WorldWideScience

Sample records for erosion test facility

  1. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  2. 3D flow simulation of liquid lead in the erosion test facility for ADS materials

    International Nuclear Information System (INIS)

    Muscher, Heinrich; Kieser, Martin; Weisenburger, Alfons; Mueller, Georg

    2009-01-01

    Future nuclear reactor concepts, such as GEN IV or ADS use liquid lead for neutron multiplication and coolant purposes. The design concepts assumes that the structural material is in contact with the liquid metal at temperatures up to 600 C and a flow rate of 20 m/s. Therefore a significant effect of liquid metal corrosion/erosion is expected. The paper describes the fluid dynamical simulation of the ADS erosion test facility. Earlier studies on the laminar flow modeling were completed by introduction of transient behavior and extended to 3D-models. The results for liquid lead should be transferable to LBE (lead bismuth eutectic). Further work has to include a mass transport model for modeling of the global isothermal erosion rate of the structural material dependent on time (for liquid lead and LBE).

  3. Scoping erosion flow loop test results in support of Hanford WTP

    International Nuclear Information System (INIS)

    Duignan, M.; Imrich, K.; Fowley, M.; Restivo, M.; Reigel, M.

    2015-01-01

    The Waste Treatment and Immobilization Plant (WTP) will process Hanford Site tank waste by converting the waste into a stable glass form. Before the tank waste can be vitrified, the baseline plan is to process the waste through the Pretreatment (PT) Facility where it will be mixed in various process vessels using Pulse Jet Mixers (PJM) and transferred to the High Level Waste (HLW) or Low Activity Waste (LAW) vitrification facilities. The Department of Energy (DOE) and Defense Nuclear Facility Safety Board (DNFSB), as well as independent review groups, have raised concerns regarding the design basis for piping erosion in the PT Facility. Due to the complex nature of slurry erosion/corrosion wear and the unique conditions that exist within the PT Facility, additional testing has been recommended by these entities. Pipe loop testing is necessary to analyze the potential for localized wear at elbows and bends, close the outstanding PT and HLW erosion/corrosion technical issues, and underpin BNI's design basis for a 40-year operational life for black cell piping and vessels. SRNL is consulting with the DOE Office of River Protection (ORP) to resolve technical concerns related to piping erosion/corrosion (wear) design basis for PT. SRNL was tasked by ORP to start designing, building, and testing a flow loop to obtain long-term total-wear rate data using bounding simulant chemistry, operating conditions, and prototypical materials. The initial test involved a scoping paint loop to locate experimentally the potential high-wear locations. This information will provide a basis for the placement of the many sensitive wear measurement instruments in the appropriate locations so that the principal flow-loop test has the best chance to estimate long-term erosion and corrosion. It is important to note that the scoping paint loop test only utilized a bounding erosion simulant for this test. A full chemical simulant needs to be added for the complete test flow loop. The

  4. Modeling the fluid/soil interface erosion in the Hole Erosion Test

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2012-07-01

    Full Text Available Soil erosion is a complex phenomenon which yields at its final stage to insidious fluid leakages under the hydraulic infrastructures known as piping and which are the main cause of their rupture. The Hole Erosion Test is commonly used to quantify the rate of piping erosion. In this work, The Hole Erosion Test is modelled by using Fluent software package. The aim is to predict the erosion rate of soil during the hole erosion test. The renormalization group theory – based k–ε turbulence model equations are used. This modelling makes it possible describing the effect of the clay concentration in flowing water on erosion. Unlike the usual one dimensional models, the proposed modelling shows that erosion is not uniform erosion along the hole length. In particular, the concentration of clay is found to increase noticeably the erosion rate.

  5. Standard test method for liquid impingement erosion using rotating apparatus

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers tests in which solid specimens are eroded or otherwise damaged by repeated discrete impacts of liquid drops or jets. Among the collateral forms of damage considered are degradation of optical properties of window materials, and penetration, separation, or destruction of coatings. The objective of the tests may be to determine the resistance to erosion or other damage of the materials or coatings under test, or to investigate the damage mechanisms and the effect of test variables. Because of the specialized nature of these tests and the desire in many cases to simulate to some degree the expected service environment, the specification of a standard apparatus is not deemed practicable. This test method gives guidance in setting up a test, and specifies test and analysis procedures and reporting requirements that can be followed even with quite widely differing materials, test facilities, and test conditions. It also provides a standardized scale of erosion resistance numbers applicab...

  6. Numerical modelling of concentrated leak erosion during Hole Erosion Tests

    OpenAIRE

    Mercier, F.; Bonelli, S.; Golay, F.; Anselmet, F.; Philippe, P.; Borghi, R.

    2015-01-01

    This study focuses on the numerical modelling of concentrated leak erosion of a cohesive soil by a turbulent flow in axisymmetrical geometry, with application to the Hole Erosion Test (HET). The numerical model is based on adaptive remeshing of the water/soil interface to ensure accurate description of the mechanical phenomena occurring near the soil/water interface. The erosion law governing the interface motion is based on two erosion parameters: the critical shear stress and the erosion co...

  7. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-06

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  8. WTP Pretreatment Facility Potential Design Deficiencies--Sliding Bed and Sliding Bed Erosion Assessment

    International Nuclear Information System (INIS)

    Hansen, E. K.

    2015-01-01

    This assessment is based on readily available literature and discusses both Newtonian and non-Newtonian slurries with respect to sliding beds and erosion due to sliding beds. This report does not quantify the size of the sliding beds or erosion rates due to sliding beds, but only assesses if they could be present. This assessment addresses process pipelines in the Pretreatment (PT) facility and the high level waste (HLW) transfer lines leaving the PT facility to the HLW vitrification facility concentrate receipt vessel.

  9. Conceptual considerations of evaluate internal erosion phenomenon via no-erosion filter test and continuing erosion filter test

    Directory of Open Access Journals (Sweden)

    Ramos-Rivera Johnatan

    2016-01-01

    Full Text Available Some widely-graded soils may exhibit, under the influence of steady seepage flow, a behaviour in which grains of the finer fraction migrate through the interstices of the matrix formed by the coarser fraction. The migrating fines may accumulate at a downstream location within the soil. Alternatively, and where there is no capacity for retention at the downstream or exit boundary, the behaviour may lead to a washing out and consequent loss of the finer fraction. The phenomenon of erosion is termed internal instability, and the soils are considered internally unstable. Taking into consideration (i the specimen reconstitution by method of compaction, (ii the application of a vertical stress to the specimen, and (iii the use of multi-stage seepage flow with head-control, to measure the origin of a conduit through the coarser fraction, some test devices were conducted by different authors to evaluate this phenomenon, the purpose of this paper is to present some considerations and key aspects about internal erosion in dams and filter compatibility with core material (specimen reconstitution, test procedure, consolidation, seepage flow, test program and its relevance to the reality. The main reason to present this investigation is due to the absence of any specified regulatory or standard test method. Given the importance of filter compatibility of the zoned earth core dam and filter materials, as well the grading stability of each zone in the presence of seepage flow, additional consideration will be given to performing Continuing Erosion Filter (CEF tests on the core-filter interface, using the laboratory permeameter device.

  10. Introduction to flow visualization system in SPARC test facility

    International Nuclear Information System (INIS)

    Lee, Wooyoung; Song, Simon; Na, Young Su; Hong, Seong Wan

    2016-01-01

    The released hydrogen can be accumulated and mixed by steam and air depending on containment conditions under severe accident, which generates flammable mixture. Hydrogen explosion induced by ignition source cause severe damage to a structure or facility. Hydrogen risk regarding mixing, distribution, and combustion has been identified by several expert groups and studied actively since TMI accident. A large-scale thermal-hydraulic experimental facility is required to simulate the complex severe accident phenomena in the containment building. We have prepared the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk. Gas mixing and stratification test using helium instead of hydrogen and estimation of a stratification surface erosion of helium owing to the vertical jet flow will be performed in SPARC. The measurement system is need to observe the gas flow in the large scale test facility such as SPARC. The PIV (particle image velocimetry) system have been installed to visualize gas flow. We are preparing the test facility, called the SPARC, for estimation the thermal-hydraulic process of hydrogen in a closed containment building and the PIV system for quantitative assessment of gas flow. In particular, we will perform gas mixing and erosion of stratification surface test using helium which is the replacement of hydrogen. It will be evaluated by measuring 2D velocity field using the PIV system. The PIV system mainly consists of camera, laser and tracer particle. Expected maximum size of FOV is 750 x 750 mm 2 limited by focal length of lens and high power laser corresponding to 425mJ/pulse at 532 wavelength is required due to large FOV

  11. Modeling erosion of unsaturated compacted bentonite by groundwater flow; pinhole erosion test case

    International Nuclear Information System (INIS)

    Laurila, T.; Sane, P.; Olin, M.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. Erosion of compacted clay material by water flow is a critical factor affecting the performance of radioactive waste confinement. Our emphasis in this work is the buffer of KBS-3V concept, proposed to be compacted MX-80 bentonite. Unsaturated erosion occurs during the saturation phase of the EBS, and the main quantity of interest is the total buffer mass carried away by a groundwater flow that induces erosion by forming piping channels near the buffer/rock interface. The purpose of this work is to provide modeling tools to support erosion experiments. Role of modeling is first to interpret experimental observations in terms of processes, and to estimate robustness of experimental results. Secondly, we seek to scale up results from the laboratory scale, particularly to time scales longer than those experimentally accessible. We have performed modeling and data analysis pertaining to tests of unsaturated clay erosion. Pinhole experiments were used to study this erosion case. The main differences to well-understood pinhole erosion tests are that the material is strongly swelling and that the water flow is not determined by the pressure head but by the total flux. Groundwater flow in the buffer is determined by the flux because pressure losses occur overwhelmingly in the surrounding rock, not in the piping channel. We formulate a simple model that links an effective solid diffusivity -based swelling model to erosion by flow on the solid/liquid interface. The swelling model is similar in concept to that developed at KTH, but simpler. Erosion in the model is caused by laminar flow in the pinhole, and happens in a narrow region at the solid/liquid interface where velocity and solid volume fraction overlap. The erosion model can be mapped to erosion by wall shear, and can thus be considered as extension of that classic erosion model. The main quantity defining the behavior of clay erosion in the model is the ratio of

  12. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  13. Overview of Corrosion, Erosion, and Synergistic Effects of Erosion and Corrosion in the WTP Pre-treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Imrich, K. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-27

    Corrosion is an extremely complex process that is affected by numerous factors. Addition of a flowing multi-phase solution further complicates the analysis. The synergistic effects of the multiple corrosive species as well as the flow-induced synergistic effects from erosion and corrosion must be thoroughly evaluated in order to predict material degradation responses. Public domain data can help guide the analysis, but cannot reliably provide the design basis especially when the process is one-of-a-kind, designed for 40 plus years of service, and has no viable means for repair or replacement. Testing in representative simulants and environmental conditions with prototypic components will provide a stronger technical basis for design. This philosophy was exemplified by the Defense Waste Processing Facility (DWPF) at the Savannah River Site and only after 15 plus years of successful operation has it been validated. There have been “hiccups”, some identified during the cold commissioning phase and some during radioactive operations, but they were minor and overcome. In addition, the system is robust enough to tolerate most flowsheet changes and the DWPF design allows minor modifications and replacements – approaches not available with the Hanford Waste Treatment Plant (WTP) “Black Cell” design methodology. Based on the available data, the synergistic effect between erosion and corrosion is a credible – virtually certain – degradation mechanism and must be considered for the design of the WTP process systems. Testing is recommended due to the number of variables (e.g., material properties, process parameters, and component design) that can affect synergy between erosion and corrosion and because the available literature is of limited applicability for the complex process chemistries anticipated in the WTP. Applicable testing will provide a reasonable and defensible path forward for design of the WTP Black Cell and Hard-to-Reach process equipment. These

  14. Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

    1997-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life

  15. Investigation of erosion mechanisms and erosion products in divertor armour materials under conditions relevant to elms and mitigated disruptions in ITER

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Klimov, N.S.; Kovalenko, D.V.; Moskaleva, A.A.; Podkovyrov, V.L.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.S.; Poznyak, I.M.

    2008-01-01

    Carbon fibre composite (CFC) and tungsten were irradiated by intense plasma streams at plasma gun facilities MK-200UG and QSPA-T. The targets were tested by plasma loads relevant to Edge Localised Modes (ELM) and mitigated disruptions in ITER. Onset condition of material erosion and properties of erosion products have been studied

  16. ORNL facilities for testing first-wall components

    International Nuclear Information System (INIS)

    Tsai, C.C.; Becraft, W.R.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Menon, M.M.; Stirling, W.L.

    1985-01-01

    Future long-impulse magnetic fusion devices will have operating characteristics similar to those described in the design studies of the Tokamak Fusion Core Experiment (TFCX), the Fusion Engineering Device (FED), and the International Tokamak Reactor (INTOR). Their first-wall components (pumped limiters, divertor plates, and rf waveguide launchers with Faraday shields) will be subjected to intense bombardment by energetic particles exhausted from the plasma, including fusion products. These particles are expected to have particle energies of approx.100 eV, particle fluxes of approx.10 18 cm -2 .s -1 , and heat fluxes of approx.1 kW/cm 2 CW to approx.100 kW/cm 2 transient. No components are available to simultaneously handle these particle and heat fluxes, survive the resulting sputtering erosion, and remove exhaust gas without degrading plasma quality. Critical issues for research and development of first-wall components have been identified in the INTOR Activity. Test facilities are needed to qualify candidate materials and develop components. At Oak Ridge National Laboratory (ORNL), existing neutral beam and wave heating test facilities can be modified to simulate first-wall environments with heat fluxes up to 30 kW/cm 2 , particle fluxes of approx.10 18 cm -2 .s -1 , and pulse lengths up to 30 s, within test volumes up to approx.100 L. The characteristics of these test facilities are described, with particular attention to the areas of particle flux, heat flux, particle energy, pulse length, and duty cycle, and the potential applications of these facilities for first-wall component development are discussed

  17. Surficial geology and performance assessment for a Radioactive Waste Management Facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Snyder, K.E.; Gustafson, D.L.; Huckins-Gang, H.E.; Miller, J.J.; Rawlinson, S.E.

    1995-02-01

    At the Nevada Test Site, one potentially disruptive scenario being evaluated for the Greater Confinement Disposal (GCD) Facility Performance Assessment is deep post-closure erosion that would expose buried radioactive waste to the accessible environment. The GCD Facility located at the Area 5 Radioactive Waste Management Site (RWMS) lies at the juncture of three alluvial fan systems. Geomorphic surface mapping in northern Frenchman Flat indicates that reaches of these fans where the RWMS is now located have been constructional since at least the middle Quaternary. Mapping indicates a regular sequence of prograding fans with entrenchment of the older fan surfaces near the mountain fronts and construction of progressively younger inset fans farther from the mountain fronts. At the facility, the oldest fan surfaces are of late Pleistocene and Holocene age. More recent geomorphic activity has been limited to erosion and deposition along small channels. Trench and pit wall mapping found maximum incision in the vicinity of the RWMS to be less than 1.5 m. Based on collected data, natural geomorphic processes are unlikely to result in erosion to a depth of more than approximately 2 m at the facility within the 10,000-year regulatory period

  18. Recommendations for erosion-corrosion allowance for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.; Brehm, W.F.; Larrick, A.P.; Divine, J.R.

    1994-10-01

    The Multi-Function Waste Tank Facility carbon steel tanks will contain mixer pumps that circulate the waste. On the basis of flow characteristics of the system and data from the literature, an erosion allowance of 0.075 mm/y (3 mil/year) was recommended for the tank bottoms, in addition to the 0.025 mm/y (1 mil/year) general corrosion allowance

  19. Comparison of CFD simulations with experimental Jet Erosion Tests results

    OpenAIRE

    Mercier, F.; Bonelli, S.; Pinettes, P.; Golay, F.; Anselmet, F.; Philippe, P.

    2014-01-01

    The Jet Erosion Test (JET) is an experimental device increasingly used to quantify the resistance of soils to erosion. This resistance is characterised by two geotechnical parameters: the critical shear stress and the erosion coefficient. The JET interpretation model of Hanson and Cook (2004) provides an estimation of these erosion parameters. But Hanson's model is simplified, semi-empirical and several assumed hypotheses can be discussed. Our aim is to determine the relevance of the JET inte...

  20. TEMPEST code modifications and testing for erosion-resisting sludge simulations

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1998-01-01

    The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results for solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges

  1. Erosion Testing of Coatings for V-22 Aircraft Applications

    Directory of Open Access Journals (Sweden)

    G. Y. Richardson

    2003-01-01

    Full Text Available High-velocity (183 m/sec sand erosion tests in a wind tunnel were conducted to evaluate developmental coatings from three separate companies under funding by the Navy's phase I small business innovative research program. The purpose of the coatings was to address a particular problem the V-22 tilt-rotor aircraft (Osprey was having with regard to ingestion of sand particles by a titanium impeller that was associated with the aircraft's environmental control system. The three coatings that were deposited on titanium substrates and erosion-tested included (1 SixCy/DLC multilayers deposited by chemical vapor deposition (CVD; (2 WC/TaC/TiC processed by electrospark deposition; and (3 polymer ceramic mixtures applied by means of an aqueous synthesis. The erosion test results are presented; they provided the basis for assessing the suitability of some of these coatings for the intended application.

  2. Wave overtopping erosion tests at Groningen sea dyke

    NARCIS (Netherlands)

    Verhagen, H.J.; Akkerman, G.J.; van Gerven, K.A.J.; Schaap, H.A.; van der Meer, J.W.

    2007-01-01

    In the present report field erosion tests of the inner slope of a sea dyke in the province of Groningen (near Delfzijl) are described for the situation of severe wave overtopping. Three types of tests have been performed: tests at the present grass cover, tests at a reinforced grass cover and tests

  3. Development of a test facility to evaluate the optimal design of BMPs for managing environmental problems at construction sites.

    Science.gov (United States)

    2012-06-01

    The following document is the final report for ALDOT Project 930655 which summarizes the design and : construction of the Auburn University Erosion and Sediment Control Testing Facility (AUESCTF) along : with several intermediatescale, f...

  4. Erosion of surface and near surface disposal facilities

    International Nuclear Information System (INIS)

    1988-06-01

    A literature search was undertaken to identify existing data and analytical procedures regarding the processes of gully erosion. The applicability of the available information to the problems of gully erosion potential at surface and near surface disposal sites is evaluated. It is concluded that the existing knowledge regarding gully erosion is insufficient to develop procedures to ensure the long-term stability of disposal sites. Recommendations for further research are presented. 46 refs

  5. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    Science.gov (United States)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  6. Facilities for technology testing of ITER divertor concepts, models, and prototypes in a plasma environment

    International Nuclear Information System (INIS)

    Cohen, S.A.

    1991-12-01

    The exhaust of power and fusion-reaction products from ITER plasma are critical physics and technology issues from performance, safety, and reliability perspectives. Because of inadequate pulse length, fluence, flux, scrape-off layer plasma temperature and density, and other parameters, the present generation of tokamaks, linear plasma devices, or energetic beam facilities are unable to perform adequate technology testing of divertor components, though they are essential contributors to many physics issues such as edge-plasma transport and disruption effects and control. This Technical Requirements Documents presents a description of the capabilities and parameters divertor test facilities should have to perform accelerated life testing on predominantly technological divertor issues such as basic divertor concepts, heat load limits, thermal fatigue, tritium inventory and erosion/redeposition. The cost effectiveness of such divertor technology testing is also discussed

  7. Erosion and break-up of light-gas layers by a horizontal jet in a multi-vessel, large-scale containment test system

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, Robert, E-mail: robert.zboray@psi.ch; Mignot, Guillaume; Kapulla, Ralf; Paladino, Domenico

    2015-09-15

    The distribution and eventual stratification of hydrogen released during a hypothetical severe accident and the stability of the stratification formed in the early phase of the transient is of particular safety concern in Light Water Reactors (LWRs). The large-scale containment test facility PANDA (PSI, Switzerland) has been used to perform a series of four tests examining the erosion and break-up of stratified light-gas layers in the frame of the OECD SETH-2 project. The ultimate goal of the test program is to set-up an experimental data base of high-quality and high-density data that can challenge and validate 3D containment codes like e.g. GOTHIC, GASFLOW or MARS and validate the applicability of CFD codes like FLUENT or CFX for LWR containment problems. The test series discussed here focuses on the erosion of a stratified, helium-rich layer by horizontal steam injection at different locations below the layer. An approach with step-wise increasing complexity has been chosen to examine this problem allowing control over the rate of pressure increase and the occurrence of condensation. The step-wise approach enables a thorough understanding of the influence of different phenomena like position of steam injection, diffusion, pressurization and condensation on the behavior and erosion of the stratified layer.

  8. Rocketball Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  9. Test and User Facilities | NREL

    Science.gov (United States)

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  10. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  11. Cavitation erosion in sodium flow, sodium cavitation tunnel testing

    International Nuclear Information System (INIS)

    Courbiere, Pierre.

    1981-04-01

    The high-volume sodium flows present in fast neutron reactors are liable to induce cavitation phenomena in various portion of the sodium lines and pumps. The absence of sufficient data in this area led the C.E.A. to undertake an erosion research program in cavitating sodium flow. This paper discusses the considerations leading to the definition and execution of sodium cavitation erosion tests, and reviews the tests run with 400 0 C sodium on various steel grades: 316, 316 L, 316 Ti (Z8CNDT17-12), Poral (Z3CND18-12), 304 L and LN2 - clad 316 L (Ni coating-clad 316 L). Acoustic detection and signal processing methods were used with an instrument package designed and implemented at the Cadarache Nuclear Research Center

  12. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  13. Water erosion field tests for Hanford protective barriers: FY 1992 status report

    International Nuclear Information System (INIS)

    Gilmore, B.G.; Walters, W.H.

    1993-11-01

    Pacific Northwest Laboratory (PNL) conducted this study for the Office of Technology Development and the Office of Environmental Restoration of the US Department of Energy. The purpose of the study was to investigate the erosion potential of barrier soil covers from high-intensity rainfall events and to propose erosion mitigation criteria for the soil cover. Two sets of field plots were used in the testing program. Small plots (1 m 2 ) were used initially for scoping studies and larger plots (32.5 m 2 ) were used for a more comprehensive study of soil cover erosion. The study investigated the use of pea gravel admix and naturally established vegetation to reduce erosion of barrier soil covers

  14. Testing the control of mineral supply rates on chemical erosion in the Klamath Mountains

    Science.gov (United States)

    West, N.; Ferrier, K.

    2017-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including the role of tectonics in the global carbon cycle, nutrient supply to soils and streams via soil production, and lithologic controls on landscape evolution. We aim to test the relationship between mineral supply rates and chemical erosion in the forested uplands of the Klamath mountains, along a latitudinal transect of granodioritic plutons that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. We present 10Be-derived erosion rates and Zr-derived chemical depletion factors, as well as bulk soil and rock geochemistry on 10 ridgetops along the transect to test hypotheses about supply-limited and kinetically-limited chemical erosion. Previous studies in this area, comparing basin-averaged erosion rates and modeled uplift rates, suggest this region may be adjusted to an approximate steady state. Our preliminary results suggest that chemical erosion at these sites is influenced by both mineral supply rates and dissolution kinetics.

  15. Development of a high velocity rain erosion test method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong Teak; Jin, Doo Han [Korea University of Technology and Education, Cheonan (Korea, Republic of); Kang, Hyung [Agency for Defense Development, Daejeon (Korea, Republic of)

    2009-07-01

    The nose of a missile, flying through raining region with a supersonic speed, is subjected to the rain erosion because the nose is made of a brittle ceramic material. A simple yet very effective rain erosion test method is developed. The sabot assembly similar to the hypodermic syringe carries specific amount of water is launched by a low pressure air gun. After the stopper stop the sabot assembly by impact, the steel plunger continues moving toward to squeeze the silicon rubber in front. The pressurized silicon rubber then is squeezed through the orifice in front of the sabot at high velocity, thus, accelerates the water droplet to higher velocity. The droplet velocity up to 800m/s is successfully attained using a low pressure air gun. The ceramic specimen assembly is placed in front of the high speed water droplet and the rain erosion damage on the surface of the specimen is observed.

  16. A durability test rig and methodology for erosion-resistant blade coatings in turbomachinery

    Science.gov (United States)

    Leithead, Sean Gregory

    A durability test rig for erosion-resistant gas turbine engine compressor blade coatings was designed, completed and commissioned. Bare and coated 17-4PH steel V103-profile blades were rotated at up to 11500 rpm and impacted with Garnet sand for 5 hours at an average concentration of 2.51 gm3of air , at a blade leading edge Mach number of 0.50. The rig was determined to be an acceptable first stage axial compressor representation. Two types of 16 microm-thick coatings were tested: Titanium Nitride (TiN) and Chromium-Aluminum-Titanium Nitride (CrAlTiN), both applied using an Arc Physical Vapour Deposition technique at the National Research Council in Ottawa, Canada. A Leithead-Allan-Zhao (LAZ) score was created to compare the durability performance of uncoated and coated blades based on mass-loss and blade dimension changes. The bare blades' LAZ score was set as a benchmark of 1.00. The TiN-coated and CrAlTiN-coated blades obtained LAZ scores of 0.69 and 0.41, respectively. A lower score meant a more erosion-resistant coating. Major modes of blade wear included: trailing edge, leading edge and the rear suction surface. Trailing edge thickness was reduced, the leading edge became blunt, and the rear suction surface was scrubbed by overtip and recirculation zone vortices. It was found that the erosion effects of vortex flow were significant. Erosion damage due to reflected particles was not present due to the low blade solidity of 0.7. The rig is best suited for studying the performance of erosion-resistant coatings after they are proven effective in ASTM standardized testing. Keywords: erosion, compressor, coatings, turbomachinery, erosion rate, blade, experimental, gas turbine engine

  17. Critical need for MFE: the Alcator DX advanced divertor test facility

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  18. The Field Lysimeter Test Facility (FLTF) at the Hanford Site: Installation and initial tests

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.; Downs, J.L.; Campbell, M.D.

    1989-02-01

    The objectives of this program are to test barrier design concepts and to demonstrate a barrier design that meets established performance criteria for use in isolating wastes disposed of near-surface at the Hanford Site. Specifically, the program is designed to assess how well the barriers perform in controlling biointrusion, water infiltration, and erosion, as well as evaluating interactions between environmental variables and design factors of the barriers. To assess barrier performance and design with respect to infiltration control, field lysimeters and small- and large-scale field plots are planned to test the performance of specific barrier designs under actual and modified (enhanced precipitation) climatic conditions. The Field Lysimeter Test Facility (FLTF) is located in the 600 Area of the Hanford Site just east of the 200 West Area and adjacent to the Hanford Meteorological Station. The FLTF data will be used to assess the effectiveness of selected protective barrier configurations in controlling water infiltration. The facility consists of 14 drainage lysimeters (2 m dia x 3 m deep) and four precision weighing lysimeters (1.5 m x 1.5 m x 1.7 m deep). The lysimeters are buried at grade and aligned in a parallel configuration, with nine lysimeters on each side of an underground instrument chamber. The lysimeters were filled with materials to simulate a multilayer protective barrier system. Data gathered from the FLTF will be used to compare key barrier components and to calibrate and test models for predicting long-term barrier performance

  19. Test installation for studying erosion-corrosion of metals for coal washing plants

    Energy Technology Data Exchange (ETDEWEB)

    Hoey, G. R.; Dingley, W.; Wiles, C. T.

    1979-02-15

    A test installation was constructed for investigating erosion-corrosion of metals by coal-water slurries. Erosion-corrosion tests of mild steel panels were conducted using slurries of alundum, quartz, washed coal and coal refuse. Wear rates were found to depend on type of abrasive, particle size and water conductivity and were reduced by cathodic protection and inhibitors. Cathodic protection of mild steel in coal slurries containing sulphate ion reduced wear by 90% and 86% for stationary and rotating panels, respectively. This study has demonstrated that the successful application of corrosion control techniques would reduce metal wastage in coal washing plants. The test installation is considered suitable for developing the techniques.

  20. Damage diagnostic of localized impact erosion by measuring acoustic vibration

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Ikeda, Yujiro

    2004-01-01

    High power spallation targets for neutron sources are being developed in the world. Mercury target will be installed at the material and life science facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact erosion damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electric Magnetic IMpact Testing Machine, MIMTM, was developed to produce the localized impact erosion damage and evaluate the damage formation. Acoustic vibration measurement was carried out to investigate the correlation between the erosion damage and the damage potential derived from acoustic vibration. It was confirmed that the damage potential related with acoustic vibration is useful to predict the damage due to the localized impact erosion and to diagnose the structural integrity. (author)

  1. Environmental assessment report: Nuclear Test Technology Complex. [Construction and operation of proposed facility

    Energy Technology Data Exchange (ETDEWEB)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report.

  2. Erosion-corrosion synergistics in the low erosion regime

    International Nuclear Information System (INIS)

    Corey, R.G.; Sethi, V.K.

    1986-01-01

    Many engineering alloys display good high temperature corrosion resistance. However, when they are used in corrosive environments where they are subjected to erosion also, the corrosion resistance has been adversely affected. The phenomenon known as erosion-corrosion is complex and requires detailed investigation of how the erosion and corrosion kinetics interact and compete. At the Kentucky Center for Energy Research Laboratory, an erosion-corrosion tester was used to perform erosion-oxidation tests on 2 1/4 Cr-1 Mo steel at 500-600 0 C using alumina abrasive at low velocities. The erosion-oxidation rate data and morphology of exposed surfaces are consistent with oxide chipping and fracturing being the mode of material loss

  3. Reflooding phenomena of German PWR estimated from CCTF [Cylindrical Core Test Facility], SCTF [Slab Core Test Facility] and UPTF [Upper Plenum Test Facility] results

    International Nuclear Information System (INIS)

    Murao, Y.; Iguchi, T.; Sugimoto, J.

    1988-09-01

    The reflooding behavior in a PWR with a combined injection type ECCS was studied by comparing the test results from Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF) and Upper Plenum Test Facility (UPTF). Core thermal-hydraulics is discussed mainly based on SCTF test data. In addition, the water accumulation behavior in hot legs and the break-through characteristics at tie plate are discussed

  4. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  5. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  6. Simplified analytical modeling of the normal hole erosion test; Modelado analitico simplificado del ensayo normal de ersoion de tubo

    Energy Technology Data Exchange (ETDEWEB)

    Khamlichi, A.; Bezzazi, M.; El Bakkali, L.; Jabbouri, A.; Kissi, B.; Yakhlef, F.; Parron Vera, M. A.; Rubio Cintas, M. D.; Castillo Lopez, O.

    2009-07-01

    The role erosion test was developed in order to study erosion phenomenon which occurs in cracks appearing in hydraulic infrastructures such as dams. This test enables describing experimentally the erosive characteristics of soils by means of an index which is called erosion rate and a critical tension which indicates the threshold of surface erosion initiation. The objective of this work is to five modelling of this experiment by means of a simplified analytical approach. The erosion law is derived by taking into account the flow regime. This law shows that the erosion occurring in the tube is controlled by a first order dynamics where only two parameters are involved: the characteristic's time linked to the erosion rate and the stress shear threshold for which erosion begins to develop. (Author) 5 refs.

  7. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    Science.gov (United States)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  8. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  9. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  10. Manufacturing issues which affect coating erosion performance in wind turbine blades

    Science.gov (United States)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  11. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  12. Thermal load testing of erosion-monitoring beryllium marker tile for the ITER-Like Wall Project at JET

    International Nuclear Information System (INIS)

    Hirai, T.; Linke, J.; Rubel, M.; Coad, J.P.; Likonen, J.; Lungu, C.P.; Matthews, G.F.; Philipps, V.; Wessel, E.

    2008-01-01

    ITER-Like Wall Project has been launched at JET in order to perform a fully integrated test of plasma-facing materials. During the next major shutdown a full metal wall will be installed: tungsten in the divertor and beryllium in the main chamber. Beryllium erosion is one of key issues to be addressed. Special marker tiles have been designed for this purpose. Test coupons of such markers have been manufactured and examined. The performance test under high power deposition was carried in the electron beam facility JUDITH. The results of material characterization before and after high heat flux loads are presented. The samples survived, without macroscopic damage, power loads of up to 4.5 MW/m 2 for 10 s (surface temperature ∼650 deg. C) and 50 cyclic loads at 3.5 MW/m 2 lasting 10 s each (surface temperature ∼600 deg. C)

  13. Comparaison de simulations CFD avec des résultats expérimentaux de Jet Erosion Test

    OpenAIRE

    Mercier , F.; Bonelli , S.; Pinettes , P.; Golay , F.; Anselmet , F.; Philippe , P.

    2014-01-01

    International audience; The Jet Erosion Test (JET) is an experimental device increasingly used to quantify the resistance of soils to erosion. This resistance is characterised by two geotechnical parameters: the critical shear stress and the erosion coefficient. The JET interpretation model of Hanson and Cook (2004) provides an estimation of these erosion parameters. But Hanson's model is simplified, semi-empirical and several assumed hypotheses can be discussed. Our aim is to determine the r...

  14. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  15. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  16. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  17. CFD simulation and experimental analysis of erosion in a slurry tank test rig

    Directory of Open Access Journals (Sweden)

    Bart Hans-Jörg

    2013-04-01

    Full Text Available Erosion occurring in equipment dealing with liquid-solid mixtures such as pipeline parts, slurry pumps, liquid-solid stirred reactors and slurry mixers in various industrial applications results in operational failure and economic costs. A slurry erosion tank test rig is designed and was built to investigate the erosion rates of materials and the influencing parameters such as flow velocity and turbulence, flow angle, solid particle concentration, particles size distribution, hardness and target material properties on the material loss and erosion profiles. In the present study, a computational fluid dynamics (CFD tool is used to simulate the erosion rate of sample plates in the liquid-solid slurry mixture in a cylindrical tank. The predictions were made in a steady state and also transient manner, applying the flow at the room temperature and using water and sand as liquid and solid phases, respectively. The multiple reference frame method (MRF is applied to simulate the flow behavior and liquid-solid interactions in the slurry tank test rig. The MRF method is used since it is less demanding than sliding mesh method (SM and gives satisfactory results. The computational domain is divided into three regions: a rotational or MRF zone containing the mixer, a rotational zone (MRF containing the erosion plates and a static zone (outer liquid zone. It is observed that changing the MRF zone diameter and height causes a very low impact on the results. The simulated results were obtained for two kinds of hard metals namely stainless steel and ST-50 under some various operating conditions and are found in good agreement with the experimental results.

  18. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  19. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  20. Testing model parameters for wave‐induced dune erosion using observations from Hurricane Sandy

    Science.gov (United States)

    Overbeck, Jacquelyn R.; Long, Joseph W.; Stockdon, Hilary F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave‐impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision‐making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  1. Testing model parameters for wave-induced dune erosion using observations from Hurricane Sandy

    Science.gov (United States)

    Overbeck, J. R.; Long, J. W.; Stockdon, H. F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave-impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision-making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  2. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  3. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  4. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility)

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S.

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  5. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  6. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  7. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  8. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  9. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  10. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  11. Construction and commissioning test report of the CEDM test facility

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system.

  12. Construction and commissioning test report of the CEDM test facility

    International Nuclear Information System (INIS)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K.

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system

  13. Ice condenser testing facility and plans

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Ross, B.A.; Eschbach, E.J.; Ligotke, M.W.

    1987-01-01

    A facility is being constructed to experimentally validate the ICEDF computer code. The code was developed to estimate the extent of fission product retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The design and construction of the facility is based on a test design that addresses the validation needs of the code for conditions typical of those expected to occur during severe pressurized water reactor accidents. Detailed facility design has followed completion of a test design (i.e., assembled test cases each involving a different set of aerosol and thermohydraulic flow conditions). The test design was developed with the aid of statistical test design software and was scrutinized for applicability with the aid of ICEDF simulations. The test facility will incorporate a small section of a prototypic ice condenser (e.g., a cross section comprising the equivalent of four 1-ft-diameter ice baskets to their full prototypic height of 48 ft). The development of the test design, the detailed facility design, and the construction progress are described in this paper

  14. Dust Erosion Performance of Candidate Motorcase Thermal Protection Materials.

    Science.gov (United States)

    1980-03-10

    REFERENCE DESCRIPTION SOURCE NUMBER 4.01 NBR B. F. Goodrich Aerospace and Defense Products (Nitrile butadiene 500 South Main Street rubber ) Akron, Ohio...material degradation occurs. 5.3 BALLISTIC RANGES Ballistic ranges are widely used for reentry erosion testing for two reasons: 1) no other type of facility...DET REFERENCE OTHER COMMENTS NUMBER DESIGNATION 2002 KEVLAR-EPOXY STAGE 3 MOTORCASE MATERIAL MOTORCAS E 2402 NBR 68 2403 NBR 69 2404 NBR -19709-6A (60

  15. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  16. Buffer erosion in dilute groundwater

    International Nuclear Information System (INIS)

    Schatz, T.; Kanerva, N.; Martikainen, J.; Sane, P.; Olin, M.; Seppaelae, A.; Koskinen, K.

    2013-08-01

    One scenario of interest for repository safety assessment involves the loss of bentonite buffer material in contact with dilute groundwater flowing through a transmissive fracture interface. In order to examine the extrusion/erosion behavior of bentonite buffer material under such circumstances, a series of experiments were performed in a flow-through, 1 mm aperture, artificial fracture system. These experiments covered a range of solution chemistry (salt concentration and composition), material composition (sodium montmorillonite and admixtures with calcium montmorillonite), and flow velocity conditions. No erosion was observed for sodium montmorillonite against solution compositions from 0.5 g/L to 10 g/L NaCl. No erosion was observed for 50/50 calcium/sodium montmorillonite against 0.5 g/L NaCl. Erosion was observed for both sodium montmorillonite and 50/50 calcium/sodium montmorillonite against solution compositions ≤ 0.25 g/L NaCl. The calculated erosion rates for the tests with the highest levels of measured erosion, i.e., the tests run under the most dilute conditions (ionic strength (IS) < ∼1 mM), were well-correlated to flow velocity, whereas the calculated erosion rates for the tests with lower levels of measured erosion, i.e., the tests run under somewhat less dilute conditions (∼1 mM < IS < ∼4 mM), were not similarly correlated indicating that material and solution composition can significantly affect erosion rates. In every experiment, both erosive and non-erosive, emplaced buffer material extruded into the fracture and was observed to be impermeable to water flowing in the fracture effectively forming an extended diffusive barrier around the intersecting fracture/buffer interface. Additionally, a model which was developed previously to predict the rate of erosion of bentonite buffer material in low ionic strength water in rock fracture environments was applied to three different cases: sodium montmorillonite expansion in a vertical tube, a

  17. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  18. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  19. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  20. Hot Hydrogen Test Facility

    International Nuclear Information System (INIS)

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  1. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  2. Impurity Control Test Facility (ICTF) for the study of fusion reactor plasma/edge materials interactions

    International Nuclear Information System (INIS)

    Brooks, J.N.; Mattas, R.F.; Ehst, D.A.; Boley, C.D.; Hershkowitz, N.

    1984-05-01

    A test facility for investigating many of the impurity control issues associated with the interactions of materials with the plasma edge is outlined. Analysis indicates that the plasma edge conditions expected in TFCX, INTOR, etc. can be readily produced at the end cells of an rf stabilized mirror, similar in some respects to the Phaedrus device at the University of Wisconsin. A steady-state, Impurity Control Test Facility (ICTF) based on such a mirror device is expected to produce a plasma with typical parameters of n/sub e/ approx. 3 x 10 18 m -3 , T/sub e/ = 50 eV, and T/sub i/ = 100 eV at each end cell. A heat load of approx. 2 MW/m 2 over areas of approx. 1600 cm 2 could be produced at each end with 800 kW of ICRH power. These conditions would provide a unique capability for examining issues such as erosion/redeposition behavior, properties of redeposited materials, high recycling regimes, plasma edge operating limits for high-Z materials, and particle pumping efficiencies for limiter and divertor designs

  3. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  4. Sediment transport capacity for soil erosion modelling at hillslope scale: an experimental approach

    NARCIS (Netherlands)

    Ali, M.

    2012-01-01

    Soil erosion is a common global problem that has negative impacts on agriculture production, water storage facilities, water conveyance system, and water quality. To assess water erosion problems in catchments, scientists have developed several spatially distributed soil erosion models with

  5. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  6. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  7. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  8. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    Science.gov (United States)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  9. 40 CFR 792.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  10. Cavitation erosion tests of high tensile stainless steels for the Techno-Superliner (TSL-F) hulls; Techno superliner (TSL-F) sentai kozoyo kokyodo stainless ko no cavitation erosion

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Ito, H.; Shibasaki, K. [NKK Corp., Tokyo (Japan); Mizuta, A.; Sugimoto, H. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tomono, Y. [Hitachi Zosen Corp., Osaka (Japan)

    1996-12-31

    Investigations were given by using the magnetostrictive vibration method and the high-speed fluid testing method on cavitation erosion resistance of high-tensile stainless steels thought to have high applicability to submerged hull structures of Techno-Supeliner (TSL-L). The investigations revealed that these steels have nearly equivalent resistance to even SUS 304 or 15-5PH steel which is thought to have the highest cavitation erosion resistance among the conventional materials used customarily. An experiment using both materials provided a result different quantitatively but similar qualitatively in relative merits between the materials. Correlation between both materials was presented. A cavitation erosion experiment using a 1/6 scale model of the actual TSL-F was carried out to measure the amount of cavitation erosion generated on wing surfaces. Results from the experiment were used to attempt estimation of cavitation erosion amount at the level of the actual TSL-F. 21 refs., 12 figs., 3 tabs.

  11. Cavitation erosion tests of high tensile stainless steels for the Techno-Superliner (TSL-F) hulls; Techno superliner (TSL-F) sentai kozoyo kokyodo stainless ko no cavitation erosion

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M; Ito, H; Shibasaki, K [NKK Corp., Tokyo (Japan); Mizuta, A; Sugimoto, H [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tomono, Y [Hitachi Zosen Corp., Osaka (Japan)

    1997-12-31

    Investigations were given by using the magnetostrictive vibration method and the high-speed fluid testing method on cavitation erosion resistance of high-tensile stainless steels thought to have high applicability to submerged hull structures of Techno-Supeliner (TSL-L). The investigations revealed that these steels have nearly equivalent resistance to even SUS 304 or 15-5PH steel which is thought to have the highest cavitation erosion resistance among the conventional materials used customarily. An experiment using both materials provided a result different quantitatively but similar qualitatively in relative merits between the materials. Correlation between both materials was presented. A cavitation erosion experiment using a 1/6 scale model of the actual TSL-F was carried out to measure the amount of cavitation erosion generated on wing surfaces. Results from the experiment were used to attempt estimation of cavitation erosion amount at the level of the actual TSL-F. 21 refs., 12 figs., 3 tabs.

  12. 40 CFR 160.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  13. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  14. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    2001-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L' Air Liquide in the form of a NET contract. (author)

  15. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    1999-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L'Air Liquide in the form of a NET contract. (author)

  16. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  17. Durability of Compressed Earth Bricks: Assessing Erosion Resistance Using the Modified Spray Testing

    Directory of Open Access Journals (Sweden)

    Malarvizhi Baskaran

    2010-11-01

    Full Text Available The discussion in this paper is part of research directed at establishing optimal stabilization strategy for compressed bricks. The deployment context for the use of the compressed bricks was Dar es Salaam (Tanzania where manually fabricated bricks are increasingly being used in low cost housing units. This discussion specifically focuses on strategies that can be used to counter deterioration due to wind-driven rain erosion. The impact of using cement, lime, fiber and a commercial stabilizing fluid was assessed. Factory-produced bricks were used for benchmarking. The durability of the bricks was assessed using the “modified” Bulletin 5 Spray Test. The different brick specimens were sprayed with water at 2.07 MPa and 4.14 MPa over one-hour time period while measuring the depth of erosion every 15 minutes. Factory-produced bricks hardly eroded at both 2.07 MPa and 4.14 MPa pressure levels. The maximum depth of erosion for Soil-Cement bricks ranged from a maximum of 0.5 mm at 2.07 MPa water pressure to 0.8 mm at 4.14 MPa. The maximum and minimum depths of erosion for Soil-Cement-Lime bricks were 25mm and 17 mm respectively. The inclusion of natural fiber in the bricks resulted in a sharp increase of the erosion depth to a maximum of 40 mm at 2.07 MPa and 55 mm at 4.14 Mpa. As the use of natural fibers and lime enhances some physio-mechanical properties, further research is necessary to determine ways of achieving this goal while maintaining acceptable levels of erosion resistance.

  18. Importance of tests in nuclear facilities

    International Nuclear Information System (INIS)

    Guillemard, B.

    1985-10-01

    In nuclear facilities, safety related systems and equipments are subject, along their whole service-life, to numerous tests. This paper analyses the role of tests in the successive stages of design, construction, exploitation of a nuclear facility. It examines several aspects of test quality control: definition of needs, test planning, intrinsic quality of each test, control of interfaces (test are both the end and the starting point of many actions concerned by quality) and the application [fr

  19. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  20. 40 CFR 792.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas... waste and refuse or for safe sanitary storage of waste before removal from the testing facility...

  1. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  2. 40 CFR 160.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... housed, facilities shall exist for the collection and disposal of all animal waste and refuse or for safe sanitary storage of waste before removal from the testing facility. Disposal facilities shall be so...

  3. Drop test facility available to private industry

    International Nuclear Information System (INIS)

    Shappert, L.B.; Box, W.D.

    1983-01-01

    In 1978, a virtually unyielding drop test impact pad was constructed at Oak Ridge National Laboratory's (ORNL's) Tower Shielding Facility (TSF) for the testing of heavy shipping containers designed for transporting radioactive materials. Because of the facility's unique capability for drop-testing large, massive shipping packages, it has been identified as a facility which can be made available for non-DOE users

  4. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  5. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  6. Thermal-hydraulic tests with out-of-pile test facility for BOCA development

    International Nuclear Information System (INIS)

    Kitagishi, Shigeru; Aoyama, Masashi; Tobita, Masahiro; Inaba, Yoshitomo; Yamaura, Takayuki

    2012-01-01

    The fuel transient test facility was prepared for power ramping tests of light-water-reactor (LWR) fuels in the Japan Materials Testing Reactor (JMTR) under a contract project with the Nuclear Industrial Safety Agent (NISA) of the Ministry of Economy, Trade and Industry (METI). It is necessary to develop high accuracy analysis procedure for power ramping tests after restart of the JMTR. The out-of-pile test facility to simulate thermal-hydraulic conditions of the fuel transient test facility was therefore developed. Applicability of the analysis code ACE-3D was examined for thermal-hydraulic analysis of power ramping tests for 10x10 BWR fuels by the fuel transient test facility. As the results, the calculated temperature was 304°C in comparison with measured value of 304.9-317.4°C in the condition of 600 W/cm. There is a bright prospect of high accuracy power ramping tests by the fuel transient test facility in JMTR. (author)

  7. Fusion Materials Irradiation Test Facility: a facility for fusion-materials qualification

    International Nuclear Information System (INIS)

    Trego, A.L.; Hagan, J.W.; Opperman, E.K.; Burke, R.J.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special purpose materials in support of fusion power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high energy neutrons to ensure damage similar to that of a deuterium-tritium neutron spectrum. The facility design is now ready for the start of construction and much of the supporting lithium system research has been completed. Major testing of key low energy end components of the accelerator is about to commence. The facility, its testing role, and the status and major aspects of its design and supporting system development are described

  8. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  9. Testing the Control of Mineral Supply Rates on Chemical Erosion Rates in the Klamath Mountains

    Science.gov (United States)

    West, N.; Ferrier, K.

    2016-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including how tightly Earth's climate should be coupled to tectonics, how strongly nutrient supply to soils and streams depends on soil production, and how much lithology affects landscape evolution. Despite widespread interest in this relationship, there remains no consensus on how closely coupled chemical erosion rates should be to mineral supply rates. To address this, we have established a network of field sites in the Klamath Mountains along a latitudinal transect that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. Here, we present new measurements of regolith geochemistry and topographic analyses that will be compared with cosmogenic 10Be measurements to test hypotheses about supply-limited and kinetically-limited chemical erosion on granodioritic ridgetops. Previous studies in this area suggest a balance between rock uplift rates and basin wide erosion rates, implying the study ridgetops may have adjusted to an approximate steady state. Preliminary data are consistent with a decrease in chemical depletion fraction (CDF) with increasing ridgetop curvature. To the extent that ridgetop curvature reflects ridgetop erosion rates, this implies that chemical erosion rates at these sites are influenced by both mineral supply rates and dissolution kinetics.

  10. Metrology to enable high temperature erosion testing - A new european initiative

    DEFF Research Database (Denmark)

    Fry, A.T.; Gee, M.G.; Clausen, Sønnik

    2014-01-01

    is required. However, limitations in current measurement capability within this form of test prevent the advancement. A new European initiative, METROSION, on the development of high temperature solid particle erosion testing has a primary aim to develop this metrological framework. Several key parameters...... have been identified for measurement and control; these include temperature (of the sample, gas and particles), flow rate, size and shape of the erodent, angle of incidence of the particle stream and nozzle design. This paper outlines the aims and objectives of this new initiative. With a particular...

  11. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  12. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  13. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  14. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  15. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  16. DOE LeRC photovoltaic systems test facility

    Science.gov (United States)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  17. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Science.gov (United States)

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (perosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  18. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  19. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  20. Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment

    Energy Technology Data Exchange (ETDEWEB)

    Ishay, Liel [Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Bieder, Ulrich [Commissariat à l’énergie atomique et aux énergies alternatives, Centre de SACLAY DEN/SAC/DANS/DM2S/STMF/LMSF, F-91191 Gif-sur-Yvette (France); Ziskind, Gennady [Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rashkovan, Alex, E-mail: rashbgu@gmail.com [Physics Department, Nuclear Research Center Negev (NRCN), PO Box 9001, Beer-Sheva 84190 (Israel)

    2015-10-15

    Highlights: • We model stably stratified layer erosion by vertical turbulent round jet. • Separate effect studies are performed as a platform for choosing modeling approach. • A test performed in MISTRA facility, CEA, Saclay is modeled using Fluent and Trio-U codes. • The proposed modeling approach showed good agreement with the MISTRA facility LOWMA-3 test. - Abstract: A number of integral and separate effect experiments were performed in the last two decades for validation of containment computational tools. The main goal of these benchmark experiments was to assess the ability of turbulence models and computational fluid dynamics codes to predict hydrogen concentration distribution and steam condensation rate in a nuclear reactor containment in the course of severe accidents. It appears from the published literature that the predictive capability of the existing computational tools still needs to be improved. This work examines numerically the temporal evolution of helium concentration in the experiment called LOWMA-3, performed in the MISTRA facility of CEA-Saclay, France. In the experiment, helium is used to mimic hydrogen of a real-case accident. The aim of this separate effect experiment, where steam condensation was not involved, is to predict helium concentration field. The conditions of the experiment are such that both the momentum transport and molecular diffusion contributions to the mixing process are of the same order of magnitude (Fr ∼ 1). A commercial CFD code, Fluent, and a CEA in-house code, Trio-U, are used for flow and helium concentration fields temporal evolution prediction in the present study. The preliminary separate effect studies provide guidance to an optimal modeling approach for the LOWMA-3 experiment. Temporal evolution of helium concentration in the stratification layer is shown, and a comparison to the experiment is discussed. It is shown that correct modeling of the round jet flowfield is essential for a reliable

  1. Turbulent jet erosion of a stably stratified gas layer in a nuclear reactor test containment

    International Nuclear Information System (INIS)

    Ishay, Liel; Bieder, Ulrich; Ziskind, Gennady; Rashkovan, Alex

    2015-01-01

    Highlights: • We model stably stratified layer erosion by vertical turbulent round jet. • Separate effect studies are performed as a platform for choosing modeling approach. • A test performed in MISTRA facility, CEA, Saclay is modeled using Fluent and Trio-U codes. • The proposed modeling approach showed good agreement with the MISTRA facility LOWMA-3 test. - Abstract: A number of integral and separate effect experiments were performed in the last two decades for validation of containment computational tools. The main goal of these benchmark experiments was to assess the ability of turbulence models and computational fluid dynamics codes to predict hydrogen concentration distribution and steam condensation rate in a nuclear reactor containment in the course of severe accidents. It appears from the published literature that the predictive capability of the existing computational tools still needs to be improved. This work examines numerically the temporal evolution of helium concentration in the experiment called LOWMA-3, performed in the MISTRA facility of CEA-Saclay, France. In the experiment, helium is used to mimic hydrogen of a real-case accident. The aim of this separate effect experiment, where steam condensation was not involved, is to predict helium concentration field. The conditions of the experiment are such that both the momentum transport and molecular diffusion contributions to the mixing process are of the same order of magnitude (Fr ∼ 1). A commercial CFD code, Fluent, and a CEA in-house code, Trio-U, are used for flow and helium concentration fields temporal evolution prediction in the present study. The preliminary separate effect studies provide guidance to an optimal modeling approach for the LOWMA-3 experiment. Temporal evolution of helium concentration in the stratification layer is shown, and a comparison to the experiment is discussed. It is shown that correct modeling of the round jet flowfield is essential for a reliable

  2. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  3. Testing lifting systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kling, H.; Laug, R.

    1984-01-01

    Lifting systems in nuclear facilities must be inspected at regular intervals after having undergone their first acceptance test. These inspections are frequently carried out by service firms which not only employ the skilled personnel required for such jobs but also make available the necessary test equipment. The inspections in particular include a number of sophisticated load tests for which test load systems have been developed to allow lifting systems to be tested so that reactor specific boundary conditions are taken into account. In view of the large number of facilities to be inspected, the test load system is a modular system. (orig.) [de

  4. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  5. Assembly and installation of the large coil test facility test stand

    International Nuclear Information System (INIS)

    Queen, C.C. Jr.

    1983-01-01

    The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand

  6. 33-GVA interrupter test facility

    International Nuclear Information System (INIS)

    Parsons, W.M.; Honig, E.M.; Warren, R.W.

    1979-01-01

    The use of commercial ac circuit breakers for dc switching operations requires that they be evaluated to determine their dc limitations. Two 2.4-GVA facilities have been constructed and used for this purpose at LASL during the last several years. In response to the increased demand on switching technology, a 33-GVA facility has been constructed. Novel features incorporated into this facility include (1) separate capacitive and cryogenic inductive energy storage systems, (2) fiber-optic controls and optically-coupled data links, and (3) digital data acquisition systems. Facility details and planned tests on an experimental rod-array vacuum interrupter are presented

  7. Fusion Materials Irradiation Test Facility: experimental capabilities and test matrix

    International Nuclear Information System (INIS)

    Opperman, E.K.

    1982-01-01

    This report describes the experimental capabilities of the Fusion Materials Irradiation Test Facility (FMIT) and reference material specimen test matrices. The description of the experimental capabilities and the test matrices has been updated to match the current single test cell facility ad assessed experimenter needs. Sufficient detail has been provided so that the user can plan irradiation experiments and conceptual hardware. The types of experiments, irradiation environment and support services that will be available in FMIT are discussed

  8. Mercury flow experiments. 4th report: Measurements of erosion rate caused by mercury flow

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Kaminaga, Masanori; Haga, Katsuhiro; Hino, Ryutaro

    2002-06-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be weak by thickness decreasing. This report presents experimental results of wall thickness change by erosion using a mercury experimental loop. In the experiments, an erosion test section and coupons were installed in the mercury experimental loop, and their wall thickness was measured with an ultra sonic thickness gage after every 1000 hours. As a result, under 0.7 m/s of mercury velocity condition which is slightly higher than the practical velocity in mercury pipelines, the erosion is about 3 μm in 1000 hours. The wall thickness decrease during facility lifetime of 30 years is estimated to be less than 0.5 mm. According to the experimental result, it is confirmed that the effect of erosion on component strength is extremely small. Moreover, a measurement of residual mercury on the piping surface was carried out. As a result, 19 g/m 2 was obtained as the residual mercury for the piping surface. According to this result, estimated amount of residual mercury for

  9. 21 CFR 58.31 - Testing facility management.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  10. Buffet test in the National Transonic Facility

    Science.gov (United States)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  11. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Directory of Open Access Journals (Sweden)

    Gabriela Cristina de Oliveira

    Full Text Available This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15: GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3 for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05. The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm. The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  12. E-4 Test Facility Design Status

    Science.gov (United States)

    Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick

    2001-01-01

    Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.

  13. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  14. Lithium-system corrosion/erosion studies for the FMIT project

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G D [comp.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/C to 270/sup 0/C and static lithium at temperatures from 200/sup 0/C to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components.

  15. Lithium-system corrosion/erosion studies for the FMIT project

    International Nuclear Information System (INIS)

    Bazinet, G.D.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230 0 C to 270 0 C and static lithium at temperatures from 200 0 C to 500 0 C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components

  16. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  17. The PANDA facility and first test results

    International Nuclear Information System (INIS)

    Dreier, J.; Huggenberger, M.; Aubert, C.; Bandurski, T.; Fischer, O.; Healzer, J.; Lomperski, S.; Strassberger, H.J.; Varadi, G.; Yadigaroglu, G.

    1996-01-01

    The PANDA test facility at the Paul Scherrer Institute is used to study the long-term performance of the Simplified Boiling Water Reactor's passive containment cooling system. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensable gases in the system. The facility is in 1:1 vertical scale and 1:25 scale for volume, power etc. Extensive facility characterization tests and steady-state passive containment condenser performance tests are presented. The results of the base case test of a series of transient system behaviour tests are reviewed. The first PANDA tests exhibited reproducibility, and indicated that the Simplified Boiling Water Reactor's containment is likely to be favorably responsive and highly robust to changes in the thermal transport patterns. (orig.) [de

  18. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    Ball, S.J.

    1987-01-01

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  19. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  20. Development of turbopump cavitation performance test facility and the test of inducer performance

    International Nuclear Information System (INIS)

    Sohn, Dong Kee; Kim, Chun Tak; Yoon, Min Soo; Cha, Bong Jun; Kim, Jin Han; Yang, Soo Seok

    2001-01-01

    A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar, rotational speed - 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification

  1. Erosive wear of a surface coated hydroturbine steel

    Indian Academy of Sciences (India)

    Administrator

    Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee,. Roorkee ... turbines, pipelines and valves used in slurry transporta- tion of matter ... city gas blast erosion rig facility developed as per standard.

  2. Coastal Erosion Control Methods

    Science.gov (United States)

    Greene, V.

    2016-12-01

    Coastal erosion is bad because the ecosystem there will be washed away and the animals could drown or be displaced and have to adapt to a new ecosystem that they are not prepared for. I'm interested in this problem because if there aren't beaches when I grow up I won't be able to do the things I would really like to do. I would like to be a marine biologist. Secondly, I don't want to see beach houses washed away. I would like to see people live in harmony with their environment. So, to study ways in which to preserve beaches I will make and use models that test different erosion controls. Two different ideas for erosion control I tested are using seaweed or a rock berm. I think the rock berm will work better than the model of seaweed because the seaweed is under water and the waves can carry the sand over the seaweed, and the rock berm will work better because the rocks will help break the waves up before they reach the shore and the waves can not carry the sand over the rocks that are above the water. To investigate this I got a container to use to model the Gulf of Mexico coastline. I performed several test runs using sand and water in the container to mimic the beach and waves from the Gulf of Mexico hitting the shoreline. I did three trials for the control (no erosion control), seaweed and a rock berm. Rock berms are a border of a raised area of rock. The model for seaweed that I used was plastic shopping bags cut into strips and glued to the bottom of my container to mimic seaweed. My results were that the control had the most erosion which ranged from 2.75 - 3 inches over 3 trials. The seaweed was a little better than the control but was very variable and ranged from 1.5 - 3 inches over 3 trials. The rock berm worked the best out of all at controlling erosion with erosion ranging from 1.5 - 2 inches. My hypothesis was correct because the rock berm did best to control erosion compared to the control which had no erosion control and the model with seaweed.

  3. Directory of transport packaging test facilities

    International Nuclear Information System (INIS)

    1983-08-01

    Radioactive materials are transported in packagings or containers which have to withstand certain tests depending on whether they are Type A or Type B packagings. In answer to a request by the International Atomic Energy Agency, 13 Member States have provided information on the test facilities and services existing in their country which can be made available for use by other states by arrangement for testing different kinds of packagings. The directory gives the technical information on the facilities, the services, the tests that can be done and in some cases even the financial arrangement is included

  4. Test facilities for future linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s

  5. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  6. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  7. New facility for testing LHC HTS power leads

    CERN Document Server

    Rabehl, Roger Jon; Fehér, S; Huang, Y; Orris, D; Pischalnikov, Y; Sylvester, C D; Tartaglia, M

    2005-01-01

    A new facility for testing HTS power leads at the Fermilab Magnet Test Facility has been designed and operated. The facility has successfully tested 19 pairs of HTS power leads, which are to be integrated into the Large Hadron Collider Interaction Region cryogenic feed boxes. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. HTS power lead test results from the commissioning phase of the project are also presented.

  8. ORNL 150 keV neutral beam test facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Kim, J.; Menon, M.M.; Schilling, G.

    1977-01-01

    The 150 keV neutral beam test facility provides for the testing and development of neutral beam injectors and beam systems of the class that will be needed for the Tokamak Fusion Test Reactor (TFTR) and The Next Step (TNS). The test facility can simulate a complete beam line injection system and can provide a wide range of experimental operating conditions. Herein is offered a general description of the facility's capabilities and a discussion of present system performance

  9. DeBeNe Test Facilities for Fast Breeder Development

    International Nuclear Information System (INIS)

    Storz, R.

    1980-10-01

    This report gives an overview and a short description of the test facilities constructed and operated within the collaboration for fast breeder development in Germany, Belgium and the Netherlands. The facilities are grouped into Sodium Loops (Large Facilities and Laboratory Loops), Special Equipment including Hot Cells and Reprocessing, Test Facilities without Sodium, Zero Power Facilities and In-pile Loops including Irradiation Facilities

  10. Plasma-Materials Interactions Test Facility

    International Nuclear Information System (INIS)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10 11 cm -3 and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics

  11. Final design of ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerisier, Thierry, E-mail: thierry.cerisier@yahoo.fr [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Romannikov, Alexander [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation); Rumyantsev, Yuri [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Cordier, Jean-Jacques; Dammann, Alexis [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Minakov, Victor; Rosales, Natalya; Mitrofanova, Elena [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Portone, Sergey; Mironova, Ekaterina [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation)

    2016-11-01

    Highlights: • We introduce the port plug test facility (purpose and status of the design). • We present the PPTF sub-systems. • We present the environmental and functional tests. • We present the occupational and nuclear safety functions. • We conclude on the achievements and next steps. - Abstract: To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill this requirement, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) is composed of several test stands that can be used to test the port plugs whereas at the end of manufacturing (in a non-nuclear environment), or after refurbishment in the ITER hot cell facility. The PPTF provides the possibility to perform environmental (leak tightness, vacuum and thermo-hydraulic performances) and functional tests (radio frequency acceptance tests, behavior of the plugs’ steering mechanism and calibration of diagnostics) on upper and equatorial port plugs. The final design of the port plug test facility is described. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  12. The engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  13. The erosive potential of lollipops

    NARCIS (Netherlands)

    Brand, H.S.; Gambon, D.L.; Paap, A.; Bulthuis, M.S.; Veerman, E.C.I.; Nieuw Amerongen, A.V.

    2009-01-01

    Aim: To determine the erosive potential of several commercially available lollipops and the protective effect of saliva. Methods: The erosive potential of lollipops was determined in vitro by measuring the pH and neutralisable acidity. Subsequently, 10 healthy volunteers tested different types of

  14. The high-temperature helium test facility (HHV)

    International Nuclear Information System (INIS)

    Noack, G.; Weiskopf, H.

    1977-03-01

    The report describes the high-temperature helium test facility (HHV). Construction of this plant was started in 1972 by Messrs. BBC, Mannheim, on behalf of the Kernforschungsanlage Juelich. By the end of 1976, the construction work is in its last stage, so that the plant may start operation early in 1977. First of all, the cycle system and the arrangement of components are dealt with, followed by a discussion of individual components. Here, emphasis is laid on components typical for HHT systems, while conventional components are mentioned without further structural detail. The projected test programme for the HHV facility in phase IB of the HHT project is shortly dealt with. After this, the potential of this test facility with regard to the possible use of test components and to fluid- and thermodynamic boundary conditions is pointed out. With the unique potential the facility offers here, aspects of shortened service life at higher cycle temperatures do not remain disregarded. (orig./UA) [de

  15. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    International Nuclear Information System (INIS)

    Bazylev, B.; Wuerz, H.

    2002-01-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs

  16. Melt layer erosion of metallic armour targets during off-normal events in tokamaks

    Science.gov (United States)

    Bazylev, B.; Wuerz, H.

    2002-12-01

    Melt layer erosion by melt motion is the dominating erosion mechanism for metallic armours under high heat loads. A 1-D fluid dynamics simulation model for calculation of melt motion was developed and validated against experimental results for tungsten from the e-beam facility JEBIS and beryllium from the e-beam facility JUDITH. The driving force in each case is the gradient of the surface tension. Due to the high velocity which develops in the Be melt considerable droplet splashing occurs.

  17. Hydrology in a Mediterranean mountain environment, the Vallcebre Research basins (North Eastern Spain). IV. Testing hydrological and erosion models

    International Nuclear Information System (INIS)

    Gallart, F.; Latron, J.; Llorens, P.; Martinez-Carreras, N.

    2009-01-01

    Three modelling exercises were carried out in the Vallcebre research basins in order to both improve the understanding of the hydrological processes and test the adequate of some models in such Mediterranean mountain conditions. These exercises consisted of i) the analysis of the hydrological role of the agricultural terraces using the TOPMODEL topographic index, ii) the parametrisation of TOPMODEL using internal basin information, and iii) a test of the erosion model KINEROS2 for simulating badlands erosion. (Author) 13 refs.

  18. Large coil test facility

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system

  19. The erosion and erosion products of tungsten and carbon based materials bombarded by high energy pulse electron beam

    International Nuclear Information System (INIS)

    Liu Xiang; Zhang Fu; Xu Zengyu; Liu Yong; Yoshida, N.; Noda, N.

    2002-01-01

    In this paper, the erosion behaviors and erosion products of tungsten and some carbon based materials, such as graphite, C/C composite and B 4 C/Cu functionally graded material, were investigated by using a pulse electron beam to simulate the vertical displacement events (VDE) process. The authors will focus on the forms and differences of erosion products among these testing materials, and make clear to their erosion mechanisms

  20. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  1. Advanced experimental and numerical techniques for cavitation erosion prediction

    CERN Document Server

    Chahine, Georges; Franc, Jean-Pierre; Karimi, Ayat

    2014-01-01

    This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion, a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss), and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion (Gr...

  2. Numerical and experimental investigations on cavitation erosion

    Science.gov (United States)

    Fortes Patella, R.; Archer, A.; Flageul, C.

    2012-11-01

    A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.

  3. Qualification test for ITER HCCR-TBS mockups with high heat flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon, E-mail: skkim93@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated. • A thermo-hydraulic analysis was performed using a high heat flux test facility by using electron beam. • The plan for qualification tests was developed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization. - Abstract: The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated, and an integrity and thermo-hydraulic performance test should be completed under the same or similar operation conditions of ITER. The test plan for a thermo-hydraulic analysis was developed by using a high heat flux test facility, called the Korean heat load test facility by using electron beam (KoHLT-EB). This facility is utilized for a qualification test of the plasma facing component (PFC) for the ITER first wall and DEMO divertor, and for the thermo-hydraulic experiments. In this work, KoHLT-EB will be used for the plan of the performance qualification test of the ITER HCCR-TBS mockups. This qualification tests should be performed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization (IO), which describe the specifications and qualifications of the heat flux test facility and test procedure for ITER PFC.

  4. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1985-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  5. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  6. Potential sites for a spent unreprocessed fuel facility (SURFF), southwesten part of the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoover, D.L.; Eckel, E.B.; Ohl, J.P.

    1978-01-01

    In the absence of specific criteria, the topography, geomorphology, and geology of Jackass Flats and vicinity in the southwestern part of the Nevada Test Site are evaluated by arbitrary guidelines for a Spent Unreprocessed Fuel Facility. The guidelines include requirements for surface slopes of less than 5%, 61 m of alluvium beneath the site, an area free of active erosion or deposition, lack of faults, a minimum area of 5 km 2 , no potential for flooding, and as many logistical support facilities as possible. The geology of the Jackass Flats area is similar to the rest of the Nevada Test Site in topographic relief (305-1,200 m), stratigraphy (complexly folded and faulted Paleozoic sediments overlain by Tertiary ash-flow tuffs and lavas overlain in turn by younger alluvium), and structure (Paleozoic thrust faults and folds, strike-slip faults, proximity to volcanic centers, and Basin and Range normal faults). Of the stratigraphic units at the potential Spent Unreprocessed Fuel Facility site in Jackass Flats, only the thickness and stability of the alluvium are of immediate importance. Basin and Range faults and a possible extension of the Mine Mountain fault need further investigation. The combination of a slope map and a simplified geologic and physiographic map into one map shows several potential sites for a Spent Unreprocessed Fuel Facility in Jackass Flats. The potential areas have slopes of less than 5% and contain only desert pavement or segmented pavement--the two physiographic categories having the greatest geomorphic and hydraulic stability. Before further work can be done, specific criteria for a Spent Unreprocessed Fuel Facility site must be defined. Following criteria definition, potential sites will require detailed topographic and geologic studies, subsurface investigations (including geophysical methods, trenching, and perhaps shallow drilling for faults in alluvium), detailed surface hydrologic studies, and possibly subsurface hydrologic studies

  7. Stored energy analysis in the scaled-down test facilities

    International Nuclear Information System (INIS)

    Deng, Chengcheng; Chang, Huajian; Qin, Benke; Wu, Qiao

    2016-01-01

    Highlights: • Three methods are developed to evaluate stored energy in the scaled-down test facilities. • The mechanism behind stored energy distortion in the test facilities is revealed. • The application of stored energy analysis is demonstrated for the ACME facility of China. - Abstract: In the scaled-down test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy release in the metal structures has an important influence on the accuracy and effectiveness of the experimental data. Three methods of stored energy analysis are developed, and the mechanism behind stored energy distortion in the test facilities is revealed. Moreover, the application of stored energy analysis is demonstrated for the ACME test facility newly built in China. The results show that the similarity requirements of three methods analyzing the stored energy release decrease gradually. The physical mechanism of stored energy release process can be characterized by the dimensionless numbers including Stanton number, Fourier number and Biot number. Under the premise of satisfying the overall similarity of natural circulation, the stored energy release process in the scale-down test facilities cannot maintain exact similarity. The results of the application of stored energy analysis illustrate that both the transient release process and integral total stored energy of the reactor pressure vessel wall of CAP1400 power plant can be well reproduced in the ACME test facility.

  8. Pilot-plant testing of materials proposed for use as NWCF feed and fuel nozzle caps

    International Nuclear Information System (INIS)

    Birrer, S.A.

    1980-12-01

    Results of a series of tests performed on materials proposed for use at New Waste Calcining Facility (NWCF) fuel and feed nozzle caps are described. Results show that Haynes Alloys 25 and 188 and Inconel Alloys 617, 625, and 690 have acceptable corrosion and erosion rates based upon the high-temperature oxidation, erosion, and corrosion tests conducted

  9. Effect of mechanical properties on erosion resistance of ductile materials

    Science.gov (United States)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By

  10. Effects of erosive, cariogenic or combined erosive/cariogenic challenges on human enamel: an in situ/ex vivo study.

    Science.gov (United States)

    Honório, H M; Rios, D; Santos, C F; Magalhães, A C; Buzalaf, M A R; Machado, M A A M

    2008-01-01

    Individuals with cariogenic diet can also consume erosive beverages. Thus, it seems necessary to investigate a possible caries/erosion interaction. To test in situ/ex vivo a combination of these challenges, 11 subjects wore intraoral appliances containing four enamel blocks randomly assigned. In the first 2-week phase, the appliances were immersed in a cola drink 3 times/day. Two blocks were free of plaque (erosion only: EO) and two blocks were covered with plaque (erosion + plaque: EP). In the second 2-week phase, four new blocks were all covered with plaque and subjected to a sucrose solution 8 times/day. Among the four new blocks, two were also subjected to the cola drink 3 times/day (erosion + caries: EC) while the other two were not (caries only: CO). Thus, in EO, the specimens were fixed at the intraoral appliance level. In EP, EC and CO they were fixed 1.0 mm under the appliance level and covered with plastic meshes for dental plaque accumulation. Changes in wear and hardness were measured. Data were tested using ANOVA and Tukey's test (p cariogenic challenges showed less enamel alterations when compared to erosive or cariogenic challenges only. (c) 2008 S. Karger AG, Basel.

  11. Runoff erosion

    OpenAIRE

    Evelpidou, Niki (Ed.); Cordier, Stephane (Ed.); Merino, Agustin (Ed.); Figueiredo, Tomás de (Ed.); Centeri, Csaba (Ed.)

    2013-01-01

    Table of Contents PART I – THEORY OF RUNOFF EROSION CHAPTER 1 - RUNOFF EROSION – THE MECHANISMS CHAPTER 2 - LARGE SCALE APPROACHES OF RUNOFF EROSION CHAPTER 3 - MEASURING PRESENT RUNOFF EROSION CHAPTER 4 - MODELLING RUNOFF EROSION CHAPTER 5 - RUNOFF EROSION AND HUMAN SOCIETIES: THE INFLUENCE OF LAND USE AND MANAGEMENT PRACTICES ON SOIL EROSION PART II - CASE STUDIES CASE STUDIES – INTRODUCTION: RUNOFF EROSION IN MEDITERRANEAN AREA CASE STUDY 1: Soil Erosion Risk...

  12. Cold moderator test facilities working group

    International Nuclear Information System (INIS)

    Bauer, Guenter S.; Lucas, A. T.

    1997-09-01

    The working group meeting was chaired by Bauer and Lucas.Testing is a vital part of any cold source development project. This applies to specific physics concept verification, benchmarking in conjunction with computer modeling and engineering testing to confirm the functional viability of a proposed system. Irradiation testing of materials will always be needed to continuously extend a comprehensive and reliable information database. An ever increasing worldwide effort to enhance the performance of reactor and accelerator based neutron sources, coupled with the complexity and rising cost of building new generation facilities, gives a new dimension to cold source development and testing programs. A stronger focus is now being placed on the fine-tuning of cold source design to maximize its effectiveness in fully exploiting the facility. In this context, pulsed spallation neutron sources pose an extra challenge due to requirements regarding pulse width and shape which result from a large variety of different instrument concepts. The working group reviewed these requirements in terms of their consequences on the needs for testing equipment and compiled a list of existing and proposed facilities suitable to carry out the necessary development work.

  13. Air pollution control system testing at the DOE offgas components test facility

    International Nuclear Information System (INIS)

    Burns, D.B.; Speed, D.; VanPelt, W.; Burns, H.H.

    1997-01-01

    In 1997, the Department of Energy (DOE) Savannah River Site (SRS) plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. A key component of this technical support program includes the Offgas Components Test Facility (OCTF), a pilot-scale offgas system test bed. The primary goal for this test facility is to demonstrate and evaluate the performance of the planned CIF Air Pollution Control System (APCS). To accomplish this task, the OCTF has been equipped with a 1/10 scale CIF offgas system equipment components and instrumentation. In addition, the OCTF design maximizes the flexibility of APCS operation and facility instrumentation and sampling capabilities permit accurate characterization of all process streams throughout the facility. This allows APCS equipment performance to be evaluated in an integrated system under a wide range of possible operating conditions. This paper summarizes the use of this DOE test facility to successfully demonstrate APCS operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. These types of facilities are needed to permit resolution of technical issues associated with design and operation of systems that treat and dispose combustible hazardous, mixed, and low-level radioactive waste throughout and DOE complex

  14. FFTF [Fast Flux Test Facility] management

    International Nuclear Information System (INIS)

    Bennett, C.L.

    1986-11-01

    Fuel Management at the Fast Flux Test Facility (FFTF) involves more than just the usual ex-core and in-core management of standard fuel and non-fuel components between storage locations and within the core since it is primarily an irradiation test facility. This mission involves testing an ever increasing variety of fueled and non-fueled experiments, each having unique requirements on the reactor core as well as having its own individual impact on the reload design. This paper describes the fuel management process used by the Westinghouse Hanford Company Core Engineering group that has led to the successful reload design of nine operating cycles and the irradiation of over 120 tests

  15. Construction of the two-phase critical flow test facility

    International Nuclear Information System (INIS)

    Chung, C. H.; Chang, S. K.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.

    2002-03-01

    The two-phase critical test loop facility has been constructed in the KAERI engineering laboratory for the simulation of small break loss of coolant accident entrained with non-condensible gas of SMART. The test facility can operate at 12 MPa of pressure and 0 to 60 C of sub-cooling with 0.5 kg/s of non- condensible gas injection into break flow, and simulate up to 20 mm of pipe break. Main components of the test facility were arranged such that the pressure vessel containing coolant, a test section simulating break and a suppression tank inter-connected with pipings were installed vertically. As quick opening valve opens, high pressure/temperature coolant flows through the test section forming critical two-phase flow into the suppression tank. The pressure vessel was connected to two high pressure N2 gas tanks through a control valve to control pressure in the pressure vessel. Another N2 gas tank was also connected to the test section for the non-condensible gas injection. The test facility operation was performed on computers supported with PLC systems installed in the control room, and test data such as temperature, break flow rate, pressure drop across test section, gas injection flow rate were all together gathered in the data acquisition system for further data analysis. This test facility was classified as a safety related high pressure gas facility in law. Thus the loop design documentation was reviewed, and inspected during construction of the test loop by the regulatory body. And the regulatory body issued permission for the operation of the test facility

  16. A New Instrument for Testing Wind Erosion by Soil Surface Shape Change

    International Nuclear Information System (INIS)

    Hai, C.; Yuan, X.; Jiang, H.; Zhou, R.; Wang, J.; Liu, B.; Ye, Y.; Du, P.

    2010-01-01

    Wind erosion, a primary cause of soil degeneration, is a problem in arid and semiarid areas throughout the world. Many methods are available to study soil erosion, but there is no an effective method for making quantitative measurements in the field. To solve this problem, we have developed a new instrument that can measure the change in the shape of the soil surface, allowing quick quantification of wind erosion. In this paper, the construction and principle of the new instrument are described. Field experiments are carried out using the instrument, and the data are analyzed. The erosion depth is found to vary by 11% compared to the average for measurement areas ranging from 30 x 30 cm 2 to 10 x 10 cm 2 . The results show that the instrument is convenient and reliable for quantitatively measuring wind erosion in the field.

  17. Mirror Fusion Test Facility (MFTF)

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1978-01-01

    A large, new Mirror Fusion Test Facility is under construction at LLL. Begun in FY78 it will be completed at the end of FY78 at a cost of $94.2M. This facility gives the mirror program the flexibility to explore mirror confinement principles at a signficant scale and advances the technology of large reactor-like devices. The role of MFTF in the LLL program is described here

  18. Flow analysis of HANARO flow simulated test facility

    International Nuclear Information System (INIS)

    Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin

    2002-01-01

    The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)

  19. Recommissioning the K-1600 seismic test facility

    International Nuclear Information System (INIS)

    Wynn, C.C.; Brewer, D.W.

    1991-01-01

    The Center for Natural Phenomena Engineering (CNPE) was established under the technical direction of Dr. James E. Beavers with a mandate to assess, by analyses and testing, the seismic capacity of building structures that house sensitive processes at the Oak Ridge Y-12 Plant. This mandate resulted in a need to recommission the K-1600 Seismic Test Facility (STF) at the Oak Ridge K-25 Site, which had been shutdown for 6 years. This paper documents the history of the facility and gives some salient construction, operation, and performance details of its 8-ton, 20-foot center of gravity payload biaxial seismic simulator. A log of activities involved in the restart of this valuable resource is included as Table 1. Some of the problems and solutions associated with recommissioning the facility under a relatively limited budget are included. The unique attributes of the shake table are discussed. The original mission and performance requirements are compared to current expanded mission and performance capabilities. Potential upgrades to further improve the capabilities of the test facility as an adjunct to the CNPE are considered. Additional uses for the facility are proposed, including seismic qualification testing of devices unique to enrichment technologies and associated hazardous waste treatment and disposal processes. In summary, the STF restart in conjunction with CNPE has added a vital, and unique facility to the list of current national resources utilized for earthquake engineering research and development

  20. Fundamental study on cavitation erosion in liquid metal. Effect of liquid parameter on cavitation erosion in liquid metals (Joint research)

    International Nuclear Information System (INIS)

    Hattori, Shuji; Kurachi, Hiroaki; Inoue, Fumitaka; Watashi, Katsumi; Tsukimori, Kazuyuki; Yada, Hiroki; Hashimoto, Takashi

    2009-02-01

    Cavitation erosion, which possibly occurs on the surfaces of fluid machineries and components contacting flowing liquid and causes sponge-like damage on the material surface, is important problem, since it may become the cause of performance deduction, life shortening, noise, vibration of mechanical components and moreover failure of machine. Research on cavitation erosion in liquid metal is very important to confirm the safety of fast breeder reactor using sodium coolant and to avoid serious damage of the target vessel of spallation neutron source containing liquid-mercury. But the research on cavitation erosion in liquid metal has been hardly performed because of its specially in comparison with that in water. In this study, a cavitation erosion test apparatus was developed to carry out the erosion tests in low-temperature liquid metals. Cavitation erosion tests were carried out in liquid lead-bismuth alloy and in deionized water. We discuss the effect of liquid parameters and temperature effects on the erosion rate. We reach to the following conclusions. The erosion rate was evaluated in terms of a relative temperature which was defind as the percentage between freezing and boiling points. At 14degC relative temperature, the erosion rate is 10 times in lead-bismuth alloy, and 2 to 5 times in sodium, compared with that in deionized water. At 14degC relative temperature, the erosion rate can be evaluated in terms of the following parameter. 1 / (1/ρ L /C L +1/ρ S C S )√ρ L . Where ρ is the material density and c is the velocity of sound, L and S denote liquid and solid. In the relative temperature between 14 and 30degC, the temperature dependence on the erosion rate is due to the increase in vapor pressure. (author)

  1. UPTF test 21D counterpart test in the MIDAS test facility

    International Nuclear Information System (INIS)

    Yoon, B. C.; Ah, D. J.; Joo, I. C.; Kwon, T. S.; Park, W. M.; Song, C. H.

    2002-01-01

    This paper describes the experimental results of UPTF Test 21D counterpart tests in the downcomer during the late reflood phase of LBLOCA. The experiments have been performed in the MIDAS test facility using superheated steam and water. The test condition was determined,based on the test results of UPTF Test 21D, by applying the 'modified linear scaling method of 1/4.077 length scale. The tests of ECC direct bypass and void height are performed separately to estimate each phenomena quantitatively. The tests were carried out by varying the injection steam flow rate of intact cold legs widely to investigate the effect of steam flow rate on the direct bypass fraction and void height. In the tests, separate effect tests have been performed in cases of DVI-1,DVI- 2 and DVI-1 and 2 injections to see the direct bypass fraction according to the DVI nozzle combination. From the tests, we found that the fraction of direct ECC bypass and the void height observed in the MIDAS test facility reasonably well agree with those of UPTF test 21- D. It confirms that the applied 'modified linear scaling law' reproduces major thermal hydraulics phenomena in the downcomer during the LBLOCA reflood phase

  2. Engineered Barrier Test Facility status report, 1984

    International Nuclear Information System (INIS)

    Phillips, S.J.; Adams, M.R.; Gilbert, T.W.; Meinhardt, C.C.; Mitchell, R.M.; Waugh, W.J.

    1985-02-01

    This report provides a general summary of activities completed to date at the Hanford Engineered Barrier Test Facility. This facility is used to test and compare construction practices and performance of alternative designs of engineered barrier cover systems. These cover systems are being evaluated for potential use for isolation and confinement of buried waste disposal structures

  3. ITER primary cryopump test facility

    International Nuclear Information System (INIS)

    Petersohn, N.; Mack, A.; Boissin, J.C.; Murdoc, D.

    1998-01-01

    A cryopump as ITER primary vacuum pump is being developed at FZK under the European fusion technology programme. The ITER vacuum system comprises of 16 cryopumps operating in a cyclic mode which fulfills the vacuum requirements in all ITER operation modes. Prior to the construction of a prototype cryopump, the concept is tested on a reduced scale model pump. To test the model pump, the TIMO facility is being built at FZK in which the model pump operation under ITER environmental conditions, except for tritium exposure, neutron irradiation and magnetic fields, can be simulated. The TIMO facility mainly consists of a test vessel for ITER divertor duct simulation, a 600 W refrigerator system supplying helium in the 5 K stage and a 30 kW helium supply system for the 80 K stage. The model pump test programme will be performed with regard to the pumping performance and cryogenic operation of the pump. The results of the model pump testing will lead to the design of the full scale ITER cryopump. (orig.)

  4. Endurance test of a 30-CM-diameter engineering model ion thruster. Task 12: Investigation of thin-film erosion monitors for ion thrusters

    Science.gov (United States)

    Beattie, J. R.

    1983-01-01

    An investigation of short term measurement techniques for predicting the wearout of ion thrusters resulting from sputter erosion damage is described. The previously established laminar thin film techniques to provide high precision erosion rate data. However, the erosion rates obtained using this technique are generally substantially higher than those obtained during long term endurance tests (by virtue of the as deposited nature of the thin films), so that the results must be interpreted in a relative sense. Absolute measurements can be performed using a new masked substrate arrangement which was developed during this study. This new technique provides a means for estimating the lifetimes of critical discharge chamber components based on direct measurements of sputter erosion depths obtained during short duration (10 hour) tests. The method enables the effects on lifetime of thruster design and operating parameters to be inferred without the investment of the time and capital required to conduct long term (1000 hour) endurance tests. Results obtained using the direct measurement technique are shown to agree with sputter erosion depths calculated for the plasma conditions of the test and also with lifetest results. The direct measurement approach is shown to be applicable to both mercury and argon discharge plasma environments and should be useful in estimating the lifetimes of inert gas and extended performance mercury ion thrusters presently under development.

  5. 10 CFR 26.125 - Licensee testing facility personnel.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Licensee testing facility personnel. 26.125 Section 26.125 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.125... reports, if any; results of tests that establish employee competency for the position he or she holds...

  6. TOP 01-1-011B Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center

    Science.gov (United States)

    2017-12-12

    Test Center 400 Colleran Road Aberdeen Proving Ground, MD 21005-5059 U.S. Army Yuma Proving Ground Yuma Test Center 301 C. Street Yuma, AZ...22 2.6 Munson Test Area (MTA) ..................................................... 24 2.7 Land Vehicle Maintenance Facility...127 3.6 Maintenance Facilities ........................................................... 143

  7. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  8. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion

    International Nuclear Information System (INIS)

    Hu, H.X.; Zheng, Y.G.; Qin, C.P.

    2010-01-01

    Liquid droplet erosion (LDE), which often occurs in bellows made of nickel-based alloys, threatens the security operation of the nuclear power plant. As the candidate materials of the bellows, Inconel 600 and Inconel 625 were both tested for resistance to cavitation erosion (CE) and jet impingement erosion (JIE) through vibratory cavitation equipment and a jet apparatus for erosion-corrosion. Cumulative mass loss vs. exposure time was used to evaluate the erosion rate of the two alloys. The surface and cross-sectional morphologies before and after the erosion tests were observed by scanning electron microscopy (SEM), the inclusions were analyzed by an energy dispersive spectroscopy (EDS), and the surface roughness was also measured by surface roughness tester to illustrate the evolution of erosion process. The results show that the cumulative mass loss of CE of Inconel 625 is about 1/6 that of Inconel 600 and the CE incubation period of the Inconel 625 is 4 times as long as that of the Inconel 600. The micro-morphology evolution of CE process illustrates that the twinning and hardness of the Inconel 625 plays a significant role in CE. In addition, the cumulative mass loss of JIE of Inconel 625 is about 2/3 that of Inconel 600 at impacting angle of 90 o , and almost equal to that of the Inconel 600 at impacting angle of 30 o . Overall, the resistance to CE and JIE of Inconel 625 is much superior to that of Inconel 600.

  9. Stored energy analysis in scale-down test facility

    International Nuclear Information System (INIS)

    Deng Chengcheng; Qin Benke; Fang Fangfang; Chang Huajian; Ye Zishen

    2013-01-01

    In the integral test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy in the metal components has a direct influence on the simulation range and the test results of the facilities. Based on the heat transfer theory, three methods analyzing the stored energy were developed, and a thorough study on the stored energy problem in the scale-down test facilities was further carried out. The lumped parameter method and power integration method were applied to analyze the transient process of energy releasing and to evaluate the average total energy stored in the reactor pressure vessel of the ACME (advanced core-cooling mechanism experiment) facility, which is now being built in China. The results show that the similarity requirements for such three methods to analyze the stored energy in the test facilities are reduced gradually. Under the condition of satisfying the integral similarity of natural circulation, the stored energy releasing process in the scale-down test facilities can't maintain exact similarity. The stored energy in the reactor pressure vessel wall of ACME, which is released quickly during the early stage of rapid depressurization of system, will not make a major impact on the long-term behavior of system. And the scaling distortion of integral average total energy of the stored heat is acceptable. (authors)

  10. Erosion of newly developed CFCs and Be under disruption heat loads

    Science.gov (United States)

    Nakamura, K.; Akiba, M.; Araki, M.; Dairaku, M.; Sato, K.; Suzuki, S.; Yokoyama, K.; Linke, J.; Duwe, R.; Bolt, H.; Roedig, M.

    1996-10-01

    An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J—EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 × 3 mm 2. As a result, the protuberances of the heated area of Be were observed under the lower heat flux.

  11. Erosion of newly developed CFCs and Be under disruption heat loads

    International Nuclear Information System (INIS)

    Nakamura, K.; Duwe, R.; Bolt, H.; Roedig, M.

    1996-01-01

    An evaluation of the erosion under disruption heat loads is very important to the lifetime prediction of divertor armour tiles of next fusion devices such as ITER. In particular, erosion data on CFCs (carbon fiber reinforced composites) and beryllium (Be) as the armour materials is urgently required in the ITER design. For CFCs, high heat flux experiments on the newly developed CFCs with high thermal conductivity have been performed under the heat flux of around 800-2000 MW/m 2 and the pulse length of 2-5 ms in JAERI electron beam irradiation systems (JEBIS). As a result, the weight losses of B 4 C doped CFCs after heating were almost same to those of the non doped CFC up to 5 wt% boron content. For Be, we have carried out our first disruption experiments on S65/C grade Be specimens in the Juelich divertor test facility in hot cells (JUDITH) facility as a frame work of the J-EU collaboration. The heating conditions were heat loads of 1250-5000 MW/m 2 for 2-8 ms, and the heated area was 3 x 3 mm 2 . As a result, the protuberances of the heated area of Be were observed under the lower heat flux. (orig.)

  12. Remote-handling demonstration tests for the Fusion Materials Irradiation Test (FMIT) Facility

    International Nuclear Information System (INIS)

    Shen, E.J.; Hussey, M.W.; Kelly, V.P.; Yount, J.A.

    1982-01-01

    The mission of the Fusion Materials Irradiation Test (FMIT) Facility is to create a fusion-like environment for fusion materials development. Crucial to the success of FMIT is the development and testing of remote handling systems required to handle materials specimens and maintenance of the facility. The use of full scale mock-ups for demonstration tests provides the means for proving these systems

  13. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  14. Calibration and use of filter test facility orifice plates

    Science.gov (United States)

    Fain, D. E.; Selby, T. W.

    1984-07-01

    There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.

  15. Immunohistochemical Study of p53 Expression in Patients with Erosive and Non-Erosive Oral Lichen Planus

    Science.gov (United States)

    Shiva, Atena; Zamanian, Ali; Arab, Shahin; Boloki, Mahsa

    2018-01-01

    Statement of the Problem: Oral lichen planus is a common mucocutaneous lesion with a chronic inflammatory process mediated by immune factors while a few cases of the disease become malignant. Purpose: This study aimed to determine the frequency of p53 marker as a tumor suppressor in patients with erosive and non-erosive oral lichen planus (OLP) by using immunohistochemical methods. Materials and Method: This descriptive cross-sectional study investigated the p53 expression in 16 erosive OLP, 16 non-erosive OLP samples, and 8 samples of normal oral mucosa through immunohistochemistry. The percentage of stained cells in basal and suprabasal layers, and inflammatory infiltrate were graded according to the degree of staining; if 0%, 50% of the cells were stained, they were considered as (-), (+), (++), (+++) and (++++), respectively. The obtained data was statistically analyzed and compared by using Chi square and Fisher’s exact test. Results: The mean percentage of p53 positive cells in erosive OLP (34.5±14.2) was considerably higher than that in non-erosive OLP (23.8±10.4) and normal mucosa (17.5±17). There was a significant difference among the three groups of erosive, non-erosive and control in terms of staining intensity. No significant difference existed between the patients’ age and sex in the two OLP groups. Conclusion: The increased incidence of p53 from normal mucosa to erosive OLP indicated the difference between biological behavior of erosive and non-erosive OLP. It can be claimed that the erosive OLP has great premalignant potential compared with the non-erosive one.

  16. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V

    1998-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  17. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  18. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  19. Construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hyun Whee; Lee, Kang Moo; Koo, Jun Mo; Jung, In Ha; Lee, Jong Ryeul; Kim, Sung Whan; Bae, Sang Min; Cho, Kang Whon; Sung, Suk Jong

    1989-02-01

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  20. Current status of mechanical erosion studies of bentonite buffer

    International Nuclear Information System (INIS)

    Sane, P.; Olin, M.; Koskinen, K.

    2013-08-01

    The performance of the bentonite buffer in KBS-3-type nuclear waste repository concept relies to a great extent on the buffer surrounding the canister having sufficient dry density. Loss of buffer material caused by erosion remains as the most significant process reducing the density of the buffer. The mechanical erosion, or pre-saturation erosion, is the process where flowing groundwater transports buffer material away from the deposition hole towards the deposition tunnel. This process reduces the overall buffer density and potentially creates localized regions of low density. In the worst case the process is assumed to last as long as the free volume between the pellets in the pellets filled regions is filled with groundwater. With fixed environmental and material parameters a set of experiments was performed, testing the erosive properties of different buffer and backfill materials (MX-80 and Friedland Clay) in different groundwater conditions. The method used was a pinhole erosion test using two sizescales; 100 mm and 400 mm of cell length. The purpose of the pinhole tests was to test the scenario where piping channel is formed in the buffer and water flows through a single channel. The erosion data was produced with two methods, firstly the time-related erosion rates measured in-situ during the measurement and secondly the overall mass loss in the sample cell measured after dismantling of the test. It was observed that erosion in piping channels decreases rapidly (∼24 h) and irreversibly to a level that is an order of magnitude lower than the peak values. (orig.)

  1. Utilization of the capsule out-pile test facilities(2000-2003)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M. S.; Oh, J. M.; Cho, Y. G. and others

    2003-06-01

    Two out-pile test facilities were installed and being utilized for the non-irradiation tests outside the HANARO. The names of the facilities are the irradiation equipment design verification test facilities and the one-channel flow test device. In these facilities, the performance test of all capsules manufactured before loading in the HANARO and the design verification test for newly developed capsules were performed. The tests in these facilities include loading/unloading, pressure drop, endurance and vibration test etc. of capsules. In the period 2000{approx}2003, the performance tests for 8 material capsules of 99M-01K{approx}02M-05U were carried out, and the design verification tests of creep and fuel capsules developed newly were performed. For development of the creep capsule, pressure drop measurement, operation test of heater, T/C, LVDT and stress loading test were performed. In the design stage of the fuel capsule, the endurance and vibration test besides the above mentioned tests were carried out for verification of the safe operation during irradiation test in the HANARO. And in-chimeny bracket and the capsule supporting system were fixed and the flow tubes and the handling tools were manufactured for use at the facilities.

  2. (abstract) Cryogenic Telescope Test Facility

    Science.gov (United States)

    Luchik, T. S.; Chave, R. G.; Nash, A. E.

    1995-01-01

    An optical test Dewar is being constructed with the unique capability to test mirrors of diameter less than or equal to 1 m, f less than or equal to 6, at temperatures from 300 to 4.2 K with a ZYGO Mark IV interferometer. The design and performance of this facility will be presented.

  3. Kauai Test Facility hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility's chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the open-quotes Main Complexclose quotes and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the open-quotes Main Complexclose quotes is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility's site boundary

  4. Automation of electromagnetic compatability (EMC) test facilities

    Science.gov (United States)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  5. Transfer of test samples and wastes between post-irradiation test facilities (FMF, AGF, MMF)

    International Nuclear Information System (INIS)

    Ishida, Yasukazu; Suzuki, Kazuhisa; Ebihara, Hikoe; Matsushima, Yasuyoshi; Kashiwabara, Hidechiyo

    1975-02-01

    Wide review is given on the problems associated with the transfer of test samples and wastes between post-irradiation test facilities, FMF (Fuel Monitoring Facility), AGF (Alpha Gamma Facility), and MMF (Material Monitoring Facility) at the Oarai Engineering Center, PNC. The test facilities are connected with the JOYO plant, an experimental fast reactor being constructed at Oarai. As introductory remarks, some special features of transferring irradiated materials are described. In the second part, problems on the management of nuclear materials and radio isotopes are described item by item. In the third part, the specific materials that are envisaged to be transported between JOYO and the test facilities are listed together with their geometrical shapes, dimensions, etc. In the fourth part, various routes and methods of transportation are explained with many block charts and figures. Brief explanation with lists and drawings is also given to transportation casks and vessels. Finally, some future problems are discussed, such as the prevention of diffusive contamination, ease of decontamination, and the identification of test samples. (Aoki, K.)

  6. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  7. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  8. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  9. HIV testing in nonhealthcare facilities among adolescent MSM.

    Science.gov (United States)

    Marano, Mariette R; Stein, Renee; Williams, Weston O; Wang, Guoshen; Xu, Songli; Uhl, Gary; Cheng, Qi; Rasberry, Catherine N

    2017-07-01

    To describe the extent to which Centers for Disease Control and Prevention (CDC)-funded HIV testing in nonhealthcare facilities reaches adolescent MSM, identifies new HIV infections, and links those newly diagnosed to medical care. We describe HIV testing, newly diagnosed positivity, and linkage to medical care for adolescent MSM who received a CDC-funded HIV test in a nonhealthcare facility in 2015. We assess outcomes by race/ethnicity, HIV-related risk behaviors, and US geographical region. Of the 703 890 CDC-funded HIV testing events conducted in nonhealthcare facilities in 2015, 6848 (0.9%) were provided to adolescent MSM aged 13-19 years. Among those tested, 1.8% were newly diagnosed with HIV, compared with 0.7% among total tests provided in nonhealthcare facilities regardless of age and sex. The odds of testing positive among black adolescent MSM were nearly four times that of white adolescent MSM in multivariable analysis (odds ratio = 3.97, P adolescent MSM newly diagnosed with HIV, 67% were linked to HIV medical care. Linkage was lower among black (59%) and Hispanic/Latino adolescent MSM (71%) compared with white adolescent MSM (88%). CDC-funded nonhealthcare facilities can reach and provide HIV tests to adolescent MSM and identify new HIV infections; however, given the low rate of HIV testing overall and high engagement in HIV-related risk behaviors, there are opportunities to increase access to HIV testing and linkage to care for HIV-positive adolescent MSM. Efforts are needed to identify and address the barriers that prevent black and Hispanic/Latino adolescent MSM from being linked to HIV medical care in a timely manner.

  10. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  11. Fast Flux Test Facility (FFTF) maintenance provisions

    International Nuclear Information System (INIS)

    Marshall, J.L.

    1981-05-01

    The Fast Flux Test Facility (FFTF) was designed with maintainability as a primary parameter, and facilities and provisions were designed into the plant to accommodate the maintenance function. This paper describes the FFTF and its systems. Special maintenance equipment and facilities for performing maintenance on radioactive components are discussed. Maintenance provisions designed into the plant to enhance maintainability are also described

  12. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.X. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China); Zheng, Y.G., E-mail: ygzheng@imr.ac.c [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China); Qin, C.P. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China)

    2010-10-15

    Liquid droplet erosion (LDE), which often occurs in bellows made of nickel-based alloys, threatens the security operation of the nuclear power plant. As the candidate materials of the bellows, Inconel 600 and Inconel 625 were both tested for resistance to cavitation erosion (CE) and jet impingement erosion (JIE) through vibratory cavitation equipment and a jet apparatus for erosion-corrosion. Cumulative mass loss vs. exposure time was used to evaluate the erosion rate of the two alloys. The surface and cross-sectional morphologies before and after the erosion tests were observed by scanning electron microscopy (SEM), the inclusions were analyzed by an energy dispersive spectroscopy (EDS), and the surface roughness was also measured by surface roughness tester to illustrate the evolution of erosion process. The results show that the cumulative mass loss of CE of Inconel 625 is about 1/6 that of Inconel 600 and the CE incubation period of the Inconel 625 is 4 times as long as that of the Inconel 600. The micro-morphology evolution of CE process illustrates that the twinning and hardness of the Inconel 625 plays a significant role in CE. In addition, the cumulative mass loss of JIE of Inconel 625 is about 2/3 that of Inconel 600 at impacting angle of 90{sup o}, and almost equal to that of the Inconel 600 at impacting angle of 30{sup o}. Overall, the resistance to CE and JIE of Inconel 625 is much superior to that of Inconel 600.

  13. Elevated Fixed Platform Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  14. Sultan - forced flow, high field test facility

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-01-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs

  15. Technical bases for establishing a salt test facility

    International Nuclear Information System (INIS)

    1985-05-01

    The need for a testing facility in which radioactive materials may be used in an underground salt environment is explored. No such facility is currently available in salt deposits in the United States. A salt test facility (STF) would demonstrate the feasibility of safely storing radioactive waste in salt and would provide data needed to support the design, construction, licensing, and operation of a radioactive waste repository in salt. Nineteen issues that could affect long-term isolation of waste materials in a salt repository are identified from the most pertinent recent literature. The issues are assigned an overall priority and a priority relative to the activities of the STF. Individual tests recommended for performance in the STF to resolve the 19 issues are described and organized under three groups: waste package performance, repository design and operation, and site characterization and evaluation. The requirements for a salt test facility are given in the form of functional criteria, and the approach that will be used in the design, execution, interpretation, and reporting of tests is discussed

  16. Analysis on working pressure selection of ACME integral test facility

    International Nuclear Information System (INIS)

    Chen Lian; Chang Huajian; Li Yuquan; Ye Zishen; Qin Benke

    2011-01-01

    An integral effects test facility, advanced core cooling mechanism experiment facility (ACME) was designed to verify the performance of the passive safety system and validate its safety analysis codes of a pressurized water reactor power plant. Three test facilities for AP1000 design were introduced and review was given. The problems resulted from the different working pressures of its test facilities were analyzed. Then a detailed description was presented on the working pressure selection of ACME facility as well as its characteristics. And the approach of establishing desired testing initial condition was discussed. The selected 9.3 MPa working pressure covered almost all important passive safety system enables the ACME to simulate the LOCAs with the same pressure and property similitude as the prototype. It's expected that the ACME design would be an advanced core cooling integral test facility design. (authors)

  17. Status of superconducting RF test facility (STF)

    International Nuclear Information System (INIS)

    Hayano, Hitoshi

    2005-01-01

    A superconducting technology was recommended for the main linac design of the International Linear Collider (ILC) by the International Technology Recommendation Panel (ITRP). The basis for this design has been developed and tested at DESY, and R and D is progressing at many laboratories around the world including DESY, Orsay, KEK, FNAL, SLAC, Cornell, and JLAB. In order to promote Asian SC-technology for ILC, construction of a test facility in KEK was discussed and decided. The role and status of the superconducting RF test facility (STF) is reported in this paper. (author)

  18. Design of a hydrogen test facility

    International Nuclear Information System (INIS)

    Morgan, M.J.; Beam, J.E.; Sehmbey, M.S.; Pais, M.R.; Chow, L.C.; Hahn, O.J.

    1992-01-01

    The Air Force has sponsored a program at the University of Kentucky which will lead to a better understanding of the thermal and fluid instabilities during blowdown of supercritical fluids at cryogenic temperatures. An integral part of that program is the design and construction of that hydrogen test facility. This facility will be capable of providing supercritical hydrogen at 30 bars and 35 K at a maximum flow rate of 0.1 kg/s for 90 seconds. Also presented here is an extension of this facility to accommodate the use of supercritical helium

  19. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  20. Establishment and operation of a photovoltaic cell test facility

    Energy Technology Data Exchange (ETDEWEB)

    Pearsall, N.M.; Forbes, I.

    1999-07-01

    This report describes the setting up of a test facility at the University of Northumbria. Details of the equipment specification and procurement are given, and the commissioning and initial operation of the facility, and the measurement procedures for I-V characteristics, spectral response measurements, optical scanning and test charges are outlined. The business plan for the test facility is discussed, and operating experience is reviewed in terms of publicity, services provided, and collaboration.

  1. TESLA Test Facility. Status

    International Nuclear Information System (INIS)

    Aune, B.

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 μs). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.)

  2. Plasma nitriding of a precipitation hardening stainless steel to improve erosion and corrosion resistance

    International Nuclear Information System (INIS)

    Cabo, Amado; Bruhl, Sonia P.; Vaca, Laura S.; Charadia, Raul Charadia

    2010-01-01

    Precipitation hardening stainless steels are used as structural materials in the aircraft and the chemical industry because of their good combination of mechanical and corrosion properties. The aim of this work is to analyze the structural changes produced by plasma nitriding in the near surface of Thyroplast PH X Supra®, a PH stainless steel from ThyssenKrupp, and to study the effect of nitriding parameters in wear and corrosion resistance. Samples were first aged and then nitriding was carried out in an industrial facility at two temperatures, with two different nitrogen partial pressures in the gas mixture. After nitriding, samples were cut, polished, mounted in resin and etched with Vilella reagent to reveal the nitrided case. Nitrided structure was also analyzed with XRD. Erosion/Corrosion was tested against sea water and sand flux, and corrosion in a salt spray fog (ASTM B117). All nitrided samples presented high hardness. Samples nitrided at 390 deg C with different nitrogen partial pressure showed similar erosion resistance against water and sand flux. The erosion resistance of the nitrided samples at 500 deg C was the highest and XRD revealed nitrides. Corrosion resistance, on the contrary, was diminished; the samples suffered of general corrosion during the salt spray fog test. (author)

  3. Overview of the IFMIF test facility design in IFMIF/EVEDA phase

    International Nuclear Information System (INIS)

    Tian, Kuo; Abou-Sena, Ali; Arbeiter, Frederik; García, Ángela; Gouat, Philippe; Heidinger, Roland; Heinzel, Volker; Ibarra, Ángel; Leysen, Willem; Mas, Avelino; Mittwollen, Martin; Möslang, Anton; Theile, Jürgen; Yamamoto, Michiyoshi; Yokomine, Takehiko

    2015-01-01

    Highlights: • This paper summarizes the current design status of IFMIF EVEDA test facility. • The principle functions of the test facility and key components are described. • The brief specifications of the systems and key components are addressed. - Abstract: The test facility (TF) is one of the three major facilities of the International Fusion Material Irradiation Facility (IFMIF). Engineering designs of TF main systems and key components have been initiated and developed in the IFMIF EVEDA (Engineering Validation and Engineering Design Activities) phase since 2007. The related work covers the designs of a test cell which is the meeting point of the TF and accelerator facility and lithium facility, a series of test modules for experiments under different irradiation conditions, an access cell to accommodate remote handling systems, four test module handling cells for test module processing and assembling, and test facility ancillary systems for engineering support on energy, media, and control infrastructure. This paper summarizes the principle functions, brief specifications, and the current design status of the above mentioned IFMIF TF systems and key components.

  4. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  5. Fast flux test facility hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning Activities for the Fast Flux Test Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  6. Elevated temperature erosive wear of metallic materials

    International Nuclear Information System (INIS)

    Roy, Manish

    2006-01-01

    Solid particle erosion of metals and alloys at elevated temperature is governed by the nature of the interaction between erosion and oxidation, which, in turn, is determined by the thickness, pliability, morphology, adhesion characteristics and toughness of the oxide scale. The main objective of this paper is to critically review the present state of understanding of the elevated temperature erosion behaviour of metals and alloys. First of all, the erosion testing at elevated temperature is reviewed. This is followed by discussion of the essential features of elevated temperature erosion with special emphasis on microscopic observation, giving details of the erosion-oxidation (E-O) interaction mechanisms. The E-O interaction has been elaborated in the subsequent section. The E-O interaction includes E-O maps, analysis of transition criteria from one erosion mechanism to another mechanism and quantification of enhanced oxidation kinetics during erosion. Finally, the relevant areas for future studies are indicated. (topical review)

  7. Successful start for new CLIC test facility

    CERN Document Server

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  8. High heat flux testing of CFC composites for the tokamak physics experiment

    Science.gov (United States)

    Valentine, P. G.; Nygren, R. E.; Burns, R. W.; Rocket, P. D.; Colleraine, A. P.; Lederich, R. J.; Bradley, J. T.

    1996-10-01

    High heat flux (HHF) testing of carbon fiber reinforced carbon composites (CFC's) was conducted under the General Atomics program to develop plasma-facing components (PFC's) for Princeton Plasma Physics Laboratory's tokamak physics experiment (TPX). As part of the process of selecting TPX CFC materials, a series of HHF tests were conducted with the 30 kW electron beam test system (EBTS) facility at Sandia National Laboratories, and with the plasma disruption simulator I (PLADIS-I) facility at the University of New Mexico. The purpose of the tests was to make assessments of the thermal performance and erosion behavior of CFC materials. Tests were conducted with 42 different CFC materials. In general, the CFC materials withstood the rapid thermal pulse environments without fracturing, delaminating, or degrading in a non-uniform manner; significant differences in thermal performance, erosion behavior, vapor evolution, etc. were observed and preliminary findings are presented below. The CFC's exposed to the hydrogen plasma pulses in PLADIS-I exhibited greater erosion rates than the CFC materials exposed to the electron-beam pulses in EBTS. The results obtained support the continued consideration of a variety of CFC composites for TPX PFC components.

  9. Counterpart experimental study of ISP-42 PANDA tests on PUMA facility

    International Nuclear Information System (INIS)

    Yang, Jun; Choi, Sung-Won; Lim, Jaehyok; Lee, Doo-Yong; Rassame, Somboon; Hibiki, Takashi; Ishii, Mamoru

    2013-01-01

    Highlights: ► Counterpart tests were performed on two large-scale BWR integral facilities. ► Similarity of post-LOCA system behaviors observed between two tests. ► Passive core and containment cooling systems work as design in both tests. -- Abstract: A counterpart test to the Passive Nachwärmeabfuhr und Druckabbau Test Anlage (Passive Decay Heat Removal and Depressurization Test Facility, PANDA) International Standard Problem (ISP)-42 test was conducted at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. Aimed to support code validation on a range of light water reactor (LWR) containment issues, the ISP-42 test consists of six sequential phases (Phases A–F) with separately defined initial and boundary conditions, addressing different stages of anticipated accident scenario and system responses. The counterpart test was performed from Phases A to D, which are within the scope of the normal integral tests performed on the PUMA facility. A scaling methodology was developed by using the PANDA facility as prototype and PUMA facility as test model, and an engineering scaling has been applied to the PUMA facility. The counterpart test results indicated that functions of passive safety systems, such as passive containment cooling system (PCCS) start-up, gravity-driven cooling system (GDCS) discharge, PCCS normal operation and overload function were confirmed in both the PANDA and PUMA facilities with qualitative similarities

  10. Evaluation of the serum zinc level in erosive and non-erosive oral lichen planus.

    Science.gov (United States)

    Gholizadeh, N; Mehdipour, M; Najafi, Sh; Bahramian, A; Garjani, Sh; Khoeini Poorfar, H

    2014-06-01

    Lichen planus is a chronic inflammatory immunologic-based disease involving skin and mucosa. This disease is generally divided into two categories: erosive and non-erosive. Many etiologic factors are deliberated regarding the disease; however, the disorders of immune system and the role of cytotoxic T-lymphocytes and monocytes are more highlighted. Zinc is an imperative element for the growth of epithelium and its deficiency induces the cytotoxic activity of T-helper2 cells, which seems to be associated with lichen planus. This study was aimed to evaluate the levels of serum zinc in erosive and non-erosive oral lichen planus (OLP) and to compare it with the healthy control group to find out any feasible inference. A total of 22 patients with erosive oral lichen planus, 22 patients with non erosive OLP and 44 healthy individuals as the control group were recruited in this descriptive-comparative study. All the participants were selected from the referees to the department of oral medicine, school of dentistry, Tabriz University of Medical Sciences. Serum zinc level was examined for all the individuals with liquid-stat kit (Beckman Instruments Inc.; Carlsbad, CA). Data were analyzed by adopting the ANOVA and Tukey tests, using SPSS 16 statistical software. The mean age of patients with erosive and non-erosive LP was 41.7 and 41.3 years, respectively. The mean age of the healthy control group was 34.4 years .The mean serum zinc levels in the erosive and non erosive lichen planus groups and control groups were 8.3 (1.15), 11.15 (0.92) and 15.74 (1.75) μg/dl respectively. The difference was statistically significant (poral lichen planus. This finding may probably indicate the promising role of zinc in development of oral lichen planus.

  11. Test facility for the evaluation of microwave transmission components

    International Nuclear Information System (INIS)

    Fong, C.G.; Poole, B.R.

    1985-01-01

    A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE 01 , TE 02 , or TE 03 launched at power levels of 1/2 milliwatt. The propagation of the rf as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE 10 to circular TE 01 mode transducer, mode filter, circular TE 01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE 01 to TE 03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test

  12. Tritium Systems Test Facility. Volume I

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    Sandia Laboratories proposes to build and operate a Tritium Systems Test Facility (TSTF) in its newly completed Tritium Research Laboratory at Livermore, California (see frontispiece). The facility will demonstrate at a scale factor of 1:200 the tritium fuel cycle systems for an Experimental Power Reactor (EPR). This scale for each of the TSTF subsystems--torus, pumping system, fuel purifier, isotope separator, and tritium store--will allow confident extrapolation to EPR dimensions. Coolant loop and reactor hall cleanup facilities are also reproduced, but to different scales. It is believed that all critical details of an EPR tritium system will be simulated correctly in the facility. Tritium systems necessary for interim devices such as the Ignition Test Reactor (ITR) or The Next Step (TNS) can also be simulated in TSTF at other scale values. The active tritium system will be completely enclosed in an inert atmosphere glove box which will be connected to the existing Gas Purification System (GPS) of the Tritium Research Laboratory. In effect, the GPS will become the scaled environmental control system which otherwise would have to be built especially for the TSTF

  13. Corrosion testing facilities in India

    International Nuclear Information System (INIS)

    Viswanathan, R.; Subramanian, Venu

    1981-01-01

    Major types of corrosion tests, establishment of specifications on corrosion testing and scope of their application in practice are briefly described. Important organizations in the world which publish specifications/standards are listed. Indian organizations which undertake corrosion testing and test facilities available at them are also listed. Finally in an appendix, a comprehensive list of specifications relevant to corrosion testing is given. It is arranged under the headings: environmental testing, humidity tests, salt spray/fog tests, immersion tests, specification corrosion phenomena, (tests) with respect to special corrosion media, (tests) with respect to specific corrosion prevention methods, and specific corrosion tests using electrical and electrochemical methods (principles). Each entry in the list furnishes information about: nature of the test, standard number, and its specific application. (M.G.B.)

  14. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    International Nuclear Information System (INIS)

    Paladino, D.; Dreier, J.

    2012-01-01

    The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the support of a large number of organizations (regulatory bodies, technical dupport organizations, national laboratories, electric utilities, industries) worldwide. The paper provides an overview of the research programs performed in the PANDA facility in relation to BWR containment systems and those planned for PWR containment systems.

  15. Application of the MiniPanda test case ‘erosion of a stratified layer by a vertical jet’ for CFD validation

    Energy Technology Data Exchange (ETDEWEB)

    Kelm, Stephan, E-mail: s.kelm@fz-juelich.de [Forschungszentrum Juelich, Institute for Energy and Climate Research (IEK-6) (Germany); Ritterath, Martin; Prasser, Horst-Michael [ETH Zurich, Laboratory of Nuclear Energy Systems (LKE) (Switzerland); Allelein, Hans-Josef [Forschungszentrum Juelich, Institute for Energy and Climate Research (IEK-6) (Germany); RWTH Aachen University, Institute for Reactor Safety and Technology (LRST) (Germany)

    2016-04-01

    Highlights: • Small-scale experiment with innovative temperature wire mesh field measurements. • Discussion of benefits and limitations of small-scale setup regarding existing data base. • Systematic validation of a U-RANS model under consideration of best practice guidelines. • Quantitative point-to-point and phenomenological field-to-field comparison. - Abstract: In order to allow development and validation of CFD models for hydrogen mixing and transport in the containment, a comprehensive experimental test campaign was performed at the small scale MiniPanda facility at ETH Zurich. The considered test series aimed at studying the turbulent erosion of a stratified light gas by means of a vertical air jet with different momenta. Due to its new and innovative measurements, e.g., with temperature wire mesh sensors, the global mixing and the local interaction of jet and stratification are characterized in a high resolution in space and time. Both are essential for a detailed model assessment, to identify possible error sources and rate their effect on the global scenario evolution. Consequently, the tests are well suited for CFD model development and validation and complement the data basis gained before, e.g., in the frame of the joint OECD/NEA-SETH-2 Project (2007–2010) (OECD/NEA, 2012). Based on a description of the MiniPanda facility and the ‘layer erosion’ test series, the application of a U-RANS CFD approach, capable to be applied also for large scale application, is discussed. Numerical model uncertainties are minimized according to the best practice guidelines before a systematic comparison against the experimental data is performed and the capability of the model to predict the turbulent mixing at the interface and the inter-compartment mass transfer is successfully validated.

  16. Qualification tests and facilities for the ITER superconductors

    International Nuclear Information System (INIS)

    Bruzzone, P.; Wesche, R.; Stepanov, B.; Cau, F.; Bagnasco, M.; Calvi, M.; Herzog, R.; Vogel, M.

    2009-01-01

    All the ITER superconductors are tested as short length samples in the SULTAN test facility at CRPP. Twenty-four TF conductor samples with small layout variations were tested since February 2007 with the aim of verifying the design and qualification of the manufacturers. The sample assembly and the measurement techniques at CRPP are discussed. Starting in 2010, another test facility for ITER conductors, named EDIPO, will be operating at CRPP to share with SULTAN the load of the samples for the acceptance tests during the construction of ITER.

  17. Australian national networked tele-test facility for integrated systems

    Science.gov (United States)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  18. Instrumentation and measurement method for the ATLAS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Chu, In Chul; Eu, Dong Jin; Kang, Kyong Ho; Kim, Yeon Sik; Song, Chul Hwa; Baek, Won Pil

    2007-03-15

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS is constructed by thermal-hydraulic safety research division in KAERI. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400 which is a Korean evolution type nuclear reactors. A total 1300 instrumentations is equipped in the ATLAS test facility. In this report, the instrumentation of ATLAS test facility and related measurement methods were introduced.

  19. SULTAN test facility: Summary of recent results

    International Nuclear Information System (INIS)

    Stepanov, Boris; Bruzzone, Pierluigi; Sedlak, Kamil; Croari, Giancarlo

    2013-01-01

    The test campaigns of the ITER conductors in the SULTAN test facility re-started in December 2011 after three months break. The main focus of the activities is about the qualification tests of the Central Solenoid (CS) conductors, with three different samples for a total six variations of strand suppliers and cable layouts. In 2012, five Toroidal Field (TF) conductor samples have also been tested as part of the supplier and process qualification phase of the European, Korean, Chinese and Russian Federation Agencies. A summary of the test results for all the ITER samples tested in the last period is presented, including an updated statistics of the broad transition, the performance degradation and the impact of layout variations. The role of SULTAN test facility during the ITER construction is reviewed, and the load of work for the next three years is anticipated

  20. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  1. Electrode erosion in arc discharges at atmospheric pressure

    Science.gov (United States)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

  2. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  3. The TOPFLOW multi-purpose thermohydraulic test facility

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Kruessenberg, A.-K.; Weiss, F.-P.; Prasser, H.-M.

    2002-01-01

    The TOPFLOW (Transient Two Phase Flow Test Facility) multi-purpose thermohydraulic test facility is being built for studies of steady-state and transient flow phenomena in two-phase flows, and for the development and validation of the models contained in CFD (Computational Fluid Dynamics) codes. The facility is under construction at the Institute for Safety Research of the Rossendorf Research Center (FZR). It will be operated together with the Dresden Technical University and the Zittau/Goerlitz School for Technology, Economics and Social Studies within the framework of the Nuclear Technology Competence Preservation Program. TOPFLOW, with its test sections and its flexible concept, is available as an attractive facility also to users from all European countries. Experiments are planned in these fields, among others: - Transient two-phase flows in vertical and horizontal pipes and pipes of any inclination as well as in geometries typical of nuclear reactors (annulus, hot leg). - Boiling in large vessels and water pools (measurements of steam generation, 3D steam content distribution, turbulence, temperature stratification). - Test of passive components and safety systems. - Condensation in horizontal pipes in the absence and presence of non-condensable gases. The construction phase of TOPFLOW has been completed more or less on schedule. Experiments can be started after a commissioning phase in the 3rd quarter of 2002. (orig.) [de

  4. ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility

    International Nuclear Information System (INIS)

    Hardy, J.E.; Hess, R.A.; Hylton, J.O.

    1983-11-01

    Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions

  5. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  6. FY11 Facility Assessment Study for Aeronautics Test Program

    Science.gov (United States)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  7. SNS Target Test Facility for remote handling design and verification

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Graves, V.B.; Schrock, S.L.

    1998-01-01

    The Target Test Facility will be a full-scale prototype of the Spallation Neutron Source Target Station. It will be used to demonstrate remote handling operations on various components of the mercury flow loop and for thermal/hydraulic testing. This paper describes the remote handling aspects of the Target Test Facility. Since the facility will contain approximately 1 cubic meter of mercury for the thermal/hydraulic tests, an enclosure will also be constructed that matches the actual Target Test Cell

  8. Using REE tracers to measure sheet erosion changing to rill erosion

    International Nuclear Information System (INIS)

    Liu Puling; Xue Yazhou; Song Wei; Wang Mingyi; Ju Tongjun

    2004-01-01

    Rare Earth Elements (REE) tracer method was used to study sheet erosion changing to rill erosion on slope land. By placing different rare earth elements of different soil depth across a slope in an indoor plot, two simulated rainfalls were applied to study the change of erosion type and the rill erosion process. The results indicate that the main erosion type is sheet erosion at the beginning of the rainfalls, and serious erosion happens after rill erosion appears. Accumulated sheet and rill erosion amounts increase with the rainfalls time. The percentage of sheet erosion amount decreases and rill erosion percentage increases with time. At the end of the rainfalls, the total rill erosion amounts are 4-5 times more than sheet erosion. In this paper, a new REE tracer method was used to quantitatively distinguish sheet and rill erosion amounts. The new REE tracer method should be useful to future studying of erosion processes on slope lands. (authors)

  9. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    International Nuclear Information System (INIS)

    Park, Nam Gyu; Kim, K. T.; Park, J. K.

    2006-12-01

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation

  10. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Gyu; Kim, K. T.; Park, J. K. [KNF, Daejeon (Korea, Republic of)] (and others)

    2006-12-15

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation.

  11. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH University of Applied Sciences, Deggendorf (Germany)

    2014-05-15

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation program was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment, with integrated pressure suppression system. While the scaling of the passive components and the levels match the original values, the volume scaling of the containment compartments is approximately 1:24. The storage capacity of the test facility pressure vessel corresponds to approximately 1/6 of the KERENA RPV and is supplied by a benson boiler with a thermal power of 22 MW. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The test measured the combined response of the passive safety systems to the postulated initiating event. The main goal was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them. The test proved that INKA is an unique test facility, capable to perform integral tests of passive safety concepts under plant-like conditions. (orig.)

  12. Determination of the temperature dependence of tungsten erosion

    International Nuclear Information System (INIS)

    Maier, H.; Greuner, H.; Toussaint, U. von; Balden, M.; Böswirth, B.; Elgeti, S.

    2015-01-01

    We present the results of erosion measurements on actively cooled tungsten samples at quasi-constant surface temperature conditions performed in the high heat flux facility GLADIS. The samples were exposed to a H beam at a central power density of 10 MW/m 2 up to a fluence of 10 26 m −2 . We observe a weak temperature dependence of the erosion yield. The data are compared with similar data obtained from loading with a H beam with He admixture. Both datasets are analysed in a probabilistic approach. We obtain activation energies of 0.04 eV and 0.06 eV for the cases with and without He, respectively

  13. The construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Kim, Joon Hyung; Lee, Byung Jik; Koo, Jun Mo; Kim, Jeong Guk; Jung, In Ha

    1990-03-01

    The solid waste form test facility (SWFTF) to test and/or evaluate the characteristics of waste forms, such as homogeniety, mechanical properties, thermal properties, waste resistance and leachability, have been constructed, and some equipments for testing actual waste forms has been purchased; radiocative monitoring system, glove box for the manipulator repair room, and uninteruppted power supply system, et al. Classifications of radioactive wastes, basic requirements and criteria to be considered during waste management were also reviewed. Some of the described items above have been standardized for the purpose of indigenigation. Therefore, safety assurance of waste forms, as well as increase in the range of participating of domestic companies in construction of further nuclear facilities could be obtained as results through constructing this facility. In the furture this facility is going to be utilized not only for the inspection of waste forms but also for the periodic decontamination for extending the life time of some expensive radiological equipments using remote handling techniques. (author)

  14. Fast Flux Test Facility fuel and test management: The first 10 years

    International Nuclear Information System (INIS)

    Bennett, R.A.; Bennett, C.L.; Campbell, L.R.; Dobbin, K.D.; Tang, E.L.

    1991-07-01

    Core design and fuel and test management have been performed efficiently at the Fast Flux Test Facility. No outages have been extended to adjust core loadings. Development of mixed oxide fuels for advanced liquid metal breeder reactors has been carried out successfully. In fact, the fuel performance is extraordinary. Failures have been so infrequent that further development and refinement of fuel requirements seem appropriate and could lead to a significant reduction in projected electrical busbar costs. The Fast Flux Test Facility is also involved in early metal fuel development tests and appears to be an ideal test bed for any further fuel development or refinement testing. 3 refs., 4 figs., 2 tabs

  15. RAMI strategies in the IFMIF Test Facilities design

    Energy Technology Data Exchange (ETDEWEB)

    Abal, Javier, E-mail: javier.abal@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Dies, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, José Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Bargalló, Enric [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Casal, Natalia; García, Ángela [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain)

    2013-10-15

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation.

  16. RAMI strategies in the IFMIF Test Facilities design

    International Nuclear Information System (INIS)

    Abal, Javier; Dies, Javier; Arroyo, José Manuel; Bargalló, Enric; Casal, Natalia; García, Ángela; Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo; Mollá, Joaquín; Ibarra, Ángel

    2013-01-01

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation

  17. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  18. Mechanics of Interrill Erosion with Wind-Driven Rain (WDR)

    Science.gov (United States)

    This article provides an evaluation analysis for the performance of the interrill component of the Water Erosion Prediction Project (WEPP) model for Wind-Driven Rain (WDR) events. The interrill delivery rates (Di) were collected in the wind tunnel rainfall simulator facility of the International Cen...

  19. National Ignition Facility TestController for automated and manual testing

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Jason, E-mail: fishler2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2012-12-15

    The Controls and Information Systems (CIS) organization for the National Ignition Facility (NIF) has developed controls, configuration and analysis software applications that combine for several million lines of code. The team delivers updates throughout the year, from major releases containing hundreds of changes to patch releases containing a small number of focused updates. To ensure the quality of each delivery, manual and automated tests are performed using the NIF TestController test infrastructure. The TestController system provides test inventory management, test planning, automated and manual test execution, release testing summaries and results search, all through a web browser interface. As part of the three-stage software testing strategy, the NIF TestController system helps plan, evaluate and track the readiness of each release to the NIF production environment. After several years of use in testing NIF software applications, the TestController's manual testing features have been leveraged for verifying the installation and operation of NIF Target Diagnostic hardware. The TestController recorded its first test results in 2004. Today, the system has recorded the execution of more than 160,000 tests and continues to play a central role in ensuring that NIF hardware and software meet the requirements of a high reliability facility. This paper describes the TestController system and discusses its use in assuring the quality of software delivered to the NIF.

  20. National Ignition Facility TestController for automated and manual testing

    International Nuclear Information System (INIS)

    Zielinski, Jason

    2012-01-01

    The Controls and Information Systems (CIS) organization for the National Ignition Facility (NIF) has developed controls, configuration and analysis software applications that combine for several million lines of code. The team delivers updates throughout the year, from major releases containing hundreds of changes to patch releases containing a small number of focused updates. To ensure the quality of each delivery, manual and automated tests are performed using the NIF TestController test infrastructure. The TestController system provides test inventory management, test planning, automated and manual test execution, release testing summaries and results search, all through a web browser interface. As part of the three-stage software testing strategy, the NIF TestController system helps plan, evaluate and track the readiness of each release to the NIF production environment. After several years of use in testing NIF software applications, the TestController's manual testing features have been leveraged for verifying the installation and operation of NIF Target Diagnostic hardware. The TestController recorded its first test results in 2004. Today, the system has recorded the execution of more than 160,000 tests and continues to play a central role in ensuring that NIF hardware and software meet the requirements of a high reliability facility. This paper describes the TestController system and discusses its use in assuring the quality of software delivered to the NIF.

  1. Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Kemp, E.L.; Trego, A.L.

    1979-01-01

    A Fusion Materials Irradiation Test Facility is being designed to be constructed at Hanford, Washington, The system is designed to produce about 10 15 n/cm-s in a volume of approx. 10 cc and 10 14 n/cm-s in a volume of 500 cc. The lithium and target systems are being developed and designed by HEDL while the 35-MeV, 100-mA cw accelerator is being designed by LASL. The accelerator components will be fabricated by US industry. The total estimated cost of the FMIT is $105 million. The facility is scheduled to begin operation in September 1984

  2. Project assembling and commissioning of a rewetting test facility

    International Nuclear Information System (INIS)

    Rezende, H.C.

    1985-08-01

    A test facility (ITR - Instalacao de Testes de Remolhamento) has been erected at the Thermal-hydraulics Laboratory of CDTN, dedicated to the investigation of the basic phenomena that can occur during the reflood phase of a Loss of Coolant Accident (LOCA) in a Pressurized Water Reactor (PWR), utilizing tubular and annular test sections. The present work consists in a presentation of the facility design and a report of its commissioning. The mechanical aspects of the facility, its power supply system and its instrumentation are described. The results of the instruments calibration and two operational tests are presented and a comparison is done with calculations perfomed usign a computer code. (Author) [pt

  3. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  4. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  5. THORS: a high-temperature sodium test facility rated at 2.0 MW

    International Nuclear Information System (INIS)

    Gnadt, P.A.; Anderson, A.H.; Clapp, N.E.; Montgomery, B.H.; Collins, C.W.; Stulting, R.D.

    1979-01-01

    The Thermal--Hydraulic Out-of-Reactor Safety (THORS) facility at Oak Ridge Naitonal Laboratory (ORNL) is a high-temperature sodium test facility operated for the United States Breeder Reactor Safety Program. The facility is primarily used for testing large simulated Liquid-Metal Fast Breeder Reactor (LMFBR) fuel subassemblies. The facility has recently been upgraded to provide a 2.0-MW test bundle power input and heat removal capability. A new test section, which will be capable of operating at 980 0 C and which will accommodate a 217-pin bundle, has also been added. A 61-pin bundle is currently under test in the facility. A description of the test facility is presented, along with a brief summary of the 8-year operating history of this safety-related test facility

  6. Critical assessment of jet erosion test methodologies for cohesive soil and sediment

    Science.gov (United States)

    Karamigolbaghi, Maliheh; Ghaneeizad, Seyed Mohammad; Atkinson, Joseph F.; Bennett, Sean J.; Wells, Robert R.

    2017-10-01

    The submerged Jet Erosion Test (JET) is a commonly used technique to assess the erodibility of cohesive soil. Employing a linear excess shear stress equation and impinging jet theory, simple numerical methods have been developed to analyze data collected using a JET to determine the critical shear stress and erodibility coefficient of soil. These include the Blaisdell, Iterative, and Scour Depth Methods, and all have been organized into easy to use spreadsheet routines. The analytical framework of the JET and its associated methods, however, are based on many assumptions that may not be satisfied in field and laboratory settings. The main objective of this study is to critically assess this analytical framework and these methodologies. Part of this assessment is to include the effect of flow confinement on the JET. The possible relationship between the derived erodibility coefficient and critical shear stress, a practical tool in soil erosion assessment, is examined, and a review of the deficiencies in the JET methodology also is presented. Using a large database of JET results from the United States and data from literature, it is shown that each method can generate an acceptable curve fit through the scour depth measurements as a function of time. The analysis shows, however, that the Scour Depth and Iterative Methods may result in physically unrealistic values for the erosion parameters. The effect of flow confinement of the impinging jet increases the derived critical shear stress and decreases the erodibility coefficient by a factor of 2.4 relative to unconfined flow assumption. For a given critical shear stress, the length of time over which scour depth data are collected also affects the calculation of erosion parameters. In general, there is a lack of consensus relating the derived soil erodibility coefficient to the derived critical shear stress. Although empirical relationships are statistically significant, the calculated erodibility coefficient for a

  7. BWR Full Integral Simulation Test (FIST) program: facility description report

    International Nuclear Information System (INIS)

    Stephens, A.G.

    1984-09-01

    A new boiling water reactor safety test facility (FIST, Full Integral Simulation Test) is described. It will be used to investigate small breaks and operational transients and to tie results from such tests to earlier large-break test results determined in the TLTA. The new facility's full height and prototypical components constitute a major scaling improvement over earlier test facilities. A heated feedwater system, permitting steady-state operation, and a large increase in the number of measurements are other significant improvements. The program background is outlined and program objectives defined. The design basis is presented together with a detailed, complete description of the facility and measurements to be made. An extensive component scaling analysis and prediction of performance are presented

  8. Safety test facilities - status, needs, future directions

    International Nuclear Information System (INIS)

    Heusener, G.; Cogne, F.

    1979-08-01

    A survey is given of the in-pile programs which are presently or in the near future being performed in the DeBeNe-area and in France. Only those in-pile programs are considered which are dealing with severe accidents that might lead to disruption of major parts of the core. By comparing the needs with the goals of the present programs points are identified which are not sufficiently well covered up till now. The future procedure is described: the existing facilities will be used to the largest possible extent. Whenever it is necessary, upgrading and improvement will be foreseen. Studies of a Test Facility allowing the transient testing of large pin bundles should be continued. The construction of such a facility in Europe in the near future however seems premature

  9. RIA testing capability of the transient reactor test facility

    International Nuclear Information System (INIS)

    Crawford, D.C.; Swanson, R.W.

    1999-01-01

    The advent of high-burnup fuel implementation in LWRs has generated international interest in high-burnup LWR fuel performance. Recent testing under simulated RIA conditions has demonstrated that certain fuel designs fail at peak fuel enthalpy values that are below existing regulatory criteria. Because many of these tests were performed with non-prototypically aggressive test conditions (i.e., with power pulse widths less than 10 msec FWHM and with non-protoypic coolant configurations), the results (although very informative) do not indisputably identify failure thresholds and fuel behavior. The capability of the TREAT facility to perform simulated RIA tests with prototypic test conditions is currently being evaluated by ANL personnel. TREAT was designed to accommodate test loops and vehicles installed for in-pile transient testing. During 40 years of TREAT operation and fuel testing and evaluation, experimenters have been able to demonstrate and determine the transient behavior of several types of fuel under a variety of test conditions. This experience led to an evolution of test methodology and techniques which can be employed to assess RIA behavior of LWR fuel. A pressurized water loop that will accommodate RIA testing of LWR and CANDU-type fuel has completed conceptual design. Preliminary calculations of transient characteristics and energy deposition into test rods during hypothetical TREAT RIA tests indicate that with the installation of a pressurized water loop, the facility is quite capable of performing prototypic RIA testing. Typical test scenarios indicate that a simulated RIA with a 72 msec FWHM pulse width and energy deposition of 1200 kJ/kg (290 cal/gm) is possible. Further control system enhancements would expand the capability to pulse widths as narrow as 40 msec. (author)

  10. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  11. Hydro-abrasive erosion of hydraulic turbines caused by sediment - a century of research and development

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Hydro-abrasive erosion of hydraulic turbines is an economically important issue due to maintenance costs and production losses, in particular at high- and medium-head run-of- river hydropower plants (HPPs) on sediment laden rivers. In this paper, research and development in this field over the last century are reviewed. Facilities for sediment exclusion, typically sand traps, as well as turbine design and materials have been improved considerably. Since the 1980s, hard-coatings have been applied on Francis and Pelton turbine parts of erosion-prone HPPs and became state-of-the-art. These measures have led to increased times between overhauls and smaller efficiency reductions. Analytical, laboratory and field investigations have contributed to a better processes understanding and quantification of sediment-related effects on turbines. More recently, progress has been made in numerical modelling of turbine erosion. To calibrate, validate and further develop prediction models, more measurements from both physical model tests in laboratories and real-scale data from HPPs are required. Significant improvements to mitigate hydro-abrasive erosion have been achieved so far and development is ongoing. A good collaboration between turbine manufacturers, HPP operators, measuring equipment suppliers, engineering consultants, and research institutes is required. This contributes to the energy- and cost-efficient use of the worldwide hydropower potential.

  12. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  13. S.E.T., CSNI Separate Effects Test Facility Validation Matrix

    International Nuclear Information System (INIS)

    1997-01-01

    1 - Description of test facility: The SET matrix of experiments is suitable for the developmental assessment of thermal-hydraulics transient system computer codes by selecting individual tests from selected facilities, relevant to each phenomena. Test facilities differ from one another in geometrical dimensions, geometrical configuration and operating capabilities or conditions. Correlation between SET facility and phenomena were calculated on the basis of suitability for model validation (which means that a facility is designed in such a way as to stimulate the phenomena assumed to occur in a plant and is sufficiently instrumented); limited suitability for model variation (which means that a facility is designed in such a way as to stimulate the phenomena assumed to occur in a plant but has problems associated with imperfect scaling, different test fluids or insufficient instrumentation); and unsuitability for model validation. 2 - Description of test: Whereas integral experiments are usually designed to follow the behaviour of a reactor system in various off-normal or accident transients, separate effects tests focus on the behaviour of a single component, or on the characteristics of one thermal-hydraulic phenomenon. The construction of a separate effects test matrix is an attempt to collect together the best sets of openly available test data for code validation, assessment and improvement, from the wide range of experiments that have been carried out world-wide in the field of thermal hydraulics. In all, 2094 tests are included in the SET matrix

  14. Cavitation erosion - scale effect and model investigations

    Science.gov (United States)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  15. Full scale BWR containment LOCA response test at the INKA test facility

    International Nuclear Information System (INIS)

    Wagner, Thomas; Leyer, Stephan

    2015-01-01

    KERENA is an innovative boiling water reactor concept with passive safety systems (Generation III+) of AREVA. The reactor is an evolutionary design of operating BWRs (Generation II). In order to verify the functionality and performance of the KERENA safety concept required for the transient and accident management, the test facility “Integral Teststand Karlstein” (INKA) was built at Karlstein (Germany). It is a mock-up of the KERENA boiling water reactor containment, with integrated pressure suppression system. The complete chain of passive safety components is available. The passive components and the levels are represented in full scale. The volume scaling of the containment compartments is approximately 1:24. The reactor pressure vessel (RPV) is simulated via the steam accumulator of the Karlstein Large Valve Test Facility. This vessel provides an energy storage capacity of approximately 1/6 of the KERENA RPV and is supplied by a Benson boiler with a thermal power of 22 MW. With respect to the available power supply, the containment- and system-sizing of the facility is by far the largest one of its kind worldwide. From 2009 to 2012, several single component tests were conducted (Emergency Condenser, Containment Cooling Condenser, Core Flooding System etc.). On March 21st, 2013, the worldwide first large-scale only passively managed integral accident test of a boiling water reactor was simulated at INKA. The integral test measured the combined response of the KERENA passive safety systems to the postulated initiating event was the “Main Steam Line Break” (MSLB) inside the Containment with decay heat simulation. The results of the performed integral test (MSLB) showed that the passive safety systems alone are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them as response to an anticipated accident scenario

  16. Erosion of macrobrush tungsten armor after multiple intense transient events in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.N. [Forschungszentrum Karlsruhe Institute for Pulsed Power and Microwave Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany)]. E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.S. [Forschungszentrum Karlsruhe Institute for Pulsed Power and Microwave Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany); Pestchanyi, S.E. [Forschungszentrum Karlsruhe Institute for Pulsed Power and Microwave Technology, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2005-11-15

    The tungsten macrobrushes are foreseen as a perspective ITER divertor armour. Macroscopic erosion by melt motion is the dominating damage mechanism for tungsten armour under high heat loads above 1 MJ/m{sup 2} slower than 0.1 ms. In the paper further development of the code MEMOS is presented to describe geometric peculiarities of W-macrobrush armour. The modified code MEMOS is validated against experiments on erosion of W-macrobrush armour in the plasma gun QSPA facility for repetitive plasma loads. A rather good agreement in melt layer erosion was demonstrated. For ITER divertor W-macrobrush armour the results of fluid dynamics simulation of the melt motion erosion under giant ELMs are presented. The heat loads as input for MEMOS for particular single ELM are numerically simulated using the two-dimensional MHD code FOREV.

  17. Erosion of macrobrush tungsten armor after multiple intense transient events in ITER

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Janeschitz, G.; Landman, I.S.; Pestchanyi, S.E.

    2005-01-01

    The tungsten macrobrushes are foreseen as a perspective ITER divertor armour. Macroscopic erosion by melt motion is the dominating damage mechanism for tungsten armour under high heat loads above 1 MJ/m 2 slower than 0.1 ms. In the paper further development of the code MEMOS is presented to describe geometric peculiarities of W-macrobrush armour. The modified code MEMOS is validated against experiments on erosion of W-macrobrush armour in the plasma gun QSPA facility for repetitive plasma loads. A rather good agreement in melt layer erosion was demonstrated. For ITER divertor W-macrobrush armour the results of fluid dynamics simulation of the melt motion erosion under giant ELMs are presented. The heat loads as input for MEMOS for particular single ELM are numerically simulated using the two-dimensional MHD code FOREV

  18. Erosion corrosion in water-steam systems: Causes and countermeasures

    International Nuclear Information System (INIS)

    Heitmann, H.G.; Kastner, W.

    1985-01-01

    For the purpose of a better understanding of erosion corrosion, the physical and chemical principles will be summarized briefly. Then results obtained at KWU in the BENSON test section in tests on test specimens in single-phase flow of fully demineralized water will be presented. The experimental studies provide information about the most important influencing parameters. These include flow rate, fluid temperature and water quality (pH value and oxygen content). In addition, the resistance of various materials is compared, and the resistance of magnetite coatings to erosion corrosion is investigated. Furthermore, tests are presented that will show the extent to which erosion corrosion in power plants can be influenced by chemical measures

  19. Erosive effects of common beverages on extracted premolar teeth.

    Science.gov (United States)

    Seow, W K; Thong, K M

    2005-09-01

    Dental erosion is highly prevalent today, and acidic drinks are thought to be an important cause. The aim of the present investigation was to determine the erosive potential of a range of common beverages on extracted human teeth. The beverages were tested for their individual pHs using a pH meter. The clinical effects of the most erosive beverages were determined by the degree of etching and Vickers microhardness of enamel. The results showed that many common beverages have pHs sufficiently low to cause enamel erosion. Lime juice concentrate (pH 2.1) had the lowest pH, followed by Coca-cola and Pepsi (both with pH 2.3) and Lucozade (pH 2.5). The erosive potential of these beverages was demonstrated by the deep etching of the enamel after five minutes. The Vickers Hardness of enamel was reduced by about 50 per cent in the case of lime juice (p case of Coca-cola (p Coca-cola completely reversed the erosive effects on the enamel. Although only a few of the beverages with the lowest pHs were tested, the present study showed that the most acidic drinks had the greatest erosive effects on enamel. While saliva was protective against erosion, relatively large volumes were required to neutralize the acidity.

  20. Testing road surface treatments to reduce erosion in forest roads in Honduras [Tratamientos de la superficie de rodadura para reducir la erosion en caminos forestales en Honduras

    Science.gov (United States)

    Rivera, Samuel; Kershner, Jeffrey L.; Keller, Gordon R.

    2009-01-01

    Testing road surface treatments to reduce erosion in forest roads in Honduras. Cien. Inv. Agr. 36(3):425-432. Using forest roads produces more erosion and sedimentation than any other forest or agricultural activity. This study evaluated soil losses from a forest road in central Honduras over two consecutive years. We divided a 400-m segment of road into 8 experimental units, each 50 m in length. Four units were treated with Best Management Practices (BMPs) and four were left untreated. The BMP treatments included reshaping the road prism, installing culverts and reshaping of road ditches, compacting 20-cm layers of the road tread, crowning the road surface (3% slope, double drainage), longitudinal sloping (less than 12%), and adding a 10-cm layer of gravel (crush size = 0.63 cm). Soil movement was measured daily during the rainy seasons. The highest soil loss occurred in the control road, around 500 m3 km-1 per year, while the road treated with BMP lost approximately 225 m3km-1 per year. These results show that road surface erosion can be reduced up to 50% with the implementation of surface treatments.

  1. Standard Test Method for Dust Erosion Resistance of Optical and Infrared Transparent Materials and Coatings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the resistance of transparent plastics and coatings used in aerospace windscreens, canopies, and viewports to surface erosion as a result of dust impingement. This test method simulates flight through a defined particle cloud environment by means of independent control of particle size, velocity, impact angle, mass loading, and test duration. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Neutron generator instrumentation at the Department 2350 Neutron Generator Test Facility

    International Nuclear Information System (INIS)

    Bryant, T.C.; Mowrer, G.R.

    1979-06-01

    The computer and waveform digitizing capability at the test facility has allowed several changes in the techniques used to test neutron generators. These changes include methods used to calibrate the instrumentation and changes in the operation of the test facility. These changes have increased the efficiency of the test facility as well as increasing both timing and amplitude accuracy of neutron generator waveforms

  3. Erosion Evaluation of a Slurry Mixer Tank with Computational Fluid Dynamics Methods

    International Nuclear Information System (INIS)

    Lee, S

    2006-01-01

    This paper discusses the use of computational fluid dynamics (CFD) methods to understand and characterize erosion of the floor and internal structures in the slurry mixing vessels in the Defense Waste Processing Facility. An initial literature survey helped identify the principal drivers of erosion for a solids laden fluid: the solids content of the working fluid, the regions of recirculation and particle impact with the walls, and the regions of high wall shear. A series of CFD analyses was performed to characterize slurry-flow profiles, wall shear, and particle impingement distributions in key components such as coil restraints and the vessel floor. The calculations showed that the primary locations of high erosion resulting from abrasion were at the leading edge of the coil guide, the tank floor below the insert plate of the coil guide support, and the upstream lead-in plate. These modeling results based on the calculated high shear regions were in excellent agreement with the observed erosion sites in both location and the degree of erosion. Loss of the leading edge of the coil guide due to the erosion damage during the slurry mixing operation did not affect the erosion patterns on the tank floor. Calculations for a lower impeller speed showed similar erosion patterns but significantly reduced wall shear stresses

  4. Operating experience of steam generator test facility

    International Nuclear Information System (INIS)

    Sureshkumar, V.A.; Madhusoodhanan, G.; Noushad, I.B.; Ellappan, T.R.; Nashine, B.K.; Sylvia, J.I.; Rajan, K.K.; Kalyanasundaram, P.; Vaidyanathan, G.

    2006-01-01

    Steam Generator (SG) is the vital component of a Fast Reactor. It houses both water at high pressure and sodium at low pressure separated by a tube wall. Any damage to this barrier initiates sodium water reaction that could badly affect the plant availability. Steam Generator Test Facility (SGTF) has been set up in Indira Gandhi Centre for Atomic Research (IGCAR) to test sodium heated once through steam generator of 19 tubes similar to the PFBR SG dimension and operating conditions. The facility is also planned as a test bed to assess improved designs of the auxiliary equipments used in Fast Breeder Reactors (FBR). The maximum power of the facility is 5.7 MWt. This rating is arrived at based on techno economic consideration. This paper covers the performance of various equipments in the system such as Electro magnetic pumps, Centrifugal sodium pump, in-sodium hydrogen meters, immersion heaters, and instrumentation and control systems. Experience in the system operation, minor modifications, overall safety performance, and highlights of the experiments carried out etc. are also brought out. (author)

  5. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  6. Design of the PISCES-Upgrade facility

    International Nuclear Information System (INIS)

    Waganer, L.M.; Doerner, R.

    1994-01-01

    The PISCES-Upgrade facility is currently in the design and fabrication phases for the University of California. McDonnell Douglas is under contract to develop this experimental facility in order to enhance the capability for investigation of fusion materials erosion-redeposition and edge plasma behaviors. The advance in facility capability requires innovative design approaches and application of sophisticated analysis techniques

  7. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    Science.gov (United States)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  8. Results from the CLIC Test Facility

    CERN Document Server

    Braun, H; Bossart, Rudolf; Chautard, F; Corsini, R; Delahaye, J P; Godot, J C; Hutchins, S; Kamber, I; Madsen, J H B; Rinolfi, Louis; Rossat, G; Schreiber, S; Suberlucq, Guy; Thorndahl, L; Wilson, Ian H; Wuensch, Walter

    1996-01-01

    In order to study the principle of the Compact Linear Collider (CLIC) based on the Two Beam Acceleration (TBA) scheme at high frequency, a CLIC Test Facility (CTF) has been set-up at CERN. After four years of successful running, the experimental programme is now fully completed and all its objectives reached, particularly the generation of a high intensity drive beam with short bunches by a photo-injector, the production of 30 GHz RF power and the acceleration of a probe beam by 30 GHz structures. A summary of the CTF results and their impact on linear collider design is given. This covers 30 GHz high power testing, study of intense, short single bunches; as well as RF-Gun, photocathode and beam diagnostic developments. A second phase of the test facility (CTF2) is presently being installed to demonstrate the feasibility of the TBA scheme by constructing a fully engineered, 10 m long, test section very similar to the CLIC drive and main linacs, producing up to 480 MW of peak RF power at 30 GHz and acceleratin...

  9. A negative ion source test facility

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, S.; Dehnel, M., E-mail: morgan@d-pace.com; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada); Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B. [Buckley Systems Ltd., 6 Bowden Road, Mount Wellington, Auckland 1060 (New Zealand)

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  10. Integrated Human Test Facilities at NASA and the Role of Human Engineering

    Science.gov (United States)

    Tri, Terry O.

    2002-01-01

    Integrated human test facilities are a key component of NASA's Advanced Life Support Program (ALSP). Over the past several years, the ALSP has been developing such facilities to serve as a large-scale advanced life support and habitability test bed capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. These facilities-targeted for evaluation of hypogravity compatible life support and habitability systems to be developed for use on planetary surfaces-are currently in the development stage at the Johnson Space Center. These major test facilities are comprised of a set of interconnected chambers with a sealed internal environment, which will be outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support and habitability functions. This presentation provides a description of the proposed test "missions" to be supported by these integrated human test facilities, the overall system architecture of the facilities, the current development status of the facilities, and the role that human design has played in the development of the facilities.

  11. Startup of large coil test facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils. (author)

  12. A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion ?

    Directory of Open Access Journals (Sweden)

    Pasini G.

    2009-07-01

    Full Text Available In the speleological literature three terms are utilized to designate the “ascending erosion”: paragenesis (= paragénésis, coined in1968, antigravitative erosion (= erosione antigravitativa, coined in 1966 and antigravitational erosion (wrong English translation ofthe Italian term erosione antigravitativa, utilized later on. The term paragenesis should be abandoned because of the priority of theterm erosione antigravitativa - on the ground of the “law of priority” – and because of its ambiguous etimology. On the other hand,the term antigravitational erosion should be forsaken in favour of the term antigravitative erosion, given the meaning that the termsgravitation and gravity have in Physics. Therefore, to designate the phenomenon of the “ascending erosion” there would be nothingleft but the term antigravitative erosion.The antigravitative erosion process and its recognizability are illustrated.Examples of caves with evident antigravitative erosion phenomena, developed in different karstifiable rocks and in several partsof the world, are given.It is recalled that the antigravitative erosion is a phenomenon well-known since 1942 and widely proven and supported, and that it isrelatively easy – in many cases - to recognize the antigravitative origin of karstic passages.It is stressed that the antigravitative erosion is an important phenomenon, exclusive of the karstic caves and unique in nature.

  13. Testing of the West Valley Vitrification Facility transfer cart control system

    International Nuclear Information System (INIS)

    Halliwell, J.W.; Bradley, E.C.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) has designed and tested the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system operates the cart under battery power by wireless control. The equipment includes cart-mounted control electronics, battery charger, control pendants, engineer's console, and facility antennas. Testing was performed in several phases of development: (1) prototype equipment was built and tested during design, (2) board-level testing was then performed at ORNL during fabrication, and (3) system-level testing was then performed by ORNL at the fabrication subcontractor's facility for the completed cart system. These tests verified (1) the performance of the cart relative to design requirements and (2) operation of various built-in cart features. The final phase of testing is planned to be conducted during installation at the West Valley Vitrification Facility

  14. Erosive Wear of Inconel 625 Alloy Coatings Deposited by CMT Method

    Directory of Open Access Journals (Sweden)

    Solecka M.

    2016-06-01

    Full Text Available The article presents the investigation results concerning the determination of the characteristics of erosive wear caused by the impact of Al2O3 solid particles on the surface of Inconel 625 alloy after plastic working and the same material after weld cladding process using the CMT method. Erosion wear tests were performed at two temperatures: 20°C and 650°C. The erosion tests were conducted using the standard ASTM G76. A jet with a specified abrasive waight was directed to the surface of the tested material at an α impingement angle varied in the range of 30-90° at a velocity imparted to the abrasive by the medium, which was compressed air. The eroded surface was examined using a scanning electron microscope (SEM, while the depths of craters caused by the erosion tests were measured with an optical profilometer. The predominant mechanisms of the formation of mass losses during solid particle erosion were microcutting and microfissuring.

  15. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  16. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  17. Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Cheong, Moon Ki; Park, Choon Kyeong; Won, Soon Yeon; Yang, Sun Kyu; Cheong, Jang Whan; Cheon, Se Young; Song, Chul Hwa; Jeon, Hyeong Kil; Chang, Suk Kyu; Jeong, Heung Jun; Cho, Young Ro; Kim, Bok Duk; Min, Kyeong Ho

    1994-12-01

    The objective of this project is to obtain the available experimental data and to develop the measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics department have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within fuel bundle and to understand the characteristic of pressure drop required for improving the nuclear fuel and to develop the advanced measuring techniques. RCS Loop, which is used to measure the CHF, is presently under design and construction. B and C Loop is designed and constructed to assess the automatic depressurization safety system behavior. 4 tabs., 79 figs., 7 refs. (Author) .new

  18. Plan for 3-D full-scale earthquake testing facility

    International Nuclear Information System (INIS)

    Ohtani, K.

    2001-01-01

    Based on the lessons learnt from the Great Hanshin-Awaji Earthquake, National Research Institute for Earth Science and Disaster Prevention plan to construct the 3-D Full-Scale Earthquake Testing Facility. This will be the world's largest and strongest shaking table facility. This paper describes the outline of the project for this facility. This facility will be completed in early 2005. (author)

  19. Spatial and temporal variations of wind erosion climatic erosivity in the farming-pastoral zone of Northern China

    Science.gov (United States)

    Yue, Shuping; Yang, Ruixin; Yan, Yechao; Yang, Zhengwei; Wang, Dandan

    2018-03-01

    Wind erosion climatic erosivity is an important parameter to assess the possible effects of climatic conditions on wind erosion. In this paper, the wind erosion climatic factor (C-factor), which was used to quantify the wind erosion climatic erosivity, was calculated for the period 1960-2014 based on monthly meteorological data collected from 101 stations in the farming-pastoral zone of Northern China. The Mann-Kendall (M-K) test, trend analysis, and geostatistical analysis methods were used to explore the spatial and temporal characteristics of the wind erosion climatic erosivity in this region. The result suggests that the annual C-factor, with a maximum of 76.05 in 1969 and a minimum of 26.57 in 2007, has a significant decreasing trend over the past 55 years. Strong seasonality in the C-factor was found, with the highest value in spring, which accounts for a significant proportion of the annual C-factor (41.46%). However, the coefficient of variation of the seasonal C-factor reaches a maximum in winter and a minimum in spring. The mean annual C-factor varies substantially across the region. Areas with high values of the mean annual C-factor (C ≥ 100) are located in Ulanqab and Dingxi, while areas with low values (C ≤ 10) lie in Lanzhou, Linxia, Dingxi, Xining, and Chengde. Spatial analysis on the trend of the C-factor reveals that 81% of the stations show statistically significant decreases at a 90% confidence level. An examination of the concentration ratio of the C-factor shows that the wind erosion climatic erosivity is concentrated in spring, especially in April, which makes this period particularly important for implementing soil conservation measures.

  20. Testing experience with fast flux test facility

    International Nuclear Information System (INIS)

    Noordhoff, B.H.; McGough, C.B.; Nolan, J.E.

    1975-01-01

    Early FFTF project planning emphasized partial and full-scale testing of major reactor and plant prototype components under expected environmental conditions, excluding radiation fields. Confirmation of component performance during FFTF service was considered essential before actual FFTF startup, to provide increased assurance against FFTF startup delays or operational difficulties and downtime. Several new sodium facilities were constructed, and confirmation tests on the prototype components are now in progress. Test conditions and results to date are reported for the primary pump, intermediate heat exchanger, sodium-to-air dump heat exchanger, large and small sodium valves, purification cold trap, in-vessel handling machine, instrument tree, core restraint, control rod system, low-level flux monitor, closed loop ex-vessel machine, refueling equipment, and selected maintenance equipment. The significance and contribution of these tests to the FFTF and Liquid Metal Fast Breeder Reactor (LMFBR) program are summarized. (U.S.)

  1. Scaling analysis for the OSU AP600 test facility (APEX)

    International Nuclear Information System (INIS)

    Reyes, J.N.

    1998-01-01

    In this paper, the authors summarize the key aspects of a state-of-the-art scaling analysis (Reyes et al. (1995)) performed to establish the facility design and test conditions for the advanced plant experiment (APEX) at Oregon State University (OSU). This scaling analysis represents the first, and most comprehensive, application of the hierarchical two-tiered scaling (H2TS) methodology (Zuber (1991)) in the design of an integral system test facility. The APEX test facility, designed and constructed on the basis of this scaling analysis, is the most accurate geometric representation of a Westinghouse AP600 nuclear steam supply system. The OSU APEX test facility has served to develop an essential component of the integral system database used to assess the AP600 thermal hydraulic safety analysis computer codes. (orig.)

  2. Facility-level association of preoperative stress testing and postoperative adverse cardiac events.

    Science.gov (United States)

    Valle, Javier A; Graham, Laura; Thiruvoipati, Thejasvi; Grunwald, Gary; Armstrong, Ehrin J; Maddox, Thomas M; Hawn, Mary T; Bradley, Steven M

    2018-06-22

    Despite limited indications, preoperative stress testing is often used prior to non-cardiac surgery. Patient-level analyses of stress testing and outcomes are limited by case mix and selection bias. Therefore, we sought to describe facility-level rates of preoperative stress testing for non-cardiac surgery, and to determine the association between facility-level preoperative stress testing and postoperative major adverse cardiac events (MACE). We identified patients undergoing non-cardiac surgery within 2 years of percutaneous coronary intervention in the Veterans Affairs (VA) Health Care System, from 2004 to 2011, facility-level rates of preoperative stress testing and postoperative MACE (death, myocardial infarction (MI) or revascularisation within 30 days). We determined risk-standardised facility-level rates of stress testing and postoperative MACE, and the relationship between facility-level preoperative stress testing and postoperative MACE. Among 29 937 patients undergoing non-cardiac surgery at 131 VA facilities, the median facility rate of preoperative stress testing was 13.2% (IQR 9.7%-15.9%; range 6.0%-21.5%), and 30-day postoperative MACE was 4.0% (IQR 2.4%-5.4%). After risk standardisation, the median facility-level rate of stress testing was 12.7% (IQR 8.4%-17.4%) and postoperative MACE was 3.8% (IQR 2.3%-5.6%). There was no correlation between risk-standardised stress testing and composite MACE at the facility level (r=0.022, p=0.81), or with individual outcomes of death, MI or revascularisation. In a national cohort of veterans undergoing non-cardiac surgery, we observed substantial variation in facility-level rates of preoperative stress testing. Facilities with higher rates of preoperative stress testing were not associated with better postoperative outcomes. These findings suggest an opportunity to reduce variation in preoperative stress testing without sacrificing patient outcomes. © Article author(s) (or their employer(s) unless otherwise

  3. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L; Nickson, R; Harboe-Sorensen, R [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W; Berger, G

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  4. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  5. Erosion resistance comparison of alternative surface treatments

    Science.gov (United States)

    Česánek, Z.; Schubert, J.; Houdková, Š.

    2017-05-01

    Erosion is a process characterized by the particle separation and the damage of component functional surfaces. Thermal spraying technology HP/HVOF (High Pressure / High Velocity Oxygen Fuel) is commonly used for protection of component surfaces against erosive wear. Alloy as well as cermet based coatings meet the requirements for high erosion resistance. Wear resistance is in many cases the determining property of required component functioning. The application suitability of coating materials is particularly influenced by different hardness. This paper therefore presents an erosion resistance comparison of alloy and cermet based coatings. The coatings were applied on steel substrates and were subjected to the erosive test using the device for evaluation of material erosion resistance working on the principle of centrifugal erodent flow. Abrasive sand Al2O3 with grain size 212-250 μm was selected as an erosive material. For this purpose, the specimens were prepared by thermal spraying technology HP/HVOF using commercially available powders Stellite 6, NiCrBSi, Cr3C2-25%NiCr, Cr3C2-25%CoNiCrAlY, Hastelloy C-276 and experimental coating TiMoCN-29% Ni. Erosion resistance of evaluated coatings was compared with erosive resistance of 1.4923 high alloyed steel without nitridation and in nitrided state and further with surface treatment using technology PVD. According to the evaluation, the resulting erosive resistance depends not only on the selected erodent and surface protection, but also on the erodent impact angle.

  6. The Monitoring Erosion of Agricultural Land and spatial database of erosion events

    Science.gov (United States)

    Kapicka, Jiri; Zizala, Daniel

    2013-04-01

    on the base of needs analysis inputs to mathematical models. Mathematical models are used for detailed analysis of chosen erosion events which include soil analysis. Till the end 2012 has had the database 135 events. The content of database still accrues and gives rise to the extensive source of data that is usable for testing mathematical models.

  7. Investigation of Erosion of Cement-Bentonite via Piping

    Directory of Open Access Journals (Sweden)

    Zijun Wang

    2017-01-01

    Full Text Available Cement-bentonite is one of the main materials used in the seepage barriers to protect earth dams and levees from water erosion. However, the current understanding of the erodibility of the cementitious materials and the interactions between cracked seepage barriers and the water flow is inadequate. Based on the laboratory pinhole erosion test, we first investigated the impacts of cement-bentonite treatments by using the ground granulated blast-furnace slag (GGBS as replacement on the erosion characteristics, compared with the original mixtures; the inclusion of GGBS highlighted a potential advantage against water erosion. In addition, we proposed to calculate the erosion percentage and establish the mathematical relationships between the erosion percentage and different regimes, that is, different curing period, erosion time, and sizes of initial holes. Results showed that enough curing period was critical to avoid the increases of hydraulic conductivity in the macrofabric of the barrier; meanwhile, the materials were eroded quickly at the beginning and slowed down with the erosion time, where the enlargement of the initial creaks would be stabilised at some point in time. Moreover, the sizes of initial holes may affect the erosion situation varying from the sample curing periods.

  8. Validity and Utilization of the Out-Pile Testing Facilities at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Kee-Nam; Cho, Man-Soon; Yang, Sung-Woo; Shin, Yoon-Taek; Park, Seng-Jae; Jun, Byung-Hyuk; Kim, Myong-Seop [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Various neutron irradiation facilities such as rabbit irradiation facilities, loop facilities and the capsule irradiation facilities for irradiation tests of nuclear materials, fuels and radioisotope products have been developed at HANARO. Among these irradiation facilities, the capsule is the most useful device for coping with the various test requirements at HANARO. To support the national research and development programs on nuclear reactors and the nuclear fuel cycle technology in Korea, new irradiation capsules have been developed and actively utilized for the irradiation tests requested by numerous users. The environmental conditions for these reactors are generally beyond present day reactor technology, especially regarding the higher neutron fluence and higher operating temperature. To effectively support the national R and Ds relevant to the future nuclear systems, the development of advanced irradiation technologies concerning higher neutron fluence and irradiation temperature are being preferentially developed at HANARO. The utilization of the out-pile testing facilities to satisfy the criteria of safety evaluation for a new device installed in the core of HANARO was summarized. In addition, the validity of the out-pile testing facilities was evaluated and proved to be effective for verifying the integrity of irradiation capsule.

  9. Validity and Utilization of the Out-Pile Testing Facilities at HANARO

    International Nuclear Information System (INIS)

    Choo, Kee-Nam; Cho, Man-Soon; Yang, Sung-Woo; Shin, Yoon-Taek; Park, Seng-Jae; Jun, Byung-Hyuk; Kim, Myong-Seop

    2016-01-01

    Various neutron irradiation facilities such as rabbit irradiation facilities, loop facilities and the capsule irradiation facilities for irradiation tests of nuclear materials, fuels and radioisotope products have been developed at HANARO. Among these irradiation facilities, the capsule is the most useful device for coping with the various test requirements at HANARO. To support the national research and development programs on nuclear reactors and the nuclear fuel cycle technology in Korea, new irradiation capsules have been developed and actively utilized for the irradiation tests requested by numerous users. The environmental conditions for these reactors are generally beyond present day reactor technology, especially regarding the higher neutron fluence and higher operating temperature. To effectively support the national R and Ds relevant to the future nuclear systems, the development of advanced irradiation technologies concerning higher neutron fluence and irradiation temperature are being preferentially developed at HANARO. The utilization of the out-pile testing facilities to satisfy the criteria of safety evaluation for a new device installed in the core of HANARO was summarized. In addition, the validity of the out-pile testing facilities was evaluated and proved to be effective for verifying the integrity of irradiation capsule

  10. Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Baer, T.A.; Emery, J.N.; Price, L.L.; Olague, N.E.

    1994-04-01

    The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions

  11. Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

    1994-04-01

    The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

  12. PLC based control system for RAM assembly test facility

    International Nuclear Information System (INIS)

    Kulkarni, S.S.; Kumar, Vinaya; Chandra, Umesh

    1994-01-01

    The flexibility, expandability, ease of programming and diagnostic features makes the programmable logic controller (PLC) suitable for a variety of control applications in engineering system test facilities. A PLC based control system for RAM assembly test facility (RATF) and for testing the related hydraulic components is being developed and installed at BARC. This paper describes the approach taken for meeting the control requirements and illustrates the PLC software that has been developed. (author). 1 fig

  13. Compressor Impeller Erosion Resistant Surface Treatment

    National Research Council Canada - National Science Library

    Riley, Michael

    2000-01-01

    ...). Coatings based on tungsten carbide tantalum carbide. titanium carbide all with a cobalt matrix were evaluated for high velocity particle erosion in conventional wear test studies as well as wind tunnel testing...

  14. Team Update on North American Proton Facilities for Radiation Testing

    Science.gov (United States)

    Label, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; hide

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  15. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.; Nelson, R.L.

    1986-01-01

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  16. Effect of corrosion protective coatings on compressor blades affected by different erosive exposures

    International Nuclear Information System (INIS)

    Happle, T.W.

    1989-01-01

    It was the task of this dissertation to examine and to classify the inorganically bonded aluminum coatings with regard to their suitability as a coating for compressor blades for stationary gas turbines and aerojet engines. Industrial aluminum coatings bonded inorganically were used for the tests. Comparative examinations were done with diffusion-deposited aluminum layers as well as with aluminum layers precipitated electrolytically, and with modified inorganically bonded aluminum coatings (with additional TiN protective coating). The examination program was subdivided into two main tasks: Suitability tests and examination of corrosion fatigue. The suitability tests covered corrosion examinations (with salt spray and intermittent immersion tests), electrochemically controlled corrosion assessments (pitting corrosion behavior) and erosion assessments (erosive and abrasive wear tests). Experimental material was mainly the commercial compressor blade steel X20Cr13, and sample tests were carried out with the higher-strength steel X10CrNiMoV12 2 2. For the practical examination of the erosion resistance of the aluminum coatings, it was required to develop an erosion testing method. It was designed as an erosive and abrasive wear testing method with solid-face fluidized bed. The testing method makes it possible to pre-set all relevant quantities which influence the erosive and abrasive wear. (orig./MM) [de

  17. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  18. The WR-1 corrosion test facility

    International Nuclear Information System (INIS)

    Murphy, E.V.; Simmons, G.R.

    1978-07-01

    This report describes a new Corrosion Test Facility which has recently been installed in the WR-1 organic-cooled research reactor. The irradiation facility is a single insert, installed in a reactor site, which can deliver a fast neutron flux density of 2.65 x 10 17 neutrons/(m 2 .s) to specimens under irradiation. A self-contained controlled-chemistry cooling water circuit removes the gamma- and neutron-heat generated in the insert and specimens. Specimen temperatures typically vary from 245 deg C to 280 deg C across the insert core region. (author)

  19. Upgraded Features of Newly Constructed Fuel Assembly Mechanical Characterization Test Facility in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Lee, Young Ho; Kim, Soo Ho; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Fuel assembly mechanical characterization test facility (FAMeCT) in KAERI is newly constructed with upgraded functional features such as increased loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. The facility building is compactly designed in the scale of 3rd floor building and has regions for assembly-wise mechanical test equipment, dynamic load (seismic) simulating test system, small scale hydraulic loop and component wise test equipment. Figure 1 shows schematic regional layout of the facility building. Mechanical test platform and system is designed to increase loading capacity for axial compression test. Structural stability of the support system of new upper core plate simulator is validated through a limit case functional test. Fuel assembly mechanical characterization test facility in KAERI is newly constructed and upgraded with advanced functional features such as uprated loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. This paper briefly introduce the test facility construction and scope of the facility and is focused on the upgraded design features of the facility. Authors hope to facilitate the facility more in the future and collaborate with the industry.

  20. Study of the Parametric Performance of Solid Particle Erosion Wear under the Slurry Pot Test Rig

    Directory of Open Access Journals (Sweden)

    S.R. More

    2017-12-01

    Full Text Available Stainless Steel (SS 304 is commonly used material for slurry handling applications like pipelines, valves, pumps and other equipment's. Slurry erosion wear is a common problem in many engineering applications like process industry, thermal and hydraulic power plants and slurry handling equipments. In this paper, experimental investigation of the influence of solid particle size, impact velocity, impact angle and solid concentration parameters in slurry erosion wear behavior of SS 304 using slurry pot test rig. In this study the design of experiments was considered using Taguchi technique. A comparison has been made for the experimental and Taguchi technique results. The erosion wear morphology was studied using micro-graph obtained by scanning electron microscope (SEM analysis. At shallow impact angle 30°, the material removal pattern was observed in the form of micro displacing, scratching and ploughing with plastic deformation of the material. At 60° impact angle, mixed type of micro indentations and pitting action is observed. At normal impact angle 90°, the material removal pattern was observed in form of indentation and rounded lips. It is found that particle velocity was the most influence factor than impact angle, size and solid concentration. From this investigation, it can be concluded that the slurry erosion wear is minimized by controlling the slurry flow velocity which improves the service life of the slurry handling equipments. From the comparison of experimental and Taguchi experimental design results it is found that the percentage deviation was very small with a higher correlation coefficient (r2 0.987 which is agreeable.

  1. Project W-049H disposal facility test report

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria

  2. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; Van Steenbergen, A.; Woodle, M.; Zhang, R.S.; McDonald, K.T.; Russell, D.P.; Jiang, Z.Y.; Pellegrini, C.; Wang, X.J.

    1990-01-01

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO 2 laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs

  3. Tritium Systems Test Facility

    International Nuclear Information System (INIS)

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  4. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    Science.gov (United States)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  5. Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Han, Jiesheng; Lu, Jinjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-01-15

    Highlights: • Cavitation erosion behavior of Hastelloy C-276 was studied by ultrasonic apparatus. • The cavitation-induced precipitates formed in the eroded surface for Hastelloy C-276. • The selective cavitation erosion was found in Hastelloy C-276 alloy. - Abstract: The cavitation erosion behavior of Hastelloy C-276 alloy was investigated using an ultrasonic vibratory apparatus and compared with that of 316L stainless steel. The mean depth of erosion (MDE) and erosion rate (ER) curves vs. test time were attained for Hastelloy C-276 alloy. Morphology and microstructure evolution of the eroded surface were observed by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) and the predominant erosion mechanism was also discussed. The results show that the MDE is about 1/6 times lower than that of the stainless steel after 9 h of testing. The incubation period of Hastelloy C-276 alloy is about 3 times longer than that of 316L stainless steel. The cavitation-induced nanometer-scaled precipitates were found in the local zones of the eroded surface for Hastelloy C-276. The selective cavitation erosion was found in Hastelloy C-276 alloy. The formation of nanometer-scaled precipitates in the eroded surface may play a significant role in the cavitation erosion resistance of Hastelloy C-276.

  6. Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy

    International Nuclear Information System (INIS)

    Li, Zhen; Han, Jiesheng; Lu, Jinjun; Chen, Jianmin

    2015-01-01

    Highlights: • Cavitation erosion behavior of Hastelloy C-276 was studied by ultrasonic apparatus. • The cavitation-induced precipitates formed in the eroded surface for Hastelloy C-276. • The selective cavitation erosion was found in Hastelloy C-276 alloy. - Abstract: The cavitation erosion behavior of Hastelloy C-276 alloy was investigated using an ultrasonic vibratory apparatus and compared with that of 316L stainless steel. The mean depth of erosion (MDE) and erosion rate (ER) curves vs. test time were attained for Hastelloy C-276 alloy. Morphology and microstructure evolution of the eroded surface were observed by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) and the predominant erosion mechanism was also discussed. The results show that the MDE is about 1/6 times lower than that of the stainless steel after 9 h of testing. The incubation period of Hastelloy C-276 alloy is about 3 times longer than that of 316L stainless steel. The cavitation-induced nanometer-scaled precipitates were found in the local zones of the eroded surface for Hastelloy C-276. The selective cavitation erosion was found in Hastelloy C-276 alloy. The formation of nanometer-scaled precipitates in the eroded surface may play a significant role in the cavitation erosion resistance of Hastelloy C-276

  7. National RF Test Facility as a multipurpose development tool

    International Nuclear Information System (INIS)

    McManamy, T.J.; Becraft, W.R.; Berry, L.A.

    1983-01-01

    Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments

  8. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  9. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  10. CFD study of fluid flow changes with erosion

    Science.gov (United States)

    López, Alejandro; Stickland, Matthew T.; Dempster, William M.

    2018-06-01

    For the first time, a three dimensional mesh deformation algorithm is used to assess fluid flow changes with erosion. The validation case chosen is the Jet Impingement Test, which was thoroughly analysed in previous works by Hattori et al. (Kenichi Sugiyama and Harada, 2008), Gnanavelu et al. in (Gnanavelu et al., 2009, 2011), Lopez et al. in (Lopez et al., 2015) and Mackenzie et al. in (Mackenzie et al., 2015). Nguyen et al. (2014) showed the formation of a new stagnation area when the wear scar is deep enough by performing a three-dimensional scan of the wear scar after 30 min of jet impingement test. However, in the work developed here, this stagnation area was obtained solely by computational means. The procedure consisted of applying an erosion model in order to obtain a deformed geometry, which, due to the changes in the flow pattern lead to the formation of a new stagnation area. The results as well as the wear scar were compared to the results by Nguyen et al. (2014) showing the same trend. OpenFOAM® was the software chosen for the implementation of the deforming mesh algorithm as well as remeshing of the computational domain after deformation. Different techniques for mesh deformation and approaches to erosion modelling are discussed and a new methodology for erosion calculation including mesh deformation is developed. This new approach is independent of the erosion modelling approach, being applicable to both Eulerian and Lagrangian based equations for erosion calculation. Its different applications such as performance decay in machinery subjected to erosion as well as modelling of natural erosion processes are discussed here.

  11. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  12. Protection against productivity versus erosion vineyards. Testing of vegetal covers in slope crops

    International Nuclear Information System (INIS)

    Marques, M. J.; Ruiz-Colmenero, M.; Garcia-Munoz, S.; Cabello, F.; Munoz-Organero, G.; Perez-Jimenez, M. A.; Bienes, R.

    2009-01-01

    Temporary and permanent cover crops were used in three rain fed vineyards in the Center of Spain. They were sown in the middle of the strips to assess their ability to control erosion as well as their influence on grape production. Data from the year 2008 are compared with those obtained with traditional tillage treatment. The permanent cover formed by Brachypodium distachyon showed better ability to control erosion but it produced a decrease in production in young vines. barley and rye treatments were temporary covers, mowed in spring. They also reduced the erosion compared with the tillage however they did not appear to affect the vineyard production. (Author)

  13. The NRU blowdown test facility commissioning program

    Energy Technology Data Exchange (ETDEWEB)

    Walsworth, J A; Zanatta, R J; Yamazaki, A R; Semeniuk, D D; Wong, W; Dickson, L W; Ferris, C E; Burton, D H [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1990-12-31

    A major experimental program has been established at the Chalk River Nuclear Laboratories (CRL) that will provide essential data on the thermal and mechanical behaviour of nuclear fuel under abnormal reactor operating conditions and on the transient release, transport and deposition of fission product activity from severely degraded fuel. A number of severe fuel damage (SFD) experiments will be conducted within the Blowdown Test Facility (BTF) at CRL. A series of experiments are being conducted to commission this new facility prior to the SFD program. This paper describes the features and the commissioning program for the BTF. A development and testing program is described for critical components used on the reactor test section. In-reactor commissioning with a fuel assembly simulator commenced in 1989 June and preliminary results are given. The paper also outlines plans for future all-effects, in-reactor tests of CANDU-designed fuel. (author). 11 refs., 3 tabs., 7 figs.

  14. Switch evaluation test system for the National Ignition Facility

    International Nuclear Information System (INIS)

    Savage, M.E.; Simpson, W.W.; Reynolds, F.D.

    1997-01-01

    Flashlamp pumped lasers use pulsed power switches to commute energy stored in capacitor banks to the flashlamps. The particular application in which the authors are interested is the National Ignition Facility (NIF), being designed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories (SNL). To lower the total cost of these switches, SNL has a research program to evaluate large closing switches. The target value of the energy switched by a single device is 1.6 MJ, from a 6 mF, 24kV capacitor bank. The peak current is 500 kA. The lifetime of the NIF facility is 24,000 shots. There is no switch today proven at these parameters. Several short-lived switches (100's of shots) exist that can handle the voltage and current, but would require maintenance during the facility life. Other type devices, notably ignitrons, have published lifetimes in excess of 20,000 shots, but at lower currents and shorter pulse widths. The goal of the experiments at SNL is to test switches with the full NIF wave shape, and at the correct voltage. The SNL facility can provide over 500 kA at 24 kV charge voltage. the facility has 6.4 mF total capacitance, arranged in 25 sub-modules. the modular design makes the facility more flexible (for possible testing at lower current) and safer. For pulse shaping (the NIF wave shape is critically damped) there is an inductor and resistor for each of the 25 modules. Rather than one large inductor and resistor, this lowers the current in the pulse shaping components, and raises their value to those more easily attained with lumped inductors and resistors. The authors show the design of the facility, and show results from testing conducted thus far. They also show details of the testing plan for high current switches

  15. Design of a high-flux test assembly for the Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.

    1982-01-01

    The Fusion Material Test Facility (FMIT) will provide a high flux fusion-like neutron environment in which a variety of structural and non-structural materials irradiations can be conducted. The FMIT experiments, called test assemblies, that are subjected to the highest neutron flux magnitudes and associated heating rates will require forced convection liquid metal cooling systems to remove the neutron deposited power and maintain test specimens at uniform temperatures. A brief description of the FMIT facility and experimental areas is given with emphasis on the design, capabilities and handling of the high flux test assembly

  16. Cryogenics for a vertical test stand facility for testing superconducting radio frequency cavities at RRCAT

    International Nuclear Information System (INIS)

    Gupta, Prabhat Kumar; Kumar, Manoj; Kush, P.K.

    2015-01-01

    Vertical Test Stand (VTS) Facility is located in a newly constructed building of Cryo-Engineering and Cryo-Module Development Division (CCDD). This test facility is one of the important facilities to develop SCRF technologies for superconducting accelerators like Indian Spallation Neutron Source. VTS has to be used for regular testing of the Superconducting Radio Frequency (SRF) Niobium cavities at nominal frequency of 1.3 GHz/ 650 MHz at 4 K / 2 K liquid helium (LHe) bath temperatures. Testing of these cavities at 2 K evaluates cavity processing methods, procedures and would also serve as a pre-qualification test for cavity to test it in horizontal cryostat, called horizontal test stand, with other cavity components such as tuner and helium vessel. Cryogenic technologies play a major role in these cavity testing facilities. Achieving and maintaining a stable temperature of 2 K in these test stands on regular and reliable basis is a challenging task and require broad range of cryogenic expertise, large scale system level understanding and many in-house technological and process developments. Furthermore this test stand will handle large amount of liquid helium. Therefore, an appropriately designed infrastructure is required to handle such large amount of helium gas generated during the operation of VTS .This paper describes the different cryogenic design aspects, initial cryogenic operation results and different cryogenic safety aspects. (author)

  17. The DFVLR wind-energy test facility 'Ulrich Huetter' on Schnittlinger Berg

    Science.gov (United States)

    Kussmann, Alfred

    1986-11-01

    The DFVLR test facility for wind-energy systems (named after Ulrich Huetter, the designer of the 100-kW GFRP-rotor W 34 wind turbine first manufactured and tested in the 1950s) is described and illustrated with photographs. The history of the facility is traced, and current operations in gathering, archiving, processing, interpreting, and documenting performance-test data are outlined. The facility includes instrumentation for rotor telemetry, gondola motion measurements, and ground measurements and provides testing services to private users on both contract and leasing bases.

  18. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  19. Erosion evaluation capability of the IVVS for ITER applications

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Ferri de Collibus, Mario; Florean, Marco; Francucci, Massimo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion For Energy c/Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    Highlights: •High resolution laser radar range images for hostile environment (IVVS). •Evaluation of the erosion on the surface scanned by IVVS laser radar. •Erosion evaluation procedure and software. •Test and results of the erosion evaluation procedure. -- Abstract: In ITER it is foreseen the use of the In Vessel Viewing System (IVVS), whose scanning head is a 3D laser imaging system able to obtain high-resolution intensity and range images in hostile environments. The IVVS will be permanently installed into a port extension, therefore it has to be compliant with ITER primary vacuum requirements. In the frame of a Fusion for Energy Grant, an investigation of the expected IVVS metrology performances was required to evaluate the device capability to detect erosions on ITER first wall and divertor and to estimate the amount of eroded material. In ENEA Frascati laboratories, an IVVS probe prototype was developed along with a method and a computational procedure applied to a reference erosion plate target simulating ITER vessel components and their possible erosions. Experimental tests were carried out by this system performing several scans of the reference target with different incidence angles, estimating the eroded volume and comparing this volume with its true value. A dedicated study has been also done by changing the power of the laser source; a discussion about the quality of the 3D laser images is reported. The main results obtained during laboratory tests and data processing are presented and discussed.

  20. Erosion protection of uranium tailings impoundments

    International Nuclear Information System (INIS)

    Walters, W.H.; Skaggs, R.L.; Foley, M.G.; Beedlow, P.A.

    1986-09-01

    Pacific Northwest Laboratory (PNL) prepared this report to assist in the design and review of erosion protection works for decommissioned uranium tailings impoundments. The major causes of erosion over the long-term decommissioning period are from rainfall-runoff (overland flow) and stream channel flooding. The method of protection recommended for the impoundment side slopes and site drainage channels is rock riprap. Combinations of vegetation and rock mulch are recommended for the top surface. The design methods were developed from currently available procedures supplemented by field, laboratory, and mathematical model studies performed by PNL. Guidelines for the placement of riprap, inspection, and maintenance are presented. Other subjects discussed are rock selection and testing, slope stability, and overland erosion modeling

  1. Testing the effectiveness of pine needlecast in reducing post-fire soil erosion using complementary experimental approaches

    Science.gov (United States)

    Bento, C. P. M.; Shakesby, R. A.; Walsh, R. P. D.; Ferreira, C. S. S.; Ferreira, A. J. D.; Urbanek, E.

    2012-04-01

    Mediterranean wildfire activity has increased markedly in recent decades, leading to enhanced runoff and erosion. Limiting post-fire on-site soil degradation and off-site flooding and sedimentation, however, often has a low priority because of the high costs of materials and labour needed to implement many recognised techniques (e.g. seeding, hydromulching, installing logs along the contour). However, in pine plantations, the crowns may only be scorched so that after fire the needlecast can form a comparatively dense ground cover. Its post-fire erosion-limiting effectiveness is virtually unknown in the Mediterranean context, despite potentially protecting soil with minimal effort (requiring only a delay to existing salvage logging procedures at most). As part of the DESIRE research programme, this paper presents results from two complementary approaches testing the erosion-limiting effectiveness of needlecast. (1) Near Moinhos, central Portugal, two 8m2 erosion plots were established immediately post-fire in September 2009 on a steep (30°) slope representative of an adjacent burnt Pinus pinaster plantation. Soil erosion was monitored during a 3-month pre-treatment phase. Needles were then applied to one plot at a density (37.7% cover) measured on a post-fire pine plantation. Soil losses from treated and untreated plots were then monitored until April 2011. By taking the percentage increase or decrease in erosion between the two monitoring phases for the untreated control plot as the 'expected' pattern, the erosion-limiting effectiveness of needles applied to the treated plot could then be determined. (2) Six adjacent rectangular 1.23m2 lysimeters were filled with gravel and sand, and capped by 10 cm of topsoil taken from a long unburnt Pinus pinaster plantation. They were set at 15° and left open to natural rainfall. This angle was considered the steepest possible from logistical and soil stability points of view. All lysimeters underwent a phase under bare soil

  2. Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    Science.gov (United States)

    Schoellhamer, David H.; Manning, Andrew J.; Work, Paul A.

    2017-01-01

    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear

  3. Elevated temperature erosion studies on some materials for high temperature applications

    International Nuclear Information System (INIS)

    Zhou Jianren.

    1991-01-01

    The surface degradation of materials due to high temperature erosion or combined erosion corrosion is a serious problem in many industrial and aeronautical applications. As such, it has become an important design consideration in many situations. The materials investigated in the present studies are stainless steels, Ti-6Al-4V, alumina ceramics, with and without silicate glassy phase, and zirconia. These are some of the potential materials for use in the high temperature erosive-corrosive environments. The erosion or erosion-corrosion experiments were performed in a high temperature sand-blast type of test rig. The variables studied included the temperature, material composition, heat treatment condition, impingement velocity and angle, erodent concentration, etc. The morphological features of the eroded or eroded-corroded surfaces, substrate deformation, and oxide characteristics were studied by optical and scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis. The scratch test, single ball impact, and indentation tests were used to understand the behavior of oxide film in particle impacts. Based on these studies, the understanding of the mechanisms involved in the mechanical or combined mechanical and chemical actions in erosion was developed

  4. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  5. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    International Nuclear Information System (INIS)

    Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Leibfritz, J.R.; Martinez, A.; Nagaitsev, S.; Nobrega, L.E.

    2012-01-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  6. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  7. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  8. Enhanced operator-training simulator for the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Schrader, F.D.; Swanson, C.D.

    1983-01-01

    The FFTF Plant Operator Training Simulator Facility has proven to be a valuable asset throughtout the testing, startup and early operational phases of the Fast Flux Test facility. However, limitations inherent in the existing simulation facility, increased emphasis on the required quality of operator training, and an expanded scope of applications (e.g., MNI development) justify an enhanced facility. Direct use of plant operators in the development of improved reactor control room displays and other man/machine interface equipment and procedures increases the credibility of proposed techniques and reported results. The FFTF Plant Operator Training Simulator provides a key element in this development program

  9. Erosion corrision in water steam circuits - reasons and countermeasures

    International Nuclear Information System (INIS)

    Heitmann, H.G.; Kastner, W.

    An increased material erosion on tubes in steam generators, preheaters and condensers but also on turbine casings and connecting pipes of unalloyed and low-alloy steels occurs, to an essential extent, due to erosion-corrosion processes in the fluid-swept plant sections. On the one hand, they cause thinning of the material and sometimes leaks, on the other hand the erosion material leads to contamination of the water-steam cycle with its harmful consequences. The cause of erosion-corrosion is a dissolving corrosion due to the convective effect of pure fluid turbulences. The occurrence of erosion-corrosion is limited to such metallic materials, which are in need of oxide protection layers for their constancy. The cover layers are destroyed by erosive influence and the formation of new protection layers is prevented. At KWU, experimental studies of plates were carried out in the Benson test section to obtain information about the most important parameters of influence. These are in particular the flow velocity, the medium temperature and the water quality (pH value and oxygen content). Moreover, the resistivity of different materials has been compared and the resistance of magnetite protection layers to erosion-corrosion was examined. The results of these studies deliver fundamentals to avoid erosion-corrosion also in power plant engineering to the greatest possible extent. The following variants reveal to be important: 1. Use of chrome alloy materials. 2. Decrease of the flow velocity. 3. Increase of the pH value or the oxygen content. The importance of the test results for power plant engineering is briefly described. (orig.) [de

  10. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    Science.gov (United States)

    1991-01-01

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  11. Managing dental erosion.

    Science.gov (United States)

    Curtis, Donald A; Jayanetti, Jay; Chu, Raymond; Staninec, Michal

    2012-01-01

    The clinical signs of dental erosion are initially subtle, yet often progress because the patient remains asymptomatic, unaware and uninformed. Erosion typically works synergistically with abrasion and attrition to cause loss of tooth structure, making diagnosis and management complex. The purpose of this article is to outline clinical examples of patients with dental erosion that highlight the strategy of early identification, patient education and conservative restorative management. Dental erosion is defined as the pathologic chronic loss of dental hard tissues as a result of the chemical influence of exogenous or endogenous acids without bacterial involvement. Like caries or periodontal disease, erosion has a multifactorial etiology and requires a thorough history and examination for diagnosis. It also requires patient understanding and compliance for improved outcomes. Erosion can affect the loss of tooth structure in isolation of other cofactors, but most often works in synergy with abrasion and attrition in the loss of tooth structure (Table 1). Although erosion is thought to be an underlying etiology of dentin sensitivity, erosion and loss of tooth structure often occurs with few symptoms. The purpose of this article is threefold: first, to outline existing barriers that may limit early management of dental erosion. Second, to review the clinical assessment required to establish a diagnosis of erosion. And third, to outline clinical examples that review options to restore lost tooth structure. The authors have included illustrations they hope will be used to improve patient understanding and motivation in the early management of dental erosion.

  12. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  13. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated

  14. Overview of US fast-neutron facilities and testing capabilities

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Jackson, R.J.

    1982-01-01

    Rather than attempt a cataloging of the various fast neutron facilities developed and used in this country over the last 30 years, this paper will focus on those facilities which have been used to develop, proof test, and explore safety issues of fuels, materials and components for the breeder and fusion program. This survey paper will attempt to relate the evolution of facility capabilities with the evolution of development program which use the facilities. The work horse facilities for the breeder program are EBR-II, FFTF and TREAT. For the fusion program, RTNS-II and FMIT were selected

  15. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  16. Prevalence of dental erosion in 12-year-old schoolchildren of Lucknow city

    Directory of Open Access Journals (Sweden)

    Pooja Sinha

    2016-01-01

    Full Text Available Introduction: Dental erosion is tooth surface loss caused by chemical processes without bacterial involvement, which can affect children because of various dietary and other lifestyle factors. Aims: The aim of this study was to assess the prevalence of dental erosion in 12-year-old schoolchildren in Lucknow city. Materials and Methods: A total of 212 schoolchildren were selected through multistage cluster random sampling method. A pretested self-administered pro forma was used to record demographic data, medical history, and dietary habits. The clinical examination was done to evaluate dental erosion of children using dental erosion index by O'Sullivan. Descriptive analytical tests were used including distribution of erosion, its extent and severity. The findings were compared across the study participants using Chi-square test. Results: The overall prevalence of dental erosion was 34.12% with no significant sex difference. Dental erosion was significantly related to the frequency of consumption of fruit juices (67.07% followed by carbonated drinks (64.47%. In most of the cases, more than half of their surfaces were diagnosed as affected by erosion (26.25% central incisors, 4.83% lateral incisors. Conclusions: Dental erosion among the study group was found to be 34.12%, providing evidence that dental erosion is becoming a significant problem in Lucknow schoolchildren.

  17. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  18. Development of a fault test experimental facility model using Matlab

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Moraes, Davi Almeida

    2015-01-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  19. LECOTELO - conceptual design, testings and realisation

    International Nuclear Information System (INIS)

    Ioan, M.; Hororoi, M.; Gutue, A.; Tudor, A.; Nistor, D.; Lebu, V.; Catana, A.; Ghita, G.; Pauna, E.; Cojocaru, V.; Tencu, V.

    2013-01-01

    A synthesis of all Computer Aid Design (CAD) and Computational Fluid Dynamics (CFD) works for LEad COrrosion TEsting LOop (LECOTELO) facility is presented. This facility was conceived to assure all conditions requested by corrosion/erosion tests in pure hot lead for different materials of interest for Lead cooled Fast Reactor (LFR). The main vessel will be able to receive at least 36 material samples; each of them must be swept on both sides by a lead flow at a very well known speed. The main circuit is composed by the following components: the centrifugal pump, flow-meters, heat exchanger, pre-heater, testing vessel, melting vessel, gas system, void system, electrical heaters, valves, etc. The main circuit has a capacity of 12 litters (0,012 m3). (authors)

  20. 2-MW plasmajet facility thermal tests of concrete

    International Nuclear Information System (INIS)

    Goin, K.L.

    1977-07-01

    A test was made in the 2-Megawatt Plasmajet Facility to obtain experimental data relative to the thermal response of concrete to incident heat flux. 14.6 cm diameter by 8.0 cm long concrete cylinders were positioned in a supersonic flow of heated nitrogen from an arc heater. The end of the concrete cylinders impacted by the flow were subjected to heat fluxes in the range of 0.13 to 0.35 kW/cm 2 . Measurements included cold wall surface heat flux and pressure distributions, surface and indepth temperatures, ablation rates, and surface emission spectrographs. The test was part of the Sandia light water reactor safety research program and complements similar tests made in the Radiant Heat Facility at heat fluxes from 0.03 to 0.12 kW/cm 2 . A description of the tests and a tabulation of test data are included

  1. Gas Cooled Fast Breeder Reactor cost estimate for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    1979-10-01

    This is a conceptual design cost estimate for a Helium Circulator Test Facility to be located at the General Atomic Company, San Diego, California. The circulator, drive motors, controllers, thermal barrier, and circulator service module installation costs are part of the construction cost included

  2. LMFBR post accident heat removal testing needs and conceptual design of a test facility

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Kuechle, M.; Royl, P.; Werle, H.; Boenisch, G.; Heinzel, V.; Mueller, R.A.; Schramm, K.; Smidt, D.

    1977-03-01

    A study has been carried out in which the needs and requirements for a test facility were derived, enabling detailed investigation of key phenomena anticipated during the post accident heat removal (PAHR) phase as a consequence of a postulated LMFBR whole core accident. Part I of the study concentrates on demonstrating the PAHR phenomena and related testing needs. Three types of experiments were identified which require in-pile testing, ranging from 10 to 70 cm test bed diameter and correspondingly, 30 to 5 W/g minimum power density in the test fuel. In part II a conceptual design for a test facility is presented, emphasizing the capability for accomodating large test beds. This is achieved by a below-reactor-vessel testing device, neutronically coupled to a 100 MWt sodium cooled fast reactor. (orig.) [de

  3. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    International Nuclear Information System (INIS)

    Gillard, J.E.

    2001-01-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  4. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, J.E

    2001-07-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  5. Shoreline Erosion and Proposed Control at Experimental Facility 15-Spesutie Island

    Science.gov (United States)

    2017-09-01

    distribution is unlimited. 1 1. Introduction Coastal erosion is the wearing away of land and the removal of beach or dune sediments by wave action...the land , air, and water defines the wetted perimeter where land use and clearing practices have taken on an adversarial role with regard to the...stand with approximately 30–40 ft of manicured lawn to the shoreline. There are no trees on the range proper, with only a smattering of indigenous

  6. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    Science.gov (United States)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.

  7. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  8. Thermionic system evaluated test (TSET) facility description

    Science.gov (United States)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  9. Comparison of erosion and erosion control works in Macedonia, Serbia and Bulgaria

    Directory of Open Access Journals (Sweden)

    Ivan Blinkov

    2013-12-01

    Natural conditions in the Balkan countries contribute to the appearance of various erosion forms and the intensity of the erosion processes. Over the history of these countries, people who settled this region used the available natural resources to fill their needs (tree cutting, incorrect plugging, overgrazing, which contributed to soil erosion. Organized erosion control works in the Balkans started in the beginning of the 20th century (1905 in Bulgaria. The highest intensity of erosion control works were carried out during the period 1945 – 1990. Various erosion control works were launched. Bulgaria had a large anti-erosion afforestation, almost 1 million ha. Bulgaria's ecological river restoration approach has been in use for almost 50 years. Serbia contributed significant erosion and torrent control works on hilly agricultural areas. Specific screen barrages and afforestation on extremely dry areas are characteristic in Macedonia. A common characteristic for all countries is a high decrease in erosion control works in the last 20 years.

  10. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  11. Measurement of erosion rate by absorption spectroscopy in a Hall thruster

    International Nuclear Information System (INIS)

    Yamamoto, Naoji; Yokota, Shigeru; Matsui, Makoto; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2005-01-01

    The erosion rate of a Hall thruster was estimated with the objective of building a real-time erosion rate monitoring system using a 1 kW class anode layer type Hall thruster. This system aids the understanding of the tradeoff between lifetime and performance. To estimate the flux of the sputtered wall material, the number density of the sputtered iron was measured by laser absorption spectroscopy using an absorption line from ground atomic iron at 371.9935 nm. An ultravioletAl x In y Ga (1-x-y) N diode laser was used as the probe. The estimated number density of iron was 1.1x10 16 m -3 , which is reasonable when compared with that measured by duration erosion tests. The relation between estimated erosion rate and magnetic flux density also agreed with that measured by duration erosion tests

  12. Headcut erosive regimes influenced by groundwater on disturbed agricultural soils.

    Science.gov (United States)

    Rockwell, D L

    2011-02-01

    A series of simulated rainfall experiments, testing several soils and slope gradients in a 10 m x 0.8m laboratory flume, displayed close correlations between initial development of a water table at a 10 cm depth and highly erosive headcut formation. On some soils and gradients, highly erosive headcuts formed consistently and predictably within minutes or seconds of initial water table rise. However, headcuts alone were not good indicators of increased erosion. In most experiments some headcuts formed early, often when surface hydraulic parameter values reached established rill initiation thresholds, but resulted in little or no erosion increase. Later, at initial water table rise, other headcuts formed coincident with major erosion increase, often with surface hydraulic values then less than rill initiation thresholds. On the four soils tested, highly erosive headcuts never formed without groundwater development, except on steep 9 ° slopes. Common visual indicators such as headcut morphology and headcut advance rates were not effective means of determining either erosion or the existence of groundwater. Only local monitoring of subsurface moisture conditions with micro-standpipes and TDR aided in determining headcut processes and erosive regimes. Groundwater-influenced headcut formation was likely caused by increased soil pore-water pressures and decreased soil shear strengths in surface rainflow, not by sapping or seepage from the soil matrix. Highly erosive headcuts can thus form under common agricultural conditions where reductions in permeability, such as plow pans, exist near the surface--without the need for saturated soils. Headcut erosive regimes were also significantly influenced by soil type and slope gradient, with the greatest effects of groundwater on moderate slopes and fairly permeable soils. Copyright © 2010. Published by Elsevier Ltd.

  13. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  14. Buildings, fields of activity, testing facilities

    International Nuclear Information System (INIS)

    1974-01-01

    Since 1969 the activities of the Materialpruefungsanstalt Stuttgart (MPA) have grown quickly as planned, especially in the field of reactor safety research, which made it necessary to increase the staff to approximately 165 members, to supplement the machines and equipment and to extend the fields of activities occasioning a further departmental reorganization. At present the MPA has the following departments: 1. Teaching (materials testing, materials science and strength of materials) 2. Materials and Welding Technology 3. Materials Science and General Materials Testing with Tribology 4. Design and Strength 5. Creep and Fatigue Testing 6. Central Facilities 7. Vessel and Component Testing. (orig./RW) [de

  15. Field Lysimeter Test Facility: Second year (FY 1989) test results

    International Nuclear Information System (INIS)

    Campbell, M.D.; Gee, G.W.; Kanyid, M.J.; Rockhold, M.L.

    1990-04-01

    The Record of Decision associated with the Hanford Defense Waste Environmental Impact Statement (53 FR 12449-53) commits to an evaluation of the use of protective barriers placed over near-surface wastes. The barrier must protect against wind and water erosion and limit plant and animal intrusion and infiltration of water. Successful conclusion of this program will yield the necessary protective barrier design for near-surface waste isolation. This report presents results from the second year of tests at the FLTF. The primary objective of testing protective barriers at the FLTF was to measure the water budgets within the various barriers and assess the effectiveness of their designs in limiting water intrusion into the zone beneath each barrier. Information obtained from these measurements is intended for use in refining barrier designs. Four elements of water budget were measured during the year: precipitation, evaporation, storage, and drainage. Run-off, which is a fifth element of a complete water budget, was made negligible by a lip on the lysimeters that protrudes 5 cm above the soil surface to prevent run-off. A secondary objective of testing protective barriers at the FLTF was to refine procedures and equipment to support data collection for verification of the computer model needed for long-term projections of barrier performance. 6 refs

  16. An Experience of Thermowell Design in RCP Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, B. D.; Youn, Y. J.; Jeon, W. J.; Kim, S.; Bae, B. U.; Cho, Y. J.; Choi, H. S.; Park, J. K; Cho, S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Flow rates for the test should vary in the range of 90% to 130% of rated flowrate under prototypic operational conditions, as shown in Table 1. Generally for the flow control, a combination of a control valve and an orifice was used in previous RCP test facilities. From the commissioning startup of the RCP test facility, it was found the combination of valve and orifice induced quite a large vibration for the RCP. As a solution to minimize the vibration and to facilitate the flowrate control, one of KAERI's staff suggested a variable restriction orifice (VRO), which controls most of the required flowrates except highest flowrates, as shown in Fig. 2. For the highest flowrates, e.g., around run-out flowrate (130%), control valves in bypass lines were also used to achieve required flowrates. From a performance test, it was found the VRO is very effective measures to control flowrates in the RCP test facility. During the commissioning startup operation, one of thermowells located at the upstream of the RCP was cracked due to high speed coolant velocity, which was - fortunately - found under a leakage test before running the RCP test loop. The cracked thermowell, whose tapered-shank was detached from the weld collar after uninstalling, is shown in Fig. 3. As can be seen the figure, most of the cross-section at the root of the thermowell shank was cracked. In this paper, an investigation of the integrity of thermowells in the RCP test facility was performed according to the current code and overall aspects on the thermowell designs were also discussed. An RCP test facility has been constructed in KAERI. During the commissioning startup operation, one of thermowells was cracked due to high speed coolant velocity. To complete the startup operation, a modified design of thermowells was proposed and all the original thermowells were replaced by the modified ones. From evaluation of the original and modified designs of thermowells according to the recent PTC code, the

  17. I and C functional test facility user guide

    International Nuclear Information System (INIS)

    Kwon, Ki Chun

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ''C'' language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author)

  18. I and C functional test facility user guide

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ``C`` language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author).

  19. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  20. Design and Construction of a Hydroturbine Test Facility

    Science.gov (United States)

    Ayli, Ece; Kavurmaci, Berat; Cetinturk, Huseyin; Kaplan, Alper; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; ETU Hydro Research Center Team

    2014-11-01

    Hydropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

  1. Superconducting magnet development capability of the LLNL [Lawrence Livermore National Laboratory] High Field Test Facility

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.; Summers, L.T.

    1990-02-01

    This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility

  2. Dental erosion in groups of Yemeni children and adolescents and the modification of an erosion partial recording system.

    Science.gov (United States)

    Al-Ashtal, Amin; Johansson, Anders; Omar, Ridwaan; Johansson, Ann-Katrin

    2017-07-01

    The prevalence of dental erosion is rising especially among children and adolescents and its grading needs further investigation. To determine the prevalence and severity of dental erosion in groups of Yemeni children and adolescents, and to clinically compare an erosion partial recording system (EPRS) with a proposed modified-simplified version (EPRS-M). Of 6163 individuals aged 5-6, 13-14 and 18-19 years, 911 were randomly selected, of which 668 participated in the study. Dental erosion was graded using EPRS. EPRS-M was proposed, and its sensitivity and specificity was calculated in relation to EPRS. Prevalence of erosion extending into dentine on at least one tooth was 6.8% among 5- to 6-year-olds, 3.0% among 13- to 14-year-olds and 14.6% among 18- to 19-year olds. The highest prevalence was 19.2% among girls aged 18-19 years which was significantly higher than boys (10.4%) in the same age group (P = 0.044). Sensitivity and specificity for EPRS-M in relation to EPRS were 85.7% and 100% for primary teeth, and 84.1% and 100% for permanent teeth. Dental erosion was common among children and older teenagers and highest among older girls but less common among younger teenagers. The tested accuracy of EPRS-M qualifies it to be used as an initial quick detection tool in future dental erosion research. © 2016 The Authors. International Journal of Paediatric Dentistry published by BSPD, IAPD and John Wiley & Sons Ltd.

  3. The large-scale vented combustion test facility at AECL-WL: description and preliminary test results

    International Nuclear Information System (INIS)

    Loesel Sitar, J.; Koroll, G.W.; Dewit, W.A.; Bowles, E.M.; Harding, J.; Sabanski, C.L.; Kumar, R.K.

    1997-01-01

    Implementation of hydrogen mitigation systems in nuclear reactor containments requires testing the effectiveness of the mitigation system, reliability and availability of the hardware, potential consequences of its use and the technical basis for hardware placement, on a meaningful scale. Similarly, the development and validation of containment codes used in nuclear reactor safety analysis require detailed combustion data from medium- and large-scale facilities. A Large-Scale Combustion Test Facility measuring 10 m x 4 m x 3 m (volume, 120 m 3 ) has been constructed and commissioned at Whiteshell Laboratories to perform a wide variety of combustion experiments. The facility is designed to be versatile so that many geometrical configurations can be achieved. The facility incorporates extensive capabilities for instrumentation and high speed data acquisition, on-line gas sampling and analysis. Other features of the facility include operation at elevated temperatures up to 150 degrees C, easy access to the interior, and remote operation. Initial thermodynamic conditions in the facility can be controlled to within 0.1 vol% of constituent gases. The first series of experiments examined vented combustion in the full 120 m 3 -volume configuration with vent areas in the range of 0.56 to 2.24 m 2 . The experiments were performed at ∼27 degrees C and near-atmospheric pressures, with hydrogen concentrations in the range of 8 to 12% by volume. This paper describes the Large-Scale Vented Combustion Test Facility and preliminary results from the first series of experiments. (author)

  4. Analysis of Elektrogorsk 108 test facility experimental data

    International Nuclear Information System (INIS)

    Urbonas, R.

    2001-01-01

    In the paper an evaluation of experimental data obtained at Russian Elektrogorsk 108 (E-108) test facility is presented. E-108 facility is a scaled model of Russian RBMK design reactor. An attempt to validate state-of-the-art thermal hydraulic codes on the basis of E-108 test facility was made. Originally these codes were developed and validated for BWRs and PWRs. Since state-of-art thermal hydraulic codes are widely used for simulation of RBMK reactors further codes' implementation and validation is required. The facility was modelled by employing RELAP5 (INEEL, USA) thermal hydraulic system analysis best estimate code. The results show dependence from number of nodes used in the heated channels, frictional and form losses employed. The obtained oscillatory behaviour is resulted by density wave and critical heat flux. It is shown that codes are able to predict thermal hydraulic instability and sudden heat structure temperature excursion, when critical heat flux is approached, well. In addition, an uncertainty analysis of one of the experiments was performed by employing GRS developed System for Uncertainty and Sensitivity Analysis (SUSA). It was one of the first attempts to use this statistic-based methodology in Lithuania.(author)

  5. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  6. Estimation of local rainfall erosivity using artificial neural network

    Directory of Open Access Journals (Sweden)

    Paulo Tarso Sanches Oliveira

    2011-08-01

    Full Text Available The information retrieval of local values of rainfall erosivity is essential for soil loss estimation with the Universal Soil Loss Equation (USLE, and thus is very useful in soil and water conservation planning. In this manner, the objective of this study was to develop an Artificial Neural Network (ANN with the capacity of estimating, with satisfactory accuracy, the rainfall erosivity in any location of the Mato Grosso do Sul state. We used data from rain erosivity, latitude, longitude, altitude of pluviometric and pluviographic stations located in the state to train and test an ANN. After training with various network configurations, we selected the best performance and higher coefficient of determination calculated on the basis of data erosivity of the sample test and the values estimated by ANN. In evaluating the results, the confidence and the agreement indices were used in addition to the coefficient of determination. It was found that it is possible to estimate the rainfall erosivity for any location in the state of Mato Grosso do Sul, in a reliable way, using only data of geographical coordinates and altitude.

  7. ACIGA's high optical power test facility

    International Nuclear Information System (INIS)

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  8. Design study of an ERL Test Facility at CERN

    CERN Document Server

    Jensen, E; Brüning, O; Calaga, R; Catalan-Lasheras, N; Goddard, B; Klein, M; Torres-Sanchez, R; Valloni, A

    2014-01-01

    The modern concept of an Energy Recovery Linac allows providing large electron currents at large beam energy with low power consumption. This concept is used in FEL’s, electron-ion colliders and electron coolers. CERN has started a Design Study of an ERL Test Facility with the purpose of 1) studying the ERL principle, its specific beam dynamics and operational issues, as relevant for LHeC, 2) providing a test bed for superconducting cavity modules, cryogenics and integration, 3) studying beam induced quenches in superconducting magnets and protection methods, 4) providing test beams for detector R&D and other applications. It will be complementary to existing or planned facilities and is fostering international collaboration. The operating frequency of 802 MHz was chosen for performance and for optimum synergy with SPS and LHC; the design of the cryomodule has started. The ERL Test Facility can be constructed in stages from initially 150 MeV to ultimately 1 GeV in 3 passes, with beam currents of up to 8...

  9. TFTR neutral-beam test facility

    International Nuclear Information System (INIS)

    Turitzin, N.M.; Newman, R.A.

    1981-11-01

    TFTR Neutral Beam System will have thirteen discharge ion sources, each with its own power supply. Twelve of these will be utilized for supplemental heating of the TFTR tokamak plasma, while the thirteenth will be dedicated to an off-machine test chamber for source development and/or conditioning. A test installation for one source was set up using prototype equipment to discover and correct possible deficiencies, and to properly coordinate the equipment. This test facility represents the first opportunity for assembling an integrated system of hardware supplied by diverse vendors, each of whom designed and built his equipment to performance specifications. For the installation and coordination of the different portions of the total system, particular attention was given to personnel safety and safe equipment operation. This paper discusses various system components, their characteristics, interconnection and control. Results of the recently initiated test phase will be reported at a later date

  10. Safety report content and development for test loop facility on MARIA reactor

    International Nuclear Information System (INIS)

    Konechko, A.; Shumskij, A.M.; Mikul'ahin, V.E.

    1982-01-01

    A 600 kW test loop facility for investigatin.o safety problems is realized on MARIA reactor in Poland together with USSR organizations. Safety reports have been developed in two steps at the designstage. The 1st report being essentially a preliminary safety analysis was developed within the scope of the feasibility study. At the engineering design stage the preliminary test loop facility safety report had been prepared considering measures excluding the possibility of the MARIA reactor damage. The test loop facility safety report is fulfilled for normal, transient and emergency operation regimes. Separate safety basing for each group of experiments will be prepared. The report presents the test loop facility safety criteria coordinated by the nuclear safety comission. They contains the preliminary reports on the test loop facility safety. At the final stage of construction and at thecommitioning stage the start-up safety report will be developed which after required correction and adding up the putting into operation data will turn into operation safety report [ru

  11. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  12. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  13. Numerical simulations for ITER divertor armour erosion and SOL contamination due to disruptions and ELMs

    International Nuclear Information System (INIS)

    Landman, I.S.; Pestchanyi, S.E.; Bazylev, B.N.

    2005-01-01

    The divertor armour materials for ITER are going to be tungsten (as brushe or plates) and CFC. Disruptive loads with the heat deposition Q up to 30 MJ/m 2 on the time scale τ of 3 ms or operation with ELMs at repetitive loads of Q ∼ 3 MJ/m 2 and τ ∼ 0.3 ms cause enhanced armour erosion and produce contamination of SOL. Recent numerical investigations of erosion mechanisms with the anisotropic thermomechanics code PEGASUS-3D and the surface melt motion code MEMOS-1.5D as well as hot hydrogen plasma dynamics, heat loads at the armour surface and backward propagation of material plasma in SOL with the radiation-magnetohydrodynamics code FOREV-2D are survived. For CFC targets, the local overheating model is explained and numerically demonstrated. For the tungsten targets the numerical analysis of melt motion erosion of W-brushe and bulk tungsten targets on the base of MEMOS-1.5D calculations is developed and accompanied by numerical results. For validation of the codes at the regimes relevant to ITER disruptions and ELMs, the simulation results are compared with available experiments carried out at plasma guns, electron beam test facilities and the tokamak JET. (author)

  14. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  15. Nozzle erosion characterization and minimization for high-pressure rocket motor applications

    Science.gov (United States)

    Evans, Brian

    Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure. Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant

  16. Natural circulation in an integral CANDU test facility

    International Nuclear Information System (INIS)

    Ingham, P.J.; Sanderson, T.V.; Luxat, J.C.; Melnyk, A.J.

    2000-01-01

    Over 70 single- and two-phase natural circulation experiments have been completed in the RD-14M facility, an integral CANDU thermalhydraulic test loop. This paper describes the RD-14M facility and provides an overview of the impact of key parameters on the results of natural circulation experiments. Particular emphasis will be on phenomena which led to heat up at high system inventories in a small subset of experiments. Clarification of misunderstandings in a recently published comparison of the effectiveness of natural circulation flows in RD-14M to integral facilities simulating other reactor geometries will also be provided. (author)

  17. Worldwide Experience with Erosion of the Magnetic Sphincter Augmentation Device.

    Science.gov (United States)

    Alicuben, Evan T; Bell, Reginald C W; Jobe, Blair A; Buckley, F P; Daniel Smith, C; Graybeal, Casey J; Lipham, John C

    2018-04-17

    The magnetic sphincter augmentation device continues to become a more common antireflux surgical option with low complication rates. Erosion into the esophagus is an important complication to recognize and is reported to occur at very low incidences (0.1-0.15%). Characterization of this complication remains limited. We aim to describe the worldwide experience with erosion of the magnetic sphincter augmentation device including presentation, techniques for removal, and possible risk factors. We reviewed data obtained from the device manufacturer Torax Medical, Inc., as well as the Manufacturer and User Facility Device Experience (MAUDE) database. The study period was from February 2007 through July 2017 and included all devices placed worldwide. In total, 9453 devices were placed and there were 29 reported cases of erosions. The median time to presentation of an erosion was 26 months with most occurring between 1 and 4 years after placement. The risk of erosion was 0.3% at 4 years after device implantation. Most patients experienced new-onset dysphagia prompting evaluation. Devices were successfully removed in all patients most commonly via an endoscopic removal of the eroded portion followed by a delayed laparoscopic removal of the remaining beads. At a median follow-up of 58 days post-removal, there were no complications and 24 patients have returned to baseline. Four patients reported ongoing mild dysphagia. Erosion of the LINX device is an important but rare complication to recognize that has been safely managed via minimally invasive approaches without long-term consequences.

  18. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  19. Erosion control technology: a user's guide to the use of the Universal Soil Loss Equation at waste burial facilities

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Lane, L.J.

    1986-05-01

    The Universal Soil Loss Equation (USLE) enables the operators of shallow land burial sites to predict the average rate of soil erosion for each feasible alternative combination of plant cover and land management practices in association with a specified soil type, rainfall pattern, and topography. The equation groups the numerous parameters that influence erosion rate under six major factors, whose site-specific values can be expressed numerically. Over a half century of erosion research in the agricultural community has supplied information from which approximate USLE factor values can be obtained for shallow land burial sites throughout the United States. Tables and charts presented in this report make this information readily available for field use. Extensions and limitations of the USLE to shallow land burial systems in the West are discussed, followed by a detailed description of the erosion plot research performed by the nuclear waste management community at Los Alamos, New Mexico. Example applications of the USLE at shallow land burial sites are described, and recommendations for applications of these erosion control technologies are discussed

  20. Commissioning and early operating experience with the Fermilab horizontal test facility

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Chase, B.; Harms, E.; Hocker, A.; Prieto, P.; Reid, J.; Rowe, A.; Theilacker, J.; Votava, M.; /Fermilab

    2007-10-01

    Fermilab has constructed a facility for testing dressed superconducting radiofrequency (RF) cavities at 1.8 K with high-power pulsed RF. This test stand was designed to test both 9-cell 1.3 GHz TESLA-style cavities and 9-cell 3.9 GHz cavities being built by Fermilab for DESY's TTF-FLASH facility. An overview of the test stand and a description of its initial commissioning is described here.

  1. Simulation Facilities and Test Beds for Galileo

    Science.gov (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  2. Evaluation of the Netherlands' International Test Facility for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-01

    The Netherlands Enterprise Agency (Rijksdienst voor Ondernemend Nederland, or RVO) engaged the U.S. National Renewable Energy Laboratory (NREL) for two primary purposes: to evaluate the International Test Facility for Smart Grids (ITF) sponsored by RVO and to learn best practices for integrated test facilities from NREL's Energy Systems Integration Facility (ESIF). This report covers the ITF evaluation and is largely based on a one-week visit to the Netherlands in November 2014.

  3. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  4. Ten years operating experience at the Fast Flux Test Facility: A decade of excellence

    International Nuclear Information System (INIS)

    Swaim, D.J.; Waldo, J.B.; Farabee, O.A.

    1991-07-01

    The Fast Flux Test Facility is a 400 MW(t) fast reactor cooled by three sodium loops. The Fast Flux Test Facility is managed by the Westinghouse Hanford Company for the US Department of Energy. The Fast Flux Test Facility was designed and constructed to provide irradiation testing of fuels and materials for the US Department of Energy Liquid Metal Reactor research program. Facility activities have increased to include fusion power materials testing, passive safety testing, isotope production, and international collaboration. 5 figs

  5. 200 area effluent treatment facility opertaional test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting

  6. Sodium-water reaction test facility (SWAT-3)

    International Nuclear Information System (INIS)

    Shimazu, Hisashi; Ukechi, Kazutoshi; Sasakura, Kazutake; Kusunoki, Junichi

    1976-01-01

    In the development of the liquid metal cooled fast breeder reactor (LMFBR), the steam generator (SG) is considered one of the most important components. The Power Reactor and Nuclear Fuel Development Corporation (PNC) is now promoting the research and development of the SG system used with the prototype fast breeder reactor ''Monju''. In this research, the phenomena of the sodium-water reaction in the SG are the key which must be investigated for the solution of problems. The test facility (SWAT-3) simulating Monju's SG on the scale of 1/2.5 was designed, fabricated and installed by IHI at Oarai Engineering Center of PNC, its pre-operation being accomplished in February 1975. The purpose of SWAT-3 is summarized as follows: (1) To perform an overall test on the safety of Monju's SG and intermediate heat transport system under the design condition against sodium-water reaction accidents. (2) To investigate the damage of the SG structure caused by the sodium-water reaction, and the possibility of repair and recovery operations. The first test was accomplished successfully on June 9, 1975. As a result of the test, the fundamental function of this test facility was proven to be satisfactory as expected. (auth.)

  7. Water erosion in no-tillage monoculture and intercropped systems along contour lines

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol

    2013-04-01

    Full Text Available Water erosion is the major cause of soil and water losses and the main factor of degradation of agricultural areas. The objective of this work was to quantify pluvial water erosion from an untilled soil with crop rows along the contour, in 2009 and 2010, on a Humic Dystrupept, with the following treatments: a maize monoculture; b soybean monoculture; c common bean monoculture; d intercropped maize and bean, exposed to four simulated rainfall tests of on hour at controlled intensity (64 mm h-1. The first test was applied 18 days after sowing and the others; 39, 75 and 120 days after the first test. The crop type influenced soil loss through water erosion in the simulated rainfall tests 3 and 4; soybean was most effective in erosion control in test 3, however, in test 4, maize was more effective. Water loss was influenced by the crop type in test 3 only, where maize and soybean were equally effective, with less runoff than from the other crops. The soil loss rate varied during the runoff sampling period in different ways, demonstrating a positive linear relationship between soil and water loss, in the different rainfall tests.

  8. Test facility for rewetting experiments at CDTN

    International Nuclear Information System (INIS)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C.

    2015-01-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  9. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  10. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  11. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    International Nuclear Information System (INIS)

    Virpi Kouhia, V.; Purhonen, H.; Riikonen, V.; Puustinen, M.; Kyrki-Rajamaki, R.; Vihavainen, J.

    2012-01-01

    This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  12. Cavitation erosion prediction on Francis turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, P.; Farhat, M.; Simoneau, R.; Lavigne, P. [Hydro-Quebec, Montreal, PQ (Canada); Pereira, F.; Dupont, P.; Avellan, F.; Caron, J.F. [IMHEF/EPFL, (France); Dorey, J.M.; Archer, A. [Electricite de France (EDF), 92 - Clamart (France). Dir. des Etudes et Recherches; and others

    1997-12-31

    On-board aggressiveness measurement methods were tested on a severely eroded prototype blade of a 266 MW Francis turbine: pressure, pit counting, DECER electrochemical and vibration measurements. The test program provided understanding of the heterogeneous erosion distribution of the prototype blades and quantitative data for comparison in subsequent tests on the model of the machine. Model tests and flow analysis were also performed, to detect cavitation on a Francis turbine model. The results are compared to those obtained on the prototype measurements. The model used for that study is built on the basis of a geometrical recovery of one of the most eroded blade of the prototype. Different methods were investigated to predict cavitation erosion on Francis turbines from model. They are based on measurement of pitting, pressure fluctuations and acceleration. The methods proposed are suitable to measure cavitation aggressiveness on model and on prototype, and that the level on the model is several orders of magnitude smaller than on the prototype. (author) 18 refs.

  13. The construction of solid waste form test and inspection facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Lee, Kang Moo; Jung, In Ha; Kim, Sung Hwan; Yoo, Jeong Woo; Lee, Jong Youl; Bae, Sang Min

    1988-01-01

    The solid waste form test and inspection facility is a facility to test and inspect the characteristics of waste forms, such as homogenity, mechanical structure, thermal behaviour, water resistance and leachability. Such kinds of characteristics in waste forms are required to meet a certain conditions for long-term storage or for final disposal of wastes. The facility will be used to evaluate safety for the disposal of wastes by test and inspection. At this moment, the efforts to search the most effective management of the radioactive wastes generated from power plants and radioisotope user are being executed by the people related to this field. Therefore, the facility becomes more significant tool because of its guidance of sucessfully converting wastes into forms to give a credit to the safety of waste disposal for managing the radioactive wastes. In addition the overall technical standards for inspecting of waste forms such as the standardized equipment and processes in the facility will be estabilished in the begining of 1990's when the project of waste management will be on the stream. Some of the items of the project have been standardized for the purpose of localization. In future, this facility will be utilized not only for the inspection of waste forms but also for the periodic decontamination apparatus by remote operation techniques. (Author)

  14. Bore erosion due to plasma armatures in EM launchers

    International Nuclear Information System (INIS)

    Askew, R.F.; Brown, J.L.; Jensen, D.B.

    1987-01-01

    Bore erosion, both to insulators and rails, has been a major concern in the EM Launcher community. Plasma armatures have generally produced both melting and ablation from the rails, with the result that the surface texture of the rails is course and uneven upon resolidification. Ablation evidence for insulators varies with material but mass lose by decomposition appears prevalent. Theoretical models for EML performance, both one and two dimensional, have a strong dependence on armature mass, which is turn is influenced by rail and insulator ablation. Ablation models are strongly dependent on the armature plasma temperature. In order to test the accuracy of models detailed information is needed on the time dependence of the in-bore plasma parameters such as pressure, temperature, and electron density. Previously reported experimental data indicated that mechanisms other than plasma radiation are involved in the ablation process. New experiments have been conducted using a small, square bore (1 cm) facility, 60 cm in length, to quantify the erosions and to relate this to conditions within the armature and possible plasma chemistry processes at the rails and insulators. Mass loss has been measured as a function of position on both the rails and insulators. These have been correlated with the time history of the gas dynamic pressure at that location. In addition, the armature current time history has been correlated with the pressure

  15. Latest status of the Japanese LCT coil and the domestic test facility

    International Nuclear Information System (INIS)

    Shimamoto, S.; Ando, T.; Hiyama, T.

    1981-01-01

    The Japan Atomic Energy Research Institute (JAERI), representing Japan, is now making one of six test coils for the International Energy Agency's (IEA) Large Coil Task(LCT). The Japanese LCT coil, which has a stored energy of 120 MJ, is based on a NgTi conductor, is pool-cooled, has a maximum field of 8T, and is edgewise, double-pancake wound, was completed in October, 1981. The LCT coil will be tested in the newly constructed domestic test facility up to its rated current in November, 1981, before transportation ORNL. The domestic test facility, which is composed of a cryogenic system a vacuum system, a power supply with protection system, and a data acqusition and control system, was completed and its performance measured at a new building for the LCT test at JSAERI in June, 1981. This paper describes the latest construction status of the Japanese LCT coil and the domestic test facility. The performance of the domestic test facility is described in this paper

  16. The CEA JOSEFA test facility for sub-size conductors and joints

    International Nuclear Information System (INIS)

    Decool, P.; Libeyre, P.; Van Houtte, D.; Ciazynski, D.; Zani, L.; Serries, J.P.; Cloez, H.; Bej, S.

    2003-01-01

    The JOSEFA (Joint Sub-size Experiment FAcility) experimental test facility, installed at CEA/Cadarache is devoted to perform tests at cryogenic temperature on sub-size superconducting conductor and joint samples under parallel or transverse magnetic field. This facility was built in 1993 to investigate the performances of joints of cable-in-conduit conductors at sub-size level and further upgraded in the framework of European tasks. The samples of hairpin type using sub-size ITER conductors are cooled by a circulation of supercritical helium in a temperature range from 5 to 15 K and tested at a maximum current up to 10 kA. Two different helium bath cooled magnets allow to apply DC or AC transverse magnetic field up to 3.5 T or longitudinal magnetic field up to 7.5 T. A sliding system with a 240 mm stroke on the sample cryostat allows to test separately in the same sample either the conductor or the joint performances. The paper reports on how, through the conductor and joint development tasks, the facility performances were successfully increased and tested. The ITER TFMC joints using Nb3Sn conductors were first developed on this facility. The last developments, performed on ITER PF NbTi conductors and joints proved this facility to be a versatile and useful tool for superconducting magnet developments and showed the interest of possible upgrading to finalize conductor design. (author)

  17. An experimental investigation of 1% SBLOCA on PSB-VVER test facility

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, I.A.; Dremin, G.I.; Galtchanskaia, S.A.; Gorbunov, Yu.S. [Electrogorsk Research and Engineering Center, EREC, Electrogorsk (Russian Federation); Elkin, I.V. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2001-07-01

    The paper presents the results of the three tests carried out in the PSB-VVER large-scale integral test facility. The PSB-VVER test facility is a four loop, full pressure scaled down model bearing structural similarities to the primary system of the NRP with VVER-1000 Russian design reactor. Volume-power scale is 1/300 while elevation scale is 1/1. (orig.)

  18. Soft drinks and in vitro dental erosion.

    Science.gov (United States)

    Gravelle, Brent L; Hagen Ii, Ted W; Mayhew, Susan L; Crumpton, Brooks; Sanders, Tyler; Horne, Victoria

    2015-01-01

    The purpose of this investigation was to determine to what extent the in vitro exposure of healthy teeth to various commonly consumed carbonated soft drinks may precipitate dental erosion. Forty-two healthy, extracted, previously unerupted human molars were weighed prior to, during, and after suspension in various sugared and diet or zero-calorie carbonated beverages for 20 days; the specimens were stored at room temperature while being stirred at 275 rpm. The percentage decrease in tooth weight from before to after exposure represented the weight loss due to enamel erosion; values in the experimental groups varied from 3.22% to 44.52% after 20 days' exposure. Data were subjected to analysis of variance and post hoc Scheffe testing at a level of α = 0.05. Nonsugared drinks (diet and zero-calorie) as a whole were more erosive than sugared beverages. A significant positive correlation was found between the amount of titratable acid and percentage of tooth erosion, while a significant negative correlation was revealed between the beverage pH and percentage of tooth erosion. No significant correlations were found between calcium or phosphate ion concentrations and the amount of erosion. It appears that enamel erosion is dependent on not only the beverage flow rate, pH, and amount of titratable acid, but also whether the soft drink is of the diet or zero-calorie variety, which reflects the type of artificial sweetener present.

  19. Utilizing the Fast Flux Test Facility for international passive safety testing

    International Nuclear Information System (INIS)

    Shen, P.K.; Padilla, A.; Lucoff, D.M.; Waltar, A.E.

    1991-01-01

    A two-phased approach has been undertaken in the Fast Flux Test Facility (FFTF) to conduct passive safety testing. Phase I (1986 to 1987) was structured to obtain an initial understanding of the reactivity feedback components. The planned Phase II (1992 to 1993) international program will extend the testing to include static and dynamic feedback measurements, transient and demonstration tests, and gas expansion module (GEM) reactivity tests. The primary objective is to meet the needs for safety analysis code validation, with particular emphasis on reducing the uncertainties associated with structure reactivity feedback. Program scope and predicted FFTF responses are discussed and illustrated. (author)

  20. A new test facility for the E-ELT infrared detector program

    Science.gov (United States)

    Lizon, Jean Louis; Amico, Paola; Brinkmann, Martin; Delabre, Bernard; Finger, Gert; Guidolin, Ivan Maria; Guzman, Ronald; Hinterschuster, Renate; Ives, Derek; Klein, Barbara; Quattri, Marco

    2016-08-01

    During the development of the VLT instrumentation program, ESO acquired considerable expertise in the area of infrared detectors, their testing and optimizing their performance. This can mainly be attributed to a very competent team and most importantly to the availability of a very well suited test facility, namely, IRATEC. This test facility was designed more than 15 years ago, specifically for 1K × 1K detectors such as the Aladdin device, with a maximum field of only 30 mm square. Unfortunately, this facility is no longer suited for the testing of the new larger format detectors that are going to be used to equip the future E-ELT instruments. It is projected that over the next 20 years, there will be of the order of 50-100 very large format detectors to be procured and tested for use with E-ELT first and second generation instruments and VLT third generation instruments. For this reason ESO has initiated the in-house design and construction of a dedicated new IR detector arrays test facility: the Facility for Infrared Array Testing (FIAT). It will be possible to mount up to four 60 mm square detectors in the facility, as well as mosaics of smaller detectors. It is being designed to have a very low thermal background such that detectors with 5.3 μm cut-off material can routinely be tested. The paper introduces the most important use cases for which FIAT is designed: they range from performing routine performance measurements on acquired devices, optimization setups for custom applications (like spot scan intra-pixel response, persistence and surface reflectivity measurements), test of new complex operation modes (e.g. high speed subwindowing mode for low order sensing, flexure control, etc.) and the development of new tests and calibration procedures to support the scientific requirements of the E-ELT and to allow troubleshooting the unexpected challenges that arise when a new detector system is brought online. The facility is also being designed to minimize

  1. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; Fermilab

    2006-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  2. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  3. Cavitation erosion of Ti-Ni shape memory alloy deposited coatings and Fe base shape memory alloy solid

    International Nuclear Information System (INIS)

    Hattori, Shuji; Fujisawa, Seiji; Owa, Tomonobu

    2007-01-01

    In this study, cavitation erosion tests were carried out by using thermal spraying and deposition of Ti-Ni shape memory alloy for the surface coating. The results show the test speciment of Ti-Ni thermal spraying has many initial defects, so that the erosion resistance is very low. The erosion resistance of Ti-Ni deposit is about 5-10 times higher than that of SUS 304, thus erosion resistance of Ti-Ni deposit is better than that of Ti-Ni thermal spraying. The cavitation erosion tests were carried out by using Fe-Mn-Si with shape memory and gunmetal with low elastic modulus. The erosion resistance of Fe-Mn-Si shape memory alloy solid is about 9 times higher than that of SUS 304. The erosion resistance of gunmetal is almost the same as SUS 304, because the test specimen of gunmetal has many small defects on the original surface. (author)

  4. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  5. The BNL Accelerator Test Facility control system

    International Nuclear Information System (INIS)

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  6. Development of a vacuum leak test method for large-scale superconducting magnet test facilities

    International Nuclear Information System (INIS)

    Kawano, Katsumi; Hamada, Kazuya; Okuno, Kiyoshi; Kato, Takashi

    2006-01-01

    Japan Atomic Energy Agency (JAEA) has developed leak detection technology for liquid helium temperature experiments in large-scale superconducting magnet test facilities. In JAEA, a cryosorption pump that uses an absorbent cooled by liquid nitrogen with a conventional helium leak detector, is used to detect helium gas that is leaking from pressurized welded joints of pipes and valves in a vacuum chamber. The cryosorption pump plays the role of decreasing aerial components, such as water, nitrogen and oxygen, to increase the sensitivity of helium leak detection. The established detection sensitivity for helium leak testing is 10 -10 to 10 -9 Pam 3 /s. A total of 850 welded and mechanical joints inside the cryogenic test facility for the ITER Central Solenoid Model Coil (CSMC) experiments have been tested. In the test facility, 73 units of glass fiber-reinforced plastic (GFRP) insulation break are used. The amount of helium permeation through the GFRP was recorded during helium leak testing. To distinguish helium leaks from insulation-break permeation, the helium permeation characteristic of the GFRP part was measured as a function of the time of helium charging. Helium permeation was absorbed at 6 h after helium charging, and the detected permeation is around 10 -7 Pam 3 /s. Using the helium leak test method developed, CSMC experiments have been successfully completed. (author)

  7. E-ELT M1 test facility

    Science.gov (United States)

    Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, P.; Sedghi, B.; Mueller, M.

    2012-09-01

    During the advanced design phase of the European Extremely Large Telescope (E-ELT) several critical components have been prototyped. During the last year some of them have been tested in dedicated test stands. In particular, a representative section of the E-ELT primary mirror has been assembled with 2 active and 2 passive segments. This test stand is equipped with complete prototype segment subunits, i.e. including support mechanisms, glass segments, edge sensors, position actuators as well as additional metrology for monitoring. The purpose is to test various procedures such as calibration, alignment and handling and to study control strategies. In addition the achievable component and subsystem performances are evaluated, and interface issues are identified. In this paper an overview of the activities related to the E-ELT M1 Test Facility will be given. Experiences and test results are presented.

  8. Erosion protection of carbon-epoxy composites by plasma-sprayed coatings

    International Nuclear Information System (INIS)

    Alonso, F.; Fagoaga, I.; Oregui, P.

    1991-01-01

    This paper deals with the production of plasma-sprayed erosion-resistant coatings on carbon-fibre - epoxy composites, and the study of their erosion behaviour. The heat sensitivity of the composite substrate requires a specific spraying procedure in order to avoid its degradation. In addition, several bonding layers were studied to allow spraying of the protective coatings. Two different functional coatings were sprayed onto an aluminium-glass bonding layer, a WC-12Co cermet and an Al 2 O 3 ceramic oxide. The microstructure and properties of these coatings were studied and their erosion behaviour determined experimentally in an erosion-testing device. (orig.)

  9. Anthropogenic Increase Of Soil Erosion In The Gangetic Plain Revealed By Geochemical Budget Of Erosion

    Science.gov (United States)

    Galy, V.; France-Lanord, C.; Galy, A.; Gaillardet, J.

    2007-12-01

    Tectonic and climatic factors are the key natural variables controlling the erosion through complex interactions. Nonetheless, over the last few hundred years, human activity also exerts a dominant control in response to extensive land use. The geochemical budget of erosion allows the balance between the different erosion processes to be quantified. The chemical composition of river sediment results from the chemical composition of the source rock modified by (1) weathering reactions occurring during erosion and (2) physical segregation during transport. If erosion is at steady state, the difference between the chemical composition of source rocks and that of river sediments must therefore be counterbalanced by the dissolved flux. However, climatic variations or anthropic impact can induce changes in the erosion distribution in a given basin resulting in non steady state erosion. Using a mass balance approach, the comparison of detailed geochemical data on river sediments with the current flux of dissolved elements allows the steady state hypothesis to be tested. In this study, we present a geochemical budget of weathering for the Ganga basin, one of the most densely populated basin in the world, based on detailed sampling of Himalayan rivers and of the Ganga in the delta. Sampling includes depth profile in the river, to assess the variability generated by transport processes. Himalayan river sediments are described by the dilution of an aluminous component (micas + clays + feldspars) by quartz. Ganga sediments on the other hand correspond to the mixing of bedload, similar to coarse Himalayan sediments, with an aluminous component highly depleted in alkaline elements. Compared with the dissolved flux, the depletion of alkaline elements in Ganga sediments shows that the alkaline weathering budget is imbalanced. This imbalance results from an overabundance of fine soil material in the Ganga sediment relative to other less weathered material directly derived from

  10. Fast Flux Test Facility replacement of a primary sodium pump

    International Nuclear Information System (INIS)

    Krieg, S.A.; Thomson, J.D.

    1985-01-01

    The Fast Flux Test Facility is a 400 MW Thermal Sodium Cooled Fast Reactor operated by Westinghouse Hanford Company for the US Department of Energy. During startup testing in 1979, the sodium level in one of the primary sodium pumps was inadvertently raised above the normal height. This resulted in distortion of the pump shaft. Pump replacement was carried out using special maintenance equipment. Nuclear radiation and contamination were not significant problems since replacement operations were carried out shortly after startup of the Fast Flux Test Facility

  11. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based...

  12. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  13. Development of partitioning method : cold experiment with partitioning test facility in NUCEF (I)

    International Nuclear Information System (INIS)

    Yamaguchi, Isoo; Morita, Yasuji; Kondo, Yasuo

    1996-03-01

    A test facility in which about 1.85 x 10 14 Bq of high-level liquid waste can be treated has been completed in 1994 at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) for research and development of Partitioning Method. The outline of the partitioning test facility and support equipments for it which were design terms, constructions, arrangements, functions and inspections were given in JAERI-Tech 94-030. The present report describes the results of the water transfer test and partitioning tests, which are methods of precipitation by denitration, oxalate precipitation, solvent extraction, and adsorption with inorganic ion exchanger, using nitric acid to master operation method of the test facility. As often as issues related to equipments occurred during the tests, they were improved. As to issues related to processes such as being stopped up of columns, their measures of solution were found by testing in laboratories. They were reflected in operation of the Partitioning Test Facility. Their particulars and improving points were described in this report. (author)

  14. Large-coil-test-facility fault-tree analysis

    International Nuclear Information System (INIS)

    1982-01-01

    An operating-safety study is being conducted for the Large Coil Test Facility (LCTF). The purpose of this study is to provide the facility operators and users with added insight into potential problem areas that could affect the safety of personnel or the availability of equipment. This is a preliminary report, on Phase I of that study. A central feature of the study is the incorporation of engineering judgements (by LCTF personnel) into an outside, overall view of the facility. The LCTF was analyzed in terms of 32 subsystems, each of which are subject to failure from any of 15 generic failure initiators. The study identified approximately 40 primary areas of concern which were subjected to a computer analysis as an aid in understanding the complex subsystem interactions that can occur within the facility. The study did not analyze in detail the internal structure of the subsystems at the individual component level. A companion study using traditional fault tree techniques did analyze approximately 20% of the LCTF at the component level. A comparison between these two analysis techniques is included in Section 7

  15. Heat removal tests on dry storage facilities for nuclear spent fuels

    International Nuclear Information System (INIS)

    Wataru, M.; Saegusa, T.; Koga, T.; Sakamoto, K.; Hattori, Y.

    1999-01-01

    In Japan, spent fuel generated in NPP is controlled and stored in dry storage facility away-from reactor. Natural convection cooling system of the storage facility is considered advantageous from both safety and economic point of view. In order to realize this type of facility it is necessary to develop an evaluation method for natural convection characteristics and to make a rational design taking account safety and economic factors. Heat removal tests with the reduces scale models of storage facilities (cask, vault and silo) identified the the flow pattern in the test modules. The temperature and velocity distributions were obtained and the heat transfer characteristics were evaluated

  16. Experimental Breeder Reactor II (EBR-II) Fuel-Performance Test Facility (FPTF)

    International Nuclear Information System (INIS)

    Pardini, J.A.; Brubaker, R.C.; Veith, D.J.; Giorgis, G.C.; Walker, D.E.; Seim, O.S.

    1982-01-01

    The Fuel-Performance Test Facility (FPTF) is the latest in a series of special EBR-II instrumented in-core test facilities. A flow control valve in the facility is programmed to vary the coolant flow, and thus the temperature, in an experimental-irradiation subassembly beneath it and coupled to it. In this way, thermal transients can be simulated in that subassembly without changing the temperatures in surrounding subassemblies. The FPTF also monitors sodium flow and temperature, and detects delayed neutrons in the sodium effluent from the experimental-irradiation subassembly beneath it. This facility also has an acoustical detector (high-temperature microphone) for detecting sodium boiling

  17. Fuels and materials testing capabilities in Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Baker, R.B.; Chastain, S.A.; Culley, G.E.; Ethridge, J.L.; Lovell, A.J.; Newland, D.J.; Pember, L.A.; Puigh, R.J.; Waltar, A.E.

    1989-01-01

    The Fast Flux Test Facility (FFTF) reactor, which started operating in 1982, is a 400 MWt sodium-cooled fast neutron reactor located in Hanford, Washington State, and operated by Westinghouse Hanford Co. under contract with U.S. Department of Energy. The reactor has a wide variety of functions for irradiation tests and special tests, and its major purpose is the irradiation of fuel and material for liquid metal reactor, nuclear reactor and space reactor projects. The review first describes major technical specifications and current conditions of the FFTF reactor. Then the plan for irradiation testing is outlined focusing on general features, fuel pin/assembly irradiation tests, and absorber irradiation tests. Assemblies for special tests include the material open test assembly (MOTA), fuel open test assembly (FOTA), closed loop in-reactor assembly (CLIRA), and other special fuel assemblies. An interim examination and maintenance cell (FFTF/IEM cell) and other hot cells are used for nondestructive/destructive tests and physical/mechanical properties test of material after irradiation. (N.K.)

  18. Solid particle erosion of polymers and composites

    Science.gov (United States)

    Friedrich, K.; Almajid, A. A.

    2014-05-01

    After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60°. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.

  19. In-cell facility for performing mechanical-property tests on irradiated cladding

    International Nuclear Information System (INIS)

    Yaggee, F.L.; Haglund, R.C.; Mattas, R.F.

    1978-11-01

    A new facility was developed for testing cladding sections of LWR fuel rods. This facility and the accompanying test procedures have improved the level of in-cell mechanical-testing capabilities, making them comparable to existing capabilities for unirradiated cladding. The new facility is currently being used to study the susceptibility of irradiated Zircaloy cladding from LWR fuel rods to iodine stress-corrosion cracking. Preliminary testing results indicate a systematic effect of temperature, stress and irradiation on the susceptibility of annealed and stress-relieved Zircaloy-2. Experimental data obtained to date are being used to develop a stress-corrosion cracking model for LWR fuel rod failure. SEM examination of the undisturbed fracture surface of specimens that failed by pinhole leakage provides useful information on crack propagation and morphology

  20. The Advanced Test Reactor Irradiation Facilities and Capabilities

    International Nuclear Information System (INIS)

    S. Blaine Grover; Raymond V. Furstenau

    2007-01-01

    The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments

  1. Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin

    Directory of Open Access Journals (Sweden)

    Mustafa Tüfekçioğlu

    2016-10-01

    Full Text Available Sheet erosion, one of the most important types of water erosion, takes place on the top soil as tiny soil layer movement that affects lake and stream ecosystem. This type of erosion is very important because the productive soil layer on the top soil can be lost in a very short period of time. The goal of this study was to quantify the amount of surface (sheet and rill soil erosion, and to identify areas under high erosion risk within the study area at Yusufeli province in Artvin by using RUSLE erosion methodology. As a result of the study it was found that the average annual potential soil loss by surface erosion was 3.6 ton ha-1yr-1. Additionally, the maps produced and conclusions reached by the study revealed that the areas of high erosion risk were identified spatially and measures to control erosion on some of these high risk areas can be possible with appropriate erosion control techniques.

  2. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems

  3. The forced flow high field test facility SULTAN

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.

    1984-01-01

    The construction of the 8 Tesla, 1 m bore Test Facility SULTAN - I, a common action of ENEA (I-Frascati), ECN (NL-Petten) and SIN (CH-Villigen), is completed. Results on assembly, cooldown and the first operation of the whole system are presented. The SULTAN facility provides a wide range of capability of parameter variations (field, current, cooling) for the investigation of steady state performance and stability of technical superconductors unders nominal and limiting conditions

  4. Analysis of a shield design for a DT neutron generator test facility.

    Science.gov (United States)

    Chichester, D L; Pierce, G D

    2007-10-01

    Independent numerical simulations have been performed using the MCNP5 and SCALE5 radiation transport codes to evaluate the effectiveness of a concrete facility designed to shield personnel from neutron radiation emitted from DT neutron generators. The analysis considered radiation source terms of 14.1 MeV monoenergetic neutrons located at three discrete locations within the two test vaults in the facility, calculating neutron and photon dose rates at 44 locations around the facility using both codes. In addition, dose rate contours were established throughout the facility using the MCNP5 mesh tally feature. Neutron dose rates calculated outside of the facility are predicted to be below 0.01 mrem/h at all locations when all neutron generator source terms are operating within the facility. Similarly, the neutron dose rate in one empty test vault when the adjacent test vault is being utilized is also less then 0.01 mrem/h. For most calculation locations outside the facility the photon dose rates were less then the neutron dose rates by a factor of 10 or more.

  5. Subcritical neutron generator-test facility for nuclear waste transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilo, I.V.; Kolomiets, A.A.; Kozodaev, A.M. [ITEP, Moscow (Russian Federation)] [and others

    1995-10-01

    The development of the optimal design of high power facility for NPP transmutation and for a number of applications can not be carried out without preliminary tests of much cheaper prototypes. It has been proposed to combine in new test facility 36 MeV Linac ISTRA constructed in ITEP, original Be target and subcritical blanket that will be mounted on the place of partly disassembled heavy water ITEP experimental reactor. The basic parameters of Linac, schemes of the target and blanket are described. It will provide the direct experiments on installation which can be considered as prototype for future linac driven high power facilities.

  6. Field Lysimeter Test Facility for protective barriers: Experimental plan

    International Nuclear Information System (INIS)

    Kirkham, R.R.; Gee, G.W.; Downs, J.L.

    1987-12-01

    This document was first written in October 1986 and has been used to guide the design of the Field Lysimeter Test Facility (FLTF) and to promote discussions between research and engineering staff regarding the selection of barrier treatments for inclusion in the FLTF. The construction of the lysimeter facility was completed June 28, 1987. This document describes the facility, the treatments placed in each lysimeter, types of measurements made in each lysimeter, and a brief discussion of project activities related to quality assurance, safety, and funding requirements. The treatment description and figures have been updated to reflect the lysimeter facility as constructed. 12 refs., 6 figs., 5 tabs

  7. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  8. Direct sunlight facility for testing and research in HCPV

    International Nuclear Information System (INIS)

    Sciortino, Luisa; Agnello, Simonpietro; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa; Barbera, Marco; Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo; Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo

    2014-01-01

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules

  9. Multiloop Integral System Test (MIST): MIST Facility Functional Specification

    International Nuclear Information System (INIS)

    Habib, T.F.; Koksal, C.G.; Moskal, T.E.; Rush, G.C.; Gloudemans, J.R.

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock ampersand Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs

  10. Improved E-ELT subsystem and component specifications, thanks to M1 test facility

    Science.gov (United States)

    Dimmler, M.; Marrero, J.; Leveque, S.; Barriga, Pablo; Sedghi, B.; Kornweibel, N.

    2014-07-01

    During the last 2 years ESO has operated the "M1 Test Facility", a test stand consisting of a representative section of the E-ELT primary mirror equipped with 4 complete prototype segment subunits including sensors, actuators and control system. The purpose of the test facility is twofold: it serves to study and get familiar with component and system aspects like calibration, alignment and handling procedures and suitable control strategies on real hardware long before the primary mirror (hereafter M1) components are commissioned. Secondly, and of major benefit to the project, it offered the possibility to evaluate component and subsystem performance and interface issues in a system context in such detail, that issues could be identified early enough to feed back into the subsystem and component specifications. This considerably reduces risk and cost of the production units and allows refocusing the project team on important issues for the follow-up of the production contracts. Experiences are presented in which areas the results of the M1 Test Facility particularly helped to improve subsystem specifications and areas, where additional tests were adopted independent of the main test facility. Presented are the key experiences of the M1 Test Facility which lead to improved specifications or identified the need for additional testing outside of the M1 Test Facility.

  11. The comparison of various approach to evaluation erosion risks and design control erosion measures

    Science.gov (United States)

    Kapicka, Jiri

    2015-04-01

    In the present is in the Czech Republic one methodology how to compute and compare erosion risks. This methodology contain also method to design erosion control measures. The base of this methodology is Universal Soil Loss Equation (USLE) and their result long-term average annual rate of erosion (G). This methodology is used for landscape planners. Data and statistics from database of erosion events in the Czech Republic shows that many troubles and damages are from local episodes of erosion events. An extent of these events and theirs impact are conditional to local precipitation events, current plant phase and soil conditions. These erosion events can do troubles and damages on agriculture land, municipally property and hydro components and even in a location is from point of view long-term average annual rate of erosion in good conditions. Other way how to compute and compare erosion risks is episodes approach. In this paper is presented the compare of various approach to compute erosion risks. The comparison was computed to locality from database of erosion events on agricultural land in the Czech Republic where have been records two erosion events. The study area is a simple agriculture land without any barriers that can have high influence to water flow and soil sediment transport. The computation of erosion risks (for all methodology) was based on laboratory analysis of soil samples which was sampled on study area. Results of the methodology USLE, MUSLE and results from mathematical model Erosion 3D have been compared. Variances of the results in space distribution of the places with highest soil erosion where compared and discussed. Other part presents variances of design control erosion measures where their design was done on based different methodology. The results shows variance of computed erosion risks which was done by different methodology. These variances can start discussion about different approach how compute and evaluate erosion risks in areas

  12. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  13. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    International Nuclear Information System (INIS)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available

  14. Control system of test and research facilities for nuclear energy industry

    International Nuclear Information System (INIS)

    1983-01-01

    IHI manufactures several kinds of test and research facilities used for research and development of new type power reactor and solidification system of high level radioactive liquid waste and safety research of light water reactor. These facilities are usually new type plants themselves, so that their control systems have to be designed individually for each plant with the basic conception. They have many operation modes because of their purposes of research and development, so the operation has to be automatized and requires the complicated sequence control system. In addition to these requirements, the detail design is hardly fixed on schedule and often modified during the initial start up period. Therefore, the computer control system was applied to these facilities with CRT display for man-machine communication earlier than to commercial power plants, because in the computer system the control logic is not hard wired but soft programmed and can be easily modified. In this paper, two typical computer control systems, one for PWR reflood test facility and another for mock-up test facility for solidification of liquid waste, are introduced. (author)

  15. Experience with the instrumentation tests in large sodium test facilities

    International Nuclear Information System (INIS)

    Lauhoff, Th.; Ruppert, E.; Stehle, H.; Vinzens, K.

    1976-01-01

    A facility is described for fast breeder core components (AKB) to test specially instrumented fuel dummies and blanket elements, and also absorber elements under simulated normal and extreme reactor conditions. In addition to endurance testing of a special sodium and high temperature sub-assembly, instrumentation is provided to investigate thermohydraulic and vibrational behaviour of core elements. During tests of > 3000 h at temperatures above 820 K the main sub-assembly characteristics, e.g. pressure drop, leakage flow, vibration and noise spectra can be reproduced. The use of eddy current flow meters, strain gauges, magnetostrictive noise sensors, pressure transducers, thermocouples, and acoustic surveillance devices, are described. (U.K.)

  16. Preliminary studies for monitoring erosion in pipelines by the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiboni, G.B. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Mecanica e de Materiais; Marquardt, T.A.S; SantaMaria, V.A.R.; Silva, C.H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    The aim of this work is to present some applications of Acoustic Emission (AE), which is a powerful technique for nondestructive testing in Tribology, treated here as tests of friction, wear by contact fatigue, wear by slip and wear by erosion. In this work a special attention is given to solid particle erosion and hydro-abrasive erosion, problems found in almost every pipeline that lead to local loss of material and eventually rupture of the line. The technique of AE can be used as an efficient online tool when, primarily, to monitor tribological aspects such as the rate of wear of materials, as well as detect the spread of flaws in them. In wear by erosion, specifically, the parameters of RMS and acoustic energy are capable of correlation with the type of mechanism for removal of material. As a preliminary goal, erosive tests were performed with gas (air) without erosive particles, monitored by AE, varying the surface of the samples and the internal diameter the nozzle, taking the differences in signs of AE. Correlation between parameters of RMS and amplitude were noticed with the variables of the tests, such as roughness and fluid velocity. The RMS parameter showed a exponential correction with the fluid velocity, however the amplitude signals had a linear behavior. The knowledge of these parameters is essential for the development of a system that is able to quantify the wear rate of a pipeline without taking it out of operation. (author)

  17. Study on pipe wastage mechanism by liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Higashi, Yuma; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi; Ohmori, Shuichi; Mori, Michitsugu; Tezuka, Kenichi

    2009-01-01

    Evaluation of wastage speed for nuclear power plant maintains plant reliability and power up rating is important. There are two main cause of wastage flow accelerated corrosion (FAC) and mechanical erosion. This study is to develop evaluating the wastage speed by liquid droplet impingement erosion (LDIE). LDIE often occurs at downstream of corner of pipe or orifice. In this study, the liquid drop impinging tests were conducted with the test pieces mounted on a high speed rotating disk that cross thin water down jet and produced LDIE phenomena. The amount of the wastage by LDIE was evaluated by changing the rotational speed, the impingement frequency, and test piece materials. In addition, the generation mechanism of erosion was investigated by observing the surface of the test piece with a microscope. There is a method of evaluating by the mass difference before and after experiments. But this method is not correct because error becomes larger for mass measurement in the experiment, for the lost mass by LDIE is very little amount. Therefore, the method was developed to measure the volume in the erosion part. In this method, depth of LDIE was measured by the accuracy of ±0.01μm; therefore accurate measurement of the wastage can be improved. (author)

  18. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  19. Water Impingement Erosion of Deep-Rolled Ti64

    Directory of Open Access Journals (Sweden)

    Dina Ma

    2015-08-01

    Full Text Available In this work, the Liquid Impingement Erosion (LIE performances of deep-rolling (DR treated and non-treated Ti64 were investigated. Various erosion stages, from the incubation to the terminal erosion stages, could be observed. A full factorial design of experiments was used to study the effect of DR process parameters (Feed Rate, Spindle Velocity, Number of Passes, Pressure on the residual stress distribution, microhardness and surface roughness of the treated Ti64 specimens. The DR-treated Ti64 specimens exhibited improved surface microhardness, surface roughness, and large magnitude of compressive residual stresses, which were attributed to the amount of cold work induced by the DR process. Although DR improved the mechanical properties of the Ti64, the results showed that the treatment has little or no effect on the LIE performance of Ti64 but different damage modes were observed in these two cases. Evolution of the erosion stages was described based on water-hammer pressure, stress waves, radial wall jetting, and hydraulic penetration modes. The initial erosion stages were mainly influenced by water-hammer pressure and stress waves, whereas the intermediate erosion stages were influenced by the combination of the four modes together. The final erosion stages contain the four modes, however the erosion was greatly driven by the radial jetting and hydraulic penetration modes, where more material was removed. The failure mechanism of the final stages of the LIE test of both DR-treated and non-treated Ti64 was characterized as fatigue fracture. However, a brittle fracture behavior was observed in the initial and intermediate erosion stages of the DR-treated Ti64, whereas a ductile fracture behavior was observed in the non-treated Ti64. This was concluded from the micrographs of the LIE damage through different erosion stages.

  20. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  1. Design for the National RF Test Facility at ORNL

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; Becraft, W.R.

    1983-01-01

    Conceptual and preliminary engineering design for the National RF Test Facility at Oak Ridge National Laboratory (ORNL) has been completed. The facility will comprise a single mirror configuration embodying two superconducting development coils from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program on either side of a cavity designed for full-scale antenna testing. The coils are capable of generating a 1.2-T field at the axial midpoint between the coils separated by 1.0 m. The vacuum vessel will be a stainless steel, water-cooled structure having an 85-cm-radius central cavity. The facility will have the use of a number of continuous wave (cw), radio-frequency (rf) sources at levels including 600 kW at 80 MHz and 100 kW at 28 GHz. Several plasma sources will provide a wide range of plasma environments, including densities as high as approx. 5 x 10 13 cm -3 and temperatures on the order of approx. 10 eV. Furthermore, a wide range of diagnostics will be available to the experimenter for accurate appraisal of rf testing

  2. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  3. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    Science.gov (United States)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  4. Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility

    Science.gov (United States)

    Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.

    2016-01-01

    The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.

  5. Evaluating Past and Future USCG Use of Ohmsett Test Facility

    Science.gov (United States)

    2016-10-01

    of Pages 22 22. Price Evaluating Past and Future USCG Use of Ohmsett Test Facility iv UNCLAS//Public | | CG-926 RDC | M. Fitzpatrick, et al...Opportunity Skimming System WEC Wave energy converter Evaluating Past and Future USCG Use of Ohmsett Test Facility x UNCLAS//Public | | CG-926 RDC | M...Date Summary of Effort OCT-NOV 1993 Vessel of Opportunity Skimming System (VOSS) (5 Weeks) APR-JUN 1996 Spilled Oil Recovery System (SORS) (8 Weeks

  6. Digital tape unit test facility software

    Science.gov (United States)

    Jackson, J. T.

    1971-01-01

    Two computer programs are described which are used for the collection and analysis of data from the digital tape unit test facility (DTUTF). The data are the recorded results of skew tests made on magnetic digital tapes which are used on computers as input/output media. The results of each tape test are keypunched onto an 80 column computer card. The format of the card is checked and the card image is stored on a master summary tape via the DTUTF card checking and tape updating system. The master summary tape containing the results of all the tape tests is then used for analysis as input to the DTUTF histogram generating system which produces a histogram of skew vs. date for selected data, followed by some statistical analysis of the data.

  7. Performance of smokeless gasoline fire test facility

    International Nuclear Information System (INIS)

    Griffin, J.F.; Watkins, R.A.

    1978-01-01

    Packaging for radioactive materials must perform satisfactorily when subjected to temperatures simulating an accident involving a fire. The new thermal test facility has proved to be a reliable method for satisfactorily performing the required test. The flame provides sufficient heat to assure that the test is valid, and the temperature can be controlled satisfactorily. Also, the air and water mist systems virtually eliminate any smoke and thereby exceed the local EPA requirements. The combination of the two systems provides an inexpensive, low maintenance technique for elimination of the smoke plume

  8. Micro-Combined Heat and Power Device Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has developed a test facility for micro-combined heat and power (micro-CHP) devices to measure their performance over a range of different operating strategies...

  9. Comparison of constant-rate pumping test and slug interference test results at the Hanford Site B pond multilevel test facility

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.; Thorne, P.D.

    1995-10-01

    Pacific Northwest Laboratory (PNL), as part of the Hanford Site Ground-Water Surveillance Project, is responsible for monitoring the movement and fate of contamination within the unconfined aquifer to ensure that public health and the environment are protected. To support the monitoring and assessment of contamination migration on the Hanford Site, a sitewide 3-dimensional groundwater flow model is being developed. Providing quantitative hydrologic property data is instrumental in development of the 3-dimensional model. Multilevel monitoring facilities have been installed to provide detailed, vertically distributed hydrologic characterization information for the Hanford Site unconfined aquifer. In previous reports, vertically distributed water-level and hydrochemical data obtained over time from these multi-level monitoring facilities have been evaluated and reported. This report describes the B pond facility in Section 2.0. It also provides analysis results for a constant-rate pumping test (Section 3.0) and slug interference test (Section 4.0) that were conducted at a multilevel test facility located near B Pond (see Figure 1. 1) in the central part of the Hanford Site. A hydraulic test summary (Section 5.0) that focuses on the comparison of hydraulic property estimates obtained using the two test methods is also presented. Reference materials are listed in Section 6.0

  10. Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

    2015-01-01

    This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

  11. Introduction to the PBMR heat transfer test facility

    International Nuclear Information System (INIS)

    Rousseau, P.G.; Staden, M. van

    2008-01-01

    This paper provides an introduction to the Heat Transfer Test Facility (HTTF) that is currently being developed for PBMR (Pty.) Ltd. by M-Tech Industrial (Pty.) Ltd. in association with North-West University in South Africa. The paper provides an overview of the phenomena that will be studied and the envisaged test configurations for each of these phenomena. It also shows the layouts of the different test units namely the High Pressure Test Unit (HPTU) and the High Temperature Test Unit (HTTU) and provides an overview of the planned test schedule

  12. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A.

    1995-01-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL's Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation

  13. Coal-fired MHD test progress at the Component Development and Integration Facility

    International Nuclear Information System (INIS)

    Hart, A.T.; Rivers, T.J.; Alsberg, C.M.; Filius, K.D.

    1992-01-01

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. In the fall of 1984, a 50-MW t , pressurized, slag rejecting coal-fired combustor (CFC) replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the test hardware, and current controls were installed in the spring of 1990. In the fall of 1990, the slag rejector was installed. MSE test hardware activities included installing the final workhorse channel and modifying the coalfired combustor by installing improved design and proof-of-concept (POC) test pieces. This paper discusses the involvement of this hardware in test progress during the past year. Testing during the last year emphasized the final workhorse hardware testing. This testing will be discussed. Facility modifications and system upgrades for improved operation and duration testing will be discussed. In addition, this paper will address long-term testing plans

  14. Test plan: Gas-threshold-pressure testing of the Salado Formation in the WIPP underground facility

    International Nuclear Information System (INIS)

    Saulnier, G.J. Jr.

    1992-03-01

    Performance assessment for the disposal of radioactive waste from the United States defense program in the WIPP underground facility must assess the role of post-closure was generation by waste degradation and the subsequent pressurization of the facility. be assimilated by the host formation will Whether or not the generated gas can be assimilated by the host formation will determine the ability of the gas to reach or exceed lithostatic pressure within the repository. The purpose of this test plan is (1) to present a test design to obtain realistic estimates of gas-threshold pressure for the Salado Formation WIPP underground facility including parts of the formation disturbed by the underground of the Salado, and (2) to provide a excavations and in the far-field or undisturbed part framework for changes and amendments to test objectives, practices, and procedures. Because in situ determinations of gas-threshold pressure in low-permeability media are not standard practice, the methods recommended in this testplan are adapted from permeability-testing and hydrofracture procedures. Therefore, as the gas-threshold-pressure testing program progresses, personnel assigned to the program and outside observers and reviewers will be asked for comments regarding the testing procedures. New and/or improved test procedures will be documented as amendments to this test plan, and subject to similar review procedures

  15. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    Science.gov (United States)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  16. Erosive potential of soft drinks on human enamel: An in vitro study

    Directory of Open Access Journals (Sweden)

    Yin-Lin Wang

    2014-11-01

    Conclusion: All tested soft drinks were found to be erosive. Soft drinks with high calcium contents have significantly lower erosive potential. Low pH value and high citrate content may cause more surface enamel loss. As the erosive time increased, the titratable acidity to pH 7 may be a predictor of the erosive potential for acidic soft drinks. The erosive potential of the soft drinks may be predicted based on the types of acid content, pH value, titratable acidity, and ion concentration.

  17. The determination of risk areas for muddy floods based on a worst-case erosion modelling

    Science.gov (United States)

    Saathoff, Ulfert; Schindewolf, Marcus; Annika Arévalo, Sarah

    2013-04-01

    Soil erosion and muddy floods are a frequently occurring hazard in the German state of Saxony, because of the topography and the high relief energy together with the high proportion of arable land. Still, the events are rather heterogeneously distributed and we do not know where damage is likely to occur. The goal of this study is to locate hot spots for the risk of muddy floods, with the objective to prevent high economic damage in future. We applied a soil erosion and deposition map of Saxony, calculated with the process based soil erosion model EROSION 3D. This map shows the potential soil erosion and transported sediment for worst case soil conditions and a 10 year rain storm event. Furthermore, a map of the current landuse in the state is used. From the landuse map, we extracted those areas that are especially vulnerable to muddy floods, like residential and industrial areas, infrastructural facilities (e.g. power plants, hospitals) and highways. In combination with the output of the soil erosion model, the amount of sediment, that enters each single landuse entity, is calculated. Based on this data, a state-wide map with classified risks is created. The results are furthermore used to identify the risk of muddy floods for each single municipality in Saxony. The results are evaluated with data of real occurred muddy flood events with documented locations during the period between 2000 and 2010. Additionally, plausibility tests are performed for selected areas (examination of landuse, topography and soil). The results prove to be plausible and most of the documented events can be explained by the modelled risk map. The created map can be used by different institutions like city and traffic planners, to estimate the risk of muddy flood occurrence at specific locations. Furthermore, the risk map can serve insurance companies to evaluate the insurance risk of a building. To make them easily accessible, the risk map will be published online via a web GIS

  18. Influence of Surfactants and Fluoride against Enamel Erosion.

    Science.gov (United States)

    Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler

    2018-06-06

    This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.

  19. The use of radionuclide techniques in soil erosion studies

    International Nuclear Information System (INIS)

    Bernard, C.; Mabit, L.

    2006-01-01

    Erosion is of concern since it can reduce soil productivity as a result of exportation of inorganic and organic material and nutrients out of the cultivated fields. These are the so-called 'onsite' impacts of erosion. Some of the exported materials, and the associated elements, find their way to water bodies The result is a degradation of the water quality due to suspended solids, sedimentation, eutrophication and pesticide toxicity, what is currently referred to as off-site impacts. Despite its importance, many countries lack reliable and comprehensive data on the problem, its magnitude and spatial extent. One of the reasons is that producing representative and reliable data on erosion is a long and resource intensive process.Fallout radionuclides (FRNs), such as 137 Cs, 210 Pb and 7 Be, have proven to be very powerful tracers of soil movements, that can complement interestingly more conventional approaches. Starting in the mid-1990's the IAEA has been actively involved in supporting coordinated research activities to further develop several methodological aspects related to the use of these isotopes and in the dissemination of the techniques among Member States, through the joint efforts of the Soil and Water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and the Soil Science Unit (SSU) of the FAO/IAEA Agriculture and Biotechnology Laboratory. A first Coordinated Research Project (CRP), from 1996 to 2001, helped to test and validate the basic assumptions underlying the use of FRN, to accelerate the development of conversion models used to translate FRN data into soil movements and to evaluate the effect of specific land use management on soil erosion. A second CRP, planned for 2003-2007, builds on the results of the first one to assess the efficiency of different soil conservation practices, to continue the validation of conversion models and the development of user-friendly software to

  20. Silt fences: An economical technique for measuring hillslope soil erosion

    Science.gov (United States)

    Peter R. Robichaud; Robert E. Brown

    2002-01-01

    Measuring hillslope erosion has historically been a costly, time-consuming practice. An easy to install low-cost technique using silt fences (geotextile fabric) and tipping bucket rain gauges to measure onsite hillslope erosion was developed and tested. Equipment requirements, installation procedures, statistical design, and analysis methods for measuring hillslope...

  1. Mesh erosion after abdominal sacrocolpopexy.

    Science.gov (United States)

    Kohli, N; Walsh, P M; Roat, T W; Karram, M M

    1998-12-01

    To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.

  2. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  3. Dynamic instrumentation for the K-1600 seismic test facility recommissioning

    International Nuclear Information System (INIS)

    VanHoy, B.W.

    1991-01-01

    Martin Marietta Energy Systems, Inc. is the site contractor to the Department of Energy (DOE) for three Oak Ridge, Tennessee sites, the site in Portsmouth, Ohio, and the site in Paducah, Kentucky. To provide a focus for all natural phenomena engineering related problems, Martin Marietta Energy Systems, Inc. established the Center for Natural Phenomena Engineering under the technical direction of Dr. James E. Beavers. One of the Center's mandates is the determination of seismic properties of building structures containing sensitive processes. This has led to the recommissioning of the K-1600 Seismic Test Facility. The biaxial shake table in this facility was constructed during the eighties for seismic qualification of equipment of the Gas Centrifuge Enrichment Plant. After construction of the plant was terminated the Seismic Test Facility was placed in standby where it was left for six years. The facility's original instrumentation was evaluated versus the required instrumentation to augment its new expanded mission parameters. Instrumentation selection involving technology changes, age and attrition, and the new mission goals are discussed in this paper along with the rationale and budget that were involved with each decision. The testing potential of this facility along with the instrumentation upgrades necessary to accomplish these new tasks for the Center for Natural Phenomena Engineering are considered. New uses such as seismic qualification of equipment utilized in DOE's missions at various sites and waste treatment are proposed. This instrumentation selection is discussed in detail to show the rationale and proposed used of the facility as well as the capabilities of this DOE resource

  4. 305 Building Cold Test Facility Management Plan

    International Nuclear Information System (INIS)

    Whitehurst, R.

    1994-01-01

    This document provides direction for the conduct of business in Building 305 for cold testing tools and equipment. The Cold Test Facility represents a small portion of the overall building, and as such, the work instructions already implemented in the 305 Building will be utilized. Specific to the Cold Test there are three phases for the tools and equipment as follows: 1. Development and feature tests of sludge/fuel characterization equipment, fuel containerization equipment, and sludge containerization equipment to be used in K-Basin. 2. Functional and acceptance tests of all like equipment to be installed and operated in K-Basin. 3. Training and qualification of K-Basin Operators on equipment to be installed and operated in the Basin

  5. ROSA-IV Large Scale Test Facility (LSTF) system description for second simulated fuel assembly

    International Nuclear Information System (INIS)

    1990-10-01

    The ROSA-IV Program's Large Scale Test Facility (LSTF) is a test facility for integral simulation of thermal-hydraulic response of a pressurized water reactor (PWR) during small break loss-of-coolant accidents (LOCAs) and transients. In this facility, the PWR core nuclear fuel rods are simulated using electric heater rods. The simulated fuel assembly which was installed during the facility construction was replaced with a new one in 1988. The first test with this second simulated fuel assembly was conducted in December 1988. This report describes the facility configuration and characteristics as of this date (December 1988) including the new simulated fuel assembly design and the facility changes which were made during the testing with the first assembly as well as during the renewal of the simulated fuel assembly. (author)

  6. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    Directory of Open Access Journals (Sweden)

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  7. Design of Test Facility to Evaluate Boric Acid Precipitation Following a LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong-Kwan; Song, Yong-Jae [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The U.S.NRC has identified a concern that debris associated with generic safety issue (GSI) - 191 may affect the potential precipitation of boric acid due to one or more of the following phenomena: - Reducing mass transport (i.e. mixing) between the core and the lower plenum (should debris accumulate at the core inlet) - Reduced lower plenum volume (should debris settle in the lower plenum), and, - Increased potential for boric acid precipitation (BAP) in the core (should debris accumulate in suspension in the core) To address these BAP issues, KHNP is planning to conduct validation tests by constructing a BAP test facility. This paper describes the design of test facility to evaluate BAP following a LOCA. The design of BAP test facility has been developed by KHNP. To design the test facility, test requirements and success criteria were established, and scaling analysis of power-to-volume method, Ishii-Kataoka method, and hierarchical two-tiered method were investigated. The test section is composed of two fuel assemblies with half of full of prototypic FA height. All the fuel rods are heated by the electric power supplier. The BAP tests in the presence of debris, buffering agents, and boron will be performed following the test matrix.

  8. Hot helium flow test facility summary report

    International Nuclear Information System (INIS)

    1980-06-01

    This report summarizes the results of a study conducted to assess the feasibility and cost of modifying an existing circulator test facility (CTF) at General Atomic Company (GA). The CTF originally was built to test the Delmarva Power and Light Co. steam-driven circulator. This circulator, as modified, could provide a source of hot, pressurized helium for high-temperature gas-cooled reactor (HTGR) and gas-cooled fast breeder reactor (GCFR) component testing. To achieve this purpose, a high-temperature impeller would be installed on the existing machine. The projected range of tests which could be conducted for the project is also presented, along with corresponding cost considerations

  9. Site selection report basalt waste isolation program near-surface test facility

    International Nuclear Information System (INIS)

    Sharpe, S.D.

    1978-01-01

    A site selection committee was established to review the information gathered on potential sites and to select a site for the Near-Surface Test Facility Phase I. A decision was made to use a site on the north face of Gable Mountain located on the Hanford Site. This site provided convenient access to the Pomona Basalt Flow. This flow was selected for use at this site because it exhibited the characteristics established in the primary criteria. These criteria were: the flows thickness; its dryness; its nearness to the surface; and, its similarities to basalt units which are candidates for the repository. After the selection of the Near-Surface Test Facility Phase I Site, the need arose for an additional facility to demonstrate safe handling, storage techniques, and the physical effects of radioactive materials on an in situ basalt formation. The committee reviewed the sites selected for Phase I and chose the same site for locating Phase II of the Near-Surface Test Facility

  10. Operating experience with sodium valves in the TNO-sodium test facilities

    International Nuclear Information System (INIS)

    Gasselt, M.L.G. van

    1974-01-01

    The development of sodium components for the SNR-300 in Holland has reached the stage where full scale testing in sodium has almost been finished and construction is at its height. It is against this background that a review is given of the weaknesses in one area or the other of the commercially available types of sodium valves used in TNO's smaller test facilities at Apeldoorn and TNO's 50 MW sodium components test facility at Hengelo. (U.S.)

  11. The Transrapid test facility between system development and system application

    Energy Technology Data Exchange (ETDEWEB)

    Baur, L [MVP GmbH, Muenchen (Germany)

    1996-12-31

    In the development of a new rail technology, such as the magnetic levitation, there is - in contrast to the further development of the railway technology - not the possibility to use existing routes for the technical verification of the system technology until the application. Instead of this there are two possibilities: Cost-effective preliminary development on test beds and small test facilities up to a development stage which justifies the (relatively serious) risk of realising a service route early and to conclude the system trials and verification there; cost-intensive construction of a large-scale test facility which permits an application-related verification of all important system functions and thus creates the technical pre-requisites for a low-risk system application; The presentation deals with the technical requirements of the system at the test facility the challenges and chances linked to its realisation and adjustment to the rapidly progressing state-of-the-art and which this way opens up for a minimisation of the technical application risk. (orig./HW)

  12. Conceptual studies of plasma engineering test facility

    International Nuclear Information System (INIS)

    Hiraoka, Toru; Tazima, Teruhiko; Sugihara, Masayoshi; Kasai, Masao; Shinya, Kichiro

    1979-04-01

    Conceptual studies have been made of a Plasma Engineering Test Facility, which is to be constructed following JT-60 prior to the experimental power reactor. The physical aim of this machine is to examine self-ignition conditions. This machine possesses all essential technologies for reactor plasma, i.e. superconducting magnet, remote maintenance, shielding, blanket test modules, tritium handling. Emphasis in the conceptual studies was on structural consistency of the machine and whether the machine would be constructed practically. (author)

  13. Experiment of cavitation erosion at the exit of a long orifice

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Yoshinori; Murase, Michio [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    We performed experiments to clarify mechanism of cavitation erosion and to predict cavitation erosion rate at the exit of a long orifice equipped at the chemical and volume control system in a pressurized water reactor (PWR). In order to find this mechanism, we used a high speed video camera. As the result, we observed bubble collapses near the exit of the orifice when flow condition was oscillating. So the bubble collapses due to the oscillation might cause the first stage erosion at the exit of the orifice. Using the orifice which had the cone-shaped exit, we observed that bubbles collapsed near the exit and then they collapsed at the upstream like a chain reaction. So this bubble collapse mechanism could be explained as follows: shock wave was generated by the bubble collapse near the exit, then it propagated upwards, consequently it caused the bubble collapse at the upstream. And we predicted erosion rate by evaluating the effect of the velocity and comparing the erosion resistance between the test speciment (aluminum) and the plant material (stainless steel) by means of vibratory tests. We compared the predicted erosion rate with that of the average value estimated from plant investigation, then we examined the applicability of these method to the plant evaluations. (author)

  14. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    Boulitrop, D.; Gauchon, J.P.; Lecoffre, Y.

    1984-05-01

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel [fr

  15. Low cost sic coated erosion resistant graphite

    International Nuclear Information System (INIS)

    Zafar, M.F.; Nicholls, J.R.

    2007-01-01

    The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion high density graphite is usually preferred; which is again very expensive. Another technique used to minimize the erosion is Pyrolytic Graphite (PG) coating inside the nozzle. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. The current research is focused on synthesizing, characterizing and oxidation testing of such a converted SiC layer on commercial grade graphite. (author)

  16. Summary of the last step of active test at separation facility and purification facility in Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kuroishi, Yuuki; Iseki, Tadahiro; Mitani, Akira; Takahashi, Naoki; Tsujimura, Akino; Sato, Nobuharu; Inaba, Makoto; Itagaki, Takashi

    2008-01-01

    During the last step of Active Test (AT) at Rokkasho Reprocessing Plant (RRP), the performance of the Separation Facility, mainly for pulsed columns and mixer-settlers were tested; Diluent washing efficiency, Plutonium extraction and stripping efficiency, Decontamination factors of fission products and Uranium and plutonium losses into wastes. Also, those of the Plutonium purification unit in the Purification Facility have been checked; Diluent washing efficiency, Plutonium extraction and stripping efficiency and Plutonium losses into wastes. Test results were equivalent to or better than expected values. (author)

  17. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  18. Testing of a Liquid Oxygen/Liquid Methane Reaction Control Thruster in a New Altitude Rocket Engine Test Facility

    Science.gov (United States)

    Meyer, Michael L.; Arrington, Lynn A.; Kleinhenz, Julie E.; Marshall, William M.

    2012-01-01

    A relocated rocket engine test facility, the Altitude Combustion Stand (ACS), was activated in 2009 at the NASA Glenn Research Center. This facility has the capability to test with a variety of propellants and up to a thrust level of 2000 lbf (8.9 kN) with precise measurement of propellant conditions, propellant flow rates, thrust and altitude conditions. These measurements enable accurate determination of a thruster and/or nozzle s altitude performance for both technology development and flight qualification purposes. In addition the facility was designed to enable efficient test operations to control costs for technology and advanced development projects. A liquid oxygen-liquid methane technology development test program was conducted in the ACS from the fall of 2009 to the fall of 2010. Three test phases were conducted investigating different operational modes and in addition, the project required the complexity of controlling propellant inlet temperatures over an extremely wide range. Despite the challenges of a unique propellant (liquid methane) and wide operating conditions, the facility performed well and delivered up to 24 hot fire tests in a single test day. The resulting data validated the feasibility of utilizing this propellant combination for future deep space applications.

  19. Cavitation Erosion of Nodular Cast Iron − Microstructural Effects

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2017-12-01

    Full Text Available The paper deals with susceptibility of nodular cast iron with ferritic-pearlitic matrix on cavitation erosion. Cavitation tests were carried out with the use of a cavitation erosion vibratory apparatus employing a vibration exciter operated at frequency of 20 kHz. The study allowed to determine the sequence of subsequent stages in which microstructure of cast iron in superficial regions is subject to degradation. The first features to be damaged are graphite precipitates. The ferritic matrix of the alloy turned out to be definitely less resistant to cavitation erosion compared to the pearlitic matrix component.

  20. Performance and efficiency of geotextile-supported erosion control measures during simulated rainfall events

    Science.gov (United States)

    Obriejetan, Michael; Rauch, Hans Peter; Florineth, Florin

    2013-04-01

    Erosion control systems consisting of technical and biological components are widely accepted and proven to work well if installed properly with regard to site-specific parameters. A wide range of implementation measures for this specific protection purpose is existent and new, in particular technical solutions are constantly introduced into the market. Nevertheless, especially vegetation aspects of erosion control measures are frequently disregarded and should be considered enhanced against the backdrop of the development and realization of adaptation strategies in an altering environment due to climate change associated effects. Technical auxiliaries such as geotextiles typically used for slope protection (nettings, blankets, turf reinforcement mats etc.) address specific features and due to structural and material diversity, differing effects on sediment yield, surface runoff and vegetational development seem evident. Nevertheless there is a knowledge gap concerning the mutual interaction processes between technical and biological components respectively specific comparable data on erosion-reducing effects of technical-biological erosion protection systems are insufficient. In this context, an experimental arrangement was set up to study the correlated influences of geotextiles and vegetation and determine its (combined) effects on surface runoff and soil loss during simulated heavy rainfall events. Sowing vessels serve as testing facilities which are filled with top soil under application of various organic and synthetic geotextiles and by using a reliable drought resistant seed mixture. Regular vegetational monitoring as well as two rainfall simulation runs with four repetitions of each variant were conducted. Therefore a portable rainfall simulator with standardized rainfall intensity of 240 mm h-1 and three minute rainfall duration was used to stress these systems on different stages of plant development at an inclination of 30 degrees. First results show