Reliability and Error Analysis Method. CREAM adalah salah satu metode human reliability analysis yang berfungsi untuk mendapatkan nilai Cognitive Failure Probability (CFP yang dapat dilakukan dengan dua cara yaitu basic method dan extended method. Pada basic method hanya akan didapatkan nilai failure probabailty secara umum, sedangkan untuk extended method akan didapatkan CFP untuk setiap task. Hasil penelitian menunjukkan faktor- faktor yang mempengaruhi timbulnya error pada pekerjaan grinding dan welding adalah kecukupan organisasi, kecukupan dari Man Machine Interface (MMI & dukungan operasional, ketersediaan prosedur/ perencanaan, serta kecukupan pelatihan dan pengalaman. Aspek kognitif pada pekerjaan grinding yang memiliki nilai error paling tinggi adalah planning dengan nilai CFP 0.3 dan pada pekerjaan welding yaitu aspek kognitif execution dengan nilai CFP 0.18. Sebagai upaya untuk mengurangi nilai error kognitif pada pekerjaan grinding dan welding rekomendasi yang diberikan adalah memberikan training secara rutin, work instrucstion yang lebih rinci dan memberikan sosialisasi alat. Kata kunci: CREAM (cognitive reliability and error analysis method, HRA (human reliability analysis, cognitive error Abstract The accidents in grinding and welding sectors were the highest cases over the last five years in PT. X and it caused by human error. Human error occurs due to the influence of working environment both physically and non-physically. This study will implement an approaching scenario called CREAM (Cognitive Reliability and Error Analysis Method. CREAM is one of human
A method for analysing incidents due to human errors on nuclear installations
International Nuclear Information System (INIS)
Griffon, M.
1980-01-01
This paper deals with the development of a methodology adapted to a detailed analysis of incidents considered to be due to human errors. An identification of human errors and a search for their eventual multiple causes is then needed. They are categorized in eight classes: education and training of personnel, installation design, work organization, time and work duration, physical environment, social environment, history of the plant and performance of the operator. The method is illustrated by the analysis of a handling incident generated by multiple human errors. (author)
Calculating method on human error probabilities considering influence of management and organization
International Nuclear Information System (INIS)
Gao Jia; Huang Xiangrui; Shen Zupei
1996-01-01
This paper is concerned with how management and organizational influences can be factored into quantifying human error probabilities on risk assessments, using a three-level Influence Diagram (ID) which is originally only as a tool for construction and representation of models of decision-making trees or event trees. An analytical model of human errors causation has been set up with three influence levels, introducing a method for quantification assessments (of the ID), which can be applied into quantifying probabilities) of human errors on risk assessments, especially into the quantification of complex event trees (system) as engineering decision-making analysis. A numerical case study is provided to illustrate the approach
Statistical analysis with measurement error or misclassification strategy, method and application
Yi, Grace Y
2017-01-01
This monograph on measurement error and misclassification covers a broad range of problems and emphasizes unique features in modeling and analyzing problems arising from medical research and epidemiological studies. Many measurement error and misclassification problems have been addressed in various fields over the years as well as with a wide spectrum of data, including event history data (such as survival data and recurrent event data), correlated data (such as longitudinal data and clustered data), multi-state event data, and data arising from case-control studies. Statistical Analysis with Measurement Error or Misclassification: Strategy, Method and Application brings together assorted methods in a single text and provides an update of recent developments for a variety of settings. Measurement error effects and strategies of handling mismeasurement for different models are closely examined in combination with applications to specific problems. Readers with diverse backgrounds and objectives can utilize th...
Re-Normalization Method of Doppler Lidar Signal for Error Reduction
Energy Technology Data Exchange (ETDEWEB)
Park, Nakgyu; Baik, Sunghoon; Park, Seungkyu; Kim, Donglyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dukhyeon [Hanbat National Univ., Daejeon (Korea, Republic of)
2014-05-15
In this paper, we presented a re-normalization method for the fluctuations of Doppler signals from the various noises mainly due to the frequency locking error for a Doppler lidar system. For the Doppler lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter and an iodine filter as the Doppler frequency discriminator. For the Doppler frequency shift measurement, the transmission ratio using the injection-seeded laser is locked to stabilize the frequency. If the frequency locking system is not perfect, the Doppler signal has some error due to the frequency locking error. The re-normalization process of the Doppler signals was performed to reduce this error using an additional laser beam to an Iodine cell. We confirmed that the renormalized Doppler signal shows the stable experimental data much more than that of the averaged Doppler signal using our calibration method, the reduced standard deviation was 4.838 Χ 10{sup -3}.
Yu, Wangyang; Chen, Xiangguang; Wu, Lei
2015-04-01
Passive millimeter wave (PMMW) imaging has become one of the most effective means to detect the objects concealed under clothing. Due to the limitations of the available hardware and the inherent physical properties of PMMW imaging systems, images often exhibit poor contrast and low signal-to-noise ratios. Thus, it is difficult to achieve ideal results by using a general segmentation algorithm. In this paper, an advanced Gaussian Mixture Model (GMM) algorithm for the segmentation of concealed objects in PMMW images is presented. Our work is concerned with the fact that the GMM is a parametric statistical model, which is often used to characterize the statistical behavior of images. Our approach is three-fold: First, we remove the noise from the image using both a notch reject filter and a total variation filter. Next, we use an adaptive parameter initialization GMM algorithm (APIGMM) for simulating the histogram of images. The APIGMM provides an initial number of Gaussian components and start with more appropriate parameter. Bayesian decision is employed to separate the pixels of concealed objects from other areas. At last, the confidence interval (CI) method, alongside local gradient information, is used to extract the concealed objects. The proposed hybrid segmentation approach detects the concealed objects more accurately, even compared to two other state-of-the-art segmentation methods.
A Multipoint Method for Detecting Genotyping Errors and Mutations in Sibling-Pair Linkage Data
Douglas, Julie A.; Boehnke, Michael; Lange, Kenneth
2000-01-01
The identification of genes contributing to complex diseases and quantitative traits requires genetic data of high fidelity, because undetected errors and mutations can profoundly affect linkage information. The recent emphasis on the use of the sibling-pair design eliminates or decreases the likelihood of detection of genotyping errors and marker mutations through apparent Mendelian incompatibilities or close double recombinants. In this article, we describe a hidden Markov method for detect...
Round-off error in long-term orbital integrations using multistep methods
Quinlan, Gerald D.
1994-01-01
Techniques for reducing roundoff error are compared by testing them on high-order Stormer and summetric multistep methods. The best technique for most applications is to write the equation in summed, function-evaluation form and to store the coefficients as rational numbers. A larger error reduction can be achieved by writing the equation in backward-difference form and performing some of the additions in extended precision, but this entails a larger central processing unit (cpu) cost.
Discontinuous Galerkin methods and a posteriori error analysis for heterogenous diffusion problems
International Nuclear Information System (INIS)
Stephansen, A.F.
2007-12-01
In this thesis we analyse a discontinuous Galerkin (DG) method and two computable a posteriori error estimators for the linear and stationary advection-diffusion-reaction equation with heterogeneous diffusion. The DG method considered, the SWIP method, is a variation of the Symmetric Interior Penalty Galerkin method. The difference is that the SWIP method uses weighted averages with weights that depend on the diffusion. The a priori analysis shows optimal convergence with respect to mesh-size and robustness with respect to heterogeneous diffusion, which is confirmed by numerical tests. Both a posteriori error estimators are of the residual type and control the energy (semi-)norm of the error. Local lower bounds are obtained showing that almost all indicators are independent of heterogeneities. The exception is for the non-conforming part of the error, which has been evaluated using the Oswald interpolator. The second error estimator is sharper in its estimate with respect to the first one, but it is slightly more costly. This estimator is based on the construction of an H(div)-conforming Raviart-Thomas-Nedelec flux using the conservativeness of DG methods. Numerical results show that both estimators can be used for mesh-adaptation. (author)
Estimating misclassification error: a closer look at cross-validation based methods
Directory of Open Access Journals (Sweden)
Ounpraseuth Songthip
2012-11-01
Full Text Available Abstract Background To estimate a classifier’s error in predicting future observations, bootstrap methods have been proposed as reduced-variation alternatives to traditional cross-validation (CV methods based on sampling without replacement. Monte Carlo (MC simulation studies aimed at estimating the true misclassification error conditional on the training set are commonly used to compare CV methods. We conducted an MC simulation study to compare a new method of bootstrap CV (BCV to k-fold CV for estimating clasification error. Findings For the low-dimensional conditions simulated, the modest positive bias of k-fold CV contrasted sharply with the substantial negative bias of the new BCV method. This behavior was corroborated using a real-world dataset of prognostic gene-expression profiles in breast cancer patients. Our simulation results demonstrate some extreme characteristics of variance and bias that can occur due to a fault in the design of CV exercises aimed at estimating the true conditional error of a classifier, and that appear not to have been fully appreciated in previous studies. Although CV is a sound practice for estimating a classifier’s generalization error, using CV to estimate the fixed misclassification error of a trained classifier conditional on the training set is problematic. While MC simulation of this estimation exercise can correctly represent the average bias of a classifier, it will overstate the between-run variance of the bias. Conclusions We recommend k-fold CV over the new BCV method for estimating a classifier’s generalization error. The extreme negative bias of BCV is too high a price to pay for its reduced variance.
SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA
International Nuclear Information System (INIS)
Jang, Inseok; Jung, Wondea; Seong, Poong Hyun
2015-01-01
The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation
A Concealed Information Test with multimodal measurement.
Ambach, Wolfgang; Bursch, Stephanie; Stark, Rudolf; Vaitl, Dieter
2010-03-01
A Concealed Information Test (CIT) investigates differential physiological responses to deed-related (probe) vs. irrelevant items. The present study focused on the detection of concealed information using simultaneous recordings of autonomic and brain electrical measures. As a secondary issue, verbal and pictorial presentations were compared with respect to their influence on the recorded measures. Thirty-one participants underwent a mock-crime scenario with a combined verbal and pictorial presentation of nine items. The subsequent CIT, designed with respect to event-related potential (ERP) measurement, used a 3-3.5s interstimulus interval. The item presentation modality, i.e. pictures or written words, was varied between subjects; no response was required from the participants. In addition to electroencephalogram (EEG), electrodermal activity (EDA), electrocardiogram (ECG), respiratory activity, and finger plethysmogram were recorded. A significant probe-vs.-irrelevant effect was found for each of the measures. Compared to sole ERP measurement, the combination of ERP and EDA yielded incremental information for detecting concealed information. Although, EDA per se did not reach the predictive value known from studies primarily designed for peripheral physiological measurement. Presentation modality neither influenced the detection accuracy for autonomic measures nor EEG measures; this underpins the equivalence of verbal and pictorial item presentation in a CIT, regardless of the physiological measures recorded. Future studies should further clarify whether the incremental validity observed in the present study reflects a differential sensitivity of ERP and EDA to different sub-processes in a CIT. Copyright 2009 Elsevier B.V. All rights reserved.
Correction method for the error of diamond tool's radius in ultra-precision cutting
Wang, Yi; Yu, Jing-chi
2010-10-01
The compensation method for the error of diamond tool's cutting edge is a bottle-neck technology to hinder the high accuracy aspheric surface's directly formation after single diamond turning. Traditional compensation was done according to the measurement result from profile meter, which took long measurement time and caused low processing efficiency. A new compensation method was firstly put forward in the article, in which the correction of the error of diamond tool's cutting edge was done according to measurement result from digital interferometer. First, detailed theoretical calculation related with compensation method was deduced. Then, the effect after compensation was simulated by computer. Finally, φ50 mm work piece finished its diamond turning and new correction turning under Nanotech 250. Testing surface achieved high shape accuracy pv 0.137λ and rms=0.011λ, which approved the new compensation method agreed with predictive analysis, high accuracy and fast speed of error convergence.
Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error
Miller, Austin
In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.
The nuclear physical method for high pressure steam manifold water level gauging and its error
International Nuclear Information System (INIS)
Li Nianzu; Li Beicheng; Jia Shengming
1993-10-01
A new method, which is non-contact on measured water level, for measuring high pressure steam manifold water level with nuclear detection technique is introduced. This method overcomes the inherent drawback of previous water level gauges based on other principles. This method can realize full range real time monitoring on the continuous water level of high pressure steam manifold from the start to full load of boiler, and the actual value of water level can be obtained. The measuring errors were analysed on site. Errors from practical operation in Tianjin Junliangcheng Power Plant and in laboratory are also presented
Development of an analysis rule of diagnosis error for standard method of human reliability analysis
International Nuclear Information System (INIS)
Jeong, W. D.; Kang, D. I.; Jeong, K. S.
2003-01-01
This paper presents the status of development of Korea standard method for Human Reliability Analysis (HRA), and proposed a standard procedure and rules for the evaluation of diagnosis error probability. The quality of KSNP HRA was evaluated using the requirement of ASME PRA standard guideline, and the design requirement for the standard HRA method was defined. Analysis procedure and rules, developed so far, to analyze diagnosis error probability was suggested as a part of the standard method. And also a study of comprehensive application was performed to evaluate the suitability of the proposed rules
A new method for weakening the combined effect of residual errors on multibeam bathymetric data
Zhao, Jianhu; Yan, Jun; Zhang, Hongmei; Zhang, Yuqing; Wang, Aixue
2014-12-01
Multibeam bathymetric system (MBS) has been widely applied in the marine surveying for providing high-resolution seabed topography. However, some factors degrade the precision of bathymetry, including the sound velocity, the vessel attitude, the misalignment angle of the transducer and so on. Although these factors have been corrected strictly in bathymetric data processing, the final bathymetric result is still affected by their residual errors. In deep water, the result usually cannot meet the requirements of high-precision seabed topography. The combined effect of these residual errors is systematic, and it's difficult to separate and weaken the effect using traditional single-error correction methods. Therefore, the paper puts forward a new method for weakening the effect of residual errors based on the frequency-spectrum characteristics of seabed topography and multibeam bathymetric data. Four steps, namely the separation of the low-frequency and the high-frequency part of bathymetric data, the reconstruction of the trend of actual seabed topography, the merging of the actual trend and the extracted microtopography, and the accuracy evaluation, are involved in the method. Experiment results prove that the proposed method could weaken the combined effect of residual errors on multibeam bathymetric data and efficiently improve the accuracy of the final post-processing results. We suggest that the method should be widely applied to MBS data processing in deep water.
Analysis of Statistical Methods and Errors in the Articles Published in the Korean Journal of Pain
Yim, Kyoung Hoon; Han, Kyoung Ah; Park, Soo Young
2010-01-01
Background Statistical analysis is essential in regard to obtaining objective reliability for medical research. However, medical researchers do not have enough statistical knowledge to properly analyze their study data. To help understand and potentially alleviate this problem, we have analyzed the statistical methods and errors of articles published in the Korean Journal of Pain (KJP), with the intention to improve the statistical quality of the journal. Methods All the articles, except case reports and editorials, published from 2004 to 2008 in the KJP were reviewed. The types of applied statistical methods and errors in the articles were evaluated. Results One hundred and thirty-nine original articles were reviewed. Inferential statistics and descriptive statistics were used in 119 papers and 20 papers, respectively. Only 20.9% of the papers were free from statistical errors. The most commonly adopted statistical method was the t-test (21.0%) followed by the chi-square test (15.9%). Errors of omission were encountered 101 times in 70 papers. Among the errors of omission, "no statistics used even though statistical methods were required" was the most common (40.6%). The errors of commission were encountered 165 times in 86 papers, among which "parametric inference for nonparametric data" was the most common (33.9%). Conclusions We found various types of statistical errors in the articles published in the KJP. This suggests that meticulous attention should be given not only in the applying statistical procedures but also in the reviewing process to improve the value of the article. PMID:20552071
A new surgical technique for concealed penis using an advanced musculocutaneous scrotal flap.
Han, Dong-Seok; Jang, Hoon; Youn, Chang-Shik; Yuk, Seung-Mo
2015-06-19
Until recently, no single, universally accepted surgical method has existed for all types of concealed penis repairs. We describe a new surgical technique for repairing concealed penis by using an advanced musculocutaneous scrotal flap. From January 2010 to June 2014, we evaluated 12 patients (12-40 years old) with concealed penises who were surgically treated with an advanced musculocutaneous scrotal flap technique after degloving through a ventral approach. All the patients were scheduled for regular follow-up at 6, 12, and 24 weeks postoperatively. The satisfaction grade for penile size, morphology, and voiding status were evaluated using a questionnaire preoperatively and at all of the follow-ups. Information regarding complications was obtained during the postoperative hospital stay and at all follow-ups. The patients' satisfaction grades, which included the penile size, morphology, and voiding status, improved postoperatively compared to those preoperatively. All patients had penile lymphedema postoperatively; however, this disappeared within 6 weeks. There were no complications such as skin necrosis and contracture, voiding difficulty, or erectile dysfunction. Our advanced musculocutaneous scrotal flap technique for concealed penis repair is technically easy and safe. In addition, it provides a good cosmetic appearance, functional outcomes and excellent postoperative satisfaction grades. Lastly, it seems applicable in any type of concealed penis, including cases in which the ventral skin defect is difficult to cover.
The systematic error of temperature noise correlation measurement method and self-calibration
International Nuclear Information System (INIS)
Tian Hong; Tong Yunxian
1993-04-01
The turbulent transport behavior of fluid noise and the nature of noise affect on the velocity measurement system have been studied. The systematic error of velocity measurement system is analyzed. A theoretical calibration method is proposed, which makes the velocity measurement of time-correlation as an absolute measurement method. The theoretical results are in good agreement with experiments
Error analysis of some Galerkin - least squares methods for the elasticity equations
International Nuclear Information System (INIS)
Franca, L.P.; Stenberg, R.
1989-05-01
We consider the recent technique of stabilizing mixed finite element methods by augmenting the Galerkin formulation with least squares terms calculated separately on each element. The error analysis is performed in a unified manner yielding improved results for some methods introduced earlier. In addition, a new formulation is introduced and analyzed [pt
Error analysis and system improvements in phase-stepping methods for photoelasticity
International Nuclear Information System (INIS)
Wenyan Ji
1997-11-01
In the past automated photoelasticity has been demonstrated to be one of the most efficient technique for determining the complete state of stress in a 3-D component. However, the measurement accuracy, which depends on many aspects of both the theoretical foundations and experimental procedures, has not been studied properly. The objective of this thesis is to reveal the intrinsic properties of the errors, provide methods for reducing them and finally improve the system accuracy. A general formulation for a polariscope with all the optical elements in an arbitrary orientation was deduced using the method of Mueller Matrices. The deduction of this formulation indicates an inherent connectivity among the optical elements and gives a knowledge of the errors. In addition, this formulation also shows a common foundation among the photoelastic techniques, consequently, these techniques share many common error sources. The phase-stepping system proposed by Patterson and Wang was used as an exemplar to analyse the errors and provide the proposed improvements. This system can be divided into four parts according to their function, namely the optical system, light source, image acquisition equipment and image analysis software. All the possible error sources were investigated separately and the methods for reducing the influence of the errors and improving the system accuracy are presented. To identify the contribution of each possible error to the final system output, a model was used to simulate the errors and analyse their consequences. Therefore the contribution to the results from different error sources can be estimated quantitatively and finally the accuracy of the systems can be improved. For a conventional polariscope, the system accuracy can be as high as 99.23% for the fringe order and the error less than 5 degrees for the isoclinic angle. The PSIOS system is limited to the low fringe orders. For a fringe order of less than 1.5, the accuracy is 94.60% for fringe
A Method and Support Tool for the Analysis of Human Error Hazards in Digital Devices
International Nuclear Information System (INIS)
Lee, Yong Hee; Kim, Seon Soo; Lee, Yong Hee
2012-01-01
In recent years, many nuclear power plants have adopted modern digital I and C technologies since they are expected to significantly improve their performance and safety. Modern digital technologies were expected to significantly improve both the economical efficiency and safety of nuclear power plants. However, the introduction of an advanced main control room (MCR) is accompanied with lots of changes in forms and features and differences through virtue of new digital devices. Many user-friendly displays and new features in digital devices are not enough to prevent human errors in nuclear power plants (NPPs). It may be an urgent to matter find the human errors potentials due to digital devices, and their detailed mechanisms. We can then consider them during the design of digital devices and their interfaces. The characteristics of digital technologies and devices may give many opportunities to the interface management, and can be integrated into a compact single workstation in an advanced MCR, such that workers can operate the plant with minimum burden under any operating condition. However, these devices may introduce new types of human errors, and thus we need a means to evaluate and prevent such errors, especially within digital devices for NPPs. This research suggests a new method named HEA-BIS (Human Error Analysis based on Interaction Segment) to confirm and detect human errors associated with digital devices. This method can be facilitated by support tools when used to ensure the safety when applying digital devices in NPPs
SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER
International Nuclear Information System (INIS)
QIAN, S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.
2007-01-01
Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately
Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil
2011-01-01
Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.
An error compensation method for a linear array sun sensor with a V-shaped slit
International Nuclear Information System (INIS)
Fan, Qiao-yun; Tan, Xiao-feng
2015-01-01
Existing methods of improving measurement accuracy, such as polynomial fitting and increasing pixel numbers, cannot guarantee high precision and good miniaturization specifications of a microsun sensor at the same time. Therefore, a novel integrated and accurate error compensation method is proposed. A mathematical error model is established according to the analysis results of all the contributing factors, and the model parameters are calculated through multi-sets simultaneous calibration. The numerical simulation results prove that the calibration method is unaffected by installation errors introduced by the calibration process, and is capable of separating the sensor’s intrinsic and extrinsic parameters precisely, and obtaining accurate and robust intrinsic parameters. In laboratorial calibration, the calibration data are generated by using a two-axis rotation table and a sun simulator. The experimental results show that owing to the proposed error compensation method, the sun sensor’s measurement accuracy is improved by 30 times throughout its field of view (±60° × ±60°), with a RMS error of 0.1°. (paper)
Covariate measurement error correction methods in mediation analysis with failure time data.
Zhao, Shanshan; Prentice, Ross L
2014-12-01
Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This article focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error, and error associated with temporal variation. The underlying model with the "true" mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling designs. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. © 2014, The International Biometric Society.
Some error estimates for the lumped mass finite element method for a parabolic problem
Chatzipantelidis, P.
2012-01-01
We study the spatially semidiscrete lumped mass method for the model homogeneous heat equation with homogeneous Dirichlet boundary conditions. Improving earlier results we show that known optimal order smooth initial data error estimates for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods. © 2011 American Mathematical Society.
HUMAN ERROR QUANTIFICATION USING PERFORMANCE SHAPING FACTORS IN THE SPAR-H METHOD
Energy Technology Data Exchange (ETDEWEB)
Harold S. Blackman; David I. Gertman; Ronald L. Boring
2008-09-01
This paper describes a cognitively based human reliability analysis (HRA) quantification technique for estimating the human error probabilities (HEPs) associated with operator and crew actions at nuclear power plants. The method described here, Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method, was developed to aid in characterizing and quantifying human performance at nuclear power plants. The intent was to develop a defensible method that would consider all factors that may influence performance. In the SPAR-H approach, calculation of HEP rates is especially straightforward, starting with pre-defined nominal error rates for cognitive vs. action-oriented tasks, and incorporating performance shaping factor multipliers upon those nominal error rates.
Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods.
Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun
2016-01-07
This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.
Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods
Directory of Open Access Journals (Sweden)
Huiliang Cao
2016-01-01
Full Text Available This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC, Quadrature Force Correction (QFC and Coupling Stiffness Correction (CSC methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.
Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods
Cao, Huiliang; Li, Hongsheng; Kou, Zhiwei; Shi, Yunbo; Tang, Jun; Ma, Zongmin; Shen, Chong; Liu, Jun
2016-01-01
This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses’ quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups’ output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability. PMID:26751455
Reduction of very large reaction mechanisms using methods based on simulation error minimization
Energy Technology Data Exchange (ETDEWEB)
Nagy, Tibor; Turanyi, Tamas [Institute of Chemistry, Eoetvoes University (ELTE), P.O. Box 32, H-1518 Budapest (Hungary)
2009-02-15
A new species reduction method called the Simulation Error Minimization Connectivity Method (SEM-CM) was developed. According to the SEM-CM algorithm, a mechanism building procedure is started from the important species. Strongly connected sets of species, identified on the basis of the normalized Jacobian, are added and several consistent mechanisms are produced. The combustion model is simulated with each of these mechanisms and the mechanism causing the smallest error (i.e. deviation from the model that uses the full mechanism), considering the important species only, is selected. Then, in several steps other strongly connected sets of species are added, the size of the mechanism is gradually increased and the procedure is terminated when the error becomes smaller than the required threshold. A new method for the elimination of redundant reactions is also presented, which is called the Principal Component Analysis of Matrix F with Simulation Error Minimization (SEM-PCAF). According to this method, several reduced mechanisms are produced by using various PCAF thresholds. The reduced mechanism having the least CPU time requirement among the ones having almost the smallest error is selected. Application of SEM-CM and SEM-PCAF together provides a very efficient way to eliminate redundant species and reactions from large mechanisms. The suggested approach was tested on a mechanism containing 6874 irreversible reactions of 345 species that describes methane partial oxidation to high conversion. The aim is to accurately reproduce the concentration-time profiles of 12 major species with less than 5% error at the conditions of an industrial application. The reduced mechanism consists of 246 reactions of 47 species and its simulation is 116 times faster than using the full mechanism. The SEM-CM was found to be more effective than the classic Connectivity Method, and also than the DRG, two-stage DRG, DRGASA, basic DRGEP and extended DRGEP methods. (author)
Research on the Method of Noise Error Estimation of Atomic Clocks
Song, H. J.; Dong, S. W.; Li, W.; Zhang, J. H.; Jing, Y. J.
2017-05-01
The simulation methods of different noises of atomic clocks are given. The frequency flicker noise of atomic clock is studied by using the Markov process theory. The method for estimating the maximum interval error of the frequency white noise is studied by using the Wiener process theory. Based on the operation of 9 cesium atomic clocks in the time frequency reference laboratory of NTSC (National Time Service Center), the noise coefficients of the power-law spectrum model are estimated, and the simulations are carried out according to the noise models. Finally, the maximum interval error estimates of the frequency white noises generated by the 9 cesium atomic clocks have been acquired.
Error baseline rates of five sample preparation methods used to characterize RNA virus populations
Kugelman, Jeffrey R.; Wiley, Michael R.; Nagle, Elyse R.; Reyes, Daniel; Pfeffer, Brad P.; Kuhn, Jens H.; Sanchez-Lockhart, Mariano; Palacios, Gustavo F.
2017-01-01
Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic “no amplification” method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a “targeted” amplification method, sequence-independent single-primer amplification (SISPA) as a “random” amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced “no amplification” method, and Illumina TruSeq RNA Access as a “targeted” enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4−5) of all compared methods. PMID:28182717
A method to deal with installation errors of wearable accelerometers for human activity recognition
International Nuclear Information System (INIS)
Jiang, Ming; Wang, Zhelong; Shang, Hong; Li, Hongyi; Wang, Yuechao
2011-01-01
Human activity recognition (HAR) by using wearable accelerometers has gained significant interest in recent years in a range of healthcare areas, including inferring metabolic energy expenditure, predicting falls, measuring gait parameters and monitoring daily activities. The implementation of HAR relies heavily on the correctness of sensor fixation. The installation errors of wearable accelerometers may dramatically decrease the accuracy of HAR. In this paper, a method is proposed to improve the robustness of HAR to the installation errors of accelerometers. The method first calculates a transformation matrix by using Gram–Schmidt orthonormalization in order to eliminate the sensor's orientation error and then employs a low-pass filter with a cut-off frequency of 10 Hz to eliminate the main effect of the sensor's misplacement. The experimental results showed that the proposed method obtained a satisfactory performance for HAR. The average accuracy rate from ten subjects was 95.1% when there were no installation errors, and was 91.9% when installation errors were involved in wearable accelerometers
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-09-01
The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO 4 ·5H 2 O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.
Energy Technology Data Exchange (ETDEWEB)
Jang, Seunghyun; Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)
2016-10-15
The human failure events (HFEs) are considered in the development of system fault trees as well as accident sequence event trees in part of Probabilistic Safety Assessment (PSA). As a method for analyzing the human error, several methods, such as Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR), and Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) are used and new methods for human reliability analysis (HRA) are under developing at this time. This paper presents a dynamic HRA method for assessing the human failure events and estimation of human error probability for filtered containment venting system (FCVS) is performed. The action associated with implementation of the containment venting during a station blackout sequence is used as an example. In this report, dynamic HRA method was used to analyze FCVS-related operator action. The distributions of the required time and the available time were developed by MAAP code and LHS sampling. Though the numerical calculations given here are only for illustrative purpose, the dynamic HRA method can be useful tools to estimate the human error estimation and it can be applied to any kind of the operator actions, including the severe accident management strategy.
Errors in accident data, its types, causes and methods of rectification-analysis of the literature.
Ahmed, Ashar; Sadullah, Ahmad Farhan Mohd; Yahya, Ahmad Shukri
2017-07-29
Most of the decisions taken to improve road safety are based on accident data, which makes it the back bone of any country's road safety system. Errors in this data will lead to misidentification of black spots and hazardous road segments, projection of false estimates pertinent to accidents and fatality rates, and detection of wrong parameters responsible for accident occurrence, thereby making the entire road safety exercise ineffective. Its extent varies from country to country depending upon various factors. Knowing the type of error in the accident data and the factors causing it enables the application of the correct method for its rectification. Therefore there is a need for a systematic literature review that addresses the topic at a global level. This paper fulfils the above research gap by providing a synthesis of literature for the different types of errors found in the accident data of 46 countries across the six regions of the world. The errors are classified and discussed with respect to each type and analysed with respect to income level; assessment with regard to the magnitude for each type is provided; followed by the different causes that result in their occurrence, and the various methods used to address each type of error. Among high-income countries the extent of error in reporting slight, severe, non-fatal and fatal injury accidents varied between 39-82%, 16-52%, 12-84%, and 0-31% respectively. For middle-income countries the error for the same categories varied between 93-98%, 32.5-96%, 34-99% and 0.5-89.5% respectively. The only four studies available for low-income countries showed that the error in reporting non-fatal and fatal accidents varied between 69-80% and 0-61% respectively. The logistic relation of error in accident data reporting, dichotomised at 50%, indicated that as the income level of a country increases the probability of having less error in accident data also increases. Average error in recording information related to the
Energy Technology Data Exchange (ETDEWEB)
Zamonsky, O M [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)
2000-07-01
The accuracy of the solutions produced by the Discrete Ordinates neutron transport nodal methods is analyzed.The obtained new numerical methodologies increase the accuracy of the analyzed scheems and give a POSTERIORI error estimators. The accuracy improvement is obtained with new equations that make the numerical procedure free of truncation errors and proposing spatial reconstructions of the angular fluxes that are more accurate than those used until present. An a POSTERIORI error estimator is rigurously obtained for one dimensional systems that, in certain type of problems, allows to quantify the accuracy of the solutions. From comparisons with the one dimensional results, an a POSTERIORI error estimator is also obtained for multidimensional systems. LOCAL indicators, which quantify the spatial distribution of the errors, are obtained by the decomposition of the menctioned estimators. This makes the proposed methodology suitable to perform adaptive calculations. Some numerical examples are presented to validate the theoretical developements and to illustrate the ranges where the proposed approximations are valid.
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
a Gross Error Elimination Method for Point Cloud Data Based on Kd-Tree
Kang, Q.; Huang, G.; Yang, S.
2018-04-01
Point cloud data has been one type of widely used data sources in the field of remote sensing. Key steps of point cloud data's pro-processing focus on gross error elimination and quality control. Owing to the volume feature of point could data, existed gross error elimination methods need spend massive memory both in space and time. This paper employed a new method which based on Kd-tree algorithm to construct, k-nearest neighbor algorithm to search, settled appropriate threshold to determine with result turns out a judgement that whether target point is or not an outlier. Experimental results show that, our proposed algorithm will help to delete gross error in point cloud data and facilitate to decrease memory consumption, improve efficiency.
The behaviour of the local error in splitting methods applied to stiff problems
International Nuclear Information System (INIS)
Kozlov, Roman; Kvaernoe, Anne; Owren, Brynjulf
2004-01-01
Splitting methods are frequently used in solving stiff differential equations and it is common to split the system of equations into a stiff and a nonstiff part. The classical theory for the local order of consistency is valid only for stepsizes which are smaller than what one would typically prefer to use in the integration. Error control and stepsize selection devices based on classical local order theory may lead to unstable error behaviour and inefficient stepsize sequences. Here, the behaviour of the local error in the Strang and Godunov splitting methods is explained by using two different tools, Lie series and singular perturbation theory. The two approaches provide an understanding of the phenomena from different points of view, but both are consistent with what is observed in numerical experiments
A GROSS ERROR ELIMINATION METHOD FOR POINT CLOUD DATA BASED ON KD-TREE
Directory of Open Access Journals (Sweden)
Q. Kang
2018-04-01
Full Text Available Point cloud data has been one type of widely used data sources in the field of remote sensing. Key steps of point cloud data’s pro-processing focus on gross error elimination and quality control. Owing to the volume feature of point could data, existed gross error elimination methods need spend massive memory both in space and time. This paper employed a new method which based on Kd-tree algorithm to construct, k-nearest neighbor algorithm to search, settled appropriate threshold to determine with result turns out a judgement that whether target point is or not an outlier. Experimental results show that, our proposed algorithm will help to delete gross error in point cloud data and facilitate to decrease memory consumption, improve efficiency.
International Nuclear Information System (INIS)
Barros, R.C. de; Larsen, E.W.
1991-01-01
A generalization of the one-group Spectral Green's Function (SGF) method is developed for multigroup, slab-geometry discrete ordinates (S N ) problems. The multigroup SGF method is free from spatial truncation errors; it generated numerical values for the cell-edge and cell-average angular fluxes that agree with the analytic solution of the multigroup S N equations. Numerical results are given to illustrate the method's accuracy
Accurate and fast methods to estimate the population mutation rate from error prone sequences
Directory of Open Access Journals (Sweden)
Miyamoto Michael M
2009-08-01
Full Text Available Abstract Background The population mutation rate (θ remains one of the most fundamental parameters in genetics, ecology, and evolutionary biology. However, its accurate estimation can be seriously compromised when working with error prone data such as expressed sequence tags, low coverage draft sequences, and other such unfinished products. This study is premised on the simple idea that a random sequence error due to a chance accident during data collection or recording will be distributed within a population dataset as a singleton (i.e., as a polymorphic site where one sampled sequence exhibits a unique base relative to the common nucleotide of the others. Thus, one can avoid these random errors by ignoring the singletons within a dataset. Results This strategy is implemented under an infinite sites model that focuses on only the internal branches of the sample genealogy where a shared polymorphism can arise (i.e., a variable site where each alternative base is represented by at least two sequences. This approach is first used to derive independently the same new Watterson and Tajima estimators of θ, as recently reported by Achaz 1 for error prone sequences. It is then used to modify the recent, full, maximum-likelihood model of Knudsen and Miyamoto 2, which incorporates various factors for experimental error and design with those for coalescence and mutation. These new methods are all accurate and fast according to evolutionary simulations and analyses of a real complex population dataset for the California seahare. Conclusion In light of these results, we recommend the use of these three new methods for the determination of θ from error prone sequences. In particular, we advocate the new maximum likelihood model as a starting point for the further development of more complex coalescent/mutation models that also account for experimental error and design.
The error analysis of the determination of the activity coefficients via the isopiestic method
International Nuclear Information System (INIS)
Zhou Jun; Chen Qiyuan; Fang Zheng; Liang Yizeng; Liu Shijun; Zhou Yong
2005-01-01
Error analysis is very important to experimental designs. The error analysis of the determination of activity coefficients for a binary system via the isopiestic method shows that the error sources include not only the experimental errors of the analyzed molalities and the measured osmotic coefficients, but also the deviation of the regressed values from the experimental data when the regression function is used. It also shows that the accurate chemical analysis of the molality of the test solution is important, and it is preferable to keep the error of the measured osmotic coefficients changeless in all isopiestic experiments including those experiments on the very dilute solutions. The isopiestic experiments on the dilute solutions are very important, and the lowest molality should be low enough so that a theoretical method can be used below the lowest molality. And it is necessary that the isopiestic experiment should be done on the test solutions of lower than 0.1 mol . kg -1 . For most electrolytes solutions, it is usually preferable to require the lowest molality to be less than 0.05 mol . kg -1 . Moreover, the experimental molalities of the test solutions should be firstly arranged by keeping the interval of the logarithms of the molalities nearly constant, and secondly more number of high molalities should be arranged, and we propose to arrange the experimental molalities greater than 1 mol . kg -1 according to some kind of the arithmetical progression of the intervals of the molalities. After experiments, the error of the calculated activity coefficients of the solutes could be calculated from the actually values of the errors of the measured isopiestic molalities and the deviations of the regressed values from the experimental values with our obtained equations
Wu, Zedong
2018-04-05
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is is highly accurate and efficient.
International Nuclear Information System (INIS)
Zhang Wan-Zhen; Chen Zhe-Bo; Xia Bin-Feng; Lin Bin; Cao Xiang-Qun
2014-01-01
Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector–camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Lugtig, Peter
2017-01-01
This paper proposes a method to simultaneously estimate both measurement and nonresponse errors for attitudinal and behavioural questions in a longitudinal survey. The method uses a Multi-Trait Multi-Method (MTMM) approach, which is commonly used to estimate the reliability and validity of survey
Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations
Jin, Bangti; Lazarov, Raytcho; Zhou, Zhi
2013-01-01
initial data, i.e., ν ∈ H2(Ω) ∩ H0 1(Ω) and ν ∈ L2(Ω). For the lumped mass method, the optimal L2-norm error estimate is valid only under an additional assumption on the mesh, which in two dimensions is known to be satisfied for symmetric meshes. Finally
The Effect of Error in Item Parameter Estimates on the Test Response Function Method of Linking.
Kaskowitz, Gary S.; De Ayala, R. J.
2001-01-01
Studied the effect of item parameter estimation for computation of linking coefficients for the test response function (TRF) linking/equating method. Simulation results showed that linking was more accurate when there was less error in the parameter estimates, and that 15 or 25 common items provided better results than 5 common items under both…
Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation
Prentice, J. S. C.
2012-01-01
An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…
Digital halftoning methods for selectively partitioning error into achromatic and chromatic channels
Mulligan, Jeffrey B.
1990-01-01
A method is described for reducing the visibility of artifacts arising in the display of quantized color images on CRT displays. The method is based on the differential spatial sensitivity of the human visual system to chromatic and achromatic modulations. Because the visual system has the highest spatial and temporal acuity for the luminance component of an image, a technique which will reduce luminance artifacts at the expense of introducing high-frequency chromatic errors is sought. A method based on controlling the correlations between the quantization errors in the individual phosphor images is explored. The luminance component is greatest when the phosphor errors are positively correlated, and is minimized when the phosphor errors are negatively correlated. The greatest effect of the correlation is obtained when the intensity quantization step sizes of the individual phosphors have equal luminances. For the ordered dither algorithm, a version of the method can be implemented by simply inverting the matrix of thresholds for one of the color components.
Addressing Phase Errors in Fat-Water Imaging Using a Mixed Magnitude/Complex Fitting Method
Hernando, D.; Hines, C. D. G.; Yu, H.; Reeder, S.B.
2012-01-01
Accurate, noninvasive measurements of liver fat content are needed for the early diagnosis and quantitative staging of nonalcoholic fatty liver disease. Chemical shift-based fat quantification methods acquire images at multiple echo times using a multiecho spoiled gradient echo sequence, and provide fat fraction measurements through postprocessing. However, phase errors, such as those caused by eddy currents, can adversely affect fat quantification. These phase errors are typically most significant at the first echo of the echo train, and introduce bias in complex-based fat quantification techniques. These errors can be overcome using a magnitude-based technique (where the phase of all echoes is discarded), but at the cost of significantly degraded signal-to-noise ratio, particularly for certain choices of echo time combinations. In this work, we develop a reconstruction method that overcomes these phase errors without the signal-to-noise ratio penalty incurred by magnitude fitting. This method discards the phase of the first echo (which is often corrupted) while maintaining the phase of the remaining echoes (where phase is unaltered). We test the proposed method on 104 patient liver datasets (from 52 patients, each scanned twice), where the fat fraction measurements are compared to coregistered spectroscopy measurements. We demonstrate that mixed fitting is able to provide accurate fat fraction measurements with high signal-to-noise ratio and low bias over a wide choice of echo combinations. PMID:21713978
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C.
2018-01-01
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
The assessment of cognitive errors using an observer-rated method.
Drapeau, Martin
2014-01-01
Cognitive Errors (CEs) are a key construct in cognitive behavioral therapy (CBT). Integral to CBT is that individuals with depression process information in an overly negative or biased way, and that this bias is reflected in specific depressotypic CEs which are distinct from normal information processing. Despite the importance of this construct in CBT theory, practice, and research, few methods are available to researchers and clinicians to reliably identify CEs as they occur. In this paper, the author presents a rating system, the Cognitive Error Rating Scale, which can be used by trained observers to identify and assess the cognitive errors of patients or research participants in vivo, i.e., as they are used or reported by the patients or participants. The method is described, including some of the more important rating conventions to be considered when using the method. This paper also describes the 15 cognitive errors assessed, and the different summary scores, including valence of the CEs, that can be derived from the method.
Tight Error Bounds for Fourier Methods for Option Pricing for Exponential Levy Processes
Crocce, Fabian
2016-01-06
Prices of European options whose underlying asset is driven by the L´evy process are solutions to partial integrodifferential Equations (PIDEs) that generalise the Black-Scholes equation by incorporating a non-local integral term to account for the discontinuities in the asset price. The Levy -Khintchine formula provides an explicit representation of the characteristic function of a L´evy process (cf, [6]): One can derive an exact expression for the Fourier transform of the solution of the relevant PIDE. The rapid rate of convergence of the trapezoid quadrature and the speedup provide efficient methods for evaluationg option prices, possibly for a range of parameter configurations simultaneously. A couple of works have been devoted to the error analysis and parameter selection for these transform-based methods. In [5] several payoff functions are considered for a rather general set of models, whose characteristic function is assumed to be known. [4] presents the framework and theoretical approach for the error analysis, and establishes polynomial convergence rates for approximations of the option prices. [1] presents FT-related methods with curved integration contour. The classical flat FT-methods have been, on the other hand, extended for option pricing problems beyond the European framework [3]. We present a methodology for studying and bounding the error committed when using FT methods to compute option prices. We also provide a systematic way of choosing the parameters of the numerical method, minimising the error bound and guaranteeing adherence to a pre-described error tolerance. We focus on exponential L´evy processes that may be of either diffusive or pure jump in type. Our contribution is to derive a tight error bound for a Fourier transform method when pricing options under risk-neutral Levy dynamics. We present a simplified bound that separates the contributions of the payoff and of the process in an easily processed and extensible product form that
International Nuclear Information System (INIS)
Fritsch, Daniel S.; Raghavan, Suraj; Boxwala, Aziz; Earnhart, Jon; Tracton, Gregg; Cullip, Timothy; Chaney, Edward L.
1997-01-01
Purpose: The purpose of this investigation was to develop methods and software for computing realistic digitally reconstructed electronic portal images with known setup errors for use as benchmark test cases for evaluation and intercomparison of computer-based methods for image matching and detecting setup errors in electronic portal images. Methods and Materials: An existing software tool for computing digitally reconstructed radiographs was modified to compute simulated megavoltage images. An interface was added to allow the user to specify which setup parameter(s) will contain computer-induced random and systematic errors in a reference beam created during virtual simulation. Other software features include options for adding random and structured noise, Gaussian blurring to simulate geometric unsharpness, histogram matching with a 'typical' electronic portal image, specifying individual preferences for the appearance of the 'gold standard' image, and specifying the number of images generated. The visible male computed tomography data set from the National Library of Medicine was used as the planning image. Results: Digitally reconstructed electronic portal images with known setup errors have been generated and used to evaluate our methods for automatic image matching and error detection. Any number of different sets of test cases can be generated to investigate setup errors involving selected setup parameters and anatomic volumes. This approach has proved to be invaluable for determination of error detection sensitivity under ideal (rigid body) conditions and for guiding further development of image matching and error detection methods. Example images have been successfully exported for similar use at other sites. Conclusions: Because absolute truth is known, digitally reconstructed electronic portal images with known setup errors are well suited for evaluation of computer-aided image matching and error detection methods. High-quality planning images, such as
A human error taxonomy and its application to an automatic method accident analysis
International Nuclear Information System (INIS)
Matthews, R.H.; Winter, P.W.
1983-01-01
Commentary is provided on the quantification aspects of human factors analysis in risk assessment. Methods for quantifying human error in a plant environment are discussed and their application to system quantification explored. Such a programme entails consideration of the data base and a taxonomy of factors contributing to human error. A multi-levelled approach to system quantification is proposed, each level being treated differently drawing on the advantages of different techniques within the fault/event tree framework. Management, as controller of organization, planning and procedure, is assigned a dominant role. (author)
Czech Academy of Sciences Publication Activity Database
Strakoš, Zdeněk; Tichý, Petr
2002-01-01
Roč. 13, - (2002), s. 56-80 ISSN 1068-9613 R&D Projects: GA ČR GA201/02/0595 Institutional research plan: AV0Z1030915 Keywords : conjugate gradient method * Gauss kvadrature * evaluation of convergence * error bounds * finite precision arithmetic * rounding errors * loss of orthogonality Subject RIV: BA - General Mathematics Impact factor: 0.565, year: 2002 http://etna.mcs.kent.edu/volumes/2001-2010/vol13/abstract.php?vol=13&pages=56-80
A review of some a posteriori error estimates for adaptive finite element methods
Czech Academy of Sciences Publication Activity Database
Segeth, Karel
2010-01-01
Roč. 80, č. 8 (2010), s. 1589-1600 ISSN 0378-4754. [European Seminar on Coupled Problems. Jetřichovice, 08.06.2008-13.06.2008] R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : hp-adaptive finite element method * a posteriori error estimators * computational error estimates Subject RIV: BA - General Mathematics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science/article/pii/S0378475408004230
Concealed semantic and episodic autobiographical memory electrified.
Ganis, Giorgio; Schendan, Haline E
2012-01-01
Electrophysiology-based concealed information tests (CIT) try to determine whether somebody possesses concealed information about a crime-related item (probe) by comparing event-related potentials (ERPs) between this item and comparison items (irrelevants). Although the broader field is sometimes referred to as "memory detection," little attention has been paid to the precise type of underlying memory involved. This study begins addressing this issue by examining the key distinction between semantic and episodic memory in the autobiographical domain within a CIT paradigm. This study also addresses the issue of whether multiple repetitions of the items over the course of the session habituate the brain responses. Participants were tested in a 3-stimulus CIT with semantic autobiographical probes (their own date of birth) and episodic autobiographical probes (a secret date learned just before the study). Results dissociated these two memory conditions on several ERP components. Semantic probes elicited a smaller frontal N2 than episodic probes, consistent with the idea that the frontal N2 decreases with greater pre-existing knowledge about the item. Likewise, semantic probes elicited a smaller central N400 than episodic probes. Semantic probes also elicited a larger P3b than episodic probes because of their richer meaning. In contrast, episodic probes elicited a larger late positive complex (LPC) than semantic probes, because of the recent episodic memory associated with them. All these ERPs showed a difference between probes and irrelevants in both memory conditions, except for the N400, which showed a difference only in the semantic condition. Finally, although repetition affected the ERPs, it did not reduce the difference between probes and irrelevants. These findings show that the type of memory associated with a probe has both theoretical and practical importance for CIT research.
Concealed semantic and episodic autobiographical memory electrified
Directory of Open Access Journals (Sweden)
Giorgio eGanis
2013-01-01
Full Text Available Electrophysiology-based concealed information tests (CIT try to determine whether somebody possesses concealed information about a probe item by comparing event-related potentials (ERPs between this item and comparison items (irrelevants. Although the broader field is sometimes referred to as memory detection, little attention has been paid to the precise type of underlying memory involved. This study begins addressing this issue by examining the key distinction between semantic and episodic memory in the autobiographical domain within a CIT paradigm. This study also addressed the issue of whether multiple repetitions of the items over the course of the session habituate the brain responses. Participants were tested in a 3-stimulus CIT with semantic autobiographical probes (their own date of birth and episodic autobiographical probes (a secret date learned just before the study. Results dissociated these two memory conditions on several ERP components. Semantic probes elicited a smaller frontal N2 than episodic probes, consistent with the idea that the frontal N2 decreases with greater pre-existing semantic knowledge about the item. Likewise, semantic probes elicited a smaller central N400 than episodic probes. Semantic probes also elicited a larger P3b than episodic probes because of their richer meaning. In contrast, episodic probes elicited a larger late positive component (LPC than semantic probes, because of the recent episodic memory associated with them. All these ERPs showed a difference between probes and irrelevants in both memory conditions, except for the N400, which showed a difference only in the semantic condition. Finally, although repetition affected the ERPs, it did not reduce the difference between probes and irrelevants. Thus, the type of memory associated with a probe has both theoretical and practical importance for CIT research.
Concealed semantic and episodic autobiographical memory electrified
Ganis, Giorgio; Schendan, Haline E.
2013-01-01
Electrophysiology-based concealed information tests (CIT) try to determine whether somebody possesses concealed information about a crime-related item (probe) by comparing event-related potentials (ERPs) between this item and comparison items (irrelevants). Although the broader field is sometimes referred to as “memory detection,” little attention has been paid to the precise type of underlying memory involved. This study begins addressing this issue by examining the key distinction between semantic and episodic memory in the autobiographical domain within a CIT paradigm. This study also addresses the issue of whether multiple repetitions of the items over the course of the session habituate the brain responses. Participants were tested in a 3-stimulus CIT with semantic autobiographical probes (their own date of birth) and episodic autobiographical probes (a secret date learned just before the study). Results dissociated these two memory conditions on several ERP components. Semantic probes elicited a smaller frontal N2 than episodic probes, consistent with the idea that the frontal N2 decreases with greater pre-existing knowledge about the item. Likewise, semantic probes elicited a smaller central N400 than episodic probes. Semantic probes also elicited a larger P3b than episodic probes because of their richer meaning. In contrast, episodic probes elicited a larger late positive complex (LPC) than semantic probes, because of the recent episodic memory associated with them. All these ERPs showed a difference between probes and irrelevants in both memory conditions, except for the N400, which showed a difference only in the semantic condition. Finally, although repetition affected the ERPs, it did not reduce the difference between probes and irrelevants. These findings show that the type of memory associated with a probe has both theoretical and practical importance for CIT research. PMID:23355816
Periodic boundary conditions and the error-controlled fast multipole method
Energy Technology Data Exchange (ETDEWEB)
Kabadshow, Ivo
2012-08-22
The simulation of pairwise interactions in huge particle ensembles is a vital issue in scientific research. Especially the calculation of long-range interactions poses limitations to the system size, since these interactions scale quadratically with the number of particles. Fast summation techniques like the Fast Multipole Method (FMM) can help to reduce the complexity to O(N). This work extends the possible range of applications of the FMM to periodic systems in one, two and three dimensions with one unique approach. Together with a tight error control, this contribution enables the simulation of periodic particle systems for different applications without the need to know and tune the FMM specific parameters. The implemented error control scheme automatically optimizes the parameters to obtain an approximation for the minimal runtime for a given energy error bound.
Bayesian interpolation in a dynamic sinusoidal model with application to packet-loss concealment
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Cemgil, Ali Taylan
2010-01-01
a Bayesian inference scheme for the missing observations, hidden states and model parameters of the dynamic model. The inference scheme is based on a Markov chain Monte Carlo method known as Gibbs sampler. We illustrate the performance of the inference scheme to the application of packet-loss concealment...
Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers
Directory of Open Access Journals (Sweden)
Zheng You
2013-04-01
Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.
Optical system error analysis and calibration method of high-accuracy star trackers.
Sun, Ting; Xing, Fei; You, Zheng
2013-04-08
The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.
Concealing emotions: nurses' experiences with induced abortion care.
Yang, Cheng-Fang; Che, Hui-Lian; Hsieh, Hsin-Wan; Wu, Shu-Mei
2016-05-01
To explore the experiences of nurses involved with induced abortion care in the delivery room in Taiwan. Induced abortion has emotional, ethical and legal facets. In Taiwan, several studies have addressed the ethical issues, abortion methods and women's experiences with abortion care. Although abortion rates have increased, there has been insufficient attention on the views and experiences of nurses working in the delivery room who are involved with induced abortion care. Qualitative, semistructured interviews. This study used a purposive sampling method. In total, 22 nurses involved with induced abortion care were selected. Semistructured interviews with guidelines were conducted, and the content analysis method was used to analyse the data. Our study identified one main theme and five associated subthemes: concealing emotions, which included the inability to refuse, contradictory emotions, mental unease, respect for life and self-protection. This is the first specific qualitative study performed in Taiwan to explore nurses' experiences, and this study also sought to address the concealing of emotions by nurses when they perform induced abortion care, which causes moral distress and creates ethical dilemmas. The findings of this study showed that social-cultural beliefs profoundly influence nurses' values and that the rights of nurses are neglected. The profession should promote small-group and case-study discussions, the clarification of values and reflective thinking among nurses. Continued professional education that provides stress relief will allow nurses to develop self-healing and self-care behaviours, which will enable them to overcome the fear of death while strengthening pregnancy termination counselling, leading to better quality professional care. © 2016 John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Yamamoto, Akio; Tatsumi, Masahiro
2006-01-01
In this paper, the scattered source subtraction (SSS) method is newly proposed to improve the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. In the SSS method, the scattered source is subtracted from both side of the diffusion or the transport equation to make spatial variation of the source term to be small. The same neutron balance equation is still used in the SSS method. Since the SSS method just modifies coefficients of node coupling equations (those used in evaluation for the response of partial currents), its implementation is easy. Validity of the present method is verified through test calculations that are carried out in PWR multi-assemblies configurations. The calculation results show that the SSS method can significantly improve the spatial discretization error. Since the SSS method does not have any negative impact on execution time, convergence behavior and memory requirement, it will be useful to reduce the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. (author)
A heteroscedastic measurement error model for method comparison data with replicate measurements.
Nawarathna, Lakshika S; Choudhary, Pankaj K
2015-03-30
Measurement error models offer a flexible framework for modeling data collected in studies comparing methods of quantitative measurement. These models generally make two simplifying assumptions: (i) the measurements are homoscedastic, and (ii) the unobservable true values of the methods are linearly related. One or both of these assumptions may be violated in practice. In particular, error variabilities of the methods may depend on the magnitude of measurement, or the true values may be nonlinearly related. Data with these features call for a heteroscedastic measurement error model that allows nonlinear relationships in the true values. We present such a model for the case when the measurements are replicated, discuss its fitting, and explain how to evaluate similarity of measurement methods and agreement between them, which are two common goals of data analysis, under this model. Model fitting involves dealing with lack of a closed form for the likelihood function. We consider estimation methods that approximate either the likelihood or the model to yield approximate maximum likelihood estimates. The fitting methods are evaluated in a simulation study. The proposed methodology is used to analyze a cholesterol dataset. Copyright © 2015 John Wiley & Sons, Ltd.
A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors
Directory of Open Access Journals (Sweden)
Shuang Wang
2015-12-01
Full Text Available In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF and Least Square Methods (LSM is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.
Reliable methods for computer simulation error control and a posteriori estimates
Neittaanmäki, P
2004-01-01
Recent decades have seen a very rapid success in developing numerical methods based on explicit control over approximation errors. It may be said that nowadays a new direction is forming in numerical analysis, the main goal of which is to develop methods ofreliable computations. In general, a reliable numerical method must solve two basic problems: (a) generate a sequence of approximations that converges to a solution and (b) verify the accuracy of these approximations. A computer code for such a method must consist of two respective blocks: solver and checker.In this book, we are chie
Suppressing carrier removal error in the Fourier transform method for interferogram analysis
International Nuclear Information System (INIS)
Fan, Qi; Yang, Hongru; Li, Gaoping; Zhao, Jianlin
2010-01-01
A new carrier removal method for interferogram analysis using the Fourier transform is presented. The proposed method can be used to suppress the carrier removal error as well as the spectral leakage error. First, the carrier frequencies are estimated with the spectral centroid of the up sidelobe of the apodized interferogram, and then the up sidelobe can be shifted to the origin in the frequency domain by multiplying the original interferogram by a constructed plane reference wave. The influence of the carrier frequencies without an integer multiple of the frequency interval and the window function for apodization of the interferogram can be avoided in our work. The simulation and experimental results show that this method is effective for phase measurement with a high accuracy from a single interferogram
Errors of the backextrapolation method in determination of the blood volume
Schröder, T.; Rösler, U.; Frerichs, I.; Hahn, G.; Ennker, J.; Hellige, G.
1999-01-01
Backextrapolation is an empirical method to calculate the central volume of distribution (for example the blood volume). It is based on the compartment model, which says that after an injection the substance is distributed instantaneously in the central volume with no time delay. The occurrence of recirculation is not taken into account. The change of concentration with time of indocyanine green (ICG) was observed in an in vitro model, in which the volume was recirculating in 60 s and the clearance of the ICG could be varied. It was found that the higher the elimination of ICG, the higher was the error of the backextrapolation method. The theoretical consideration of Schröder et al ( Biomed. Tech. 42 (1997) 7-11) was proved. If the injected substance is eliminated somewhere in the body (i.e. not by radioactive decay), the backextrapolation method produces large errors.
A novel method to correct for pitch and yaw patient setup errors in helical tomotherapy
International Nuclear Information System (INIS)
Boswell, Sarah A.; Jeraj, Robert; Ruchala, Kenneth J.; Olivera, Gustavo H.; Jaradat, Hazim A.; James, Joshua A.; Gutierrez, Alonso; Pearson, Dave; Frank, Gary; Mackie, T. Rock
2005-01-01
An accurate means of determining and correcting for daily patient setup errors is important to the cancer outcome in radiotherapy. While many tools have been developed to detect setup errors, difficulty may arise in accurately adjusting the patient to account for the rotational error components. A novel, automated method to correct for rotational patient setup errors in helical tomotherapy is proposed for a treatment couch that is restricted to motion along translational axes. In tomotherapy, only a narrow superior/inferior section of the target receives a dose at any instant, thus rotations in the sagittal and coronal planes may be approximately corrected for by very slow continuous couch motion in a direction perpendicular to the scanning direction. Results from proof-of-principle tests indicate that the method improves the accuracy of treatment delivery, especially for long and narrow targets. Rotational corrections about an axis perpendicular to the transverse plane continue to be implemented easily in tomotherapy by adjustment of the initial gantry angle
A TOA-AOA-Based NLOS Error Mitigation Method for Location Estimation
Directory of Open Access Journals (Sweden)
Tianshuang Qiu
2007-12-01
Full Text Available This paper proposes a geometric method to locate a mobile station (MS in a mobile cellular network when both the range and angle measurements are corrupted by non-line-of-sight (NLOS errors. The MS location is restricted to an enclosed region by geometric constraints from the temporal-spatial characteristics of the radio propagation channel. A closed-form equation of the MS position, time of arrival (TOA, angle of arrival (AOA, and angle spread is provided. The solution space of the equation is very large because the angle spreads are random variables in nature. A constrained objective function is constructed to further limit the MS position. A Lagrange multiplier-based solution and a numerical solution are proposed to resolve the MS position. The estimation quality of the estimator in term of Ã¢Â€ÂœbiasedÃ¢Â€Â or Ã¢Â€ÂœunbiasedÃ¢Â€Â is discussed. The scale factors, which may be used to evaluate NLOS propagation level, can be estimated by the proposed method. AOA seen at base stations may be corrected to some degree. The performance comparisons among the proposed method and other hybrid location methods are investigated on different NLOS error models and with two scenarios of cell layout. It is found that the proposed method can deal with NLOS error effectively, and it is attractive for location estimation in cellular networks.
Error analysis of motion correction method for laser scanning of moving objects
Goel, S.; Lohani, B.
2014-05-01
The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.
Hwang, Jae Joon; Kim, Kee-Deog; Park, Hyok; Park, Chang Seo; Jeong, Ho-Gul
2014-01-01
Superimposition has been used as a method to evaluate the changes of orthodontic or orthopedic treatment in the dental field. With the introduction of cone beam CT (CBCT), evaluating 3 dimensional changes after treatment became possible by superimposition. 4 point plane orientation is one of the simplest ways to achieve superimposition of 3 dimensional images. To find factors influencing superimposition error of cephalometric landmarks by 4 point plane orientation method and to evaluate the reproducibility of cephalometric landmarks for analyzing superimposition error, 20 patients were analyzed who had normal skeletal and occlusal relationship and took CBCT for diagnosis of temporomandibular disorder. The nasion, sella turcica, basion and midpoint between the left and the right most posterior point of the lesser wing of sphenoidal bone were used to define a three-dimensional (3D) anatomical reference co-ordinate system. Another 15 reference cephalometric points were also determined three times in the same image. Reorientation error of each landmark could be explained substantially (23%) by linear regression model, which consists of 3 factors describing position of each landmark towards reference axes and locating error. 4 point plane orientation system may produce an amount of reorientation error that may vary according to the perpendicular distance between the landmark and the x-axis; the reorientation error also increases as the locating error and shift of reference axes viewed from each landmark increases. Therefore, in order to reduce the reorientation error, accuracy of all landmarks including the reference points is important. Construction of the regression model using reference points of greater precision is required for the clinical application of this model.
A Generalized Pivotal Quantity Approach to Analytical Method Validation Based on Total Error.
Yang, Harry; Zhang, Jianchun
2015-01-01
The primary purpose of method validation is to demonstrate that the method is fit for its intended use. Traditionally, an analytical method is deemed valid if its performance characteristics such as accuracy and precision are shown to meet prespecified acceptance criteria. However, these acceptance criteria are not directly related to the method's intended purpose, which is usually a gurantee that a high percentage of the test results of future samples will be close to their true values. Alternate "fit for purpose" acceptance criteria based on the concept of total error have been increasingly used. Such criteria allow for assessing method validity, taking into account the relationship between accuracy and precision. Although several statistical test methods have been proposed in literature to test the "fit for purpose" hypothesis, the majority of the methods are not designed to protect the risk of accepting unsuitable methods, thus having the potential to cause uncontrolled consumer's risk. In this paper, we propose a test method based on generalized pivotal quantity inference. Through simulation studies, the performance of the method is compared to five existing approaches. The results show that both the new method and the method based on β-content tolerance interval with a confidence level of 90%, hereafter referred to as the β-content (0.9) method, control Type I error and thus consumer's risk, while the other existing methods do not. It is further demonstrated that the generalized pivotal quantity method is less conservative than the β-content (0.9) method when the analytical methods are biased, whereas it is more conservative when the analytical methods are unbiased. Therefore, selection of either the generalized pivotal quantity or β-content (0.9) method for an analytical method validation depends on the accuracy of the analytical method. It is also shown that the generalized pivotal quantity method has better asymptotic properties than all of the current
Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
Jin, B.; Lazarov, R.; Pasciak, J.; Zhou, Z.
2014-01-01
© 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.
Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
Jin, B.
2014-05-30
© 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.
Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations
Jin, Bangti
2013-01-01
We consider the initial boundary value problem for a homogeneous time-fractional diffusion equation with an initial condition ν(x) and a homogeneous Dirichlet boundary condition in a bounded convex polygonal domain Ω. We study two semidiscrete approximation schemes, i.e., the Galerkin finite element method (FEM) and lumped mass Galerkin FEM, using piecewise linear functions. We establish almost optimal with respect to the data regularity error estimates, including the cases of smooth and nonsmooth initial data, i.e., ν ∈ H2(Ω) ∩ H0 1(Ω) and ν ∈ L2(Ω). For the lumped mass method, the optimal L2-norm error estimate is valid only under an additional assumption on the mesh, which in two dimensions is known to be satisfied for symmetric meshes. Finally, we present some numerical results that give insight into the reliability of the theoretical study. © 2013 Society for Industrial and Applied Mathematics.
Directory of Open Access Journals (Sweden)
Şuayip Yüzbaşı
2017-03-01
Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.
Evaluating Method Engineer Performance: an error classification and preliminary empirical study
Directory of Open Access Journals (Sweden)
Steven Kelly
1998-11-01
Full Text Available We describe an approach to empirically test the use of metaCASE environments to model methods. Both diagrams and matrices have been proposed as a means for presenting the methods. These different paradigms may have their own effects on how easily and well users can model methods. We extend Batra's classification of errors in data modelling to cover metamodelling, and use it to measure the performance of a group of metamodellers using either diagrams or matrices. The tentative results from this pilot study confirm the usefulness of the classification, and show some interesting differences between the paradigms.
A method for optical ground station reduce alignment error in satellite-ground quantum experiments
He, Dong; Wang, Qiang; Zhou, Jian-Wei; Song, Zhi-Jun; Zhong, Dai-Jun; Jiang, Yu; Liu, Wan-Sheng; Huang, Yong-Mei
2018-03-01
A satellite dedicated for quantum science experiments, has been developed and successfully launched from Jiuquan, China, on August 16, 2016. Two new optical ground stations (OGSs) were built to cooperate with the satellite to complete satellite-ground quantum experiments. OGS corrected its pointing direction by satellite trajectory error to coarse tracking system and uplink beacon sight, therefore fine tracking CCD and uplink beacon optical axis alignment accuracy was to ensure that beacon could cover the quantum satellite in all time when it passed the OGSs. Unfortunately, when we tested specifications of the OGSs, due to the coarse tracking optical system was commercial telescopes, the change of position of the target in the coarse CCD was up to 600μrad along with the change of elevation angle. In this paper, a method of reduce alignment error between beacon beam and fine tracking CCD is proposed. Firstly, OGS fitted the curve of target positions in coarse CCD along with the change of elevation angle. Secondly, OGS fitted the curve of hexapod secondary mirror positions along with the change of elevation angle. Thirdly, when tracking satellite, the fine tracking error unloaded on the real-time zero point position of coarse CCD which computed by the firstly calibration data. Simultaneously the positions of the hexapod secondary mirror were adjusted by the secondly calibration data. Finally the experiment result is proposed. Results show that the alignment error is less than 50μrad.
Impact of Channel Estimation Errors on Multiuser Detection via the Replica Method
Directory of Open Access Journals (Sweden)
Li Husheng
2005-01-01
Full Text Available For practical wireless DS-CDMA systems, channel estimation is imperfect due to noise and interference. In this paper, the impact of channel estimation errors on multiuser detection (MUD is analyzed under the framework of the replica method. System performance is obtained in the large system limit for optimal MUD, linear MUD, and turbo MUD, and is validated by numerical results for finite systems.
Directory of Open Access Journals (Sweden)
Kim Hyang-Mi
2012-09-01
Full Text Available Abstract Background In epidemiological studies, it is often not possible to measure accurately exposures of participants even if their response variable can be measured without error. When there are several groups of subjects, occupational epidemiologists employ group-based strategy (GBS for exposure assessment to reduce bias due to measurement errors: individuals of a group/job within study sample are assigned commonly to the sample mean of exposure measurements from their group in evaluating the effect of exposure on the response. Therefore, exposure is estimated on an ecological level while health outcomes are ascertained for each subject. Such study design leads to negligible bias in risk estimates when group means are estimated from ‘large’ samples. However, in many cases, only a small number of observations are available to estimate the group means, and this causes bias in the observed exposure-disease association. Also, the analysis in a semi-ecological design may involve exposure data with the majority missing and the rest observed with measurement errors and complete response data collected with ascertainment. Methods In workplaces groups/jobs are naturally ordered and this could be incorporated in estimation procedure by constrained estimation methods together with the expectation and maximization (EM algorithms for regression models having measurement error and missing values. Four methods were compared by a simulation study: naive complete-case analysis, GBS, the constrained GBS (CGBS, and the constrained expectation and maximization (CEM. We illustrated the methods in the analysis of decline in lung function due to exposures to carbon black. Results Naive and GBS approaches were shown to be inadequate when the number of exposure measurements is too small to accurately estimate group means. The CEM method appears to be best among them when within each exposure group at least a ’moderate’ number of individuals have their
Concealed identification symbols and nondestructive determination of the identification symbols
Nance, Thomas A.; Gibbs, Kenneth M.
2014-09-16
The concealing of one or more identification symbols into a target object and the subsequent determination or reading of such symbols through non-destructive testing is described. The symbols can be concealed in a manner so that they are not visible to the human eye and/or cannot be readily revealed to the human eye without damage or destruction of the target object. The identification symbols can be determined after concealment by e.g., the compilation of multiple X-ray images. As such, the present invention can also provide e.g., a deterrent to theft and the recovery of lost or stolen objects.
Errors in the estimation method for the rejection of vibrations in adaptive optics systems
Kania, Dariusz
2017-06-01
In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.
The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications
International Nuclear Information System (INIS)
Foo, Jasmine; Wan Xiaoliang; Karniadakis, George Em
2008-01-01
Stochastic spectral methods are numerical techniques for approximating solutions to partial differential equations with random parameters. In this work, we present and examine the multi-element probabilistic collocation method (ME-PCM), which is a generalized form of the probabilistic collocation method. In the ME-PCM, the parametric space is discretized and a collocation/cubature grid is prescribed on each element. Both full and sparse tensor product grids based on Gauss and Clenshaw-Curtis quadrature rules are considered. We prove analytically and observe in numerical tests that as the parameter space mesh is refined, the convergence rate of the solution depends on the quadrature rule of each element only through its degree of exactness. In addition, the L 2 error of the tensor product interpolant is examined and an adaptivity algorithm is provided. Numerical examples demonstrating adaptive ME-PCM are shown, including low-regularity problems and long-time integration. We test the ME-PCM on two-dimensional Navier-Stokes examples and a stochastic diffusion problem with various random input distributions and up to 50 dimensions. While the convergence rate of ME-PCM deteriorates in 50 dimensions, the error in the mean and variance is two orders of magnitude lower than the error obtained with the Monte Carlo method using only a small number of samples (e.g., 100). The computational cost of ME-PCM is found to be favorable when compared to the cost of other methods including stochastic Galerkin, Monte Carlo and quasi-random sequence methods
Gauld, Cassandra S; Lewis, Ioni; White, Katherine M
2014-01-01
Making a conscious effort to hide the fact that you are texting while driving (i.e., concealed texting) is a deliberate and risky behaviour involving attention diverted away from the road. As the most frequent users of text messaging services and mobile phones while driving, young people appear at heightened risk of crashing from engaging in this behaviour. This study investigated the phenomenon of concealed texting while driving, and utilised an extended Theory of Planned Behaviour (TPB) including the additional predictors of moral norm, mobile phone involvement, and anticipated regret to predict young drivers' intentions and subsequent behaviour. Participants (n=171) were aged 17-25 years, owned a mobile phone, and had a current driver's licence. Participants completed a questionnaire measuring their intention to conceal texting while driving, and a follow-up questionnaire a week later to report their behavioural engagement. The results of hierarchical multiple regression analyses showed overall support for the predictive utility of the TPB with the standard constructs accounting for 69% of variance in drivers' intentions, and the extended predictors contributing an additional 6% of variance in intentions over and above the standard constructs. Attitude, subjective norm, PBC, moral norm, and mobile phone involvement emerged as significant predictors of intentions; and intention was the only significant predictor of drivers' self-reported behaviour. These constructs can provide insight into key focal points for countermeasures including advertising and other public education strategies aimed at influencing young drivers to reconsider their engagement in this risky behaviour. Copyright © 2013 Elsevier Ltd. All rights reserved.
A method for the quantification of model form error associated with physical systems.
Energy Technology Data Exchange (ETDEWEB)
Wallen, Samuel P.; Brake, Matthew Robert
2014-03-01
In the process of model validation, models are often declared valid when the differences between model predictions and experimental data sets are satisfactorily small. However, little consideration is given to the effectiveness of a model using parameters that deviate slightly from those that were fitted to data, such as a higher load level. Furthermore, few means exist to compare and choose between two or more models that reproduce data equally well. These issues can be addressed by analyzing model form error, which is the error associated with the differences between the physical phenomena captured by models and that of the real system. This report presents a new quantitative method for model form error analysis and applies it to data taken from experiments on tape joint bending vibrations. Two models for the tape joint system are compared, and suggestions for future improvements to the method are given. As the available data set is too small to draw any statistical conclusions, the focus of this paper is the development of a methodology that can be applied to general problems.
Recursive prediction error methods for online estimation in nonlinear state-space models
Directory of Open Access Journals (Sweden)
Dag Ljungquist
1994-04-01
Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.
Human reliability analysis of errors of commission: a review of methods and applications
Energy Technology Data Exchange (ETDEWEB)
Reer, B
2007-06-15
Illustrated by specific examples relevant to contemporary probabilistic safety assessment (PSA), this report presents a review of human reliability analysis (HRA) addressing post initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions. The review addressed both methods and applications. Emerging HRA methods providing advanced features and explicit guidance suitable for PSA are: A Technique for Human Event Analysis (ATHEANA, key publications in 1998/2000), Methode d'Evaluation de la Realisation des Missions Operateur pour la Surete (MERMOS, 1998/2000), the EOC HRA method developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, 2003), the Misdiagnosis Tree Analysis (MDTA) method (2005/2006), the Cognitive Reliability and Error Analysis Method (CREAM, 1998), and the Commission Errors Search and Assessment (CESA) method (2002/2004). As a result of a thorough investigation of various PSA/HRA applications, this paper furthermore presents an overview of EOCs (termination of safety injection, shutdown of secondary cooling, etc.) referred to in predictive studies and a qualitative review of cases of EOC quantification. The main conclusions of the review of both the methods and the EOC HRA cases are: (1) The CESA search scheme, which proceeds from possible operator actions to the affected systems to scenarios, may be preferable because this scheme provides a formalized way for identifying relatively important scenarios with EOC opportunities; (2) an EOC identification guidance like CESA, which is strongly based on the procedural guidance and important measures of systems or components affected by inappropriate actions, however should pay some attention to EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions. (3) Orientations of advanced EOC quantification comprise a) modeling of multiple contexts for a given scenario, b) accounting for
Error analysis in Fourier methods for option pricing for exponential Lévy processes
Crocce, Fabian
2015-01-07
We derive an error bound for utilising the discrete Fourier transform method for solving Partial Integro-Differential Equations (PIDE) that describe european option prices for exponential Lévy driven asset prices. We give sufficient conditions for the existence of a L? bound that separates the dynamical contribution from that arising from the type of the option n in question. The bound achieved does not rely on information of the asymptotic behaviour of option prices at extreme asset values. In addition, we demonstrate improved numerical performance for select examples of practical relevance when compared to established bounding methods.
Human reliability analysis of errors of commission: a review of methods and applications
International Nuclear Information System (INIS)
Reer, B.
2007-06-01
Illustrated by specific examples relevant to contemporary probabilistic safety assessment (PSA), this report presents a review of human reliability analysis (HRA) addressing post initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions. The review addressed both methods and applications. Emerging HRA methods providing advanced features and explicit guidance suitable for PSA are: A Technique for Human Event Analysis (ATHEANA, key publications in 1998/2000), Methode d'Evaluation de la Realisation des Missions Operateur pour la Surete (MERMOS, 1998/2000), the EOC HRA method developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, 2003), the Misdiagnosis Tree Analysis (MDTA) method (2005/2006), the Cognitive Reliability and Error Analysis Method (CREAM, 1998), and the Commission Errors Search and Assessment (CESA) method (2002/2004). As a result of a thorough investigation of various PSA/HRA applications, this paper furthermore presents an overview of EOCs (termination of safety injection, shutdown of secondary cooling, etc.) referred to in predictive studies and a qualitative review of cases of EOC quantification. The main conclusions of the review of both the methods and the EOC HRA cases are: (1) The CESA search scheme, which proceeds from possible operator actions to the affected systems to scenarios, may be preferable because this scheme provides a formalized way for identifying relatively important scenarios with EOC opportunities; (2) an EOC identification guidance like CESA, which is strongly based on the procedural guidance and important measures of systems or components affected by inappropriate actions, however should pay some attention to EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions. (3) Orientations of advanced EOC quantification comprise a) modeling of multiple contexts for a given scenario, b) accounting for
Local and accumulated truncation errors in a class of perturbative numerical methods
International Nuclear Information System (INIS)
Adam, G.; Adam, S.; Corciovei, A.
1980-01-01
The approach to the solution of the radial Schroedinger equation using piecewise perturbative theory with a step function reference potential leads to a class of powerful numerical methods, conveniently abridged as SF-PNM(K), where K denotes the order at which the perturbation series was truncated. In the present paper rigorous results are given for the local truncation errors and bounds are derived for the accumulated truncated errors associated to SF-PNM(K), K = 0, 1, 2. They allow us to establish the smoothness conditions which have to be fulfilled by the potential in order to ensure a safe use of SF-PNM(K), and to understand the experimentally observed behaviour of the numerical results with the step size h. (author)
Directory of Open Access Journals (Sweden)
Madeiro Francisco
2010-01-01
Full Text Available Abstract This paper presents an alternative method for determining exact expressions for the bit error probability (BEP of modulation schemes subject to Nakagami- fading. In this method, the Nakagami- fading channel is seen as an additive noise channel whose noise is modeled as the ratio between Gaussian and Nakagami- random variables. The method consists of using the cumulative density function of the resulting noise to obtain closed-form expressions for the BEP of modulation schemes subject to Nakagami- fading. In particular, the proposed method is used to obtain closed-form expressions for the BEP of -ary quadrature amplitude modulation ( -QAM, -ary pulse amplitude modulation ( -PAM, and rectangular quadrature amplitude modulation ( -QAM under Nakagami- fading. The main contribution of this paper is to show that this alternative method can be used to reduce the computational complexity for detecting signals in the presence of fading.
A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization
Foster, John V.; Cunningham, Kevin
2010-01-01
Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the
Beam-pointing error compensation method of phased array radar seeker with phantom-bit technology
Directory of Open Access Journals (Sweden)
Qiuqiu WEN
2017-06-01
Full Text Available A phased array radar seeker (PARS must be able to effectively decouple body motion and accurately extract the line-of-sight (LOS rate for target missile tracking. In this study, the real-time two-channel beam pointing error (BPE compensation method of PARS for LOS rate extraction is designed. The PARS discrete beam motion principium is analyzed, and the mathematical model of beam scanning control is finished. According to the principle of the antenna element shift phase, both the antenna element shift phase law and the causes of beam-pointing error under phantom-bit conditions are analyzed, and the effect of BPE caused by phantom-bit technology (PBT on the extraction accuracy of the LOS rate is examined. A compensation method is given, which includes coordinate transforms, beam angle margin compensation, and detector dislocation angle calculation. When the method is used, the beam angle margin in the pitch and yaw directions is calculated to reduce the effect of the missile body disturbance and to improve LOS rate extraction precision by compensating for the detector dislocation angle. The simulation results validate the proposed method.
Organizational Concealment: An Incentive of Reducing the Responsibility
Tajika, Tomoya
2017-01-01
We studyworkers’ incentives of reporting problems within an OLG organization consisting of a subordinate and a manager. The subordinate is responsible for reporting a problem, and the manager is responsible for solving the reported problem. The subordinate has an incentive to conceal a detected problem since if he reports it but the manager is too lazy to solve the problem, the responsibility is transferred to the subordinate since he becomes a manager in the next period. We show that conceal...
Compressed Domain Packet Loss Concealment of Sinusoidally Coded Speech
DEFF Research Database (Denmark)
Rødbro, Christoffer A.; Christensen, Mads Græsbøll; Andersen, Søren Vang
2003-01-01
We consider the problem of packet loss concealment for voice over IP (VoIP). The speech signal is compressed at the transmitter using a sinusoidal coding scheme working at 8 kbit/s. At the receiver, packet loss concealment is carried out working directly on the quantized sinusoidal parameters......, based on time-scaling of the packets surrounding the missing ones. Subjective listening tests show promising results indicating the potential of sinusoidal speech coding for VoIP....
Weichert, Christoph; Köchert, Paul; Schötka, Eugen; Flügge, Jens; Manske, Eberhard
2018-06-01
The uncertainty of a straightness interferometer is independent of the component used to introduce the divergence angle between the two probing beams, and is limited by three main error sources, which are linked to each other: their resolution, the influence of refractive index gradients and the topography of the straightness reflector. To identify the configuration with minimal uncertainties under laboratory conditions, a fully fibre-coupled heterodyne interferometer was successively equipped with three different wedge prisms, resulting in three different divergence angles (4°, 8° and 20°). To separate the error sources an independent reference with a smaller reproducibility is needed. Therefore, the straightness measurement capability of the Nanometer Comparator, based on a multisensor error separation method, was improved to provide measurements with a reproducibility of 0.2 nm. The comparison results revealed that the influence of the refractive index gradients of air did not increase with interspaces between the probing beams of more than 11.3 mm. Therefore, over a movement range of 220 mm, the lowest uncertainty was achieved with the largest divergence angle. The dominant uncertainty contribution arose from the mirror topography, which was additionally determined with a Fizeau interferometer. The measured topography agreed within ±1.3 nm with the systematic deviations revealed in the straightness comparison, resulting in an uncertainty contribution of 2.6 nm for the straightness interferometer.
On nonstationarity-related errors in modal combination rules of the response spectrum method
Pathak, Shashank; Gupta, Vinay K.
2017-10-01
Characterization of seismic hazard via (elastic) design spectra and the estimation of linear peak response of a given structure from this characterization continue to form the basis of earthquake-resistant design philosophy in various codes of practice all over the world. Since the direct use of design spectrum ordinates is a preferred option for the practicing engineers, modal combination rules play central role in the peak response estimation. Most of the available modal combination rules are however based on the assumption that nonstationarity affects the structural response alike at the modal and overall response levels. This study considers those situations where this assumption may cause significant errors in the peak response estimation, and preliminary models are proposed for the estimation of the extents to which nonstationarity affects the modal and total system responses, when the ground acceleration process is assumed to be a stationary process. It is shown through numerical examples in the context of complete-quadratic-combination (CQC) method that the nonstationarity-related errors in the estimation of peak base shear may be significant, when strong-motion duration of the excitation is too small compared to the period of the system and/or the response is distributed comparably in several modes. It is also shown that these errors are reduced marginally with the use of the proposed nonstationarity factor models.
International Nuclear Information System (INIS)
Gillet, M.
1986-07-01
This thesis presents a study for the surveillance of the ''primary coolant circuit inventory monitoring'' of a pressurized water reactor. A reference model is developed in view of an automatic system ensuring detection and diagnostic in real time. The methods used for the present application are statistical tests and a method related to pattern recognition. The estimation of failures detected, difficult owing to the non-linearity of the problem, is treated by the least error squares method of the predictor or corrector type, and by filtering. It is in this frame that a new optimized method with superlinear convergence is developed, and that a segmented linearization of the model is introduced, in view of a multiple filtering [fr
Assessing Visibility of Individual Transmission Errors in Networked Video
DEFF Research Database (Denmark)
Korhonen, Jari; Mantel, Claire
2016-01-01
could benefit from information about subjective visibility of individual packet losses; for example, computational resources could be directed more efficiently to unequal error protection and concealment by focusing in the visually most disturbing artifacts. In this paper, we present a novel subjective...... methodology for packet loss artifact detection by tapping a touchscreen where a defect is observed. To validate the proposed methodology, the results of a pilot study are presented and analyzed. According to the results, the proposed method can be used to derive qualitatively and statistically meaningful data...... on the subjective visibility of individual packet loss artifacts....
International Nuclear Information System (INIS)
Cooper, S.E.; Wreathall, J.; Thompson, C.M., Drouin, M.; Bley, D.C.
1996-01-01
This paper describes the knowledge base for the application of the new human reliability analysis (HRA) method, a ''A Technique for Human Error Analysis'' (ATHEANA). Since application of ATHEANA requires the identification of previously unmodeled human failure events, especially errors of commission, and associated error-forcing contexts (i.e., combinations of plant conditions and performance shaping factors), this knowledge base is an essential aid for the HRA analyst
Rogel-Castillo, Cristian; Boulton, Roger; Opastpongkarn, Arunwong; Huang, Guangwei; Mitchell, Alyson E
2016-07-27
Concealed damage (CD) is defined as a brown discoloration of the kernel interior (nutmeat) that appears only after moderate to high heat treatment (e.g., blanching, drying, roasting, etc.). Raw almonds with CD have no visible defects before heat treatment. Currently, there are no screening methods available for detecting CD in raw almonds. Herein, the feasibility of using near-infrared (NIR) spectroscopy between 1125 and 2153 nm for the detection of CD in almonds is demonstrated. Almond kernels with CD have less NIR absorbance in the region related with oil, protein, and carbohydrates. With the use of partial least squares discriminant analysis (PLS-DA) and selection of specific wavelengths, three classification models were developed. The calibration models have false-positive and false-negative error rates ranging between 12.4 and 16.1% and between 10.6 and 17.2%, respectively. The percent error rates ranged between 8.2 and 9.2%. Second-derivative preprocessing of the selected wavelength resulted in the most robust predictive model.
Synthetic methods in phase equilibria: A new apparatus and error analysis of the method
DEFF Research Database (Denmark)
Fonseca, José; von Solms, Nicolas
2014-01-01
of the equipment was confirmed through several tests, including measurements along the three phase co-existence line for the system ethane + methanol, the study of the solubility of methane in water, and of carbon dioxide in water. An analysis regarding the application of the synthetic isothermal method...
Error characterization methods for surface soil moisture products from remote sensing
International Nuclear Information System (INIS)
Doubková, M.
2012-01-01
To support the operational use of Synthetic Aperture Radar (SAR) earth observation systems, the European Space Agency (ESA) is developing Sentinel-1 radar satellites operating in C-band. Much like its SAR predecessors (Earth Resource Satellite, ENVISAT, and RADARSAT), the Sentinel-1 will operate at a medium spatial resolution (ranging from 5 to 40 m), but with a greatly improved revisit period, especially over Europe (∼2 days). Given the planned high temporal sampling and the operational configuration Sentinel-1 is expected to be beneficial for operational monitoring of dynamic processes in hydrology and phenology. The benefit of a C-band SAR monitoring service in hydrology has already been demonstrated within the scope of the Soil Moisture for Hydrometeorologic Applications (SHARE) project using data from the Global Mode (GM) of the Advanced Synthetic Aperture Radar (ASAR). To fully exploit the potential of the SAR soil moisture products, well characterized error needs to be provided with the products. Understanding errors of remotely sensed surface soil moisture (SSM) datasets was indispensible for their application in models, for extractions of blended SSM products, as well as for their usage in evaluation of other soil moisture datasets. This thesis has several objectives. First, it provides the basics and state of the art methods for evaluating measures of SSM, including both the standard (e.g. Root Mean Square Error, Correlation coefficient) and the advanced (e.g. Error propagation, Triple collocation) evaluation measures. A summary of applications of soil moisture datasets is presented and evaluation measures are suggested for each application according to its requirement on the dataset quality. The evaluation of the Advanced Synthetic Aperture Radar (ASAR) Global Mode (GM) SSM using the standard and advanced evaluation measures comprises a second objective of the work. To achieve the second objective, the data from the Australian Water Assessment System
Lyons, I.; Furniss, D.; Blandford, A.; Chumbley, G.; Iacovides, I.; Wei, L.; Cox, A.; Mayer, A.; Vos, J.; Galal-Edeen, G. H.; Schnock, K. O.; Dykes, P. C.; Bates, D. W.; Franklin, B. D.
2018-01-01
INTRODUCTION: Intravenous medication administration has traditionally been regarded as error prone, with high potential for harm. A recent US multisite study revealed few potentially harmful errors despite a high overall error rate. However, there is limited evidence about infusion practices in England and how they relate to prevalence and types of error. OBJECTIVES: To determine the prevalence, types and severity of errors and discrepancies in infusion administration in English hospitals, an...
Beam-Based Error Identification and Correction Methods for Particle Accelerators
AUTHOR|(SzGeCERN)692826; Tomas, Rogelio; Nilsson, Thomas
2014-06-10
Modern particle accelerators have tight tolerances on the acceptable deviation from their desired machine parameters. The control of the parameters is of crucial importance for safe machine operation and performance. This thesis focuses on beam-based methods and algorithms to identify and correct errors in particle accelerators. The optics measurements and corrections of the Large Hadron Collider (LHC), which resulted in an unprecedented low β-beat for a hadron collider is described. The transverse coupling is another parameter which is of importance to control. Improvement in the reconstruction of the coupling from turn-by-turn data has resulted in a significant decrease of the measurement uncertainty. An automatic coupling correction method, which is based on the injected beam oscillations, has been successfully used in normal operation of the LHC. Furthermore, a new method to measure and correct chromatic coupling that was applied to the LHC, is described. It resulted in a decrease of the chromatic coupli...
Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation
Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi
2014-01-01
© 2014 Society for Industrial and Applied Mathematics We consider an initial boundary value problem for a one-dimensional fractional-order parabolic equation with a space fractional derivative of Riemann-Liouville type and order α ∈ (1, 2). We study a spatial semidiscrete scheme using the standard Galerkin finite element method with piecewise linear finite elements, as well as fully discrete schemes based on the backward Euler method and the Crank-Nicolson method. Error estimates in the L2(D)- and Hα/2 (D)-norm are derived for the semidiscrete scheme and in the L2(D)-norm for the fully discrete schemes. These estimates cover both smooth and nonsmooth initial data and are expressed directly in terms of the smoothness of the initial data. Extensive numerical results are presented to illustrate the theoretical results.
Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye
2016-03-01
Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.
International Nuclear Information System (INIS)
Zhang, Zhenjiu; Hu, Hong
2013-01-01
The linear and rotary axes are fundamental parts of multi-axis machine tools. The geometric error components of the axes must be measured for motion error compensation to improve the accuracy of the machine tools. In this paper, a simple method named the three point method is proposed to measure the geometric error of the linear and rotary axes of the machine tools using a laser tracker. A sequential multilateration method, where uncertainty is verified through simulation, is applied to measure the 3D coordinates. Three noncollinear points fixed on the stage of each axis are selected. The coordinates of these points are simultaneously measured using a laser tracker to obtain their volumetric errors by comparing these coordinates with ideal values. Numerous equations can be established using the geometric error models of each axis. The geometric error components can be obtained by solving these equations. The validity of the proposed method is verified through a series of experiments. The results indicate that the proposed method can measure the geometric error of the axes to compensate for the errors in multi-axis machine tools.
A low error reconstruction method for confocal holography to determine 3-dimensional properties
Energy Technology Data Exchange (ETDEWEB)
Jacquemin, P.B., E-mail: pbjacque@nps.edu [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada); Herring, R.A. [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada)
2012-06-15
A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as 'wily'. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: Black-Right-Pointing-Pointer Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. Black-Right-Pointing-Pointer Processing of multiple holograms containing the cumulative refractive index through the fluid. Black-Right-Pointing-Pointer Reconstruction issues due to restricting angular scanning to the numerical aperture of the
A low error reconstruction method for confocal holography to determine 3-dimensional properties
International Nuclear Information System (INIS)
Jacquemin, P.B.; Herring, R.A.
2012-01-01
A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as “wily”. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: ► Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. ► Processing of multiple holograms containing the cumulative refractive index through the fluid. ► Reconstruction issues due to restricting angular scanning to the numerical aperture of the beam. ► Minimizing tomographic reconstruction error by defining boundary
Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G
2014-01-27
Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.
Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.
2017-04-01
In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the "exact" adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.
ERRORS MEASUREMENT OF INTERPOLATION METHODS FOR GEOID MODELS: STUDY CASE IN THE BRAZILIAN REGION
Directory of Open Access Journals (Sweden)
Daniel Arana
Full Text Available Abstract: The geoid is an equipotential surface regarded as the altimetric reference for geodetic surveys and it therefore, has several practical applications for engineers. In recent decades the geodetic community has concentrated efforts on the development of highly accurate geoid models through modern techniques. These models are supplied through regular grids which users need to make interpolations. Yet, little information can be obtained regarding the most appropriate interpolation method to extract information from the regular grid of geoidal models. The use of an interpolator that does not represent the geoid surface appropriately can impair the quality of geoid undulations and consequently the height transformation. This work aims to quantify the magnitude of error that comes from a regular mesh of geoid models. The analysis consisted of performing a comparison between the interpolation of the MAPGEO2015 program and three interpolation methods: bilinear, cubic spline and neural networks Radial Basis Function. As a result of the experiments, it was concluded that 2.5 cm of the 18 cm error of the MAPGEO2015 validation is caused by the use of interpolations in the 5'x5' grid.
Evaluation of roundness error using a new method based on a small displacement screw
International Nuclear Information System (INIS)
Nouira, Hichem; Bourdet, Pierre
2014-01-01
In relation to industrial need and the progress of technology, LNE would like to improve the measurement of its primary pressure, spherical and flick standards. The spherical and flick standards are respectively used to calibrate the spindle motion error and the probe which equips commercial conventional cylindricity measuring machines. The primary pressure standards are obtained using pressure balances equipped with rotary pistons with an uncertainty of 5 nm for a piston diameter of 10 mm. Conventional machines are not able to reach such an uncertainty level. That is why the development of a new machine is necessary. To ensure such a level of uncertainty, both stability and performance of the machine are not sufficient, and the data processing should also be done with accuracy less than a nanometre. In this paper, a new method based on the small displacement screw (SDS) model is proposed. A first validation of this method is proposed on a theoretical dataset published by the European Community Bureau of Reference (BCR) in report no 3327. Then, an experiment is prepared in order to validate the new method on real datasets. Specific environment conditions are taken into account and many precautions are considered. The new method is applied to analyse the least-squares circle, minimum zone circle, maximum inscribed circle and minimum circumscribed circle. The results are compared to those done by the reference Chebyshev best-fit method and reveal perfect agreement. The sensibilities of the SDS and Chebyshev methodologies are investigated, and it is revealed that results remain unchanged when the value of the diameter exceeds 700 times the form error. (paper)
Using snowball sampling method with nurses to understand medication administration errors.
Sheu, Shuh-Jen; Wei, Ien-Lan; Chen, Ching-Huey; Yu, Shu; Tang, Fu-In
2009-02-01
We aimed to encourage nurses to release information about drug administration errors to increase understanding of error-related circumstances and to identify high-alert situations. Drug administration errors represent the majority of medication errors, but errors are underreported. Effective ways are lacking to encourage nurses to actively report errors. Snowball sampling was conducted to recruit participants. A semi-structured questionnaire was used to record types of error, hospital and nurse backgrounds, patient consequences, error discovery mechanisms and reporting rates. Eighty-five nurses participated, reporting 328 administration errors (259 actual, 69 near misses). Most errors occurred in medical surgical wards of teaching hospitals, during day shifts, committed by nurses working fewer than two years. Leading errors were wrong drugs and doses, each accounting for about one-third of total errors. Among 259 actual errors, 83.8% resulted in no adverse effects; among remaining 16.2%, 6.6% had mild consequences and 9.6% had serious consequences (severe reaction, coma, death). Actual errors and near misses were discovered mainly through double-check procedures by colleagues and nurses responsible for errors; reporting rates were 62.5% (162/259) vs. 50.7% (35/69) and only 3.5% (9/259) vs. 0% (0/69) were disclosed to patients and families. High-alert situations included administration of 15% KCl, insulin and Pitocin; using intravenous pumps; and implementation of cardiopulmonary resuscitation (CPR). Snowball sampling proved to be an effective way to encourage nurses to release details concerning medication errors. Using empirical data, we identified high-alert situations. Strategies for reducing drug administration errors by nurses are suggested. Survey results suggest that nurses should double check medication administration in known high-alert situations. Nursing management can use snowball sampling to gather error details from nurses in a non
A channel-by-channel method of reducing the errors associated with peak area integration
International Nuclear Information System (INIS)
Luedeke, T.P.; Tripard, G.E.
1996-01-01
A new method of reducing the errors associated with peak area integration has been developed. This method utilizes the signal content of each channel as an estimate of the overall peak area. These individual estimates can then be weighted according to the precision with which each estimate is known, producing an overall area estimate. Experimental measurements were performed on a small peak sitting on a large background, and the results compared to those obtained from a commercial software program. Results showed a marked decrease in the spread of results around the true value (obtained by counting for a long period of time), and a reduction in the statistical uncertainty associated with the peak area. (orig.)
Removal of round off errors in the matrix exponential method for solving the heavy nuclide chain
International Nuclear Information System (INIS)
Lee, Hyun Chul; Noh, Jae Man; Joo, Hyung Kook
2005-01-01
Many nodal codes for core simulation adopt the micro-depletion procedure for the depletion analysis. Unlike the macro-depletion procedure, the microdepletion procedure uses micro-cross sections and number densities of important nuclides to generate the macro cross section of a spatial calculational node. Therefore, it needs to solve the chain equations of the nuclides of interest to obtain their number densities. There are several methods such as the matrix exponential method (MEM) and the chain linearization method (CLM) for solving the nuclide chain equations. The former solves chain equations exactly even when the cycles that come from the alpha decay exist in the chain while the latter solves the chain approximately when the cycles exist in the chain. The former has another advantage over the latter. Many nodal codes for depletion analysis, such as MASTER, solve only the hard coded nuclide chains with the CLM. Therefore, if we want to extend the chain by adding some more nuclides to the chain, we have to modify the source code. In contrast, we can extend the chain just by modifying the input in the MEM because it is easy to implement the MEM solver for solving an arbitrary nuclide chain. In spite of these advantages of the MEM, many nodal codes adopt the chain linearization because the former has a large round off error when the flux level is very high or short lived or strong absorber nuclides exist in the chain. In this paper, we propose a new technique to remove the round off errors in the MEM and we compared the performance of the two methods
Analysis of S-box in Image Encryption Using Root Mean Square Error Method
Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan
2012-07-01
The use of substitution boxes (S-boxes) in encryption applications has proven to be an effective nonlinear component in creating confusion and randomness. The S-box is evolving and many variants appear in literature, which include advanced encryption standard (AES) S-box, affine power affine (APA) S-box, Skipjack S-box, Gray S-box, Lui J S-box, residue prime number S-box, Xyi S-box, and S8 S-box. These S-boxes have algebraic and statistical properties which distinguish them from each other in terms of encryption strength. In some circumstances, the parameters from algebraic and statistical analysis yield results which do not provide clear evidence in distinguishing an S-box for an application to a particular set of data. In image encryption applications, the use of S-boxes needs special care because the visual analysis and perception of a viewer can sometimes identify artifacts embedded in the image. In addition to existing algebraic and statistical analysis already used for image encryption applications, we propose an application of root mean square error technique, which further elaborates the results and enables the analyst to vividly distinguish between the performances of various S-boxes. While the use of the root mean square error analysis in statistics has proven to be effective in determining the difference in original data and the processed data, its use in image encryption has shown promising results in estimating the strength of the encryption method. In this paper, we show the application of the root mean square error analysis to S-box image encryption. The parameters from this analysis are used in determining the strength of S-boxes
Pediatric Nurses' Perceptions of Medication Safety and Medication Error: A Mixed Methods Study.
Alomari, Albara; Wilson, Val; Solman, Annette; Bajorek, Beata; Tinsley, Patricia
2017-05-30
This study aims to outline the current workplace culture of medication practice in a pediatric medical ward. The objective is to explore the perceptions of nurses in a pediatric clinical setting as to why medication administration errors occur. As nurses have a central role in the medication process, it is essential to explore nurses' perceptions of the factors influencing the medication process. Without this understanding, it is difficult to develop effective prevention strategies aimed at reducing medication administration errors. Previous studies were limited to exploring a single and specific aspect of medication safety. The methods used in these studies were limited to survey designs which may lead to incomplete or inadequate information being provided. This study is phase 1 on an action research project. Data collection included a direct observation of nurses during medication preparation and administration, audit based on the medication policy, and guidelines and focus groups with nursing staff. A thematic analysis was undertaken by each author independently to analyze the observation notes and focus group transcripts. Simple descriptive statistics were used to analyze the audit data. The study was conducted in a specialized pediatric medical ward. Four key themes were identified from the combined quantitative and qualitative data: (1) understanding medication errors, (2) the busy-ness of nurses, (3) the physical environment, and (4) compliance with medication policy and practice guidelines. Workload, frequent interruptions to process, poor physical environment design, lack of preparation space, and impractical medication policies are identified as barriers to safe medication practice. Overcoming these barriers requires organizations to review medication process policies and engage nurses more in medication safety research and in designing clinical guidelines for their own practice.
Raab, Stephen S; Andrew-Jaja, Carey; Condel, Jennifer L; Dabbs, David J
2006-01-01
The objective of the study was to determine whether the Toyota production system process improves Papanicolaou test quality and patient safety. An 8-month nonconcurrent cohort study that included 464 case and 639 control women who had a Papanicolaou test was performed. Office workflow was redesigned using Toyota production system methods by introducing a 1-by-1 continuous flow process. We measured the frequency of Papanicolaou tests without a transformation zone component, follow-up and Bethesda System diagnostic frequency of atypical squamous cells of undetermined significance, and diagnostic error frequency. After the intervention, the percentage of Papanicolaou tests lacking a transformation zone component decreased from 9.9% to 4.7% (P = .001). The percentage of Papanicolaou tests with a diagnosis of atypical squamous cells of undetermined significance decreased from 7.8% to 3.9% (P = .007). The frequency of error per correlating cytologic-histologic specimen pair decreased from 9.52% to 7.84%. The introduction of the Toyota production system process resulted in improved Papanicolaou test quality.
International Nuclear Information System (INIS)
Esmaeilzadeh, Hamid; Arzi, Ezatollah; Légaré, François; Hassani, Alireza
2013-01-01
In this paper, using the boundary integral method (BIM), we simulate the effect of temperature fluctuation on the sensitivity of microstructured optical fibre (MOF) surface plasmon resonance (SPR) sensors. The final results indicate that, as the temperature increases, the refractometry sensitivity of our sensor decreases from 1300 nm/RIU at 0 °C to 1200 nm/RIU at 50 °C, leading to ∼7.7% sensitivity reduction and the sensitivity temperature error of 0.15% °C −1 for this case. These results can be used for biosensing temperature-error adjustment in MOF SPR sensors, since biomaterials detection usually happens in this temperature range. Moreover, the signal-to-noise ratio (SNR) of our sensor decreases from 0.265 at 0 °C to 0.154 at 100 °C with the average reduction rate of ∼0.42% °C −1 . The results suggest that at lower temperatures the sensor has a higher SNR. (paper)
Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes
Zavorsky, Gerald S.
2010-01-01
Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…
International Nuclear Information System (INIS)
Abreu, M.P.; Filho, H.A.; Barros, R.C.
1993-01-01
The authors describe a new nodal method for multigroup slab-geometry discrete ordinates S N eigenvalue problems that is completely free from all spatial truncation errors. The unknowns in the method are the node-edge angular fluxes, the node-average angular fluxes, and the effective multiplication factor k eff . The numerical values obtained for these quantities are exactly those of the dominant analytic solution of the S N eigenvalue problem apart from finite arithmetic considerations. This method is based on the use of the standard balance equation and two nonstandard auxiliary equations. In the nonmultiplying regions, e.g., the reflector, we use the multigroup spectral Green's function (SGF) auxiliary equations. In the fuel regions, we use the multigroup spectral diamond (SD) auxiliary equations. The SD auxiliary equation is an extension of the conventional auxiliary equation used in the diamond difference (DD) method. This hybrid characteristic of the SD-SGF method improves both the numerical stability and the convergence rate
International Nuclear Information System (INIS)
Gonzalez Cuesta, M.; Okrent, D.
1985-01-01
This paper proposes a methodology for quantification of risk due to seismic related design and construction errors in nuclear power plants, based on information available on errors discovered in the past. For the purposes of this paper, an error is defined as any event that causes the seismic safety margins of a nuclear power plant to be smaller than implied by current regulatory requirements and industry common practice. Also, the actual reduction in the safety margins caused by the error will be called a deficiency. The method is based on a theoretical model of errors, called a deficiency logic diagram. First, an ultimate cause is present. This ultimate cause is consumated as a specific instance, called originating error. As originating errors may occur in actions to be applied a number of times, a deficiency generation system may be involved. Quality assurance activities will hopefully identify most of these deficiencies, requesting their disposition. However, the quality assurance program is not perfect and some operating plant deficiencies may persist, causing different levels of impact to the plant logic. The paper provides a way of extrapolating information about errors discovered in plants under construction in order to assess the risk due to errors that have not been discovered
Predictive value of ADAMTS-13 on concealed chronic renal failure in COPD patients
Zeng, Mian; Chen, Qingui; Liang, Wenjie; He, Wanmei; Zheng, Haichong; Huang, Chunrong
2017-01-01
Background Impaired renal function is often neglected in COPD patients. Considering that COPD patients usually have an ongoing prothrombotic state and systemic inflammation status, we investigated the association among them and explored the predictive value of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13), on concealed chronic renal failure (CRF) in COPD patients. Methods COPD patients were recruited from the First Affiliated Hospital of Sun Yat-Sen University between January 2015 and December 2016. Control was selected from contemporaneous hospitalized patients without COPD and matched by age and gender at a ratio of 1:1. Estimated glomerular filtration rate (eGFR) was calculated by using the Chronic Kidney Disease Epidemiology Collaboration formula, and all subjects were categorized as having normal renal function (eGFR ≥60 mL min−1 1.73 m−2) and having concealed CRF (normal serum creatinine while eGFR <60 mL min−1 1.73 m−2). Independent correlates of concealed CRF were investigated by logistic regression analysis, and receiver operating characteristic (ROC) curves were used to determine the predictive value of ADAMTS-13. Results In total, 106 COPD and 106 non-COPD patients were finally recruited, and the incidences of concealed CRF were 19.81% and 7.55%, respectively. ADAMTS-13 (odds ratio [OR] =0.858, 95% CI =0.795–0.926), D-dimer (OR =1.095, 95% CI =1.027–1.169), and C-reactive protein (OR =1.252, 95% CI =1.058–1.480) were significantly associated with concealed CRF. Sensitivity and specificity at an ADAMTS-13 cutoff of 318.72 ng/mL were 100% and 81.2%, respectively. The area under the ROC curve was 0.959. Conclusion Prothrombotic state and systemic inflammation status might contribute to explaining the high incidence of concealed CRF in COPD, and plasma ADAMTS-13 levels may serve as a strong predictor. PMID:29255356
International Nuclear Information System (INIS)
Erdtmann, G.
1993-08-01
A sufficiently accurate characterization of the neutron flux and spectrum, i.e. the determination of the thermal flux, the flux ratio and the epithermal flux spectrum shape factor, α, is a prerequisite for all types of absolute and monostandard methods of reactor neutron activation analysis. A convenient method for these measurements is the bare triple monitor method. However, the results of this method, are very imprecise, because there are high error propagation factors form the counting errors of the monitor activities. Procedures are described to calculate the errors of the flux parameters, the α-dependent cross-section ratios, and of the analytical results from the errors of the activities of the monitor isotopes. They are included in FORTRAN programs which also allow a graphical representation of the results. A great number of examples were calculated for ten different irradiation facilities in four reactors and for 28 elements. Plots of the results are presented and discussed. (orig./HP) [de
Do natural methods for fertility regulation increase the risks of genetic errors?
Serra, A
1981-09-01
Genetic errors of many kinds are connected with the reproductive processes and are favored by a nunber of largely uncontrollable, endogenous, and/or exogenous factors. For a long time human beings have taken into their own hands the control of this process. The regulation of fertility is clearly a forceful request to any family, to any community, were it only to lower the level of the consequences of genetic errors. In connection with this request, and in the context of the Congress for the Family of Africa and Europe (Catholic University, January 1981), 1 question must still be raised and possibly answered. The question is: do or can the so called "natural methods" for the regulation of fertility increase the risks of genetic errors with their generally dramatic effects on families and on communities. It is important to try to give as far as possible a scientifically based answer to this question. Fr. Haring, a moral theologian, citing scientific evidence finds it shocking that the rhythm method, so strongly and recently endorsed again by Church authorities, should be classified among the means of "birth control" by way of spontaneous abortion or at least by spontaneous loss of a large number of zygotes which, due to the concrete application of the rhythm method, lack of necessary vitality for survival. He goes on to state that the scientific research provides overwhelming evidence that the rhythm method in its traditional form is responsible for a disproportionate waste of zygotes and a disproportionate frequency of spontaneous abortions and a defective childern. Professor Hilgers, a reproductive physiologist, takes on opposite view, maintaining that the hypotheses are arbitrary and the alarm false. The strongest evidence upon which Fr. Haring bases his moral principles about the use of the natural methods of fertility regulation is a paper by Guerrero and Rojos (1975). These authors examined, retrospectively, the success of 965 pregnancies which occurred in
Valuing urban open space using the travel-cost method and the implications of measurement error.
Hanauer, Merlin M; Reid, John
2017-08-01
Urbanization has placed pressure on open space within and adjacent to cities. In recent decades, a greater awareness has developed to the fact that individuals derive multiple benefits from urban open space. Given the location, there is often a high opportunity cost to preserving urban open space, thus it is important for both public and private stakeholders to justify such investments. The goals of this study are twofold. First, we use detailed surveys and precise, accessible, mapping methods to demonstrate how travel-cost methods can be applied to the valuation of urban open space. Second, we assess the degree to which typical methods of estimating travel times, and thus travel costs, introduce bias to the estimates of welfare. The site we study is Taylor Mountain Regional Park, a 1100-acre space located immediately adjacent to Santa Rosa, California, which is the largest city (∼170,000 population) in Sonoma County and lies 50 miles north of San Francisco. We estimate that the average per trip access value (consumer surplus) is $13.70. We also demonstrate that typical methods of measuring travel costs significantly understate these welfare measures. Our study provides policy-relevant results and highlights the sensitivity of urban open space travel-cost studies to bias stemming from travel-cost measurement error. Copyright © 2017 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Kaspar Küng
2013-01-01
Full Text Available The purpose of this study was (1 to determine frequency and type of medication errors (MEs, (2 to assess the number of MEs prevented by registered nurses, (3 to assess the consequences of ME for patients, and (4 to compare the number of MEs reported by a newly developed medication error self-reporting tool to the number reported by the traditional incident reporting system. We conducted a cross-sectional study on ME in the Cardiovascular Surgery Department of Bern University Hospital in Switzerland. Eligible registered nurses ( involving in the medication process were included. Data on ME were collected using an investigator-developed medication error self reporting tool (MESRT that asked about the occurrence and characteristics of ME. Registered nurses were instructed to complete a MESRT at the end of each shift even if there was no ME. All MESRTs were completed anonymously. During the one-month study period, a total of 987 MESRTs were returned. Of the 987 completed MESRTs, 288 (29% indicated that there had been an ME. Registered nurses reported preventing 49 (5% MEs. Overall, eight (2.8% MEs had patient consequences. The high response rate suggests that this new method may be a very effective approach to detect, report, and describe ME in hospitals.
Directory of Open Access Journals (Sweden)
Cai Ligang
2017-01-01
Full Text Available Instead improving the accuracy of machine tool by increasing the precision of key components level blindly in the production process, the method of combination of SNR quality loss function and machine tool geometric error correlation analysis to optimize five-axis machine tool geometric errors will be adopted. Firstly, the homogeneous transformation matrix method will be used to build five-axis machine tool geometric error modeling. Secondly, the SNR quality loss function will be used for cost modeling. And then, machine tool accuracy optimal objective function will be established based on the correlation analysis. Finally, ISIGHT combined with MATLAB will be applied to optimize each error. The results show that this method is reasonable and appropriate to relax the range of tolerance values, so as to reduce the manufacturing cost of machine tools.
The treatment of commission errors in first generation human reliability analysis methods
Energy Technology Data Exchange (ETDEWEB)
Alvarengga, Marco Antonio Bayout; Fonseca, Renato Alves da, E-mail: bayout@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil); Melo, Paulo Fernando Frutuoso e, E-mail: frutuoso@nuclear.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear
2011-07-01
Human errors in human reliability analysis can be classified generically as errors of omission and commission errors. Omission errors are related to the omission of any human action that should have been performed, but does not occur. Errors of commission are those related to human actions that should not be performed, but which in fact are performed. Both involve specific types of cognitive error mechanisms, however, errors of commission are more difficult to model because they are characterized by non-anticipated actions that are performed instead of others that are omitted (omission errors) or are entered into an operational task without being part of the normal sequence of this task. The identification of actions that are not supposed to occur depends on the operational context that will influence or become easy certain unsafe actions of the operator depending on the operational performance of its parameters and variables. The survey of operational contexts and associated unsafe actions is a characteristic of second-generation models, unlike the first generation models. This paper discusses how first generation models can treat errors of commission in the steps of detection, diagnosis, decision-making and implementation, in the human information processing, particularly with the use of THERP tables of errors quantification. (author)
Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.
Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae
2016-01-01
Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (Pcutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.
Identification of Error of Commissions in the LOCA Using the CESA Method
Energy Technology Data Exchange (ETDEWEB)
Tukhbyet-olla, Myeruyert; Kang, Sunkoo; Kim, Jonghyun [KEPCO international nuclear graduate school, Ulsan (Korea, Republic of)
2015-10-15
An Errors of commission (EOCs) can be defined as the performance of any inappropriate action that aggravates the situation. The primary focus in current PSA is placed on those sequences of hardware failures and/or EOOs that lead to unsafe system states. Although EOCs can be treated when identified, a systematic and comprehensive treatment of EOC opportunities remains outside the scope of PSAs. However, some past experiences in the nuclear industry show that EOCs have contributed to severe accidents. Some recent and emerging human reliability analysis (HRA) methods suggest approaches to identify and quantify EOCs, such as ATHEANA, MERMOS, GRS, MDTA, and CESA. The CESA method, developed by the Risk and Human Reliability Group at the Paul Scherrer Institute, is to identify potentially risk-significant EOCs, given an existing PSA. The main idea underlying the method is to catalog the key actions that are required in the procedural response to plant events and to identify specific scenarios in which these candidate actions could erroneously appear to be required. This paper aims at identifying EOCs in the LOCA by using the CESA method. This study is focused on the identification of EOCs, while the quantification of EOCs is out of scope. Then, this paper applies the CESA method to the emergency operating procedure (EOP) of LOCA for APR1400. Finally, this study presents potential EOCs that may lead to the aggravation in the mitigation of LOCA. This study has identified the EOC events for APR1400 in the LOCA using CESA method. The result identified three candidate EOCs event using operator action catalog and RAW cutset of LOCA. These candidate EOC events are inappropriate terminations of safety injection system, safety injection tank and containment spray system. Then after reviewing top 100 accident sequences of PSA, this study finally identified one EOC scenario and EOC path, that is, inappropriate termination of safety injection system.
Shirley, Natalie R; Ramirez Montes, Paula Andrea
2015-01-01
The purpose of this study was to assess observer error in phase versus component-based scoring systems used to develop age estimation methods in forensic anthropology. A method preferred by forensic anthropologists in the AAFS was selected for this evaluation (the Suchey-Brooks method for the pubic symphysis). The Suchey-Brooks descriptions were used to develop a corresponding component-based scoring system for comparison. Several commonly used reliability statistics (kappa, weighted kappa, and the intraclass correlation coefficient) were calculated to assess observer agreement between two observers and to evaluate the efficacy of each of these statistics for this study. The linear weighted kappa was determined to be the most suitable measure of observer agreement. The results show that a component-based system offers the possibility for more objective scoring than a phase system as long as the coding possibilities for each trait do not exceed three states of expression, each with as little overlap as possible. © 2014 American Academy of Forensic Sciences.
Detection and identification of concealed weapons using matrix pencil
Adve, Raviraj S.; Thayaparan, Thayananthan
2011-06-01
The detection and identification of concealed weapons is an extremely hard problem due to the weak signature of the target buried within the much stronger signal from the human body. This paper furthers the automatic detection and identification of concealed weapons by proposing the use of an effective approach to obtain the resonant frequencies in a measurement. The technique, based on Matrix Pencil, a scheme for model based parameter estimation also provides amplitude information, hence providing a level of confidence in the results. Of specific interest is the fact that Matrix Pencil is based on a singular value decomposition, making the scheme robust against noise.
Macoveciuc, I; Marquez-Grant, N; Horsfall, I; Zioupos, P
2017-01-01
Burning of human remains is one method used by perpetrators to conceal fatal trauma and expert opinions regarding the degree of skeletal evidence concealment are often disparate. This experiment aimed to reduce this incongruence in forensic anthropological interpretation of burned human remains and implicitly contribute to the development of research methodologies sufficiently robust to withstand forensic scrutiny in the courtroom. We have tested the influence of thermal alteration on pre-exi...
Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors
International Nuclear Information System (INIS)
Gordon, J J; Siebers, J V
2007-01-01
The van Herk margin formula (VHMF) relies on the accuracy of the convolution method (CM) to determine clinical target volume (CTV) to planning target volume (PTV) margins. This work (1) evaluates the accuracy of the CM and VHMF as a function of the number of fractions N and other parameters, and (2) proposes an alternative margin algorithm which ensures target coverage for a wider range of parameter values. Dose coverage was evaluated for a spherical target with uniform margin, using the same simplified dose model and CTV coverage criterion as were used in development of the VHMF. Systematic and random setup errors were assumed to be normally distributed with standard deviations Σ and σ. For clinically relevant combinations of σ, Σ and N, margins were determined by requiring that 90% of treatment course simulations have a CTV minimum dose greater than or equal to the static PTV minimum dose. Simulation results were compared with the VHMF and the alternative margin algorithm. The CM and VHMF were found to be accurate for parameter values satisfying the approximate criterion: σ[1 - γN/25] 0.2, because they failed to account for the non-negligible dose variability associated with random setup errors. These criteria are applicable when σ ∼> σ P , where σ P = 0.32 cm is the standard deviation of the normal dose penumbra. (Qualitative behaviour of the CM and VHMF will remain the same, though the criteria might vary if σ P takes values other than 0.32 cm.) When σ P , dose variability due to random setup errors becomes negligible, and the CM and VHMF are valid regardless of the values of Σ and N. When σ ∼> σ P , consistent with the above criteria, it was found that the VHMF can underestimate margins for large σ, small Σ and small N. A potential consequence of this underestimate is that the CTV minimum dose can fall below its planned value in more than the prescribed 10% of treatments. The proposed alternative margin algorithm provides better margin
Li, Xingxing
2014-05-01
displacements is accompanied by a drift due to the potential uncompensated errors. Li et al. (2013) presented a temporal point positioning (TPP) method to quickly capture coseismic displacements with a single GPS receiver in real-time. The TPP approach can overcome the convergence problem of precise point positioning (PPP), and also avoids the integration and de-trending process of the variometric approach. The performance of TPP is demonstrated to be at few centimeters level of displacement accuracy for even twenty minutes interval with real-time precise orbit and clock products. In this study, we firstly present and compare the observation models and processing strategies of the current existing single-receiver methods for real-time GPS seismology. Furthermore, we propose several refinements to the variometric approach in order to eliminate the drift trend in the integrated coseismic displacements. The mathematical relationship between these methods is discussed in detail and their equivalence is also proved. The impact of error components such as satellite ephemeris, ionospheric delay, tropospheric delay, and geometry change on the retrieved displacements are carefully analyzed and investigated. Finally, the performance of these single-receiver approaches for real-time GPS seismology is validated using 1 Hz GPS data collected during the Tohoku-Oki earthquake (Mw 9.0, March 11, 2011) in Japan. It is shown that few centimeters accuracy of coseismic displacements is achievable. Keywords: High-rate GPS; real-time GPS seismology; a single receiver; PPP; variometric approach; temporal point positioning; error analysis; coseismic displacement; fault slip inversion;
Intelligent error correction method applied on an active pixel sensor based star tracker
Schmidt, Uwe
2005-10-01
Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like
Li, S; Lu, M; Kim, J; Glide-Hurst, C; Chetty, I; Zhong, H
2012-06-01
Purpose Clinical implementation of adaptive treatment planning is limited by the lack of quantitative tools to assess deformable image registration errors (R-ERR). The purpose of this study was to develop a method, using finite element modeling (FEM), to estimate registration errors based on mechanical changes resulting from them. Methods An experimental platform to quantify the correlation between registration errors and their mechanical consequences was developed as follows: diaphragm deformation was simulated on the CT images in patients with lung cancer using a finite element method (FEM). The simulated displacement vector fields (F-DVF) were used to warp each CT image to generate a FEM image. B-Spline based (Elastix) registrations were performed from reference to FEM images to generate a registration DVF (R-DVF). The F- DVF was subtracted from R-DVF. The magnitude of the difference vector was defined as the registration error, which is a consequence of mechanically unbalanced energy (UE), computed using 'in-house-developed' FEM software. A nonlinear regression model was used based on imaging voxel data and the analysis considered clustered voxel data within images. Results A regression model analysis showed that UE was significantly correlated with registration error, DVF and the product of registration error and DVF respectively with R̂2=0.73 (R=0.854). The association was verified independently using 40 tracked landmarks. A linear function between the means of UE values and R- DVF*R-ERR has been established. The mean registration error (N=8) was 0.9 mm. 85.4% of voxels fit this model within one standard deviation. Conclusions An encouraging relationship between UE and registration error has been found. These experimental results suggest the feasibility of UE as a valuable tool for evaluating registration errors, thus supporting 4D and adaptive radiotherapy. The research was supported by NIH/NCI R01CA140341. © 2012 American Association of Physicists in
Water flux in animals: analysis of potential errors in the tritiated water method
Energy Technology Data Exchange (ETDEWEB)
Nagy, K.A.; Costa, D.
1979-03-01
Laboratory studies indicate that tritiated water measurements of water flux are accurate to within -7 to +4% in mammals, but errors are larger in some reptiles. However, under conditions that can occur in field studies, errors may be much greater. Influx of environmental water vapor via lungs and skin can cause errors exceeding +-50% in some circumstances. If water flux rates in an animal vary through time, errors approach +-15% in extreme situations, but are near +-3% in more typical circumstances. Errors due to fractional evaporation of tritiated water may approach -9%. This error probably varies between species. Use of an inappropriate equation for calculating water flux from isotope data can cause errors exceeding +-100%. The following sources of error are either negligible or avoidable: use of isotope dilution space as a measure of body water volume, loss of nonaqueous tritium bound to excreta, binding of tritium with nonaqueous substances in the body, radiation toxicity effects, and small analytical errors in isotope measurements. Water flux rates measured with tritiated water should be within +-10% of actual flux rates in most situations.
Water flux in animals: analysis of potential errors in the tritiated water method
International Nuclear Information System (INIS)
Nagy, K.A.; Costa, D.
1979-03-01
Laboratory studies indicate that tritiated water measurements of water flux are accurate to within -7 to +4% in mammals, but errors are larger in some reptiles. However, under conditions that can occur in field studies, errors may be much greater. Influx of environmental water vapor via lungs and skin can cause errors exceeding +-50% in some circumstances. If water flux rates in an animal vary through time, errors approach +-15% in extreme situations, but are near +-3% in more typical circumstances. Errors due to fractional evaporation of tritiated water may approach -9%. This error probably varies between species. Use of an inappropriate equation for calculating water flux from isotope data can cause errors exceeding +-100%. The following sources of error are either negligible or avoidable: use of isotope dilution space as a measure of body water volume, loss of nonaqueous tritium bound to excreta, binding of tritium with nonaqueous substances in the body, radiation toxicity effects, and small analytical errors in isotope measurements. Water flux rates measured with tritiated water should be within +-10% of actual flux rates in most situations
Using a Delphi Method to Identify Human Factors Contributing to Nursing Errors.
Roth, Cheryl; Brewer, Melanie; Wieck, K Lynn
2017-07-01
The purpose of this study was to identify human factors associated with nursing errors. Using a Delphi technique, this study used feedback from a panel of nurse experts (n = 25) on an initial qualitative survey questionnaire followed by summarizing the results with feedback and confirmation. Synthesized factors regarding causes of errors were incorporated into a quantitative Likert-type scale, and the original expert panel participants were queried a second time to validate responses. The list identified 24 items as most common causes of nursing errors, including swamping and errors made by others that nurses are expected to recognize and fix. The responses provided a consensus top 10 errors list based on means with heavy workload and fatigue at the top of the list. The use of the Delphi survey established consensus and developed a platform upon which future study of nursing errors can evolve as a link to future solutions. This list of human factors in nursing errors should serve to stimulate dialogue among nurses about how to prevent errors and improve outcomes. Human and system failures have been the subject of an abundance of research, yet nursing errors continue to occur. © 2016 Wiley Periodicals, Inc.
Impulse radar imaging system for concealed object detection
Podd, F. J. W.; David, M.; Iqbal, G.; Hussain, F.; Morris, D.; Osakue, E.; Yeow, Y.; Zahir, S.; Armitage, D. W.; Peyton, A. J.
2013-10-01
Electromagnetic systems for imaging concealed objects at checkpoints typically employ radiation at millimetre and terahertz frequencies. These systems have been shown to be effective and provide a sufficiently high resolution image. However there are difficulties and current electromagnetic systems have limitations particularly in accurately differentiating between threat and innocuous objects based on shape, surface emissivity or reflectivity, which are indicative parameters. In addition, water has a high absorption coefficient at millimetre wavelength and terahertz frequencies, which makes it more difficult for these frequencies to image through thick damp clothing. This paper considers the potential of using ultra wideband (UWB) in the low gigahertz range. The application of this frequency band to security screening appears to be a relatively new field. The business case for implementing the UWB system has been made financially viable by the recent availability of low-cost integrated circuits operating at these frequencies. Although designed for the communication sector, these devices can perform the required UWB radar measurements as well. This paper reports the implementation of a 2 to 5 GHz bandwidth linear array scanner. The paper describes the design and fabrication of transmitter and receiver antenna arrays whose individual elements are a type of antipodal Vivaldi antenna. The antenna's frequency and angular response were simulated in CST Microwave Studio and compared with laboratory measurements. The data pre-processing methods of background subtraction and deconvolution are implemented to improve the image quality. The background subtraction method uses a reference dataset to remove antenna crosstalk and room reflections from the dataset. The deconvolution method uses a Wiener filter to "sharpen" the returned echoes which improves the resolution of the reconstructed image. The filter uses an impulse response reference dataset and a signal
International Nuclear Information System (INIS)
Fernández-Ahumada, E; Gómez, A; Vallesquino, P; Guerrero, J E; Pérez-Marín, D; Garrido-Varo, A; Fearn, T
2008-01-01
According to the current demands of the authorities, the manufacturers and the consumers, controls and assessments of the feed compound manufacturing process have become a key concern. Among others, it must be assured that a given compound feed is well manufactured and labelled in terms of the ingredient composition. When near-infrared spectroscopy (NIRS) together with linear models were used for the prediction of the ingredient composition, the results were not always acceptable. Therefore, the performance of nonlinear methods has been investigated. Artificial neural networks and least squares support vector machines (LS-SVM) have been applied to a large (N = 20 320) and heterogeneous population of non-milled feed compounds for the NIR prediction of the inclusion percentage of wheat and sunflower meal, as representative of two different classes of ingredients. Compared to partial least squares regression, results showed considerable reductions of standard error of prediction values for both methods and ingredients: reductions of 45% with ANN and 49% with LS-SVM for wheat and reductions of 44% with ANN and 46% with LS-SVM for sunflower meal. These improvements together with the facility of NIRS technology to be implemented in the process make it ideal for meeting the requirements of the animal feed industry
Error Analysis and Calibration Method of a Multiple Field-of-View Navigation System.
Shi, Shuai; Zhao, Kaichun; You, Zheng; Ouyang, Chenguang; Cao, Yongkui; Wang, Zhenzhou
2017-03-22
The Multiple Field-of-view Navigation System (MFNS) is a spacecraft subsystem built to realize the autonomous navigation of the Spacecraft Inside Tiangong Space Station. This paper introduces the basics of the MFNS, including its architecture, mathematical model and analysis, and numerical simulation of system errors. According to the performance requirement of the MFNS, the calibration of both intrinsic and extrinsic parameters of the system is assumed to be essential and pivotal. Hence, a novel method based on the geometrical constraints in object space, called checkerboard-fixed post-processing calibration (CPC), is proposed to solve the problem of simultaneously obtaining the intrinsic parameters of the cameras integrated in the MFNS and the transformation between the MFNS coordinate and the cameras' coordinates. This method utilizes a two-axis turntable and a prior alignment of the coordinates is needed. Theoretical derivation and practical operation of the CPC method are introduced. The calibration experiment results of the MFNS indicate that the extrinsic parameter accuracy of the CPC reaches 0.1° for each Euler angle and 0.6 mm for each position vector component (1σ). A navigation experiment verifies the calibration result and the performance of the MFNS. The MFNS is found to work properly, and the accuracy of the position vector components and Euler angle reaches 1.82 mm and 0.17° (1σ) respectively. The basic mechanism of the MFNS may be utilized as a reference for the design and analysis of multiple-camera systems. Moreover, the calibration method proposed has practical value for its convenience for use and potential for integration into a toolkit.
Peters, R.M.H.; Hofker, M.E.; Zweekhorst, M.B.M.; van Brakel, W.H.; Bunders-Aelen, J.G.F.
2014-01-01
Purpose: This study analyses the experiences of women affected by leprosy, taking into consideration whether they concealed or disclosed their status, and looks specifically at their ‘agency’. The aim is to provide recommendations for stigma-reduction interventions. Methods: The study population
Stand-alone error characterisation of microwave satellite soil moisture using a Fourier method
Error characterisation of satellite-retrieved soil moisture (SM) is crucial for maximizing their utility in research and applications in hydro-meteorology and climatology. Error characteristics can provide insights for retrieval development and validation, and inform suitable strategies for data fus...
A method for local transport analysis in tokamaks with error calculation
International Nuclear Information System (INIS)
Hogeweij, G.M.D.; Hordosy, G.; Lopes Cardozo, N.J.
1989-01-01
Global transport studies have revealed that heat transport in a tokamak is anomalous, but cannot provide information about the nature of the anomaly. Therefore, local transport analysis is essential for the study of anomalous transport. However, the determination of local transport coefficients is not a trivial affair. Generally speaking one can either directly measure the heat diffusivity, χ, by means of heat pulse propagation analysis, or deduce the profile of χ from measurements of the profiles of the temperature, T, and the power deposition. Here we are concerned only with the latter method, the local power balance analysis. For the sake of clarity heat diffusion only is considered: ρ=-gradT/q (1) where ρ=κ -1 =(nχ) -1 is the heat resistivity and q is the heat flux per unit area. It is assumed that the profiles T(r) and q(r) are given with some experimental error. In practice T(r) is measured directly, e.g. from ECE spectroscopy, while q(r) is deduced from the power deposition and loss profiles. The latter cannot be measured directly and is partly determined on the basis of models. This complication will not be considered here. Since in eq. (1) the gradient of T appears, noise on T can severely affect the solution ρ. This means that in general some form of smoothing must be applied. A criterion is needed to select the optimal smoothing. Too much smoothing will wipe out the details, whereas with too little smoothing the noise will distort the reconstructed profile of ρ. Here a new method to solve eq. (1) is presented which expresses ρ(r) as a cosine-series. The coefficients of this series are given as linear combinations of the Fourier coefficients of the measured T- and q-profiles. This formulation allows 1) the stable and accurate calculation of the ρ-profile, and 2) the analytical calculation of the error in this profile. (author) 5 refs., 3 figs
ID-check: Online concealed information test reveals true identity
Verschuere, B.; Kleinberg, B.
2016-01-01
The Internet has already changed people's lives considerably and is likely to drastically change forensic research. We developed a web-based test to reveal concealed autobiographical information. Initial studies identified a number of conditions that affect diagnostic efficiency. By combining these
Do Children Understand That People Selectively Conceal or Express Emotion?
Hayashi, Hajimu; Shiomi, Yuki
2015-01-01
This study examined whether children understand that people selectively conceal or express emotion depending upon the context. We prepared two contexts for a verbal display task for 70 first-graders, 80 third-graders, 64 fifth-graders, and 71 adults. In both contexts, protagonists had negative feelings because of the behavior of the other…
Asouzu's phenomenon of concealment and Bacon's idols of the ...
African Journals Online (AJOL)
The study emanates from the contentions of leaders of states, who, instead of promoting the ideals and values which promote social and political-coexistence, limit and conceal their views of leadership to some tribalistic, ethnocentric and self-serving idols, and by so doing, they cause a monumental harm to the polity. This is ...
On stochastic error and computational efficiency of the Markov Chain Monte Carlo method
Li, Jun
2014-01-01
In Markov Chain Monte Carlo (MCMC) simulations, thermal equilibria quantities are estimated by ensemble average over a sample set containing a large number of correlated samples. These samples are selected in accordance with the probability distribution function, known from the partition function of equilibrium state. As the stochastic error of the simulation results is significant, it is desirable to understand the variance of the estimation by ensemble average, which depends on the sample size (i.e., the total number of samples in the set) and the sampling interval (i.e., cycle number between two consecutive samples). Although large sample sizes reduce the variance, they increase the computational cost of the simulation. For a given CPU time, the sample size can be reduced greatly by increasing the sampling interval, while having the corresponding increase in variance be negligible if the original sampling interval is very small. In this work, we report a few general rules that relate the variance with the sample size and the sampling interval. These results are observed and confirmed numerically. These variance rules are derived for theMCMCmethod but are also valid for the correlated samples obtained using other Monte Carlo methods. The main contribution of this work includes the theoretical proof of these numerical observations and the set of assumptions that lead to them. © 2014 Global-Science Press.
Zheng, Yuejiu; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Li, Jianqiu
2018-02-01
Sate of charge (SOC) estimation is generally acknowledged as one of the most important functions in battery management system for lithium-ion batteries in new energy vehicles. Though every effort is made for various online SOC estimation methods to reliably increase the estimation accuracy as much as possible within the limited on-chip resources, little literature discusses the error sources for those SOC estimation methods. This paper firstly reviews the commonly studied SOC estimation methods from a conventional classification. A novel perspective focusing on the error analysis of the SOC estimation methods is proposed. SOC estimation methods are analyzed from the views of the measured values, models, algorithms and state parameters. Subsequently, the error flow charts are proposed to analyze the error sources from the signal measurement to the models and algorithms for the widely used online SOC estimation methods in new energy vehicles. Finally, with the consideration of the working conditions, choosing more reliable and applicable SOC estimation methods is discussed, and the future development of the promising online SOC estimation methods is suggested.
International Nuclear Information System (INIS)
Suzuki, Yoshio; Kawakami, Yoshiaki; Nakajima, Norihiro
2017-01-01
The method to estimate errors included in observational data and the method to compare numerical results with observational results are investigated toward the verification and validation (V and V) of a seismic simulation. For the method to estimate errors, 144 literatures for the past 5 years (from the year 2010 to 2014) in the structure engineering field and earthquake engineering field where the description about acceleration data is frequent are surveyed. As a result, it is found that some processes to remove components regarded as errors from observational data are used in about 30% of those literatures. Errors are caused by the resolution, the linearity, the temperature coefficient for sensitivity, the temperature coefficient for zero shift, the transverse sensitivity, the seismometer property, the aliasing, and so on. Those processes can be exploited to estimate errors individually. For the method to compare numerical results with observational results, public materials of ASME V and V Symposium 2012-2015, their references, and above 144 literatures are surveyed. As a result, it is found that six methods have been mainly proposed in existing researches. Evaluating those methods using nine items, advantages and disadvantages for those methods are arranged. The method is not well established so that it is necessary to employ those methods by compensating disadvantages and/or to search for a solution to a novel method. (author)
Detecting concealed information in less than a second: response latency-based measures
Verschuere, B.; de Houwer, J.; Verschuere, B.; Ben-Shakhar, G.; Meijer, E.
2011-01-01
Concealed information can be accurately assessed with physiological measures. To overcome the practical limitations of physiological measures, an assessment using response latencies has been proposed. At first sight, research findings on response latency based concealed information tests seem
Wavelets and triple difference as a mathematical method for filtering and mitigation of DGPS errors
Directory of Open Access Journals (Sweden)
Aly M. El-naggar
2015-12-01
Wavelet spectral techniques can separate GPS signals into sub-bands where different errors can be separated and mitigated. The main goal of this paper was the development and implementation of DGPS error mitigation techniques using triple difference and wavelet. This paper studies, analyzes and provides new techniques that will help mitigate these errors in the frequency domain. The proposed technique applied to smooth noise for GPS receiver positioning data is based upon the analysis of wavelet transform (WT. The technique is applied using wavelet as a de-noising tool to tackle the high-frequency errors in the triple difference domain and to obtain a de-noised triple difference signal that can be used in a positioning calculation.
A. AL-Salhi, Yahya E.; Lu, Songfeng
2016-08-01
Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.
CO2 production in animals: analysis of potential errors in the doubly labeled water method
International Nuclear Information System (INIS)
Nagy, K.A.
1979-03-01
Laboratory validation studies indicate that doubly labeled water ( 3 HH 18 O and 2 HH 18 O) measurements of CO 2 production are accurate to within +-9% in nine species of mammals and reptiles, a bird, and an insect. However, in field studies, errors can be much larger under certain circumstances. Isotopic fraction of labeled water can cause large errors in animals whose evaporative water loss comprises a major proportion of total water efflux. Input of CO 2 across lungs and skin caused errors exceeding +80% in kangaroo rats exposed to air containing 3.4% unlabeled CO 2 . Analytical errors of +-1% in isotope concentrations can cause calculated rates of CO 2 production to contain errors exceeding +-70% in some circumstances. These occur: 1) when little decline in isotope concentractions has occured during the measurement period; 2) when final isotope concentrations closely approach background levels; and 3) when the rate of water flux in an animal is high relative to its rate of CO 2 production. The following sources of error are probably negligible in most situations: 1) use of an inappropriate equation for calculating CO 2 production, 2) variations in rates of water or CO 2 flux through time, 3) use of H 2 O-18 dilution space as a measure of body water volume, 4) exchange of 0-18 between water and nonaqueous compounds in animals (including excrement), 5) incomplete mixing of isotopes in the animal, and 6) input of unlabeled water via lungs and skin. Errors in field measurements of CO 2 production can be reduced to acceptable levels (< 10%) by appropriate selection of study subjects and recapture intervals
Choi, Sae Il
2009-01-01
This study used simulation (a) to compare the kernel equating method to traditional equipercentile equating methods under the equivalent-groups (EG) design and the nonequivalent-groups with anchor test (NEAT) design and (b) to apply the parametric bootstrap method for estimating standard errors of equating. A two-parameter logistic item response…
International Nuclear Information System (INIS)
Su Qiong; Cheng Jianping; Diao Lijun; Li Guiqun
2006-01-01
A remarkable systemic error which was unknown in past long time has been indicated. The error appears in the calibration methods of determining activity of 238 U is used with γ-spectrometer with high resolution. When the γ-ray of 92.6 keV as the characteristic radiation from 238 U is used to determine the activity of 238 U in natural environment samples, the disturbing radiation produced by external excitation (or called outer sourcing X-ray radiation) is the main problem. Because the X-ray intensity is changed with many indefinite factors, it is advised that the calibration methods should be put away. As the influence of the systemic errors has been left in some past research papers, the authors suggest that the data from those papers should be cited carefully and if possible the data ought to be re-determined. (authors)
Weng, Hanli; Li, Youping
2017-04-01
The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.
Deng, Zhongliang; Fu, Xiao; Wang, Hanhua
2018-01-20
Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.
An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning
Directory of Open Access Journals (Sweden)
Zhongliang Deng
2018-01-01
Full Text Available Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS. Wireless positioning signals have a considerable attenuation in received signal strength (RSS when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.
The Scientific Method, Diagnostic Bayes, and How to Detect Epistemic Errors
Vrugt, J. A.
2015-12-01
In the past decades, Bayesian methods have found widespread application and use in environmental systems modeling. Bayes theorem states that the posterior probability, P(H|D) of a hypothesis, H is proportional to the product of the prior probability, P(H) of this hypothesis and the likelihood, L(H|hat{D}) of the same hypothesis given the new/incoming observations, \\hat {D}. In science and engineering, H often constitutes some numerical simulation model, D = F(x,.) which summarizes using algebraic, empirical, and differential equations, state variables and fluxes, all our theoretical and/or practical knowledge of the system of interest, and x are the d unknown parameters which are subject to inference using some data, \\hat {D} of the observed system response. The Bayesian approach is intimately related to the scientific method and uses an iterative cycle of hypothesis formulation (model), experimentation and data collection, and theory/hypothesis refinement to elucidate the rules that govern the natural world. Unfortunately, model refinement has proven to be very difficult in large part because of the poor diagnostic power of residual based likelihood functions tep{gupta2008}. This has inspired te{vrugt2013} to advocate the use of 'likelihood-free' inference using approximate Bayesian computation (ABC). This approach uses one or more summary statistics, S(\\hat {D}) of the original data, \\hat {D} designed ideally to be sensitive only to one particular process in the model. Any mismatch between the observed and simulated summary metrics is then easily linked to a specific model component. A recurrent issue with the application of ABC is self-sufficiency of the summary statistics. In theory, S(.) should contain as much information as the original data itself, yet complex systems rarely admit sufficient statistics. In this article, we propose to combine the ideas of ABC and regular Bayesian inference to guarantee that no information is lost in diagnostic model
Error analysis of isotope dilution mass spectrometry method with internal standard
International Nuclear Information System (INIS)
Rizhinskii, M.W.; Vitinskii, M.Y.
1989-02-01
The computation algorithms of the normalized isotopic ratios and element concentration by isotope dilution mass spectrometry with internal standard are presented. A procedure based on the Monte-Carlo calculation is proposed for predicting the magnitude of the errors to be expected. The estimation of systematic and random errors is carried out in the case of the certification of uranium and plutonium reference materials as well as for the use of those reference materials in the analysis of irradiated nuclear fuels. 4 refs, 11 figs, 2 tabs
Error reduction and parameter optimization of the TAPIR method for fast T1 mapping.
Zaitsev, M; Steinhoff, S; Shah, N J
2003-06-01
A methodology is presented for the reduction of both systematic and random errors in T(1) determination using TAPIR, a Look-Locker-based fast T(1) mapping technique. The relations between various sequence parameters were carefully investigated in order to develop recipes for choosing optimal sequence parameters. Theoretical predictions for the optimal flip angle were verified experimentally. Inversion pulse imperfections were identified as the main source of systematic errors in T(1) determination with TAPIR. An effective remedy is demonstrated which includes extension of the measurement protocol to include a special sequence for mapping the inversion efficiency itself. Copyright 2003 Wiley-Liss, Inc.
Open-area concealed-weapon detection system
Pati, P.; Mather, P.
2011-06-01
Concealed Weapon Detection (CWD) has become a significant challenge to present day security needs; individuals carrying weapons into airplanes, schools, and secured establishments are threat to public security. Although controlled screening, of people for concealed weapons, has been employed in many establishments, procedures and equipment are designed to work in restricted environments like airport passport control, military checkpoints, hospitals, school and university entrance. Furthermore, screening systems do not effectively decipher between threat and non-threat metal objects, thus leading to high rate of false alarms which can become a liability to daily operational needs of establishments. Therefore, the design and development of a new CWD system to operate in a large open area environment with large numbers of people reduced incidences of false alarms and increased location accuracy is essential.
ID-Check: Online Concealed Information Test Reveals True Identity.
Verschuere, Bruno; Kleinberg, Bennett
2016-01-01
The Internet has already changed people's lives considerably and is likely to drastically change forensic research. We developed a web-based test to reveal concealed autobiographical information. Initial studies identified a number of conditions that affect diagnostic efficiency. By combining these moderators, this study investigated the full potential of the online ID-check. Participants (n = 101) tried to hide their identity and claimed a false identity in a reaction time-based Concealed Information Test. Half of the participants were presented with personal details (e.g., first name, last name, birthday), whereas the others only saw irrelevant details. Results showed that participants' true identity could be detected with high accuracy (AUC = 0.98; overall accuracy: 86-94%). Online memory detection can reliably and validly detect whether someone is hiding their true identity. This suggests that online memory detection might become a valuable tool for forensic applications. © 2015 American Academy of Forensic Sciences.
Goswami, Deepjyoti
2013-05-01
In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a reformulation using a resolvent operator. Based on energy arguments combined with a repeated use of an integral operator and without using parabolic type duality technique, optimal L2 L2-error estimates are derived for semidiscrete approximations, when the initial condition is in L2 L2. Due to the presence of the integral term, it is, further, observed that a negative norm estimate plays a crucial role in our error analysis. Moreover, the proposed analysis follows the spirit of the proof techniques used in deriving optimal error estimates for finite element approximations to PIDE with smooth data and therefore, it unifies both the theories, i.e., one for smooth data and other for nonsmooth data. Finally, we extend the proposed analysis to the standard mixed method for PIDE with rough initial data and provide an optimal error estimate in L2, L 2, which improves upon the results available in the literature. © 2013 Springer Science+Business Media New York.
Effects of modified penoplasty for concealed penis in children.
Chen, Chao; Li, Ning; Luo, Yi-Ge; Wang, Hong; Tang, Xian-Ming; Chen, Jia-Bo; Dong, Chun-Qiang; Liu, Qiang; Dong, Kun; Su, Cheng; Yang, Ti-Quan
2016-10-01
To evaluate the effect of modified penoplasty in the management of concealed penis. We retrospectively reviewed 96 consecutive patients with concealed penis, which had been surgically corrected between July 2013 and July 2015. All patients underwent modified Shiraki phalloplasty. All patients were scheduled for regular follow-up at 1, 3, and 6 months after the surgery. Data on the patients' age, operative time, postoperative complications, and parents' satisfaction grade were collected and analyzed. The mean follow-up period was 17.4 months (range 7-31 months). The mean operative time was 63.2 ± 8.7 min. The mean perpendicular penile length was 1.89 ± 0.77 cm preoperatively and 4.42 ± 0.87 cm postoperatively, with an improved mean length of 2.5 ± 0.68 cm in the flaccid state postoperatively (p penis can achieve maximum utilization of prepuce to assure coverage of the exposed penile shaft. It has fewer complications, achieving marked asthetics, and functional improvement. It is a relatively ideal means for treating concealed penis.
Directory of Open Access Journals (Sweden)
Saman Dastaran
2016-03-01
Full Text Available Introduction: Human errors are the cause of many accidents, including industrial and medical, therefore finding out an approach for identifying and reducing them is very important. Since no study has been done about human errors in the dental field, this study aimed to identify and assess human errors in postgraduate endodontic students of Kerman University of Medical Sciences by using the SHERPA Method. Methods: This cross-sectional study was performed during year 2014. Data was collected using task observation and interviewing postgraduate endodontic students. Overall, 10 critical tasks, which were most likely to cause harm to patients were determined. Next, Hierarchical Task Analysis (HTA was conducted and human errors in each task were identified by the Systematic Human Error Reduction Prediction Approach (SHERPA technique worksheets. Results: After analyzing the SHERPA worksheets, 90 human errors were identified including (67.7% action errors, (13.3% checking errors, (8.8% selection errors, (5.5% retrieval errors and (4.4% communication errors. As a result, most of them were action errors and less of them were communication errors. Conclusions: The results of the study showed that the highest percentage of errors and the highest level of risk were associated with action errors, therefore, to reduce the occurrence of such errors and limit their consequences, control measures including periodical training of work procedures, providing work check-lists, development of guidelines and establishment of a systematic and standardized reporting system, should be put in place. Regarding the results of this study, the control of recovery errors with the highest percentage of undesirable risk and action errors with the highest frequency of errors should be in the priority of control
L∞-error estimates of a finite element method for the Hamilton-Jacobi-Bellman equations
International Nuclear Information System (INIS)
Bouldbrachene, M.
1994-11-01
We study the finite element approximation for the solution of the Hamilton-Jacobi-Bellman equations involving a system of quasi-variational inequalities (QVI). We also give the optimal L ∞ -error estimates, using the concepts of subsolutions and discrete regularity. (author). 7 refs
Batistatou, Evridiki; McNamee, Roseanne
2012-12-10
It is known that measurement error leads to bias in assessing exposure effects, which can however, be corrected if independent replicates are available. For expensive replicates, two-stage (2S) studies that produce data 'missing by design', may be preferred over a single-stage (1S) study, because in the second stage, measurement of replicates is restricted to a sample of first-stage subjects. Motivated by an occupational study on the acute effect of carbon black exposure on respiratory morbidity, we compare the performance of several bias-correction methods for both designs in a simulation study: an instrumental variable method (EVROS IV) based on grouping strategies, which had been recommended especially when measurement error is large, the regression calibration and the simulation extrapolation methods. For the 2S design, either the problem of 'missing' data was ignored or the 'missing' data were imputed using multiple imputations. Both in 1S and 2S designs, in the case of small or moderate measurement error, regression calibration was shown to be the preferred approach in terms of root mean square error. For 2S designs, regression calibration as implemented by Stata software is not recommended in contrast to our implementation of this method; the 'problematic' implementation of regression calibration although substantially improved with use of multiple imputations. The EVROS IV method, under a good/fairly good grouping, outperforms the regression calibration approach in both design scenarios when exposure mismeasurement is severe. Both in 1S and 2S designs with moderate or large measurement error, simulation extrapolation severely failed to correct for bias. Copyright © 2012 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Kamiya, Yukihide.
1980-05-01
Has been developed a computational method for the astral survey procedure of the primary monuments that consists in the measurements of short chords and perpendicular distances. This method can be applied to any astral polygon with the lengths of chords and vertical angles different from each other. We will study the propagation of measurement errors for KEK-PF storage ring, and also examine its effect on the closed orbit distortion. (author)
Pérez-Cebrián, M; Font-Noguera, I; Doménech-Moral, L; Bosó-Ribelles, V; Romero-Boyero, P; Poveda-Andrés, J L
2011-01-01
To assess the efficacy of a new quality control strategy based on daily randomised sampling and monitoring a Sentinel Surveillance System (SSS) medication cart, in order to identify medication errors and their origin at different levels of the process. Prospective quality control study with one year follow-up. A SSS medication cart was randomly selected once a week and double-checked before dispensing medication. Medication errors were recorded before it was taken to the relevant hospital ward. Information concerning complaints after receiving medication and 24-hour monitoring were also noted. Type and origin error data were assessed by a Unit Dose Quality Control Group, which proposed relevant improvement measures. Thirty-four SSS carts were assessed, including 5130 medication lines and 9952 dispensed doses, corresponding to 753 patients. Ninety erroneous lines (1.8%) and 142 mistaken doses (1.4%) were identified at the Pharmacy Department. The most frequent error was dose duplication (38%) and its main cause inappropriate management and forgetfulness (69%). Fifty medication complaints (6.6% of patients) were mainly due to new treatment at admission (52%), and 41 (0.8% of all medication lines), did not completely match the prescription (0.6% lines) as recorded by the Pharmacy Department. Thirty-seven (4.9% of patients) medication complaints due to changes at admission and 32 matching errors (0.6% medication lines) were recorded. The main cause also was inappropriate management and forgetfulness (24%). The simultaneous recording of incidences due to complaints and new medication coincided in 33.3%. In addition, 433 (4.3%) of dispensed doses were returned to the Pharmacy Department. After the Unit Dose Quality Control Group conducted their feedback analysis, 64 improvement measures for Pharmacy Department nurses, 37 for pharmacists, and 24 for the hospital ward were introduced. The SSS programme has proven to be useful as a quality control strategy to identify Unit
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K
1968-09-15
From the point of view that no mathematical method can ever minimise or alter errors already made in a physical measurement, the classical least squares method has severe limitations which makes it unsuitable for the statistical analysis of many physical measurements. Based on the assumptions that the experimental errors are characteristic for each single experiment and that the errors must be properly estimated rather than minimised, a new method for solving large systems of linear equations is developed. The new method exposes the entire range of possible solutions before the decision is taken which of the possible solutions should be chosen as a representative one. The choice is based on physical considerations which (in two examples, curve fitting and unfolding of a spectrum) are presented in such a form that a computer is able to make the decision, A description of the computation is given. The method described is a tool for removing uncertainties due to conventional mathematical formulations (zero determinant, linear dependence) and which are not inherent in the physical problem as such. The method is therefore especially well fitted for unfolding of spectra.
International Nuclear Information System (INIS)
Nygaard, K.
1968-09-01
From the point of view that no mathematical method can ever minimise or alter errors already made in a physical measurement, the classical least squares method has severe limitations which makes it unsuitable for the statistical analysis of many physical measurements. Based on the assumptions that the experimental errors are characteristic for each single experiment and that the errors must be properly estimated rather than minimised, a new method for solving large systems of linear equations is developed. The new method exposes the entire range of possible solutions before the decision is taken which of the possible solutions should be chosen as a representative one. The choice is based on physical considerations which (in two examples, curve fitting and unfolding of a spectrum) are presented in such a form that a computer is able to make the decision, A description of the computation is given. The method described is a tool for removing uncertainties due to conventional mathematical formulations (zero determinant, linear dependence) and which are not inherent in the physical problem as such. The method is therefore especially well fitted for unfolding of spectra
International Nuclear Information System (INIS)
Jung, Won Dea; Kim, Jae Whan; Ha, Jae Joo; Yoon, Wan C.
1999-01-01
This study was performed to comparatively evaluate selected Human Reliability Analysis (HRA) methods which mainly focus on cognitive error analysis, and to derive the requirement of a new human error analysis (HEA) framework for Accident Management (AM) in nuclear power plants(NPPs). In order to achieve this goal, we carried out a case study of human error analysis on an AM task in NPPs. In the study we evaluated three cognitive HEA methods, HRMS, CREAM and PHECA, which were selected through the review of the currently available seven cognitive HEA methods. The task of reactor cavity flooding was chosen for the application study as one of typical tasks of AM in NPPs. From the study, we derived seven requirement items for a new HEA method of AM in NPPs. We could also evaluate the applicability of three cognitive HEA methods to AM tasks. CREAM is considered to be more appropriate than others for the analysis of AM tasks. But, PHECA is regarded less appropriate for the predictive HEA technique as well as for the analysis of AM tasks. In addition to these, the advantages and disadvantages of each method are described. (author)
Directory of Open Access Journals (Sweden)
A. Zakerian
2011-12-01
Full Text Available Background and aims Today in many jobs like nuclear, military and chemical industries, human errors may result in a disaster. Accident in different places of the world emphasizes this subject and we indicate for example, Chernobyl disaster in (1986, tree Mile accident in (1974 and Flixborough explosion in (1974.So human errors identification especially in important and intricate systems is necessary and unavoidable for predicting control methods. Methods Recent research is a case study and performed in Zagross Methanol Company in Asalouye (South pars. Walking –Talking through method with process expert and control room operators, inspecting technical documents are used for collecting required information and completing Systematic Human Error Reductive and Predictive Approach (SHERPA worksheets. Results analyzing SHERPA worksheet indicated that, were accepting capable invertebrate errors % 71.25, % 26.75 undesirable errors, % 2 accepting capable(with change errors, % 0 accepting capable errors, and after correction action forecast Level risk to this arrangement, accepting capable invertebrate errors % 0, % 4.35 undesirable errors , % 58.55 accepting capable(with change errors, % 37.1 accepting capable errors . ConclusionFinally this result is comprehension that this method in different industries especially in chemical industries is enforceable and useful for human errors identification that may lead to accident and adventures.
Methods for determining and processing 3D errors and uncertainties for AFM data analysis
Klapetek, P.; Nečas, D.; Campbellová, A.; Yacoot, A.; Koenders, L.
2011-02-01
This paper describes the processing of three-dimensional (3D) scanning probe microscopy (SPM) data. It is shown that 3D volumetric calibration error and uncertainty data can be acquired for both metrological atomic force microscope systems and commercial SPMs. These data can be used within nearly all the standard SPM data processing algorithms to determine local values of uncertainty of the scanning system. If the error function of the scanning system is determined for the whole measurement volume of an SPM, it can be converted to yield local dimensional uncertainty values that can in turn be used for evaluation of uncertainties related to the acquired data and for further data processing applications (e.g. area, ACF, roughness) within direct or statistical measurements. These have been implemented in the software package Gwyddion.
Methods for determining and processing 3D errors and uncertainties for AFM data analysis
International Nuclear Information System (INIS)
Klapetek, P; Campbellová, A; Nečas, D; Yacoot, A; Koenders, L
2011-01-01
This paper describes the processing of three-dimensional (3D) scanning probe microscopy (SPM) data. It is shown that 3D volumetric calibration error and uncertainty data can be acquired for both metrological atomic force microscope systems and commercial SPMs. These data can be used within nearly all the standard SPM data processing algorithms to determine local values of uncertainty of the scanning system. If the error function of the scanning system is determined for the whole measurement volume of an SPM, it can be converted to yield local dimensional uncertainty values that can in turn be used for evaluation of uncertainties related to the acquired data and for further data processing applications (e.g. area, ACF, roughness) within direct or statistical measurements. These have been implemented in the software package Gwyddion
Error Analysis and Calibration Method of a Multiple Field-of-View Navigation System
Shi, Shuai; Zhao, Kaichun; You, Zheng; Ouyang, Chenguang; Cao, Yongkui; Wang, Zhenzhou
2017-01-01
The Multiple Field-of-view Navigation System (MFNS) is a spacecraft subsystem built to realize the autonomous navigation of the Spacecraft Inside Tiangong Space Station. This paper introduces the basics of the MFNS, including its architecture, mathematical model and analysis, and numerical simulation of system errors. According to the performance requirement of the MFNS, the calibration of both intrinsic and extrinsic parameters of the system is assumed to be essential and pivotal. Hence, a n...
Error analysis of the finite element and finite volume methods for some viscoelastic fluids
Czech Academy of Sciences Publication Activity Database
Lukáčová-Medviďová, M.; Mizerová, H.; She, B.; Stebel, Jan
2016-01-01
Roč. 24, č. 2 (2016), s. 105-123 ISSN 1570-2820 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : error analysis * Oldroyd-B type models * viscoelastic fluids Subject RIV: BA - General Mathematics Impact factor: 0.405, year: 2016 http://www.degruyter.com/view/j/jnma.2016.24.issue-2/jnma-2014-0057/jnma-2014-0057. xml
1983-08-01
Standard Errors for B1 Bell-shaped distribution Rectangular Item b Bn-45 n=90 n-45 n=45 -No. i i N-1500 N=1500 N-6000 N=1500 1 -2.01 -1.75 0.516 0.466...34th Streets Lawrence, KS 66045 Baltimore, MD 21218 ENIC Facility-Acquisitions 1 Dr. Ron Hambleton 4t33 Rugby Avenue School of Education Lcthesda, !ID
CSIR Research Space (South Africa)
Kruger, OA
2000-01-01
Full Text Available on face-to-face angle measurements. The results show that flatness and eccentricity deviations have less effect on angle measurements than do pyramidal errors. 1. Introduction Polygons and angle blocks are the most important transfer standards in the field... of angle metrology. Polygons are used by national metrology institutes (NMIs) as transfer standards to industry, where they are used in conjunction with autocollimators to calibrate index tables, rotary tables and other forms of angle- measuring equipment...
2014-04-01
Integral Role in Soft Tissue Mechanics, K. Troyer, D. Estep, and C. Puttlitz, Acta Biomaterialia 8 (201 2), 234-244 • A posteriori analysis of multi rate...2013, submitted • A posteriori error estimation for the Lax -Wendroff finite difference scheme, J. B. Collins, D. Estep, and S. Tavener, Journal of...oped over neArly six decades of activity and the major developments form a highly inter- connected web. We do not. ətternpt to review the history of
Remote laser drilling and sampling system for the detection of concealed explosives
Wild, D.; Pschyklenk, L.; Theiß, C.; Holl, G.
2017-05-01
The detection of hazardous materials like explosives is a central issue in national security in the field of counterterrorism. One major task includes the development of new methods and sensor systems for the detection. Many existing remote or standoff methods like infrared or raman spectroscopy find their limits, if the hazardous material is concealed in an object. Imaging technologies using x-ray or terahertz radiation usually yield no information about the chemical content itself. However, the exact knowledge of the real threat potential of a suspicious object is crucial for disarming the device. A new approach deals with a laser drilling and sampling system for the use as verification detector for suspicious objects. Central part of the system is a miniaturised, diode pumped Nd:YAG laser oscillator-amplifier. The system allows drilling into most materials like metals, synthetics or textiles with bore hole diameters in the micron scale. During the drilling process, the hazardous material can be sampled for further investigation with suitable detection methods. In the reported work, laser induced breakdown spectroscopy (LIBS) is used to monitor the drilling process and to classify the drilled material. Also experiments were carried out to show the system's ability to not ignite even sensitive explosives like triacetone triperoxide (TATP). The detection of concealed hazardous material is shown for different explosives using liquid chromatography and ion mobility spectrometry.
Directory of Open Access Journals (Sweden)
Shanshan He
2015-10-01
Full Text Available Piecewise linear (G01-based tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1 an improved technique for initial control point determination over Dominant Point Method, (2 an algorithm that updates foot point parameters as needed, (3 analysis of the degrees of freedom of control points to insert new control points only when needed, (4 chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.
International Nuclear Information System (INIS)
Fournier, D.; Le Tellier, R.; Suteau, C.; Herbin, R.
2011-01-01
The solution of the time-independent neutron transport equation in a deterministic way invariably consists in the successive discretization of the three variables: energy, angle and space. In the SNATCH solver used in this study, the energy and the angle are respectively discretized with a multigroup approach and the discrete ordinate method. A set of spatial coupled transport equations is obtained and solved using the Discontinuous Galerkin Finite Element Method (DGFEM). Within this method, the spatial domain is decomposed into elements and the solution is approximated by a hierarchical polynomial basis in each one. This approach is time and memory consuming when the mesh becomes fine or the basis order high. To improve the computational time and the memory footprint, adaptive algorithms are proposed. These algorithms are based on an error estimation in each cell. If the error is important in a given region, the mesh has to be refined (h−refinement) or the polynomial basis order increased (p−refinement). This paper is related to the choice between the two types of refinement. Two ways to estimate the error are compared on different benchmarks. Analyzing the differences, a hp−refinement method is proposed and tested. (author)
Longitudinal Cut Method Revisited: A Survey on the Main Error Sources
Moriconi, Alessandro; Lalli, Francesco; Di Felice, Fabio; Esposito, Pier Giorgio; Piscopia, Rodolfo
2000-01-01
Some of the main error sources in wave pattern resistance determination were investigated. The experimental data obtained at the Italian Ship Model Basin (longitudinal wave cuts concerned with the steady motion of the Series 60 model and a hard-chine catamaran) were analyzed. It was found that, within the range of Froude numbers tested (0.225 ≤ Fr ≤ 0.345 for the Series 60 and 0.5 ≤ Fr ≤ 1 for the catamaran) two sources of uncertainty play a significant role: (i) the p...
2013-06-24
l> h L), MFE2 or GFV2 = (RUR:<p h R-n h R<t> h R), MFEi or GFV, = (RPLXl-P hdhL), MFE , or GFV4 = (RPR.,^-P^), MFE5 or GFV5 = {Ri,ß h...common to both MFE and GFV, are often similar in size. As a gross measure of the effect of geometric progression and of the use of quadrature, we...their true value, the error in the quantity of interest MFE £(e,!//) or GFV £(<?, y/). Tables 1 and 2 show this using coarse and fine forward
International Nuclear Information System (INIS)
Marseguerra, Marzio; Zio, Enrico; Librizzi, Massimo
2006-01-01
The current 'second generation' approaches in human reliability analysis focus their attention on the contextual conditions under which a given action is performed rather than on the notion of inherent human error probabilities, as was done in the earlier 'first generation' techniques. Among the 'second generation' methods, this paper considers the Cognitive Reliability and Error Analysis Method (CREAM) and proposes some developments with respect to a systematic procedure for computing probabilities of action failure. The starting point for the quantification is a previously introduced fuzzy version of the CREAM paradigm which is here further extended to include uncertainty on the qualification of the conditions under which the action is performed and to account for the fact that the effects of the common performance conditions (CPCs) on performance reliability may not all be equal. By the proposed approach, the probability of action failure is estimated by rating the performance conditions in terms of their effect on the action
Baron, J.; Campbell, W. C.; DeMille, D.; Doyle, J. M.; Gabrielse, G.; Gurevich, Y. V.; Hess, P. W.; Hutzler, N. R.; Kirilov, E.; Kozyryev, I.; O'Leary, B. R.; Panda, C. D.; Parsons, M. F.; Spaun, B.; Vutha, A. C.; West, A. D.; West, E. P.; ACME Collaboration
2017-07-01
We recently set a new limit on the electric dipole moment of the electron (eEDM) (J Baron et al and ACME collaboration 2014 Science 343 269-272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent constraints on many charge-parity-violating extensions to the standard model. In this paper we discuss the measurement in detail. The experimental method and associated apparatus are described, together with the techniques used to isolate the eEDM signal. In particular, we detail the way experimental switches were used to suppress effects that can mimic the signal of interest. The methods used to search for systematic errors, and models explaining observed systematic errors, are also described. We briefly discuss possible improvements to the experiment.
Geophysical techniques for exploration of concealed uranium deposits in the Gwalior basin
International Nuclear Information System (INIS)
Choudhary, Kalpan; Singh, R.B.
2004-01-01
There is no direct geophysical method for the exploration of concealed uranium ore. Scope of geophysics for this in the Gwalior basin comprises delineating the basement topography, demarcation or zones of intense fracturing intersecting the unconformities and to identify the presence of carbonaceous rocks, specially in the graben-like structures. These geophysical problems have been successfully solved in other places by employing IP, resistivity, SP and gravity techniques for basement mapping, identification of fracture zone/shear zone, delineation of electrical conductors like carbonaceous rocks and sulphides. Three such case histories are presented here that include: a). basement and shear/fracture zone mapping in the Vindhyan basin north of Son-Narmada lineament, b). delineation of conductive zone (proved to be carbon phyllite) in the Mahakoshal Group of Kanhara area of Sonbhadra district, UP and c). Identification of a conductive zone, proved to be sulphide body, within the Mahakoshal group in the Gurharpahar area of Sidhi and Sonbhadra districts of MP and UP respectively. In the context of exploration for concealed uranium in the Gwalior basin, it is suggested to employ IP, resistivity, SP, gravity and magnetic methods for delineation of conductive zones like carbonaceous rocks, basement topography, including the graben like structures, fracture zone, geological boundaries and demarcation of the basin boundary. (author)
Error-free pathology: applying lean production methods to anatomic pathology.
Condel, Jennifer L; Sharbaugh, David T; Raab, Stephen S
2004-12-01
The current state of our health care system calls for dramatic changes. In their pathology department, the authors believe these changes may be accomplished by accepting the long-term commitment of applying a lean production system. The ideal state of zero pathology errors is one that should be pursued by consistently asking, "Why can't we?" The philosophy of lean production systems began in the manufacturing industry: "All we are doing is looking at the time from the moment the customer gives us an order to the point when we collect the cash. And we are reducing that time line by removing non-value added wastes". The ultimate goals in pathology and overall health care are not so different. The authors' intention is to provide the patient (customer) with the most accurate diagnostic information in a timely and efficient manner. Their lead histotechnologist recently summarized this philosophy: she indicated that she felt she could sleep better at night knowing she truly did the best job she could. Her chances of making an error (in cutting or labeling) were dramatically decreased in the one-by-one continuous flow work process compared with previous practices. By designing a system that enables employees to be successful in meeting customer demand, and by empowering the frontline staff in the development and problem solving processes, one can meet the challenges of eliminating waste and build an improved, efficient system.
Methods to reduce medication errors in a clinical trial of an investigational parenteral medication
Directory of Open Access Journals (Sweden)
Gillian L. Fell
2016-12-01
Full Text Available There are few evidence-based guidelines to inform optimal design of complex clinical trials, such as those assessing the safety and efficacy of intravenous drugs administered daily with infusion times over many hours per day and treatment durations that may span years. This study is a retrospective review of inpatient administration deviation reports for an investigational drug that is administered daily with infusion times of 8–24 h, and variable treatment durations for each patient. We report study design modifications made in 2007–2008 aimed at minimizing deviations from an investigational drug infusion protocol approved by an institutional review board and the United States Food and Drug Administration. Modifications were specifically aimed at minimizing errors of infusion rate, incorrect dose, incorrect patient, or wrong drug administered. We found that the rate of these types of administration errors of the study drug was significantly decreased following adoption of the specific study design changes. This report provides guidance in the design of clinical trials testing the safety and efficacy of study drugs administered via intravenous infusion in an inpatient setting so as to minimize drug administration protocol deviations and optimize patient safety.
BLESS 2: accurate, memory-efficient and fast error correction method.
Heo, Yun; Ramachandran, Anand; Hwu, Wen-Mei; Ma, Jian; Chen, Deming
2016-08-01
The most important features of error correction tools for sequencing data are accuracy, memory efficiency and fast runtime. The previous version of BLESS was highly memory-efficient and accurate, but it was too slow to handle reads from large genomes. We have developed a new version of BLESS to improve runtime and accuracy while maintaining a small memory usage. The new version, called BLESS 2, has an error correction algorithm that is more accurate than BLESS, and the algorithm has been parallelized using hybrid MPI and OpenMP programming. BLESS 2 was compared with five top-performing tools, and it was found to be the fastest when it was executed on two computing nodes using MPI, with each node containing twelve cores. Also, BLESS 2 showed at least 11% higher gain while retaining the memory efficiency of the previous version for large genomes. Freely available at https://sourceforge.net/projects/bless-ec dchen@illinois.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Some error estimates for the lumped mass finite element method for a parabolic problem
Chatzipantelidis, P.; Lazarov, R. D.; Thomé e, V.
2012-01-01
for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods
Energy Technology Data Exchange (ETDEWEB)
Reer, B.; Dang, V.N.; Hirschberg, S. [Paul Scherrer Inst., Nuclear Energy and Safety Research Dept., CH-5232 Villigen PSI (Switzerland); Straeter, O. [Gesellschaft fur Anlagen- und Reaktorsicherheit (Germany)
1999-12-01
In considering the human role in accidents, the classical PSA methodology applied today focuses primarily on the omissions of actions required of the operators at specific points in the scenario models. A practical, proven methodology is not available for systematically identifying and analyzing the scenario contexts in which the operators might perform inappropriate actions that aggravate the scenario. As a result, typical PSA's do not comprehensively treat these actions, referred to as errors of commission (EOCs). This report presents the results of a joint project of the Paul Scherrer Institut (PSI, Villigen, Switzerland) and the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Garching, Germany) that examined some methods recently proposed for addressing the EOC issue. Five methods were investigated: 1 ) ATHEANA, 2) the Borssele screening methodology. 3) CREAM, 4) CAHR, and 5) CODA. In addition to a comparison of their scope, basic assumptions, and analytical approach, the methods were each applied in the analysis of PWR Loss of Feedwater scenarios based on the 1985 Davis-Besse event, in which the operator response included actions that can be categorized as EOCs. The aim was to compare how the methods consider a concrete scenario in which EOCs have in fact been observed. These case applications show how the methods are used in practical terms and constitute a common basis for comparing the methods and the insights that they provide. The identification of the potentially significant EOCs to be analysed in the PSA is currently the central problem for their treatment. The identification or search scheme has to consider an extensive set of potential actions that the operators may take. These actions may take place instead of required actions, for example, because the operators fail to assess the plant state correctly, or they may occur even when no action is required. As a result of this broad search space, most methodologies apply multiple schemes to
International Nuclear Information System (INIS)
Reer, B.; Dang, V.N.; Hirschberg, S.; Straeter, O.
1999-12-01
In considering the human role in accidents, the classical PSA methodology applied today focuses primarily on the omissions of actions required of the operators at specific points in the scenario models. A practical, proven methodology is not available for systematically identifying and analyzing the scenario contexts in which the operators might perform inappropriate actions that aggravate the scenario. As a result, typical PSA's do not comprehensively treat these actions, referred to as errors of commission (EOCs). This report presents the results of a joint project of the Paul Scherrer Institut (PSI, Villigen, Switzerland) and the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Garching, Germany) that examined some methods recently proposed for addressing the EOC issue. Five methods were investigated: 1 ) ATHEANA, 2) the Borssele screening methodology. 3) CREAM, 4) CAHR, and 5) CODA. In addition to a comparison of their scope, basic assumptions, and analytical approach, the methods were each applied in the analysis of PWR Loss of Feedwater scenarios based on the 1985 Davis-Besse event, in which the operator response included actions that can be categorized as EOCs. The aim was to compare how the methods consider a concrete scenario in which EOCs have in fact been observed. These case applications show how the methods are used in practical terms and constitute a common basis for comparing the methods and the insights that they provide. The identification of the potentially significant EOCs to be analysed in the PSA is currently the central problem for their treatment. The identification or search scheme has to consider an extensive set of potential actions that the operators may take. These actions may take place instead of required actions, for example, because the operators fail to assess the plant state correctly, or they may occur even when no action is required. As a result of this broad search space, most methodologies apply multiple schemes to
Directory of Open Access Journals (Sweden)
Xiao-zhe Bai
2017-01-01
Full Text Available Globally, cyanobacteria blooms frequently occur, and effective prediction of cyanobacteria blooms in lakes and reservoirs could constitute an essential proactive strategy for water-resource protection. However, cyanobacteria blooms are very complicated because of the internal stochastic nature of the system evolution and the external uncertainty of the observation data. In this study, an adaptive-clustering algorithm is introduced to obtain some typical operating intervals. In addition, the number of nearest neighbors used for modeling was optimized by particle swarm optimization. Finally, a fuzzy linear regression method based on error-correction was used to revise the model dynamically near the operating point. We found that the combined method can characterize the evolutionary track of cyanobacteria blooms in lakes and reservoirs. The model constructed in this paper is compared to other cyanobacteria-bloom forecasting methods (e.g., phase space reconstruction and traditional-clustering linear regression, and, then, the average relative error and average absolute error are used to compare the accuracies of these models. The results suggest that the proposed model is superior. As such, the newly developed approach achieves more precise predictions, which can be used to prevent the further deterioration of the water environment.
[Effects of false memories on the Concealed Information Test].
Zaitsu, Wataru
2012-10-01
The effects of false memories on polygraph examinations with the Concealed Information Test (CIT) were investigated by using the Deese-Roediger-McDermott (DRM) paradigm, which allows participants to evoke false memories. Physiological responses to questions consisting of learned, lure, and unlearned items were measured and recorded. The results indicated that responses to lure questions showed critical responses to questions about learned items. These responses included repression of respiration, an increase in electrodermal activity, and a drop in heart rate. These results suggest that critical response patterns are generated in the peripheral nervous system by true and false memories.
Concealment tactics among HIV-positive nurses in Uganda
Kyakuwa, M.; Hardon, A.
2012-01-01
This paper is based on two-and-a-half years of ethnographic fieldwork in two rural Ugandan health centres during a period of ART scale-up. Around one-third of the nurses in these two sites were themselves HIV-positive but most concealed their status. We describe how a group of HIV-positive nurses set up a secret circle to talk about their predicament as HIV-positive healthcare professionals and how they developed innovative care technologies to overcome the skin rashes caused by ART that thre...
The boundary element method : errors and gridding for problems with hot spots
Kakuba, G.
2011-01-01
Adaptive gridding methods are of fundamental importance both for industry and academia. As one of the computing methods, the Boundary Element Method (BEM) is used to simulate problems whose fundamental solutions are available. The method is usually characterised as constant elements BEM or linear
DEFF Research Database (Denmark)
Jensen, Jesper; Tan, Zheng-Hua
2014-01-01
We propose a method for minimum mean-square error (MMSE) estimation of mel-frequency cepstral features for noise robust automatic speech recognition (ASR). The method is based on a minimum number of well-established statistical assumptions; no assumptions are made which are inconsistent with others....... The strength of the proposed method is that it allows MMSE estimation of mel-frequency cepstral coefficients (MFCC's), cepstral mean-subtracted MFCC's (CMS-MFCC's), velocity, and acceleration coefficients. Furthermore, the method is easily modified to take into account other compressive non-linearities than...... the logarithmic which is usually used for MFCC computation. The proposed method shows estimation performance which is identical to or better than state-of-the-art methods. It further shows comparable ASR performance, where the advantage of being able to use mel-frequency speech features based on a power non...
DEFF Research Database (Denmark)
Jung, Jaesoon; Kook, Junghwan; Goo, Seongyeol
2017-01-01
combines the FEM and Elementary Radiator Approach (ERA) is proposed. The FE-ERA method analyzes the vibrational response of the plate structure excited by incident sound using FEM and then computes the transmitted acoustic pressure from the vibrating plate using ERA. In order to improve the accuracy...... and efficiency of the FE-ERA method, a novel criterion for the optimal number of elementary radiators is proposed. The criterion is based on the radiator error index that is derived to estimate the accuracy of the computation with used number of radiators. Using the proposed criterion a radiator selection method...... is presented for determining the optimum number of radiators. The presented radiator selection method and the FE-ERA method are combined to improve the computational accuracy and efficiency. Several numerical examples that have been rarely addressed in previous studies, are presented with the proposed method...
Maclean, Ewen Hamish; Fuchsberger, Kajetan; Giovannozzi, Massimo; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department
2017-01-01
Nonlinear errors in experimental insertions can pose a signiﬁcant challenge to the operability of low-β∗ colliders. Previously such errors in the LHC have been studied via their feed-down to tune and coupling under the inﬂuence of the nominal crossing angle bumps. This method has proved useful in validating various components of the magnetic model. To understand and correct those errors where signiﬁcant discrepancies exist with the magnetic model however, will require further development of this technique, in addition to the application of novel methods. In 2016 studies were performed to test new methods for the study of the IR-nonlinear errors.
Evolutionary enhancement of the SLIM-MAUD method of estimating human error rates
International Nuclear Information System (INIS)
Zamanali, J.H.; Hubbard, F.R.; Mosleh, A.; Waller, M.A.
1992-01-01
The methodology described in this paper assigns plant-specific dynamic human error rates (HERs) for individual plant examinations based on procedural difficulty, on configuration features, and on the time available to perform the action. This methodology is an evolutionary improvement of the success likelihood index methodology (SLIM-MAUD) for use in systemic scenarios. It is based on the assumption that the HER in a particular situation depends of the combined effects of a comprehensive set of performance-shaping factors (PSFs) that influence the operator's ability to perform the action successfully. The PSFs relate the details of the systemic scenario in which the action must be performed according to the operator's psychological and cognitive condition
An Exploratory Investigation of Social Stigma and Concealment in Patients with Multiple Sclerosis.
Cook, Jonathan E; Germano, Adriana L; Stadler, Gertraud
2016-01-01
We conducted a preliminary investigation into dimensions of stigma and their relation to disease concealment in a sample of American adults living with multiple sclerosis (MS). Fifty-three adults with MS in the United States completed an online survey assessing anticipated, internalized, and isolation stigma, as well as concealment. Responses to all the scales were relatively low, on average, but above scale minimums (P stigma and concealment were highest. Anticipated stigma strongly predicted concealment. Many adults living with MS may be concerned that they will be the target of social stigma because of their illness. These concerns are associated with disease concealment. More research is needed to investigate how MS stigma and concealment may be independent contributors to health in patients with MS.
Specific NIST projects in support of the NIJ Concealed Weapon Detection and Imaging Program
Paulter, Nicholas G.
1998-12-01
The Electricity Division of the National Institute of Standards and Technology is developing revised performance standards for hand-held (HH) and walk-through (WT) metal weapon detectors, test procedures and systems for these detectors, and a detection/imaging system for finding concealed weapons. The revised standards will replace the existing National Institute of Justice (NIJ) standards for HH and WT devices and will include detection performance specifications as well as system specifications (environmental conditions, mechanical strength and safety, response reproducibility and repeatability, quality assurance, test reporting, etc.). These system requirements were obtained from the Law Enforcement and corrections Technology Advisory Council, an advisory council for the NIJ. Reproducible and repeatable test procedures and appropriate measurement systems will be developed for evaluating HH and WT detection performance. A guide to the technology and application of non- eddy-current-based detection/imaging methods (such as acoustic, passive millimeter-wave and microwave, active millimeter-wave and terahertz-wave, x-ray, etc.) Will be developed. The Electricity Division is also researching the development of a high- frequency/high-speed (300 GH to 1 THz) pulse-illuminated, stand- off, video-rate, concealed weapons/contraband imaging system.
Concealed Threat Detection at Multiple Frames-per-second
Energy Technology Data Exchange (ETDEWEB)
Chang, J T
2005-11-08
In this LDRD project, our research purpose is to investigate the science and technology necessary to enable real-time array imaging as a rapid way to detect hidden threats through obscurants such as smoke, fog, walls, doors, and clothing. The goal of this research is to augment the capabilities of protective forces in concealed threat detection. In the current context, threats include people as well as weapons. In most cases, security personnel must make very fast assessments of a threat based upon limited amount of data. Among other attributes, UWB has been shown and quantified to penetrate and propagate through many materials (wood, some concretes, non-metallic building materials, some soils, etc.) while maintaining high range resolution. We have build collaborations with university partners and government agencies. We have considered the impact of psychometrics on target recognition and identification. Specifically we have formulated images in real-time that will engage the user's vision system in a more active way to enhance image interpretation capabilities. In this project, we are researching the use of real time (field programmable gate arrays) integrated with high resolution (cm scale), ultra wide band (UWB) electromagnetic signals for imaging personnel through smoke and walls. We evaluated the ability of real-time UWB imaging for detecting smaller objects, such as concealed weapons that are carried by the obscured personnel. We also examined the cognitive interpretation process of real time UWB electromagnetic images.
Directory of Open Access Journals (Sweden)
Masson Lindsey F
2011-10-01
Full Text Available Abstract Background The Public Population Project in Genomics (P3G is an organisation that aims to promote collaboration between researchers in the field of population-based genomics. The main objectives of P3G are to encourage collaboration between researchers and biobankers, optimize study design, promote the harmonization of information use in biobanks, and facilitate transfer of knowledge between interested parties. The importance of calibration and harmonisation of methods for environmental exposure assessment to allow pooling of data across studies in the evaluation of gene-environment interactions has been recognised by P3G, which has set up a methodological group on calibration with the aim of; 1 reviewing the published methodological literature on measurement error correction methods with assumptions and methods of implementation; 2 reviewing the evidence available from published nutritional epidemiological studies that have used a calibration approach; 3 disseminating information in the form of a comparison chart on approaches to perform calibration studies and how to obtain correction factors in order to support research groups collaborating within the P3G network that are unfamiliar with the methods employed; 4 with application to the field of nutritional epidemiology, including gene-diet interactions, ultimately developing a inventory of the typical correction factors for various nutrients. Methods/Design Systematic review of (a the methodological literature on methods to correct for measurement error in epidemiological studies; and (b studies that have been designed primarily to investigate the association between diet and disease and have also corrected for measurement error in dietary intake. Discussion The conduct of a systematic review of the methodological literature on calibration will facilitate the evaluation of methods to correct for measurement error and the design of calibration studies for the prospective pooling of
Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David
2018-04-01
Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. It has been proposed to study NSD-PV effects using an enhancement of the observable effect in diatomic molecules [D. DeMille et al., Phys. Rev. Lett. 100, 023003 (2008), 10.1103/PhysRevLett.100.023003]. Here we demonstrate highly sensitive measurements of this type, using the test system 138Ba19F. We show that systematic errors associated with our technique can be suppressed to at least the level of the present statistical sensitivity. With ˜170 h of data, we measure the matrix element W of the NSD-PV interaction with uncertainty δ W /(2 π )<0.7 Hz for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei.
Modeling coherent errors in quantum error correction
Greenbaum, Daniel; Dutton, Zachary
2018-01-01
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.
Kukush, Alexander
2011-01-16
With a binary response Y, the dose-response model under consideration is logistic in flavor with pr(Y=1 | D) = R (1+R)(-1), R = λ(0) + EAR D, where λ(0) is the baseline incidence rate and EAR is the excess absolute risk per gray. The calculated thyroid dose of a person i is expressed as Dimes=fiQi(mes)/Mi(mes). Here, Qi(mes) is the measured content of radioiodine in the thyroid gland of person i at time t(mes), Mi(mes) is the estimate of the thyroid mass, and f(i) is the normalizing multiplier. The Q(i) and M(i) are measured with multiplicative errors Vi(Q) and ViM, so that Qi(mes)=Qi(tr)Vi(Q) (this is classical measurement error model) and Mi(tr)=Mi(mes)Vi(M) (this is Berkson measurement error model). Here, Qi(tr) is the true content of radioactivity in the thyroid gland, and Mi(tr) is the true value of the thyroid mass. The error in f(i) is much smaller than the errors in ( Qi(mes), Mi(mes)) and ignored in the analysis. By means of Parametric Full Maximum Likelihood and Regression Calibration (under the assumption that the data set of true doses has lognormal distribution), Nonparametric Full Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX method we study the influence of measurement errors in thyroid dose on the estimates of λ(0) and EAR. The simulation study is presented based on a real sample from the epidemiological studies. The doses were reconstructed in the framework of the Ukrainian-American project on the investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was artificially enlarged in order to increase the statistical power. The true risk parameters were given by the values to earlier epidemiological studies, and then the binary response was simulated according to the dose-response model.
Kukush, Alexander; Shklyar, Sergiy; Masiuk, Sergii; Likhtarov, Illya; Kovgan, Lina; Carroll, Raymond J; Bouville, Andre
2011-02-16
With a binary response Y, the dose-response model under consideration is logistic in flavor with pr(Y=1 | D) = R (1+R)(-1), R = λ(0) + EAR D, where λ(0) is the baseline incidence rate and EAR is the excess absolute risk per gray. The calculated thyroid dose of a person i is expressed as Dimes=fiQi(mes)/Mi(mes). Here, Qi(mes) is the measured content of radioiodine in the thyroid gland of person i at time t(mes), Mi(mes) is the estimate of the thyroid mass, and f(i) is the normalizing multiplier. The Q(i) and M(i) are measured with multiplicative errors Vi(Q) and ViM, so that Qi(mes)=Qi(tr)Vi(Q) (this is classical measurement error model) and Mi(tr)=Mi(mes)Vi(M) (this is Berkson measurement error model). Here, Qi(tr) is the true content of radioactivity in the thyroid gland, and Mi(tr) is the true value of the thyroid mass. The error in f(i) is much smaller than the errors in ( Qi(mes), Mi(mes)) and ignored in the analysis. By means of Parametric Full Maximum Likelihood and Regression Calibration (under the assumption that the data set of true doses has lognormal distribution), Nonparametric Full Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX method we study the influence of measurement errors in thyroid dose on the estimates of λ(0) and EAR. The simulation study is presented based on a real sample from the epidemiological studies. The doses were reconstructed in the framework of the Ukrainian-American project on the investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was artificially enlarged in order to increase the statistical power. The true risk parameters were given by the values to earlier epidemiological studies, and then the binary response was simulated according to the dose-response model.
Circuit and method for comparator offset error detection and correction in ADC
2017-01-01
PROBLEM TO BE SOLVED: To provide a method for calibrating an analog-to-digital converter (ADC).SOLUTION: The method comprises: sampling an input voltage signal; comparing the sampled input voltage signal with an output signal of a feedback digital-to-analog converter (DAC) 40; determining in a
On error estimation in the fourier modal method for diffractive gratings
Hlod, A.; Maubach, J.M.L.
2010-01-01
The Fourier Modal Method (FMM, also called the Rigorous Coupled Wave Analysis, RCWA) is a numerical discretization method which is often used to calculate a scattered field from a periodic diffraction grating. For 1D periodic gratings in FMM the electromagnetic field is presented by a truncated
Intra- and interobserver error of the Greulich-Pyle method as used on a Danish forensic sample
DEFF Research Database (Denmark)
Lynnerup, N; Belard, E; Buch-Olsen, K
2008-01-01
that atlas-based techniques are obsolete and ought to be replaced by other methods. Specifically, the GPA test sample consisted of American "white" children "above average in economic and educational status", leading to the question as to how comparable subjects being scored by the GPA method today...... and intraoral dental radiographs. Different methods are used depending on the maturity of the individual examined; and (3) a carpal X-ray examination, using the Greulich and Pyle Atlas (GPA) method. We present the results of intra- and interobserver tests of carpal X-rays in blind trials, and a comparison...... of the age estimations by carpal X-rays and odontological age estimation. We retrieved 159 cases from the years 2000-2002 (inclusive). The intra- and interobserver errors are overall small. We found full agreement in 126/159 cases, and this was between experienced users and novices. Overall, the mean...
Phillips, Charles D; Nwaiwu, Obioma; McMaughan Moudouni, Darcy K; Edwards, Rachel; Lin, Szu-hsuan
2013-01-01
We explored differences in criminal convictions between holders and nonholders of a concealed handgun license (CHL) in Texas. The Texas Department of Public Safety (DPS) provides annual data on criminal convictions of holders and nonholders of CHLs. We used 2001 to 2009 DPS data to investigate the differences in the distribution of convictions for these 2 groups across 9 types of criminal offenses. We calculated z scores for the differences in the types of crimes for which CHL holders and nonholders were convicted. CHL holders were much less likely than nonlicensees to be convicted of crimes. Most nonholder convictions involved higher-prevalence crimes (burglary, robbery, or simple assault). CHL holders' convictions were more likely to involve lower-prevalence crimes, such as sexual offenses, gun offenses, or offenses involving a death. Our results imply that expanding the settings in which concealed carry is permitted may increase the risk of specific types of crimes, some quite serious in those settings. These increased risks may be relatively small. Nonetheless, policymakers should consider these risks when contemplating reducing the scope of gun-free zones.
Hajabdollahi, Farzaneh; Premnath, Kannan N.
2018-05-01
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several
Wu, Zedong; Alkhalifah, Tariq Ali
2018-01-01
Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods
Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods
Czech Academy of Sciences Publication Activity Database
Paige, C. C.; Strakoš, Zdeněk
2002-01-01
Roč. 23, č. 6 (2002), s. 1899-1924 ISSN 1064-8275 R&D Projects: GA AV ČR IAA1030103 Institutional research plan: AV0Z1030915 Keywords : linear equations * eigenproblem * large sparse matrices * iterative solutions * Krylov subspace methods * Arnoldi method * GMRES * modified Gram-Schmidt * least squares * total least squares * singular values Subject RIV: BA - General Mathematics Impact factor: 1.291, year: 2002
Error analysis of Newmark's method for the second order equation with inhomogeneous term
International Nuclear Information System (INIS)
Chiba, F.; Kako, T.
2000-01-01
For the second order time evolution equation with a general dissipation term, we introduce a recurrence relation of Newmark's method. Deriving an energy inequality from this relation, we consider the stability and the convergence criteria of Newmark's method. We treat a dissipation term under the assumption that the coefficient-damping matrix is constant in time and non-negative. We can relax however the assumptions for the dissipation and the rigidity matrices to be arbitrary symmetric matrices. (author)
Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu
2017-05-25
Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The
Zhao, Q.
2017-12-01
Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The
Directory of Open Access Journals (Sweden)
Zhiyuan Liu
2017-01-01
Full Text Available This study proposes a practical trial-and-error method to solve the optimal toll design problem of cordon-based pricing, where only the traffic counts autonomously collected on the entry links of the pricing cordon are needed. With the fast development and adoption of vehicle-to-infrastructure (V2I facilities, it is very convenient to autonomously collect these data. Two practical properties of the cordon-based pricing are further considered in this article: the toll charge on each entry of one pricing cordon is identical; the total inbound flow to one cordon should be restricted in order to maintain the traffic conditions within the cordon area. Then, the stochastic user equilibrium (SUE with asymmetric link travel time functions is used to assess each feasible toll pattern. Based on a variational inequality (VI model for the optimal toll pattern, this study proposes a theoretically convergent trial-and-error method for the addressed problem, where only traffic counts data are needed. Finally, the proposed method is verified based on a numerical network example.
Bry, Laura Jane; Mustanski, Brian; Garofalo, Robert; Burns, Michelle Nicole
2017-01-01
Disclosure of a sexual or gender minority status has been associated with both positive and negative effects on wellbeing. Few studies have explored the disclosure and concealment process in young people. Interviews were conducted with 10 sexual and/or gender minority individuals, aged 18-22 years, of male birth sex. Data were analyzed qualitatively, yielding determinants and effects of disclosure and concealment. Determinants of disclosure included holding positive attitudes about one's identity and an implicit devaluation of acceptance by society. Coming out was shown to have both positive and negative effects on communication and social support and was associated with both increases and decreases in experiences of stigma. Determinants of concealment included lack of comfort with one's identity and various motivations to avoid discrimination. Concealment was also related to hypervigilance and unique strategies of accessing social support. Results are discussed in light of their clinical implications.
International Nuclear Information System (INIS)
Miyazaki, Takamasa
2007-01-01
The adverse events which occurred in nuclear power plants are analyzed to prevent similar events, and in the analysis of each event, the cause of the event is classified by a cause classification method. This paper shows a new cause classification method which is improved in several points as follows: (1) the whole causes are systematically classified into three major categories such as machine system, operation system and plant outside causes, (2) the causes of the operation system are classified into several management errors normally performed in a nuclear power plant, (3) the content of ageing is defined in detail for their further analysis, (4) human errors are divided and defined by the error stage, (5) human errors can be related to background factors, and so on. This new method is applied to the adverse events which occurred in domestic and overseas nuclear power plants in 2005. From these results, it is clarified that operation system errors account for about 60% of the whole causes, of which approximately 60% are maintenance errors, about 40% are worker's human errors, and that the prevention of maintenance errors, especially worker's human errors is crucial. (author)
Directory of Open Access Journals (Sweden)
S. Ceccherini
2007-01-01
Full Text Available The retrieval of concentration vertical profiles of atmospheric constituents from spectroscopic measurements is often an ill-conditioned problem and regularization methods are frequently used to improve its stability. Recently a new method, that provides a good compromise between precision and vertical resolution, was proposed to determine analytically the value of the regularization parameter. This method is applied for the first time to real measurements with its implementation in the operational retrieval code of the satellite limb-emission measurements of the MIPAS instrument and its performances are quantitatively analyzed. The adopted regularization improves the stability of the retrieval providing smooth profiles without major degradation of the vertical resolution. In the analyzed measurements the retrieval procedure provides a vertical resolution that, in the troposphere and low stratosphere, is smaller than the vertical field of view of the instrument.
Jolivet, R.; Simons, M.
2018-02-01
Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.
The method to evaluate the position error in graphic positioning technology
Institute of Scientific and Technical Information of China (English)
Huiqing Lu(卢慧卿); Baoguang Wang(王宝光); Lishuang Liu(刘力双); Yabiao Li(李亚标)
2004-01-01
In the measurement of automobile body-in-white, it has been widely studied to position the two dimensional(2D)visual sensors with high precision. In this paper a graphic positioning method is proposed,a hollow tetrahedron is used for a positioning target to replace all the edges of a standard automobile body.A 2D visual sensor can be positioned through adjusting two triangles to be superposed on a screen of the computer, so it is very important to evaluate the superposition precision of the two triangles. Several methods are discussed and the least square method is adopted at last, it makes the adjustment more easy and intuitive with high precision.
The manifest but concealed background of our communication
Directory of Open Access Journals (Sweden)
Erkut SEZGIN
2012-01-01
Full Text Available That manifest background needs to be elucidated as against intentional memory and imagination habits structured by our learning and operating with rules and pictures (representations of language. That’s the background which is concealed by our very demonstrative forms of expressions meaning and speaking habits expressed by intentional gestures and gesticulations of meaning the surrounding differences and identities: As if they are self essential representative of their own truth and certainty, which is supposed to be meant by the demonstrative, intentional form of the expression. While on the other hand, such intentional demonstrative gestures and gesticulations of meaning operate as conditioned forms of expressions of truth beliefs of imagination and memory habits expressed in reaction to the differences and identities pictured (represented by names and descriptions in deep oblivion of the internal signifying connections of the Use of pictures.
Between Concealing and Revealing Intersexed Bodies: Parental Strategies.
Danon, Limor Meoded; Krämer, Anike
2017-08-01
Parents of intersex children are perceived in many studies as hopeless, highly dependent on the medical system, and as gate keepers of normative gendered bodies. In this article, we challenge these perceptions and argue that parents of intersex children are problematically positioned between their children's needs for care and well-being and the socialmedical forces that aim to "normalize" them. Their in-between position leads them to establish different parental strategies within and outside of traditional sex/gender norms. We focus on three intertwined parental strategy frameworks: bodily dialogue, sex/gender framing, and concealing/revealing practices, and describe how, in each of these strategic frameworks, the parents maneuver, act in accordance with or against, react to, and challenge the medical system, social interactions, and the sex/gender paradigm. This is a comparative study based on narrative interviews with 22 parents of intersex children in Germany and Israel.
Concealment tactics among HIV-positive nurses in Uganda.
Kyakuwa, Margaret; Hardon, Anita
2012-01-01
This paper is based on two-and-a-half years of ethnographic fieldwork in two rural Ugandan health centres during a period of ART scale-up. Around one-third of the nurses in these two sites were themselves HIV-positive but most concealed their status. We describe how a group of HIV-positive nurses set up a secret circle to talk about their predicament as HIV-positive healthcare professionals and how they developed innovative care technologies to overcome the skin rashes caused by ART that threatened to give them away. Together with patients and a traditional healer, the nurses resisted hegemonic biomedical norms denouncing herbal medicines and then devised and advocated for a herbal skin cream treatment to be included in the ART programme.
International Nuclear Information System (INIS)
Uko, L.U.
1990-02-01
We study a scheme for the time-discretization of parabolic variational inequalities that is often easier to use than the classical method of Rothe. We show that if the data are compatible in a certain sense, then this scheme is of order ≥1/2. (author). 10 refs
Weber, Jens H; Mason-Blakley, Fieran; Price, Morgan
2015-01-01
Many health information and communication technologies (ICT) are safety-critical; moreover, reports of technology-induced adverse events related to them are plentiful in the literature. Despite repeated criticism and calls to action, recent data collected by the Institute of Medicine (IOM) and other organization do not indicate significant improvements with respect to the safety of health ICT systems. A large part of the industry still operates on a reactive "break & patch" model; the application of pro-active, systematic hazard analysis methods for engineering ICT that produce "safe by design" products is sparse. This paper applies one such method: Information System Hazard Analysis (ISHA). ISHA adapts and combines hazard analysis techniques from other safety-critical domains and customizes them for ICT. We provide an overview of the steps involved in ISHA and describe.
Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin
2018-03-01
Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.
Monitoring the Error Rate of Modern Methods of Construction Based on Wood
Švajlenka, Jozef; Kozlovská, Mária
2017-06-01
A range of new and innovative construction systems, currently developed, represent modern methods of construction (MMC), which has the ambition to improve the performance parameters of buildings throughout their life cycle. Regarding the implementation modern methods of construction in Slovakia, assembled buildings based on wood seem to be the most preferred construction system. In the study, presented in the paper, were searched already built and lived-in wood based family houses. The residents' attitudes to such type of buildings in the context with declared designing and qualitative parameters of efficiency and sustainability are overlooked. The methodology of the research study is based on the socio-economic survey carried out during the years 2015 - 2017 within the Slovak Republic. Due to the large extent of data collected through questionnaire, only selected parts of the survey results are evaluated and discussed in the paper. This paper is aimed at evaluating the quality of buildings expressed in a view of users of existing wooden buildings. Research indicates some defects, which can be eliminated in the next production process. Research indicates, that some defects occur, so the production process quality should be improved in the future development.
Method of surface error visualization using laser 3D projection technology
Guo, Lili; Li, Lijuan; Lin, Xuezhu
2017-10-01
In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.
Regulatory focus moderates the social performance of individuals who conceal a stigmatized identity.
Newheiser, Anna-Kaisa; Barreto, Manuela; Ellemers, Naomi; Derks, Belle; Scheepers, Daan
2015-12-01
People often choose to hide a stigmatized identity to avoid bias. However, hiding stigma can disrupt social interactions. We considered whether regulatory focus qualifies the social effects of hiding stigma by examining interactions in which stigmatized participants concealed a devalued identity from non-stigmatized partners. In the Prevention Focus condition, stigmatized participants were instructed to prevent a negative impression by concealing the identity; in the Promotion Focus condition, they were instructed to promote a positive impression by concealing the identity; in the Control condition, they were simply asked to conceal the identity. Both non-stigmatized partners and independent raters rated the interactions more positively in the Promotion Focus condition. Thus, promotion focus is interpersonally beneficial for individuals who conceal a devalued identity. © 2015 The British Psychological Society.
The current and future status of the Concealed Information Test for field use
Directory of Open Access Journals (Sweden)
Izumi eMatsuda
2012-11-01
Full Text Available The Concealed Information Test (CIT is a psychophysiological technique for examining whether a person has knowledge of crime-relevant information. Many laboratory studies have shown that the CIT has good scientific validity. However, the CIT has seldom been used for actual criminal investigations. One successful exception is its use by the Japanese police. In Japan, the CIT has been widely used for criminal investigations, although its probative force in court is not strong. In this paper, we first review the current use of the field CIT in Japan. Then, we discuss two possible approaches to increase its probative force: sophisticated statistical judgment methods and combining new psychophysiological measures with classic autonomic measures. On the basis of these considerations, we propose several suggestions for future practice and research involving the field CIT.
Rogel-Castillo, Cristian; Zuskov, David; Chan, Bronte Lee; Lee, Jihyun; Huang, Guangwei; Mitchell, Alyson E
2015-09-23
Concealed damage (CD) is a brown discoloration of nutmeat that appears only after kernels are treated with moderate heat (e.g., roasting). Identifying factors that promote CD in almonds is of significant interest to the nut industry. Herein, the effect of temperature (35 and 45 °C) and moisture (almonds (Prunus dulcis var. Nonpareil) was studied using HS-SPME-GC/MS. A CIE LCh colorimetric method was developed to identify raw almonds with CD. A significant increase in CD was demonstrated in almonds exposed to moisture (8% kernel moisture content) at 45 °C as compared to 35 °C. Elevated levels of volatiles related to lipid peroxidation and amino acid degradation were observed in almonds with CD. These results suggest that postharvest moisture exposure resulting in an internal kernel moisture ≥ 8% is a key factor in the development of CD in raw almonds and that CD is accelerated by temperature.
Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)
Sauerland, Volkmar; Löptien, Ulrike; Leonhard, Claudine; Oschlies, Andreas; Srivastav, Anand
2018-03-01
Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.
Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0
Directory of Open Access Journals (Sweden)
V. Sauerland
2018-03-01
Full Text Available Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate, which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative. We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.
International Nuclear Information System (INIS)
Choi, Karp Sik; Byun, Chong Soo; Choi, Soon Chul
1986-01-01
The purpose of this study was to investigate the numbers and causes of retakes in 300 complete mouth radiographic surveys made by 75 senior dental students. According to radiographic techniques and film holding methods, they were divided into 4 groups: Group I: Bisecting-angle technique with patient's fingers. Group II: Bisecting-angle technique with Rinn Snap-A-Ray device. Group III: Bisecting-angle technique with Rinn XCP instrument (short cone) Group IV: Bisecting-angle technique with Rinn XCP instrument (long cone). The most frequent cases of retakes, the most frequent tooth area examined, of retakes and average number of retakes per complete mouth survey were evaluated. The obtained results were as follows: Group I: Incorrect film placement (47.8), upper canine region, and 0.89. Group II: Incorrect film placement (44.0), upper canine region, and 1.12. Group III: Incorrect film placement (79.2), upper canine region, and 2.05. Group IV: Incorrect film placement (67.7), upper canine region, and 1.69.
International Nuclear Information System (INIS)
Krini, Ossmane; Börcsök, Josef
2012-01-01
In order to use electronic systems comprising of software and hardware components in safety related and high safety related applications, it is necessary to meet the Marginal risk numbers required by standards and legislative provisions. Existing processes and mathematical models are used to verify the risk numbers. On the hardware side, various accepted mathematical models, processes, and methods exist to provide the required proof. To this day, however, there are no closed models or mathematical procedures known that allow for a dependable prediction of software reliability. This work presents a method that makes a prognosis on the residual critical error number in software. Conventional models lack this ability and right now, there are no methods that forecast critical errors. The new method will show that an estimate of the residual error number of critical errors in software systems is possible by using a combination of prediction models, a ratio of critical errors, and the total error number. Subsequently, the critical expected value-function at any point in time can be derived from the new solution method, provided the detection rate has been calculated using an appropriate estimation method. Also, the presented method makes it possible to make an estimate on the critical failure rate. The approach is modelled on a real process and therefore describes two essential processes - detection and correction process.
DEFF Research Database (Denmark)
Gil-Cacho, Jose M.; van Waterschoot, Toon; Moonen, Marc
2014-01-01
to the FDAF-PEM-AFROW algorithm. We show that FDAF-PEM-AFROW is by construction related to the best linear unbiased estimate (BLUE) of the echo path. We depart from this framework to show an improvement in performance with respect to other adaptive filters minimizing the BLUE criterion, namely the PEM......In this paper, we propose a new framework to tackle the double-talk (DT) problem in acoustic echo cancellation (AEC). It is based on a frequency-domain adaptive filter (FDAF) implementation of the so-called prediction error method adaptive filtering using row operations (PEM-AFROW) leading...... regularization (VR) algorithms. The FDAF-PEM-AFROW versions significantly outperform the original versions in every simulation. In terms of computational complexity, the FDAF-PEM-AFROW versions are themselves about two orders of magnitude cheaper than the original versions....
The impact of transmission errors on progressive 720 lines HDTV coded with H.264
Brunnström, Kjell; Stålenbring, Daniel; Pettersson, Martin; Gustafsson, Jörgen
2010-02-01
TV sent over the networks based on the Internet Protocol i.e IPTV is moving towards high definition (HDTV). There has been quite a lot of work on how the HDTV is affected by different codecs and bitrates, but the impact of transmission errors over IP-networks have been less studied. The study was focusing on H.264 encoded 1280x720 progressive HDTV format and was comparing three different concealment methods for different packet loss rates. One is included in a propriety decoder, one is part of FFMPEG and different length of freezing. The target is to simulate what typically IPTV settop-boxes will do when encountering packet loss. Another aim is to study whether the presentation upscaled on the full HDTV screen or presented pixel mapped in a smaller area in the center of the sceen would have an effect on the quality. The results show that there were differences between the two packet loss concealment methods in FFMPEG and in the propriety codec. Freezing seemed to have similar effect as been reported before. For low rates of transmission errors the coding impairments has impact on the quality, but for higher degree of transmission errors these does not affect the quality, since they become overshadowed by transmission error. An interesting effect where the higher bitrate videos goes from having higher quality for lower degree of packet loss, to having lower quality than the lower bitrate video at higher packet loss, was discovered. The different way of presenting the video i.e. upscaled or not-upscaled was significant on the 95% level, but just about.
DEFF Research Database (Denmark)
Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng
2017-01-01
and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method...... in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA......) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic...
GILBERT'S SYNDROME - A CONCEALED ADVERSITY FOR PHYSICIANS AND SURGEONS.
Rasool, Ahsan; Sabir, Sabir; Ashlaq, Muhammad; Farooq, Umer; Khan, Muhammad Zatmar; Khan, Faisal Yousaf
2015-01-01
Gilbert's syndrome (often abbreviated as GS) is most common hereditary cause of mild unconjugated (indirect) hyperbilirubinemia. Various studies have been published depicting clinical and pharmacological effects of Gilbert's syndrome (GS). However GS as a sign of precaution for physician and surgeons has not been clearly established. A systematic study of the available literature was done. Key words of Gilbert's syndrome, hyperbilirubinemia and clinical and pharmacological aspects of GS were searched using PubMed as search engine. Considering the study done in last 40 years, 375 articles were obtained and their abstracts were studied. The criterion for selecting the articles for through study was based on their close relevance with the topic. Thus 40 articles and 2 case reports were thoroughly studied. It was concluded that Gilbert's syndrome has immense clinical importance because the mild hyperbilirubinemia can be mistaken for a sign of occult, chronic, or progressive liver disease. GS is associated with lack of detoxification of few drugs. It is related with spherocytosis, cholithiasis, haemolytic anaemia, intra-operative toxicity, irinotecan toxicity, schizophrenia and problems in morphine metabolism. It also has profound phenotypic effect as well. The bilirubin level of a GS individual can rise abnormally high in various conditions in a person having Gilbert's syndrome. This can mislead the physicians and surgeons towards false diagnosis. Therefore proper diagnosis of GS should be ascertained in order to avoid the concealed adversities of this syndrome.
Hoede, C.; Li, Z.
2001-01-01
In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,
Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun
2016-01-01
Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.
Energy Technology Data Exchange (ETDEWEB)
Langner, Andy Sven
2017-02-03
The Large Hadron Collider (LHC) is currently the world's largest particle accelerator with the highest center of mass energy in particle collision experiments. The control of the particle beam focusing is essential for the performance reach of such an accelerator. For the characterization of the focusing properties at the LHC, turn-by-turn beam position data is simultaneously recorded at numerous measurement devices (BPMs) along the accelerator, while an oscillation is excited on the beam. A novel analysis method for these measurements (N-BPM method) is developed here, which is based on a detailed analysis of systematic and statistical error sources and their correlations. It has been applied during the commissioning of the LHC for operation at an unprecedented energy of 6.5TeV. In this process a stronger focusing than its design specifications has been achieved. This results in smaller transverse beam sizes at the collision points and allows for a higher rate of particle collisions. For the derivation of the focusing parameters at many synchrotron light sources, the change of the beam orbit is observed, which is induced by deliberate changes of magnetic fields (orbit response matrix). In contrast, the analysis of turn-by-turn beam position measurements is for many of these machines less precise due to the distance between two BPMs. The N-BPM method overcomes this limitation by allowing to include the measurement data from more BPMs in the analysis. It has been applied at the ALBA synchrotron light source and compared to the orbit response method. The significantly faster measurement with the N-BPM method is a considerable advantage in this case. Finally, an outlook is given to the challenges which lie ahead for the control of the beam focusing at the HL-LHC, which is a future major upgrade of the LHC.
National Research Council Canada - National Science Library
Langhals, Brent
2001-01-01
.... The study suggests that by continuously applying arousal stimuli, subjects would retain initially high vigilance levels thereby avoiding the vigilance decrement phenomenon and improving error detection...
Arnst, M.; Abello Álvarez, B.; Ponthot, J.-P.; Boman, R.
2017-11-01
This paper is concerned with the characterization and the propagation of errors associated with data limitations in polynomial-chaos-based stochastic methods for uncertainty quantification. Such an issue can arise in uncertainty quantification when only a limited amount of data is available. When the available information does not suffice to accurately determine the probability distributions that must be assigned to the uncertain variables, the Bayesian method for assigning these probability distributions becomes attractive because it allows the stochastic model to account explicitly for insufficiency of the available information. In previous work, such applications of the Bayesian method had already been implemented by using the Metropolis-Hastings and Gibbs Markov Chain Monte Carlo (MCMC) methods. In this paper, we present an alternative implementation, which uses an alternative MCMC method built around an Itô stochastic differential equation (SDE) that is ergodic for the Bayesian posterior. We draw together from the mathematics literature a number of formal properties of this Itô SDE that lend support to its use in the implementation of the Bayesian method, and we describe its discretization, including the choice of the free parameters, by using the implicit Euler method. We demonstrate the proposed methodology on a problem of uncertainty quantification in a complex nonlinear engineering application relevant to metal forming.
Langner, Andy Sven; Rossbach, Jörg; Tomás, Rogelio
2017-02-17
The Large Hadron Collider (LHC) is currently the world's largest particle accelerator with the highest center of mass energy in particle collision experiments. The control of the particle beam focusing is essential for the performance reach of such an accelerator. For the characterization of the focusing properties at the LHC, turn-by-turn beam position data is simultaneously recorded at numerous measurement devices (BPMs) along the accelerator, while an oscillation is excited on the beam. A novel analysis method for these measurements ($N$-BPM method) is developed here, which is based on a detailed analysis of systematic and statistical error sources and their correlations. It has been applied during the commissioning of the LHC for operation at an unprecedented energy of 6.5 TeV. In this process a stronger focusing than its design specifications has been achieved. This results in smaller transverse beam sizes at the collision points and allows for a higher rate of particle collisions. For the derivation of ...
Lystrom, David J.
1972-01-01
The magnitude, frequency, and types of errors inherent in real-time streamflow data are presented in part I. It was found that real-time data are generally less accurate than are historical data, primarily because real-time data are often used before errors can be detected and corrections applied.
Tian, Wei; Cai, Li; Thissen, David; Xin, Tao
2013-01-01
In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…
Directory of Open Access Journals (Sweden)
Arne Vikan
2009-01-01
Full Text Available Students from a collectivistic (Brazilian, n= 401 and an individualistic (Norwegian, n= 418culture rated their ability to display and conceal anger, sadness, and anxiety in relation to immediate family, partner, friends, and "other persons." Norwegians showed higher display ratings for anger and sadness, and higher concealment ratings for anger and anxiety. Display ratings were much higher, and concealment ratings much lower in relation to close persons than in relation to "other persons." A culture x relationship interaction was that Brazilian' ratings suggested more emotional openness to friends than to family and partner, whereas Norwegians showed the inverse patterns. Gender differences supported previous research by showing higher display and lower concealment ratings, and less differentiation between relationships by females.
Reprogramming to pluripotency can conceal somatic cell chromosomal instability.
Directory of Open Access Journals (Sweden)
Masakazu Hamada
Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.
Errors in the determination of the total filtration of diagnostic x-ray tubes by the HVL method
International Nuclear Information System (INIS)
Gilmore, B.J.; Cranley, K.
1990-01-01
Optimal technique and an analysis of errors are essential for interpreting whether the total filtration of a diagnostic x-ray tube is acceptable. The study discusses this problem from a theoretical viewpoint utilising recent theoretical HVL-total-filtration data relating to 10 0 and 16 0 tungsten target angles and 0-30% kilovoltage ripples. The theory indicates the typical accuracy to which each appropriate parameter must be determined to maintain acceptable errors in total filtration. A quantitative approach is taken to evaluate systematic errors in a technique for interpolation of HVL from raw attenuation curve data. A theoretical derivation is presented to enable random errors in HVL due to x-ray set inconsistency to be estimated for particular experimental techniques and data analysis procedures. Further formulae are presented to enable errors in the total filtration estimate to be readily determined from those in the individual parameters. (author)
Concealing Emotions at Work Is Associated with Allergic Rhinitis in Korea.
Seok, Hongdeok; Yoon, Jin-Ha; Won, Jong-Uk; Lee, Wanhyung; Lee, June-Hee; Jung, Pil Kyun; Roh, Jaehoon
2016-01-01
Concealing emotions at work can cause considerable psychological stress. While there is extensive research on the adverse health effects of concealing emotions and the association between allergic diseases and stress, research has not yet investigated whether concealing emotions at work is associated with allergic rhinitis. Allergic rhinitis is a common disease in many industrialized countries, and its prevalence is increasing. Thus, our aim was to determine the strength of this association using data from three years (2007-2009) of the 4th Korean National Health and Nutrition Examination Survey. Participants (aged 20-64) were 8,345 individuals who were economically active and who had completed the questionnaire items on concealing emotions at work. Odds ratio (OR) and 95% confidence intervals (95% CIs) were calculated for allergic rhinitis using logistic regression models. Among all participants, 3,140 subjects (37.6%) reported concealing their emotions at work: 1,661 men and 1,479 women. The OR (95% CIs) for allergic rhinitis among those who concealed emotions at work versus those who did not was 1.318 (1.148-1.512). Stratified by sex, the OR (95% CIs) was 1.307 (1.078-1.585) among men and 1.346 (1.105-1.639) among women. Thus, individuals who concealed their emotions at work were significantly more likely to have a diagnosis of AR in comparison to those who did not. Because concealing emotions at work has adverse health effects, labor policies that aim to reduce this practice are needed.
Barnwell-Ménard, Jean-Louis; Li, Qing; Cohen, Alan A
2015-03-15
The loss of signal associated with categorizing a continuous variable is well known, and previous studies have demonstrated that this can lead to an inflation of Type-I error when the categorized variable is a confounder in a regression analysis estimating the effect of an exposure on an outcome. However, it is not known how the Type-I error may vary under different circumstances, including logistic versus linear regression, different distributions of the confounder, and different categorization methods. Here, we analytically quantified the effect of categorization and then performed a series of 9600 Monte Carlo simulations to estimate the Type-I error inflation associated with categorization of a confounder under different regression scenarios. We show that Type-I error is unacceptably high (>10% in most scenarios and often 100%). The only exception was when the variable categorized was a continuous mixture proxy for a genuinely dichotomous latent variable, where both the continuous proxy and the categorized variable are error-ridden proxies for the dichotomous latent variable. As expected, error inflation was also higher with larger sample size, fewer categories, and stronger associations between the confounder and the exposure or outcome. We provide online tools that can help researchers estimate the potential error inflation and understand how serious a problem this is. Copyright © 2014 John Wiley & Sons, Ltd.
International Nuclear Information System (INIS)
Knuefer; Lindauer
1980-01-01
Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)
International Nuclear Information System (INIS)
Lee, Yong Hee; Kim, Jae Whan; Jung, Won Dae; Ha, Jae Ju
1998-06-01
This technical report describes the early progress of he establishment of a human error analysis method as a part of a human reliability analysis(HRA) method for the assessment of the human error potential in a given accident management strategy. At first, we review the shortages and limitations of the existing HRA methods through an example application. In order to enhance the bias to the quantitative aspect of the HRA method, we focused to the qualitative aspect, i.e., human error analysis(HEA), during the proposition of a strategy to the new method. For the establishment of a new HEA method, we discuss the basic theories and approaches to the human error in industry, and propose three basic requirements that should be maintained as pre-requisites for HEA method in practice. Finally, we test IAD(Industrial Accident Dynamics) which has been widely utilized in industrial fields, in order to know whether IAD can be so easily modified and extended to the nuclear power plant applications. We try to apply IAD to the same example case and develop new taxonomy of the performance shaping factors in accident management and their influence matrix, which could enhance the IAD method as an HEA method. (author). 33 refs., 17 tabs., 20 figs
International Nuclear Information System (INIS)
Wilson, Brandon M; Smith, Barton L
2013-01-01
Uncertainties are typically assumed to be constant or a linear function of the measured value; however, this is generally not true. Particle image velocimetry (PIV) is one example of a measurement technique that has highly nonlinear, time varying local uncertainties. Traditional uncertainty methods are not adequate for the estimation of the uncertainty of measurement statistics (mean and variance) in the presence of nonlinear, time varying errors. Propagation of instantaneous uncertainty estimates into measured statistics is performed allowing accurate uncertainty quantification of time-mean and statistics of measurements such as PIV. It is shown that random errors will always elevate the measured variance, and thus turbulent statistics such as u'u'-bar. Within this paper, nonlinear, time varying errors are propagated from instantaneous measurements into the measured mean and variance using the Taylor-series method. With these results and knowledge of the systematic and random uncertainty of each measurement, the uncertainty of the time-mean, the variance and covariance can be found. Applicability of the Taylor-series uncertainty equations to time varying systematic and random errors and asymmetric error distributions are demonstrated with Monte-Carlo simulations. The Taylor-series uncertainty estimates are always accurate for uncertainties on the mean quantity. The Taylor-series variance uncertainty is similar to the Monte-Carlo results for cases in which asymmetric random errors exist or the magnitude of the instantaneous variations in the random and systematic errors is near the ‘true’ variance. However, the Taylor-series method overpredicts the uncertainty in the variance as the instantaneous variations of systematic errors are large or are on the same order of magnitude as the ‘true’ variance. (paper)
Abdollahi, Abbas; Hosseinian, Simin; Beh-Pajooh, Ahmad; Carlbring, Per
2017-01-01
One of the biggest barriers in treating adolescents with mental health problems is their refusing to seek psychological help. This study was designed to examine the relationships between two forms of perfectionism, self-concealment and attitudes toward seeking psychological help and to test the mediating role of self-concealment in the relationship between perfectionism and attitudes toward seeking psychological help among Malaysian high school students. The participants were 475 Malaysian high school students from four high schools in Kuala Lumpur, Malaysia. Structural equation modelling results indicated that high school students with high levels of socially prescribed perfectionism, high levels of self-concealment, and low levels of self-oriented perfectionism reported negative attitudes toward seeking psychological help. Bootstrapping analysis showed that self-concealment emerged as a significant, full mediator in the link between socially prescribed perfectionism and attitudes toward seeking psychological help. Moderated mediation analysis also examined whether the results generalized across men and women. The results revealed that male students with socially prescribed perfectionism are more likely to engage in self-concealment, which in turn, leads to negative attitudes toward seeking psychological help more than their female counterparts. The results suggested that students high in socially prescribed perfectionism were more likely to engage in self-concealment and be less inclined to seek psychological help.
Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods
International Nuclear Information System (INIS)
Baker, A.R.
1982-07-01
A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)
Habibovic, Azra; Tivesten, Emma; Uchida, Nobuyuki; Bärgman, Jonas; Ljung Aust, Mikael
2013-01-01
To develop relevant road safety countermeasures, it is necessary to first obtain an in-depth understanding of how and why safety-critical situations such as incidents, near-crashes, and crashes occur. Video-recordings from naturalistic driving studies provide detailed information on events and circumstances prior to such situations that is difficult to obtain from traditional crash investigations, at least when it comes to the observable driver behavior. This study analyzed causation in 90 video-recordings of car-to-pedestrian incidents captured by onboard cameras in a naturalistic driving study in Japan. The Driving Reliability and Error Analysis Method (DREAM) was modified and used to identify contributing factors and causation patterns in these incidents. Two main causation patterns were found. In intersections, drivers failed to recognize the presence of the conflict pedestrian due to visual obstructions and/or because their attention was allocated towards something other than the conflict pedestrian. In incidents away from intersections, this pattern reoccurred along with another pattern showing that pedestrians often behaved in unexpected ways. These patterns indicate that an interactive advanced driver assistance system (ADAS) able to redirect the driver's attention could have averted many of the intersection incidents, while autonomous systems may be needed away from intersections. Cooperative ADAS may be needed to address issues raised by visual obstructions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jia Ning
2017-11-01
Full Text Available The uncertainty of wind power results in wind power forecasting errors (WPFE which lead to difficulties in formulating dispatching strategies to maintain the power balance. Demand response (DR is a promising tool to balance power by alleviating the impact of WPFE. This paper offers a control method of combining DR and automatic generation control (AGC units to smooth the system’s imbalance, considering the real-time DR potential (DRP and security constraints. A schematic diagram is proposed from the perspective of a dispatching center that manages smart appliances including air conditioner (AC, water heater (WH, electric vehicle (EV loads, and AGC units to maximize the wind accommodation. The presented model schedules the AC, WH, and EV loads without compromising the consumers’ comfort preferences. Meanwhile, the ramp constraint of generators and power flow transmission constraint are considered to guarantee the safety and stability of the power system. To demonstrate the performance of the proposed approach, simulations are performed in an IEEE 24-node system. The results indicate that considerable benefits can be realized by coordinating the DR and AGC units to mitigate the WPFE impacts.
International Nuclear Information System (INIS)
Brik, A.
2009-01-01
In the first decade of June 2008, during the power commissioning of the reactor at the Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant (BOP) needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields calculation error in the core of Mochovce-1 reactor operating with varying load. (author)
International Nuclear Information System (INIS)
Brik, A.
2009-01-01
In the first decade of June 2008, during the power commissioning of the reactor at Mochovce NPP unit 1, the experiment with reducing the thermal power of core almost to the balance-of-plant needs was performed. After the reactor has operated for seven hours at low power (about 200 220 MW (thermal)), its power was increased (at a rate of about 0.25% of N nom /min) to the initial level, close to 107% (1471 MW). During the experiment, core parameters, which were subsequently used for comparing the measured data with the results of experiment simulation calculations, were recorded in the reactor in-core monitoring system's database. Calculated and measured levels of critical concentrations of boric acid were compared, along with power density distributions by fuel elements and assemblies obtained both by the KRUIZ in-core monitoring system and on the basis of calculations simulating reactor operation in accordance with the given core power variation schedule. The final stage consisted of assessing the methodical component of power density micro- and macro-fields' calculation error in the core of Mochovce-1 reactor operating with varying load. (Authors)
Visser, Ruurd; J., Godart; Wauben, D.J.L.; Langendijk, J.; van 't Veld, A.A.; Korevaar, E.W.
2016-01-01
The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a
International Nuclear Information System (INIS)
Javaux, Denis
2002-01-01
This paper describes a method for predicting the errors that may appear when human operators or users interact with systems behaving as finite state systems. The method is a generalization of a method used for predicting errors when interacting with autopilot modes on modern, highly computerized airliners [Proc 17th Digital Avionics Sys Conf (DASC) (1998); Proc 10th Int Symp Aviat Psychol (1999)]. A cognitive model based on spreading activation networks is used for predicting the user's model of the system and its impact on the production of errors. The model strongly posits the importance of implicit learning in user-system interaction and its possible detrimental influence on users' knowledge of the system. An experiment conducted with Airbus Industrie and a major European airline on pilots' knowledge of autopilot behavior on the A340-200/300 confirms the model predictions, and in particular the impact of the frequencies with which specific state transitions and contexts are experienced
Shinoda, Masahisa; Nakatani, Hidehiko
2015-04-01
We theoretically calculate the behavior of the focusing error signal in the land-groove-type optical disk when the objective lens traverses on out of the radius of the optical disk. The differential astigmatic method is employed instead of the conventional astigmatic method for generating the focusing error signals. The signal behaviors are compared and analyzed in terms of the gain difference of the slope sensitivity of the focusing error signals from the land and the groove. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and advantageous conditions for suppressing the gain difference are investigated. The calculation method and results described in this paper will be reflected in the next generation land-groove-type optical disks.
Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano
2013-01-01
Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...
International Nuclear Information System (INIS)
Carlton Jones, A.L.; Roddie, M.E.
2016-01-01
Aim: To assess the effect on radiologist participation in learning from discrepancy meetings (LDMs) in a multisite radiology department by establishing virtual LDMs using OsiriX (Pixmeo). Materials and methods: Sets of anonymised discrepancy cases were added to an OsiriX database available for viewing on iMacs in all radiology reporting rooms. Radiologists were given a 3-week period to review the cases and send their feedback to the LDM convenor. Group learning points and consensus feedback were added to each case before it was moved to a permanent digital LDM library. Participation was recorded and compared with that from the previous 4 years of conventional LDMs. Radiologist feedback comparing the two types of LDM was collected using an anonymous online questionnaire. Results: Numbers of radiologists attending increased significantly from a mean of 12±2.9 for the conventional LDM to 32.7±7 for the virtual LDM (p<0.0001) and the percentage of radiologists achieving the UK standard of participation in at least 50% of LDMs annually rose from an average of 18% to 68%. The number of cases submitted per meeting rose significantly from an average of 11.1±3 for conventional LDMs to 15.9±5.9 for virtual LDMs (p<0.0097). Analysis of 35 returned questionnaires showed that radiologists welcomed being able to review cases at a time and place of their choosing and at their own pace. Conclusion: Introduction of virtual LDMs in a multisite radiology department improved radiologist participation in shared learning from radiological discrepancy and increased the number of submitted cases. - Highlights: • Learning from error is an important way to improve patient safety. • Consultant attendance at learning from discrepancy meetings (LDMs) was persistently poor in a large, multisite Trust. • Introduction of a ‘virtual’ LDM improved consultant participation and increased the number of cases submitted.
Shinoda, Masahisa; Nakatani, Hidehiko; Nakai, Kenya; Ohmaki, Masayuki
2015-09-01
We theoretically calculate behaviors of focusing error signals generated by an astigmatic method in a land-groove-type optical disk. The focusing error signal from the land does not coincide with that from the groove. This behavior is enhanced when a focused spot of an optical pickup moves beyond the radius of the optical disk. A gain difference between the slope sensitivities of focusing error signals from the land and the groove is an important factor with respect to stable focusing servo control. In our calculation, the format of digital versatile disc-random access memory (DVD-RAM) is adopted as the land-groove-type optical disk model, and the dependences of the gain difference on various factors are investigated. The gain difference strongly depends on the optical intensity distribution of the laser beam in the optical pickup. The calculation method and results in this paper will be reflected in newly developed land-groove-type optical disks.
International Nuclear Information System (INIS)
Pickles, W.L.; McClure, J.W.; Howell, R.H.
1978-01-01
A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities with a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO 3 can have an accuracy of 0.2% in 1000 s. 5 figures
Martos, Borja; Kiszely, Paul; Foster, John V.
2011-01-01
As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.
Hoel, Hakon
2016-06-13
A formal mean square error expansion (MSE) is derived for Euler-Maruyama numerical solutions of stochastic differential equations (SDE). The error expansion is used to construct a pathwise, a posteriori, adaptive time-stepping Euler-Maruyama algorithm for numerical solutions of SDE, and the resulting algorithm is incorporated into a multilevel Monte Carlo (MLMC) algorithm for weak approximations of SDE. This gives an efficient MSE adaptive MLMC algorithm for handling a number of low-regularity approximation problems. In low-regularity numerical example problems, the developed adaptive MLMC algorithm is shown to outperform the uniform time-stepping MLMC algorithm by orders of magnitude, producing output whose error with high probability is bounded by TOL > 0 at the near-optimal MLMC cost rate б(TOL log(TOL)) that is achieved when the cost of sample generation is б(1).
International Nuclear Information System (INIS)
Winterflood, A.H.
1980-01-01
In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)
A method for the estimation of the residual error in the SALP approach for fault tree analysis
International Nuclear Information System (INIS)
Astolfi, M.; Contini, S.
1980-01-01
The aim of this report is the illustration of the algorithms implemented in the SALP-MP code for the estimation of the residual error. These algorithms are of more general use, and it would be possible to implement them on all codes of the series SALP previously developed, as well as, with minor modifications, to analysis procedures based on 'top-down' approaches. At the time, combined 'top-down' - 'bottom up' procedures are being studied in order to take advantage from both approaches for further reduction of computer time and better estimation of the residual error, for which the developed algorithms are still applicable
C.M. Cobbaert (Christa); H. Baadenhuijsen; L. Zwang (Louwerens); C.W. Weykamp; P.N. Demacker; P.G.H. Mulder (Paul)
1999-01-01
textabstractBACKGROUND: Standardization of HDL-cholesterol is needed for risk assessment. We assessed for the first time the accuracy of HDL-cholesterol testing in The Netherlands and evaluated 11 candidate reference materials (CRMs). METHODS: The total error (TE) of
Directory of Open Access Journals (Sweden)
Eric G. Devine
2017-03-01
Full Text Available Clinical trials within the US face an increasing challenge with the recruitment of quality candidates. One readily available group of subjects that have high rates of participation in clinical research are subjects who enroll in multiple trials for the purpose of generating income through study payments. Aside from issues of safety and generalizability, evidence suggests that these subjects employ methods of deception to qualify for the strict entrance criteria of some studies, including concealing information and fabricating information. Including these subjects in research poses a significant risk to the integrity of data quality and study designs. Strategies to limit enrollment of subjects whose motivation is generating income have not been systematically addressed in the literature. The present paper is intended to provide investigators with a range of strategies for developing and implementing a study protocol with protections to minimize the enrollment of subjects whose primary motivation for enrolling is to generate income. This multifaceted approach includes recommendations for advertising strategies, payment strategies, telephone screening strategies, and baseline screening strategies. The approach also includes recommendations for attending to inconsistent study data and subject motivation. Implementing these strategies may be more or less important depending upon the vulnerability of the study design to subject deception. Although these strategies may help researchers exclude subjects with a higher rate of deceptive practices, widespread adoption of subject registries would go a long way to decrease the chances of subjects enrolling in multiple studies or more than once in the same study.
Devine, Eric G; Peebles, Kristina R; Martini, Valeria
2017-03-01
Clinical trials within the US face an increasing challenge with the recruitment of quality candidates. One readily available group of subjects that have high rates of participation in clinical research are subjects who enroll in multiple trials for the purpose of generating income through study payments. Aside from issues of safety and generalizability, evidence suggests that these subjects employ methods of deception to qualify for the strict entrance criteria of some studies, including concealing information and fabricating information. Including these subjects in research poses a significant risk to the integrity of data quality and study designs. Strategies to limit enrollment of subjects whose motivation is generating income have not been systematically addressed in the literature. The present paper is intended to provide investigators with a range of strategies for developing and implementing a study protocol with protections to minimize the enrollment of subjects whose primary motivation for enrolling is to generate income. This multifaceted approach includes recommendations for advertising strategies, payment strategies, telephone screening strategies, and baseline screening strategies. The approach also includes recommendations for attending to inconsistent study data and subject motivation. Implementing these strategies may be more or less important depending upon the vulnerability of the study design to subject deception. Although these strategies may help researchers exclude subjects with a higher rate of deceptive practices, widespread adoption of subject registries would go a long way to decrease the chances of subjects enrolling in multiple studies or more than once in the same study.
Al-Rawajfah, Omar M; Tubaishat, Ahmad
2017-10-01
The recognized international organizations on infection prevention recommend using an observational method as the gold standard procedure for assessing health care professional's compliance with standard infection control practices. However, observational studies are rarely used in Jordanian infection control studies. This study aimed to evaluate injection practices among nurses working in Jordanian governmental hospitals. A cross-sectional concealed observational design is used for this study. A convenience sampling technique was used to recruit a sample of nurses working in governmental hospitals in Jordan. Participants were unaware of the time and observer during the observation episode. A total of 384 nurses from 9 different hospitals participated in the study. A total of 835 injections events were observed, of which 73.9% were performed without handwashing, 64.5% without gloving, and 27.5% were followed by needle recapping. Handwashing rate was the lowest (18.9%) when injections were performed by beginner nurses. Subcutaneous injections were associated with the lowest rate (26.7%) of postinjection handwashing compared with other routes. This study demonstrates the need for focused and effective infection control educational programs in Jordanian hospitals. Future studies should consider exploring the whole infection control practices related to waste disposal and the roles of the infection control nurse in this process in Jordanian hospitals. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Effect of Drying Moisture Exposed Almonds on the Development of the Quality Defect Concealed Damage.
Rogel-Castillo, Cristian; Luo, Kathleen; Huang, Guangwei; Mitchell, Alyson E
2017-10-11
Concealed damage (CD), is a term used by the nut industry to describe a brown discoloration of kernel nutmeat that becomes visible after moderate heat treatments (e.g., roasting). CD can result in consumer rejection and product loss. Postharvest exposure of almonds to moisture (e.g., rain) is a key factor in the development of CD as it promotes hydrolysis of proteins, carbohydrates, and lipids. The effect of drying moisture-exposed almonds between 45 to 95 °C, prior to roasting was evaluated as a method for controlling CD in roasted almonds. Additionally, moisture-exposed almonds dried at 55 and 75 °C were stored under accelerated shelf life conditions (45 °C/80% RH) and evaluated for headspace volatiles. Results indicate that drying temperatures below 65 °C decreases brown discoloration of nutmeat up to 40% while drying temperatures above 75 °C produce significant increases in brown discoloration and volatiles related to lipid oxidation, and nonsignificant increases in Amadori compounds. Results also demonstrate that raw almonds exposed to moisture and dried at 55 °C prior to roasting, reduce the visual sign of CD and maintain headspace volatiles profiles similar to almonds without moisture damage during accelerated storage.
Lim, Meng-Hui; Teoh, Andrew Beng Jin; Toh, Kar-Ann
2013-06-01
Biometric discretization is a key component in biometric cryptographic key generation. It converts an extracted biometric feature vector into a binary string via typical steps such as segmentation of each feature element into a number of labeled intervals, mapping of each interval-captured feature element onto a binary space, and concatenation of the resulted binary output of all feature elements into a binary string. Currently, the detection rate optimized bit allocation (DROBA) scheme is one of the most effective biometric discretization schemes in terms of its capability to assign binary bits dynamically to user-specific features with respect to their discriminability. However, we learn that DROBA suffers from potential discriminative feature misdetection and underdiscretization in its bit allocation process. This paper highlights such drawbacks and improves upon DROBA based on a novel two-stage algorithm: 1) a dynamic search method to efficiently recapture such misdetected features and to optimize the bit allocation of underdiscretized features and 2) a genuine interval concealment technique to alleviate crucial information leakage resulted from the dynamic search. Improvements in classification accuracy on two popular face data sets vindicate the feasibility of our approach compared with DROBA.
Three-Dimensional Microwave Imaging for Concealed Weapon Detection Using Range Stacking Technique
Directory of Open Access Journals (Sweden)
Weixian Tan
2017-01-01
Full Text Available Three-dimensional (3D microwave imaging has been proven to be well suited for concealed weapon detection application. For the 3D image reconstruction under two-dimensional (2D planar aperture condition, most of current imaging algorithms focus on decomposing the 3D free space Green function by exploiting the stationary phase and, consequently, the accuracy of the final imagery is obtained at a sacrifice of computational complexity due to the need of interpolation. In this paper, from an alternative viewpoint, we propose a novel interpolation-free imaging algorithm based on wavefront reconstruction theory. The algorithm is an extension of the 2D range stacking algorithm (RSA with the advantages of low computational cost and high precision. The algorithm uses different reference signal spectrums at different range bins and then forms the target functions at desired range bin by a concise coherent summation. Several practical issues such as the propagation loss compensation, wavefront reconstruction, and aliasing mitigating are also considered. The sampling criterion and the achievable resolutions for the proposed algorithm are also derived. Finally, the proposed method is validated through extensive computer simulations and real-field experiments. The results show that accurate 3D image can be generated at a very high speed by utilizing the proposed algorithm.
International Nuclear Information System (INIS)
Parker, S
2015-01-01
Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignment of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors
DEFF Research Database (Denmark)
Martini, Enrica; Breinbjerg, Olav; Maci, Stefano
2006-01-01
A simple and effective procedure for the reduction of truncation error in planar near-field to far-field transformations is presented. The starting point is the consideration that the actual scan plane truncation implies a reliability of the reconstructed plane wave spectrum of the field radiated...
Jung, Kyungyong; Kim, Dae Hwan; Ryu, Ji Young
2018-05-11
In this study, we explored the relationship between concealing emotions at work and musculoskeletal symptoms in Korean workers using data from a national, population-based survey. Data were obtained from the third Korean Working Conditions Survey in 2011. We investigated the prevalence of three musculoskeletal symptoms ("back pain", "pain in the upper extremities", and "pain in the lower extremities"). Multiple logistic regression analysis was also performed to determine odds ratios (ORs) for musculoskeletal symptoms according to concealing emotions at work, adjusting for socioeconomic factors. In both sexes, the emotion-concealing group showed a significantly higher prevalence of "pain in the upper extremities" and "pain in the lower extremities" than the non-emotion-concealing group. For back pain, male - but not female - workers who concealed their emotions showed a higher prevalence than their non-emotion-concealing counterparts; the difference was statistically significant. Adjusted ORs for musculoskeletal symptoms (excluding "back pain" for female workers) in the emotion-concealing group were significantly higher. Our study suggests that concealment of emotions is closely associated with musculoskeletal symptoms, and the work environment should operate in consideration not only of the physical health work condition of workers but also of their emotional efforts including concealing emotion at work.
Goswami, Deepjyoti
2011-09-01
In this article, we propose and analyze an alternate proof of a priori error estimates for semidiscrete Galerkin approximations to a general second order linear parabolic initial and boundary value problem with rough initial data. Our analysis is based on energy arguments without using parabolic duality. Further, it follows the spirit of the proof technique used for deriving optimal error estimates for finite element approximations to parabolic problems with smooth initial data and hence, it unifies both theories, that is, one for smooth initial data and other for nonsmooth data. Moreover, the proposed technique is also extended to a semidiscrete mixed method for linear parabolic problems. In both cases, optimal L2-error estimates are derived, when the initial data is in L2. A superconvergence phenomenon is also observed, which is then used to prove L∞-estimates for linear parabolic problems defined on two-dimensional spatial domain again with rough initial data. Copyright © Taylor & Francis Group, LLC.
Spotting software errors sooner
International Nuclear Information System (INIS)
Munro, D.
1989-01-01
Static analysis is helping to identify software errors at an earlier stage and more cheaply than conventional methods of testing. RTP Software's MALPAS system also has the ability to check that a code conforms to its original specification. (author)
Energy Technology Data Exchange (ETDEWEB)
Falconer, David A.; Tiwari, Sanjiv K.; Moore, Ronald L. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Khazanov, Igor, E-mail: David.a.Falconer@nasa.gov [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2016-12-20
Projection errors limit the use of vector magnetograms of active regions (ARs) far from the disk center. In this Letter, for ARs observed up to 60° from the disk center, we demonstrate a method for measuring and reducing the projection error in the magnitude of any whole-AR parameter that is derived from a vector magnetogram that has been deprojected to the disk center. The method assumes that the center-to-limb curve of the average of the parameter’s absolute values, measured from the disk passage of a large number of ARs and normalized to each AR’s absolute value of the parameter at central meridian, gives the average fractional projection error at each radial distance from the disk center. To demonstrate the method, we use a large set of large-flux ARs and apply the method to a whole-AR parameter that is among the simplest to measure: whole-AR magnetic flux. We measure 30,845 SDO /Helioseismic and Magnetic Imager vector magnetograms covering the disk passage of 272 large-flux ARs, each having whole-AR flux >10{sup 22} Mx. We obtain the center-to-limb radial-distance run of the average projection error in measured whole-AR flux from a Chebyshev fit to the radial-distance plot of the 30,845 normalized measured values. The average projection error in the measured whole-AR flux of an AR at a given radial distance is removed by multiplying the measured flux by the correction factor given by the fit. The correction is important for both the study of the evolution of ARs and for improving the accuracy of forecasts of an AR’s major flare/coronal mass ejection productivity.
The association between concealing emotions at work and medical utilization in Korea.
Seok, Hongdeok; Yoon, Jin-Ha; Lee, Wanhyung; Lee, June-Hee; Jung, Pil Kyun; Kim, Inah; Won, Jong-Uk; Roh, Jaehoon
2014-01-01
We aimed to investigate the association between concealing emotions at work and medical utilization. Data from the 2007-2009 4th Korea National Health and Nutrition Examination Survey (KNHANES IV) was used, 7,094 participants (3,837 males, 3,257 females) aged between 20 and 54 who were economically active and completed all necessary questionnaire items were included. Odds ratios (ORs) and 95% confidence intervals (95% CI) for differences in hospitalization, outpatient visits, and pharmaceutical drug use between those who concealed their emotions and those who did not were investigated using logistic regression models with and without gender stratification. Among those who concealed their emotions (n = 2,763), 47.4% were females, and 50.1% had chronic disease. In addition, 9.7% of the concealing emotions group had been hospitalized within the last year, 24.8% had been outpatients in the last two weeks, and 28.3% had used pharmaceutical drugs in the last two weeks. All ORs represent the odds of belonging to the concealing emotions group over the non-concealing emotions group. After adjustment for individual, occupational, socioeconomic and disease factors, the adjusted ORs (95% CI) in hospitalization are 1.29 (1.08 ~ 1.53) in the total population, 1.25 (0.98 ~ 1.60) in males and 1.30 (1.02 ~ 1.66) in females, in outpatient visits are 1.15 (1.02 ~ 1.29) in the total population, 1.05 (0.88 ~ 1.24) in males and 1.25 (1.06 ~ 1.47) in females and in pharmaceutical drug use are 1.12 (1.01 ~ 1.25) in the total population, 1.08 (0.92 ~ 1.27) in males and 1.14 (0.98 ~ 1.33) in females. Those who concealed their emotions at work were more likely to use medical services. Moreover, the health effects of concealing emotions at work might be more detrimental in women than in men.
Zhang, Haolin; Liu, Hua; Lizana, Angel; Xu, Wenbin; Caompos, Juan; Lu, Zhenwu
2017-10-30
This paper is devoted to the improvement of ground-based telescopes based on diffractive primary lenses, which provide larger aperture and relaxed surface tolerance compared to non-diffractive telescopes. We performed two different studies devised to thoroughly characterize and improve the performance of ground-based diffractive telescopes. On the one hand, we experimentally validated the suitability of the stitching error theory, useful to characterize the error performance of subaperture diffractive telescopes. On the other hand, we proposed a novel ground-based telescope incorporated in a Cassegrain architecture, leading to a telescope with enhanced performance. To test the stitching error theory, a 300 mm diameter, 2000 mm focal length transmissive stitching diffractive telescope, based on a three-belt subaperture primary lens, was designed and implemented. The telescope achieves a 78 cy/mm resolution within 0.15 degree field of view while the working wavelength ranges from 582.8 nm to 682.8 nm without any stitching error. However, the long optical track (35.49 m) introduces air turbulence that reduces the final images contrast in the ground-based test. To enhance this result, a same diameter compacted Cassegrain ground-based diffractive (CGD) telescope with the total track distance of 1.267 m, was implemented within the same wavelength. The ground-based CGD telescope provides higher resolution and better contrast than the transmissive configuration. Star and resolution tests were experimentally performed to compare the CGD and the transmissive configurations, providing the suitability of the proposed ground-based CGD telescope.
International Nuclear Information System (INIS)
Khan, A.; Phillips, C.R.
1987-01-01
The unattached fraction of radon/thoron progeny in uranium mines is generally small and therefore difficult to measure accurately. The simple wire screen method provides a direct estimate of the unattached fraction from the screen count, or an indirect estimate from the difference between the reference and back-up filter counts. Wire screen method results are often difficult to analyse, especially when the unattached activity is small. Experimental data obtained in Canadian uranium mines are presented here, together with a detailed error analysis. The method consisting of counting the wire screen and the back-up filter is found to be the most precise method for unattached fraction determination. (author)
Energy Technology Data Exchange (ETDEWEB)
Stephansen, A.F
2007-12-15
In this thesis we analyse a discontinuous Galerkin (DG) method and two computable a posteriori error estimators for the linear and stationary advection-diffusion-reaction equation with heterogeneous diffusion. The DG method considered, the SWIP method, is a variation of the Symmetric Interior Penalty Galerkin method. The difference is that the SWIP method uses weighted averages with weights that depend on the diffusion. The a priori analysis shows optimal convergence with respect to mesh-size and robustness with respect to heterogeneous diffusion, which is confirmed by numerical tests. Both a posteriori error estimators are of the residual type and control the energy (semi-)norm of the error. Local lower bounds are obtained showing that almost all indicators are independent of heterogeneities. The exception is for the non-conforming part of the error, which has been evaluated using the Oswald interpolator. The second error estimator is sharper in its estimate with respect to the first one, but it is slightly more costly. This estimator is based on the construction of an H(div)-conforming Raviart-Thomas-Nedelec flux using the conservativeness of DG methods. Numerical results show that both estimators can be used for mesh-adaptation. (author)
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Lunde, Asger
2014-01-01
An economic time series can often be viewed as a noisy proxy for an underlying economic variable. Measurement errors will influence the dynamic properties of the observed process and may conceal the persistence of the underlying time series. In this paper we develop instrumental variable (IV...
International Nuclear Information System (INIS)
Parizet, M.J.; Augerat, J.; Avan, M.; Ballet, M.; Vialle, M.
1977-01-01
A programme has been worked out to reconstruct electron tracks of low energy (from 100 keV to 2 MeV) curved by a magnetic field in a small streamer chamber (size 10x11x51 cm 3 ). Before a study of the problems involved in the experimental set-up, the geometrical programme is described and the different errors are evaluated. Finally the accuracies on kinetic energies and angles which can be obtained for low energy elctron tracks are given. (Auth.)
Jewett, L.R.; Kwakkenbos, C.M.C.; Carrier, M.E.; Malcarne, V.L.; Harcourt, D.; Rumsey, N.; Mayes, M.D.; Assassi, S.; Körner, A.; Fox, R.S.; Gholizadeh, S.; Mills, S.D.; Fortune, C.; Thombs, B.D.
2017-01-01
Body concealment is an important component of appearance distress for individuals with disfiguring conditions, including scleroderma. The objective was to replicate the validation study of the Body Concealment Scale for Scleroderma (BCSS) among 897 scleroderma patients. The factor structure of the
Ohteru, Shoko; Kishine, Keiji
The Burst ACK scheme enhances effective throughput by reducing ACK overhead when a transmitter sends sequentially multiple data frames to a destination. IEEE 802.11e is one such example. The size of the data frame body and the number of burst data frames are important burst transmission parameters that affect throughput. The larger the burst transmission parameters are, the better the throughput under error-free conditions becomes. However, large data frame could reduce throughput under error-prone conditions caused by signal-to-noise ratio (SNR) deterioration. If the throughput can be calculated from the burst transmission parameters and error rate, the appropriate ranges of the burst transmission parameters could be narrowed down, and the necessary buffer size for storing transmit data or received data temporarily could be estimated. In this paper, we present a method that features a simple algorithm for estimating the effective throughput from the burst transmission parameters and error rate. The calculated throughput values agree well with the measured ones for actual wireless boards based on the IEEE 802.11-based original MAC protocol. We also calculate throughput values for larger values of the burst transmission parameters outside the assignable values of the wireless boards and find the appropriate values of the burst transmission parameters.
What's on your mind? Recent advances in memory detection using the Concealed Information Test
Verschuere, B.; Meijer, E.H.
2014-01-01
Lie detectors can be applied in a wide variety of settings. But this advantage comes with a considerable cost: False positives. The applicability of the Concealed Information Test (CIT) is more limited, yet when it can be applied, the risk of false accusations can be set a priori at a very low
Hidden Markov Model-based Packet Loss Concealment for Voice over IP
DEFF Research Database (Denmark)
Rødbro, Christoffer A.; Murthi, Manohar N.; Andersen, Søren Vang
2006-01-01
As voice over IP proliferates, packet loss concealment (PLC) at the receiver has emerged as an important factor in determining voice quality of service. Through the use of heuristic variations of signal and parameter repetition and overlap-add interpolation to handle packet loss, conventional PLC...
The Psychological Implications of Concealing a Stigma: A Cognitive-Affective-Behavioral Model
Pachankis, John E.
2007-01-01
Many assume that individuals with a hidden stigma escape the difficulties faced by individuals with a visible stigma. However, recent research has shown that individuals with a concealable stigma also face considerable stressors and psychological challenges. The ambiguity of social situations combined with the threat of potential discovery makes…
Anxiety and Related Disorders and Concealment in Sexual Minority Young Adults.
Cohen, Jeffrey M; Blasey, Christine; Barr Taylor, C; Weiss, Brandon J; Newman, Michelle G
2016-01-01
Sexual minorities face greater exposure to discrimination and rejection than heterosexuals. Given these threats, sexual minorities may engage in sexual orientation concealment in order to avoid danger. This social stigma and minority stress places sexual minorities at risk for anxiety and related disorders. Given that three fourths of anxiety disorder onset occurs before the age of 24, the current study investigated the symptoms of generalized anxiety disorder, social phobia, panic disorder, posttraumatic stress disorder, and depression in sexual minority young adults relative to their heterosexual peers. Secondarily, the study investigated sexual orientation concealment as a predictor of anxiety and related disorders. A sample of 157 sexual minority and 157 heterosexual young adults matched on age and gender completed self-report measures of the aforementioned disorders, and indicated their level of sexual orientation concealment. Results revealed that sexual minority young adults reported greater symptoms relative to heterosexuals across all outcome measures. There were no interactions between sexual minority status and gender, however, women had higher symptoms across all disorders. Sexual minority young women appeared to be at the most risk for clinical levels of anxiety and related disorders. In addition, concealment of sexual orientation significantly predicted symptoms of social phobia. Implications are offered for the cognitive and behavioral treatment of anxiety and related disorders in this population. Copyright © 2015. Published by Elsevier Ltd.
Regulatory focus moderates the social performance of individuals who conceal a stigmatized identity
Newheiser, Anna-Kaisa; Barreto, Manuela; Ellemers, Naomi; Derks, Belle; Scheepers, Daan
2015-01-01
People often choose to hide a stigmatized identity to avoid bias. However, hiding stigma can disrupt social interactions. We considered whether regulatory focus qualifies the social effects of hiding stigma by examining interactions in which stigmatized participants concealed a devalued identity
International Nuclear Information System (INIS)
Jeach, J.L.
1976-01-01
When rounding error is large relative to weighing error, it cannot be ignored when estimating scale precision and bias from calibration data. Further, if the data grouping is coarse, rounding error is correlated with weighing error and may also have a mean quite different from zero. These facts are taken into account in a moment estimation method. A copy of the program listing for the MERDA program that provides moment estimates is available from the author. Experience suggests that if the data fall into four or more cells or groups, it is not necessary to apply the moment estimation method. Rather, the estimate given by equation (3) is valid in this instance. 5 tables
International Nuclear Information System (INIS)
Liang, Fusheng; Zhao, Ji; Ji, Shijun; Zhang, Bing; Fan, Cheng
2017-01-01
The B-spline curve has been widely used in the reconstruction of measurement data. The error-bounded sampling points reconstruction can be achieved by the knot addition method (KAM) based B-spline curve fitting. In KAM, the selection pattern of initial knot vector has been associated with the ultimate necessary number of knots. This paper provides a novel initial knots selection method to condense the knot vector required for the error-bounded B-spline curve fitting. The initial knots are determined by the distribution of features which include the chord length (arc length) and bending degree (curvature) contained in the discrete sampling points. Firstly, the sampling points are fitted into an approximate B-spline curve Gs with intensively uniform knot vector to substitute the description of the feature of the sampling points. The feature integral of Gs is built as a monotone increasing function in an analytic form. Then, the initial knots are selected according to the constant increment of the feature integral. After that, an iterative knot insertion (IKI) process starting from the initial knots is introduced to improve the fitting precision, and the ultimate knot vector for the error-bounded B-spline curve fitting is achieved. Lastly, two simulations and the measurement experiment are provided, and the results indicate that the proposed knot selection method can reduce the number of ultimate knots available. (paper)
Nour-Eldein, Hebatallah
2016-01-01
With limited statistical knowledge of most physicians it is not uncommon to find statistical errors in research articles. To determine the statistical methods and to assess the statistical errors in family medicine (FM) research articles that were published between 2010 and 2014. This was a cross-sectional study. All 66 FM research articles that were published over 5 years by FM authors with affiliation to Suez Canal University were screened by the researcher between May and August 2015. Types and frequencies of statistical methods were reviewed in all 66 FM articles. All 60 articles with identified inferential statistics were examined for statistical errors and deficiencies. A comprehensive 58-item checklist based on statistical guidelines was used to evaluate the statistical quality of FM articles. Inferential methods were recorded in 62/66 (93.9%) of FM articles. Advanced analyses were used in 29/66 (43.9%). Contingency tables 38/66 (57.6%), regression (logistic, linear) 26/66 (39.4%), and t-test 17/66 (25.8%) were the most commonly used inferential tests. Within 60 FM articles with identified inferential statistics, no prior sample size 19/60 (31.7%), application of wrong statistical tests 17/60 (28.3%), incomplete documentation of statistics 59/60 (98.3%), reporting P value without test statistics 32/60 (53.3%), no reporting confidence interval with effect size measures 12/60 (20.0%), use of mean (standard deviation) to describe ordinal/nonnormal data 8/60 (13.3%), and errors related to interpretation were mainly for conclusions without support by the study data 5/60 (8.3%). Inferential statistics were used in the majority of FM articles. Data analysis and reporting statistics are areas for improvement in FM research articles.
International Nuclear Information System (INIS)
Ceolin, C.; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T.
2015-01-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2015-07-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Sokolenko, Stanislav; Aucoin, Marc G
2015-09-04
as 2.5 % under a wide range of conditions. Both the simulation framework and error correction method represent examples of time-course analysis that can be applied to further developments in (1)H-NMR methodology and the more general application of quantitative metabolomics.
Uncorrected refractive errors.
Naidoo, Kovin S; Jaggernath, Jyoti
2012-01-01
Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.
Directory of Open Access Journals (Sweden)
Kovin S Naidoo
2012-01-01
Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.
Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.
2008-01-01
In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molydenum (Cu-Au-Mo) deposit in southwest Alaska. The Pebble deposit is extremely large and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic and volcaniclastic rocks. The deposit is presently being explored by Northern Dynasty Minerals, Ltd., and Anglo-American LLC. The USGS undertakes unbiased, broad-scale mineral resource assessments of government lands to provide Congress and citizens with information on national mineral endowment. Research on known deposits is also done to refine and better constrain methods and deposit models for the mineral resource assessments. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, it is relatively undisturbed (except for exploration company drill holes), it is a large mineral system, and it is fairly well constrained at depth by the drill hole geology and geochemistry. The goals of the USGS study are (1) to determine whether the concealed deposit can be detected with surface samples, (2) to better understand the processes of metal migration from the deposit to the surface, and (3) to test and develop methods for assessing mineral resources in similar concealed terrains. This report presents analytical results for geochemical samples collected in 2007 from the Pebble deposit and surrounding environs. The analytical data are presented digitally both as an integrated Microsoft 2003 Access? database and as Microsoft 2003 Excel? files. The Pebble deposit is located in southwestern Alaska on state lands about 30 km (18 mi) northwest of the village of Illiamna and 320 km (200 mi) southwest of Anchorage (fig. 1). Elevations in the Pebble area range from 287 m (940 ft) at Frying Pan Lake just south of the deposit to 1146 m (3760 ft) on Kaskanak Mountain about 5 km (5 mi) to the west. The deposit is in an area of
Goswami, Deepjyoti; Pani, Amiya K.; Yadav, Sangita
2013-01-01
In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a
Study of a New Method of Tracking Control with Zero Steady-State Error on Very-Low Frequency
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A servo control system is prone to low speed and unsteadiness during very-low-frequency follow-up. A design method of feedforward control based on intelligent controller is put foward. Simulation and test results show that the method has excellent control characteristics and strong robustness, which meets the servo control needs with very-low frequency.
Kim, Changhwa; Shin, DongHyun
2017-05-12
There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage human life or property, depending on their application areas. In this paper, we propose a framework to reduce sensor data loss during communication failures and we present a formal approach to the Selection by Minimum Error and Pattern (SMEP) method that plays the most important role for the reduction in sensor data loss under the proposed framework. The SMEP method is compared with other methods to validate its effectiveness through experiments using real-field sensor data sets. Moreover, based on our experimental results and performance comparisons, the SMEP method has been validated to be better than others in terms of the average sensor data value error rate caused by sensor data loss.
Directory of Open Access Journals (Sweden)
Xingwu Zhang
2016-01-01
Full Text Available Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT is used and no Inverse Fast Fourier Transform (IFFT is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.
Directory of Open Access Journals (Sweden)
Assadian Ojan
2009-10-01
Full Text Available Abstract Background The aim of this study is to analyze possible random and systematic measurement errors and to detect methodological limits of the previously established method. Findings To examine the distribution of random errors (repeatability standard deviation of the detection procedure, collective samples were taken from two uncontaminated rooms using a sampling vacuum cleaner, and 10 sub-samples each were examined with 3 parallel cultivation plates (DG18. In this two collective samples of new dust, the total counts of Aspergillus spp. varied moderately by 25 and 29% (both 9 cfu per plate. At an average of 28 cfu/plate, the total number varied only by 13%. For the evaluation of the influence of old dust, old and fresh dust samples were examined. In both cases with old dust, the old dust influenced the results indicating false positive results, where hidden moist was indicated but was not present. To quantify the influence of sand and sieving, 13 sites were sampled in parallel using the 63-μm- and total dust collection approaches. Sieving to 63-μm resulted in a more then 10-fold enrichment, due to the different quantity of inert sand in each total dust sample. Conclusion The major errors during the quantitative evaluation from house dust samples for mould fungi as reference values for assessment resulted from missing filtration, contamination with old dust and the massive influence of soil. If the assessment is guided by indicator genera, the percentage standard deviation lies in a moderate range.
Vinay BC; Nikhitha MK; Patel Sunil B
2015-01-01
In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.
Energy Technology Data Exchange (ETDEWEB)
Allodji, Rodrigue S.; Schwartz, Boris; Diallo, Ibrahima; Vathaire, Florent de [Gustave Roussy B2M, Radiation Epidemiology Group/CESP - Unit 1018 INSERM, Villejuif Cedex (France); Univ. Paris-Sud, Villejuif (France); Agbovon, Cesaire [Pierre and Vacances - Center Parcs Group, L' artois - Espace Pont de Flandre, Paris Cedex 19 (France); Laurier, Dominique [Institut de Radioprotection et de Surete Nucleaire (IRSN), DRPH, SRBE, Laboratoire d' epidemiologie, BP17, Fontenay-aux-Roses Cedex (France)
2015-08-15
Analyses of the Life Span Study (LSS) of Japanese atomic bombing survivors have routinely incorporated corrections for additive classical measurement errors using regression calibration. Recently, several studies reported that the efficiency of the simulation-extrapolation method (SIMEX) is slightly more accurate than the simple regression calibration method (RCAL). In the present paper, the SIMEX and RCAL methods have been used to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates. For instance, it is shown that using the SIMEX method, the ERR/Gy is increased by an amount of about 29 % for all solid cancer deaths using a linear model compared to the RCAL method, and the corrected EAR 10{sup -4} person-years at 1 Gy (the linear terms) is decreased by about 8 %, while the corrected quadratic term (EAR 10{sup -4} person-years/Gy{sup 2}) is increased by about 65 % for leukaemia deaths based on a linear-quadratic model. The results with SIMEX method are slightly higher than published values. The observed differences were probably due to the fact that with the RCAL method the dosimetric data were partially corrected, while all doses were considered with the SIMEX method. Therefore, one should be careful when comparing the estimated risks and it may be useful to use several correction techniques in order to obtain a range of corrected estimates, rather than to rely on a single technique. This work will enable to improve the risk estimates derived from LSS data, and help to make more reliable the development of radiation protection standards. (orig.)
Du, Chen-Zhao; Wu, Zhi-Sheng; Zhao, Na; Zhou, Zheng; Shi, Xin-Yuan; Qiao, Yan-Jiang
2016-10-01
To establish a rapid quantitative analysis method for online monitoring of chlorogenic acid in aqueous solution of Lonicera Japonica Flos extraction by using micro-electromechanical near infrared spectroscopy (MEMS-NIR). High performance liquid chromatography(HPLC) was used as reference method．Kennard-Stone (K-S) algorithm was used to divide sample sets, and partial least square(PLS) regression was adopted to establish the multivariate analysis model between the HPLC analysis contents and NIR spectra. The synergy interval partial least squares (SiPLS) was used to selected modeling waveband to establish PLS models. RPD was used to evaluate the prediction performance of the models. MDLs was calculated based on two types of error detection theory, on-line analytical modeling approach of Lonicera Japonica Flos extraction process was expressed scientifically by MDL. The result shows that the model established by multiplicative scatter correction(MSC) was the best, with the root mean square with cross validation(RMSECV), root mean square error of correction(RMSEC) and root mean square error of prediction(RMSEP) of chlorogenic acid as 1.707, 1.489, 2.362, respectively, the determination coefficient of the calibration model was 0.998 5, and the determination coefficient of the prediction was 0.988 1．The value of RPD is 9.468.The MDL (0.042 15 g•L⁻¹) selected by SiPLS is less than the original,which demonstrated that SiPLS was beneficial to improve the prediction performance of the model. In this study, a more accurate expression of the prediction performance of the model from the two types of error detection theory, to further illustrate MEMS-NIR spectroscopy can be used for on-line monitoring of Lonicera Japonica Flos extraction process. Copyright© by the Chinese Pharmaceutical Association.
International Nuclear Information System (INIS)
Meor Yusoff Meor Sulaiman; Masliana Muhammad; Wilfred, P.
2013-01-01
Even though EDXRF analysis has major advantages in the analysis of stainless steel samples such as simultaneous determination of the minor elements, analysis can be done without sample preparation and non-destructive analysis, the matrix issue arise from the inter element interaction can make the the final quantitative result to be in accurate. The paper relates a comparative quantitative analysis using standard and standard less methods in the determination of these elements. Standard method was done by plotting regression calibration graphs of the interested elements using BCS certified stainless steel standards. Different calibration plots were developed based on the available certified standards and these stainless steel grades include low alloy steel, austenitic, ferritic and high speed. The standard less method on the other hand uses a mathematical modelling with matrix effect correction derived from Lucas-Tooth and Price model. Further improvement on the accuracy of the standard less method was done by inclusion of pure elements into the development of the model. Discrepancy tests were then carried out for these quantitative methods on different certified samples and the results show that the high speed method is most reliable for determining of Ni and the standard less method for Mn. (Author)
Weisz, Bradley M; Quinn, Diane M; Williams, Michelle K
2016-12-01
This research examined whether the relationship between perceived social support and health would be moderated by level of outness for people living with different concealable stigmatized identities (mental illness, substance abuse, domestic violence, rape, or childhood abuse). A total of 394 people living with a concealable stigmatized identity completed a survey. Consistent with hypotheses, at high levels of outness, social support predicted better health; at low levels of outness, social support was less predictive of health. People concealing a stigmatized identity may only be able to reap the health benefits of social support if they are "out" about the stigmatized identity. © The Author(s) 2015.
Energy Technology Data Exchange (ETDEWEB)
Bir, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1961-07-01
One of the most serious causes of systematic error in isotopic analyses of uranium from UF{sub 6} is the tendency of this material to become fixed in various ways in the mass spectrometer. As a result the value indicated by the instrument is influenced by the isotopic composition of the substances previously analysed. The resulting error is called a memory error. Making use of an elementary mathematical theory, the various methods used to reduce memory errors are analysed and compared. A new method is then suggested, which reduces the memory errors to an extent where they become negligible over a wide range of {sup 235}U concentration. The method is given in full, together with examples of its application. (author) [French] Une des causes d'erreurs systematiques les plus graves dans les analyses isotopiques d'uranium a partir d'UF{sub 6} est l'aptitude de ce produit a se fixer de diverses manieres dans le spectrometre de masse. Il en resulte une influence de la composition isotopique des produits precedemment analyses sur la valeur indiquee par l'appareil. L'erreur resultante est appelee erreur de memoire. A partir d'une theorie mathematique elementaire, on analyse et on compare les differentes methodes utilisees pour reduire les erreurs de memoire. On suggere ensuite une nouvelle methode qui reduit les erreurs de memoire dans une proportion telle qu'elles deviennent negligeables dans un grand domaine de concentration en {sup 235}U. On donne le mode operatoire complet et des exemples d'application. (auteur)
Sauerland, Melanie; Wolfs, Andrea C F; Crans, Samantha; Verschuere, Bruno
2017-11-27
Direct eyewitness identification is widely used, but prone to error. We tested the validity of indirect eyewitness identification decisions using the reaction time-based concealed information test (CIT) for assessing cooperative eyewitnesses' face memory as an alternative to traditional lineup procedures. In a series of five experiments, a total of 401 mock eyewitnesses watched one of 11 different stimulus events that depicted a breach of law. Eyewitness identifications in the CIT were derived from longer reaction times as compared to well-matched foil faces not encountered before. Across the five experiments, the weighted mean effect size d was 0.14 (95% CI 0.08-0.19). The reaction time-based CIT seems unsuited for testing cooperative eyewitnesses' memory for faces. The careful matching of the faces required for a fair lineup or the lack of intent to deceive may have hampered the diagnosticity of the reaction time-based CIT.
International Nuclear Information System (INIS)
Auluck, S.K.H.
2007-01-01
Generating capability for reliable, non-intrusive detection of concealed-contraband, particularly, organic contraband like explosives and narcotics, has become a national priority. This capability spans a spectrum of technologies. If a technology mission addressing the needs of a highly sophisticated technology like PFNA is set up, the capabilities acquired would be adequate to meet the requirements of many other sets of technologies. This forms the background of the Indian program for development of technologies relevant to reliable, non-intrusive, concealed contraband detection. One of the central themes of the technology development programs would be modularization of the neutron source and detector technologies, so that common elements can be combined in different ways for meeting a variety of application requirements. (author)
Fiber Optic Coupled Raman Based Detection of Hazardous Liquids Concealed in Commercial Products
Directory of Open Access Journals (Sweden)
Michael L. Ramírez-Cedeño
2012-01-01
Full Text Available Raman spectroscopy has been widely proposed as a technique to nondestructively and noninvasively interrogate the contents of glass and plastic bottles. In this work, Raman spectroscopy is used in a concealed threat scenario where hazardous liquids have been intentionally mixed with common consumer products to mask its appearance or spectra. The hazardous liquids under consideration included the chemical warfare agent (CWA simulant triethyl phosphate (TEP, hydrogen peroxide, and acetone as representative of toxic industrial compounds (TICs. Fiber optic coupled Raman spectroscopy (FOCRS and partial least squares (PLS algorithm analysis were used to quantify hydrogen peroxide in whiskey, acetone in perfume, and TEP in colored beverages. Spectral data was used to evaluate if the hazardous liquids can be successfully concealed in consumer products. Results demonstrated that FOC-RS systems were able to discriminate between nonhazardous consumer products and mixtures with hazardous materials at concentrations lower than 5%.
Errors in causal inference: an organizational schema for systematic error and random error.
Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji
2016-11-01
To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Shuoliang; Liu, Pengcheng; Zhao, Hui; Zhang, Yuan
2017-11-29
Micro-tube experiment has been implemented to understand the mechanisms of governing microcosmic fluid percolation and is extensively used in both fields of micro electromechanical engineering and petroleum engineering. The measured pressure difference across the microtube is not equal to the actual pressure difference across the microtube. Taking into account the additional pressure losses between the outlet of the micro tube and the outlet of the entire setup, we propose a new method for predicting the dynamic capillary pressure using the Level-set method. We first demonstrate it is a reliable method for describing microscopic flow by comparing the micro-model flow-test results against the predicted results using the Level-set method. In the proposed approach, Level-set method is applied to predict the pressure distribution along the microtube when the fluids flow along the microtube at a given flow rate; the microtube used in the calculation has the same size as the one used in the experiment. From the simulation results, the pressure difference across a curved interface (i.e., dynamic capillary pressure) can be directly obtained. We also show that dynamic capillary force should be properly evaluated in the micro-tube experiment in order to obtain the actual pressure difference across the microtube.
Unsupervised image segmentation for passive THz broadband images for concealed weapon detection
Ramírez, Mabel D.; Dietlein, Charles R.; Grossman, Erich; Popović, Zoya
2007-04-01
This work presents the application of a basic unsupervised classification algorithm for the segmentation of indoor passive Terahertz images. The 30,000 pixel broadband images of a person with concealed weapons under clothing are taken at a range of 0.8-2m over a frequency range of 0.1-1.2THz using single-pixel row-based raster scanning. The spiral-antenna coupled 36x1x0.02μm Nb bridge cryogenic micro-bolometers are developed at NIST-Optoelectronics Division. The antenna is evaporated on a 250μm thick Si substrate with a 4mm diameter hyper-hemispherical Si lens. The NETD of the microbolometer is 125mK at an integration time of 30 ms. The background temperature calibration is performed with a known 25 pixel source above 330 K, and a measured background fluctuation of 200-500mK. Several weapons were concealed under different fabrics: cotton, polyester, windblocker jacket and thermal sweater. Measured temperature contrasts ranged from 0.5-1K for wrinkles in clothing to 5K for a zipper and 8K for the concealed weapon. In order to automate feature detection in the images, some image processing and pattern recognition techniques have been applied and the results are presented here. We show that even simple algorithms, that can potentially be performed in real time, are capable of differentiating between a metal and a dielectric object concealed under clothing. Additionally, we show that pre-processing can reveal low temperature contrast features, such as folds in clothing.
Is anterior N2 enhancement a reliable electrophysiological index of concealed information?
Ganis, Giorgio; Bridges, David; Hsu, Chun-Wei; Schendan, Haline E
2016-12-01
Concealed information tests (CITs) are used to determine whether an individual possesses information about an item of interest. Event-related potential (ERP) measures in CITs have focused almost exclusively on the P3b component, showing that this component is larger when lying about the item of interest (probe) than telling the truth about control items (irrelevants). Recent studies have begun to examine other ERP components, such as the anterior N2, with mixed results. A seminal CIT study found that visual probes elicit a larger anterior N2 than irrelevants (Gamer and Berti, 2010) and suggested that this component indexes cognitive control processes engaged when lying about probes. However, this study did not control for potential intrinsic differences among the stimuli: the same probe and irrelevants were used for all participants, and there was no control condition composed of uninformed participants. Here, first we show that the N2 effect found in the study by Gamer and Berti (2010) was in large part due to stimulus differences, as the effect observed in a concealed information condition was comparable to that found in two matched control conditions without any concealed information (Experiments 1 and 2). Next, we addressed the issue of the generality of the N2 findings by counterbalancing a new set of stimuli across participants and by using a control condition with uninformed participants (Experiment 3). Results show that the probe did not elicit a larger anterior N2 than the irrelevants under these controlled conditions. These findings suggest that caution should be taken in using the N2 as an index of concealed information in CITs. Furthermore, they are a reminder that results of CIT studies (not only with ERPs) performed without stimulus counterbalancing and suitable control conditions may be confounded by differential intrinsic properties of the stimuli employed. Copyright Â© 2016 Elsevier Inc. All rights reserved.
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Hošek, Radim; Maltese, D.; Novotný, A.
2017-01-01
Roč. 51, č. 1 (2017), s. 279-319 ISSN 0764-583X EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Navier-Stokes system * finite element numerical method * finite volume numerical method Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.727, year: 2016 http://www.esaim-m2an.org/ articles /m2an/abs/2017/01/m2an150157/m2an150157.html
Self-stigma among concealable minorities in Hong Kong: conceptualization and unified measurement.
Mak, Winnie W S; Cheung, Rebecca Y M
2010-04-01
Self-stigma refers to the internalized stigma that individuals may have toward themselves as a result of their minority status. Not only can self-stigma dampen the mental health of individuals, it can deter them from seeking professional help lest disclosing their minority status lead to being shunned by service providers. No unified instrument has been developed to measure consistently self-stigma that could be applied to different concealable minority groups. The present study presented findings based on 4 studies on the development and validation of the Self-Stigma Scale, conducted in Hong Kong with community samples of mental health consumers, recent immigrants from Mainland China, and sexual minorities. Upon a series of validation procedures, a 9-item Self-Stigma Scale-Short Form was developed. Initial support on its reliability and construct validity (convergent and criterion validities) were found among 3 stigmatized groups. Utility of this unified measure was to establish an empirical basis upon which self-stigma of different concealable minority groups could be assessed under the same dimensions. Health-care professionals could make use of this short scale to assess potential self-stigmatization among concealable minorities, which may hamper their treatment process as well as their overall well-being.
Energy Technology Data Exchange (ETDEWEB)
Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-04
We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B_{0} is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB_{0}/B_{0}, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2
Measurement errors in voice-key naming latency for Hiragana.
Yamada, Jun; Tamaoka, Katsuo
2003-12-01
This study makes explicit the limitations and possibilities of voice-key naming latency research on single hiragana symbols (a Japanese syllabic script) by examining three sets of voice-key naming data against Sakuma, Fushimi, and Tatsumi's 1997 speech-analyzer voice-waveform data. Analysis showed that voice-key measurement errors can be substantial in standard procedures as they may conceal the true effects of significant variables involved in hiragana-naming behavior. While one can avoid voice-key measurement errors to some extent by applying Sakuma, et al.'s deltas and by excluding initial phonemes which induce measurement errors, such errors may be ignored when test items are words and other higher-level linguistic materials.
Directory of Open Access Journals (Sweden)
Hasan Razmjoo
2016-01-01
Full Text Available Background: Corneal transplantation is a surgery in which cornea is replaced by a donated one and can be completely penetrating keratoplasty (PK or included a part of cornea deep lamellar keratoplasty (DLK. Although the functional results are limited by some complications, it is considered as one of the most successful surgeries. This study aimed to compare the refractive errors after same size corneal transplantation through DLK and PK methods in keratoconus patients over 20 years. Materials and Methods: This descriptive, analytical study was conducted in Feiz Hospital, Sadra and Persian Clinics of Isfahan in 2013–2014. In this study, 35 patients underwent corneal transplantation by PK and 35 patients by DLK, after removing the sutures, the patients were compared in terms of best corrected visual acuity (BCVA and refractive errors. Data were analyzed using Chi-square and t Student tests by SPSS software. Results: The BCVA mean in DLK and PK groups was 6/10 ± 2/10 and 5/10 ± 2/10, respectively, with no significant difference (P = 0.4. The results showed 9 cases of DLK and 6 cases of PK had normal (8/10 ≤ BCVA visual acuity (25.7% vs. 17.1%, 24 cases of DLK and 27 cases of PK had mild vision impairment (68.6% vs. 77.1% and 2 cases of the DLK group and 2 cases of PK had moderate vision impairment, (5.7% vs. 5.7%, there was no significant difference in “BCVA” (P = 0.83. Conclusions: Both methods were acceptably effective in improving BCVA, but according to previous articles (5,9,10 the DLK method due to fewer complications and less risk of rejection was superior to another method and in the absence of any prohibition this method is recommended.
Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.
2012-01-01
forest AGB sampling errors by 15 - 38%. Furthermore, spaceborne global scale accuracy requirements were achieved. At least 80% of the grid cells at 100m, 250m, 500m, and 1km grid levels met AGB density accuracy requirements using a combination of passive optical and SAR along with machine learning methods to predict vegetation structure metrics for forested areas without LiDAR samples. Finally, using either passive optical or SAR, accuracy requirements were met at the 500m and 250m grid level, respectively.
Directory of Open Access Journals (Sweden)
Martin eBouda
2016-02-01
Full Text Available Fractal dimension (FD, estimated by box-counting, is a metric used to characterise plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantisation error (QE, which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterise the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitised in 3D and subjected to box-counts. A pattern search algorithm was used to minimise QE by optimising grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates.QE due to both grid position and orientation was a significant source of error in FD estimates, but pattern search provided an efficient means of minimising it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitisations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did
Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C
2015-08-20
An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Whan; Jung, Won Dea; Park, Jin Yun; Kang, Dae Il
2005-01-01
The study deals with a method for systematically identifying and assessing the EOC events that might be caused from a diagnosis failure or misdiagnosis of the expected events in accident scenarios of nuclear power plants. The method for EOC identification and assessment consists of three steps: analysis of the potential for a diagnosis failure (or misdiagnosis), identification of the EOC events from the diagnosis failure, quantitative assessment of the identified EOC events. As a tool for analysing a diagnosis failure, the MisDiagnosis Tree Analysis (MDTA) technique is proposed with the taxonomy of misdiagnosis causes. Also, the guidance on the identification of EOC events and the classification system and data are given for quantitiative assessment. As an applicaton of the proposed method, the EOCs identification and assessment for Younggwang 3 and 4 plants and their impact on the plant risk were performed. As the result, six events or event sequences were considered for diagnosis failures and about 20 new Human Failure Events (HFEs) involving EOCs were identified. According to the assessment of the risk impact of the identified HFEs, they increase the CDF by 11.4 % of the current CDF value, which corresponds to 10.2 % of the new CDF. The small loss of coolant accident (SLOCA) turned out to be a major contributor to the increase of CDF resulting in 9.2 % increaseof the current CDF.
Zhang, Xin-Sheng; Liu, Shi-Xiong; Xiang, Xue-Yan; Zhang, Wen-Gang; Tang, Da-Xing
2014-04-01
To search for a simple and effective surgical approach to the management of moderate to severe pediatric concealed penis in children. We used Devine's technique via incision between the penis and scrotum in the treatment of 68 cases of moderate to severe pediatric concealed penis. The patients were aged 3 -13 (mean 6.5) years, 30 with moderate and 38 with severe pediatric concealed penis. This strategy achieved good near- and long-term effects and satisfactory appearance of the penis, which was similar to that of circumcision. At 3 months after surgery, the penile length was 3 - 5.2 cm, averaging (2.35 +/- 0.35) cm. Devine's technique via incision between the penis and scrotum is a simple and effective surgical option for moderate to severe pediatric concealed penis in children.
Directory of Open Access Journals (Sweden)
Mu Chen
2015-06-01
Conclusions: Results from this study demonstrate that the risk factors of AF are not homogenous between concealed and manifest APs, which might suggest heterogeneous pathogenesis of AF in these two types of APs.
Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi
2015-10-01
The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.
Energy Technology Data Exchange (ETDEWEB)
Calvo, Esteban; Garcia, Juan A.; Garcia, Ignacio; Aisa, Luis A. [University of Zaragoza, Area de Mecanica de Fluidos, Centro Politecnico Superior, Zaragoza (Spain)
2009-09-15
Phase-Doppler anemometry (PDA) is a powerful tool for two-phase flow measurements and testing. Particle concentration and mass flux can also be evaluated using the raw particle data supplied by this technique. The calculation starts from each particle velocity, diameter, transit time data, and the total measurement time. There are two main evaluation strategies. The first one uses the probe volume effective cross section, and it is usually simplified assuming that particles follow quasi one-directional trajectories. In the text, it will be called the cross section method. The second one includes a set of methods which will be denoted as ''Generalized Integral Methods'' (GIM). Concentration algorithms such as the transit time method (TTM) and the integral volume method (IVM) are particular cases of the GIM. In any case, a previous calibration of the measurement volume geometry is necessary to apply the referred concentration evaluation methods. In this study, concentrations and mass fluxes both evaluated by the cross-section method and the TTM are compared. Experimental data are obtained from a particle-laden jet generated by a convergent nozzle. Errors due to trajectory dispersion, burst splitting, and multi-particle signals are discussed. (orig.)
He, Shanshan; Ou, Daojiang; Yan, Changya; Lee, Chen-Han
2015-01-01
Piecewise linear (G01-based) tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical...
Hartman, Jessica D; Patock-Peckham, Julie A; Corbin, William R; Gates, Jonathan R; Leeman, Robert F; Luk, Jeremy W; King, Kevin M
2015-01-01
Self-concealment reflects uncomfortable feelings, thoughts, and information people have about themselves that they avoid telling others (Larson & Chastain, 1990). According to Larson and Chastain (1990) these secrets range from the slightly embarrassing to the very distressing with an individual's most traumatic experiences often concealed. Parental attitudes including those involving self-disclosure are thought to be expressed in their choice of parenting style (Brand, Hatzinger, Beck, & Holsboer-Trachsler, 2009). The specific aim of this investigation was to examine the direct and indirect influences of parenting styles on self-concealment, impaired control over drinking (i.e. the inability to stop drinking when intended), alcohol use (quantity/frequency), and alcohol-related problems. A structural equation model with 419 (223 men, 196 women) university students was examined. Two and three path mediated effects were examined with the bias corrected bootstrap technique in Mplus. Having an authoritarian mother was directly linked to more self-concealment, while having an authoritative father was directly linked to less self-concealment. Higher levels of mother authoritarianism were indirectly linked to both increased alcohol use and alcohol-related problems through more self-concealment and more impaired control over drinking. Moreover, higher levels of father authoritativeness were indirectly linked to less alcohol use and alcohol-related problems through less self-concealment and less impaired control over drinking. These findings suggest that parenting styles influence vulnerabilities such as self-concealment in the impaired control over the drinking pathway to alcohol use and alcohol-related problems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shin, Dong Wook; Park, Jong Hyock; Kim, So Young; Park, Eal Whan; Yang, Hyung Kook; Ahn, Eunmi; Park, Seon Mee; Lee, Young Joon; Lim, Myong Cheol; Seo, Hong Gwan
2014-05-01
We aimed to identify the prevalence of feelings of guilt, censure, and concealment of smoking status among cancer patients and their family members who continued to smoke after the patient's diagnosis. Among 990 patient-family member dyads, 45 patients and 173 family members who continued to smoke for at least 1 month after the patients' diagnoses were administered questions examining feelings of guilt, censure, and smoking concealment. Most patients who continued to smoke reported experiencing feelings of guilt toward their families (75.6%) and censure from their family members (77.8%), and many concealed their smoking from their family members (44.4%) or healthcare professionals (46.7%). Family members who continued to smoke also reported feelings of guilt with respect to the patient (63.6%) and that the patient was critical of them (68.9%), and many concealed their smoking from the patient (28.5%) or healthcare professionals (9.3%). Patients' feeling of guilt was associated with concealment of smoking from family members (55.9% vs. 10.0%) or health care professionals (55.9% vs. 20.0%). Family members who reported feeling guilty (36.5% vs. 16.3%) or censured (34.5% vs. 16.7%) were more likely to conceal smoking from patients. Many patients and family members continue to smoke following cancer diagnosis, and the majority of them experience feelings of guilt and censure, which can lead to the concealment of smoking status from families or health care professionals. Feelings of guilt, censure, and concealment of smoking should be considered in the development and implementation of smoking cessation programs for cancer patients and family members. Copyright © 2013 John Wiley & Sons, Ltd.
Sacharow, Alexei
2011-12-01
The unprecedented success of the iterative closest point (ICP) method for registration in geometry processing and related fields can be attributed to its efficiency, robustness, and wide spectrum of applications. Its use is however quite limited as soon as the objects to be registered arise from each other by a transformation significantly different from a Euclidean motion. We present a novel variant of ICP, tailored for the specific needs of production engineering, which registers a triangle mesh with a second surface model of arbitrary digital representation. Our method inherits most of ICP\\'s practical advantages but is capable of detecting medium-strength bendings i.e. isometric deformations. Initially, the algorithm assigns to all vertices in the source their closest point on the target mesh and then iteratively establishes isometry, a process which, very similar to ICP, requires intermediate re-projections. A NURBS-based technique for applying the resulting deformation to arbitrary instances of the source geometry, other than the very mesh used for correspondence estimation, is described before we present numerical results on synthetic and real data to underline the viability of our approach in comparison with others. © 2011 Elsevier Ltd. All rights reserved.
Prioritising interventions against medication errors
DEFF Research Database (Denmark)
Lisby, Marianne; Pape-Larsen, Louise; Sørensen, Ann Lykkegaard
errors are therefore needed. Development of definition: A definition of medication errors including an index of error types for each stage in the medication process was developed from existing terminology and through a modified Delphi-process in 2008. The Delphi panel consisted of 25 interdisciplinary......Abstract Authors: Lisby M, Larsen LP, Soerensen AL, Nielsen LP, Mainz J Title: Prioritising interventions against medication errors – the importance of a definition Objective: To develop and test a restricted definition of medication errors across health care settings in Denmark Methods: Medication...... errors constitute a major quality and safety problem in modern healthcare. However, far from all are clinically important. The prevalence of medication errors ranges from 2-75% indicating a global problem in defining and measuring these [1]. New cut-of levels focusing the clinical impact of medication...
Kushniruk, Andre; Senathirajah, Yalini; Borycki, Elizabeth
2017-01-01
The usability and safety of health information systems have become major issues in the design and implementation of useful healthcare IT. In this paper we describe a multi-phased multi-method approach to integrating usability engineering methods into system testing to ensure both usability and safety of healthcare IT upon widespread deployment. The approach involves usability testing followed by clinical simulation (conducted in-situ) and "near-live" recording of user interactions with systems. At key stages in this process, usability problems are identified and rectified forming a usability and technology-induced error "safety net" that catches different types of usability and safety problems prior to releasing systems widely in healthcare settings.
Calvo, Esteban; García, Juan A.; García, Ignacio; Aísa, Luis A.
2009-09-01
Phase-Doppler anemometry (PDA) is a powerful tool for two-phase flow measurements and testing. Particle concentration and mass flux can also be evaluated using the raw particle data supplied by this technique. The calculation starts from each particle velocity, diameter, transit time data, and the total measurement time. There are two main evaluation strategies. The first one uses the probe volume effective cross section, and it is usually simplified assuming that particles follow quasi one-directional trajectories. In the text, it will be called the cross section method. The second one includes a set of methods which will be denoted as “Generalized Integral Methods” (GIM). Concentration algorithms such as the transit time method (TTM) and the integral volume method (IVM) are particular cases of the GIM. In any case, a previous calibration of the measurement volume geometry is necessary to apply the referred concentration evaluation methods. In this study, concentrations and mass fluxes both evaluated by the cross-section method and the TTM are compared. Experimental data are obtained from a particle-laden jet generated by a convergent nozzle. Errors due to trajectory dispersion, burst splitting, and multi-particle signals are discussed.
Directory of Open Access Journals (Sweden)
Mehmet Emin Meral
2018-01-01
Full Text Available The control of power converter devices is one of the main research lines in interfaced renewable energy sources, such as solar cells and wind turbines. Therefore, suitable control algorithms should be designed in order to regulate power or current properly and attain a good power quality for some disturbances, such as voltage sag/swell, voltage unbalances and fluctuations, long interruptions, and harmonics. Various synchronisation techniques based control strategies are implemented for the hybrid power system applications under unbalanced conditions in literature studies. In this paper, synchronisation algorithms based Proportional-Resonant (PR power/current controller is applied to the hybrid power system (solar cell + wind turbine + grid, and Dual Second Order Generalized Integrator-Phase Locked Loop (DSOGI-PLL based PR controller in stationary reference frame provides a solution to overcome these problems. The influence of various cases, such as unbalance, and harmonic conditions, is examined, analysed and compared to the PR controllers based on DSOGI-PLL and SRF-PLL. The results verify the effectiveness and correctness of the proposed DSOGI-PLL based power control method.
Riaby, V. A.; Masherov, P. E.; Savinov, V. P.; Yakunin, V. G.
2018-02-01
The new DC arc T-plasmatron of long service life [1] is studied. The well known method of the electric field strength measurements in a stabilized arc channel [2] was applied in a modified form as a consequence of the specific form of the presumably diffuse anode spot attached to a gas vortex on the external surface of the anode unit. The electrical field strength was determined assuming that the potential drop across the diffuse anode spot in the new plasmatron was small. This gave the mean argon plasma conductivity: σ≤118 Ohm-1cm-1 for arc currents I ≤ 180 A which agreed with the independent experiment [2] affirming the correctness of the above assumption. Analysis of the known experimental and theoretic data on atmospheric argon plasma conductivity resulted in the selection of R.S.Devoto’s theoretic dependence σ(T) [3] as the most reliable one for T=8000…20000 K at P = 1 atm that allowed the evaluation of the mean argon plasma temperature at the exit of the plasmatron: T ≤ 19500 K.
Controlling errors in unidosis carts
Directory of Open Access Journals (Sweden)
Inmaculada Díaz Fernández
2010-01-01
Full Text Available Objective: To identify errors in the unidosis system carts. Method: For two months, the Pharmacy Service controlled medication either returned or missing from the unidosis carts both in the pharmacy and in the wards. Results: Uncorrected unidosis carts show a 0.9% of medication errors (264 versus 0.6% (154 which appeared in unidosis carts previously revised. In carts not revised, the error is 70.83% and mainly caused when setting up unidosis carts. The rest are due to a lack of stock or unavailability (21.6%, errors in the transcription of medical orders (6.81% or that the boxes had not been emptied previously (0.76%. The errors found in the units correspond to errors in the transcription of the treatment (3.46%, non-receipt of the unidosis copy (23.14%, the patient did not take the medication (14.36%or was discharged without medication (12.77%, was not provided by nurses (14.09%, was withdrawn from the stocks of the unit (14.62%, and errors of the pharmacy service (17.56% . Conclusions: It is concluded the need to redress unidosis carts and a computerized prescription system to avoid errors in transcription.Discussion: A high percentage of medication errors is caused by human error. If unidosis carts are overlooked before sent to hospitalization units, the error diminishes to 0.3%.
Error and its meaning in forensic science.
Christensen, Angi M; Crowder, Christian M; Ousley, Stephen D; Houck, Max M
2014-01-01
The discussion of "error" has gained momentum in forensic science in the wake of the Daubert guidelines and has intensified with the National Academy of Sciences' Report. Error has many different meanings, and too often, forensic practitioners themselves as well as the courts misunderstand scientific error and statistical error rates, often confusing them with practitioner error (or mistakes). Here, we present an overview of these concepts as they pertain to forensic science applications, discussing the difference between practitioner error (including mistakes), instrument error, statistical error, and method error. We urge forensic practitioners to ensure that potential sources of error and method limitations are understood and clearly communicated and advocate that the legal community be informed regarding the differences between interobserver errors, uncertainty, variation, and mistakes. © 2013 American Academy of Forensic Sciences.
Directory of Open Access Journals (Sweden)
Prof. Dr. Mehmet Demirezen
2005-10-01
Full Text Available The aim of this article is to demonstrate the applicability of a pronunciation teachingand correction case entitled the audio-articulation method, developed by Demirezen (2003,2004, in the field of teacher training in which there is a scarcity of such methods. The audio-articulation method is a fossilized pronunciation mistake breaker, moving raising awareness of a fossilized mistake to perception via listening to oral practice. This method integratespronunciation practicing into oral communication in the context of speaking by means ofchain drills, substitution drills, repetition drills, inflection drills, replacement drills,restatement drills, completion drills, transposition drills, expansion drills, contraction drills,transformation drills, integration drills, rejoinder drills, restoration drills, question-answer drills, and language games are of great help in this respect. In addition, listen and imitatetechnique with mirroring, tracking, and echoing (shadowing, developmental approximationdrills, and explanation techniques are all practiced, repeated in form of exhortations withoutboring the students. The applications of this method and related exercises, practically appliedto experimental groups during a term of 14 weeks by Murat Hişmanoğlu (2004 in a doctoraldissertation, and it has been demonstrated that its has significant rehabilitating potentiality incorrecting the pronunciation errors of non-native speaking English language teachers andstudent teachers in Turkey.
Correcting AUC for Measurement Error.
Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang
2015-12-01
Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.
Statistical errors in Monte Carlo estimates of systematic errors
Roe, Byron P.
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.
Statistical errors in Monte Carlo estimates of systematic errors
Energy Technology Data Exchange (ETDEWEB)
Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.
Statistical errors in Monte Carlo estimates of systematic errors
International Nuclear Information System (INIS)
Roe, Byron P.
2007-01-01
For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2
Analysis of Formal Methods for Specification of E-Commerce Applications
Directory of Open Access Journals (Sweden)
Sadiq Ali Khan
2016-01-01
Full Text Available E-commerce based application characteristics portray elevated dynamics while incorporating decentralized nature. Extreme emphasis influencing structural design plus implementation, positions such applications highly appreciated. Significant research articles reveal that, applying formal methods addressing challenges incumbent with E-commerce based applications, contribute towards reliability and robustness obliging the system. Anticipating and designing sturdy e-process and concurrent implementation, allows application behavior extra strength against errors, frauds and hacking, minimizing program faults during application operations. Programmers find extreme difficulty guaranteeing correct processing under all circumstances, however, not impossible. Concealed flaws and errors, triggered only under unexpected and unanticipated scenarios, pilot subtle mistakes and appalling failures. Code authors utilize various formal methods for reducing these flaws. Mentioning prominent methods would include, ASM (Abstract State Machines, B-Method, z-Language, UML (Unified Modelling Language etc. This paper primarily focuses different formal methods applied while deliberating specification and verification techniques for cost effective.