WorldWideScience

Sample records for erosion control materials

  1. Wind erosion control of soils using polymeric materials

    Directory of Open Access Journals (Sweden)

    Mohammad Movahedan

    2012-07-01

    Full Text Available Wind erosion of soils is one of the most important problems in environment and agriculture which could affects several fields. Agricultural lands, water reservoires, irrigation canals, drains and etc. may be affected by wind erosion and suspended particles. As a result wind erosion control needs attention in arid and semi-arid regions. In recent years, some polymeric materials have been used for improvement of structural stability, increasing aggregate stability and soil stabilization, though kind of polymer, quantity of polymer, field efficiency and durability and environmental impacts are some important parameters which should be taken into consideration. In this study, a Polyvinil Acetate-based polymer was used to treat different soils. Then polymer-added soil samples were investigated experimentally in a wind tunnel to verify the effecte of polymer on wind erosion control of the soils and the results were compared with water treated soil samples. The results of wind tunnel experiments with a maximum 26 m/s wind velocity showed that there was a significat difference between the erosion of polymer treated and water treated soil samples. Application of 25g/m2 polymer to Aeolian sands reduced the erosion of Aeolian sands samples to zero related to water treated samples. For silty and calyey soils treated by polymer, the wind erosion reduced minimum 90% in relation to water treated samples.

  2. High-Z material erosion and its control in DIII-D carbon divertor

    Directory of Open Access Journals (Sweden)

    R. Ding

    2017-08-01

    Full Text Available As High-Z materials will likely be used as plasma-facing components (PFCs in future fusion devices, the erosion of high-Z materials is a key issue for high-power, long pulse operation. High-Z material erosion and redeposition have been studied using tungsten and molybdenum coated samples exposed in well-diagnosed DIII-D divertor plasma discharges. By coupling dedicated experiments and modelling using the 3D Monte Carlo code ERO, the roles of sheath potential and background carbon impurities in determining high-Z material erosion are identified. Different methods suggested by modelling have been investigated to control high-Z material erosion in DIII-D experiments. The erosion of Mo and W is found to be strongly suppressed by local injection of methane and deuterium gases. The 13C deposition resulting from local 13CH4 injection also provides information on radial transport due to E ×B drifts and cross field diffusion. Finally, D2 gas puffing is found to cause local plasma perturbation, suppressing W erosion because of the lower effective sputtering yield of W at lower plasma temperature and for higher carbon concentration in the mixed surface layer.

  3. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  4. Statistical investigations into the erosion of material from the tool in micro-electrical discharge machining

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2018-01-01

    This paper presents a statistical study of the erosion of material from the tool electrode in a micro-electrical discharge machining process. The work involves analysis of variance and analysis of means approaches on the results of the tool electrode wear rate obtained based on design...... current (Id) and discharge frequency (fd) control the erosion of material from the tool electrode. The material erosion from the tool electrode (Me) increases linearly with the discharge frequency. As the current index increases from 20 to 35, the Me decreases linearly by 29%, and then increases by of 36......%. The current index of 35 gives the minimum material erosion from the tool. It is observed that none of the two-factor interactions are significant in controlling the erosion of the material from the tool....

  5. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  6. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  7. [Research progress on wind erosion control with polyacrylamide (PAM).

    Science.gov (United States)

    Li, Yuan Yuan; Wang, Zhan Li

    2016-03-01

    Soil wind erosion is one of the main reasons for soil degradation in the northwest region of China. Polyacrylamide (PAM), as an efficient soil amendment, has gained extensive attention in recent years since it is effective in improving the structure of surface soil due to its special physical and chemical properties. This paper introduced the physical and chemical properties of PAM, reviewed the effects of PAM on soil wind erosion amount and threshold wind velocity, as well as the effect differences of PAM in soil wind erosion control under conditions of various methods and doses. Its effect was proved by comparing with other materials in detail. Furthermore, we analyzed the mecha-nism of wind erosion control with PAM according to its influence on soil physical characteristics. Comprehensive analysis showed that, although some problems existed in wind erosion control with (PAM), PAM as a sand fixation agent, can not only enhance the capacity of the soil resis-tance to wind erosion, but also improve soil physical properties to form better soil conditions. Besides, we proposed that combination of PAM and plant growth would increase the survival rate of plants greatly, control soil wind erosion in wind-erosive areas, and improve the quality of the ecological environment construction. Thus, PAM has practically important significance and wide application prospect in controlling soil wind erosion.

  8. Instrumentation and methods evaluations for shallow land burial of waste materials: water erosion

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Murphy, E.M.; Childs, S.W.

    1981-08-01

    The erosion of geologic materials by water at shallow-land hazardous waste disposal sites can compromise waste containment. Erosion of protective soil from these sites may enhance waste transport to the biosphere through water, air, and biologic pathways. The purpose of this study was to review current methods of evaluating soil erosion and to recommend methods for use at shallow-land, hazardous waste burial sites. The basic principles of erosion control are: minimize raindrop impact on the soil surface; minimize runoff quantity; minimize runoff velocity; and maximize the soil's resistance to erosion. Generally soil erosion can be controlled when these principles are successfully applied at waste disposal sites. However, these erosion control practices may jeopardize waste containment. Typical erosion control practices may enhance waste transport by increasing subsurface moisture movement and biologic uptake of hazardous wastes. A two part monitoring program is recommended for US Department of Energy (DOE) hazardous waste disposal sites. The monitoring programs and associated measurement methods are designed to provide baseline data permitting analysis and prediction of long term erosion hazards at disposal sites. These two monitoring programs are: (1) site reconnaissance and tracking; and (2) site instrumentation. Some potential waste transport problems arising from erosion control practices are identified. This report summarizes current literature regarding water erosion prediction and control

  9. Effect of mechanical properties on erosion resistance of ductile materials

    Science.gov (United States)

    Levin, Boris Feliksovih

    Solid particle erosion (SPE) resistance of ductile Fe, Ni, and Co-based alloys as well as commercially pure Ni and Cu was studied. A model for SPE behavior of ductile materials is presented. The model incorporates the mechanical properties of the materials at the deformation conditions associated with SPE process, as well as the evolution of these properties during the erosion induced deformation. An erosion parameter was formulated based on consideration of the energy loss during erosion, and incorporates the material's hardness and toughness at high strain rates. The erosion model predicts that materials combining high hardness and toughness can exhibit good erosion resistance. To measure mechanical properties of materials, high strain rate compression tests using Hopkinson bar technique were conducted at strain rates similar to those during erosion. From these tests, failure strength and strain during erosion were estimated and used to calculate toughness of the materials. The proposed erosion parameter shows good correlation with experimentally measured erosion rates for all tested materials. To analyze subsurface deformation during erosion, microhardness and nanoindentation tests were performed on the cross-sections of the eroded materials and the size of the plastically deformed zone and the increase in materials hardness due to erosion were determined. A nanoindentation method was developed to estimate the restitution coefficient within plastically deformed regions of the eroded samples which provides a measure of the rebounding ability of a material during particle impact. An increase in hardness near the eroded surface led to an increase in restitution coefficient. Also, the stress rates imposed below the eroded surface were comparable to those measured during high strain-rate compression tests (10sp3-10sp4 ssp{-1}). A new parameter, "area under the microhardness curve" was developed that represents the ability of a material to absorb impact energy. By

  10. Coastal Erosion Control Methods

    Science.gov (United States)

    Greene, V.

    2016-12-01

    Coastal erosion is bad because the ecosystem there will be washed away and the animals could drown or be displaced and have to adapt to a new ecosystem that they are not prepared for. I'm interested in this problem because if there aren't beaches when I grow up I won't be able to do the things I would really like to do. I would like to be a marine biologist. Secondly, I don't want to see beach houses washed away. I would like to see people live in harmony with their environment. So, to study ways in which to preserve beaches I will make and use models that test different erosion controls. Two different ideas for erosion control I tested are using seaweed or a rock berm. I think the rock berm will work better than the model of seaweed because the seaweed is under water and the waves can carry the sand over the seaweed, and the rock berm will work better because the rocks will help break the waves up before they reach the shore and the waves can not carry the sand over the rocks that are above the water. To investigate this I got a container to use to model the Gulf of Mexico coastline. I performed several test runs using sand and water in the container to mimic the beach and waves from the Gulf of Mexico hitting the shoreline. I did three trials for the control (no erosion control), seaweed and a rock berm. Rock berms are a border of a raised area of rock. The model for seaweed that I used was plastic shopping bags cut into strips and glued to the bottom of my container to mimic seaweed. My results were that the control had the most erosion which ranged from 2.75 - 3 inches over 3 trials. The seaweed was a little better than the control but was very variable and ranged from 1.5 - 3 inches over 3 trials. The rock berm worked the best out of all at controlling erosion with erosion ranging from 1.5 - 2 inches. My hypothesis was correct because the rock berm did best to control erosion compared to the control which had no erosion control and the model with seaweed.

  11. Comparison of erosion and erosion control works in Macedonia, Serbia and Bulgaria

    Directory of Open Access Journals (Sweden)

    Ivan Blinkov

    2013-12-01

    Natural conditions in the Balkan countries contribute to the appearance of various erosion forms and the intensity of the erosion processes. Over the history of these countries, people who settled this region used the available natural resources to fill their needs (tree cutting, incorrect plugging, overgrazing, which contributed to soil erosion. Organized erosion control works in the Balkans started in the beginning of the 20th century (1905 in Bulgaria. The highest intensity of erosion control works were carried out during the period 1945 – 1990. Various erosion control works were launched. Bulgaria had a large anti-erosion afforestation, almost 1 million ha. Bulgaria's ecological river restoration approach has been in use for almost 50 years. Serbia contributed significant erosion and torrent control works on hilly agricultural areas. Specific screen barrages and afforestation on extremely dry areas are characteristic in Macedonia. A common characteristic for all countries is a high decrease in erosion control works in the last 20 years.

  12. The erosion and erosion products of tungsten and carbon based materials bombarded by high energy pulse electron beam

    International Nuclear Information System (INIS)

    Liu Xiang; Zhang Fu; Xu Zengyu; Liu Yong; Yoshida, N.; Noda, N.

    2002-01-01

    In this paper, the erosion behaviors and erosion products of tungsten and some carbon based materials, such as graphite, C/C composite and B 4 C/Cu functionally graded material, were investigated by using a pulse electron beam to simulate the vertical displacement events (VDE) process. The authors will focus on the forms and differences of erosion products among these testing materials, and make clear to their erosion mechanisms

  13. The influence of material hardness on liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Yamagata, Takayuki; Takano, Shotaro; Saito, Kengo; Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio

    2015-01-01

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5

  14. The influence of material hardness on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Takano, Shotaro; Saito, Kengo [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio [Central Research Institute of Electric Power Industry, 2-11-1, Iwatokita, Komae, Tokyo 201-8511 (Japan)

    2015-07-15

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5.

  15. Robotic weld overlay coatings for erosion control

    Science.gov (United States)

    The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.

  16. Categorization of erosion control matting.

    Science.gov (United States)

    2012-05-29

    Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...

  17. Wind and water erosion control on semiarid lands

    International Nuclear Information System (INIS)

    Siddoway, F.H.

    1980-01-01

    Commercial crop production on semiarid lands is difficult because insufficient water is often present to manage the system effectively. Erosion control presents the major management problem. The factors contributing to wind erosion and their interaction have been quantified into a wind erosion equation. The control of wind erosion through agronomic alteration of the various factors is discussed. The quantification and control of water erosion is also discussed with respect to the Universal Soil Loss Equation. Radioisotopes tracers have been used in conjunction with these erosion equations to measure soil losses. (author)

  18. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  19. Elevated temperature erosion studies on some materials for high temperature applications

    International Nuclear Information System (INIS)

    Zhou Jianren.

    1991-01-01

    The surface degradation of materials due to high temperature erosion or combined erosion corrosion is a serious problem in many industrial and aeronautical applications. As such, it has become an important design consideration in many situations. The materials investigated in the present studies are stainless steels, Ti-6Al-4V, alumina ceramics, with and without silicate glassy phase, and zirconia. These are some of the potential materials for use in the high temperature erosive-corrosive environments. The erosion or erosion-corrosion experiments were performed in a high temperature sand-blast type of test rig. The variables studied included the temperature, material composition, heat treatment condition, impingement velocity and angle, erodent concentration, etc. The morphological features of the eroded or eroded-corroded surfaces, substrate deformation, and oxide characteristics were studied by optical and scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis. The scratch test, single ball impact, and indentation tests were used to understand the behavior of oxide film in particle impacts. Based on these studies, the understanding of the mechanisms involved in the mechanical or combined mechanical and chemical actions in erosion was developed

  20. Experiment study on sediment erosion of Pelton turbine flow passage component material

    Science.gov (United States)

    Liu, J.; Lu, L.; Zhu, L.

    2012-11-01

    A rotating and jet experiment system with high flow velocity is designed to study the anti-erosion performance of materials. The resultant velocity of the experiment system is high to 120 m/s. The anti-erosion performance of materials used in needle and nozzle and bucket of Pelton turbine, which is widely used in power station with high head and little discharge, was studied in detail by this experiment system. The experimental studies were carried with different resultant velocities and sediment concentrations. Multiple linear regression analysis method was applied to get the exponents of velocity and sediment concentration. The exponents for different materials are different. The exponents of velocity ranged from 3 to 3.5 for three kinds of material. And the exponents of sediment concentration ranged from 0.97 to 1.03 in this experiment. The SEM analysis on the erosion surface of different materials was also carried. On the erosion condition with high resultant impact velocity, the selective cutting loss of material is the mainly erosion mechanism for metal material.

  1. Experiment study on sediment erosion of Pelton turbine flow passage component material

    International Nuclear Information System (INIS)

    Liu, J; Lu, L; Zhu, L

    2012-01-01

    A rotating and jet experiment system with high flow velocity is designed to study the anti-erosion performance of materials. The resultant velocity of the experiment system is high to 120 m/s. The anti-erosion performance of materials used in needle and nozzle and bucket of Pelton turbine, which is widely used in power station with high head and little discharge, was studied in detail by this experiment system. The experimental studies were carried with different resultant velocities and sediment concentrations. Multiple linear regression analysis method was applied to get the exponents of velocity and sediment concentration. The exponents for different materials are different. The exponents of velocity ranged from 3 to 3.5 for three kinds of material. And the exponents of sediment concentration ranged from 0.97 to 1.03 in this experiment. The SEM analysis on the erosion surface of different materials was also carried. On the erosion condition with high resultant impact velocity, the selective cutting loss of material is the mainly erosion mechanism for metal material.

  2. Materials surface modification by plasma bombardment under simultaneous erosion and redeposition conditions

    International Nuclear Information System (INIS)

    Hirooka, Y.; Goebel, D.M.; Conn, R.W.

    1986-07-01

    The first in-depth investigation of surface modification of materials by continuous, high-flux argon plasma bombardment under simultaneous erosion and redeposition conditions have been carried out for copper and 304 stainless steel using the PISCES facility. The plasma bombardment conditions are: incident ion flux range from 10 17 to 10 19 ions sec -1 cm -2 , total ion fluence is controlled between 10 19 and 10 22 ions cm -2 , electron temperature range from 5 to 15 eV, and plasma density range from 10 11 to 10 13 cm -3 . The incident ion energy is 100 eV. The sample temperature is between 300 and 700K. Under redeposition dominated conditions, the material erosion rate due to the plasma bombardment is significantly smaller (by a factor up to 10) than that can be expected from the classical ion beam sputtering yield data. It is found that surface morphologies of redeposited materials strongly depend on the plasma bombardment condition. The effect of impurities on surface morphology is elucidated in detail. First-order modelings are implemented to interpret the reduced erosion rate and the surface evolution. Also, fusion related surface properties of redeposited materials such as hydrogen reemission and plasma driven permeation have been characterized

  3. Correlating Inertial Acoustic Cavitation Emissions with Material Erosion Resistance

    Science.gov (United States)

    Ibanez, I.; Hodnett, M.; Zeqiri, B.; Frota, M. N.

    The standard ASTM G32-10 concerns the hydrodynamic cavitation erosion resistance of materials by subjecting them to acoustic cavitation generated by a sonotrode. The work reported extends this technique by detecting and monitoring the ultrasonic cavitation, considered responsible for the erosion process, specifically for coupons of aluminium-bronze alloy. The study uses a 65 mm diameter variant of NPL's cavitation sensor, which detects broadband acoustic emissions, and logs acoustic signals generated in the MHz frequency range, using NPL's Cavimeter. Cavitation readings were made throughout the exposure duration, which was carried out at discrete intervals (900 to 3600 s), allowing periodic mass measurements to be made to assess erosion loss under a strict protocol. Cavitation measurements and erosion were compared for different separations of the sonotrode tip from the material under test. The maximum variation associated with measurement of cavitation level was between 2.2% and 3.3% when the separation (λ) between the transducer horn and the specimen increased from 0.5 to 1.0 mm, for a transducer (sonotrode) displacement amplitude of 43.5 μm. Experiments conducted at the same transducer displacement amplitude show that the mass loss of the specimen -a measure of erosion- was 67.0 mg (λ = 0.5 mm) and 66.0 mg (λ = 1.0 mm).

  4. The comparison of various approach to evaluation erosion risks and design control erosion measures

    Science.gov (United States)

    Kapicka, Jiri

    2015-04-01

    In the present is in the Czech Republic one methodology how to compute and compare erosion risks. This methodology contain also method to design erosion control measures. The base of this methodology is Universal Soil Loss Equation (USLE) and their result long-term average annual rate of erosion (G). This methodology is used for landscape planners. Data and statistics from database of erosion events in the Czech Republic shows that many troubles and damages are from local episodes of erosion events. An extent of these events and theirs impact are conditional to local precipitation events, current plant phase and soil conditions. These erosion events can do troubles and damages on agriculture land, municipally property and hydro components and even in a location is from point of view long-term average annual rate of erosion in good conditions. Other way how to compute and compare erosion risks is episodes approach. In this paper is presented the compare of various approach to compute erosion risks. The comparison was computed to locality from database of erosion events on agricultural land in the Czech Republic where have been records two erosion events. The study area is a simple agriculture land without any barriers that can have high influence to water flow and soil sediment transport. The computation of erosion risks (for all methodology) was based on laboratory analysis of soil samples which was sampled on study area. Results of the methodology USLE, MUSLE and results from mathematical model Erosion 3D have been compared. Variances of the results in space distribution of the places with highest soil erosion where compared and discussed. Other part presents variances of design control erosion measures where their design was done on based different methodology. The results shows variance of computed erosion risks which was done by different methodology. These variances can start discussion about different approach how compute and evaluate erosion risks in areas

  5. Large-scale performance and design for construction activity erosion control best management practices.

    Science.gov (United States)

    Faucette, L B; Scholl, B; Beighley, R E; Governo, J

    2009-01-01

    The National Pollutant Discharge Elimination System (NPDES) Phase II requires construction activities to have erosion and sediment control best management practices (BMPs) designed and installed for site storm water management. Although BMPs are specified on storm water pollution prevention plans (SWPPPs) as part of the construction general permit (GP), there is little evidence in the research literature as to how BMPs perform or should be designed. The objectives of this study were to: (i) comparatively evaluate the performance of common construction activity erosion control BMPs under a standardized test method, (ii) evaluate the performance of compost erosion control blanket thickness, (iii) evaluate the performance of compost erosion control blankets (CECBs) on a variety of slope angles, and (iv) determine Universal Soil Loss Equation (USLE) cover management factors (C factors) for these BMPs to assist site designers and engineers. Twenty-three erosion control BMPs were evaluated using American Society of Testing and Materials (ASTM) D-6459, standard test method for determination of ECB performance in protecting hill slopes from rainfall induced erosion, on 4:1 (H:V), 3:1, and 2:1 slopes. Soil loss reduction for treatments exposed to 5 cm of rainfall on a 2:1 slope ranged from-7 to 99%. For rainfall exposure of 10 cm, treatment soil loss reduction ranged from 8 to 99%. The 2.5 and 5 cm CECBs significantly reduced erosion on slopes up to 2:1, while CECBs or= 4:1 when rainfall totals reach 5 cm. Based on the soil loss results, USLE C factors ranged from 0.01 to 0.9. These performance and design criteria should aid site planners and designers in decision-making processes.

  6. Hybrid Composite Material and Solid Particle Erosion Studies

    Science.gov (United States)

    Chellaganesh, D.; Khan, M. Adam; Ashif, A. Mohamed; Ragul Selvan, T.; Nachiappan, S.; Winowlin Jappes, J. T.

    2018-04-01

    Composite is one of the predominant material for most challenging engineering components. Most of the components are in the place of automobile structure, aircraft structures, and wind turbine blade and so on. At the same all the components are indulged to mechanical loading. Recent research on composite material are machinability, wear, tear and corrosion studies. One of the major issue on recent research was solid particle air jet erosion. In this paper hybrid composite material with and without filler. The fibre are in the combination of hemp – kevlar (60:40 wt.%) as reinforcement using epoxy as a matrix. The natural material palm and coconut shell are used as filler materials in the form of crushed powder. The process parameter involved are air jet velocity, volume of erodent and angle of impingement. Experiment performed are in eight different combinations followed from 2k (k = 3) factorial design. From the investigation surface morphology was studied using electron microscope. Mass change with respect to time are used to calculate wear rate and the influence of the process parameters. While solid particle erosion the hard particle impregnates in soft matrix material. Influence of filler material has reduced the wear and compared to plain natural composite material.

  7. Experimental and numerical studies on laser-based powder deposition of slurry erosion resistant materials

    Science.gov (United States)

    Balu, Prabu

    Slurry erosion (the removal of material caused by the randomly moving high velocity liquid-solid particle mixture) is a serious issue in crude oil drilling, mining, turbines, rocket nozzles, pumps, and boiler tubes that causes excessive downtime and high operating costs as a result of premature part failure. The goal of this research is to enhance the service life of high-value components subjected to slurry erosion by utilizing the concept of functionally graded metal-ceramic composite material (FGMCCM) in which the favorable properties of metal (toughness, ductility, etc.) and ceramic (hardness) are tailored smoothly to improve erosion resistance. Among the potential manufacturing processes, such as the laser-based powder deposition (LBPD), the plasma transferred arc (PTA), and the thermal spray the LBPD process offers good composition and microstructure control with a high deposition rate in producing the FGMCCM. This research focuses on the development of nickel-tungsten carbide (Ni-WC) based FGMCCM using the LBPD process for applications the above mentioned. The LBPD of Ni-WC involves the introduction of Ni and WC powder particle by an inert gas into the laser-formed molten pool at the substrate via nozzles. The LBPD of Ni-WC includes complex multi-physical interactions between the laser beam, Ni-WC powder, substrate, and carrier and shielding gases that are governed by a number of process variables such as laser power, scanning speed, and powder flow rate. In order to develop the best Ni-WC based slurry erosion resistant material using the LBPD process, the following challenges associated with the fabrication and the performance evaluation need to be addressed: 1) flow behavior of the Ni-WC powder and its interaction with the laser, 2) the effect of the process variables, the material compositions, and the thermo-physical properties on thermal cycles, temperature gradient, cooling rate, and residual stress formation within the material and the subsequent

  8. Evaluation of compost blankets for erosion control from disturbed lands.

    Science.gov (United States)

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier

  9. Bioengineering Technology to Control River Soil Erosion using Vetiver (Vetiveria Zizaniodes)

    Science.gov (United States)

    Sriwati, M.; Pallu, S.; Selintung, M.; Lopa, R.

    2018-04-01

    Erosion is the action of surface processes (such as water flow or wind) that removes soil, rock or dissolved material from one location on the earth’s crust, and then transport it away to another location. Bioengineering is an attempt to maximise the use of vegetation components along riverbanks to cope with landslides and erosion of river cliffs and another riverbank damage. This study aims to analyze the bioengineering of Vetiver as a surface layer for soil erosion control using slope of 100, 200, and 300. This study is conducted with 3 variations of rain intensity (I), at 103 mm/hour, 107 mm/hour, and 130 mm/hour by using rainfall simulator tool. In addition, the USLE (Universal Soil Loss Equation) method is used in order to measure the rate of soil erosion. In this study, there are few USLE model parameters were used such as rainfall erosivity factor, soil erodibility factor, length-loss slope and stepness factor, cover management factor, and support practise factor. The results demonstrated that average of reduction of erosion rate using Vetiver, under 3 various rainfalls, namely rainfall intensity 103 mm/hr had reduced 84.971%, rainfall intensity 107 mm/hr had reduced 86.583 %, rainfall intensity 130 mm/hr had reduced 65.851%.

  10. Can control of soil erosion mitigate water pollution by sediments?

    Science.gov (United States)

    Rickson, R J

    2014-01-15

    The detrimental impact of sediment and associated pollutants on water quality is widely acknowledged, with many watercourses in the UK failing to meet the standard of 'good ecological status'. Catchment sediment budgets show that hill slope erosion processes can be significant sources of waterborne sediment, with rates of erosion likely to increase given predicted future weather patterns. However, linking on-site erosion rates with off-site impacts is complicated because of the limited data on soil erosion rates in the UK and the dynamic nature of the source-pathway-receptor continuum over space and time. Even so, soil erosion control measures are designed to reduce sediment production (source) and mobilisation/transport (pathway) on hill slopes, with consequent mitigation of pollution incidents in watercourses (receptors). The purpose of this paper is to review the scientific evidence of the effectiveness of erosion control measures used in the UK to reduce sediment loads of hill slope origin in watercourses. Although over 73 soil erosion mitigation measures have been identified from the literature, empirical data on erosion control effectiveness are limited. Baseline comparisons for the 18 measures where data do exist reveal erosion control effectiveness is highly variable over time and between study locations. Given the limitations of the evidence base in terms of geographical coverage and duration of monitoring, performance of the different measures cannot be extrapolated to other areas. This uncertainty in effectiveness has implications for implementing erosion/sediment risk reduction policies, where quantified targets are stipulated, as is the case in the EU Freshwater Fish and draft Soil Framework Directives. Also, demonstrating technical effectiveness of erosion control measures alone will not encourage uptake by land managers: quantifying the costs and benefits of adopting erosion mitigation is equally important, but these are uncertain and difficult to

  11. Cloud forest restoration for erosion control in a Kichwa community of the Ecuadorian central Andes Mountains

    Science.gov (United States)

    Backus, L.; Giordanengo, J.; Sacatoro, I.

    2013-12-01

    The Denver Professional Chapter of Engineers Without Borders (EWB) has begun conducting erosion control projects in the Kichwa communities of Malingua Pamba in the Andes Mountains south of Quito, Ecuador. In many high elevation areas in this region, erosion of volcanic soils on steep hillsides (i.e., food crops. Following a 2011 investigation of over 75 erosion sites, the multidisciplinary Erosion Control team traveled to Malingua Pamba in October 2012 to conduct final design and project implementation at 5 sites. In partnership with the local communities, we installed woody cloud forest species, grass (sig-sig) contour hedges, erosion matting, and rock structures (toe walls, plunge pools, bank armoring, cross vanes, contour infiltration ditches, etc.) to reduce incision rates and risk of slump failures, facilitate aggradation, and hasten revegetation. In keeping with the EWB goal of project sustainability, we used primarily locally available resources. High school students of the community grew 5000 native trees and some naturalized shrubs in a nursery started by the school principal, hand weavers produced jute erosion mats, and rocks were provided by a nearby quarry. Where possible, local rock was harvested from landslide areas and other local erosion features. Based on follow up reports and photographs from the community and EWB travelers, the approach of using locally available materials installed by the community is successful; plants are growing well and erosion control structures have remained in place throughout the November to April rainy season. The community has continued planting native vegetation at several additional erosion sites. Formal monitoring will be conducted in October 2013, followed by analysis of data to determine if induced meandering and other low-maintenance erosion control techniques are working as planned. For comparison of techniques, we will consider installing check dams in comparable gullies. The October 2013 project will also

  12. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  13. Erosion and erosion-corrosion

    International Nuclear Information System (INIS)

    Isomoto, Yoshinori

    2008-01-01

    It is very difficult to interpret the technical term of erosion-corrosion' which is sometimes encountered in piping systems of power plants, because of complicated mechanisms and several confusing definitions of erosion-corrosion phenomena. 'FAC (flow accelerated corrosion)' is recently introduced as wall thinning of materials in power plant systems, as a representative of 'erosion-corrosion'. FAC is, however, not necessarily well understood and compared with erosion-corrosion. This paper describes firstly the origin, definition and fundamental understandings of erosion and erosion-corrosion, in order to reconsider and reconfirm the phenomena of erosion, erosion-corrosion and FAC. Next, typical mapping of erosion, corrosion, erosion-corrosion and FAC are introduced in flow velocity and environmental corrosiveness axes. The concept of damage rate in erosion-corrosion is finally discussed, connecting dissolution rate, mass transfer of metal ions in a metal oxide film and film growth. (author)

  14. Erosion control works and the intensity of soil erosion in the upper part of the river Toplica drainage basin

    International Nuclear Information System (INIS)

    Kostadinov, S; Dragovic, N; Zlatic, M; Todosijevic, M

    2008-01-01

    Aiming at the protection of the future storage 'Selova' against erosion and sediment, and also to protect the settlements and roads in the drainage basin against torrential floods, erosion control works in the upper part of the river Toplica basin, upstream of the storage 'Selova', started in 1947. The works included building-technical works (check dams) and biological works (afforestation and grassing of bare lands and other erosion risk areas). Within the period 1947-2006, the following erosion control works were executed: afforestation of bare lands on the slopes 2,257.00 ha, grassing of bare lands 1,520.00 ha, and altogether 54 dams were constructed in the river Toplica tributaries. This caused the decrease of sediment transport in the main flow of the river Toplica. This paper, based on the field research conducted in two time periods: 1988 and in the period 2004-2007, presents the state of erosion in the basin before erosion control works; type and scope of erosion control works and their effect on the intensity of erosion in the river Toplica basin upstream of the future storage 'Selova'.

  15. Application of Computer Simulation to Identify Erosion Resistance of Materials of Wet-steam Turbine Blades

    Science.gov (United States)

    Korostelyov, D. A.; Dergachyov, K. V.

    2017-10-01

    A problem of identifying the efficiency of using materials, coatings, linings and solderings of wet-steam turbine rotor blades by means of computer simulation is considered. Numerical experiments to define erosion resistance of materials of wet-steam turbine blades are described. Kinetic curves for erosion area and weight of the worn rotor blade material of turbines K-300-240 LMP and atomic icebreaker “Lenin” have been defined. The conclusion about the effectiveness of using different erosion-resistant materials and protection configuration of rotor blades is also made.

  16. Modeling of technical soil-erosion control measures and its impact on soil erosion off-site effects within urban areas

    Science.gov (United States)

    Dostal, Tomas; Devaty, Jan

    2013-04-01

    soil-erosion control measures induced strong change in overall amount of eroded/deposited material as well as spatial erosion/deposition patterns within the settlement areas. Validation of modeled scenarios and effects on measured data was not possible as no real runoff event was recorded in the target area so the conclusions were made by comparing the different modeled scenarios. Advantages and disadvantages of used approach to simulate technical soil-erosion conservation measures are evaluated and discussed as well as the impact of use of high-resolution elevation data on the intensity and spatial distribution of soil erosion and deposition. Model approved ability to show detailed distribution of damages over target urban area, which is very sensitive for off-site effects of surface runoff, soil erosion and sediment transport and also high sensitivity to input data, especially to DEM, which affects surface runoff pattern and therefore intensity of harmful effects. Acknowledgement: This paper has been supported by projects: Ministry of the interior of the CR VG 20122015092, and project NAZV QI91C008 TPEO.

  17. Forest road erosion control using multiobjective optimization

    Science.gov (United States)

    Matthew Thompson; John Sessions; Kevin Boston; Arne Skaugset; David Tomberlin

    2010-01-01

    Forest roads are associated with accelerated erosion and can be a major source of sediment delivery to streams, which can degrade aquatic habitat. Controlling road-related erosion therefore remains an important issue for forest stewardship. Managers are faced with the task to develop efficient road management strategies to achieve conflicting environmental and economic...

  18. Airphoto analysis of erosion control practices

    Science.gov (United States)

    Morgan, K. M.; Morris-Jones, D. R.; Lee, G. B.; Kiefer, R. W.

    1980-01-01

    The Universal Soil Loss Equation (USLE) is a widely accepted tool for erosion prediction and conservation planning. In this study, airphoto analysis of color and color infrared 70 mm photography at a scale of 1:60,000 was used to determine the erosion control practice factor in the USLE. Information about contour tillage, contour strip cropping, and grass waterways was obtained from aerial photography for Pheasant Branch Creek watershed in Dane County, Wisconsin.

  19. Categorization of erosion control matting for slope applications.

    Science.gov (United States)

    2013-12-25

    Erosion control is an important aspect of any Georgia Department of Transportation (GDOT) construction project, with the extreme negative impacts of high sediment loads in natural waterways having been well documented. Selection of a proper erosion c...

  20. Can we manipulate root system architecture to control soil erosion?

    Science.gov (United States)

    Ola, A.; Dodd, I. C.; Quinton, J. N.

    2015-09-01

    Soil erosion is a major threat to soil functioning. The use of vegetation to control erosion has long been a topic for research. Much of this research has focused on the above-ground properties of plants, demonstrating the important role that canopy structure and cover plays in the reduction of water erosion processes. Less attention has been paid to plant roots. Plant roots are a crucial yet under-researched factor for reducing water erosion through their ability to alter soil properties, such as aggregate stability, hydraulic function and shear strength. However, there have been few attempts to specifically manipulate plant root system properties to reduce soil erosion. Therefore, this review aims to explore the effects that plant roots have on soil erosion and hydrological processes, and how plant root architecture might be manipulated to enhance its erosion control properties. We demonstrate the importance of root system architecture for the control of soil erosion. We also show that some plant species respond to nutrient-enriched patches by increasing lateral root proliferation. The erosional response to root proliferation will depend upon its location: at the soil surface dense mats of roots may reduce soil erodibility but block soil pores thereby limiting infiltration, enhancing runoff. Additionally, in nutrient-deprived regions, root hair development may be stimulated and larger amounts of root exudates released, thereby improving aggregate stability and decreasing erodibility. Utilizing nutrient placement at specific depths may represent a potentially new, easily implemented, management strategy on nutrient-poor agricultural land or constructed slopes to control erosion, and further research in this area is needed.

  1. Extrusion and erosion of bentonite buffer material in a flow-through, horizontal, artificial fracture system

    International Nuclear Information System (INIS)

    Schatz, Timothy; Kanerva, Noora; Martikainen, Jari

    2012-01-01

    Document available in extended abstract form only. One scenario of interest for the long-term safety assessment of a spent nuclear fuel repository involves the loss of bentonite buffer material through contact with dilute groundwater at a transmissive fracture interface [SKB 2011, Posiva 2012]. In order to simulate the potential extrusion/erosion behaviour of bentonite buffer material in such an environment, a series of small-scale, flow-through, artificial fracture experiments were performed in which swelling clay material could extrude/erode into a well defined, system (see Figure 1). The fracture dimensions were 24 cm (length) x 24 cm (width) x 1 mm (aperture) and the compacted sample dimensions were 2 cm (height) x 2 cm (diameter). Extrusion/erosion effects were analysed against solution chemistry (salt concentration and composition), material composition (sodium montmorillonite and admixtures with calcium montmorillonite), and flow velocity. No erosion was observed for sodium montmorillonite against solution compositions from 10 to 0.5 g/L NaCl. Comparatively, most reports in the literature indicate that a concentration of 0.5 g/L NaCl (8.6 mM) is below, in some cases well below, the (experimentally observed) critical coagulation concentration (CCC) for the colloidal sodium montmorillonite/sodium chloride system [Garcia-Garcia et al. 2007]. It was also the case that no erosion was observed for 50/50 calcium/sodium montmorillonite against 0.5 g/L NaCl. Overall, the results of the flow-through, artificial fracture tests, indicate stability to erosion down to a dilute concentration range between 8 to 4 mM NaCl for both sodium and 50/50 calcium/sodium montmorillonite. These limits compare favorably to the erosion stability limits observed by Birgersson et al. [2009] in the case of the latter material but less so for the former. A number of tests were conducted for which measurable erosion was observed. The calculated mass loss rates for these tests, expressed in

  2. Urban Runoff: Model Ordinances for Erosion and Sediment Control

    Science.gov (United States)

    The model ordinance in this section borrows language from the erosion and sediment control ordinance features that might help prevent erosion and sedimentation and protect natural resources more fully.

  3. Erosion control and protection from torrential floods in Serbia-spatial aspects

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2011-01-01

    Full Text Available Torrential floods represent the most frequent phenomenon within the category of “natural risks” in Serbia. The representative examples are the torrential floods on the experimental watersheds of the rivers Manastirica (June 1996 and Kamišna (May 2007. Hystorical maximal discharges (Qmaxh were reconstructed by use of ″hydraulics flood traces″ method. Computations of maximal discharges (Qmaxc, under hydrological conditions after the restoration of the watersheds, were performed by use of a synthetic unit hydrograph theory and Soil Conservation Service methodology. Area sediment yields and intensity of erosion processes were estimated on the basis of the “Erosion Potential Method”. The actual state of erosion processes is represented by the coefficients of erosion Z=0.475 (Manastirica and Z=0.470 (Kamišna. Restoration works have been planned with a view to decreasing yields of erosive material, increasing water infiltration capacity and reducing flood runoff. The planned state of erosion processes is represented by the coefficients of erosion Z=0.343 (Manastirica and Z=0.385 (Kamišna. The effects of hydrological changes were estimated by the comparison of historical maximal discharges and computed maximal discharges (under the conditions after the planned restoration. The realisation of restoration works will help decrease annual yields of erosive material from Wа=24357 m3 to Wа=16198.0 m3 (Manastirica and from Wа=19974 m3 to Wа=14434 m3 (Kamišna. The values of historical maximal discharges (QmaxhMan=154.9 m3•s-1; QmaxhKam=76.3 m3•s-1 were significantly decreased after the restoration (QmaxcMan=84.5 m3 •s-1; QmaxcKam=43.7 m3•s-1, indicating the improvement of hydrological conditions, as a direct consequence of erosion and torrent control works. Integrated management involves biotechnical works on the watershed, technical works on the hydrographic network within a precisely defined administrative and spatial framework in

  4. Evaluation of different techniques for erosion control on different roadcuts in its first year of implantation

    Science.gov (United States)

    Gomez, Jose Alfonso; Rodríguez, Abraham; Viedma, Antonio; Contreras, Valentin; Vanwalleghem, Tom; Taguas, Encarnación V.; Giráldez, Juan Vicente

    2014-05-01

    Linear infrastructures, such as highways and railways, present a large environmental impact. Among this impact is the effect on landscape and the modification of the hydrological conditions of the area and an increase in erosive processes (Martin et al., 2011). The increase of erosive processes is specially significant in roadbanks, resulting in high maintenance costs as well as security risks for the use of the infrastructure if it is not properly controlled. Among roadbanks, roadcuts are specially challenging areas for erosion control and ecological restoration, due to their usually steep slope gradient and poor conditions for establishment of vegetation. There are several studies in Mediterranean conditions indicating how the combination of semiarid conditions with, sporadic, intense rainfall events makes a successful vegetation development and erosion control in motorway roadbanks extremely difficult (e.g. Andrés and Jorbat, 2000; Bochet and García-Fayos, 2004). This communication presents the results of the first year evaluation (hydrological year 2012-2013) of five different erosion control strategies on six different locations under different materials on roadcuts of motorways or railways in Andalusia during 2012-2013 using natural rainfall and simulated rainfall. The six sites were located on roadcuts between 10 and 20 m long on slope steepness ranging from 40 to 90%, in motorways and railways spread over different materials in Andalusia. Site 1, Huelva was located on consolidated sand material, sites 2, Osuna I, site 3, Osuna II and site 4, Mancha Real, on marls. Sites 5, Guadix, and 6, Fiñana, were located on phyllites, in comparison a harder material. At each site 12 plots (10 m long and 2 m wide) were installed using metal sheets buried 10 cm within the soil with their longest side in the direction of the roadcut maximum slope. Six different treatments were evaluated at each site, two replications each. These treatments were: 1- A control with bare

  5. The use of arc-erosion as a patterning technique for transparent conductive materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Trillo, J. [Dpt. Ingenieria de Circuitos y Sistemas, EUIT Telecomunicacion, U. P. M, 28031 Madrid (Spain); Alvarez, A.L., E-mail: angelluis.alvarez@urjc.es [Dpt. Tecnologia Electronica, Univ. Rey Juan Carlos, Mostoles, 28933 Madrid (Spain); Coya, C. [Dpt. Tecnologia Electronica, Univ. Rey Juan Carlos, Mostoles, 28933 Madrid (Spain); Cespedes, E.; Espinosa, A. [Instituto de Ciencia de los Materiales (CSIC), Cantoblanco, 28049 Madrid (Spain)

    2011-12-01

    Within the framework of cost-effective patterning processes a novel technique that saves photolithographic processing steps, easily scalable to wide area production, is proposed. It consists of a tip-probe, which is biased with respect to a conductive substrate and slides on it, keeping contact with the material. The sliding tip leaves an insulating path (which currently is as narrow as 30 {mu}m) across the material, which enables the drawing of tracks and pads electrically insulated from the surroundings. This ablation method, called arc-erosion, requires an experimental set up that had to be customized for this purpose and is described. Upon instrumental monitoring, a brief proposal of the physics below this process is also presented. As a result an optimal control of the patterning process has been acquired. The system has been used on different substrates, including indium tin oxide either on glass or on polyethylene terephtalate, as well as alloys like Au/Cr, and Al. The influence of conditions such as tip speed and applied voltage is discussed. - Research highlights: Black-Right-Pointing-Pointer An experimental set up has been arranged to use arc erosion as a cost-effective patterning technique of conductive materials (ITO, and thin film metals). Black-Right-Pointing-Pointer Monitoring of the process has revealed that patterning is performed by a sequence of electrical discharges, assisted by the bypass capacitor at the source output. Black-Right-Pointing-Pointer This process has been controlled optimizing the patterning conditions and quality over different materials.

  6. Tectonic controls of Holocene erosion in a glaciated orogen

    OpenAIRE

    Adams, Byron A.; Ehlers, Todd A.

    2018-01-01

    Recent work has highlighted a strong, worldwide, glacial impact of orogen erosion rates over the last 2 Ma. While it may be assumed that glaciers increased erosion rates when active, the degree to which past glaciations influence Holocene erosion rates through the adjustment of topography is not known. In this study, we investigate the influence of long-term tectonic and post-glacial topographic controls on erosion in a glaciated orogen, the Olympic Mountains, USA. We present 14 new 10Be and ...

  7. Investigation of erosion mechanisms and erosion products in divertor armour materials under conditions relevant to elms and mitigated disruptions in ITER

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Klimov, N.S.; Kovalenko, D.V.; Moskaleva, A.A.; Podkovyrov, V.L.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.S.; Poznyak, I.M.

    2008-01-01

    Carbon fibre composite (CFC) and tungsten were irradiated by intense plasma streams at plasma gun facilities MK-200UG and QSPA-T. The targets were tested by plasma loads relevant to Edge Localised Modes (ELM) and mitigated disruptions in ITER. Onset condition of material erosion and properties of erosion products have been studied

  8. Use of gabions and vegetation in erosion-control works

    Directory of Open Access Journals (Sweden)

    Matić Vjačeslava

    2009-01-01

    Full Text Available Heavy winter and spring rainfall during the years 2005, -06, -07, and -08 brought about numerous torrential floods and landslides throughout the world and in Serbia. They endangered people, animals, settlements, fields, and roads. This reminded us of a readily available, cheap, and efficient material: stone in wire baskets of doubly galvanized wire of various sizes and forms - gabions - which are also long-lasting, flexible, and ecological. If made according to prescribed standards, they offer a permanent solution for many erosion-control problems. In addition, they can be used in urgent interventions to protect the lives of humans, animals, and plants and prevent of immense material losses. This paper calls attention to an unjustifiably neglected but important material, easily manipulated and with significant advantages compared to other structural materials, as well as to the possibility of its successful combination with vegetation, viz., willow (Salix sp. cuttings and grasses.

  9. Evaluation of chemical stabilizers and windscreens for wind erosion control of uranium mill tailings

    International Nuclear Information System (INIS)

    Elmore, M.R.; Hartley, J.N.

    1984-08-01

    Potential wind erosion of uranium mill tailings is a concern for the surface disposal of tailings at uranium mills. Wind-blown tailings may subsequently be redeposited on areas outside the impoundment. Pacific Northwest Laboratory (PNL) is investigating techniques for fugitive dust control at uranium mill tailings piles. Laboratory tests, including wind tunnel studies, were conducted to evaluate the relative effectiveness of 43 chemical stabilizers. Seventeen of the more promising stabilizers were applied to test plots on a uranium tailings pile at the American Nuclear Corporation-Gas Hills Project mill site in central Wyoming. The durabilities of these materials under actual site conditions were evaluated over time. In addition, field testing of commercially available windscreens was conducted. Test panels were constructed of eight different materials at the Wyoming test site to compare their durability. A second test site was established near PNL to evaluate the effectiveness of windscreens at reducing wind velocity, and thereby reduce the potential for wind erosion of mill tailings. Results of the laboratory land field tests of the chemical stabilizers and windscreens are presented, along with costs versus effectiveness of these techniques for control of wind erosion at mill tailings piles. 12 references, 4 figures, 6 tables

  10. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  11. Variations in erosive wear of metallic materials with temperature via the electron work function

    International Nuclear Information System (INIS)

    Huang, Xiaochen; Yu, Bin; Yan, X.G.; Li, D.Y.

    2016-01-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  12. 48 CFR 436.574 - Control of erosion, sedimentation, and pollution.

    Science.gov (United States)

    2010-10-01

    ..., sedimentation, and pollution. 436.574 Section 436.574 Federal Acquisition Regulations System DEPARTMENT OF... 436.574 Control of erosion, sedimentation, and pollution. The contracting officer shall insert the clause at 452.236-74, Control of Erosion, Sedimentation and Pollution, if there is a need for applying...

  13. Dust Erosion Performance of Candidate Motorcase Thermal Protection Materials.

    Science.gov (United States)

    1980-03-10

    REFERENCE DESCRIPTION SOURCE NUMBER 4.01 NBR B. F. Goodrich Aerospace and Defense Products (Nitrile butadiene 500 South Main Street rubber ) Akron, Ohio...material degradation occurs. 5.3 BALLISTIC RANGES Ballistic ranges are widely used for reentry erosion testing for two reasons: 1) no other type of facility...DET REFERENCE OTHER COMMENTS NUMBER DESIGNATION 2002 KEVLAR-EPOXY STAGE 3 MOTORCASE MATERIAL MOTORCAS E 2402 NBR 68 2403 NBR 69 2404 NBR -19709-6A (60

  14. Elevated temperature erosive wear of metallic materials

    International Nuclear Information System (INIS)

    Roy, Manish

    2006-01-01

    Solid particle erosion of metals and alloys at elevated temperature is governed by the nature of the interaction between erosion and oxidation, which, in turn, is determined by the thickness, pliability, morphology, adhesion characteristics and toughness of the oxide scale. The main objective of this paper is to critically review the present state of understanding of the elevated temperature erosion behaviour of metals and alloys. First of all, the erosion testing at elevated temperature is reviewed. This is followed by discussion of the essential features of elevated temperature erosion with special emphasis on microscopic observation, giving details of the erosion-oxidation (E-O) interaction mechanisms. The E-O interaction has been elaborated in the subsequent section. The E-O interaction includes E-O maps, analysis of transition criteria from one erosion mechanism to another mechanism and quantification of enhanced oxidation kinetics during erosion. Finally, the relevant areas for future studies are indicated. (topical review)

  15. Investigating erosion of building materials used in an installation for pneumatic transport of coke breeze and coal

    Energy Technology Data Exchange (ETDEWEB)

    Bandrowski, J.; Kot-Borkowska, Z.; Misztal, M.; Raczek, J.; Kaczmarzyk, G.

    1980-09-01

    This article investigates the influence of the following factors on erosion of building material used in pneumatic transport of coal and coke breeze: intensity of coal or coke breeze flow within the range of 47 to 120 kg/h for coke and 99 to 165 kg/h for coal; speed of solid material particles within the range 3.71 to 7.97 m/s for coke, and 3.30 to 7.58 m/s for coal; duration of the experiments 0.5 to 1.5 h for coke and 2.0 to 5.0 for coal; angle of inclination of the sample of building material 30 to 60 degrees for both coal and coke breeze. Three types of construction material used in pneumatic transport were tested: steel, concrete and chamotte bricks. Investigations show that concrete is characterized by the highest erosion, chamotte bricks by medium erosion and steel by the lowest erosion. As a result of mathematical processing of experimental data, empirical models of erosion of the three materials are constructed. (7 refs.)

  16. Control of erosive tooth wear: possibilities and rationale

    Directory of Open Access Journals (Sweden)

    Mônica Campos Serra

    2009-06-01

    Full Text Available Dental erosion is a type of wear caused by non bacterial acids or chelation. There is evidence of a significant increase in the prevalence of dental wear in the deciduous and permanent teeth as a consequence of the frequent intake of acidic foods and drinks, or due to gastric acid which may reach the oral cavity following reflux or vomiting episodes. The presence of acids is a prerequisite for dental erosion, but the erosive wear is complex and depends on the interaction of biological, chemical and behavioral factors. Even though erosion may be defined or described as an isolated process, in clinical situations other wear phenomena are expected to occur concomitantly, such as abrasive wear (which occurs, e.g, due to tooth brushing or mastication. In order to control dental loss due to erosive wear it is crucial to take into account its multifactorial nature, which predisposes some individuals to the condition.

  17. Simulation of simultaneous erosion-redeposition processes on material surfaces used in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.; Gavarini, Hebe O.

    1999-01-01

    Simultaneous erosion and redeposition of sputtered plasma-facing material has been studied using a 3-D computational model. The equations that govern the processes are reduced to a set of nonlinear particle-diffusion equations in which different particle interactions may be taken into account in the corresponding source terms. The effects of a magnetic field with arbitrary direction and of electrostatic potential are also included. The model is based on a combined diffusion limited aggregation and deaggregation code. Hydrogen and deuterium plasmas have been used to simulate erosion-redeposition of low-Z materials such as C, Be and B in the range of sample temperatures where chemical erosion is suppressed and the net erosion yield is due to physical sputtering only. The dependence of net erosion yield on surface temperature, plasma-particles densities and temperatures, and magnetic field intensity and direction is investigated. Computational results emphasize the importance of a magnetic field with appropriate direction and intensity in order to reduce the sputtering effects on surfaces exposed to plasma interactions. (author)

  18. Ice-Release and Erosion Resistant Materials for Wind Turbines

    Science.gov (United States)

    Zhang, Wei; Brinn, Cameron; Cook, Alex; Pascual-Marquez, Fernando

    2017-11-01

    Icing conditions may cause wind turbine generators to partially lose productivity or to be completely shut down to avoid structural damage. At present, commercially available technologies to mitigate this problem consist of expensive, energy hungry heating elements, which costs roughly 70,000 euro per medium size turbine. Conventional passive ice protection coating systems heavily rely on delicate surface structures and expensive materials to create water repellent superhydrophobic / low surface energy surfaces, which have been proven to be ineffective against ice accumulation. The lack of performance among conventional ice protection materials stems from a flaw in the approach to the problem: failure to recognize that water in its liquid form (WATER) and water in its solid form (ICE) are two different things. Something that works for WATER does not automatically work for ICE. Another reason is that many superhydrophobic materials are often reliant upon often fragile micro-structured surfaces to achieve their intended effects. This paper discusses a fundamentally different approach to the creation of a robust, low cost, durable, and multifunctional materials for ice release and erosion resistance. This National Science Foundation sponsored ice-release coating technology holds promise for protecting wind turbine blades and towers, thus potentially increasing reliability for power generation under icing conditions. Because of the vulnerability of wind turbine blades to ice buildup and erosion damages, wind farm facilities stand to reap considerable benefits.

  19. Comparative evaluation of experimental and theoretical erosion resistance of materials upon electric pulse treatment

    International Nuclear Information System (INIS)

    Karpman, M.G.; Fetisov, G.P.; Bologov, D.V.

    1999-01-01

    Using the Palatnik criterion a comparative analysis is performed of the theoretical and experimental data on comparative electric erosion and erosion resistance of the electrodes and parts made of different materials upon their treatment using electric pulse technique. A reasonable qualitative agreement of the theoretical and experimental data indicates the possibility of using the Palatnik criterion to predict the serviceability of different pairs of the materials in conditions of electroerosion wear [ru

  20. Application Of GIS Software For Erosion Control In The Watershed Scale

    Directory of Open Access Journals (Sweden)

    C. Setyawan

    2017-01-01

    Full Text Available Land degradation in form of soil erosion due to uncontrolled farming is occurred in many watersheds of Indonesia particularly in Java Island. Soil erosion is decreasing watershed function as a rainwater harvesting area. Good conservation practices need to be applied to prevent more degradation. This study aims to investigate the effectiveness of land conservation practice for erosion control through land use modeling in the watershed scale. The modeling was applied in the Sempor watershed Indonesia. Three scenarios of land use were used for modeling. Soil erosion measurement and land use modeling were performed by using Universal Soil Loss Equation USLE method and Geographic Information System GIS software ArcGIS 10.1. Land use modeling was conducted by increasing permanent vegetation coverage from existing condition 4 to 10 20 and 30. The result showed that the modeling can reduce heavy class erosion about 15-37 of total area. GIS provides a good tool for erosion control modeling in the watershed scale.

  1. 48 CFR 452.236-74 - Control of Erosion, Sedimentation, and Pollution.

    Science.gov (United States)

    2010-10-01

    ..., Sedimentation, and Pollution. 452.236-74 Section 452.236-74 Federal Acquisition Regulations System DEPARTMENT OF....236-74 Control of Erosion, Sedimentation, and Pollution. As prescribed in 436.574, insert the following clause: Control of Erosion, Sedimentation, and Pollution (NOV 1996) (a) Operations shall be...

  2. Micro energy-dispersive X-ray fluoresence mapping of enamel and dental materials after chemical erosion.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; de Oliveira, Rodrigo; Nahórny, Sídnei; Santo, Ana Maria do Espírito; Martin, Airton Abrahão

    2012-10-01

    Energy-dispersive X-ray fluorescence was employed to test the hypothesis that beverage consumption or mouthwash utilization will change the chemical properties of dental materials and enamel mineral content. Bovine enamel samples (n = 45) each received two cavity preparations (n = 90), each pair filled with one of three dental materials (R: nanofilled composite resin; GIC: glass-ionomer cement; RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: saliva; E: erosion/Pepsi Twist®; or EM: erosion+mouthwash/Colgate Plax®). It was found that mineral loss in enamel was greater in GICE samples than in RE > RMGICE > RMGICEM > REM > GICEM. An increased percentage of Zr was found in REM indicating organic matrix degradation. Dental materials tested (R, GIC, and RMGIC) were not able to protect adjacent enamel from acid erosion by the soft drink tested. The use of mouthwash promoted protection of enamel after erosion by the soft drink. To avoid chemical dissolution by mouthwashes, protection by resin composites with surface sealants is recommended.

  3. Soil erosion and its control in Chile - An overview

    International Nuclear Information System (INIS)

    Ellies, A.

    2000-01-01

    Accelerate erosion in Chile is a consequence from land use that degrade soil such as compaction, loss of organic matter and soil structure. The erosion is favored by the very hilly landscape of the country that increases erosivity index and the high erodibility given by an elevated annual rate of rainfall with irregular distribution. Several experiences have demonstrated that adequate crop management and crop rotations can minimize erosion. The most effective control is achieved conserving and improving soil structure with management systems that include regular use of soil-improving crops, return of crop residues and tillage practices, thus avoiding unnecessary breakdown soil or compacted soil structure. Conservation tillage increased organic matter levels improving stabile soil structure, aeration and infiltration. (author) [es

  4. Beach erosion control study at Pass Christian. [using remote sensors and satellite observation

    Science.gov (United States)

    1978-01-01

    The methods of measuring the existence of erosion and the effects of sand stabilization control systems are described. The mechanics of sand movement, the nature of sand erosion, and the use of satellite data to measure these factors and their surrogates are discussed using the locational and control aspects of aeolian and litoral erosion zones along the sand beach of the Mississippi coast. The aeolian erosion is highlighted due to the redeposition of the sand which causes high cleanup costs, property damage, and safety and health hazards. The areas of differential erosion and the patterns of beach sand movement are illustrated and the use of remote sensing methods to identify the areas of erosion are evaluated.

  5. Impact of Soil Conservation Measures on Erosion Control and Soil Quality

    International Nuclear Information System (INIS)

    2011-10-01

    This publication summarises the lessons learnt from a FAO/IAEA coordinated research project on the impact of soil conservation measures on erosion control and soil quality over a five-year period across a wide geographic area and range of environments. It demonstrates the new trends in the use of fallout radionuclide-based techniques as powerful tools to assess the effectiveness of soil conservation measures. As a comprehensive reference material it will support IAEA Member States in the use of these techniques to identify practices that can enhance sustainable agriculture and minimize land degradation.

  6. Erosion-corrosion of structural materials of wet steam turbines

    International Nuclear Information System (INIS)

    Tomarov, G.V.

    1989-01-01

    A model of erosion-corrosion wear of elements of a wet steam zone and a condensate-feeding path of turbines is considered. It is shown that diffusion of impurities and corrosion products in pores of an oxide layer is the control mechanism under conditions of laminar flow of a media. Processes of mass transfer are controlling factors in turbulent flow

  7. Erosion-corrosion synergistics in the low erosion regime

    International Nuclear Information System (INIS)

    Corey, R.G.; Sethi, V.K.

    1986-01-01

    Many engineering alloys display good high temperature corrosion resistance. However, when they are used in corrosive environments where they are subjected to erosion also, the corrosion resistance has been adversely affected. The phenomenon known as erosion-corrosion is complex and requires detailed investigation of how the erosion and corrosion kinetics interact and compete. At the Kentucky Center for Energy Research Laboratory, an erosion-corrosion tester was used to perform erosion-oxidation tests on 2 1/4 Cr-1 Mo steel at 500-600 0 C using alumina abrasive at low velocities. The erosion-oxidation rate data and morphology of exposed surfaces are consistent with oxide chipping and fracturing being the mode of material loss

  8. Controlled low strength materials (CLSM), reported by ACI Committee 229

    International Nuclear Information System (INIS)

    Rajendran, N.

    1997-01-01

    Controlled low-strength material (CLSM) is a self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. Many terms are currently used to describe this material including flowable fill, unshrinkable fill, controlled density fill, flowable mortar, flowable fly ash, fly ash slurry, plastic soil-cement, soil-cement slurry, K-Krete and other various names. This report contains information on applications, material properties, mix proportioning, construction and quality-control procedures. This report's intent is to provide basic information on CLSM technology, with emphasis on CLSM material characteristics and advantages over conventional compacted fill. Applications include backfills, structural fills, insulating and isolation fills, pavement bases, conduit bedding, erosion control, void filling, and radioactive waste management

  9. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  10. Method and device for the determination of material loss due to corrosion and/or erosion

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.

    1990-01-01

    The invention relates to a method and an apparatus for gauging material loss due to corrosion and/or erosion during a certain period of time from a given piece of material which previously has been made radioactive. The material loss is determined by measuring the intensity of the radiactive radiation from the material by means of a radiation intensity meter disposed at a measuring site a fixed distance from said piece of material for the measurement of the radioactive radiation from the piece both at the beginning and at the end of said period of time. Each of the measurements is calibrated by means of an additional radiation source disposed for controllably adopting either a most radiation screened position or alternatively a least screened position with respect to a radiation screen, and thereby providing a known radiation intensity at the measuring site in both positions. The least radiation screened position provides full unscreened radiation intensity at the measuring site, whereas the most screened position provides negligible radiation intensity at said site. The measurement results in the two positions are subsequently compared in order to deduce the contribution of said piece of material to the combined radiation intensity in proporsion to the known contribution of the radiation source. The additional radiation source is preferable made from a calibration body composed of the same material as the piece of material exposed to corrosion and/or erosion, the calibration body body being activated at the same time and by the same activation process as said piece. The calibration body is preferably dimensioned to provide at all time the same radiation intensity at the measuring site as a predetermined material loss from the piece of material, e.g. a prefixed thickness reduction of the same. 4 figs

  11. Reduction of surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Rossing, T.D.; Das, S.K.; Kaminsky, M.

    1976-01-01

    Some of the major processes leading to surface erosion in fusion reactors are reviewed briefly, including blistering by implanted gas, sputtering by ions, atoms, and neutrons, and vaporization by local heating. Surface erosion affects the structural integrity and limits the lifetime of reactor components exposed to plasma radiation. In addition, some of the processes leading to surface erosion also cause the release of plasma contaminants. Methods proposed to reduce surface erosion have included control of surface temperature, selection of materials with a favorable microstructure, chemical and mechanical treatment of surfaces, and employment of protective surface coatings, wall liners, and divertors. The advantages and disadvantages of some of these methods are discussed

  12. The success of headwater rehabilitation towards gully erosion control

    Science.gov (United States)

    Frankl, Amaury; Poesen, Jean; Nyssen, Jan

    2017-04-01

    The ill-management of headwaters has frequently shown to have adverse effects on both humans and the environment. Historical examples often refer to altered hydrological conditions and stream incision resulting from deforestation. Agricultural expansion and intensification - often accompanied with land reforms in the 20th century - also showed to severely impact the fluvial environment, with stream incision and gully erosion hazards increasingly affecting many headwater areas around the world. To counter this, many regions have adopted improved management schemes aiming at restoring the physical, biological and hydrological integrity of the soil- and landscape. In terms of hydrogeomorpology, the objective was to minimize dynamics to a lower level so that runoff, sediment and pollutant transfers do not cause danger to human life, environmental/natural resources deterioration or economic stress. Therefore, much attention was given to the rehabilitation and re-naturalization of headwater streams and gullies, which are the conduits of these transfers. This is done in both indirect and direct ways, i.e. reducing the delivery of runoff and sediment to the gullies and interventions in the incised channels. Although much has been published on gully erosion development and control, few studies assess the success of gully rehabilitation on the mid- to long term or confront results against the gully life-cycle. The latter refers to the rate law in fluvial geomorphology, whereby gully morphological changes (increases in length, area, volume) are initially rapid, followed by a much slower development towards a new equilibrium state. Here, we present a review of headwater rehabilitation measures and their success towards gully erosion control. By confronting this to the life-cycle of a gully, we also want to shed light on our understanding of when and where gully erosion control needs to be applied; making land management more efficient and effective. Keywords: land

  13. 3D flow simulation of liquid lead in the erosion test facility for ADS materials

    International Nuclear Information System (INIS)

    Muscher, Heinrich; Kieser, Martin; Weisenburger, Alfons; Mueller, Georg

    2009-01-01

    Future nuclear reactor concepts, such as GEN IV or ADS use liquid lead for neutron multiplication and coolant purposes. The design concepts assumes that the structural material is in contact with the liquid metal at temperatures up to 600 C and a flow rate of 20 m/s. Therefore a significant effect of liquid metal corrosion/erosion is expected. The paper describes the fluid dynamical simulation of the ADS erosion test facility. Earlier studies on the laminar flow modeling were completed by introduction of transient behavior and extended to 3D-models. The results for liquid lead should be transferable to LBE (lead bismuth eutectic). Further work has to include a mass transport model for modeling of the global isothermal erosion rate of the structural material dependent on time (for liquid lead and LBE).

  14. Wind Erosion Processes and Control Techniques in the Sahelian Zone of Niger

    NARCIS (Netherlands)

    Sterk, G.; Stroosnijder, L.; Raats, P.A.C.

    1999-01-01

    Wind Erosion Processes and Control Techniques in the Sahelian Zone of Niger G. Sterk, L. Stroosnijder, and P.A.C. Raats Abstract The objective of this paper is to present the main results and conclusions from three years of field research on wind erosion processes and control techniques in the

  15. Impacts of terracing on soil erosion control and crop yield in two agro-ecological zones of Rwanda

    Science.gov (United States)

    Rutebuka, Jules; Ryken, Nick; Uwimanzi, Aline; Nkundwakazi, Olive; Verdoodt, Ann

    2017-04-01

    maintenance adopted by farmers. Terracing should be complemented by continuous fertility amendments (organic material inputs), use of improved agronomic and management practices considering agro-ecological zone conditions. In general, radical terracing was found to be the most effective soil erosion control measure on both sites.

  16. Application of the system of water erosion control measures in growths of special cultivations

    Directory of Open Access Journals (Sweden)

    Vítězslav Hálek

    2004-01-01

    Full Text Available The aim of the study is to select an optimal variant of the system of water erosion control measures. The water erosion issue was observed and evaluated in 15 blocks of special cultivations-vineyards and orchards. These blocks are situated in the managed area of the join-stock company PATRIA Kobylí. At first the average long-term loss of soil with the influence of water erosion is calculated. The universal Wischmeier-Smith equation is used for this purpose. If the calculated loss of soil exceeds the permissible value, the erosion control measures have to be suggested. The optimal variant has been selected on the bases of the evaluation of several kinds of measures in each block. This variant follows first of all the erosion control efficiency, but also demands on production as well as slope accessibility for mechanization, expensiveness and some negative sides of suggested measures. The suggested system of water erosion control measures contributes to increasing of soil fertility and production ability with the respect to landscape management and environmental protection.

  17. Erosion products of ITER divertor materials under plasma disruption simulation

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I.; Gureev, V.M.; Kolbasov, B.N.; Korshunov, S.N.; Martynenko, Yu.V. E-mail: martyn@nfi.kiae.ru; Stolyarova, V.G.; Strunnikov, V.M.; Vasiliev, V.I

    2003-09-01

    Candidate ITER divertor armor materials: carbon-fiber-composite and four tungsten grades/alloys as well as mixed re-deposited W+Be and W+C layers were exposed in electrodynamic plasma accelerator MKT which provided a pulsed deuterium plasma flux simulating plasma disruptions with maximum ion energy of 1-2 keV, an energy density of 300 kJ/m{sup 2} per shot and a pulse duration of {approx}60 {mu}s. The number of pulses was from 2 to 10. The resultant erosion products were collected on a basalt filter and Si-collectors and studied in terms of morphology and size distribution using both scanning and transmission electron microscopy. Metal erosion products usually occurred in the form of spherical droplets, sometimes flakes. Their size distribution depended on the positioning of the collector. Simultaneously irradiated W, CFC and mixed W+Be targets appeared to have undergone a greater erosion than the same targets irradiated individually. Particles sized from 0.01 to 30 {mu}m were found on collectors and on a molten W-surface. A model of droplet emission and behavior in shielding plasma is provided.

  18. Use of Low-Cost Methods of Soil Erosion Control In Kisii District, South Western kenya

    International Nuclear Information System (INIS)

    Nzabi, A.W; Makini, F; Onyango, M; Mureithi, J.G

    1999-01-01

    Kisii District has a topography of undulating hills and is prone to severe soil erosion. The average rainfall is 1900 mm and occurs in biomodal pattern. During a participatory appraisal survey in 1995, farmers indicated that soil erosion in the area had contributed to decline in soil fertility resulting in low crop yields. To address this problem, an on-farm trial was conducted in 1996 at Nyamonyo village to test the effectiveness of four low cost methods of controlling soil erosion. These included maize stover trash line, sweet potatoes,Penicum maximum var. Makarikari grass strip and vetiveria zizanioides (Vertiver) grass strip. A treatment without soil erosion control measure was included. The trial was planted in three farms which acted as replicates. The treatments were planted in runoff plots measuring 4 x 2 m in which had a maize crop were laid down in a randomized complete block design. Surface runoff and eroded soils were collected in 50-l buckets. The experimental site had a slope ranging from 16 to 35%. Preliminary results indicated that maize stover trash line and sweet potato strips were more effective in controlling soil erosion than the grass strips. As the season progressed the grass strips became increasingly more effective in erosion control. The trail is still continuing but results indicate that for short term soil erosion control, maize stover trash lines and sweet potatoes are more effective while Makarikari and Vertiver grass strips are promising as long term soil erosion control measure

  19. Anthropogenic Increase Of Soil Erosion In The Gangetic Plain Revealed By Geochemical Budget Of Erosion

    Science.gov (United States)

    Galy, V.; France-Lanord, C.; Galy, A.; Gaillardet, J.

    2007-12-01

    Tectonic and climatic factors are the key natural variables controlling the erosion through complex interactions. Nonetheless, over the last few hundred years, human activity also exerts a dominant control in response to extensive land use. The geochemical budget of erosion allows the balance between the different erosion processes to be quantified. The chemical composition of river sediment results from the chemical composition of the source rock modified by (1) weathering reactions occurring during erosion and (2) physical segregation during transport. If erosion is at steady state, the difference between the chemical composition of source rocks and that of river sediments must therefore be counterbalanced by the dissolved flux. However, climatic variations or anthropic impact can induce changes in the erosion distribution in a given basin resulting in non steady state erosion. Using a mass balance approach, the comparison of detailed geochemical data on river sediments with the current flux of dissolved elements allows the steady state hypothesis to be tested. In this study, we present a geochemical budget of weathering for the Ganga basin, one of the most densely populated basin in the world, based on detailed sampling of Himalayan rivers and of the Ganga in the delta. Sampling includes depth profile in the river, to assess the variability generated by transport processes. Himalayan river sediments are described by the dilution of an aluminous component (micas + clays + feldspars) by quartz. Ganga sediments on the other hand correspond to the mixing of bedload, similar to coarse Himalayan sediments, with an aluminous component highly depleted in alkaline elements. Compared with the dissolved flux, the depletion of alkaline elements in Ganga sediments shows that the alkaline weathering budget is imbalanced. This imbalance results from an overabundance of fine soil material in the Ganga sediment relative to other less weathered material directly derived from

  20. Wind erosion processes and control

    Science.gov (United States)

    Wind erosion continues to threaten the sustainability of our nations' soil, air, and water resources. To effectively apply conservation systems to prevent wind driven soil loss, an understanding of the fundamental processes of wind erosion is necessary so that land managers can better recognize the ...

  1. Buffer erosion in dilute groundwater

    International Nuclear Information System (INIS)

    Schatz, T.; Kanerva, N.; Martikainen, J.; Sane, P.; Olin, M.; Seppaelae, A.; Koskinen, K.

    2013-08-01

    One scenario of interest for repository safety assessment involves the loss of bentonite buffer material in contact with dilute groundwater flowing through a transmissive fracture interface. In order to examine the extrusion/erosion behavior of bentonite buffer material under such circumstances, a series of experiments were performed in a flow-through, 1 mm aperture, artificial fracture system. These experiments covered a range of solution chemistry (salt concentration and composition), material composition (sodium montmorillonite and admixtures with calcium montmorillonite), and flow velocity conditions. No erosion was observed for sodium montmorillonite against solution compositions from 0.5 g/L to 10 g/L NaCl. No erosion was observed for 50/50 calcium/sodium montmorillonite against 0.5 g/L NaCl. Erosion was observed for both sodium montmorillonite and 50/50 calcium/sodium montmorillonite against solution compositions ≤ 0.25 g/L NaCl. The calculated erosion rates for the tests with the highest levels of measured erosion, i.e., the tests run under the most dilute conditions (ionic strength (IS) < ∼1 mM), were well-correlated to flow velocity, whereas the calculated erosion rates for the tests with lower levels of measured erosion, i.e., the tests run under somewhat less dilute conditions (∼1 mM < IS < ∼4 mM), were not similarly correlated indicating that material and solution composition can significantly affect erosion rates. In every experiment, both erosive and non-erosive, emplaced buffer material extruded into the fracture and was observed to be impermeable to water flowing in the fracture effectively forming an extended diffusive barrier around the intersecting fracture/buffer interface. Additionally, a model which was developed previously to predict the rate of erosion of bentonite buffer material in low ionic strength water in rock fracture environments was applied to three different cases: sodium montmorillonite expansion in a vertical tube, a

  2. Simulation of erosion in drilling tools for oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Arefi, B.; Settari, A. [Calgary Univ., AB (Canada); Angman, P. [Tesco Corp., Calgary, AB (Canada)

    2004-07-01

    Erosion in oil well drilling tools is a form of wear which occurs when fluid containing solid particles impacts a solid surface. The intensity of erosion is generally measured as the rate of material removal from the surface, and is expressed as E{sub r}, the weight of material removed by unit weight of impacting particles. Erosion can also be reduced by tool improvement and modification, thereby extending the life of drilling tools. To date, no attempt has been made to model the erosion phenomenon in drilling tools. This paper presents a newly developed erosion simulator which is the first design tool for the drilling industry. This work demonstrates that erosion can be simulated. A model was developed to calibrate the erosion coefficients for drilling tool conditions. The mechanism of erosion can be controlled by the impact velocity and angle. Algorithms were developed for transient simulation of the erosion of any surface in 2-dimensional geometry. The Erosion Simulator has been validated and calibrated against data provided by TESCO Corporation's casing drilling tools. The model has been shown to successfully predict and minimize erosion by modifying the tool geometry and metallurgy. 21 refs., 1 tab., 15 figs.

  3. Formation of accessory mineral bed layers during erosion of bentonite buffer material

    International Nuclear Information System (INIS)

    Schatz, Timothy; Kanerva, Noora

    2012-01-01

    Document available in extended abstract form only. dilute groundwater at a transmissive fracture interface, accessory phases within bentonite, such as quartz, feldspar, etc., might remain behind and form a filter bed or cake. As more and more montmorillonite is lost, the thickness of the accessory mineral bed increases and the continued transport of montmorillonite slows and possibly stops if the porosity of the filter bed is sufficiently compressed. Alternatively or concurrently, as the accessory mineral filter bed retains montmorillonite colloids, a filter cake composed of montmorillonite itself may be formed. Ultimately, depending on their extent, properties, and durability, such processes may provide the bentonite buffer system with an inherent, self-filtration mechanism which serves to limit the effects of colloidal erosion. A conceptual view of bentonite buffer extrusion and erosion in an intersecting fracture with formation of an accessory mineral filter bed and montmorillonite filter cake is presented in Figure 1. Due to the swelling pressure of the bentonite buffer, the situation described in Figure 1 may be analogous to that of the case of pressure filtration where a filter cake is formed by pressing a suspension through a filter medium and, by a mechanism known as expression, the filter cake is compressed by direct contact with a solid surface resulting in a reduction of its porosity. In order to examine whether the erosion of bentonite material through contact with dilute groundwater at a transmissive fracture interface could intrinsically result in 1) the formation of an accessory mineral filter bed and cake and/or 2) filter caking of montmorillonite itself, a series of laboratory tests were performed in a flow-through, horizontal, 1 mm aperture, artificial fracture system. Bentonite buffer material was simulated by using mixtures (75/25 weight percent ratio) of purified sodium montmorillonite and various additives serving as accessory mineral proxies

  4. Performance and efficiency of geotextile-supported erosion control measures during simulated rainfall events

    Science.gov (United States)

    Obriejetan, Michael; Rauch, Hans Peter; Florineth, Florin

    2013-04-01

    Erosion control systems consisting of technical and biological components are widely accepted and proven to work well if installed properly with regard to site-specific parameters. A wide range of implementation measures for this specific protection purpose is existent and new, in particular technical solutions are constantly introduced into the market. Nevertheless, especially vegetation aspects of erosion control measures are frequently disregarded and should be considered enhanced against the backdrop of the development and realization of adaptation strategies in an altering environment due to climate change associated effects. Technical auxiliaries such as geotextiles typically used for slope protection (nettings, blankets, turf reinforcement mats etc.) address specific features and due to structural and material diversity, differing effects on sediment yield, surface runoff and vegetational development seem evident. Nevertheless there is a knowledge gap concerning the mutual interaction processes between technical and biological components respectively specific comparable data on erosion-reducing effects of technical-biological erosion protection systems are insufficient. In this context, an experimental arrangement was set up to study the correlated influences of geotextiles and vegetation and determine its (combined) effects on surface runoff and soil loss during simulated heavy rainfall events. Sowing vessels serve as testing facilities which are filled with top soil under application of various organic and synthetic geotextiles and by using a reliable drought resistant seed mixture. Regular vegetational monitoring as well as two rainfall simulation runs with four repetitions of each variant were conducted. Therefore a portable rainfall simulator with standardized rainfall intensity of 240 mm h-1 and three minute rainfall duration was used to stress these systems on different stages of plant development at an inclination of 30 degrees. First results show

  5. Immunohistochemical Study of p53 Expression in Patients with Erosive and Non-Erosive Oral Lichen Planus

    Science.gov (United States)

    Shiva, Atena; Zamanian, Ali; Arab, Shahin; Boloki, Mahsa

    2018-01-01

    Statement of the Problem: Oral lichen planus is a common mucocutaneous lesion with a chronic inflammatory process mediated by immune factors while a few cases of the disease become malignant. Purpose: This study aimed to determine the frequency of p53 marker as a tumor suppressor in patients with erosive and non-erosive oral lichen planus (OLP) by using immunohistochemical methods. Materials and Method: This descriptive cross-sectional study investigated the p53 expression in 16 erosive OLP, 16 non-erosive OLP samples, and 8 samples of normal oral mucosa through immunohistochemistry. The percentage of stained cells in basal and suprabasal layers, and inflammatory infiltrate were graded according to the degree of staining; if 0%, 50% of the cells were stained, they were considered as (-), (+), (++), (+++) and (++++), respectively. The obtained data was statistically analyzed and compared by using Chi square and Fisher’s exact test. Results: The mean percentage of p53 positive cells in erosive OLP (34.5±14.2) was considerably higher than that in non-erosive OLP (23.8±10.4) and normal mucosa (17.5±17). There was a significant difference among the three groups of erosive, non-erosive and control in terms of staining intensity. No significant difference existed between the patients’ age and sex in the two OLP groups. Conclusion: The increased incidence of p53 from normal mucosa to erosive OLP indicated the difference between biological behavior of erosive and non-erosive OLP. It can be claimed that the erosive OLP has great premalignant potential compared with the non-erosive one.

  6. Modeling erosion of unsaturated compacted bentonite by groundwater flow; pinhole erosion test case

    International Nuclear Information System (INIS)

    Laurila, T.; Sane, P.; Olin, M.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. Erosion of compacted clay material by water flow is a critical factor affecting the performance of radioactive waste confinement. Our emphasis in this work is the buffer of KBS-3V concept, proposed to be compacted MX-80 bentonite. Unsaturated erosion occurs during the saturation phase of the EBS, and the main quantity of interest is the total buffer mass carried away by a groundwater flow that induces erosion by forming piping channels near the buffer/rock interface. The purpose of this work is to provide modeling tools to support erosion experiments. Role of modeling is first to interpret experimental observations in terms of processes, and to estimate robustness of experimental results. Secondly, we seek to scale up results from the laboratory scale, particularly to time scales longer than those experimentally accessible. We have performed modeling and data analysis pertaining to tests of unsaturated clay erosion. Pinhole experiments were used to study this erosion case. The main differences to well-understood pinhole erosion tests are that the material is strongly swelling and that the water flow is not determined by the pressure head but by the total flux. Groundwater flow in the buffer is determined by the flux because pressure losses occur overwhelmingly in the surrounding rock, not in the piping channel. We formulate a simple model that links an effective solid diffusivity -based swelling model to erosion by flow on the solid/liquid interface. The swelling model is similar in concept to that developed at KTH, but simpler. Erosion in the model is caused by laminar flow in the pinhole, and happens in a narrow region at the solid/liquid interface where velocity and solid volume fraction overlap. The erosion model can be mapped to erosion by wall shear, and can thus be considered as extension of that classic erosion model. The main quantity defining the behavior of clay erosion in the model is the ratio of

  7. Contribution of the different erosion processes to material release from the vessel walls of fusion devices during plasma operation

    International Nuclear Information System (INIS)

    Behrisch, R.

    2002-01-01

    In high temperature plasma experiments several processes contribute to erosion and loss of material from the vessel walls. This material may enter the plasma edge and the central plasma where it acts as impurities. It will finally be re-deposited at other wall areas. These erosion processes are: evaporation due to heating of wall areas. At very high power deposition evaporation may become very large, which has been named ''blooming''. Large evaporation and melting at some areas of the vessel wall surface may occur during heat pulses, as observed in plasma devices during plasma disruptions. At tips on the vessel walls and/or hot spots on the plasma exposed solid surfaces electrical arcs between the plasma and the vessel wall may ignite. They cause the release of ions, atoms and small metal droplets, or of carbon dust particles. Finally, atoms from the vessel walls are removed by physical and chemical sputtering caused by the bombardment of the vessel walls with ions as well as energetic neutral hydrogen atoms from the boundary plasma. All these processes have been, and are, observed in today's plasma experiments. Evaporation can in principle be controlled by very effective cooling of the wall tiles, arcing is reduced by very stable plasma operation, and sputtering by ions can be reduced by operating with a cold plasma in front of the vessel walls. However, sputtering by energetic neutrals, which impinge on all areas of the vessel walls, is likely to be the most critical process because ions lost from the plasma recycle as neutrals or have to be refuelled by neutrals leading to the charge exchange processes in the plasma. In order to quantify the wall erosion, ''materials factors'' (MF) have been introduced in the following for the different erosion processes. (orig.)

  8. North Fork Feather River Erosion Control Program

    International Nuclear Information System (INIS)

    Harrison, L.

    1991-01-01

    PG and E, an investor owned gas and electric utility serving northern and central California, has been engaged since 1984 in the development and implementation of a regional erosion control program for the 954 square mile northern Sierra Nevada watersheed of the East Branch of the North Fork Feather River in Plumas County, California. PG and E entered into an agreement with 13 governmental agencies and a number of private landowners using Coordinated Resource Management and Planning: to cooperatively develop, fund and implement the program. The group has completed several field projects and has a number of additional projects in various stages of development. This paper reports that the program provides multiple environmental and economic benefits including reduction of soil erosion and sedimentation, improved fisheries, enhancement of riparian habitat, increased land values, improved recreation opportunities, and preservation of watershed resources

  9. Numerical study of impact erosion of multiple solid particle

    Science.gov (United States)

    Zheng, Chao; Liu, Yonghong; Chen, Cheng; Qin, Jie; Ji, Renjie; Cai, Baoping

    2017-11-01

    Material erosion caused by continuous particle impingement during hydraulic fracturing results in significant economic loss and increased production risks. The erosion process is complex and has not been clearly explained through physical experiments. To address this problem, a multiple particle model in a 3D configuration was proposed to investigate the dynamic erosion process. This approach can significantly reduce experiment costs. The numerical model considered material damping and elastic-plastic material behavior of target material. The effects of impact parameters on erosion characteristics, such as plastic deformation, contact time, and energy loss rate, were investigated. Based on comprehensive studies, the dynamic erosion mechanism and geometry evolution of eroded crater was obtained. These findings can provide a detailed erosion process of target material and insights into the material erosion caused by multiple particle impingement.

  10. Erosion products in disruption simulation experiments

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A.; Arkhipov, I.; Werle, H.; Wuerz, H.

    1998-01-01

    Erosion of divertor materials under tokamak disruption event presents a serious problem of ITER technology. Erosion restricts the divertor lifetime and leads to production of redeposited layers of the material retaining large amount of tritium, which is a major safety issue for future fusion reactor. Since ITER disruptive heat loads are not achievable in existing tokamaks, material erosion is studied in special simulation experiments. Till now the simulation experiments have focused mainly on investigation of shielding effect and measurement of erosion rate. In the present work the properties of eroded and redeposited graphite are studied under condition typical for hard ITER disruption. (author)

  11. Wind tunnel experimental study on the effect of PAM on soil wind erosion control.

    Science.gov (United States)

    He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun

    2008-10-01

    In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.

  12. Soil erosion and sediment control laws. A review of state laws and their natural resource data requirements

    Science.gov (United States)

    Klein, S. B.

    1980-01-01

    Twenty states, the District of Columbia, and the Virgin Islands enacted erosion and sediment control legislation during the past decade to provide for the implementation or the strengthening of statewide erosion and sediment control plans for rural and/or urban lands. That legislation and the state programs developed to implement these laws are quoted and reviewed. The natural resource data requirements of each program are also extracted. The legislation includes amendments to conservation district laws, water quality laws, and erosion and sediment control laws. Laws which provides for legislative review of administrative regulations and LANDSAT applications and/or information systems that were involved in implementing or gathering data for a specific soil erosion and sediment control program are summarized as well as principal concerns affecting erosion and sediment control laws.

  13. Study of alternative materials to minimize erosion in heat exchanger tubes used in thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Arnt, A.B.C.; Paula, M.M. da S. Paula; Rocha, M.R. da; Angioletto, E.; Zanini, L.C.; Miranda, R.; Zanelatto, C.C. [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil)], e-mails: anb@unesc.net, mms@unesc.net, marcio2r@terra.com.br, an@unesc.net, elucaslcz@yahoo.com.br, frdgmiranda@hotmail.com, gcrisrincao20@yahoo.com.br; Felippe, L. [Universidade do Extremo Sul Catarinense (UNESC), Capivari de Baixo, SC (Brazil)], e-mail: hlfelippe@tractebelenergia.com.br

    2007-07-01

    The machinery used in coal thermo electrical plants usually is submitted to erosive wear. The erosive wear occurs mainly in the metallic pipe set of heat exchangers due the flow of hot gases carrying erosive particles. Jaguar Ludicrous thermo electrical complex at Capivari de Baixo city holds seven power units, where two units use approximately 20 000 ASTM A178 heat pipes. The set is submitted to a semester maintenance schedule (preventive and corrective) where the damaged pipes are changed. So, in this work a set of erosive wear accelerated tests according ASTM G76 were performed in order to develop and specify materials and methods to diminish the erosive action caused by the combustion gases over the heat pipes. Specimens were coated with WC12Co and Cr{sub 3}C{sub 2}-25NiCr alloys using the HVOF technique and the coated specimens were tested at 450 deg C, the heat pipes working temperature. Silica was used as abrasive material at 30 deg and 45 deg impact angles, simulating a harder erosive condition than the real condition. The best performance coating at laboratory scale was later used in field condition. The results showed the coated specimen performance is better than the ASTM A178 alloy. The erosion resistance of the Cr{sub 3}C{sub 2}-25NiCr and WC12Co coatings is eight times higher than the uncoated alloy, and the coatings also presented a better corrosion resistance. This feature is important, because despite the erosive action the circulating gases also present a large amount of sulfur in their composition. Sulfur at lower temperatures forms H{sub 2}SO{sub 4}, causing intense corrosion of the pipes located at the heat exchangers colder parts. Based on the results and considering the coating costs the Cr{sub 3}C{sub 2}-25NiCr alloy was selected to coat a set of pipes mounted at the region of the heat exchanger with the most intense erosive wear. At the moment these coated tubes are in field operation and under observation regarding their performance in

  14. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects.

    Science.gov (United States)

    Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng

    2016-06-01

    Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could

  15. profitability of soil erosion control technologies in eastern uganda

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    The lack of farmer awareness of costs and benefits associated with the use of sustainable land management (SLM) .... land under soil erosion control technologies, cost of labour and ..... and promotion of quality protein maize hybrids in Ghana.

  16. Influence of material and solution composition on the extrusion/erosion behaviour of compacted bentonite

    International Nuclear Information System (INIS)

    Schatz, Timothy; Martikainen, Jari; Koskinen, Kari

    2010-01-01

    Document available in extended abstract form only. In principle, in a KBS-3 type repository, the volume of a deposition hole is fixed and the bentonite buffer mass accordingly balanced to lead to the development of a suitable swelling pressure upon saturation. However, fractures intersecting the deposition holes give rise to the possibility that volume constrained conditions do not universally exist. Such fractures may provide pathways for the continued, localised, free swelling of bentonite buffer material. Loss of mass from the deposition hole by extrusion into intersecting fractures may compromise the long-term safety and performance of the buffer component of the engineered barrier system. Furthermore, the continued hydration and expansion of extruded bentonite in these fracture environments could lead to the separation of colloid-sized (or larger) particles by diffusion or shear which may have to be accounted for in possible radionuclide migration scenarios. Geochemical conditions, with respect to both solution and material composition, are considered to play important roles regarding the fracture extrusion/erosion of bentonite buffer material. For example, calcium-montmorillonite exhibits limited free swelling relative to sodium-montmorillonite and the colloidal and rheological properties of montmorillonite dispersions are sensitive to the presence of electrolytes. Insofar as both the buffer material composition (due to ion exchange) and groundwater composition (dilution resulting from infiltration of glacial melt water) are expected to evolve with time, so too might the potential for fracture extrusion/erosion of buffer material vary over time. The hydraulic characteristics of the intersecting fracture are expected to influence the extrusion/erosion process as well. To evaluate the effect of material and solution composition on the potential for extrusion of buffer mass into intersecting fractures, a series of batch experiments were performed. In these

  17. Effectiveness of the GAEC cross-compliance standard Short-term measures for runoff water control on sloping land (temporary ditches and grass strips in controlling soil erosion

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    2011-08-01

    Full Text Available The agronomic measures made obligatory by the cross-compliance Standard Temporary measures for runoff water control on sloping land included in the Ministry of Agricultural, Food and Forestry Policies (MiPAAF decree on cross compliance until 2008, and by Standard 1.1 Creation of temporary ditches for the prevention of soil erosion in the 2009 decree, certainly appear to be useful for the control of soil erosion and runoff. The efficacy of temporary drainage ditches and of grass strips in controlling runoff and erosion has been demonstrated in trials conducted in field test plots in Italy. When level temporary drainage ditches are correctly built, namely with an inclination of not more than 2.5% in relation to the maximum hillslope gradient, they allow the suspended sediment eroded upstream to settle in the ditches, retaining the material carried away on the slope and, as a result, reducing the quantity of sediment delivered to the hydrographic network. In particular, among all the results, the erosion and runoff data in a trial conducted in Guiglia (Modena showed that in corn plots, temporary drainage ditches reduced soil erosion by 94%, from 14.4 Mg ha-1 year-1 (above the limit established by the NRCS-USDA of 11.2 Mg ha-1 year-1 to 0.8 Mg ha-1 year-1 (within the NRCS limit and also within the more restrictive limit established by the OECD of 6.0 Mg ha-1 year-1. With respect to the grass buffer strips the most significant research was carried out in Volterra. This research demonstrated their efficacy in reducing erosion from 8.15 Mg ha-1 to 1.6 Mg ha-1, which is approximately 5 times less than the erosion observed on bare soil. The effectiveness of temporary drainage ditches was also assessed through the application of the Revised Universal Soil Loss Equation (RUSLE erosion model to 60 areas under the control of the Agency for Agricultural Payments (AGEA in 2009, comparing the risk of erosion in these sample areas by simulating the presence and

  18. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia

    Science.gov (United States)

    Molla, Tegegne; Sisheber, Biniam

    2017-01-01

    Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga

  19. Field studies of erosion-control technologies for arid shallow land-burial sites at Los Alamos

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Abeele, W.V.; DePoorter, G.L.; Hakonson, T.E.; Perkins, B.A.; Foster, G.R.

    1983-01-01

    The field research program involving corrective measures technologies for arid shallow land-burial sites is described. Research performed for a portion of this task, the identification, evaluation, and modeling of erosion control technologies, is presented in detail. In a joint study with USDA-ARS, soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with data from undisturbed soil surfaces with natural plant cover. The distribution of soil particles in the runoff was measured for inclusion in CREAMS (a field scale model for Chemicals, Runoff and Erosion from Agricultural Management Systems). Neutron moisture gauge data collected beneath the erosion plots are presented to show the seasonal effects of the erosion control technologies on the subsurface component of water balance. 12 references, 4 figures, 4 tables

  20. Erosion-corrosion

    International Nuclear Information System (INIS)

    Aghili, B.

    1999-05-01

    A literature study on erosion-corrosion of pipings in the nuclear industry was performed. Occurred incidents are reviewed, and the mechanism driving the erosion-corrosion is described. Factors that influence the effect in negative or positive direction are treated, as well as programs for control and inspection. Finally, examples of failures from databases on erosion-corrosion are given in an attachment

  1. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-01-01

    Fabrication of laser fusion targets requires a number of special techniques. We have developed both laser and spark erosion machining to produce minute parts of complex targets. A high repetition rate YAG laser at double frequency is used to etch various materials. For example, marks or patterns are often necessary on structured or advanced targets. The laser is also used to thin down plastic coated stalks. A spark erosion system has proved to be a versatile tool and we describe current fabrication processes like cutting, drilling, and ultra precise machining. Spark erosion has interesting features for target fabrication: it is a highly controllable and reproducible technique as well as relatively inexpensive

  2. Conceptual considerations of evaluate internal erosion phenomenon via no-erosion filter test and continuing erosion filter test

    Directory of Open Access Journals (Sweden)

    Ramos-Rivera Johnatan

    2016-01-01

    Full Text Available Some widely-graded soils may exhibit, under the influence of steady seepage flow, a behaviour in which grains of the finer fraction migrate through the interstices of the matrix formed by the coarser fraction. The migrating fines may accumulate at a downstream location within the soil. Alternatively, and where there is no capacity for retention at the downstream or exit boundary, the behaviour may lead to a washing out and consequent loss of the finer fraction. The phenomenon of erosion is termed internal instability, and the soils are considered internally unstable. Taking into consideration (i the specimen reconstitution by method of compaction, (ii the application of a vertical stress to the specimen, and (iii the use of multi-stage seepage flow with head-control, to measure the origin of a conduit through the coarser fraction, some test devices were conducted by different authors to evaluate this phenomenon, the purpose of this paper is to present some considerations and key aspects about internal erosion in dams and filter compatibility with core material (specimen reconstitution, test procedure, consolidation, seepage flow, test program and its relevance to the reality. The main reason to present this investigation is due to the absence of any specified regulatory or standard test method. Given the importance of filter compatibility of the zoned earth core dam and filter materials, as well the grading stability of each zone in the presence of seepage flow, additional consideration will be given to performing Continuing Erosion Filter (CEF tests on the core-filter interface, using the laboratory permeameter device.

  3. Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin

    Directory of Open Access Journals (Sweden)

    Mustafa Tüfekçioğlu

    2016-10-01

    Full Text Available Sheet erosion, one of the most important types of water erosion, takes place on the top soil as tiny soil layer movement that affects lake and stream ecosystem. This type of erosion is very important because the productive soil layer on the top soil can be lost in a very short period of time. The goal of this study was to quantify the amount of surface (sheet and rill soil erosion, and to identify areas under high erosion risk within the study area at Yusufeli province in Artvin by using RUSLE erosion methodology. As a result of the study it was found that the average annual potential soil loss by surface erosion was 3.6 ton ha-1yr-1. Additionally, the maps produced and conclusions reached by the study revealed that the areas of high erosion risk were identified spatially and measures to control erosion on some of these high risk areas can be possible with appropriate erosion control techniques.

  4. Wind erosion control with scattered vegetation in the Sahelian zone of Burkina Faso

    NARCIS (Netherlands)

    Leenders, J.K.

    2006-01-01

    The Sahelian zone ofAfricais the region that is globally most subjected to land degradation, with wind erosion being the most important soil degradation process. By using control measures, the negative effects of wind erosion can be reduced. At present, adoption of

  5. Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin

    OpenAIRE

    Aseel Basim Abdul Hussein; Emad Saadi AL-Hassani; Reem Alaa Mohamed

    2015-01-01

    In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than n...

  6. Structural practices for controlling sediment transport from erosion

    Science.gov (United States)

    Gabriels, Donald; Verbist, Koen; Van de Linden, Bruno

    2013-04-01

    Erosion on agricultural fields in the hilly regions of Flanders, Belgium has been recognized as an important economical and ecological problem that requires effective control measures. This has led to the implementation of on-site and off-site measures such as reduced tillage and the installation of grass buffers trips, and dams made of vegetative materials. Dams made out of coir (coconut) and wood chips were evaluated on three different levels of complexity. Under laboratory conditions, one meter long dams were submitted to two different discharges and three sediment concentrations under two different slopes, to assess the sediment delivery ratios under variable conditions. At the field scale, discharge and sediment concentrations were monitored under natural rainfall conditions on six 3 m wide plots, of which three were equipped with coir dams, while the other three served as control plots. The same plots were also used for rainfall simulations, which allowed controlling sediment delivery boundary conditions more precisely. Results show a clear advantage of these dams to reduce discharge by minimum 49% under both field and laboratory conditions. Sediment delivery ratios (SDR) were very small under laboratory and field rainfall simulations (4-9% and 2% respectively), while larger SDRs were observed under natural conditions (43%), probably due to the small sediment concentrations (1-5 g l-1) observed and as such a larger influence of boundary effects. Also a clear enrichment of larger sand particles (+167%) could be observed behind the dams, showing a significant selective filtering effect.

  7. Native Roadside Vegetation that Enhances Soil Erosion Control in Boreal Scandinavia

    Directory of Open Access Journals (Sweden)

    Annika K. Jägerbrand

    2014-07-01

    Full Text Available This study focused on identifying vegetation characteristics associated with erosion control at nine roadside sites in mid-West Sweden. A number of vegetation characteristics such as cover, diversity, plant functional type, biomass and plant community structure were included. Significant difference in cover between eroded and non-eroded sub-sites was found in evergreen shrubs, total cover, and total above ground biomass. Thus, our results support the use of shrubs in order to stabilize vegetation and minimize erosion along roadsides. However, shrubs are disfavored by several natural and human imposed factors. This could have several impacts on the long-term management of roadsides in boreal regions. By both choosing and applying active management that supports native evergreen shrubs in boreal regions, several positive effects could be achieved along roadsides, such as lower erosion rate and secured long-term vegetation cover. This could also lead to lower costs for roadside maintenance as lower erosion rates would require less frequent stabilizing treatments and mowing could be kept to a minimum in order not to disfavor shrubs.

  8. History of bioengineering techniques for erosion control in rivers in Western Europe.

    Science.gov (United States)

    Evette, Andre; Labonne, Sophie; Rey, Freddy; Liebault, Frederic; Jancke, Oliver; Girel, Jacky

    2009-06-01

    Living plants have been used for a very long time throughout the world in structures against soil erosion, as traces have been found dating back to the first century BC. Widely practiced in Western Europe during the eighteenth and nineteenth centuries, bioengineering was somewhat abandoned in the middle of the twentieth century, before seeing a resurgence in recent times. Based on an extensive bibliography, this article examines the different forms of bioengineering techniques used in the past to manage rivers and riverbanks, mainly in Europe. We compare techniques using living material according to their strength of protection against erosion. Many techniques are described, both singly and in combination, ranging from tree planting or sowing seeds on riverbanks to dams made of fascine or wattle fences. The recent appearance of new materials has led to the development of new techniques, associated with an evolution in the perception of riverbanks.

  9. Investigation of Erosion of Cement-Bentonite via Piping

    Directory of Open Access Journals (Sweden)

    Zijun Wang

    2017-01-01

    Full Text Available Cement-bentonite is one of the main materials used in the seepage barriers to protect earth dams and levees from water erosion. However, the current understanding of the erodibility of the cementitious materials and the interactions between cracked seepage barriers and the water flow is inadequate. Based on the laboratory pinhole erosion test, we first investigated the impacts of cement-bentonite treatments by using the ground granulated blast-furnace slag (GGBS as replacement on the erosion characteristics, compared with the original mixtures; the inclusion of GGBS highlighted a potential advantage against water erosion. In addition, we proposed to calculate the erosion percentage and establish the mathematical relationships between the erosion percentage and different regimes, that is, different curing period, erosion time, and sizes of initial holes. Results showed that enough curing period was critical to avoid the increases of hydraulic conductivity in the macrofabric of the barrier; meanwhile, the materials were eroded quickly at the beginning and slowed down with the erosion time, where the enlargement of the initial creaks would be stabilised at some point in time. Moreover, the sizes of initial holes may affect the erosion situation varying from the sample curing periods.

  10. Deuterium pumping and erosion behavior of selected graphite materials under high flux plasma bombardment in PISCES

    International Nuclear Information System (INIS)

    Hirooka, Y.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.

    1988-06-01

    Deuterium plasma recycling and chemical erosion behavior of selected graphite materials have been investigated using the PISCES-A facility. These materials include: Pyro-graphite; 2D-graphite weave; 4D-graphite weave; and POCO-graphite. Deuterium plasma bombardment conditions are: fluxes around 7 /times/ 10 17 ions s/sup /minus/1/cm/sup /minus/2/; exposure time in the range from 10 to 100 s; bombarding energy of 300 eV; and graphite temperatures between 20 and 120/degree/C. To reduce deuterium plasma recycling, several approaches have been investigated. Erosion due to high-fluence helium plasma conditioning significantly increases the surface porosity of POCO-graphite and 4D-graphite weave whereas little change for 2D-graphite weave and Pyro-graphite. The increased pore openings and refreshed in-pore surface sites are found to reduce the deuterium plasma recycling and chemical erosion rates at transient stages. The steady state recycling rates for these graphite materials can be also correlated to the surface porosity. Surface topographical modification by machined-grooves noticeably reduces the steady state deuterium recycling rate and the impurity emission from the surface. These surface topography effects are attributed to co-deposition of remitted deuterium, chemically sputtered hydrocarbon and physically sputtered carbon under deuterium plasma bombardment. The co-deposited film is found to have a characteristic surface morphology with dendritic microstructures. 18 ref., 4 figs., 1 tab

  11. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  12. Erosion resistance comparison of alternative surface treatments

    Science.gov (United States)

    Česánek, Z.; Schubert, J.; Houdková, Š.

    2017-05-01

    Erosion is a process characterized by the particle separation and the damage of component functional surfaces. Thermal spraying technology HP/HVOF (High Pressure / High Velocity Oxygen Fuel) is commonly used for protection of component surfaces against erosive wear. Alloy as well as cermet based coatings meet the requirements for high erosion resistance. Wear resistance is in many cases the determining property of required component functioning. The application suitability of coating materials is particularly influenced by different hardness. This paper therefore presents an erosion resistance comparison of alloy and cermet based coatings. The coatings were applied on steel substrates and were subjected to the erosive test using the device for evaluation of material erosion resistance working on the principle of centrifugal erodent flow. Abrasive sand Al2O3 with grain size 212-250 μm was selected as an erosive material. For this purpose, the specimens were prepared by thermal spraying technology HP/HVOF using commercially available powders Stellite 6, NiCrBSi, Cr3C2-25%NiCr, Cr3C2-25%CoNiCrAlY, Hastelloy C-276 and experimental coating TiMoCN-29% Ni. Erosion resistance of evaluated coatings was compared with erosive resistance of 1.4923 high alloyed steel without nitridation and in nitrided state and further with surface treatment using technology PVD. According to the evaluation, the resulting erosive resistance depends not only on the selected erodent and surface protection, but also on the erodent impact angle.

  13. A field experiment on the controls of sediment transport on bedrock erosion

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.; Fritschi, B.; Rieke-Zapp, D.; Campana, L.; Lavé, J.

    2012-12-01

    The earth`s surface is naturally shaped by interactions of physical and chemical processes. In mountainous regions with steep topography river incision fundamentally controls the geomorphic evolution of the whole landscape. There, erosion of exposed bedrock sections by fluvial sediment transport is an important mechanism forming mountain river channels. The links between bedload transport and bedrock erosion has been firmly established using laboratory experiments. However, there are only few field datasets linking discharge, sediment transport, impact energy and erosion that can be used for process understanding and model evaluation. To fill this gap, a new measuring setup has been commissioned to raise an appropriate simultaneous dataset of hydraulics, sediment transport and bedrock erosion at high temporal and spatial resolution. Two natural stone slabs were installed flush with the streambed of the Erlenbach, a gauged stream in the Swiss Pre-Alps. They are mounted upon force sensors recording vertical pressure und downstream shear caused by passing sediment particles. The sediment transport rates can be assessed using geophone plates and an automated moving basket system taking short-term sediment samples. These devices are located directly downstream of the stone slabs. Bedrock erosion rates are measured continuously with erosion sensors at sub-millimeter accuracy at three points on each slab. In addition, the whole slab topography is surveyed with photogrammetry and a structured-light 3D scanner after individual flood events. Since the installation in 2011, slab bedrock erosion has been observed during several transport events. We discuss the relation between hydraulics, bedload transport, resulting pressure forces on the stone slabs and erosion rates. The aim of the study is the derivation of an empirical process law for fluvial bedrock erosion driven by moving sediment particles.

  14. Protection from erosion following wildfire

    Science.gov (United States)

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  15. The effects of acid erosion and remineralization on enamel and three different dental materials: FT-Raman spectroscopy and scanning electron microscopy analysis.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Soares, Ana Lúcia Silva; De Oliveira, Rodrigo; Nahórny, Sidnei

    2016-07-01

    FT-Raman spectroscopy and scanning electron microscopy (SEM) were employed to test the hypothesis that the beverage consumption or mouthwash utilization would change the chemistry of dental materials and enamel inorganic content. Bovine enamel samples (n = 36) each received two cavity preparations (n = 72), each pair filled with one of three dental materials (R: nanofilled composite resin, GIC: glass-ionomer cement, RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: artificial saliva, E: erosion/Pepsi Twist or EM: erosion + mouthwash/Colgate Plax). Reduction of carbonate content of enamel was greater in RE than RS (P erosion. Material degradation was greater after E and EM than S. GIC and RMGIC materials had a positive effect against acid erosion in the adjacent enamel after remineralization with mouthwash. The beverage and mouthwash utilization would change R and GIC chemical properties. A professional should periodically monitor the glass-ionomer and resin restorations, as they degrade over time under erosive challenges and mouthwash utilization. Microsc. Res. Tech., 2016. © 2016 Wiley Periodicals, Inc. Microsc. Res. Tech. 79:646-656, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.

    2005-01-01

    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation

  17. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  18. Evaluation of the serum zinc level in erosive and non-erosive oral lichen planus.

    Science.gov (United States)

    Gholizadeh, N; Mehdipour, M; Najafi, Sh; Bahramian, A; Garjani, Sh; Khoeini Poorfar, H

    2014-06-01

    Lichen planus is a chronic inflammatory immunologic-based disease involving skin and mucosa. This disease is generally divided into two categories: erosive and non-erosive. Many etiologic factors are deliberated regarding the disease; however, the disorders of immune system and the role of cytotoxic T-lymphocytes and monocytes are more highlighted. Zinc is an imperative element for the growth of epithelium and its deficiency induces the cytotoxic activity of T-helper2 cells, which seems to be associated with lichen planus. This study was aimed to evaluate the levels of serum zinc in erosive and non-erosive oral lichen planus (OLP) and to compare it with the healthy control group to find out any feasible inference. A total of 22 patients with erosive oral lichen planus, 22 patients with non erosive OLP and 44 healthy individuals as the control group were recruited in this descriptive-comparative study. All the participants were selected from the referees to the department of oral medicine, school of dentistry, Tabriz University of Medical Sciences. Serum zinc level was examined for all the individuals with liquid-stat kit (Beckman Instruments Inc.; Carlsbad, CA). Data were analyzed by adopting the ANOVA and Tukey tests, using SPSS 16 statistical software. The mean age of patients with erosive and non-erosive LP was 41.7 and 41.3 years, respectively. The mean age of the healthy control group was 34.4 years .The mean serum zinc levels in the erosive and non erosive lichen planus groups and control groups were 8.3 (1.15), 11.15 (0.92) and 15.74 (1.75) μg/dl respectively. The difference was statistically significant (poral lichen planus. This finding may probably indicate the promising role of zinc in development of oral lichen planus.

  19. Erosive Wear Characterization of Materials for Lunar Construction

    Science.gov (United States)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2012-01-01

    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.

  20. Changes in the hydrological status of the basin due to the application of erosion control works

    Directory of Open Access Journals (Sweden)

    Radonjić Jasmina

    2016-01-01

    Full Text Available Protection of land with vegetation is the primary factor in the fight against water erosion with necessary application of biotechnical, technical, administrative and planning measures. One of the first basins to be treated with works for the protection against erosion and torrent control is the Gradasnica River basin. The basic parameters to display the changes of the hydrological status of the land are the state of erosion, the change of erosion-coefficient, annual sediment yield, specific annual sediment discharge through the hydrographic network, the value of the runoff curve number and value of the maximal discharge. Works on protection from erosion and regulations of torrents have influenced the decrease in erosion coefficient values from strong erosion (Z=0.99 to the value of weak erosion (Z=0.40, as well as the reduction of the maximum discharge value from Qmax(1956=108,12m3/s to the value of Qmax(2014=87.2 m3/s.

  1. Testing the control of mineral supply rates on chemical erosion in the Klamath Mountains

    Science.gov (United States)

    West, N.; Ferrier, K.

    2017-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including the role of tectonics in the global carbon cycle, nutrient supply to soils and streams via soil production, and lithologic controls on landscape evolution. We aim to test the relationship between mineral supply rates and chemical erosion in the forested uplands of the Klamath mountains, along a latitudinal transect of granodioritic plutons that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. We present 10Be-derived erosion rates and Zr-derived chemical depletion factors, as well as bulk soil and rock geochemistry on 10 ridgetops along the transect to test hypotheses about supply-limited and kinetically-limited chemical erosion. Previous studies in this area, comparing basin-averaged erosion rates and modeled uplift rates, suggest this region may be adjusted to an approximate steady state. Our preliminary results suggest that chemical erosion at these sites is influenced by both mineral supply rates and dissolution kinetics.

  2. Cavitation erosion - scale effect and model investigations

    Science.gov (United States)

    Geiger, F.; Rutschmann, P.

    2015-12-01

    The experimental works presented in here contribute to the clarification of erosive effects of hydrodynamic cavitation. Comprehensive cavitation erosion test series were conducted for transient cloud cavitation in the shear layer of prismatic bodies. The erosion pattern and erosion rates were determined with a mineral based volume loss technique and with a metal based pit count system competitively. The results clarified the underlying scale effects and revealed a strong non-linear material dependency, which indicated significantly different damage processes for both material types. Furthermore, the size and dynamics of the cavitation clouds have been assessed by optical detection. The fluctuations of the cloud sizes showed a maximum value for those cavitation numbers related to maximum erosive aggressiveness. The finding suggests the suitability of a model approach which relates the erosion process to cavitation cloud dynamics. An enhanced experimental setup is projected to further clarify these issues.

  3. Erosion corrision in water steam circuits - reasons and countermeasures

    International Nuclear Information System (INIS)

    Heitmann, H.G.; Kastner, W.

    An increased material erosion on tubes in steam generators, preheaters and condensers but also on turbine casings and connecting pipes of unalloyed and low-alloy steels occurs, to an essential extent, due to erosion-corrosion processes in the fluid-swept plant sections. On the one hand, they cause thinning of the material and sometimes leaks, on the other hand the erosion material leads to contamination of the water-steam cycle with its harmful consequences. The cause of erosion-corrosion is a dissolving corrosion due to the convective effect of pure fluid turbulences. The occurrence of erosion-corrosion is limited to such metallic materials, which are in need of oxide protection layers for their constancy. The cover layers are destroyed by erosive influence and the formation of new protection layers is prevented. At KWU, experimental studies of plates were carried out in the Benson test section to obtain information about the most important parameters of influence. These are in particular the flow velocity, the medium temperature and the water quality (pH value and oxygen content). Moreover, the resistivity of different materials has been compared and the resistance of magnetite protection layers to erosion-corrosion was examined. The results of these studies deliver fundamentals to avoid erosion-corrosion also in power plant engineering to the greatest possible extent. The following variants reveal to be important: 1. Use of chrome alloy materials. 2. Decrease of the flow velocity. 3. Increase of the pH value or the oxygen content. The importance of the test results for power plant engineering is briefly described. (orig.) [de

  4. Soil Erosion. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  5. Composition of enamel pellicle from dental erosion patients.

    Science.gov (United States)

    Carpenter, G; Cotroneo, E; Moazzez, R; Rojas-Serrano, M; Donaldson, N; Austin, R; Zaidel, L; Bartlett, D; Proctor, G

    2014-01-01

    Oral health is dependent upon a thin mobile film of saliva on soft and hard tissues. Salivary proteins adhere to teeth to form the acquired enamel pellicle which is believed to protect teeth from acid erosion. This study investigated whether patients suffering diet-induced dental erosion had altered enamel pellicles. Thirty patients suffering erosion were compared to healthy age-matched controls. Subjects wore a maxillary splint holding hydroxyapatite and human enamel blocks for 1 h. The acquired enamel pellicle was removed from the blocks and compared to the natural incisor pellicle. Basic Erosive Wear Examination scores confirmed that dental erosion was present in erosion patients and absent from healthy age-matched controls. Erosion patients had half the amount of proteins (BCA assay) within the acquired pellicle forming on splint blocks compared to normal controls (p erosion patients (p erosion patients and healthy controls. In summary, the formation of new acquired pellicles on surfaces was reduced in erosion patients, which may explain their greater susceptibility to acid erosion of teeth. © 2014 S. Karger AG, Basel.

  6. Autonomous watersheds: Reducing flooding and stream erosion through real-time control

    Science.gov (United States)

    Kerkez, B.; Wong, B. P.

    2017-12-01

    We introduce an analytical toolchain, based on dynamical system theory and feedback control, to determine how many control points (valves, gates, pumps, etc.) are needed to transform urban watersheds from static to adaptive. Advances and distributed sensing and control stand to fundamentally change how we manage urban watersheds. In lieu of new and costly infrastructure, the real-time control of stormwater systems will reduce flooding, mitigate stream erosion, and improve the treatment of polluted runoff. We discuss the how open source technologies, in the form of wireless sensor nodes and remotely-controllable valves (open-storm.org), have been deployed to build "smart" stormwater systems in the Midwestern US. Unlike "static" infrastructure, which cannot readily adapt to changing inputs and land uses, these distributed control assets allow entire watersheds to be reconfigured on a storm-by-storm basis. Our results show how the control of even just a few valves within urban catchments (1-10km^2) allows for the real-time "shaping" of hydrographs, which reduces downstream erosion and flooding. We also introduce an equivalence framework that can be used by decision-makers to objectively compare investments into "smart" system to more traditional solutions, such as gray and green stormwater infrastructure.

  7. Evaluating the efficacy of wood shreds for mitigating erosion.

    Science.gov (United States)

    Foltz, Randy B; Copeland, Natalie S

    2009-02-01

    An erosion control product made by shredding on-site woody materials was evaluated for mitigating erosion through a series of rainfall simulations. Tests were conducted on bare soil and soil with 30, 50, and 70% cover on a coarse and a fine-grained soil. Results indicated that the wood product known as wood shreds reduced runoff and soil loss from both soil types. Erosion mitigation ranged from 60 to nearly 100% depending on the soil type and amount of concentrated flow and wood shred cover. Wood shreds appear to be a viable alternative to agricultural straw. A wood shred cover of 50% appears optimal, but the appropriate coverage rate will depend on the amount of expected concentrated flow and soil type.

  8. Liquid impact erosion mechanism and theoretical impact stress analysis in TiN-coated steam turbine blade materials

    International Nuclear Information System (INIS)

    Lee, M.K.; Kim, W.W.; Rhee, C.K.; Lee, W.J.

    1999-01-01

    Coating of TiN film was done by reactive magnetron sputter ion plating to improve the liquid impact erosion resistance of steam turbine blade materials, 12Cr steel and Stellite 6B, for nuclear power plant application. TiN-coated blade materials were initially deformed with depressions due to plastic deformation of the ductile substrate. The increase in the curvature in the depressions induced stress concentration with increasing number of impacts, followed by circumferential fracture of the TiN coating due to the circular propagation of cracks. The liquid impact erosion resistance of the blade materials was greatly improved by TiN coating done with the optimum ion plating condition. Damage decreased with increasing TiN coating thickness. According to the theoretical analysis of stresses generated by liquid impact, TiN coating alleviated the impact stress of 12Cr steel and Stellite 6B due to stress attenuation and stress wave reactions such as reflection and transmission at the coating-substrate interface

  9. Mesh erosion after abdominal sacrocolpopexy.

    Science.gov (United States)

    Kohli, N; Walsh, P M; Roat, T W; Karram, M M

    1998-12-01

    To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.

  10. Final IAEA research coordination meeting on plasma-interaction induced erosion of fusion reactor materials. October 9-11, 1995, Vienna, Austria. Summary report

    International Nuclear Information System (INIS)

    Langley, R.A.

    1995-12-01

    The proceedings and results of the Final IAEA Research Coordination Meeting on ''Plasma-interaction Induced Erosion of Fusion Reactor Materials'' held on October 9, 10 and 11, 1995 at the IAEA Headquarters in Vienna are briefly described. This report includes a summary of presentations made by the meeting participants, the results of a data survey and needs assessment for the erosion of plasma facing components and in-vessel materials, and recommendations regarding future work. (author). Refs, figs, tabs

  11. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    The energetic function of the soil expressed through the potential energy accumulated through humus, the biogeochemical function (the circuit of the nutrient elements) are significantly influenced by its hydrophysical function and especially by the state of the bedding- consolidation, soil capacity of retaining an optimal quantity of water, and then its gradual disponibility for plant consumption. The understanding of soil functions and management including nutrient production, stocking, filtering and transforming minerals, water , organic matter , gas circuit and furnishing breeding material, all make the basis of human activity, Earth's past, present and especially future. The minimum tillage soil systems - paraplow, chisel or rotary grape - are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. By continuously applying for 10 years the minimum tillage system in a crop rotation: corn - soy-bean - wheat - potato / rape, an improvement in physical, hydro-physical and biological properties of soil was observed, together with the rebuilt of structure and increase of water permeability of soil. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. The minimum tillage systems rebuild the soil structure, improving the global drainage of soil which allows a rapid infiltration of water in soil. The result is a more productive soil, better protected against wind and water erosion and needing less

  12. Statistical compilation of NAPAP chemical erosion observations

    Science.gov (United States)

    Mossotti, Victor G.; Eldeeb, A. Raouf; Reddy, Michael M.; Fries, Terry L.; Coombs, Mary Jane; Schmiermund, Ron L.; Sherwood, Susan I.

    2001-01-01

    In the mid 1980s, the National Acid Precipitation Assessment Program (NAPAP), in cooperation with the National Park Service (NPS) and the U.S. Geological Survey (USGS), initiated a Materials Research Program (MRP) that included a series of field and laboratory studies with the broad objective of providing scientific information on acid rain effects on calcareous building stone. Among the several effects investigated, the chemical dissolution of limestone and marble by rainfall was given particular attention because of the pervasive appearance of erosion effects on cultural materials situated outdoors. In order to track the chemical erosion of stone objects in the field and in the laboratory, the Ca 2+ ion concentration was monitored in the runoff solution from a variety of test objects located both outdoors and under more controlled conditions in the laboratory. This report provides a graphical and statistical overview of the Ca 2+ chemistry in the runoff solutions from (1) five urban and rural sites (DC, NY, NJ, NC, and OH) established by the MRP for materials studies over the period 1984 to 1989, (2) subevent study at the New York MRP site, (3) in situ study of limestone and marble monuments at Gettysburg, (4) laboratory experiments on calcite dissolution conducted by Baedecker, (5) laboratory simulations by Schmiermund, and (6) laboratory investigation of the surface reactivity of calcareous stone conducted by Fries and Mossotti. The graphical representations provided a means for identifying erroneous data that can randomly appear in a database when field operations are semi-automated; a purged database suitable for the evaluation of quantitative models of stone erosion is appended to this report. An analysis of the sources of statistical variability in the data revealed that the rate of stone erosion is weakly dependent on the type of calcareous stone, the ambient temperature, and the H + concentration delivered in the incident rain. The analysis also showed

  13. The tritium confinement and surface chemistry of plasma facing materials in controlled D-T fusion devices

    International Nuclear Information System (INIS)

    Wu, C.H.

    1987-01-01

    Tritium permeation through first walls, limiters or divertors subjected to energetic tritium charge exchange neutral bombardment is a potentially serious problem area for advanced D-T reactors operating at elevated temperatures. High concentrations of tritium in the near surface region can be reached by implantation of the charge neutral flux combined with a relatively slow recombination of these atoms into molecules at the plasma/ first wall interface. A concentration gradient is established, causing tritium to diffuse into the bulk and essentially to the outer wall surface where it can enter the first wall coolant. Since tritium separation from cooling water is very costly, release of even a small fraction of tritium to the environment could pose undesirable safety problems. Therefore, it is necessary to reduce the tritium permeation. An analysis of the way of inhibition has been made. The tritium interacts with the solid surface of the plasma facing components, resulting in trapping and material erosion, and posing problems with respect to plasma density control. The erosion of the plasma facing component materials is mainly caused by physical and chemical erosion. A detailed analysis of chemical erosion by tritium has been performed and the results are described. (author)

  14. Agriculture and stream water quality: A biological evaluation of erosion control practices

    Science.gov (United States)

    Lenat, David R.

    1984-07-01

    Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.

  15. Erosion and redeposition of divertor and wall materials during abnormal events

    International Nuclear Information System (INIS)

    Hassanein, A.

    1990-09-01

    High energy deposition to in-vessel components of fusion reactors is expected to occur during abnormal operating conditions. This high energy dump in short times may result in very high surface temperatures and can cause severe erosion as a result of melting and vaporization of these components. One abnormal operating condition results from plasma disruptions where the plasma loses confinement and dumps its energy on reactor components. Another abnormal condition occurs when a neutral beam used in heating the plasma shines through the vacuum vessel to parts of the wall with no plasma present in the chamber. A third abnormal event that results in high energy deposition is caused by the runaway electrons to chamber components following a disruption. The failure of these components under the expected high heat loads can severely limit the operation of the fusion device. The redeposition of the eroded materials from these abnormal events over the first wall and other components may cause additional problems. Such problems are associated with tritium accumulation in the freshly deposited materials, charge exchange sputtering and additional impurity sources, and material compatibility issues

  16. Orbital controls on paleo erosion rates in the Western Escarpment of the Andes at 13° latitude

    Science.gov (United States)

    Schlunegger, Fritz; Bekaddour, Toufik; Delunel, Romain; Norton, Kevin; Akçar, Naki; Vogel, Hendrik

    2014-05-01

    The formation of fluvial terrace sequences in mountainous areas requires that two boundary conditions have to be fulfilled. First, hilllslope material available for erosion needs to be sufficiently thick and abundant. Second stripping off of this regolith cover has to occur fast and within a short time period. Contrariwise, if hillslope erosion operates at a pace concordant with the fluvial regime and in equilibrium to the prevailing climate, then no terrace sequence will form. Here, we present a 10Be-based sediment budget from the cut-and-fill terrace sequences in the Pisco valley, and particularly the Minchin terrace sequence deposited between 48-36 ka, to illustrate how the erosional regime and the precipitation pattern has changed in response to orbitally-driven climate cycles. We find that the Minchin period was characterized by an erosional pulse along the Pacific coast during which denudation rates reached values as high as 600 mm/ka (provided that the lateral valley flanks have been the major sediment source) for a relatively short time span lasting a few thousands of years. This contrasts to the younger orbitally-controlled pluvial periods and the modern situation when 10Be-based sediment budgets yield nearly zero erosion at the Pacific coast. We interpret these contrasts to indicated different erosional conditions between the modern and the Minchin time. First, the sediment budget infers a precipitation pattern that is similar to the modern climate ca. 1000 km farther north near the boundary between Peru and Ecuador, where highly erratic and extreme El Niño-related precipitation are associated with landsliding and flooding along the coast. Second, the formation of a thick terrace sequence requires the supply of sufficient material through erosion on the catchment's hillslopes. It is likely that a relatively thick regolith sequence had accumulated before the start of the Minchin period, because this erosional epoch was preceded by a >50 ka-long time span

  17. Use of hold-gro erosion control fabric in the establishment of plant species on coal mine soil.

    Science.gov (United States)

    Day, A D; Ludeke, K L

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: (1) spring barley (Horduem vulgare L.), an annual grass (2) crested wheatgrass (Agropyron cristatum L.), a perennial grass (3) alfalfa (lucerne) (Medicago sativa L.), a perennial legume and (4) fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States.

  18. Use of Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Ludeke, K.L.

    1986-09-01

    Experiments were conducted on the Black Mesa Coal Mine, Kayenta, Arizona in 1977 and 1978 to study the effectiveness of Hold-Gro Erosion Control Fabric (a product from the Gulf States Paper Corporation, Tuscaloosa, Alabama) in the establishment of plants on coal mine soil following the surface mining of coal. Four plant species were planted: spring barley (Horduem vulgare L.), an annual grass; crested wheatgrass (Agropyron cristatum L.), a perennial grass; alfalfa (lucerne) (Medicago sativa L.), a perennial legume; and fourwing saltbush (Atriplex canescens Pursh.), a perennial shrub. Seeds of each plant species were planted in reclaimed coal mine soil in the spring of the year by both broadcast seeding (conventional culture) and the incorporation of seeds in Hold-Gro Erosion Control Fabric. Average numbers of seedlings established and percent ground cover for all species studied were higher in areas where conventional culture was used than they were in areas where seeds were incorporated in Hold-Gro Erosion Control Fabric. The incorporation of seeds in Hold-Gro Erosion Control Fabric in the establishment of plant species on coal mine soil was not an effective cultural practice in the southwestern United States. 11 refs.

  19. Study on Co-free amorphous material cladding using a laser beam to improve the resistance of primary system parts in NPPs to wear/erosion-corrosion

    International Nuclear Information System (INIS)

    Kim, J. S.; Woo, S. S.; Seo, J. H.

    2001-01-01

    A study on Co-free amorphous material, ARMACOR M, cladding using a laser beam has been performed to improve resistance of the primary system main parts on nuclear power plants to wear/erosion-corrosion. The wear/erosion-corrosion properties of ARMACRO M cladded speciemens were characterized in air at room temperature and 300 .deg. C and in air at room temperature, and compared to those of other hardfacing materials, such as Stellite 6, NOREM 02, Deloro 50, TIG-welde or laer cladded. According to the results, ARMACOR M laser-cladded specimen showed to have the highest resistance to wear/erosion-corrosion

  20. The water erosion processes in the retreat erosive of cliff on soft rocks in the province of Cadiz (Spain)

    International Nuclear Information System (INIS)

    Rendon Aragon, J. J.; Gracia Prieto, F. J.; Rio Rodriguez, L. del

    2009-01-01

    The littoral cliffs on soft materials of the Atlantic Cadiz coast show an important activity of the fresh water erosion processes, sometimes even more significant than the marine erosion processes. The connection of the lower cliffs with sandy beaches favours aeolian sand invasion, which fills previous rills and reduces the water erosion intensity by increasing infiltration. Cliff retreat and rill erosion measurement by using erosion sticks has shown very variables values, most of them higher than the estimated error of the employed methods. This indicates the existence of other factors influencing the distribution of water erosion processes along these cliffs, which have to be studied through different techniques. (Author) 5 refs.

  1. Erosion Control and Recultivation Measures at a Headrace Channel of a Hydroelectric Power Plant using Different Combined Soil Bioengineering Techniques

    Science.gov (United States)

    Obriejetan, M.; Florineth, F.; Rauch, H. P.

    2012-04-01

    As a consequence of land use change resulting in an increased number of slope protection constructions and with respect to effects associated with climate change like extremes in temperatures and temperature variations or increased frequency of heavy precipitation, adaptation strategies for sustainable erosion protection systems are needed which meet ecological compatibility and economical requirements. Therefore a wide range of different technical solutions respectively geotextiles and geotextile-related products (blankets, nettings, grids etc.) are available on the market differing considerably in function, material, durability and pricing. Manufacturers usually provide product-specific information pertaining to application field, functional range or (technical) installation features whereas vegetational aspects are frequently neglected while vegetation can contribute substantially to increased near-surface erosion protection respectively slope stability. Though, the success of sustainable erosion control is directly dependent on several vegetational aspects. Adequate development of a functional vegetation layer in combination with geotextiles is closely associated to application aspects such as seeding technique, sowing date and intensity, seed-soil contact or maintenance measures as well as to qualitative aspects like seed quality, germination rates, area of origin, production method or certification. As a general guideline, erosion control within an initial phase is directly related to restoration techniques whereas vegetation specifics with regard to species richness or species composition play a key role in medium to long-term development and slope protection. In this context one of the fundamental objectives of our study is the identification and subsequently the determination of the main interaction processes between technical and biological components of combined slope protection systems. The influence of different geotextile characteristics on specific

  2. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.

    2013-01-01

    Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.

  3. Electrode erosion in arc discharges at atmospheric pressure

    Science.gov (United States)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

  4. Erosion Potential of Tooth Whitening Regimens as Evaluated with Polarized Light Microscopy.

    Science.gov (United States)

    Brambert, Patrick; Qian, Fang; Kwon, So Ran

    2015-11-01

    Tooth whitening is a widely utilized esthetic treatment in dentistry. With increased access to over-the-counter (OTC) systems concerns have been raised as to potential adverse effects associated with overuse of whitening materials. Therefore, this study aimed to evaluate enamel erosion due to different whitening regimens when used in excess of recommended guidelines. Extracted human teeth (n = 66) were randomly divided into 11 groups (n = 6/group). Specimens were exposed to OTC products: Crest Whitestrips and 5-minute natural white and a do-it-yourself (DIY) strawberry whitening recipe. Within each regimen, groups were further divided per exposure time: specimens receiving the recommended product dosage; 5 times the recommended dosage; and 10 times the recommended dosage. Negative and positive controls were treated with grade 3 water and 1.0% citric acid, respectively. Specimens were nail-varnished to limit application to a 1 × 4 mm window. Following treatment, specimens were sectioned and erosion (drop in μm) measured using polarized light microscopy. Two-sample t-test was used to detect difference in amount of enamel erosion between negative and positive groups, while one-way analysis of variance (ANOVA), followed by post hoc Dunnett's test was used to detect difference between set of treatment groups and negative control groups or among all experimental groups. There was significant difference in mean amount of enamel erosion (p enamel erosion for positive control group was significantly greater than that for negative control group (23.50 vs 2.65 μm). There was significant effect for type of treatments on enamel erosion [F(9,50) = 25.19; p 0.05 for all instances), except for Natural White_10 times treatment group (p enamel erosion. Enamel erosion due to the overuse of whitening products varies for different modalities and products. Therefore, caution is advised when using certain over-the-counter products beyond recommended guidelines, as there is potential

  5. Current status of mechanical erosion studies of bentonite buffer

    International Nuclear Information System (INIS)

    Sane, P.; Olin, M.; Koskinen, K.

    2013-08-01

    The performance of the bentonite buffer in KBS-3-type nuclear waste repository concept relies to a great extent on the buffer surrounding the canister having sufficient dry density. Loss of buffer material caused by erosion remains as the most significant process reducing the density of the buffer. The mechanical erosion, or pre-saturation erosion, is the process where flowing groundwater transports buffer material away from the deposition hole towards the deposition tunnel. This process reduces the overall buffer density and potentially creates localized regions of low density. In the worst case the process is assumed to last as long as the free volume between the pellets in the pellets filled regions is filled with groundwater. With fixed environmental and material parameters a set of experiments was performed, testing the erosive properties of different buffer and backfill materials (MX-80 and Friedland Clay) in different groundwater conditions. The method used was a pinhole erosion test using two sizescales; 100 mm and 400 mm of cell length. The purpose of the pinhole tests was to test the scenario where piping channel is formed in the buffer and water flows through a single channel. The erosion data was produced with two methods, firstly the time-related erosion rates measured in-situ during the measurement and secondly the overall mass loss in the sample cell measured after dismantling of the test. It was observed that erosion in piping channels decreases rapidly (∼24 h) and irreversibly to a level that is an order of magnitude lower than the peak values. (orig.)

  6. Preventing erosion at pipeline crossings of watercourses

    International Nuclear Information System (INIS)

    Sawatsky, L.; Arnold, G.

    1997-01-01

    Watercourses are naturally vulnerable to erosion but the risk is particularly acute after sub-soil and armour materials have been disturbed by trenching and backfilling during construction. Various types of erosion (river scour, river bed, river channel bed and river bank ) and the progressive removal of pipeline cover resulting from erosion were discussed. Methods of estimating the risk of progressive erosion, river avulsions and beaver dam scour, and methods of mitigating erosion at pipeline crossings such as deep burial, proper siting, conventional armouring, and a combination of bank toe protection, and upper bank vegetation cover, were described

  7. The erosive potential of candy sprays

    NARCIS (Netherlands)

    Gambon, D.L.; Brand, H.S.; Nieuw Amerongen, A.V.

    2009-01-01

    Objective To determine the erosive potential of seven different commercially available candy sprays in vitro and in vivo. Material and methods The erosive potential was determined in vitro by measuring the pH and neutralisable acidity. The salivary pH and flow rate were measured in healthy

  8. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V

    1998-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  9. In Situ analysis of CO2 laser irradiation on controlling progression of erosive lesions on dental enamel.

    Science.gov (United States)

    Lepri, Taísa Penazzo; Scatolin, Renata Siqueira; Colucci, Vivian; De Alexandria, Adílis Kalina; Maia, Lucianne Cople; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2014-08-01

    The present study aimed to evaluate in situ the effect of CO2 laser irradiation to control the progression of enamel erosive lesions. Fifty-six slabs of bovine incisors enamel (5 × 3 × 2.5 mm(3) ) were divided in four distinct areas: (1) sound (reference area), (2) initial erosion, (3) treatment (irradiated or nonirradiated with CO2 laser), (4) final erosion (after in situ phase). The initial erosive challenge was performed with 1% citric acid (pH = 2.3), for 5 min, 2×/day, for 2 days. The slabs were divided in two groups according to surface treatment: irradiated with CO2 laser (λ = 10.6 µm; 0.5 W) and nonirradiate. After a 2-day lead-in period, 14 volunteers wore an intraoral palatal appliance containing two slabs (irradiated and nonirradiated), in two intraoral phases of 5 days each. Following a cross-over design during the first intraoral phase, half of the volunteers immersed the appliance in 100 mL of citric acid for 5 min, 3×/day, while other half of the volunteers used deionized water (control). The volunteers were crossed over in the second phase. Enamel wear was determined by an optical 3D profilometer. Three-way ANOVA for repeated measures revealed that there was no significant interaction between erosive challenge and CO2 laser irradiation (P = 0.419). Erosive challenge significantly increased enamel wear (P = 0.001), regardless whether or not CO2 laser irradiation was performed. There was no difference in enamel wear between specimens CO2 -laser irradiated and non-irradiated (P = 0.513). Under intraoral conditions, CO2 laser irradiation did not control the progression of erosive lesions in enamel caused by citric acid. © 2014 Wiley Periodicals, Inc.

  10. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf

    2012-10-01

    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  11. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  12. Backward erosion piping : Initiation and progression

    NARCIS (Netherlands)

    Van Beek, V.M.

    2015-01-01

    Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes

  13. Low cost sic coated erosion resistant graphite

    International Nuclear Information System (INIS)

    Zafar, M.F.; Nicholls, J.R.

    2007-01-01

    The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion high density graphite is usually preferred; which is again very expensive. Another technique used to minimize the erosion is Pyrolytic Graphite (PG) coating inside the nozzle. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. The current research is focused on synthesizing, characterizing and oxidation testing of such a converted SiC layer on commercial grade graphite. (author)

  14. Erosion and Soil Contamination Control Using Coconut Flakes And Plantation Of Centella Asiatica And Chrysopogon Zizanioides

    Science.gov (United States)

    Roslan, Rasyikin; Che Omar, Rohayu; Nor Zuliana Baharuddin, Intan; Zulkarnain, M. S.; Hanafiah, M. I. M.

    2016-11-01

    Land degradation in Malaysia due to water erosion and water logging cause of loss of organic matter, biodiversity and slope instability but also land are contaminated with heavy metals. Various alternative such as physical remediation are use but it not showing the sustainability in term of environmental sustainable. Due to that, erosion and soil contamination control using coconut flakes and plantation of Centella asiatica and Chrysopogon zizanioides are use as alternative approach for aid of sophisticated green technology known as phytoremediation and mycoremediation. Soil from cabonaceous phyllite located near to Equine Park, Sri Kembangan are use for monitoring the effect of phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control. Five laboratory scale prototypes were designed to monitor the effect of different proportion of coconut flakes i.e. 10%, 25%, 50% & 100% and plantation of Centella asiatica and Chrysopogon zizanioides to reduce the top soil from eroding and reduce the soil contamination. Prototype have been observe started from first week and ends after 12 weeks. Centella asiatica planted on 10% coconut flakes with 90% soil and Chrysopogon zizanioides planted on 25% coconut flakes with 75% soil are selected proportion to be used as phytoremediation and mycoremediation in reducing soil contamination and biotechnology for erosion control.

  15. Wood strands as an alternative to agricultural straw for erosion control

    Science.gov (United States)

    Randy B. Foltz; James H. Dooley

    2004-01-01

    Agricultural straw is used in forested areas of the United States for erosion control on burned areas, harvest landings, decommissioned road prisms, road cuts and fills, and other areas of disturbed soil. However, an increased agronomic and ecological value for straw; an increased utilization for energy production, fiber panels, and other higher value uses; a...

  16. The history and assessment of effectiveness of soil erosion control measures deployed in Russia

    Directory of Open Access Journals (Sweden)

    Valentin Golosov

    2013-09-01

    Full Text Available Research activities aimed at design and application of soil conservation measures for reduction of soil losses from cultivated fields started in Russia in the last quarter of the 19th century. A network of "zonal agrofor-estry melioration experimental stations" was organized in the different landscape zones of Russia in the first half of the 20th century. The main task of the experiments was to develop effective soil conservation measures for Russian climatic,soil and land use conditions. The most widespread and large-scale introduction of coun-termeasures to cope with soil erosion by water and wind into agricultural practice supported by serious governmental investments took place during the Soviet Union period after the Second World War. After the Soviet Union collapse in 1991 ,general deterioration of the agricultural economy sector and the absence of investments resulted in cessation of organized soil conservation measures application at the nation-wide level. However, some of the long-term erosion control measures such as forest shelter belts, artificial slope terracing, water diversion dams above formerly active gully heads survived until the present. In the case study of sediment redistribution within the small cultivated catchment presented in this paper an attempt was made to evaluate average annual erosion rates on arable slopes with and without soil conservation measures for two time intervals. It has been found that application of conservation measures on cultivated slopes within the experimental part of the case study catchment has led to a decrease of average soil loss rates by at least 2. 5 2. 8 times. The figures obtained are in good agreement with previously published results of direct monitoring of snowmelt erosion rates, reporting approximately a 3 -fold decrease of average snowmelt erosion rates in the experimental sub-catchment compared to a traditionally cultivated control sub-catchment. A substantial decrease of soil

  17. IN SITU MEASUREMENT OF BEDROCK EROSION

    Directory of Open Access Journals (Sweden)

    D. H. Rieke-Zapp

    2012-07-01

    Full Text Available While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are – if at all available – based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest

  18. In Situ Measurement of Bedrock Erosion

    Science.gov (United States)

    Rieke-Zapp, D. H.; Beer, A.; Turowski, J. M.; Campana, L.

    2012-07-01

    While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are - if at all available - based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ) and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest generation of compact

  19. Cavitation erosion tests of high tensile stainless steels for the Techno-Superliner (TSL-F) hulls; Techno superliner (TSL-F) sentai kozoyo kokyodo stainless ko no cavitation erosion

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Ito, H.; Shibasaki, K. [NKK Corp., Tokyo (Japan); Mizuta, A.; Sugimoto, H. [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tomono, Y. [Hitachi Zosen Corp., Osaka (Japan)

    1996-12-31

    Investigations were given by using the magnetostrictive vibration method and the high-speed fluid testing method on cavitation erosion resistance of high-tensile stainless steels thought to have high applicability to submerged hull structures of Techno-Supeliner (TSL-L). The investigations revealed that these steels have nearly equivalent resistance to even SUS 304 or 15-5PH steel which is thought to have the highest cavitation erosion resistance among the conventional materials used customarily. An experiment using both materials provided a result different quantitatively but similar qualitatively in relative merits between the materials. Correlation between both materials was presented. A cavitation erosion experiment using a 1/6 scale model of the actual TSL-F was carried out to measure the amount of cavitation erosion generated on wing surfaces. Results from the experiment were used to attempt estimation of cavitation erosion amount at the level of the actual TSL-F. 21 refs., 12 figs., 3 tabs.

  20. Cavitation erosion tests of high tensile stainless steels for the Techno-Superliner (TSL-F) hulls; Techno superliner (TSL-F) sentai kozoyo kokyodo stainless ko no cavitation erosion

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M; Ito, H; Shibasaki, K [NKK Corp., Tokyo (Japan); Mizuta, A; Sugimoto, H [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tomono, Y [Hitachi Zosen Corp., Osaka (Japan)

    1997-12-31

    Investigations were given by using the magnetostrictive vibration method and the high-speed fluid testing method on cavitation erosion resistance of high-tensile stainless steels thought to have high applicability to submerged hull structures of Techno-Supeliner (TSL-L). The investigations revealed that these steels have nearly equivalent resistance to even SUS 304 or 15-5PH steel which is thought to have the highest cavitation erosion resistance among the conventional materials used customarily. An experiment using both materials provided a result different quantitatively but similar qualitatively in relative merits between the materials. Correlation between both materials was presented. A cavitation erosion experiment using a 1/6 scale model of the actual TSL-F was carried out to measure the amount of cavitation erosion generated on wing surfaces. Results from the experiment were used to attempt estimation of cavitation erosion amount at the level of the actual TSL-F. 21 refs., 12 figs., 3 tabs.

  1. Fundamental study on cavitation erosion in liquid metal. Effect of liquid parameter on cavitation erosion in liquid metals (Joint research)

    International Nuclear Information System (INIS)

    Hattori, Shuji; Kurachi, Hiroaki; Inoue, Fumitaka; Watashi, Katsumi; Tsukimori, Kazuyuki; Yada, Hiroki; Hashimoto, Takashi

    2009-02-01

    Cavitation erosion, which possibly occurs on the surfaces of fluid machineries and components contacting flowing liquid and causes sponge-like damage on the material surface, is important problem, since it may become the cause of performance deduction, life shortening, noise, vibration of mechanical components and moreover failure of machine. Research on cavitation erosion in liquid metal is very important to confirm the safety of fast breeder reactor using sodium coolant and to avoid serious damage of the target vessel of spallation neutron source containing liquid-mercury. But the research on cavitation erosion in liquid metal has been hardly performed because of its specially in comparison with that in water. In this study, a cavitation erosion test apparatus was developed to carry out the erosion tests in low-temperature liquid metals. Cavitation erosion tests were carried out in liquid lead-bismuth alloy and in deionized water. We discuss the effect of liquid parameters and temperature effects on the erosion rate. We reach to the following conclusions. The erosion rate was evaluated in terms of a relative temperature which was defind as the percentage between freezing and boiling points. At 14degC relative temperature, the erosion rate is 10 times in lead-bismuth alloy, and 2 to 5 times in sodium, compared with that in deionized water. At 14degC relative temperature, the erosion rate can be evaluated in terms of the following parameter. 1 / (1/ρ L /C L +1/ρ S C S )√ρ L . Where ρ is the material density and c is the velocity of sound, L and S denote liquid and solid. In the relative temperature between 14 and 30degC, the temperature dependence on the erosion rate is due to the increase in vapor pressure. (author)

  2. Piping and erosion in buffer and backfill materials. Current knowledge

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Sanden, Torbjoern

    2006-09-01

    The water inflow into the deposition holes and tunnels in a repository will mainly take place through fractures in the rock and will lead to that the buffer and backfill will be wetted and homogenised. But in general the buffer and backfill cannot absorb all water that runs through a fracture, which leads to that a water pressure will be generated in the fracture when the inflow is hindered. If the counter pressure and strength of the buffer or backfill is insufficiently high, piping and subsequent erosion may take place. The processes and consequences of piping and erosion have been studied in some projects and several laboratory test series in different scales have been carried through. This brief report describes these tests and the results and conclusions that have emerged. The knowledge of piping and erosion is insufficient today and additional studies are needed and running

  3. To Analyse the Erosive Potential of Commercially Available Drinks on Dental Enamel and Various Tooth Coloured Restorative Materials - An In-vitro Study.

    Science.gov (United States)

    Karda, Babita; Jindal, Ritu; Mahajan, Sandeep; Sandhu, Sanam; Sharma, Sunila; Kaur, Rajwinder

    2016-05-01

    With the enormous change in life style pattern of a common man through the past few decades, there has been proportional variation in the amount and frequency of consumption of drinks. An increased consumption of these drinks will concurrently increase enamel surface roughness by demineralization, resulting in hypersensitivity and elevated caries risk. The present study was designed to evaluate the erosive potential of commercially available drinks on tooth enamel and various tooth coloured restorative materials. Extracted human teeth were taken and divided into four groups i.e. tooth enamel, glass ionomer cement, composite and compomer. Four commercially available drinks were chosen these were Coca -Cola, Nimbooz, Frooti and Yakult. The pH of each drink was measured. Each group was immersed in various experimental drinks for a period of 14 days. The erosive potential of each drink was measured by calculating the change in average surface roughness of these groups after the immersion protocol in various drinks. The data analysis was done by One Way Anova, Post-Hoc Bonferroni, and paired t -test. Group II-GIC showed highest values for mean of change in average surface roughness and the values were statistically significant (pCoca-cola showed the highest erosive potential and Yakult showed the lowest, there was no statistical significant difference between the results shown by Yakult and Frooti. Characteristics which may promote erosion of enamel and tooth coloured restorative materials were surface texture of the material and pH of the drinks.

  4. Tectonic control of erosion in the southern Central Andes

    Science.gov (United States)

    Val, Pedro; Venerdini, Agostina L.; Ouimet, William; Alvarado, Patricia; Hoke, Gregory D.

    2018-01-01

    Landscape evolution modeling and global compilations of exhumation data indicate that a wetter climate, mainly through orographic rainfall, can govern the spatial distribution of erosion rates and crustal strain across an orogenic wedge. However, detecting this link is not straightforward since these relationships can be modulated by tectonic forcing and/or obscured by heavy-tailed frequencies of catchment discharge. This study combines new and published along-strike average rates of catchment erosion constrained by 10Be and river-gauge data in the Central Andes between 28°S and 36°S. These data reveal a nearly identical latitudinal pattern in erosion rates on both sides of the range, reaching a maximum of 0.27 mm/a near 34°S. Collectively, data on topographic and fluvial relief, variability of rainfall and discharge, and crustal seismicity suggest that the along-strike pattern of erosion rates in the southern Central Andes is largely independent of climate, but closely relates to the N-S distribution of shallow crustal seismicity and diachronous surface uplift. The consistently high erosion rates on either side of the orogen near 34°S imply that climate plays a secondary role in the mass flux through an orogenic wedge where the perturbation to base level is similar on both sides.

  5. Macroscopic erosion of divertor and first wall armour in future tokamaks

    Science.gov (United States)

    Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-12-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.

  6. Macroscopic erosion of divertor and first wall armour in future tokamaks

    International Nuclear Information System (INIS)

    Wuerz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-01-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source

  7. Erosion of buffer caused by groundwater leakages

    International Nuclear Information System (INIS)

    Autio, J.; Hanana, K.; Punkkinen, O.; Koskinen, K.; Olin, M.

    2010-01-01

    Document available in extended abstract form only. In the Finnish HLW disposal concept the most important properties of the bentonite clay being considered for these isolation purposes are its thermal behaviour, low hydraulic conductivity, diffusion limited transport, rheology, plasticity, sufficient swelling potential, and exchange capacity. All of these properties depend critically on bentonite density; therefore, any potential mass loss or redistribution events must be well characterized. One such event or process is the erosion of bentonite by flowing groundwater and the groundwater flowing in newly formed channels, in special. Mechanical erosion during the operational phase, due to high groundwater pressure gradients in open excavations, has been identified as a critical issue in TKS-2006 and SR-Can. This work addresses the mechanical erosion of bentonite by fluid shear. In order for buffer erosion to occur three processes must take place: detachment, entrainment, and transport. These processes are followed by the settling of the material and redistribution of buffer mass. Erosion begins with the detachment of a particle from surrounding material, which requires the application of shear forces greater than the attractive force between the particle and parent structure. Entrainment is the process by which the eroding medium lifts the detached particle into the flow. The most important aspect in entrainment is transfer of fluid's inertial forces via surface friction to particles' inertial forces, which, in turn, must overcome the frictional resistance between the particle and its surroundings. Factors influencing frictional resistance include gravity, particle mass, saturation degree of parent structure, composition of water present in parent structure, particle size, and surface roughness. Recent erosion tests, whereby water flow was directed over compacted bentonite blocks or through a system of bentonite pellets, have indicated that bentonite erodes

  8. Optimal Land Use Management for Soil Erosion Control by Using an Interval-Parameter Fuzzy Two-Stage Stochastic Programming Approach

    Science.gov (United States)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  9. Optimal land use management for soil erosion control by using an interval-parameter fuzzy two-stage stochastic programming approach.

    Science.gov (United States)

    Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong

    2013-09-01

    Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.

  10. Soil erosion in a man-made landscape: the Mediterranean

    Science.gov (United States)

    Cerdà, A.; Ruiz Sinoga, J. D.; Cammeraat, L. H.

    2012-04-01

    Mediterranean-type ecosystems are characterised by a seasonally contrasted distribution of precipitation, by the coincidence of the driest and hottest season in summer, by an often-mountainous terrain, and by a long history of intense human occupation, especially around the Mediterranean Sea. The history of the Mediterranean lands is the history of human impacts on the soil system, and soil erosion is the most intense and widespread impact on this land where high intensity and uneven rainfall is found. A review of the soil erosion rates measured in the Mediterranean basin will be shown. The measurements done by means of erosion pins, topographical measurements, rainfall simulators, Gerlach collectors in open or close plots, watershed/basin measurements, reservoirs siltation and historical data will be shown. A review of the soil erosion models applied in the Mediterranean will be shown. The tentative approach done until October 2011 show that the soil erosion rates on Mediterranean type ecosystems are not as high as was supposed by the pioneers in the 70's. And this is probably due to the fact that the soils are very shallow and sediments are not available after millennia of high erosion rates. This is related to the large amount of rock fragments are covering the soil, and the rock outcrops that are found in the upper slope trams and the summits. Soil erosion in the Mediterranean is seasonal due to the rainfall concentration in winter, and highly variable within years as the high intensity rainfall events control the sediment production. Natural vegetation is adapted to the Mediterranean environmental conditions, and they are efficient to control the soil losses. An example are the forest fire that increase the soil losses but this is a temporal change as after 2-4 years the soil erosion rates are similar to the pre-fire period. Agriculture lands are the source of sediments although the highest erosion rates are found in badland areas that cover a small part of

  11. Experiment of cavitation erosion at the exit of a long orifice

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Yoshinori; Murase, Michio [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    We performed experiments to clarify mechanism of cavitation erosion and to predict cavitation erosion rate at the exit of a long orifice equipped at the chemical and volume control system in a pressurized water reactor (PWR). In order to find this mechanism, we used a high speed video camera. As the result, we observed bubble collapses near the exit of the orifice when flow condition was oscillating. So the bubble collapses due to the oscillation might cause the first stage erosion at the exit of the orifice. Using the orifice which had the cone-shaped exit, we observed that bubbles collapsed near the exit and then they collapsed at the upstream like a chain reaction. So this bubble collapse mechanism could be explained as follows: shock wave was generated by the bubble collapse near the exit, then it propagated upwards, consequently it caused the bubble collapse at the upstream. And we predicted erosion rate by evaluating the effect of the velocity and comparing the erosion resistance between the test speciment (aluminum) and the plant material (stainless steel) by means of vibratory tests. We compared the predicted erosion rate with that of the average value estimated from plant investigation, then we examined the applicability of these method to the plant evaluations. (author)

  12. A new concept for stainless steels ranking upon the resistance to cavitation erosion

    Science.gov (United States)

    Bordeasu, I.; Popoviciu, M. O.; Salcianu, L. C.; Ghera, C.; Micu, L. M.; Badarau, R.; Iosif, A.; Pirvulescu, L. D.; Podoleanu, C. E.

    2017-01-01

    In present, the ranking of materials as their resistance to cavitation erosion is obtained by using laboratory tests finalized with the characteristic curves mean depth erosion against time MDE(t) and mean depth erosion rate against time MDER(t). In some previous papers, Bordeasu and co-workers give procedures to establish exponential equation representing the curves, with minimum scatter of the experimental obtained results. For a given material, both exponential equations MDE(t) and MDER(t) have the same values for the parameters of scale and for the shape one. For the ranking of materials is sometimes important to establish single figure. Till now in Timisoara Polytechnic University Cavitation Laboratory were used three such numbers: the stable value of the curve MDER(t), the resistance to cavitation erosion (Rcav ≡ 1/MDERstable) and the normalized cavitation resistance Rns which is the rate between vs = MDERstable for the analyzed material and vse= MDERse the mean depth erosion rate for the steel OH12NDL (Rns = vs/vse ). OH12NDL is a material used for manufacturing the blades of numerous Kaplan turbines in Romania for which both cavitation erosion laboratory tests and field measurements of cavitation erosions are available. In the present paper we recommend a new method for ranking the materials upon cavitation erosion resistance. This method uses the scale and shape parameters of the exponential equations which represents the characteristic cavitation erosion curves. Till now the method was applied only for stainless steels. The experimental results show that the scale parameter represents an excellent method for ranking the stainless steels. In the future this kind of ranking will be tested also for other materials especially for bronzes used for manufacturing ship propellers.

  13. Runoff erosion

    OpenAIRE

    Evelpidou, Niki (Ed.); Cordier, Stephane (Ed.); Merino, Agustin (Ed.); Figueiredo, Tomás de (Ed.); Centeri, Csaba (Ed.)

    2013-01-01

    Table of Contents PART I – THEORY OF RUNOFF EROSION CHAPTER 1 - RUNOFF EROSION – THE MECHANISMS CHAPTER 2 - LARGE SCALE APPROACHES OF RUNOFF EROSION CHAPTER 3 - MEASURING PRESENT RUNOFF EROSION CHAPTER 4 - MODELLING RUNOFF EROSION CHAPTER 5 - RUNOFF EROSION AND HUMAN SOCIETIES: THE INFLUENCE OF LAND USE AND MANAGEMENT PRACTICES ON SOIL EROSION PART II - CASE STUDIES CASE STUDIES – INTRODUCTION: RUNOFF EROSION IN MEDITERRANEAN AREA CASE STUDY 1: Soil Erosion Risk...

  14. Monthly Rainfall Erosivity Assessment for Switzerland

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  15. Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel

    Science.gov (United States)

    Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.

    2018-03-01

    Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.

  16. Advanced experimental and numerical techniques for cavitation erosion prediction

    CERN Document Server

    Chahine, Georges; Franc, Jean-Pierre; Karimi, Ayat

    2014-01-01

    This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion, a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss), and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion (Gr...

  17. Rain Erosion/Measurement Impact Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The FARM Rain Erosion/Impact Measurement Lab develops solutions for deficiencies in the ability of materials, coatings and designs to withstand a severe operational...

  18. Reflux disease as an etiological factor of dental erosion

    Directory of Open Access Journals (Sweden)

    Stojšin Ivana

    2010-01-01

    Full Text Available Introduction Gastroesophageal reflux is a frequent disease which has a significant influence on the development of dental erosions. Objective The aim of this research was to determine the frequency of dental erosions among the patients with gastroesophageal reflux, as well as to verify the most common symptoms of gastroesophageal disease. Methods The research comprised of two groups, each consisting of 30 patients aged 18-80 years. The experimental group comprised of patients diagnosed with gastroesophageal reflux disease (GERD, while the control group was composed of patients who were not diagnosed with GERD. Based on the illness history data, all patients of the experimental group were registered to have gastroesophageal and extraesophageal symptoms. Dental erosions were diagnosed during a stomatological inspection by using index system according to Eccles and Jenkins. Data processing was accomplished by the Statgraphics Centurion software package. Results Dental erosions were found in 76.7% of experimental group patients, and in 53.3% of control group patients. Fortynine percent of teeth of the experimental group patients and 31.1% of the control group patients showed erosive changes. On average, the number of teeth with erosions in the experimental group was 15.7 per person and in the control group 10 per person. The teeth of the front region of the upper jaw, as well as the lower first molars had the highest average value of dental erosion index. In the experimental group 12.8% of teeth and 24% of teeth in the control group were diagnosed to have dental erosion index value 1. Furthermore, 23.4% of teeth in the experimental group and 7.1% of teeth in the control group were registered to have dental erosion index value 2. Finally, the dental erosion index value 3 was found in 13.0% of teeth in the experimental group only. The highest average value of regional erosion index in the experimental group was found in the region 13-23 equalling 1

  19. Control of eolic erosion in a coal Port, by means of re-vegetation of arid areas and operational procedures

    International Nuclear Information System (INIS)

    Velasquez Pilar

    1992-01-01

    To the phenomenon of haulage of floor particles for the wind is known as erosion by deflation, and one in the ways of eolic erosion existent, although many authors constitutes they refer to her as eolic erosion. The eolic erosion includes the movement processes, transport, separation and deposition, it can present in any area that presents the following conditions: 1) Soil dry and loose until certain finely divided degree, 2) flat surface with little or any vegetable cover, 3) quite extensive land 4) sufficiently strong wind to transport the earth particles. It is considered that to begin the movement of particles 0.1 mm of diameter winds they are needed to 30 cm of height of 4,4m/s (FAO, 1961). All these conditions are presented in Port Bolivar in more or smaller measure. In port Bolivar two main groups of areas have been identified in process of material movement

  20. The water erosion processes in the retreat erosive of cliff on soft rocks in the province of Cadiz (Spain); Los procesos de erosion hidrica en el retroceso erosivo de acantilados sobre rocas blandas en la provincia de Cadiz

    Energy Technology Data Exchange (ETDEWEB)

    Rendon Aragon, J. J.; Gracia Prieto, F. J.; Rio Rodriguez, L. del

    2009-07-01

    The littoral cliffs on soft materials of the Atlantic Cadiz coast show an important activity of the fresh water erosion processes, sometimes even more significant than the marine erosion processes. The connection of the lower cliffs with sandy beaches favours aeolian sand invasion, which fills previous rills and reduces the water erosion intensity by increasing infiltration. Cliff retreat and rill erosion measurement by using erosion sticks has shown very variables values, most of them higher than the estimated error of the employed methods. This indicates the existence of other factors influencing the distribution of water erosion processes along these cliffs, which have to be studied through different techniques. (Author) 5 refs.

  1. Managing erosion, sediment transport and water quality in drained peatland catchments

    Energy Technology Data Exchange (ETDEWEB)

    Marttila, H.

    2010-07-01

    Peatland drainage changes catchment conditions and increases the transport of suspended solids (SS) and nutrients. New knowledge and management methods are needed to reduce SS loading from these areas. This thesis examines sediment delivery and erosion processes in a number of peatland drainage areas and catchments in order to determine the effects of drainage on sediment and erosion dynamics and mechanics. Results from studies performed in peat mining, peatland forestry and disturbed headwater catchments in Finland are presented and potential sediment load management methods are discussed for drainage areas and headwater brooks. Particular attention is devoted to erosion of organic peat, sediment transport and methods to reduce the impacts of peatland drainage in boreal headwaters. This thesis consists of six articles. The first and second papers focus on the erosion and sediment transport processes at peat harvesting and peatland forestry drainage networks. The results indicate that in-channel processes are important in drained peatland, since the drainage network often constitutes temporary inter-storm storage for eroding and transporting material. Sediment properties determine the bed sediment erosion sensitivity, as fluffy organic peat sediment consolidates over time. As flashiness and peak runoff control sediment entrainment and transport from drained peatland areas, water quality management should include peak runoff management. The third, fourth and fifth papers studies use and application of peak runoff control (PRC) method to the peat harvesting and peatland forestry conditions for water protection. Results indicate that effective water quality management in drained peatland areas can be achieved using this method. Installation of the PRC structures is a useful and cost-effective way of storing storm runoff waters temporarily in the ditch system and providing a retention time for eroded sediment to settle to the ditch bed and drainage network. The main

  2. An Industrial Dental-Erosion by Chromic Acid: A Case Report

    Science.gov (United States)

    Dülgergil, Ç. Türksel; Erdemir, Ebru Olgun; Ercan, Ertuḡrul; Erdemir, Ali

    2007-01-01

    A case of uncommon occupational dental erosion was reported in an individual who had worked in the war industry for twenty years. This occupation involved daily, at least 8 hours, inhalation of chromic acid being used for cleaning of barrel of cannons. The erosion manifested as dental sensitivity with excessive cervical erosion even with pulpal exposure in certain teeth. Moreover, due to the adverse effect of the chemical against to gingival and/or periodontal tissues, the lesions were extremely harmful with respect to the exposed root-cementum. After proper periodontal therapy, cervical lesions were treated conservatively with a compomer based restorative material without cavity preparation. Although today it is not common due to the well-controlled working conditions, occupational combined dental and medical problems via airborne fumes and/or elements can be seen at workers in chemical factories. A cumulative biohazardous effect is generally seen as not only medical but also dental disorders. PMID:19212488

  3. Erosion--corrosion

    International Nuclear Information System (INIS)

    Vyas, B.

    1978-01-01

    The deterioration of materials by corrosion or erosion by itself presents a formidable problem and for this reason investigators have studied these two phenomena independently. In fact, there are very few systematic studies on E-C and the majority of references mention it only in passing. In most real systems, however, the two destructive processes take place simultaneously, hence the purpose of this review is to present the various interactions between the chemical and mechanical agents leading to accelerated degradation of the material. The papers cited in the review are those that lead to a better understanding of the process involved in the accelerated rate of material loss under E-C conditions

  4. Polymers Erosion and Contamination Experiment Being Developed

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Barney-Barton, Elyse A.; Sechkar, Edward; Hunt, Patricia

    1999-01-01

    The Polymers Erosion and Contamination Experiment (PEACE) is currently being developed at the NASA Lewis Research Center by the Electro-Physics Branch in conjunction with students and faculty from Hathaway Brown School in Cleveland. The experiment is a Get Away Special Canister shuttle flight experiment sponsored by the American Chemical Society. The two goals of this experiment are (1) to measure ram atomic oxygen erosion rates of approximately 40 polymers that have potential use in space applications and (2) to validate a method for identifying sources of silicone contamination that occur in the shuttle bay. Equipment to be used in this flight experiment is shown in the schematic diagram. Spacecraft materials subjected to attack by atomic oxygen in the space environment experience significant degradation over the span of a typical mission. Therefore, learning the rates of atomic oxygen erosion of a wide variety of polymers would be of great benefit to future missions. PEACE will use two independent techniques to determine the atomic oxygen erosion rates of polymers. Large (1-in.-diameter) samples will be used for obtaining mass loss. Preflight and postflight dehydrated masses will be obtained, and the mass lost during flight will be determined. Small (0.5-in.-diameter) samples will be protected with isolated particles (such as NaCl crystals) and then exposed to the space environment. After flight, the protective particles will be removed (washed off) and atomic force microscopy (AFM) will be used to measure the erosion depth from protected mesas. Erosion depth measurements are more sensitive than traditional mass measurements and are very useful for materials with low erosion yields or with very low fluence missions.

  5. Theory and models of material erosion and lifetime during plasma instabilities in a tokamak environment

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    Surface and structural damage to plasma-facing components (PFCs) due to the frequent loss of plasma confinement remains a serious problem for the tokamak reactor concept. The deposited plasma energy causes significant surface erosion, possible structural failure, and frequent plasma contamination. Surface damage consists of vaporization, spallation, and liquid splatter of metallic materials. Structural damage includes large temperature increases in structural materials and at the interfaces between surface coatings and structural members. To evaluate the lifetimes of plasma-facing materials and nearby components and to predict the various forms of damage that they experience, comprehensive models (contained in the HEIGHTS computer simulation package) are developed, integrated self-consistently, and enhanced. Splashing mechanisms such as bubble boiling and various liquid magnetohydrodynamic instabilities and brittle destruction mechanisms of nonmelting materials are being examined. The design requirements and implications of plasma-facing and nearby components are discussed, along with recommendations to mitigate and reduce the effects of plasma instabilities on reactor components

  6. Deep repository - Engineered barrier system. Erosion and sealing processes in tunnel backfill materials investigated in laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sanden, Torbjoern; Boergesson, Lennart; Dueck, Ann; Goudarzi, Reza; Loennqvist, Margareta (Clay Technology AB, Lund (Sweden))

    2008-12-15

    SKB in Sweden and Posiva in Finland are developing and plan to implement similar disposal concepts for the final disposal of spent nuclear fuel. Co-operation and joint development work between Posiva and SKB with the overall objective to develop backfill concepts and techniques for sealing and closure of the repository have been going on for several years. The investigation described in this report is intended to acquire more knowledge regarding the behavior of some of the candidate backfilling materials. Blocks made of three different materials (Friedland clay, Asha 230 or a bentonite/ballast 30/70 mixture) as well as different bentonite pellets have been examined. The backfill materials will be exposed to an environment simulating that in a tunnel, with high relative humidity and water inflow from the rock. The processes and properties investigated are: 1. Erosion properties of blocks and pellets (Friedland blocks, MX-80 pellets, Cebogel QSE pellets, Minelco and Friedland granules). 2. Displacements of blocks after emplacement in a deposition drift (Blocks of Friedland, Asha 230 and Mixture 30/70). 3. The ability of these materials to seal a leaking in-situ cast plug cement/rock but also other fractures in the rock (MX-80 pellets). 4. The self healing ability after a piping scenario (Blocks of Friedland, Asha 230 Mixture 30/70 and also MX-80 pellets). 5. Swelling and cracking of the compacted backfill blocks caused by relative humidity. The erosion properties of Friedland blocks were also investigated in Phase 2 of the joint SKBPosiva project 'Backfilling and Closure of the Deep Repository, BACLO, which included laboratory scale experiments. In this phase of the project (3) some completing tests were performed with new blocks produced for different field tests. These blocks had a lower density than intended and this has an influence on the erosion properties measured. The erosion properties of MX-80 pellets were also investigated earlier in the project but

  7. Erosion-Oxidation Response of Boiler Grade Steels: A Mathematical Investigation

    Directory of Open Access Journals (Sweden)

    S. K. Das

    2008-01-01

    Full Text Available A ductile erosion model embodying the mechanisms of erosion involving cutting wear and repeated plastic deformation has been developed to predict erosion rates of boiler grade steels. The issue of erosion-oxidation interaction has also been addressed to further predict the mass loss resulted from this composite mechanism. A deterministic formalism for the kinetics of oxide-scale growth and a probabilistic approach to characterize the material loss are employed to describe simultaneous actions of high-temperature oxidation and mechanical erosion. The model predictions are in good agreement with the published data.

  8. Bed erosion control at 60 degree river confluence using vanes

    Science.gov (United States)

    Wuppukondur, Ananth; Chandra, Venu

    2017-04-01

    Confluences are common occurrences along natural rivers. Hydrodynamics at the confluence is complex due to merging of main and lateral flows with different characteristics. Bed erosion occurs at the confluence due to turbulence and also secondary circulation induced by centrifugal action of the lateral flow. The eroded sediment poses various problems in the river ecosystem including river bank failure. Reservoirs are majorly affected due to sediment deposition which reduces storage capacity. The bed erosion also endangers stability of pipeline crossings and bridge piers. The aim of this experimental study is to check the performance of vanes in controlling bed erosion at the confluence. Experiments are performed in a 600 confluence mobile bed model with a non-uniform sediment of mean particle size d50 = 0.28mm. Discharge ratio (q=ratio of lateral flow discharge to main flow discharge) is maintained as 0.5 and 0.75 with a constant average main flow depth (h) of 5cm. Vanes of width 0.3h (1.5cm) and thickness of 1 mm are placed along the mixing layer at an angle of 150, 300 and 600(with respect to main flow) to perform the experiments. Also, two different spacing of 2h and 3h (10cm and 15cm) between the vanes are used for conducting the experiments. A digital point gauge with an accuracy of ±0.1mm is used to measure bed levels and flow depths at the confluence. An Acoustic Doppler Velocitimeter (ADV) with a frequency of 25Hz and accuracy of ±1mm/s is used to measure flow velocities. Maximum scour depth ratio Rmax, which is ratio between maximum scour depth (Ds) and flow depth (h), is used to present the experimental results.From the experiments without vanes, it is observed that the velocities are increasing along the mixing layer and Rmax=0.82 and 1.06, for q=0.5 and 0.75, respectively. The velocities reduce with vanes since roughness increases along the mixing layer. For q=0.5 and 0.75, Rmax reduces to 0.62 and 0.7 with vanes at 2h spacing, respectively. Similarly

  9. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, M. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Rezaei-Nejad, S.S.; Assadi, H. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Hadavi, S.M.M. [Department of Materials Science and Engineering, MA University of Technology, Tehran (Iran, Islamic Republic of); Chung, K. [Department of Materials Science and Engineering, Research Institute of Advanced Materials, Engineering Research Institute, Seoul National University, Seoul (Korea, Republic of); Shokouhimehr, M. [Department of Chemical Engineering, College of Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Commercial AISI 316L plates with the initial grain size of 14.8 μm were friction stir processed (FSP) with different processing parameters, resulting in two fine-grained microstructures with the grain sizes of 4.6 and 1.7 μm. The cavitation erosion behavior, before and after FSP, was evaluated in terms of incubation time, cumulative mass loss and mean depth of erosion. A separate cavitation erosion test was performed on the transverse cross section of a FSP sample to reveal the effect of grain structure. It was observed that FSP samples, depending on their grain size, are at least 3–6 times more resistant than the base material against cavitation erosion. The improvement in cavitation erosion resistance is attributed to smaller grain structure, lower fraction of twin boundaries, and favorable crystallographic orientation of grains in FSP samples. The finer the grain size, the more cavitation erosion resistance was achieved. Moreover, the microstructures of eroded surfaces were studied using a scanning electron microscope equipped with EBSD, and an atomic force microscope. The mechanisms controlling the cavitation erosion damage in friction stir processed AISI 316L are also discussed.

  10. The control of divertor carbon erosion/redeposition in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Whyte, D.G.; West, W.P.; Wong, C.P.C.

    2001-01-01

    The DIII-D tokamak has demonstrated an operational scenario where the graphite-covered divertor is free of net erosion. Reduction of divertor carbon erosion is accomplished using a low temperature (detached) divertor plasma that eliminates physical sputtering. Likewise, the carbon source rate arising from chemical erosion is found to be very low in the detached divertor. Near strikepoint regions, the rate of carbon deposition is ∼3 cm/burn-year, with a corresponding hydrogenic codeposition rate >1kg/m 2 /burn-year; rates both problematic for steady-state fusion reactors. The carbon net deposition rate in the divertor is consistent with carbon arriving from the core plasma region. Carbon influx from the main wall is measured to be relatively large in the high-density detached regime and is of sufficient magnitude to account for the deposition rate in the divertor. Divertor redeposition is therefore determined by non-divertor erosion and transport. Despite the success in reducing divertor erosion on DIII-D with detachment, no significant reduction is found in the core plasma carbon density, illustrating the importance of non-divertor erosion and the complex coupling between erosion/redeposition and impurity plasma transport. (author)

  11. Three procedures for estimating erosion from construction areas

    International Nuclear Information System (INIS)

    Abt, S.R.; Ruff, J.F.

    1978-01-01

    Erosion from many mining and construction sites can lead to serious environmental pollution problems. Therefore, erosion management plans must be developed in order that the engineer may implement measures to control or eliminate excessive soil losses. To properly implement a management program, it is necessary to estimate potential soil losses from the time the project begins to beyond project completion. Three methodologies are presented which project the estimated soil losses due to sheet or rill erosion of water and are applicable to mining and construction areas. Furthermore, the three methods described are intended as indicators of the state-of-the-art in water erosion prediction. The procedures herein do not account for gully erosion, snowmelt erosion, wind erosion, freeze-thaw erosion or extensive flooding

  12. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    Science.gov (United States)

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of

  13. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands.

    Science.gov (United States)

    Webb, Nicholas P; Herrick, Jeffrey E; Duniway, Michael C

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation, or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explored how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting, and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass–succulent states across the ecological sites at the plot scale (0.25 ha). We identified vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area could be effectively controlled when bare ground cover was 100 cm in length was less than ∼35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the

  14. Comprehensive model for disruption erosion in a reactor environment

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1995-01-01

    A comprehensive disruption erosion model which takes into account the interplay of major physical processes during plasma-material interaction has been developed. The model integrates with sufficient detail and in a self-consistent way, material thermal evolution response, plasma-vapor interaction physics, vapor hydrodynamics and radiation transport in order to realistically simulate the effects of a plasma disruption on plasma-facing components. Candidate materials such as beryllium and carbon have been analyzed. The dependence of the net erosion rate on disruption physics and various parameters was analyzed and is discussed. ((orig.))

  15. Cavitation Erosion in Hydraulic Turbine Components and Mitigation by Coatings: Current Status and Future Needs

    Science.gov (United States)

    Singh, Raghuvir; Tiwari, S. K.; Mishra, Suman K.

    2012-07-01

    Cavitation erosion is a frequently observed phenomenon in underwater engineering materials and is the primary reason for component failure. The damage due to cavitation erosion is not yet fully understood, as it is influenced by several parameters, such as hydrodynamics, component design, environment, and material chemistry. This article gives an overview of the current state of understanding of cavitation erosion of materials used in hydroturbines, coatings and coating methodologies for combating cavitation erosion, and methods to characterize cavitation erosion. No single material property fully characterizes the resistance to cavitation erosion. The combination of ultimate resilience, hardness, and toughness rather may be useful to estimate the cavitation erosion resistance of material. Improved hydrodynamic design and appropriate surface engineering practices reduce damage due to cavitation erosion. The coatings suggested for combating the cavitation erosion encompasses carbides (WC Cr2C3, Cr3C2, 20CrC-80WC), cermets of different compositions (e.g., 56W2C/Ni/Cr, 41WC/Ni/Cr/Co), intermetallic composites, intermetallic matrix composites with TiC reinforcement, composite nitrides such as TiAlN and elastomers. A few of them have also been used commercially. Thermal spraying, arc plasma spraying, and high velocity oxy-fuel (HVOF) processes have been used commercially to apply the coatings. Boronizing, laser surface hardening and cladding, chemical vapor deposition, physical vapor deposition, and plasma nitriding have been tried for surface treatments at laboratory levels and have shown promise to be used on actual components.

  16. The role of secondary minerals in the control of erosion processes under a Mediterranean mining landcape

    International Nuclear Information System (INIS)

    Penas, J. M.; Garcia, G.; Manteca, J. I.

    2009-01-01

    The result of mining activity is the presence of several slit ponds and mining tailings spread all over the Sierra Minera (Cartagena La Union Mountains, SE Spain). These ponds, joint to other wastes deposits constitute the main source of heavy metals to the environment. Besides, these metal sources areas act as dispersion focus towards the surrounding and subsidiary areas due to the erosion processes. Interaction between metal and salts present in these environments, provoke an secondary effect on the landscape modelling. The major o minor strength of the erosion processes is controlled by the presence of salts in soil and mining wastes (silt ponds and mining tailings). The aim of this work concerns the relation- between the salt-metal compounds and the erosion and landscape modeling processes. (Author) 4 refs.

  17. The contribution of mulches to control high soil erosion rates in vineyards in Eastern Spain

    Science.gov (United States)

    Cerdà, Artemi; Jordán, Antonio; Zavala, Lorena; José Marqués, María; Novara, Agata

    2014-05-01

    Soil erosion take place in degraded ecosystem where the lack of vegetation, drought, erodible parent material and deforestation take place (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). Agriculture management developed new landscapes (Ore and Bruins, 2012) and use to trigger non-sustainable soil erosion rates (Zema et al., 2012). High erosion rates were measured in agriculture land (Cerdà et al., 2009), but it is also possible to develop managements that will control the soil and water losses, such as organic amendments (Marqués et al., 2005), plant cover (Marqués et al., 2007) and geotextiles (Giménez Morera et al., 2010). The most successful management to restore the structural stability and the biological activity of the agriculture soil has been the organic mulches (García Orenes et al; 2009; 2010; 2012). The straw mulch is also very successful on bare fire affected soil (Robichaud et al., 2013a; 2013b), which also contributes to a more stable soil moisture content (García-Moreno et al., 2013). The objective of this research is to determine the impact of two mulches: wheat straw and chipped branches, on the soil erosion rates in a rainfed vineyard in Eastern Spain. The research site is located in the Les Alcusses Valley within the Moixent municipality. The Mean annual temperature is 13 ºC, and the mean annual rainfall 455 mm. Soil are sandy loam, and are developed at the foot-slope of a Cretaceous limestone range, the Serra Grossa range. The soils use to be ploughed and the features of soil erosion are found after each thunderstorm. Rills are removed by ploughing. Thirty rainfall simulation experiments were carried out in summer 2011 during the summer drought period. The simulated rainfall lasted during 1 hour at a 45 mmh-1 intensity on 1 m2 plots (Cerdà and Doerr, 2010; Cerdà and Jurgensen 2011). Ten experiments were carried out on the control plots (ploughed), 10 on straw mulch covered plots, and 10 on chipped branches covered

  18. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion

    International Nuclear Information System (INIS)

    Hu, H.X.; Zheng, Y.G.; Qin, C.P.

    2010-01-01

    Liquid droplet erosion (LDE), which often occurs in bellows made of nickel-based alloys, threatens the security operation of the nuclear power plant. As the candidate materials of the bellows, Inconel 600 and Inconel 625 were both tested for resistance to cavitation erosion (CE) and jet impingement erosion (JIE) through vibratory cavitation equipment and a jet apparatus for erosion-corrosion. Cumulative mass loss vs. exposure time was used to evaluate the erosion rate of the two alloys. The surface and cross-sectional morphologies before and after the erosion tests were observed by scanning electron microscopy (SEM), the inclusions were analyzed by an energy dispersive spectroscopy (EDS), and the surface roughness was also measured by surface roughness tester to illustrate the evolution of erosion process. The results show that the cumulative mass loss of CE of Inconel 625 is about 1/6 that of Inconel 600 and the CE incubation period of the Inconel 625 is 4 times as long as that of the Inconel 600. The micro-morphology evolution of CE process illustrates that the twinning and hardness of the Inconel 625 plays a significant role in CE. In addition, the cumulative mass loss of JIE of Inconel 625 is about 2/3 that of Inconel 600 at impacting angle of 90 o , and almost equal to that of the Inconel 600 at impacting angle of 30 o . Overall, the resistance to CE and JIE of Inconel 625 is much superior to that of Inconel 600.

  19. Effect of corrosion protective coatings on compressor blades affected by different erosive exposures

    International Nuclear Information System (INIS)

    Happle, T.W.

    1989-01-01

    It was the task of this dissertation to examine and to classify the inorganically bonded aluminum coatings with regard to their suitability as a coating for compressor blades for stationary gas turbines and aerojet engines. Industrial aluminum coatings bonded inorganically were used for the tests. Comparative examinations were done with diffusion-deposited aluminum layers as well as with aluminum layers precipitated electrolytically, and with modified inorganically bonded aluminum coatings (with additional TiN protective coating). The examination program was subdivided into two main tasks: Suitability tests and examination of corrosion fatigue. The suitability tests covered corrosion examinations (with salt spray and intermittent immersion tests), electrochemically controlled corrosion assessments (pitting corrosion behavior) and erosion assessments (erosive and abrasive wear tests). Experimental material was mainly the commercial compressor blade steel X20Cr13, and sample tests were carried out with the higher-strength steel X10CrNiMoV12 2 2. For the practical examination of the erosion resistance of the aluminum coatings, it was required to develop an erosion testing method. It was designed as an erosive and abrasive wear testing method with solid-face fluidized bed. The testing method makes it possible to pre-set all relevant quantities which influence the erosive and abrasive wear. (orig./MM) [de

  20. Control of two-phase erosion corrosion with the amine 5-aminopentanol: rig and plant trials

    International Nuclear Information System (INIS)

    Lewis, G.G.; Greene, J.C.; Tyldesley, J.D.; Wetton, E.A.M.; Fountain, M.J.

    1994-01-01

    Control of two-phase erosion corrosion in the once through mild steel boilers of the gas cooled nuclear power station at Wylfa was achieved by using the amine 2-amino, 2 methylpropan-1-ol (AMP). In a search to find a more cost effective amine, 5-aminopentanol (5-AP) emerged, from a laboratory based programme to determine basicity and volatility, as the most promising candidate. The effectiveness of 5-AP in controlling erosion corrosion was demonstrated in a rig test, carried out on a full scale replica of a Wylfa boiler tube. Following on from the rig test, a plant trial at Wylfa PS demonstrated 5-AP's superior thermal stability (compared to AMP). It also provided confirmation that the laboratory generated data on basicity and volatility was applicable to plant and hence also the accuracy of the figures for predicted amine usage. (orig.)

  1. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  2. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  3. Diagnostic mirrors for ITER: A material choice and the impact of erosion and deposition on their performance

    International Nuclear Information System (INIS)

    Litnovsky, A.; Wienhold, P.; Philipps, V.; Sergienko, G.; Schmitz, O.; Kirschner, A.; Kreter, A.; Droste, S.; Samm, U.; Mertens, Ph.; Donne, A.H.; Rudakov, D.; Allen, S.; Boivin, R.; McLean, A.; Stangeby, P.; West, W.; Wong, C.; Lipa, M.; Schunke, B.; De Temmerman, G.; Pitts, R.; Costley, A.; Voitsenya, V.; Vukolov, K.; Oelhafen, P.; Rubel, M.; Romanyuk, A.

    2007-01-01

    Metal mirrors will be implemented in about half of the ITER diagnostics. Mirrors in ITER will have to withstand radiation loads, erosion by charge-exchange neutrals, deposition of impurities, particle implantation and neutron irradiation. It is believed that the optical properties of diagnostic mirrors will be primarily influenced by erosion and deposition. A solution is needed for optimal performance of mirrors in ITER throughout the entire lifetime of the machine. A multi-machine research on diagnostic mirrors is currently underway in fusion facilities at several institutions and laboratories worldwide. Among others, dedicated investigations of ITER-candidate mirror materials are ongoing in Tore-Supra, TEXTOR, DIII-D, TCV, T-10 and JET. Laboratory studies are underway at IPP Kharkov (Ukraine), Kurchatov Institute (Russia) and the University of Basel (Switzerland). An overview of current research on diagnostic mirrors along with an outlook on future investigations is the subject of this paper

  4. Effect of ion implantation on subsequent erosion and wear behavior of solids

    International Nuclear Information System (INIS)

    McHargue, C.J.

    1985-01-01

    The removal of material from a solid surface by mechanical forces is influenced by material properties (hardness, fracture toughness, yield strength, surface free energy) as well as system parameters (force, velocity of loading, environment). Ion implantation can modify many of the material properties either by directly affecting the deformation characteristics or indirectly by affecting the chemical or phase composition at the surface. The various forms of wear and erosion are analyzed to determine the material and system parameters which control material removal. The effects of implantation on these critical parameters are noted and examples of changes in surface topography under various test conditions are discussed. 18 figs

  5. ANALYSIS OF BIODEGRABILITY OF DEGRADABLE/BIODEGRADABLE PLASTIC MATERIAL IN CONTROLLED COMPOSTING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Dana Adamcová

    2016-09-01

    Full Text Available We have obtained eight degradable/biodegradable materials based on starch (certified compostable, sample 4–7, HDPE mixed with totally degradable plastic additive (TDPA, sample 2 and polyethylene with the addition of pro-oxidant additive (d2w, sample 1. Composition of sample 3 has not been reported. The materials have been tested as to the rate and character of their degradability/biodegradability in controlled composting conditions. Experiment explored also the effect of degradation/biodegradation of plastic bags on compost quality. The material of the original samples was subjected to assessment using the Nicolet 6700 FT-IR spectrometer, the outcome thereof was obtaining infrared spectra of the samples. For further specification the original samples were tested using the thermogravimetrical analysis. The texture of the foils at different stages of degradation is presented in the Scanning Electron Microscope (SEM photographs. Plastic bags certified as compostable have degraded in laboratory conditions and their degradation had no impact on the quality and features of compost. Selected samples (4, 6 showed significant erosion on surface when subjected to the SEM analysis. Samples labeled (by their producers as 100% degradable (samples 1, 2, 3 did not show any visual signs of degradation and the process of degradation had no impact on the quality and features of compost. Only one of the samples (sample 1 showed certain erosion of surface when submitted for the SEM analysis.

  6. Extreme soil erosion rates in citrus slope plantations and control strategies. A literature review

    Science.gov (United States)

    Cerdà, Artemi; Ángel González Peñaloza, Félix; Pereira, Paulo; Reyes Ruiz Gallardo, José; García Orenes, Fuensanta; Burguet, María

    2013-04-01

    approach. Catena, 85 (3), 231-236. Cerdà, A., Jurgensen, M.F., Bodi, M.B. 2009. Effects of ants on water and soil losses from organically-managed citrus orchards in eastern Spain. Biologia, 64 (3), 527-531. Cerdà, A., Morera, A.G., Bodí, M.B. 2009. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms, 34 (13), 1822-1830. Lavigne, C., Achard, R., Tixier, P., Lesueur Jannoyer, M. 2012. How to integrate cover crops to enhance sustainability in banana and citrus cropping systems. Acta Horticulturae, 928, 351-358. Le Bellec, F., Damas, O., Boullenger, G., Vannière, H., Lesueur Jannoyer, M., Tournebize, R., Ozier Lafontaine, H. 2012. Weed control with a cover crop (Neonotonia wightii) in mandarin orchards in Guadeloupe (FWI). Acta Horticulturae, 928, 359-366. Liu, Y., Tao, Y., Wan, K.Y., Zhang, G.S., Liu, D.B., Xiong, G.Y., Chen, F. 2012. Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China. Agricultural Water Management, 110, 34-40. Lu, J., Wilson, M.J., Yu, J. 1997. Effects of trench planting and soil chiselling on soil properties and citrus production in hilly ultisols of China Soil and Tillage Research, 43 (3-4), 309-318. Lü, W., Zhang, H., Wu, Y., Cheng, J., Li, J., Wang, X. 2012. The impact of plant hedgerow in Three Gorges on the soil chemicophysical properties and soil erosion. Key Engineering Materials, 500, 142-148. Wang, L., Tang, L., Wang, X., Chen, F. 2010. Effects of alley crop planting on soil and nutrient losses in the citrus orchards of the Three Gorges Region. Soil and Tillage Research, 110 (2), 243-250. Wu J., Li Q., Yan L. 1997. Effect of intercropping on soil erosion in young citrus plantation - a simulation study. Chinese Journal of Applied Ecology, 8 (2), 143-146. Wu, D.-M., Yu, Y.-C., Xia, L.-Z., Yin, S.-X., Yang, L.-Z. 2011. Soil fertility indices of citrus

  7. Soil erosion and management activities on forested slopes

    Science.gov (United States)

    Robert R. Ziemer

    1986-01-01

    Some of the most productive forests in the Western United States grow on marginally stable mountainous slopes, where disturbance increases the likelihood of erosion. Much of the public's concern about, and, consequently, most of the research on, erosion from these forested areas is related more to the degradation of stream resources by eroded material than to the...

  8. Using REE tracers to measure sheet erosion changing to rill erosion

    International Nuclear Information System (INIS)

    Liu Puling; Xue Yazhou; Song Wei; Wang Mingyi; Ju Tongjun

    2004-01-01

    Rare Earth Elements (REE) tracer method was used to study sheet erosion changing to rill erosion on slope land. By placing different rare earth elements of different soil depth across a slope in an indoor plot, two simulated rainfalls were applied to study the change of erosion type and the rill erosion process. The results indicate that the main erosion type is sheet erosion at the beginning of the rainfalls, and serious erosion happens after rill erosion appears. Accumulated sheet and rill erosion amounts increase with the rainfalls time. The percentage of sheet erosion amount decreases and rill erosion percentage increases with time. At the end of the rainfalls, the total rill erosion amounts are 4-5 times more than sheet erosion. In this paper, a new REE tracer method was used to quantitatively distinguish sheet and rill erosion amounts. The new REE tracer method should be useful to future studying of erosion processes on slope lands. (authors)

  9. On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating–Laminate Adhesion on Rain Erosion Performance

    Directory of Open Access Journals (Sweden)

    Enrique Cortés

    2017-09-01

    Full Text Available Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine Original Equipment Manufacturers (OEMs are actively seeking solutions. In most cases, since the surface coating plays a decisive role in the blade manufacture and overall performance, it has been identified as an area where a solution may be obtained. In this research, two main coating technologies have been considered: In-mould coatings (Gel coating applied during moulding on the entire blade surface and the post-mould coatings specifically developed for Leading Edge Protection (LEP. The coating adhesion and erosion is affected by the shock waves created by the collapsing water droplets on impact. The stress waves are reflected and transmitted to the laminate substrate, so microstructural discontinuities in coating layers and interfaces play a key role on its degradation and may accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations based on their potential stress reduction on the interface. Nevertheless, in order to use them, it is necessary to measure the contact adhesion resistance of the multi-layered system interfaces. The rain erosion performance is assessed using an accelerated testing technique, whereby the test material is repeatedly impacted at high speed with water droplets in a Whirling Arm Rain Erosion Rig (WARER. The materials, specifically the coating–laminate interphase region and acoustic properties, are further characterised by several laboratory tests, including Differential Scanning Calorimetry (DSC, pull-off testing, peeling–adhesion testing and nanoindentation testing. This body of work includes a number of case studies. The first case

  10. On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating–Laminate Adhesion on Rain Erosion Performance

    Science.gov (United States)

    Cortés, Enrique; Sánchez, Fernando; Madramany, Borja

    2017-01-01

    Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine Original Equipment Manufacturers (OEMs) are actively seeking solutions. In most cases, since the surface coating plays a decisive role in the blade manufacture and overall performance, it has been identified as an area where a solution may be obtained. In this research, two main coating technologies have been considered: In-mould coatings (Gel coating) applied during moulding on the entire blade surface and the post-mould coatings specifically developed for Leading Edge Protection (LEP). The coating adhesion and erosion is affected by the shock waves created by the collapsing water droplets on impact. The stress waves are reflected and transmitted to the laminate substrate, so microstructural discontinuities in coating layers and interfaces play a key role on its degradation and may accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations based on their potential stress reduction on the interface. Nevertheless, in order to use them, it is necessary to measure the contact adhesion resistance of the multi-layered system interfaces. The rain erosion performance is assessed using an accelerated testing technique, whereby the test material is repeatedly impacted at high speed with water droplets in a Whirling Arm Rain Erosion Rig (WARER). The materials, specifically the coating–laminate interphase region and acoustic properties, are further characterised by several laboratory tests, including Differential Scanning Calorimetry (DSC), pull-off testing, peeling–adhesion testing and nanoindentation testing. This body of work includes a number of case studies. The first case study compares

  11. On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating-Laminate Adhesion on Rain Erosion Performance.

    Science.gov (United States)

    Cortés, Enrique; Sánchez, Fernando; O'Carroll, Anthony; Madramany, Borja; Hardiman, Mark; Young, Trevor M

    2017-09-28

    Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine Original Equipment Manufacturers (OEMs) are actively seeking solutions. In most cases, since the surface coating plays a decisive role in the blade manufacture and overall performance, it has been identified as an area where a solution may be obtained. In this research, two main coating technologies have been considered: In-mould coatings (Gel coating) applied during moulding on the entire blade surface and the post-mould coatings specifically developed for Leading Edge Protection (LEP). The coating adhesion and erosion is affected by the shock waves created by the collapsing water droplets on impact. The stress waves are reflected and transmitted to the laminate substrate, so microstructural discontinuities in coating layers and interfaces play a key role on its degradation and may accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations based on their potential stress reduction on the interface. Nevertheless, in order to use them, it is necessary to measure the contact adhesion resistance of the multi-layered system interfaces. The rain erosion performance is assessed using an accelerated testing technique, whereby the test material is repeatedly impacted at high speed with water droplets in a Whirling Arm Rain Erosion Rig (WARER). The materials, specifically the coating-laminate interphase region and acoustic properties, are further characterised by several laboratory tests, including Differential Scanning Calorimetry (DSC), pull-off testing, peeling-adhesion testing and nanoindentation testing. This body of work includes a number of case studies. The first case study compares two

  12. Theoretical model for cavitation erosion prediction in centrifugal pump impeller

    International Nuclear Information System (INIS)

    Rayan, M.A.; Mahgob, M.M.; Mostafa, N.H.

    1990-01-01

    Cavitation is known to have great effects on pump hydraulic and mechanical characteristics. These effects are mainly described by deviation in pump performance, increasing vibration and noise level as well as erosion of blade and casing materials. In the present work, only the hydrodynamic aspect of cavitation was considered. The efforts were directed toward the study of cavitation inception, cavity mechanics and material erosion in order to clarify the macrohydrodynamic aspects of cavitation erosive wear in real machines. As a result of this study, it was found that cavitation damage can be predicted from model data. The obtained theoretical results show good agreement with the experimental results obtained in this investigation and with results of some other investigations. The application of the findings of this work will help the design engineer in predicting the erosion rate, according to the different operating conditions. (author)

  13. The role of forest stand density in controlling soil erosion: implications to sediment-related disasters in Japan.

    Science.gov (United States)

    Razafindrabe, Bam H N; He, Bin; Inoue, Shoji; Ezaki, Tsugio; Shaw, Rajib

    2010-01-01

    The role of forest stand density in controlling soil erosion was investigated in Ehime Prefecture, Japan. The main objective was to compare soil erosion under different forest conditions including forest type, species composition, and stand density as influenced by thinning operations. Relative yield index (Ry) was used as an indicator of stand density to reflect the degree of management operations in the watershed. Eleven treatments were established based on the above forest conditions. Soil loss was collected in each of the 11 treatments after each rainfall event for a period of 1 year. The paper presents summary data on soil loss as affected by forest conditions and rainfall patterns. Findings showed that an appropriate forest management operation, which can be insured by stand density control, is needed to reduce soil loss. The present study plays an important role in clarifying technical processes related to soil erosion, while it helps linking these elements to current Japanese forestry issues and bringing new inputs to reducing sediment-related disasters in Japan.

  14. Slope stability and erosion control: Ecotechnological solutions

    NARCIS (Netherlands)

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used

  15. Precipitation, landsliding, and erosion across the Olympic Mountains, Washington State, USA

    Science.gov (United States)

    Smith, Stephen G.; Wegmann, Karl W.

    2018-01-01

    In the Olympic Mountains of Washington State, landsliding is the primary surface process by which bedrock and hillslope regolith are delivered to river networks. However, the relative importance of large earthquakes versus high magnitude precipitation events to the total volume of landslide material transported to valley bottoms remains unknown in part due to the absence of large historical earthquakes. To test the hypothesis that erosion is linked to precipitation, approximately 1000 landslides were mapped from Google Earth imagery between 1990 and 2015 along a 15 km-wide × 85 km-long (1250 km2) swath across the range. The volume of hillslope material moved by each slide was calculated using previously published area-volume scaling relationships, and the spatial distribution of landslide volume was compared to mean annual precipitation data acquired from the PRISM climate group for the period 1981-2010. Statistical analysis reveals a significant correlation (r = 0.55; p landslide volume and mean annual precipitation, with 98% of landslide volume occurring along the windward, high-precipitation side of the range during the 25-year interval. Normalized to area, this volume yields a basin-wide erosion rate of 0.28 ± 0.11 mm yr- 1, which is similar to previous time-variable estimates of erosion throughout the Olympic Mountains, including those from river sediment yield, cosmogenic 10Be, fluvial terrace incision, and thermochronometry. The lack of large historic earthquakes makes it difficult to assess the relative contributions of precipitation and seismic shaking to total erosion, but our results suggest that climate, and more specifically a sharp precipitation gradient, plays an important role in controlling erosion and landscape evolution over both short and long timescales across the Olympic Mountains.

  16. Predicting coastal cliff erosion using a Bayesian probabilistic model

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  17. Contour hedgerows and grass strips in erosion and runoff control in semi-arid Kenya

    NARCIS (Netherlands)

    Kinama, J.M.; Stigter, C.J.; Ong, C.K.; Ng'ang'a, J.K.; Gichuki, F.N.

    2007-01-01

    Most early alley cropping studies in semi-arid Kenya were on fairly flat land while there is an increase in cultivated sloping land. The effectiveness of aging contour hedgerows and grass strips for erosion control on an about 15% slope of an Alfisol was compared. The five treatments were Senna

  18. Escoamento superficial na interação: cobertura vegetal e práticas de controle de erosão Erosion losses from runoff: interaction of soil cover and erosion control practice

    Directory of Open Access Journals (Sweden)

    Marco A. R. de Carvalho

    2012-12-01

    Full Text Available O escoamento da água oriunda das terras agricultadas é o principal fator poluente dos mananciais hídricos nas áreas rurais. Devido a esse fato, faz-se necessário o desenvolvimento e a aplicação de tecnologias que venham a reduzir descargas de resíduos indesejáveis. Nesse sentido, conduziu-se um experimento na área experimental do Departamento de Engenharia Rural - ESALQ/USP, Piracicaba - SP, com o objetivo de avaliar o efeito de diferentes condições de solo, (feijão, gramínea e solo nu e diferentes práticas de controle de erosão (sulco de infiltração, terraço de infiltração e sem práticas de controle de erosão, buscando-se estimar o escoamento superficial. O delineamento estatístico adotado foi o em blocos aleatorizados, em esquema fatorial 3x3, perfazendo 9 tratamentos com 3 repetições. O período de coleta de dados pluviométricos foi de 06 de dezembro de 2007 a 11 de abril de 2008; para isto, utilizou-se de um pluviômetro, com 21,1 cm de diâmetro, instalado na área experimental. Observando-se as perdas de água, em relação às estruturas, tem-se em ordem decrescente de eficiência: Terraço, Sulco e Rampa; e com relação às coberturas, tem-se em ordem decrescente de eficiência: Feijão, Capim e Solo Nu.The flow of sediment from cropped land is the main pollutant of water sources in rural areas. Due to this fact, it is necessary to develop and implement technologies that will reduce water and sediment discharges. Accordingly, an experiment was conducted in the Department of Biosystems Engineering - ESALQ / USP, Piracicaba - SP with the objective to evaluate the effect of different soil cover (bean, grass and bare ground and erosion control practices (wide base terraces and infiltration furrows in slopes (no practices to control erosion while measuring water losses in runoff. The statistical design adopted was randomized blocks in a 3x3 factorial scheme resulting in 9 treatments with 3 replicates (blocks. The

  19. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  20. Salivary parameters and teeth erosions in patients with gastroesophageal reflux disease

    Directory of Open Access Journals (Sweden)

    Maria Carolina Canteras Scarillo Falotico Corrêa

    2012-09-01

    Full Text Available CONTEXT: In the gastroesophageal reflux disease (GERD, a highly prevalent digestive disorder, gastric content may return to the esophagus and reach the mouth, thus leading to a small number of carious lesions and high incidence of dental erosion. Since saliva plays a major role in oral homeostasis, evaluating salivary parameters is necessary in attempting to explain such outcome. OBJECTIVES: This study aimed at analyzing salivary parameters (salivary flow, pH and buffering capacity, bacterial count, caries index and dental erosion in patients with GERD. MATERIALS: Sixty patients were studied, and of these, 30 had GERD (group 1, and 30 were controls (group 2. Gastroesophageal reflux disease diagnosis confirmation was achieved by means of endoscopy, manometry and pH metric esophageal monitoring. The above mentioned salivary parameters were evaluated in patients from groups 1 and 2. RESULTS: The number of erosions in patients with GERD (group 1 was larger than in controls (P<0.001. The number of carious teeth was smaller in group 1 than in group 2 (P<0.001. Salivary flow (non-stimulated and stimulated and pH did not show differences between the 2 groups (P = 0.49; P = 0.80 and P = 0.85, respectively. Salivary buffering capacity in patients with GERD showed lower values in controls (P = 0.018. The number of bacteria (Lactobacilli and Streptococci was smaller in patients with gastroesophageal reflux disease than in controls (P = 0.0067 and P = 0.0017, respectively. CONCLUSION: It was concluded that the large number of erosions must be a result of GERD patients reduced salivary buffering capacity. The reduced number of caries of patients in group 1 can be explained by the low prevalence of bacteria (Lactobacilli and Streptococci, observed in the saliva of patients with chronic reflux.

  1. Dental Erosion in Children with Gastroesophageal Reflux Disease.

    Science.gov (United States)

    De Oliveira, Patricia Alves Drummond; Paiva, Saul Martins; De Abreu, Mauro Henrique Nogueira Guimarães; Auad, Sheyla Márcia

    2016-01-01

    The purpose of this study was to investigate the impact of gastroesophageal reflux disease (GERD) on dental erosion (DE) in children and analyze the association between dental erosion and diet, oral hygiene, and sociodemographic characteristics. This case-control study encompassed 43 two- to 14-year-olds diagnosed positive for GERD by the 24-hour pH monitoring, paired by age group with 136 healthy controls, in Belo Horizonte, Minas Gerais, Brazil. DE was assessed by one calibrated examiner using the O'Sullivan index. A questionnaire was self-administered by parents collecting information regarding sociodemographics, oral hygiene, and dietary habits. Dental erosion experience was compared between the groups, and a stratified analysis was performed (PDental erosion was diagnosed in 10.6 percent (N equals 19) of all the children; 25.6 percent (N equals 11) of GERD children and 5.9 percent (N equals eight) of children without GERD, P=0.001). Dental erosion was not associated with dietary consumption or sociodemographic characteristics in both groups (P≥0.05). Children who used adult toothpaste had a 5.79 higher chance of having dental erosion in the group with GERD. Children diagnosed with gastroesophageal reflux disease were at an increased risk of having dental erosion when compared to healthy subjects; among the GERD children, dental erosion was associated with the use of adult toothpaste.

  2. Comparison of Inconel 625 and Inconel 600 in resistance to cavitation erosion and jet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.X. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China); Zheng, Y.G., E-mail: ygzheng@imr.ac.c [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China); Qin, C.P. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Science, 62 Wencui Road, Shenyang 110016 (China)

    2010-10-15

    Liquid droplet erosion (LDE), which often occurs in bellows made of nickel-based alloys, threatens the security operation of the nuclear power plant. As the candidate materials of the bellows, Inconel 600 and Inconel 625 were both tested for resistance to cavitation erosion (CE) and jet impingement erosion (JIE) through vibratory cavitation equipment and a jet apparatus for erosion-corrosion. Cumulative mass loss vs. exposure time was used to evaluate the erosion rate of the two alloys. The surface and cross-sectional morphologies before and after the erosion tests were observed by scanning electron microscopy (SEM), the inclusions were analyzed by an energy dispersive spectroscopy (EDS), and the surface roughness was also measured by surface roughness tester to illustrate the evolution of erosion process. The results show that the cumulative mass loss of CE of Inconel 625 is about 1/6 that of Inconel 600 and the CE incubation period of the Inconel 625 is 4 times as long as that of the Inconel 600. The micro-morphology evolution of CE process illustrates that the twinning and hardness of the Inconel 625 plays a significant role in CE. In addition, the cumulative mass loss of JIE of Inconel 625 is about 2/3 that of Inconel 600 at impacting angle of 90{sup o}, and almost equal to that of the Inconel 600 at impacting angle of 30{sup o}. Overall, the resistance to CE and JIE of Inconel 625 is much superior to that of Inconel 600.

  3. Soil Production and Erosion Rates and Processes in Mountainous Landscapes

    Science.gov (United States)

    Heimsath, A. M.; DiBiase, R. A.; Whipple, K. X.

    2012-12-01

    We focus here on high-relief, steeply sloped landscapes from the Nepal Himalaya to the San Gabriels of California that are typically thought to be at a critical threshold of soil cover. Observations reveal that, instead, there are significant areas mantled with soil that fit the conceptual framework of a physically mobile layer derived from the underlying parent material with some locally-derived organic content. The extent and persistence of such soils depends on the long-term balance between soil production and erosion despite the perceived discrepancy between high erosion and low soil production rates. We present cosmogenic Be-10-derived soil production and erosion rates that show that soil production increases with catchment-averaged erosion, suggesting a feedback that enhances soil-cover persistence, even in threshold landscapes. Soil production rates do decline systematically with increasing soil thickness, but hint at the potential for separate soil production functions for different erosional regimes. We also show that a process transistion to landslide-dominated erosion results in thinner, patchier soils and rockier topography, but find that there is no sudden transition to bedrock landscapes. Our landslide modeling is combined with a detailed quantification of bedrock exposure for these steep, mountainous landscapes. We also draw an important conclusion connecting the physical processes producing and transporting soil and the chemical processes weathering the parent material by measuring parent material strength across three different field settings. We observe that parent material strength increases with overlying soil thickness and, therefore, the weathered extent of the saprolite. Soil production rates, thus, decrease with increasing parent material competence. These observation highlight the importance of quantifying hillslope hydrologic processes where such multi-facted measurements are made.

  4. Erosive Wear of Inconel 625 Alloy Coatings Deposited by CMT Method

    Directory of Open Access Journals (Sweden)

    Solecka M.

    2016-06-01

    Full Text Available The article presents the investigation results concerning the determination of the characteristics of erosive wear caused by the impact of Al2O3 solid particles on the surface of Inconel 625 alloy after plastic working and the same material after weld cladding process using the CMT method. Erosion wear tests were performed at two temperatures: 20°C and 650°C. The erosion tests were conducted using the standard ASTM G76. A jet with a specified abrasive waight was directed to the surface of the tested material at an α impingement angle varied in the range of 30-90° at a velocity imparted to the abrasive by the medium, which was compressed air. The eroded surface was examined using a scanning electron microscope (SEM, while the depths of craters caused by the erosion tests were measured with an optical profilometer. The predominant mechanisms of the formation of mass losses during solid particle erosion were microcutting and microfissuring.

  5. Corrective measures technology for shallow land burial at arid sites: field studies of biointrusion barriers and erosion control

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Hakonson, T.E.; Lopez, E.A.

    1986-03-01

    The field research program involving corrective measures technologies for arid shallow land burial (SLB) sites is described. Results of field testing of a biointrusion barrier installed at a close-out waste disposal site (Area B) at Los Alamos are presented. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments were measured, and the interaction between erosion control and subsurface water dynamics is discussed relative to waste management

  6. Dependence of sputtering erosion on fuel-pellet characteristics

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Hafer, J.F.

    1977-11-01

    Conceptual designs of fusion reactors operating on the principle of inertial confinement require that the dependence of cavity-wall erosion on fuel-pellet energy yield, its mass, and representative atomic number be known. A simple approximate model of sputtering erosion is presented and explicit formulas are derived that express the total amount of eroded wall material in terms of the above three parameters

  7. Lifetime evaluation of plasma-facing materials during a tokamak disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1995-09-01

    Erosion losses of plasma-facing materials in a tokamak reactor during major disruptions, giant ELMS, and large power excursions are serious concerns that influence component survivability and overall lifetime. Two different mechanisms lead to material erosion during these events: surface vaporization and loss of the melt layer. Hydrodynamics and radiation transport in the rapidly developed vapor-cloud region above the exposed area are found to control and determine the net erosion thickness from surface vaporization. A comprehensive self-consistent kinetic model has been developed in which the time-dependent optical properties and the radiation field of the vapor cloud are calculated in order to correctly estimate the radiation flux at the divertor surface. The developed melt layer of metallic divertor materials will, however, be free to move and can be eroded away due to various forces. , Physical mechanisms that affect surface vaporization and cause melt layer erosion are integrated in a comprehensive model. It is found that for metallic components such as beryllium and tungsten, lifetime due to these abnormal events will be controlled and dominated by the evolution and hydrodynamics of the melt layer during the disruption. The dependence of divertor plate lifetime on various aspects of plasma/material interaction physics is discussed

  8. Effect of Bend Radius on Magnitude and Location of Erosion in S-Bend

    Directory of Open Access Journals (Sweden)

    Quamrul H. Mazumder

    2015-01-01

    Full Text Available Solid particle erosion is a mechanical process that removes material by the impact of solid particles entrained in the flow. Erosion is a leading cause of failure of oil and gas pipelines and fittings in fluid handling industries. Different approaches have been used to control or minimize damage caused by erosion in particulated gas-solid or liquid-solid flows. S-bend geometry is widely used in different fluid handling equipment that may be susceptible to erosion damage. The results of a computational fluid dynamic (CFD simulation of diluted gas-solid and liquid-solid flows in an S-bend are presented in this paper. In addition to particle impact velocity, the bend radius may have significant influence on the magnitude and the location of erosion. CFD analysis was performed at three different air velocities (15.24 m/s–45.72 m/s and three different water velocities (0.1 m/s–10 m/s with entrained solid particles. The particle sizes used in the analysis range between 50 and 300 microns. Maximum erosion was observed in water with 10 m/s, 250-micron particle size, and a ratio of 3.5. The location of maximum erosion was observed in water with 10 m/s, 300-micron particle size, and a ratio of 3.5. Comparison of CFD results with available literature data showed reasonable and good agreement.

  9. Theoretical investigation on discharge-induced river-bank erosion

    NARCIS (Netherlands)

    Mosselman, E.

    1989-01-01

    Bank erosion is incorporated in one-dimensional and two-dimensional horizontal models for river morphology. The banks are assumed to consist of a fraction of cohesive material, which becomes washload after being eroded, and a fraction of granular material, with the same properties as the material of

  10. Erosion of a wet/dry granular interface

    Science.gov (United States)

    Jop, Pierre; Lefebvre, Gautier

    2013-04-01

    To model the dynamic of landslides, the evolution of the interface between the erodible ground and the flowing material is still studied experimentally or numerically (ie. Mangeney et al. 2010, Iverson 2012). In some cases, the basal material is more cohesive than the flowing one. Such situation arises for example due to cementation or humidity. What are the exchange rates between these phases? What is the coupling between the evolution of the interface and the flow? We studied the erosion phenomenon and performed laboratory experiments to focus on the interaction between a cohesive unsaturated granular material and a dry granular flow. Both materials were spherical grains, the cohesion being induced by adding a given mass of liquid to the grains. Two configurations were explored: a circular aggregate submitted to a dry flow in a rotating drum, and a granular flow eroding a wet granular pile. First, we focused on the influence of the cohesion, controlled by the liquid properties, such as the surface tension and the viscosity. Then the flow characteristics were modified by varying the grain size and density. These results allowed us to present a model for the erosion mechanisms, based on the flow and fluid properties. The main results are the need to take into account the whole probability distribution the stress applied on the wet grains and that both the surface tension and the viscosity are important since they play a different roles. The latter is mainly responsible of the time scale of the dynamic of a wet grain, while the former acts as a threshold on the force distribution. In the second configuration, we could also control the inclination of the slope. This system supported the previous model and moreover revealed an interface instability, leading the formation of steep steps, which is a reminiscence of the cyclic-steps observed during river-channel incision (Parker and Izumi 2000). We will present the dynamics of such granular steps. [1] Mangeney, A., O

  11. Erosion control technology: a user's guide to the use of the Universal Soil Loss Equation at waste burial facilities

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Lane, L.J.

    1986-05-01

    The Universal Soil Loss Equation (USLE) enables the operators of shallow land burial sites to predict the average rate of soil erosion for each feasible alternative combination of plant cover and land management practices in association with a specified soil type, rainfall pattern, and topography. The equation groups the numerous parameters that influence erosion rate under six major factors, whose site-specific values can be expressed numerically. Over a half century of erosion research in the agricultural community has supplied information from which approximate USLE factor values can be obtained for shallow land burial sites throughout the United States. Tables and charts presented in this report make this information readily available for field use. Extensions and limitations of the USLE to shallow land burial systems in the West are discussed, followed by a detailed description of the erosion plot research performed by the nuclear waste management community at Los Alamos, New Mexico. Example applications of the USLE at shallow land burial sites are described, and recommendations for applications of these erosion control technologies are discussed

  12. MISSE 2 PEACE Polymers Experiment Atomic Oxygen Erosion Yield Error Analysis

    Science.gov (United States)

    McCarthy, Catherine E.; Banks, Bruce A.; deGroh, Kim, K.

    2010-01-01

    Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. To address this, 40 different polymer samples and a sample of pyrolytic graphite, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2). The purpose of the PEACE Polymers experiment was to obtain accurate mass loss measurements in space to combine with ground measurements in order to accurately calculate the atomic oxygen erosion yields of a wide variety of polymeric materials exposed to the LEO space environment for a long period of time. Error calculations were performed in order to determine the accuracy of the mass measurements and therefore of the erosion yield values. The standard deviation, or error, of each factor was incorporated into the fractional uncertainty of the erosion yield for each of three different situations, depending on the post-flight weighing procedure. The resulting error calculations showed the erosion yield values to be very accurate, with an average error of 3.30 percent.

  13. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    Science.gov (United States)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  14. Wind erosion modelling in a Sahelian environment

    NARCIS (Netherlands)

    Faye-Visser, S.M.; Sterk, G.; Karssenberg, D.

    2005-01-01

    In the Sahel field observations of wind-blown mass transport often show considerable spatial variation related to the spatial variation of the wind erosion controlling parameters, e.g. soil crust and vegetation cover. A model, used to predict spatial variation in wind erosion and deposition is a

  15. Study of the Parametric Performance of Solid Particle Erosion Wear under the Slurry Pot Test Rig

    Directory of Open Access Journals (Sweden)

    S.R. More

    2017-12-01

    Full Text Available Stainless Steel (SS 304 is commonly used material for slurry handling applications like pipelines, valves, pumps and other equipment's. Slurry erosion wear is a common problem in many engineering applications like process industry, thermal and hydraulic power plants and slurry handling equipments. In this paper, experimental investigation of the influence of solid particle size, impact velocity, impact angle and solid concentration parameters in slurry erosion wear behavior of SS 304 using slurry pot test rig. In this study the design of experiments was considered using Taguchi technique. A comparison has been made for the experimental and Taguchi technique results. The erosion wear morphology was studied using micro-graph obtained by scanning electron microscope (SEM analysis. At shallow impact angle 30°, the material removal pattern was observed in the form of micro displacing, scratching and ploughing with plastic deformation of the material. At 60° impact angle, mixed type of micro indentations and pitting action is observed. At normal impact angle 90°, the material removal pattern was observed in form of indentation and rounded lips. It is found that particle velocity was the most influence factor than impact angle, size and solid concentration. From this investigation, it can be concluded that the slurry erosion wear is minimized by controlling the slurry flow velocity which improves the service life of the slurry handling equipments. From the comparison of experimental and Taguchi experimental design results it is found that the percentage deviation was very small with a higher correlation coefficient (r2 0.987 which is agreeable.

  16. Evaluation of Mediterranean plants for controlling gully erosion

    International Nuclear Information System (INIS)

    Baets, S. de; Poesen, J.; Muys, B.

    2009-01-01

    In Mediterranean environments, gullies are responsible for large soil losses causing loss of fertile cropland soil, reservoir sedimentation and flooding. To limit soil loss and sediment export it is important to prevent the initiation or rills and to stabilise gullies. This can be done by establishing vegetation at vulnerable places in the landscape. Although in the past, the effects of vegetation on soil erosion rates were predicted using above-ground biomass characteristics only, plant roots also play an important role in protecting the soil against erosion by concentrated runoff. Especially in conditions where the above-ground biomass becomes very scarce (e.g. due to drought, harvest, overgrazing or fire) the effects of vegetation will be underestimated when only above-ground plant characteristics are taken into account. (Author) 6 refs.

  17. Evaluation of Mediterranean plants for controlling gully erosion

    Energy Technology Data Exchange (ETDEWEB)

    Baets, S. de; Poesen, J.; Muys, B.

    2009-07-01

    In Mediterranean environments, gullies are responsible for large soil losses causing loss of fertile cropland soil, reservoir sedimentation and flooding. To limit soil loss and sediment export it is important to prevent the initiation or rills and to stabilise gullies. This can be done by establishing vegetation at vulnerable places in the landscape. Although in the past, the effects of vegetation on soil erosion rates were predicted using above-ground biomass characteristics only, plant roots also play an important role in protecting the soil against erosion by concentrated runoff. Especially in conditions where the above-ground biomass becomes very scarce (e.g. due to drought, harvest, overgrazing or fire) the effects of vegetation will be underestimated when only above-ground plant characteristics are taken into account. (Author) 6 refs.

  18. A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion ?

    Directory of Open Access Journals (Sweden)

    Pasini G.

    2009-07-01

    Full Text Available In the speleological literature three terms are utilized to designate the “ascending erosion”: paragenesis (= paragénésis, coined in1968, antigravitative erosion (= erosione antigravitativa, coined in 1966 and antigravitational erosion (wrong English translation ofthe Italian term erosione antigravitativa, utilized later on. The term paragenesis should be abandoned because of the priority of theterm erosione antigravitativa - on the ground of the “law of priority” – and because of its ambiguous etimology. On the other hand,the term antigravitational erosion should be forsaken in favour of the term antigravitative erosion, given the meaning that the termsgravitation and gravity have in Physics. Therefore, to designate the phenomenon of the “ascending erosion” there would be nothingleft but the term antigravitative erosion.The antigravitative erosion process and its recognizability are illustrated.Examples of caves with evident antigravitative erosion phenomena, developed in different karstifiable rocks and in several partsof the world, are given.It is recalled that the antigravitative erosion is a phenomenon well-known since 1942 and widely proven and supported, and that it isrelatively easy – in many cases - to recognize the antigravitative origin of karstic passages.It is stressed that the antigravitative erosion is an important phenomenon, exclusive of the karstic caves and unique in nature.

  19. Gastroesophageal reflux is not associated with dental erosion in children.

    Science.gov (United States)

    Wild, Yvette K; Heyman, Melvin B; Vittinghoff, Eric; Dalal, Deepal H; Wojcicki, Janet M; Clark, Ann L; Rechmann, Beate; Rechmann, Peter

    2011-11-01

    Dental erosion is a complication of gastroesophageal reflux (GER) in adults; in children, it is not clear if GER has a role in dental pathologic conditions. Dietary intake, oral hygiene, high bacterial load, and decreased salivary flow might contribute independently to GER development or dental erosion, but their potential involvement in dental erosion from GER is not understood. We investigated the prevalence of dental erosion among children with and without GER symptoms, and whether salivary flow rate or bacterial load contribute to location-specific dental erosion. We performed a cross-sectional study of 59 children (ages, 9-17 y) with symptoms of GER and 20 asymptomatic children (controls); all completed a questionnaire on dietary exposure. Permanent teeth were examined for erosion into dentin, erosion locations, and affected surfaces. The dentist was not aware of GER status, and the gastroenterologist was not aware of dental status. Stimulated salivary flow was measured and salivary bacterial load was calculated for total bacteria, Streptococcus mutans, and Lactobacilli. Controlling for age, dietary intake, and oral hygiene, there was no association between GER symptoms and dental erosion by tooth location or affected surface. Salivary flow did not correlate with GER symptoms or erosion. Erosion location and surface were independent of total bacteria and levels of Streptococcus mutans and Lactobacilli. Location-specific dental erosion is not associated with GER, salivary flow, or bacterial load. Prospective studies are required to determine the pathogenesis of GER-associated dental erosion and the relationship between dental caries to GER and dental erosion. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Modeling the fluid/soil interface erosion in the Hole Erosion Test

    Directory of Open Access Journals (Sweden)

    Kissi B.

    2012-07-01

    Full Text Available Soil erosion is a complex phenomenon which yields at its final stage to insidious fluid leakages under the hydraulic infrastructures known as piping and which are the main cause of their rupture. The Hole Erosion Test is commonly used to quantify the rate of piping erosion. In this work, The Hole Erosion Test is modelled by using Fluent software package. The aim is to predict the erosion rate of soil during the hole erosion test. The renormalization group theory – based k–ε turbulence model equations are used. This modelling makes it possible describing the effect of the clay concentration in flowing water on erosion. Unlike the usual one dimensional models, the proposed modelling shows that erosion is not uniform erosion along the hole length. In particular, the concentration of clay is found to increase noticeably the erosion rate.

  1. In situ effect of CPP-ACP chewing gum upon erosive enamel loss

    Directory of Open Access Journals (Sweden)

    Catarina Ribeiro Barros de ALENCAR

    Full Text Available Abstract Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP is able to increase salivary calcium and phosphate levels at an acidic pH. Previous studies demonstrated that a CPP-ACP chewing gum was able to enhance the re-hardening of erosion lesions, but could not diminish enamel hardness loss. Therefore, there is no consensus regarding the effectiveness of CPP-ACP on dental erosion. Objective This in situ study investigated the ability of a CPP-ACP chewing gum in preventing erosive enamel loss. Material and Methods: During three experimental crossover phases (one phase per group of seven days each, eight volunteers wore palatal devices with human enamel blocks. The groups were: GI – Sugar free chewing gum with CPP-ACP; GII – Conventional sugar free chewing gum; and GIII – No chewing gum (control. Erosive challenge was extraorally performed by immersion of the enamel blocks in cola drink (5 min, 4x/day. After each challenge, in groups CPP and No CPP, volunteers chewed one unit of the corresponding chewing gum for 30 minutes. Quantitative analysis of enamel loss was performed by profilometry (µm. Data were analyzed by Repeated-Measures ANOVA and Tukey’s test (p0.05. Conclusion The CPP-ACP chewing gum was not able to enhance the anti-erosive effect of conventional chewing gum against enamel loss.

  2. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall

    Science.gov (United States)

    Li, Changjia; Pan, Chengzhong

    2018-03-01

    The effects of vegetation cover on overland flow and erosion processes on hillslopes vary with vegetation type and spatial distribution and the different vegetation components, including the above- and below-ground biomass. However, few attempts have been made to quantify how these factors affect erosion processes. Field experimental plots (5 m × 2 m) with a slope of approximately 25° were constructed and simulated rainfall (60 mm hr-1) (Rainfall) and simulated rainfall combined with upslope overland flow (20 L min-1) (Rainfall + Flow) were applied. Three grass species were planted, specifically Astragalus adsurgens (A. adsurgens), Medicago sativa (M. sativa) and Cosmos bipinnatus (C. bipinnatus). To isolate and quantify the relative contributions of the above-ground grass parts (stems, litter cover and leaves) and the roots to reducing surface runoff and erosion, each of the three grass species was subjected to three treatments: intact grass control (IG), no litter or leaves (only the grass stems and roots were reserved) (NLL), and only roots remaining (OR). The results showed that planting grass significantly reduced overland flow rate and velocity and sediment yield, and the mean reductions were 21.8%, 29.1% and 67.1%, respectively. M. sativa performed the best in controlling water and soil losses due to its thick canopy and dense, fine roots. Grasses reduced soil erosion mainly during the early stage of overland flow generation. The above-ground grass parts primarily contributed to reducing overland flow rate and velocity, with mean relative contributions of 64% and 86%, respectively. The roots played a predominant role in reducing soil erosion, with mean contribution of 84%. Due to the impact of upslope inflow, overland flow rate and velocity and sediment yield increased under the Rainfall + Flow conditions. The results suggest that grass species on downslope parts of semi-arid hillslopes performed better in reducing water and soil losses. This study is

  3. Erosion of ITER divertor armour and contamination of sol after transient events erosion products

    International Nuclear Information System (INIS)

    Bazylev, B.N.; Landman, I.S.; Pestchanyi, S.E.

    2005-01-01

    Plasma impact to the divertor expected in the tokamak ITER during ELMs or disruptions can result in a significant surface damage to CFC- and tungsten armours (brittle destruction and melting respectively) as well as in contamination of SOL by evaporated impurities. Numerical investigations for tungsten and CFC targets provide important details of the material erosion process. The simulations carried out in FZK on the material damage, carbon plasma expansion and the radiation fluxes from the carbon impurity are surveyed

  4. Characterizing Low-Z erosion and deposition in the DIII-D divertor using aluminum

    Directory of Open Access Journals (Sweden)

    C.P. Chrobak

    2017-08-01

    Full Text Available We present measurements and modeling of aluminum erosion and redeposition experiments in separate helium and deuterium low power, low density L-mode plasmas at the outer divertor strike point of DIII-D to provide a low-Z material benchmark dataset for tokamak erosion-deposition modeling codes. Coatings of Al ∼100nm thick were applied to ideal (smooth and realistic (rough surfaces and exposed to repeat plasma discharges using the DiMES probe. Redeposition in all cases was primarily in the downstream toroidal field direction, evident from both in-situ spectroscopic and post-mortem non-spectroscopic measurements. The gross Al erosion yield was estimated from film thickness change measurements of small area samples, and was found to be ∼40–70% of the expected erosion yield based on theoretical physical sputtering yields after including sputtering by a 1–3% carbon impurity. The multi-step redeposition and re-erosion process, and hence the measured net erosion yield and material migration patterns, were found to be influenced by the surface roughness and/or porosity. A time-dependent model of material migration accounting for deposit accumulation in hidden areas was developed to reproduce the measurements in these experiments and determine a redeposition probability distribution function for sputtered atoms.

  5. Erosion of divertor materials in simulation experiments of ITEP thermonuclear reactor operation

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gureev, V.M.; Danelyan, L.S.; Kolbasov, B.N.; Korshunov, S.N.; Martynenko, Yu.V.; Petrov, V.B.; Stolyarova, V.G.; Khripunov, B.I.; Vasil'ev, V.I.; Strunnikov, V.M.

    2004-01-01

    The tungsten sputtering by the deuterium ions with the energy of 5 eV at the temperature of 1470 K with the sputtering coefficient of 1.5 x 10 -4 at/ion is identified. Comparison of the erosion degree of various W types and W + C coatings on W is carried out in the experiments on simulating the plasma break-away; W drops distribution by the diameters, depending on the collector drops position, is studied. W(111) tungsten is characterized by the minimal erosion and W-10% Re tungsten - by the maximum one [ru

  6. Erosion and mass transfer of Mo, W and Nb under neutron irradiation of high temperature materials

    International Nuclear Information System (INIS)

    Berzhatyj, V.I.; Luk'yanov, A.N.; Zavalishin, A.A.; Tkach, V.N.; Fedorenko, A.I.

    1980-01-01

    Studies have been made of the medium composition in thermionic fuel elements of two types during reactor tests; erosion and mass transfer of electrode materials have been investigated in the after-reactor analysis of the tested fuel elements. The studies of electrode material evaporation at the conditions approaching (in environment temperature and composition) those of reactor tests of thermionic fuel elements have shown that the process proceeds in the form of metal oxides. Evaporation rates are determined, the mechanism of evaporation is discussed, and the analytical dependences are obtained for calculating the evaporation rates of Mo and W at certain temperature and gaseous medium composition. It is found that the main contribution to the material transfer off the Mo and Nb surfaces under a high-temperature reactor irradiation comes through the thermal evaporation; in the case of tungsten at the same experimental conditions the rates of mass transfer due to thermal evaporation and neutron sputtering are nearly the same [ru

  7. Computational and experimental study of effects of sediment shape on erosion of hydraulic turbines

    International Nuclear Information System (INIS)

    Poudel, L; Thapa, B; Shrestha, B P; Thapa, B S; Shrestha, K P; Shrestha, N K

    2012-01-01

    Hard particles as Quartz and Feldspar are present in large amount in most of the rivers across the Himalayan basins. In run-off-river hydro power plants these particles find way to turbine and cause its components to erode. Loss of turbine material due to the erosion and subsequent change in flow pattern induce several operational and maintenance problems in the power plants. Reduction in overall efficiency, vibrations and reduced life of turbine components are the major effects of sediment erosion of hydraulic turbines. Sediment erosion of hydraulic turbines is a complex phenomenon and depends upon several factors. One of the most influencing parameter is the characteristics of sediment particles. Quantity of sediment particles, which are harder than the turbine material, is one of the bases to indicate erosion potential of a particular site. Research findings have indicated that shape and size of the hard particles together with velocity of impact play a major role to decide the mode and rate of erosion in turbine components. It is not a common practice in Himalayan basins to conduct a detail study of sediment characteristics as a part of feasibility study for hydropower projects. Lack of scientifically verified procedures and guidelines to conduct the sediment analysis to estimate its erosion potential is one of the reasons to overlook this important part of feasibility study. Present study has been conducted by implementing computational tools to characterize the sediment particles with respect to their shape and size. Experimental studies have also been done to analyze the effects of different combinations of shape and size of hard particles on turbine material. Efforts have also been given to develop standard procedures to conduct similar study to compare erosion potential between different hydropower sites. Digital image processing software and sieve analyzer have been utilized to extract shape and size of sediment particles from the erosion sensitive power

  8. Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak

    Directory of Open Access Journals (Sweden)

    M. Rubel

    2017-05-01

    Full Text Available An overview of diagnostic tools – test limiters and collector probes – used over the years for material migration studies in the TEXTOR tokamak is presented. Probe transfer systems are shown and their technical capabilities are described. This is accompanied by a brief presentation of selected results and conclusions from the research on material erosion – deposition processes including tests of candidate materials (e.g. W, Mo, carbon-based composites for plasma-facing components in controlled fusion devices. The use of tracer techniques and methods for analysis of materials retrieved from the tokamak are summarized. The impact of research on the reactor wall technology is addressed.

  9. Distribution of erosion and deposition on the JET belt limiters

    International Nuclear Information System (INIS)

    McCracken, G.M.; Goodall, D.H.J.; Behrisch, R.; Roth, J.; Coad, J.P.; Harbour, P.; Kock, L. de; Pick, M.A.; Stangeby, P.C.

    1989-01-01

    The distribution of erosion and deposition of limiter material is of importance both for extrapolating to the next generation of fusion machines and for understanding impurity transport in the boundary layers of present day tokamaks. Erosion patterns have previously been reported for the JET discrete graphite limiters used up to 1986. We have now made measurements on the belt limiters used in 1987-88. These measurements show that although the pattern of net erosion is qualitatively similar to the earlier results the new maximum erosion (∼40μm) is reduced by about a factor 5, consistent with the larger limiter surface area. (author) 7 refs., 2 figs

  10. An empirical approach to estimate soil erosion risk in Spain.

    Science.gov (United States)

    Martín-Fernández, Luis; Martínez-Núñez, Margarita

    2011-08-01

    Soil erosion is one of the most important factors in land degradation and influences desertification worldwide. In 2001, the Spanish Ministry of the Environment launched the 'National Inventory of Soil Erosion (INES) 2002-2012' to study the process of soil erosion in Spain. The aim of the current article is to assess the usefulness of this National Inventory as an instrument of control, measurement and monitoring of soil erosion in Spain. The methodology and main features of this National Inventory are described in detail. The results achieved as of the end of May 2010 are presented, together with an explanation of the utility of the Inventory as a tool for planning forest hydrologic restoration, soil protection, erosion control, and protection against desertification. Finally, the authors make a comparative analysis of similar initiatives for assessing soil erosion in other countries at the national and European levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Erosion prediction for alpine slopes: a symbiosis of remote sensing and a physical based erosion model

    Science.gov (United States)

    Kaiser, Andreas; Neugirg, Fabian; Haas, Florian; Schindewolf, Marcus; Schmidt, Jürgen

    2014-05-01

    As rainfall simulations represent an established tool for quantifying soil detachment on cultivated area in lowlands and low mountain ranges, they are rarely used on steep slopes high mountain ranges. Still this terrain represents productive sediment sources of high morphodynamic. A quantitative differentiation between gravitationally and fluvially relocated material reveals a major challenge in understanding erosion on steep slopes: does solifluction as a result of melting in spring or heavy convective rainstorms during summer cause the essential erosion processes? This paper aims to answer this question by separating gravitational mass movement (solifluction, landslides, mudflow and needle ice) and runoff-induced detachment. First simulated rainstorm experiments are used to assess the sediment production on bare soil on a strongly inclined plot (1 m², 42°) in the northern limestone Alps. Throughout precipitation experiments runoff and related suspended sediments were quantified. In order to enlarge slope length virtually to around 20 m a runoff feeding device is additionally implemented. Soil physical parameters were derived from on-site sampling. The generated data is introduced to the physically based and catchment-scaled erosion model EROSION 3D to upscale plot size to small watershed conditions. Thus infiltration, runoff, detachment, transport and finally deposition can be predicted for single rainstorm events and storm sequences. Secondly, in order to separate gravitational mass movements and water erosion, a LiDAR and structure-from-motion based monitoring approach is carried out to produce high-resolution digital elevation models. A time series analysis of detachment and deposition from different points in time is implemented. Absolute volume losses are then compared to sediment losses calculated by the erosion model as the latter only generates data that is connected to water induced hillside erosion. This methodology will be applied in other watersheds

  12. Chemical erosion of carbon doped with different fine-grain carbides

    International Nuclear Information System (INIS)

    Balden, M.; Garcia-Rosales, C.; Behrisch, R.; Roth, J.; Paz, P.; Etxeberria, J.

    2001-01-01

    Several carbide-doped (SiC, TiC, V 8 C 7 , WC, ZrC) graphites have been produced. The erosion of these materials at low-energy (eV) hydrogen ion bombardment has been investigated using the weight-loss method, mass spectroscopy, ion beam analysis, and scanning electron microscopy (SEM). The erosion yields of the WC- and V 8 C 7 -doped graphites are reduced by a factor of 2 for 30 eV D at 300 K compared to pure graphite. This observed reduction is partly attributed to surface enrichment of carbide due to preferential C erosion. The other part is assigned to changes in the chemical erosion process (Y surf ) as well as at elevated temperatures in the thermal activated process (Y therm ). The reduction of both erosion processes is determined for all dopants to be more than 25% of the erosion yield of the undoped graphite

  13. Numerical modelling of concentrated leak erosion during Hole Erosion Tests

    OpenAIRE

    Mercier, F.; Bonelli, S.; Golay, F.; Anselmet, F.; Philippe, P.; Borghi, R.

    2015-01-01

    This study focuses on the numerical modelling of concentrated leak erosion of a cohesive soil by a turbulent flow in axisymmetrical geometry, with application to the Hole Erosion Test (HET). The numerical model is based on adaptive remeshing of the water/soil interface to ensure accurate description of the mechanical phenomena occurring near the soil/water interface. The erosion law governing the interface motion is based on two erosion parameters: the critical shear stress and the erosion co...

  14. A study on erosive wear behavior of HVOF sprayed nanostructured WC-CoCr coatings

    International Nuclear Information System (INIS)

    Thakur, Lalit; Arora, Navneet

    2013-01-01

    WC-CoCr cermet coatings were deposited on stainless steel substrate using high-velocity oxy-fuel (HVOF) thermal spray process. The coatings were developed with two different thermal spray powders: one has WC grains of conventional micron size and the other is composed of nanosized (near-nanostructured) grains. HVOF spraying was assisted with in-flight particle temperature and velocity measurement system to control the process parameters that have resulted in quality coatings. Cavitation erosion testing was performed using a vibratory test apparatus based on ASTM standard G32-98. Surface morphology of powders and coatings was examined using the FESEM images, and phase identification was performed by XRD analysis. The erosion behavior of coatings and mechanism of material removal was discussed by examining the microstructure images of worn-out surfaces. WC-CoCr cermet coating deposited with nanosized WC grains exhibited higher cavitation erosion resistance as compared to conventional coating.

  15. A study on erosive wear behavior of HVOF sprayed nanostructured WC-CoCr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Lalit; Arora, Navneet [Indian Institute of Technology Roorkee, Roorkee (India)

    2013-05-15

    WC-CoCr cermet coatings were deposited on stainless steel substrate using high-velocity oxy-fuel (HVOF) thermal spray process. The coatings were developed with two different thermal spray powders: one has WC grains of conventional micron size and the other is composed of nanosized (near-nanostructured) grains. HVOF spraying was assisted with in-flight particle temperature and velocity measurement system to control the process parameters that have resulted in quality coatings. Cavitation erosion testing was performed using a vibratory test apparatus based on ASTM standard G32-98. Surface morphology of powders and coatings was examined using the FESEM images, and phase identification was performed by XRD analysis. The erosion behavior of coatings and mechanism of material removal was discussed by examining the microstructure images of worn-out surfaces. WC-CoCr cermet coating deposited with nanosized WC grains exhibited higher cavitation erosion resistance as compared to conventional coating.

  16. Accessibility evaluation of the IFMIF liquid lithium loop considering activated erosion/corrosion materials deposition

    International Nuclear Information System (INIS)

    Nakamura, H.; Takemura, M.; Yamauchi, M.; Fischer, U.; Ida, M.; Mori, S.; Nishitani, T.; Simakov, S.; Sugimoto, M.

    2005-01-01

    This paper presents an evaluation of accessibility of the Li loop piping considering activated corrosion product. International Fusion Materials Irradiation Facility (IFMIF) is a deuteron-lithium (Li) stripping reaction neutron source for fusion materials testing. Target assembly and back wall are designed as fully remote maintenance component. Accessibility around the Li loop piping will depend on activation level of the deposition materials due to the back wall erosion/corrosion process under liquid Li flow. Activation level of the corrosion products coming from the AISI 316LN back wall is calculated by the ACT-4 of the THIDA-2 code system. The total activities after 1 day, 1 week, 1 month and 1 year cooling are 3.1 x 10 14 , 2.8 x 10 14 , 2.3 x 10 14 and 7.5 x 10 13 Bq/kg, respectively. Radiation dose rate around the Li loop pipe is calculated by QAD-CGGP2R code. Activated area of the back wall is 100 cm 2 . Corrosion rate is assumed 1 μm/year. When 10% of the corrosion material is supposed to be deposited on the inner surface of the pipe, the dose rate is calculated to be less than a permissible level of 10 μSv/h for hands-on maintenance, therefore, the maintenance work is assessed to be possible

  17. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    Science.gov (United States)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  18. Preliminary studies for monitoring erosion in pipelines by the acoustic emission technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiboni, G.B. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Mecanica e de Materiais; Marquardt, T.A.S; SantaMaria, V.A.R.; Silva, C.H. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    The aim of this work is to present some applications of Acoustic Emission (AE), which is a powerful technique for nondestructive testing in Tribology, treated here as tests of friction, wear by contact fatigue, wear by slip and wear by erosion. In this work a special attention is given to solid particle erosion and hydro-abrasive erosion, problems found in almost every pipeline that lead to local loss of material and eventually rupture of the line. The technique of AE can be used as an efficient online tool when, primarily, to monitor tribological aspects such as the rate of wear of materials, as well as detect the spread of flaws in them. In wear by erosion, specifically, the parameters of RMS and acoustic energy are capable of correlation with the type of mechanism for removal of material. As a preliminary goal, erosive tests were performed with gas (air) without erosive particles, monitored by AE, varying the surface of the samples and the internal diameter the nozzle, taking the differences in signs of AE. Correlation between parameters of RMS and amplitude were noticed with the variables of the tests, such as roughness and fluid velocity. The RMS parameter showed a exponential correction with the fluid velocity, however the amplitude signals had a linear behavior. The knowledge of these parameters is essential for the development of a system that is able to quantify the wear rate of a pipeline without taking it out of operation. (author)

  19. Spatial bedrock erosion distribution in a natural gorge

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.; Kirchner, J. W.

    2015-12-01

    of the total eroded material. Our results demonstrate the practicability of TLS for highly resolved spatio-temporal erosion monitoring in the field and quantitatively confirm concepts of spatially varying erosion rates based current thinking. Furthermore, we introduce an easy-to-apply method for qualitative spatial erosion detection by paint.

  20. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy.

    Science.gov (United States)

    Nair, R B; Arora, H S; Mukherjee, Sundeep; Singh, S; Singh, H; Grewal, H S

    2018-03-01

    Cavitation erosion and corrosion of structural materials are serious concerns for marine and offshore industries. Durability and performance of marine components are severely impaired due to degradation from erosion and corrosion. Utilization of advanced structural materials can play a vital role in limiting such degradation. High entropy alloys (HEAs) are a relatively new class of advanced structural materials with exceptional properties. In the present work, we report on the cavitation erosion behavior of Al 0.1 CoCrFeNi HEA in two different media: distilled water with and without 3.5wt% NaCl. For comparison, conventionally used stainless steel SS316L was also evaluated in identical test conditions. Despite lower hardness and yield strength, the HEA showed significantly longer incubation period and lower erosion-corrosion rate (nearly 1/4th) compared to SS316L steel. Enhanced erosion resistance of HEA was attributed to its high work-hardening behavior and stable passivation film on the surface. The Al 0.1 CoCrFeNi HEA showed lower corrosion current density, high pitting resistance and protection potential compared to SS316L steel. Further, HEA showed no evidence of intergranular corrosion likely due to the absence of secondary precipitates. Although, the degradation mechanisms (formation of pits and fatigue cracks) were similar for both the materials, the damage severity was found to be much higher for SS316L steel compared to HEA. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    Science.gov (United States)

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on

  2. Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.

    2009-01-01

    The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.

  3. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion

    Directory of Open Access Journals (Sweden)

    Franciny Querobim IONTA

    Full Text Available Abstract Objective The prevalence of dental erosion has been recently increasing, requiring new preventive and therapeutic approaches. Vegetable oils have been studied in preventive dentistry because they come from a natural, edible, low-cost, and worldwide accessible source. This study aimed to evaluate the protective effect of different vegetable oils, applied in two concentrations, on initial enamel erosion. Material and Methods Initially, the acquired pellicle was formed in situ for 2 hours. Subsequently, the enamel blocks were treated in vitro according to the study group (n=12/per group: GP5 and GP100 – 5% and pure palm oil, respectively; GC5 and GC100 – 5% and pure coconut oil; GSa5 and GSa100 – 5% and pure safflower oil; GSu5 and GSu100 – 5% and pure sunflower oil; GO5 and GO100 – 5% and pure olive oil; CON− – Deionized Water (negative control and CON+ – Commercial Mouthwash (Elmex® Erosion Protection Dental Rinse, GABA/positive control. Then, the enamel blocks were immersed in artificial saliva for 2 minutes and subjected to short-term acid exposure in 0.5% citric acid, pH 2.4, for 30 seconds, to promote enamel surface softening. The response variable was the percentage of surface hardness loss [((SHi - SHf / SHf ×100]. Data were analyzed by one-way ANOVA and Tukey’s test (p0.05 and less than the other groups (p<0.05. There was no difference between GP5, GC5, GC100, GSa5, GSu100, GSa100, GSu5, GO5, GO100, CON− and CON+. Conclusion Palm oil seems to be a promising alternative for preventing enamel erosion. However, further studies are necessary to evaluate a long-term erosive cycling.

  4. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion

    Science.gov (United States)

    IONTA, Franciny Querobim; de ALENCAR, Catarina Ribeiro Barros; VAL, Poliana Pacifico; BOTEON, Ana Paula; JORDÃO, Maisa Camillo; HONÓRIO, Heitor Marques; BUZALAF, Marília Afonso Rabelo; RIOS, Daniela

    2017-01-01

    Abstract Objective The prevalence of dental erosion has been recently increasing, requiring new preventive and therapeutic approaches. Vegetable oils have been studied in preventive dentistry because they come from a natural, edible, low-cost, and worldwide accessible source. This study aimed to evaluate the protective effect of different vegetable oils, applied in two concentrations, on initial enamel erosion. Material and Methods Initially, the acquired pellicle was formed in situ for 2 hours. Subsequently, the enamel blocks were treated in vitro according to the study group (n=12/per group): GP5 and GP100 – 5% and pure palm oil, respectively; GC5 and GC100 – 5% and pure coconut oil; GSa5 and GSa100 – 5% and pure safflower oil; GSu5 and GSu100 – 5% and pure sunflower oil; GO5 and GO100 – 5% and pure olive oil; CON− – Deionized Water (negative control) and CON+ – Commercial Mouthwash (Elmex® Erosion Protection Dental Rinse, GABA/positive control). Then, the enamel blocks were immersed in artificial saliva for 2 minutes and subjected to short-term acid exposure in 0.5% citric acid, pH 2.4, for 30 seconds, to promote enamel surface softening. The response variable was the percentage of surface hardness loss [((SHi - SHf) / SHf )×100]. Data were analyzed by one-way ANOVA and Tukey’s test (p0.05) and less than the other groups (p<0.05). There was no difference between GP5, GC5, GC100, GSa5, GSu100, GSa100, GSu5, GO5, GO100, CON− and CON+. Conclusion Palm oil seems to be a promising alternative for preventing enamel erosion. However, further studies are necessary to evaluate a long-term erosive cycling. PMID:28877281

  5. The development of U. S. soil erosion prediction and modeling

    Directory of Open Access Journals (Sweden)

    John M. Laflen

    2013-09-01

    Full Text Available Soil erosion prediction technology began over 70 years ago when Austin Zingg published a relationship between soil erosion (by water and land slope and length, followed shortly by a relationship by Dwight Smith that expanded this equation to include conservation practices. But, it was nearly 20 years before this work's expansion resulted in the Universal Soil Loss Equation (USLE, perhaps the foremost achievement in soil erosion prediction in the last century. The USLE has increased in application and complexity, and its usefulness and limitations have led to the development of additional technologies and new science in soil erosion research and prediction. Main among these new technologies is the Water Erosion Prediction Project (WEPP model, which has helped to overcome many of the shortcomings of the USLE, and increased the scale over which erosion by water can be predicted. Areas of application of erosion prediction include almost all land types: urban, rural, cropland, forests, rangeland, and construction sites. Specialty applications of WEPP include prediction of radioactive material movement with soils at a superfund cleanup site, and near real-time daily estimation of soil erosion for the entire state of Iowa.

  6. Erosion of magnesium potassium phosphate ceramic waste forms

    International Nuclear Information System (INIS)

    Goretta, K. C.

    1998-01-01

    Phosphate-based chemically bonded ceramics were formed from magnesium potassium phosphate (MKP) binder and either industrial fly ash or steel slag. The resulting ceramics were subjected to solid-particle erosion by a stream of either angular Al 2 O 3 particles or rounded SiO 2 sand. Particle impact angles were 30 or 90degree and the impact velocity was 50 m/s. Steady-state erosion rates, measured as mass lost from a specimen per mass of impacting particle, were dependent on impact angle and on erodent particle size and shape. Material was lost by a combination of fracture mechanisms. Evolution of H 2 O from the MKP phase appeared to contribute significantly to the material loss

  7. Dryland Degradation by wind erosion and its control

    NARCIS (Netherlands)

    Sterk, G.; Riksen, M.; Goossens, D.

    2001-01-01

    Global population growth, is expected to impose an increasing pressure on agricultural production in the world's drylands, which cover approximately 41␘f the continental area. The land resources in drylands are severely threatened by soil degradation, with wind erosion being, one of the major

  8. Cavitation Erosion of Cermet-Coated Aluminium Bronzes.

    Science.gov (United States)

    Mitelea, Ion; Oancă, Octavian; Bordeaşu, Ilare; Crăciunescu, Corneliu M

    2016-03-17

    The cavitation erosion resistance of CuAl10Ni5Fe2.5Mn1 following plasma spraying with Al₂O₃·30(Ni 20 Al) powder and laser re-melting was analyzed in view of possible improvements of the lifetime of components used in hydraulic environments. The cavitation erosion resistance was substantially improved compared with the one of the base material. The thickness of the re-melted layer was in the range of several hundred micrometers, with a surface microhardness increasing from 250 to 420 HV 0.2. Compositional, structural, and microstructural explorations showed that the microstructure of the re-melted and homogenized layer, consisting of a cubic Al₂O₃ matrix with dispersed Ni-based solid solution is associated with the hardness increase and consequently with the improvement of the cavitation erosion resistance.

  9. INDIRECT ASSESSMENT OF RIVER-TORRENTIAL EROSION BY MEASURING THE ERODED VOLUM CASE STUDY: THE REGHIU STREAM

    Directory of Open Access Journals (Sweden)

    NICULAE LUCICA

    2014-03-01

    Full Text Available The landform, as a whole, is the basic component of the environment and evolves as an open system controlled by two categories of components, in a close relationship of dynamic interconditioning. The endodynamic components are stable and they define the relief physiognomy: hypsometry, the gradient and length of the slope, lithologic conditions and the drainage density. The exodynamic components, with high spatial and temporal mobility, control the flow of matter and energy within the hydrographic basin, the solar energy, the rainfalls, the temperature, the plant cover, and the anthropic activity. The volume of eroded material of a hydrographic basin will set the relationship between the present physiognomy of the landform and the flow of materials carried and discharged. The quantitative evaluation of the erosion in a hydrographic basin, specific to a certain region, will deal with the parameters reflecting the intensity of the morphogenetic processes over a specified period of time. The Reghiu Stream, a left-side tributary of the River Milcov, drains varied landforms, developed on geological formations with different physical properties; moreover, it manifests a regressive erosion, weaker than the Zabala River (they used to have a common evolution during the geological past, and the interfluve is very narrow – there are few facts which lead to the conclusion that the erosion is differential, depending on the local conditions of shaping.

  10. Materials for coatings against erosion, fretting, and high-temperature oxidation

    International Nuclear Information System (INIS)

    Feller, H.G.; Wienstroth, U.; Balke, C.

    1990-01-01

    This paper investigates the applicability of Co-Cr-W alloys (CoCr29W29, CoCr29W9Y1, CoCr29W9Fe3Y1, CoCr29W9Y1Al1) as coating materials for the substrates MA 6000 and MA 754. Their properties are compared with those of Amperit 410, which is the alloy NiCo23Cr17Al12.5Y0.5. Their isothermal oxidation behaviour at temperatures up to 1000deg C is found to be better for the most part than that of the commercially available Amperit 410. Furthermore, the oxide shows distinctly better adhesion, so that better results concerning resistance to hot-gas corrosion are expected. The fretting behaviour at room temperature is characterized by very low friction factors and a strong resistance to wear. A comparable behaviour is found for resistance to erosive wear. Specimens tested for 500 hours in the pressurised beam device exhibit only minimal changes of mass in the bond MA 600/coating. Single-particle impact tests reveal that exposure of specimens to high temperatures leads to an increase in mean hardness, which is caused by a solidification of the yttrium-containing phase. (orig./MM) [de

  11. Hydrologic Drivers of Soil Organic Carbon Erosion and Burial: Insights from a Spatially-explicit Model of a Degraded Landscape at the Calhoun Critical Zone Observatory

    Science.gov (United States)

    Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.

    2017-12-01

    Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the

  12. Erosion Behaviour of API X100 Pipeline Steel at Various Impact Angles and Particle Speeds

    Directory of Open Access Journals (Sweden)

    Paul C. Okonkwo

    2016-09-01

    Full Text Available Erosion is the gradual removal of material due to solid particle impingement and results in a failure of pipeline materials. In this study, a series of erosion tests were carried out to investigate the influence of particle speed and impact angle on the erosion mechanism of API X100 pipeline steel. A dry erosion machine was used as the test equipment, while the particle speed ranged from 20 to 80 m/s and impact angles of 30° and 90° were used as test parameters. The eroded API X100 steel surface was characterized using scanning electron microscope (SEM and X-ray photoelectron spectroscopy (XPS. The weight loss and erosion rate were also investigated. The results showed that at a 90° impact angle, a ploughing mechanism was occurring on the tested specimens, while material removal through low-angle cutting was the dominant mechanism at lower impact angles. Embedment of alumina particles on the target steel surface, micro-cutting, and low-angle cutting were observed at low impact angles. Therefore, the scratches, cuttings, and severe ploughings observed on some failed oil and gas pipelines could be attributed to the erosion mechanism.

  13. Saliva in relation to dental erosion before and after radiotherapy

    DEFF Research Database (Denmark)

    Jensdottir, Thorbjorg; von Buchwald, Christian; Nauntofte, Birgitte

    2013-01-01

    Abstract Objective. Low saliva flow and abnormal saliva composition are common conditions after radiotherapy for oral cavity and pharyngeal cancer. Both conditions increase the susceptibility to dental caries and erosion, which may be further accelerated by changes in food preferences. The aim...... of this study was to determine changes in saliva flow and susceptibility to erosive challenges in pharyngeal cancer patients before and after radiotherapy to the head and neck. Materials and methods: The erosive potential of sucking acidic candies with and without calcium was determined in nine patients (50...

  14. Water Impingement Erosion of Deep-Rolled Ti64

    Directory of Open Access Journals (Sweden)

    Dina Ma

    2015-08-01

    Full Text Available In this work, the Liquid Impingement Erosion (LIE performances of deep-rolling (DR treated and non-treated Ti64 were investigated. Various erosion stages, from the incubation to the terminal erosion stages, could be observed. A full factorial design of experiments was used to study the effect of DR process parameters (Feed Rate, Spindle Velocity, Number of Passes, Pressure on the residual stress distribution, microhardness and surface roughness of the treated Ti64 specimens. The DR-treated Ti64 specimens exhibited improved surface microhardness, surface roughness, and large magnitude of compressive residual stresses, which were attributed to the amount of cold work induced by the DR process. Although DR improved the mechanical properties of the Ti64, the results showed that the treatment has little or no effect on the LIE performance of Ti64 but different damage modes were observed in these two cases. Evolution of the erosion stages was described based on water-hammer pressure, stress waves, radial wall jetting, and hydraulic penetration modes. The initial erosion stages were mainly influenced by water-hammer pressure and stress waves, whereas the intermediate erosion stages were influenced by the combination of the four modes together. The final erosion stages contain the four modes, however the erosion was greatly driven by the radial jetting and hydraulic penetration modes, where more material was removed. The failure mechanism of the final stages of the LIE test of both DR-treated and non-treated Ti64 was characterized as fatigue fracture. However, a brittle fracture behavior was observed in the initial and intermediate erosion stages of the DR-treated Ti64, whereas a ductile fracture behavior was observed in the non-treated Ti64. This was concluded from the micrographs of the LIE damage through different erosion stages.

  15. Does vegetation prevent wave erosion of salt marsh edges?

    Science.gov (United States)

    Feagin, R A; Lozada-Bernard, S M; Ravens, T M; Möller, I; Yeager, K M; Baird, A H

    2009-06-23

    This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves.

  16. Erosion resistant elbow for solids conveyance

    Science.gov (United States)

    Not Available

    An elvow and process for fabrication for use in particulate material conveying comprising a curved outer pipe, a curved inner pipe having the same radius of curvature as the outer pipe, concentric with and internal to the outer pipe, comprising an outer layer comprised of a first material and an inner layer comprised of a second material wherein said first material is characterized by high erosion resistance when impinged by particulate material and wherein said second material is characterized by high tensile strength and flexibility, and an inner pipe supporting means for providing support to said inner pipe, disposed between said inner pipe and said outer pipe. 4 figures.

  17. TILLAGE EROSION: THE PRINCIPLES, CONTROLLING FACTORS AND MAIN IMPLICATIONS FOR FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Agnieszka Wysocka-Czubaszek

    2014-10-01

    Full Text Available Tillage erosion is one of the major contributors to landscape evolution in hummocky agricultural landscapes. This paper summarizes the available data describing tillage erosion caused by hand-held or other simple tillage implements as well as tools used in typical conventional agriculture in Europe and North America. Variations in equipment, tillage speed, depth and direction result in a wide range of soil translocation rates observed all over the world. The variety of tracers both physical and chemical gives a challenge to introduce the reliable model predicting tillage erosion, considering the number and type of tillage operation in the whole tillage sequence.

  18. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  19. Managing dental erosion.

    Science.gov (United States)

    Curtis, Donald A; Jayanetti, Jay; Chu, Raymond; Staninec, Michal

    2012-01-01

    The clinical signs of dental erosion are initially subtle, yet often progress because the patient remains asymptomatic, unaware and uninformed. Erosion typically works synergistically with abrasion and attrition to cause loss of tooth structure, making diagnosis and management complex. The purpose of this article is to outline clinical examples of patients with dental erosion that highlight the strategy of early identification, patient education and conservative restorative management. Dental erosion is defined as the pathologic chronic loss of dental hard tissues as a result of the chemical influence of exogenous or endogenous acids without bacterial involvement. Like caries or periodontal disease, erosion has a multifactorial etiology and requires a thorough history and examination for diagnosis. It also requires patient understanding and compliance for improved outcomes. Erosion can affect the loss of tooth structure in isolation of other cofactors, but most often works in synergy with abrasion and attrition in the loss of tooth structure (Table 1). Although erosion is thought to be an underlying etiology of dentin sensitivity, erosion and loss of tooth structure often occurs with few symptoms. The purpose of this article is threefold: first, to outline existing barriers that may limit early management of dental erosion. Second, to review the clinical assessment required to establish a diagnosis of erosion. And third, to outline clinical examples that review options to restore lost tooth structure. The authors have included illustrations they hope will be used to improve patient understanding and motivation in the early management of dental erosion.

  20. Erosion-Corrosion Management System for secondary circuits of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Butter, L.M.; Zeijseink, A.G.L.

    2001-01-01

    Erosion-corrosion in water steam systems is a corrosion mechanism that may develop undetected and results in unexpected damages. It is well known which chemical and physical parameters play an important role and what areas are usually affected. In order to facilitate this monitoring of Erosion-corrosion (EC) progress, KEMA has by order of the European Union Tacis-programme developed an Erosion-Corrosion Management System (ECMS) to improve control on the erosion-corrosion process, by improved data handling and analysis. This ECMS has been installed at the South Ukrainian Nuclear Power Plant (SUNPP) - VVER-1000. In general, it has been determined that the current ECMS helps by controlling the erosion-corrosion progress. The ECMS presents and analyses the results on an appropriate way. The recommendations are valuable. (R.P.)

  1. Effects of erosion control structures along a portion of the northern Chesapeake Bay shoreline

    Science.gov (United States)

    Zabawa, C.F.; Kerhin, R.T.; Bayley, S.

    1981-01-01

    A 6.500-meter reach of western Chesapeake Bay shoreline (lower Mayo Peninsula) lost about 1.1??106 cubic meters of sediment (equivalent to 170 cubic meters lost per meter of shoreline) between 1846 and 1932, when the first aerial photographs show the shoreline already substantially protected by a system of groins and intermittent bulkheading. These structures have eliminated the fastland as a source of erodable material, and have starved the supply of sand for littoral drift, thus limiting the extent of the beaches to the remaining groin fields. Volumes of sediment involved in these impacts are small in the overall sediment budget. Bulkheads produce no deficit in the budget since scouring of the beaches on their seaward sides makes up for the decreased erosion of protected fastland. Groins trap little of the potential littoral drift (computed to be about 104 cubic meters per meter of shoreline per year). The sand supply in the remaining beaches is nearly equivalent to the annual loss of sediment from the entire shoreline system due to the long-term rate of erosion of the shoreline and nearshore between 1846 and 1932. ?? 1981 Springer-Verlag New York Inc.

  2. Field evaluation of support practice (P-factor) for stone walls to control soil erosion in an arid area (Northern Jordan)

    Science.gov (United States)

    Gharaibeh, Mamoun; Albalasmeh, Ammar

    2017-04-01

    Stone walls have been adopted for long time to control water erosion in many Mediterranean countries. In soil erosion equations, the support practice factor (P-factor) for stone walls has not been fully studied or rarely taken into account especially in semi-arid and arid regions. Field studies were conducted to evaluate the efficiency of traditional stone walls and to quantify soil erosion in six sites in north and northeastern Jordan. Initial estimates using the Universal Soil Loss Equation (USLE) showed that rainfall erosion was reduced by 65% in areas where stone walls are present. Annual soil loss ranged from 5 to 15 t yr-1. The mean annual soil loss in the absence of stone walls ranged from 10-60 t ha-1 with an average value of 35 t ha-1. Interpolating the slope of thickness of A horizon provided an average initial estimate of 0.3 for P value.

  3. State of the art in protection of erosion-corrosion on vertical axis tidal current turbine

    Science.gov (United States)

    Musabikha, Siti; Utama, I. Ketut Aria Pria; Mukhtasor

    2018-05-01

    Vertical axis tidal current turbine is main part of ocean energy devices which converts the tidal current energy into electricity. Its development is arising too due to increased interest research topic concerning climate change mitigation. Due to its rotating movement, it will be induced mechanical forces, such as shear stress and/or particle impact. Because of its natural operations, vertical axis turbine is also being exposed to harsh and corroding marine environment itself. In order to secure the vertical tidal turbine devices from mechanical wear and corrosion effects which is lead to a material loss, an appropriate erosion-corrosion protection needs to be defined. Its protection actionscan be derived such as design factors, material selections, inhibitors usage, cathodic protections, and coatings. This paper aims to analyze protection method which is necessary to control erosion-corrosion phenomenon that appears to the vertical axis tidal current turbine.

  4. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  5. Modelling soil erosion potential in the transboundary (Kenya & Tanzania) catchment of river Umba using remotely sensed data

    NARCIS (Netherlands)

    Koedam, N.; Mutisya, B.; Kairo, J.; Resink-Ndungu, Jane Njeri; Kervyn, M.

    2017-01-01

    Soil erosion is one of the leading forms of soil degradation. Estimating soil erosion from field measurements is expensive hence the extent of soil erosion in many tropical watersheds is unknown. Erosion is a complex process; some of the eroded materials are deposited within the watershed while the

  6. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  7. Cavitation Erosion of Cermet-Coated Aluminium Bronzes

    Directory of Open Access Journals (Sweden)

    Ion Mitelea

    2016-03-01

    Full Text Available The cavitation erosion resistance of CuAl10Ni5Fe2.5Mn1 following plasma spraying with Al2O3·30(Ni20Al powder and laser re-melting was analyzed in view of possible improvements of the lifetime of components used in hydraulic environments. The cavitation erosion resistance was substantially improved compared with the one of the base material. The thickness of the re-melted layer was in the range of several hundred micrometers, with a surface microhardness increasing from 250 to 420 HV 0.2. Compositional, structural, and microstructural explorations showed that the microstructure of the re-melted and homogenized layer, consisting of a cubic Al2O3 matrix with dispersed Ni-based solid solution is associated with the hardness increase and consequently with the improvement of the cavitation erosion resistance.

  8. Erosion of magnesium potassium phosphate ceramic waste forms.

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K. C.

    1998-11-20

    Phosphate-based chemically bonded ceramics were formed from magnesium potassium phosphate (MKP) binder and either industrial fly ash or steel slag. The resulting ceramics were subjected to solid-particle erosion by a stream of either angular Al{sub 2}O{sub 3} particles or rounded SiO{sub 2} sand. Particle impact angles were 30 or 90{degree} and the impact velocity was 50 m/s. Steady-state erosion rates, measured as mass lost from a specimen per mass of impacting particle, were dependent on impact angle and on erodent particle size and shape. Material was lost by a combination of fracture mechanisms. Evolution of H{sub 2}O from the MKP phase appeared to contribute significantly to the material loss.

  9. Regionalization of monthly rainfall erosivity patternsin Switzerland

    Science.gov (United States)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of

  10. Erosion and the limits to planetesimal growth

    Science.gov (United States)

    Krijt, S.; Ormel, C. W.; Dominik, C.; Tielens, A. G. G. M.

    2015-02-01

    robustness of this statement depends on uncertain material properties of icy aggregates. If erosion inhibits planetesimal formation through direct sticking, the sea of ~109 g, highly porous particles appears suitable for triggering streaming instability.

  11. Impurity Control Test Facility (ICTF) for the study of fusion reactor plasma/edge materials interactions

    International Nuclear Information System (INIS)

    Brooks, J.N.; Mattas, R.F.; Ehst, D.A.; Boley, C.D.; Hershkowitz, N.

    1984-05-01

    A test facility for investigating many of the impurity control issues associated with the interactions of materials with the plasma edge is outlined. Analysis indicates that the plasma edge conditions expected in TFCX, INTOR, etc. can be readily produced at the end cells of an rf stabilized mirror, similar in some respects to the Phaedrus device at the University of Wisconsin. A steady-state, Impurity Control Test Facility (ICTF) based on such a mirror device is expected to produce a plasma with typical parameters of n/sub e/ approx. 3 x 10 18 m -3 , T/sub e/ = 50 eV, and T/sub i/ = 100 eV at each end cell. A heat load of approx. 2 MW/m 2 over areas of approx. 1600 cm 2 could be produced at each end with 800 kW of ICRH power. These conditions would provide a unique capability for examining issues such as erosion/redeposition behavior, properties of redeposited materials, high recycling regimes, plasma edge operating limits for high-Z materials, and particle pumping efficiencies for limiter and divertor designs

  12. Laser processing of cast iron for enhanced erosion resistance

    International Nuclear Information System (INIS)

    Chen, C.H.; Altstetter, C.J.; Rigsbee, J.M.

    1984-01-01

    The surfaces of nodular and gray cast iron have been modified by CO 2 laser processing for enhanced hardness and erosion resistance. Control of the near-surface microstructure was achieved primarily by controlling resolidification of the laser melted layer through variations in laser beam/target interaction time and beam power density. Typical interaction times and power densities used were 5 msec and 500 kW/cm 2 . Two basic kinds of microstructure can be produced-a feathery microstructure with high hardness (up to 1245 HV) and a dendritic microstructure with a metastable, fully austenitic matrix and lower hardness (600 to 800 HV). Erosion testing was done using slurries of SiO 2 or SiC in water. Weight loss and crater profile measurements were used to evaluate the erosion characteristics of the various microstructures. Both ductile and gray cast iron showed marked improvement in erosion resistance after laser processing

  13. Surface erosion and sedimentation caused by ejecta from the lunar crater Tycho

    Science.gov (United States)

    Shkuratov, Y.; Basilevsky, A.; Kaydash, V.; Ivanov, B.; Korokhin, V.; Videen, G.

    2018-02-01

    We use Kaguya MI images acquired at wavelengths 415, 750, and 950 nm to map TiO2 and FeO content and the parameter of optical maturity OMAT in lunar regions Lubiniezky E and Taurus-Littrow with a spatial resolution of 20 m using the Lucey method [Lucey et al., JGR 2000, 105. 20,297]. We show that some ejecta from large craters, such as Tycho and Copernicus may cause lunar surface erosion, transportation of the eroded material and its sedimentation. The traces of the erosion resemble wind tails observed on Earth, Mars, and Venus, although the Moon has no atmosphere. The highland material of the local topographic prominences could be mobilized by Tycho's granolometrically fine ejecta and caused by its transportation along the ejecta way to adjacent mare areas and subsequent deposition. The tails of mobilized material reveal lower abundances of Ti and Fe than the surrounding mare surface. We have concluded that high-Ti streaks also seen in the Lubiniezky E site, which show unusual combinations of the TiO2 and FeO content on the correlation diagram, could be the result of erosion by Tycho's ejecta too. In these locations, Tycho's material did not form a consolidated deposit, but resulted in erosion of the mare surface material that became intermixed, consequently, diluting the ejecta. The Taurus-Littrow did provide evidence of the mechanical effect of Tycho's ejecta on the local landforms (landslide, secondary craters) and do not show the compositional signature of Tycho's ejecta probably due to intermixing with local materials and dilution.

  14. Erodibility of cemented materials

    CSIR Research Space (South Africa)

    Gass, BG

    1993-03-01

    Full Text Available The use of stabilised layers is cost effective in road construction in South Africa. Some stabilised materials have however been found to be susceptible to erosion. To identify erodible materials the Erosion Test was developed in 1989...

  15. Soil erosion and causative factors at Vandenberg Air Force Base, California

    Science.gov (United States)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  16. Incidence and Pattern of Dental Erosion in Gastroesophageal Reflux Disease Patients.

    Science.gov (United States)

    Ramachandran, Anupama; Raja Khan, Sulthan Ibrahim; Vaitheeswaran, Nandinee

    2017-11-01

    Gastroesophageal reflux disease (GERD) is a very common condition whose consequences of are localized not only in the esophagus; extra-esophageal involvement has frequently been reported. The aim of the study is to examine the incidence and pattern of dental erosion in GERD patients. A total of 50 patients were recruited in this study (control -25 and GERD -25). All participants diagnosed having GERD by the endoscopic examination by their gastroenterologist are included. The patients were examined for dental erosion and will be quantified using Basic erosive wear examination index. The results showed that the incidence of dental erosion was 88% as compared to 32% in the control group which was found to be statistically significant.

  17. Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control.

    Science.gov (United States)

    Bangash, Rubab F; Passuello, Ana; Sanchez-Canales, María; Terrado, Marta; López, Alfredo; Elorza, F Javier; Ziv, Guy; Acuña, Vicenç; Schuhmacher, Marta

    2013-08-01

    The Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and such changes impact the capacity of ecosystems to provide goods and services to human society. The predicted future scenarios for this region present an increased frequency of floods and extended droughts, especially at the Iberian Peninsula. This paper evaluates the impacts of climate change on the water provisioning and erosion control services in the densely populated Mediterranean Llobregat river basin of. The assessment of ecosystem services and their mapping at the basin scale identify the current pressures on the river basin including the source area in the Pyrenees Mountains. Drinking water provisioning is expected to decrease between 3 and 49%, while total hydropower production will decrease between 5 and 43%. Erosion control will be reduced by up to 23%, indicating that costs for dredging the reservoirs as well as for treating drinking water will also increase. Based on these data, the concept for an appropriate quantification and related spatial visualization of ecosystem service is elaborated and discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Gastroesophageal Reflux Disease and Tooth Erosion

    Directory of Open Access Journals (Sweden)

    Sarbin Ranjitkar

    2012-01-01

    Full Text Available The increasing prevalence of gastroesophageal reflux disease (GERD in children and adults, and of “silent refluxers” in particular, increases the responsibility of dentists to be alert to this potentially severe condition when observing unexplained instances of tooth erosion. Although gastroesophageal reflux is a normal physiologic occurrence, excessive gastric and duodenal regurgitation combined with a decrease in normal protective mechanisms, including an adequate production of saliva, may result in many esophageal and extraesophageal adverse conditions. Sleep-related GERD is particularly insidious as the supine position enhances the proximal migration of gastric contents, and normal saliva production is much reduced. Gastric acid will displace saliva easily from tooth surfaces, and proteolytic pepsin will remove protective dental pellicle. Though increasing evidence of associations between GERD and tooth erosion has been shown in both animal and human studies, relatively few clinical studies have been carried out under controlled trial conditions. Suspicion of an endogenous source of acid being associated with observed tooth erosion requires medical referral and management of the patient as the primary method for its prevention and control.

  19. Erosion-corrosion interactions and their affect on marine and offshore components

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert JK [Surface Engineering and Tribology Group, School of Engineering Sciences, University of Southampton, SO17 1BJ (United Kingdom)

    2004-07-01

    The operation of modern fluid handling systems demands for low costs, reliability, longevity and no loss of fluid containment. All these can be achieved by minimising the material damage caused by the combined attack of solid particle or cavitation impingement and corrosion. This paper will cover the rationale behind the selection of erosion resistance surfaces for fluid handling equipment and highlight the complexities encountered when these surfaces are exposed to environments which contain sand particles or cavitation in a corrosive medium. The erosion and erosion-corrosion performance of a variety of coatings and bulk surfaces will be discussed using volume loss rate versus sand impact energy maps. Recent research into the erosion-corrosion of polymer coatings, PEO and HVOF aluminium and nickel aluminium bronze coatings will be reviewed. Electrochemical techniques designed to monitor the erosion-corrosion mechanisms and coating integrity will be presented and used to quantify the synergistic terms present when both erosion and corrosion act concurrently. (author)

  20. Extent of Cropland and Related Soil Erosion Risk in Rwanda

    Directory of Open Access Journals (Sweden)

    Fidele Karamage

    2016-06-01

    foster environmental sustainability or further sustainable alternative erosion control techniques may be applied, such as applying Vetiver Eco-engineering Technology due to its economical soil erosion control and stabilization of steep slopes and the construction of erosion control dams to absorb and break down excess runoff from unusually intense storms in various parts of the watersheds.

  1. Solving erosion corrosion problems in HP-preheaters at Loviisa NPS

    International Nuclear Information System (INIS)

    Lindberg, E.

    1984-01-01

    Several tubes have failed because of tube inlet erosion at Loviisa. Mild steel used as tube material will very easily be attacked by erosion corrosion because of unfavorable conditions in the heaters. One reason to the failures is the unsufficient design of the heaters. As a remedy we have replaced the thinned tube-ends with a ferritic-austenitic stainless steel NU 44LN. (author)

  2. Association between dental erosion and possible risk factors: A hospital-based study in gastroesophageal reflux disease patients

    Directory of Open Access Journals (Sweden)

    Vamsi Krishna Reddy

    2016-01-01

    Full Text Available Introduction: Gastroesophageal reflux disease (GERD is a condition, with a prevalence of up to 10–20% in the general population. GERD may involve damage to the oral cavity, and dental erosion may occur with a higher frequency. Aim: To estimate the prevalence of dental erosion in GERD patients and to evaluate the association between dental erosion and possible risk factors. Materials and Methods: The study was conducted in the Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow among patients attending outpatient department between June and August 2014. The study group comprised 91 subjects with GERD and 114 subjects without GERD. Information regarding symptoms of GERD, medicines, any chronic disease, and dietary habits were recorded. Dental examination was done to assess the presence or absence of dental erosions and its severity was measured using O'Sullivan Index (2000. Statistical analysis was done using Mann–Whitney U-test and Kruskal–Wallis test. Results: Of 91 GERD patients, 87 (95.6% patients had dental erosion. In both groups, association between frequent intake of fruit juice, carbonated drinks, milk, yoghurt, fruits, and tea/coffee with occurrence of dental erosion were statistically significant (P < 0.05. In GERD patients, association between intake of milk and occurrence of dental erosion were statistically significant (P < 0.05. Association of medication with dental erosion was found to be statistically significant (P < 0.05. Chronic diseases like diabetes and asthma were also found to be statistically significant with dental erosion (P < 0.05. Conclusion: This study showed that GERD patients were at increased risk of developing dental erosion compared to controls.

  3. A hierachical method for soil erosion assessment and spatial risk modelling

    NARCIS (Netherlands)

    Okoth, P.F.

    2003-01-01

      Though a lot has been done and achieved in erosion research and control in Kenya, most of the erosion research methods have in the past put emphasis more on quantifying soil loss or measuring soil erosion, rather than pinpointing to

  4. Erosive wear of a surface coated hydroturbine steel

    Indian Academy of Sciences (India)

    Administrator

    Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee,. Roorkee ... turbines, pipelines and valves used in slurry transporta- tion of matter ... city gas blast erosion rig facility developed as per standard.

  5. Speckle interferometry application for erosion measurements in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, E.; Roupillard, R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    In order to measure erosion/redeposition in fusion devices, a new diagnostic based on speckle interferometry is investigated. First experiments performed on carbon fibre composite (CFC) materials have shown that this technique is able to measure a modification of the surface in the range of 1 {mu}m. Further experiments have been performed on different materials using a second wavelength in order to carry out 3-dimensional measurements of the surface and to increase the dynamic range of the depth measurement. A diagnostic, based on two-wavelength TV-holography to measure in situ erosion/redeposition during long duration discharges on the CIEL limiter in Tore Supra, is under development at CEA Cadarache. (authors)

  6. Factors controlling volume errors through 2D gully erosion assessment: guidelines for optimal survey design

    Science.gov (United States)

    Castillo, Carlos; Pérez, Rafael

    2017-04-01

    The assessment of gully erosion volumes is essential for the quantification of soil losses derived from this relevant degradation process. Traditionally, 2D and 3D approaches has been applied for this purpose (Casalí et al., 2006). Although innovative 3D approaches have recently been proposed for gully volume quantification, a renewed interest can be found in literature regarding the useful information that cross-section analysis still provides in gully erosion research. Moreover, the application of methods based on 2D approaches can be the most cost-effective approach in many situations such as preliminary studies with low accuracy requirements or surveys under time or budget constraints. The main aim of this work is to examine the key factors controlling volume error variability in 2D gully assessment by means of a stochastic experiment involving a Monte Carlo analysis over synthetic gully profiles in order to 1) contribute to a better understanding of the drivers and magnitude of gully erosion 2D-surveys uncertainty and 2) provide guidelines for optimal survey designs. Owing to the stochastic properties of error generation in 2D volume assessment, a statistical approach was followed to generate a large and significant set of gully reach configurations to evaluate quantitatively the influence of the main factors controlling the uncertainty of the volume assessment. For this purpose, a simulation algorithm in Matlab® code was written, involving the following stages: - Generation of synthetic gully area profiles with different degrees of complexity (characterized by the cross-section variability) - Simulation of field measurements characterised by a survey intensity and the precision of the measurement method - Quantification of the volume error uncertainty as a function of the key factors In this communication we will present the relationships between volume error and the studied factors and propose guidelines for 2D field surveys based on the minimal survey

  7. Erosion Assessment Modeling Using the Sateec Gis Model on the Prislop Catchment

    Directory of Open Access Journals (Sweden)

    Damian Gheorghe

    2014-05-01

    Full Text Available The Sediment Assessment Tool for Effective Erosion Control (SATEEC acts as an extension for ArcView GIS 3, with easy to use commands. The erosion assessment is divided into two modules that consist of Universal Soil Loss Equation (USLE for sheet/rill erosion and the nLS/USPED modeling for gully head erosion. The SATEEC erosion modules can be successfully implemented for areas where sheet, rill and gully erosion occurs, such as the Prislop Catchment. The enhanced SATEEC system does not require experienced GIS users to operate the system therefore it is suitable for local authorities and/or students not so familiar with erosion modeling.

  8. Erosion corrosion in water-steam systems: Causes and countermeasures

    International Nuclear Information System (INIS)

    Heitmann, H.G.; Kastner, W.

    1985-01-01

    For the purpose of a better understanding of erosion corrosion, the physical and chemical principles will be summarized briefly. Then results obtained at KWU in the BENSON test section in tests on test specimens in single-phase flow of fully demineralized water will be presented. The experimental studies provide information about the most important influencing parameters. These include flow rate, fluid temperature and water quality (pH value and oxygen content). In addition, the resistance of various materials is compared, and the resistance of magnetite coatings to erosion corrosion is investigated. Furthermore, tests are presented that will show the extent to which erosion corrosion in power plants can be influenced by chemical measures

  9. Damage diagnostic of localized impact erosion by measuring acoustic vibration

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Ikeda, Yujiro

    2004-01-01

    High power spallation targets for neutron sources are being developed in the world. Mercury target will be installed at the material and life science facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact erosion damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electric Magnetic IMpact Testing Machine, MIMTM, was developed to produce the localized impact erosion damage and evaluate the damage formation. Acoustic vibration measurement was carried out to investigate the correlation between the erosion damage and the damage potential derived from acoustic vibration. It was confirmed that the damage potential related with acoustic vibration is useful to predict the damage due to the localized impact erosion and to diagnose the structural integrity. (author)

  10. Measurement of erosion rate by absorption spectroscopy in a Hall thruster

    International Nuclear Information System (INIS)

    Yamamoto, Naoji; Yokota, Shigeru; Matsui, Makoto; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2005-01-01

    The erosion rate of a Hall thruster was estimated with the objective of building a real-time erosion rate monitoring system using a 1 kW class anode layer type Hall thruster. This system aids the understanding of the tradeoff between lifetime and performance. To estimate the flux of the sputtered wall material, the number density of the sputtered iron was measured by laser absorption spectroscopy using an absorption line from ground atomic iron at 371.9935 nm. An ultravioletAl x In y Ga (1-x-y) N diode laser was used as the probe. The estimated number density of iron was 1.1x10 16 m -3 , which is reasonable when compared with that measured by duration erosion tests. The relation between estimated erosion rate and magnetic flux density also agreed with that measured by duration erosion tests

  11. Data for Erosion and Tritium Retention in Beryllium Plasma-Facing Materials. Summary Report of the First Research Coordination Meeting

    International Nuclear Information System (INIS)

    Braams, B.J.

    2013-04-01

    Nine experts in the field of plasma-wall interaction on beryllium surfaces together with IAEA staff met at IAEA Headquarters 26-28 September 2012 for the First Research Coordination Meeting of an IAEA Coordinated Research Project on data for erosion and tritium retention in beryllium plasma-facing materials. They described their on-going research, reviewed the main data needs and made plans for coordinated research during the remaining years of the project. The proceedings of the meeting are summarized in this report. (author)

  12. Active Anti-erosion Protection Strategy in Tamarisk (Tamarix aphylla)

    Science.gov (United States)

    Han, Zhiwu; Yin, Wei; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2013-12-01

    Plants have numerous active protection strategies for adapting to complex and severe environments. These strategies provide endless inspiration for extending the service life of materials and machines. Tamarisk (Tamarix aphylla), a tree that thrives in raging sandstorm regions, has adapted to blustery conditions by evolving extremely effective and robust erosion resistant characteristics. However, the relationships among its surface cracks, internal histology and biomechanics, such as cracks, rings, cells, elasticity modulus and growth stress, which account for its erosion resistance, remain unclear. This present study reveals that the directionally eccentric growth rings of tamarisk, which are attributed to reduced stress and accelerated cell division, promote the formation of surface cracks. The windward rings are more extensive than the leeward side rings. The windward surfaces are more prone to cracks, which improves erosion resistance. Our data provide insight into the active protection strategy of the tamarisk against wind-sand erosion.

  13. Torrent classification - Base of rational management of erosive regions

    International Nuclear Information System (INIS)

    Gavrilovic, Zoran; Stefanovic, Milutin; Milovanovic, Irina; Cotric, Jelena; Milojevic, Mileta

    2008-01-01

    A complex methodology for torrents and erosion and the associated calculations was developed during the second half of the twentieth century in Serbia. It was the 'Erosion Potential Method'. One of the modules of that complex method was focused on torrent classification. The module enables the identification of hydro graphic, climate and erosion characteristics. The method makes it possible for each torrent, regardless of its magnitude, to be simply and recognizably described by the 'Formula of torrentially'. The above torrent classification is the base on which a set of optimisation calculations is developed for the required scope of erosion-control works and measures, the application of which enables the management of significantly larger erosion and torrential regions compared to the previous period. This paper will present the procedure and the method of torrent classification.

  14. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included

  15. Accelerated rain erosion of wind turbine blade coatings

    DEFF Research Database (Denmark)

    Zhang, Shizhong

    . There are four chapters in the thesis. In chapter 1, a literature survey provides background information to the field. Topics discussed are the global wind energy development, possible wind turbine constructions, blade structures and materials, blade coatings, and liquid erosion mechanisms. In chapter 2......During operation, the fast-moving blades of wind turbines are exposed to continuous impacts with rain droplets, hail, insects, or solid particles. This can lead to erosion of the blades, whereby the electrical efficiency is compromised and expensive repairs may be required. One possible solution...

  16. The first word in material control is material

    International Nuclear Information System (INIS)

    Martin, H.R.; Wilkey, D.D.

    1989-01-01

    Material control has tended to rely on containment and access control, augmented by physical inventories, to meet the material control and accounting (MC ampersand A) goals of detecting theft/diversion and providing assurance that all nuclear material (NM) is present. Such systems have significant deficiencies. Material containment strategies are generally based on protection provided at boundaries around the NM and rely on alarms at the boundary for detection of theft/diversion. Assurance that all NM is present requires a negative inference based on the absence of alarms. Additionally, design of effective boundary protection systems requires that the designer be able to anticipate and provide protection for all scenarios that the insider adversary might utilize in removing material from the facility. Access control is an administrative system that cannot protect against malevolent actions by insiders authorized to access the material. Inventories may not provide timely detection of theft/diversion, and the sensitivity of detection depends on the magnitude of the variance of the inventory difference. More effective material control is provided for both material in storage and in process by a material-oriented system designed to detect abnormal events involving NM. Abnormal events are defined as any unauthorized activity involving NM, whether accidental or deliberate, and are assessed to determine the cause of the discrepancy. The designs of material-oriented control systems vary greatly, depending on the operations involved; however, a model system would include the use of process monitoring data for material control and automated surveillance of material in storage

  17. Standard Test Method for Dust Erosion Resistance of Optical and Infrared Transparent Materials and Coatings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the resistance of transparent plastics and coatings used in aerospace windscreens, canopies, and viewports to surface erosion as a result of dust impingement. This test method simulates flight through a defined particle cloud environment by means of independent control of particle size, velocity, impact angle, mass loading, and test duration. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. Factors affecting soil erosion in Beijing mountain forestlands | Zhang ...

    African Journals Online (AJOL)

    The role of regions, vegetation types and forest stand density in controlling soil erosion were investigated in Beijing mountain forest, China. The main objective was to develop some models to estimate soil erosion under different forest conditions including regions, vegetation type, and stand density as influenced by artificial ...

  19. Prevalence of dental erosion in 12-year-old schoolchildren of Lucknow city

    Directory of Open Access Journals (Sweden)

    Pooja Sinha

    2016-01-01

    Full Text Available Introduction: Dental erosion is tooth surface loss caused by chemical processes without bacterial involvement, which can affect children because of various dietary and other lifestyle factors. Aims: The aim of this study was to assess the prevalence of dental erosion in 12-year-old schoolchildren in Lucknow city. Materials and Methods: A total of 212 schoolchildren were selected through multistage cluster random sampling method. A pretested self-administered pro forma was used to record demographic data, medical history, and dietary habits. The clinical examination was done to evaluate dental erosion of children using dental erosion index by O'Sullivan. Descriptive analytical tests were used including distribution of erosion, its extent and severity. The findings were compared across the study participants using Chi-square test. Results: The overall prevalence of dental erosion was 34.12% with no significant sex difference. Dental erosion was significantly related to the frequency of consumption of fruit juices (67.07% followed by carbonated drinks (64.47%. In most of the cases, more than half of their surfaces were diagnosed as affected by erosion (26.25% central incisors, 4.83% lateral incisors. Conclusions: Dental erosion among the study group was found to be 34.12%, providing evidence that dental erosion is becoming a significant problem in Lucknow schoolchildren.

  20. Cavitation erosion - corrosion behaviour of ASTM A27 runner steel in natural river water

    International Nuclear Information System (INIS)

    Tôn-Thât, L

    2014-01-01

    Cavitation erosion is still one of the most important degradation modes in hydraulic turbine runners. Part of researches in this field focuses on finding new materials, coatings and surface treatments to improve the resistance properties of runners to this phenomenon. However, only few studies are focused on the deleterious effect of the environment. Actually, in some cases a synergistic effect between cavitation erosion mechanisms and corrosion kinetics can establish and increase erosion rate. In the present study, the cavitation erosion-corrosion behaviour of ASTM A27 steel in natural river water is investigated. This paper state the approach which has been used to enlighten the synergy between both phenomena. For this, a 20 kHz vibratory test according ASTM G32 standard is coupled to an electrochemical cell to be able to follow the different corrosion parameters during the tests to get evidence of the damaging mechanism. Moreover, mass losses have been followed during the exposure time. The classical degradation parameters (cumulative weight loss and erosion rate) are determined. Furthermore, a particular effort has been implemented to determine the evolution of surface damages in terms of pitting, surface cracking, material removal and surface corrosion. For this, scanning electron microscopy has been used to link the microstructure to the material removal mechanisms

  1. Erosion of atmospherically deposited radionuclides as affected by soil disaggregation mechanisms

    International Nuclear Information System (INIS)

    Claval, D.; Garcia-Sanchez, L.; Real, J.; Rouxel, R.; Mauger, S.; Sellier, L.

    2004-01-01

    The interactions of soil disaggregation with radionuclide erosion were studied under controlled conditions in the laboratory on samples from a loamy silty-sandy soil. The fate of 134 Cs and 85 Sr was monitored on soil aggregates and on small plots, with time resolution ranging from minutes to hours after contamination. Analytical experiments reproducing disaggregation mechanisms on aggregates showed that disaggregation controls both erosion and sorption. Compared to differential swelling, air explosion mobilized the most by producing finer particles and increasing five-fold sorption. For all the mechanisms studied, a significant part of the contamination was still unsorbed on the aggregates after an hour. Global experiments on contaminated sloping plots submitted to artificial rainfalls showed radionuclide erosion fluctuations and their origin. Wet radionuclide deposition increased short-term erosion by 50% compared to dry deposition. A developed soil crust when contaminated decreased radionuclide erosion by a factor 2 compared to other initial soil states. These erosion fluctuations were more significant for 134 Cs than 85 Sr, known to have better affinity to soil matrix. These findings confirm the role of disaggregation on radionuclide erosion. Our data support a conceptual model of radionuclide erosion at the small plot scale in two steps: (1) radionuclide non-equilibrium sorption on mobile particles, resulting from simultaneous sorption and disaggregation during wet deposition and (2) later radionuclide transport by runoff with suspended matter

  2. A 30000 yr record of erosion rates from cosmogenic 10Be in middle European river terraces

    NARCIS (Netherlands)

    Schaller, M.; Blanckenburg, von F.; Veldkamp, A.; Tebbens, L.A.; Hovius, N.; Kubik, P.W.

    2002-01-01

    Cosmogenic 10Be in river-borne quartz sand records a time-integrated erosion rate representative of an entire drainage basin. When sequestered in a terrace of known age, paleo-erosion rates may be recovered from the nuclide content of the terrace material. Paleo-erosion rates between 30 and 80

  3. Minor soil erosion contribution to denudation in Central Nepal Himalaya.

    Science.gov (United States)

    Morin, Guillaume; France-Lanord, Christian; Gallo, Florian; Lupker, Maarten; Lavé, Jérôme; Gajurel, Ananta

    2013-04-01

    In order to decipher river sediments provenance in terms of erosion processes, we characterized geochemical compositions of hillslope material coming from soils, glaciers and landslide, and compared them to rivers sediments. We focused our study on two South flank Himalayan catchments: (1) Khudi khola, as an example of small High Himalayan catchment (150 km2), undergoing severe precipitation, and rapid erosion ≈ 3.5 mm/yr [A] and (2) the Narayani-Gandak Transhimalayan basin (52000 km2) that drains the whole central Nepal. To assess the question, systematic samplings were conducted on hillslope material from different erosion processes in the basins. River sediment include daily sampling during the 2010 monsoon at two stations, and banks samples in different parts of the basins. Source rocks, soil and landslide samples, are compared to river sediment mobile to immobile element ratios, completed by hydration degree H2O+ analysis[2]. Data show that soils are clearly depleted in mobile elements Na, K, Ca, and highly hydrated compared to source rocks and other erosion products. In the Khudi basin, the contrast between soil and river sediment signatures allow to estimate that soil erosion represents less than 5% of the total sediment exported by the river. Most of the river sediment therefore derives from landslides inputs and to a lesser extent by barren high elevation sub-basins. This is further consistent with direct observation that, during monsoon, significant tributaries of the Khudi river do not export sediments. Considering that active landslide zones represent less than 0.5% of the total watershed area, it implies that erosion distribution is highly heterogeneous. Landslide erosion rate could reach more than 50 cm/yr in the landslide area. Sediments of the Narayani river are not significantly different from those of the Khudi in spite of more diverse geomorphology and larger area of the basin. Only H2O+ and Total Organic Carbon concentrations normalised to Al

  4. Simultaneous acid exposure and erosive particle wear of thermoset coatings

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria

    2018-01-01

    , similar to the erosion/corrosion-type phenomena found in metals. A vinyl ester-based coating was the most resistant to the simultaneous erosive/acidic exposure, with a maximum polishing rate of 3.24±0.61 μm/week, while novolac epoxy and polyurethane coatings showed high polishing rates of 11.7±1.50 and 13.4±0......Handling acidic chemicals is a challenge in the chemical industry, requiring a careful choice of contact material. Certain thermoset organic coatings are applicable in low pH environments, but when particulate erosion is also present the performance demand is increased. This is the case in, e...

  5. Experimental Study of Laser Cladding Methods on Water Erosion Resistance to Low Pressure Blades Materials of Steam Turbine

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2014-01-01

    Full Text Available An experimental apparatus was built to study the effects of liquid-solid impact on laser cladding processing specimens of 17-4PH stainless steel material in the present investigation. Then the result of specimens without laser surface process was compared. The impact effect on the specimens was observed using the three-dimensional digital microscope. The depth of laser cladding and substrate material caused by liquid droplet impact was studied in detail and measured. The accuracy and reliability of the experimental system and computing methods were also verified. The depth of the impact area of laser cladding specimens was distributed in the range of 0.5–1.5 μm while the 17-4PH group was distributed in the range of 2.5–3.5 μm. In contrast with specimens without laser surface processing, the material processed by laser cladding has significantly higher resistance to water erosion.

  6. Wind erosion in the Sahelian zone of Niger : processes, models, and control techniques

    NARCIS (Netherlands)

    Sterk, G.

    1997-01-01

    In the Sahelian zone of Niger, severe wind erosion occurs mainly in the first half of the rainy season (May - July), when violent winds preceding thunderstorms result in intense sediment transport. Quantification of this wind erosion is difficult due to a high degree of temporal and spatial

  7. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based...

  8. Estimating erosion in a riverine watershed: Bayou Liberty-Tchefuncta River in Louisiana.

    Science.gov (United States)

    Martin, August; Gunter, James T; Regens, James L

    2003-01-01

    GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within

  9. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    Science.gov (United States)

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2016-01-01

    Lithium-coated high-Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>1023 m-2 s-1), typical for the divertor region. In this work, a realistic model for the compositional evolution of a Li/D layer is developed that incorporates first principles molecular dynamics (MD) simulations of D diffusion in liquid Li. Predictions of Li erosion from a mixed Li/D material are also developed that include formation of lithium deuteride (LiD). The erosion rate of Li from LiD is predicted to be significantly lower than from pure Li. This prediction is tested in the Magnum-PSI linear plasma device at ion fluxes of 1023-1024 m-2 s-1 and Li surface temperatures  ⩽800 °C. Li/LiD coatings ranging in thickness from 0.2 to 500 μm are studied. The dynamic D/Li concentrations are inferred via diffusion simulations. The pure Li erosion rate remains greater than Langmuir Law evaporation, as expected. For mixed-material Li/LiD surfaces, the erosion rates are reduced, in good agreement with modelling in almost all cases. These results imply that the temperature limit for a Li-coated PFC may be significantly higher than previously imagined.

  10. Torrent classification - Base of rational management of erosive regions

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilovic, Zoran; Stefanovic, Milutin; Milovanovic, Irina; Cotric, Jelena; Milojevic, Mileta [Institute for the Development of Water Resources ' Jaroslav Cerni' , 11226 Beograd (Pinosava), Jaroslava Cernog 80 (Serbia)], E-mail: gavrilovicz@sbb.rs

    2008-11-01

    A complex methodology for torrents and erosion and the associated calculations was developed during the second half of the twentieth century in Serbia. It was the 'Erosion Potential Method'. One of the modules of that complex method was focused on torrent classification. The module enables the identification of hydro graphic, climate and erosion characteristics. The method makes it possible for each torrent, regardless of its magnitude, to be simply and recognizably described by the 'Formula of torrentially'. The above torrent classification is the base on which a set of optimisation calculations is developed for the required scope of erosion-control works and measures, the application of which enables the management of significantly larger erosion and torrential regions compared to the previous period. This paper will present the procedure and the method of torrent classification.

  11. New approaches to the estimation of erosion-corrosion

    International Nuclear Information System (INIS)

    Bakirov, Murat; Ereemin, Alexandr; Levchuck, Vasiliy; Chubarov, Sergey

    2006-09-01

    erosion-corrosion in a double-phase flow is that of moving deaerated liquid in directly contact with metal as a barrier between the metal and main steam-drop flow. Local processes of mass transfer, corrosion properties and water-chemical parameters of this film define intensity of erosion-corrosion and features of its behavior. Erosion-corrosion of metal in a double-phase flow is determined by the gas-dynamics of double-phase flaws, water chemistry, thermodynamic, materials science, etc. The goal of the work: development of theoretical and methodological basis of physical, chemical and mathematical models, as well as the finding of technical solutions and method of diagnostics, forecast and control of the erosion-corrosion processes. It will allow the increase of reliability and safety operation of the power equipment of the secondary circuit in NPP with WWER by use of monitoring of erosion-corrosion wear of pipelines. One concludes by stressing that the described design-experimental approach for solving of FAC problem will enable to carry out the following works: - elaboration and certification of the procedure of design-experimental substantiation of zones, aims and periodicity of the NPP elements operational inspection; - development and certification of a new Regulatory Document of stress calculation for definition of the minimum acceptable wall thickness levels considering real wear shape, FAC rates and inaccuracy of devices for wall thickness measurements; - improving the current Regulatory Documents and correcting of the Typical programs of operational inspection - optimization of zones, aims and periodicity of the inspection; - elaboration of recommendations for operational lifetime prolongation of the WWER secondary circuits elements by means of increasing of erosion-corrosion resistance of the new equipment and of the equipment, exceeding the design lifetime; - improving of safe and uninterrupted work of the power unit due to prediction of the most damaged

  12. Change Analysis on Soil Erosion of Fujian Province from 1990 TO 2015

    Science.gov (United States)

    Wang, X. Q.; Zeng, S. J.; Chen, X. G.; Lin, J. L.; Chen, S. M.

    2017-09-01

    Soil erosion is one of major environment problems in the world, and China is one of the most serious soil erosion country. In this paper, Fujian province was used as a study area for its typical red soil region. Based on USLE model, the soil erosion modulus in 1990 and 2015 were calculated and turned to soil erosion intensity. The soil erosion distribution trend in Fujian province was decrease from south-east coastal zone to north-west inland region. In soil erosion areas, the main erosion type was light level with about 80 %, and the soil erosion levels above serious type were mainly sporadic distribution with less than 10 %. The soil erosion improved for the past 25 years. The areas of different erosion types all decreased, and the total erosion area reduced by 26.59 %. The improvement area mainly located in north-east, south and west region. The aggravation area mainly located in the north and some middle hilly regions. The impact of human activities is more significant for erosion control.

  13. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  14. Two case studies in river naturalization: planform migration and bank erosion control

    Science.gov (United States)

    Abad, J. D.; Guneralp, I.; Rhoads, B. L.; Garcia, M. H.

    2005-05-01

    A sound understanding of river planform evolution and bank erosion control, along with integration of expertise from several disciplines is required for the development of predictive models for river naturalization. Over the last few years, several methodologies have been presented for naturalization projects, from purely heuristic to more advanced methods. Since the time and space scales of concern in naturalization vary widely, there is a need for appropriate tools at a variety of time and space scales. This study presents two case studies at different scales. The first case study describes the prediction of river planform evolution for a remeandering project based on a simplified two-dimensional hydrodynamic model. The second case study describes the applicability of a Computational Fluid Dynamics (CFD) model for evaluating the effectiveness of bank-erosion control structures in individual meander bends. Understanding the hydrodynamic influence of control structures on flow through bends allows accurate prediction of depositional and erosional distribution patterns, resulting in better assessment on river planform stability, especially for the case of natural complex systems. The first case study introduces a mathematical model for evolution of meandering rivers that can be used in remeandering projects. In United States in particular, several rivers have been channelized in the past causing environmental and ecological problems. Following Newton's third law, "for every action, there is a reaction", naturalization techniques evolve as natural reactive solutions to channelization. This model (herein referred as RVR Meander) can be used as a stand-alone Windows application or as module in a Geographic Information System. The model was applied to the Poplar Creek re-meanderization project and used to evaluate re-meandering alternatives for an approximately 800-meter long reach of Poplar Creek that was straightened in 1938. The second case study describes a

  15. Manufacturing issues which affect coating erosion performance in wind turbine blades

    Science.gov (United States)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  16. FY 1990 report on the Material Committee; 1990 nendo zairyo iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The paper reported the FY 1990 activities of the Material Committee on the R and D of materials in coal liquefaction, coal gasification, coal utilization hydrogen production, etc. As to the development/assessment of new materials for plant use, the sulfuration corrosion resistance was confirmed of aluminum diffusion coated agent and aluminized materials. Further, in the measurement of hydrogen permeability of the test piece exposed for 500 hours to the sulfuration corrosion environment, a good hydrogen permeation control effect was confirmed of hot-dipped materials and SiC/TiC plasma CVD materials. As to the development of the control valve, etc., CVD coating of Ti (C, N) and sintering diamond indicated good erosion resistance in the high speed water slurry injection test. Further, in the high speed powder injection test, PVD coating of TiN and sintering diamond indicated good erosion resistance. As to the development of the coal utilization hydrogen production technology, the following were carried out: improvement of gasifier use materials, assessment of materials under the corrosive environment where coal slag exists, experimental study on the repair technology, etc. (NEDO)

  17. CFD simulation and experimental analysis of erosion in a slurry tank test rig

    Directory of Open Access Journals (Sweden)

    Bart Hans-Jörg

    2013-04-01

    Full Text Available Erosion occurring in equipment dealing with liquid-solid mixtures such as pipeline parts, slurry pumps, liquid-solid stirred reactors and slurry mixers in various industrial applications results in operational failure and economic costs. A slurry erosion tank test rig is designed and was built to investigate the erosion rates of materials and the influencing parameters such as flow velocity and turbulence, flow angle, solid particle concentration, particles size distribution, hardness and target material properties on the material loss and erosion profiles. In the present study, a computational fluid dynamics (CFD tool is used to simulate the erosion rate of sample plates in the liquid-solid slurry mixture in a cylindrical tank. The predictions were made in a steady state and also transient manner, applying the flow at the room temperature and using water and sand as liquid and solid phases, respectively. The multiple reference frame method (MRF is applied to simulate the flow behavior and liquid-solid interactions in the slurry tank test rig. The MRF method is used since it is less demanding than sliding mesh method (SM and gives satisfactory results. The computational domain is divided into three regions: a rotational or MRF zone containing the mixer, a rotational zone (MRF containing the erosion plates and a static zone (outer liquid zone. It is observed that changing the MRF zone diameter and height causes a very low impact on the results. The simulated results were obtained for two kinds of hard metals namely stainless steel and ST-50 under some various operating conditions and are found in good agreement with the experimental results.

  18. Effectiveness of the GAEC standard of cross compliance retain terraces on soil erosion control

    Directory of Open Access Journals (Sweden)

    Paolo Bazzoffi

    2011-08-01

    Full Text Available The GAEC standard retain terraces of cross compliance prohibits farmers the elimination of existing terraces, with the aim to ensure the protection of soil from erosion. In the Italian literature there are not field studies to quantify the effects of the elimination or degradation of terraces on soil erosion. Therefore, the modeling approach was chosen and applied in a scenario analysis to evaluate increasing levels of degradation of stone wall terraces. The study was conducted on two sample areas: Lamole (700.8 ha, Tuscany and Costaviola (764.73 ha, Calabria with contrasting landscapes. The Universal Soil Loss Equation model (USLE was applied in the comparative assessment of the soil erosion risk (Mg . ha-1 . yr-1, by simulating five increasing intensity of terrace degradation, respectively: conserved partially damaged, very damaged, partially removed, removed, each of which corresponding to different values of the indexes of verification in case of infringement to GAEC standard provided for by the AGEA rules which have come into force since December 2009 (Agency for Agricultural Payments. To growing intensity of degradation, a progressive loss of efficacy of terraces was attributed by increasing the values of the LS factor (length and slope of USLE in relation with the local modification of the length and steepness of the slope between adjacent terraces. Basically, it was simulated the gradual return to the natural morphology of the slope. The results of the analysis showed a significant increase in erosion in relationship with increasing degradation of terraces. Furthermore, it is possible to conclude that the GAEC standard retain terraces is very effective with regard to the primary objective of reducing erosion. A further statistical analysis was performed to test the protective value of terraces against soil erosion in areas where agriculture was abandoned. The analysis was carried out by comparing the specific risk of erosion (Mg . ha-1

  19. The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed

    Science.gov (United States)

    Nichols, Mary H.; Magirl, Christopher S.; Sayre, N.F.; Shaw, Jeremy R.

    2018-01-01

    Control over water supply and distribution is critical for agriculture in drylands where manipulating surface runoff often serves the dual purpose of erosion control. However, little is known of the geomorphic impacts and legacy effects of rangeland water manipulation infrastructure, especially if not maintained. This study investigated the geomorphic impacts of structures such as earthen berms, water control gates, and stock tanks, in a semiarid rangeland in the southwestern USA that is responding to both regional channel incision that was initiated over a century ago, and a more recent land use change that involved cattle removal and abandonment of structures. The functional condition of remnant structures was inventoried, mapped, and assessed using aerial imagery and lidar data. Headcut initiation, scour, and channel incision associated with compromised lateral channel berms, concrete water control structures, floodplain water spreader berms, and stock tanks were identified as threats to floodplains and associated habitat. Almost half of 27 identified lateral channel berms (48%) have been breached and 15% have experienced lateral scour; 18% of 218 shorter water spreader berms have been breached and 17% have experienced lateral scour. A relatively small number of 117 stock tanks (6%) are identified as structurally compromised based on analysis of aerial imagery, although many currently do not provide consistent water supplies. In some cases, the onset of localized disturbance is recent enough that opportunities for mitigation can be identified to alter the potentially damaging erosion trajectories that are ultimately driven by regional geomorphic instability. Understanding the effects of prior land use and remnant structures on channel and floodplain morphologic condition is critical because both current land management and future land use options are constrained by inherited land use legacy effects.

  20. Controlled erosion in asbestos-cement pipe used in drinking water distribution systems

    Directory of Open Access Journals (Sweden)

    Mariana Ramos, P.

    1990-06-01

    Full Text Available Samples of asbestos-cement pipe used for drinking water conveyance, were submerged in distilled water, and subjected to two controlled erosive treatments, namely agitation (300 rpm for 60 min and ultrasound (47 kHz for 30 min. SEM was used to observe and compare the morphology of the new pipe with and without erosive treatment, and of samples taken from asbestos-cement pipes used in the distribution system of drinking water in Santiago city for 10 and 40-years of service. TEM was used to determine the concentration of asbestos fibers in the test water: 365 MFL and 1690 MFL (millions of fibers per litre as an agitation and result ultrasound, respectively. The erosive treatments by means of agitation or ultrasound applied to new asbestos-cement pipes used in the drinking water distribution system were evaluated as being equivalent to 4 and 10 years of service, respectively.

    Se sometió a dos tratamientos erosivos controlados uno por agitación (300 rpm, 60 min. y otro por ultrasonido (47 kHz, 30 min. a muestras de tubos de asbesto cemento, sumergidas en agua destilada, usados para el trasporte de agua potable. Con SEM se observó la morfología de muestras de tubos sin uso, con y sin tratamiento erosivo y la de muestras extraídas de tubos de asbesto cemento de la red de distribución de agua potable de ía ciudad de Santiago con 10 y 14 años de servicio. Con TEM se determinó la concentración de fibras de asbesto en el agua de ensayo: 365 MFL y 1690 MFL (millones de fibras por litro en agitación y ultrasonido, respectivamente. Se estimó en 4 y 10 años de servicio equivalente los tratamientos erosivos de agitación y ultrasonido, respectivamente en tubos de asbesto cemento empleados en la red de agua potable.

  1. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  2. New perspectives on the soil erosion-soil quality relationship

    International Nuclear Information System (INIS)

    Pennock, D.J.

    1998-01-01

    The redistribution of soil has a profound impact on its quality (defined as its ability to function within its ecosystem and within adjacent ecosystems) and ultimately on its productivity for crop growth. The application of 137 Cs-redistribution techniques to the study of erosion has yielded major new insights into the soil erosion-soil quality relationship. In highly mechanized agricultural systems, tillage erosion can be the dominant cause of soil redistribution; in other agroecosystems, wind and water erosion dominate. Each causal factor results in characteristic landscape-scale patterns of redistribution. In landscapes dominated by tillage redistribution, highest losses occur in shoulder positions (those with convex downslope curvatures); in water-erosion-dominated landscapes, highest losses occur where slope gradient and length are at a maximum. Major impacts occur through the loss of organically-enriched surface material and through the incorporation of possibly yield-limiting subsoils into the rooting zone of the soil column. The potential impact of surface soil losses and concomitant subsoil incorporation on productivity may be assessed by examining the pedological nature of the affected soils and their position in the landscape. The development of sound conservation policies requires that the soil erosion-quality relationship be rigorously examined in the full range of pedogenic environments, and future applications of the 137 Cs technique hold considerable promise for providing this comprehensive global database. (author)

  3. An assessment of disruption erosion in ITER environment

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1994-01-01

    The behavior of divertor materials during a major disruption in ITER is very important for the successful and reliable operation of the reactor. Erosion of material surfaces due to the thermal energy dump can severely limit the lifetime of the plasma facing components therefore degrading reactor economic feasibility. A comprehensive numerical model recently developed is used in this analysis in which all major physical processes taking place during plasma-material interactions are included. Models to account for material thermal evolution, plasma-vapor interaction physics, and models for hydrodynamic radiation transport in the developed vapor cloud are implemented in a self-consistent manner to realistically assess the disruption damage. The extent of the self-protection from the developed vapor cloud in front of the incoming plasma particles is critically important in determining the overall disruption lifetime. The aim of this study is to estimate the divertor lifetime for a range of reactor conditions. Candidate materials such as beryllium and graphite are both considered in this analysis. The dependence of the divertor disruption lifetime on the characteristics of plasma-vapor interaction zone for incident plasma ions and electrons is analyzed and discussed. The effect of uncertainties in reactor disruption conditions on the overall divertor erosion lifetime is also analyzed

  4. How does slope form affect erosion in CATFLOW-SED?

    Science.gov (United States)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  5. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    Science.gov (United States)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  6. A method to detect soil carbon degradation during soil erosion

    OpenAIRE

    F. Conen; M. Schaub; C. Alewell

    2009-01-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable c...

  7. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Science.gov (United States)

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (perosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  8. Potential impacts of climate change on soil erosion vulnerability across the conterminous United States

    Science.gov (United States)

    C. Segura; G. Sun; S. McNulty; Y. Zhang

    2014-01-01

    Rainfall runoff erosivity (R) is one key climate factor that controls water erosion. Quantifying the effects of climate change-induced erosivity change is important for identifying critical regions prone to soil erosion under a changing environment. In this study we first evaluate the changes of R from 1970 to 2090 across the United States under nine climate conditions...

  9. Erosion resistance of composite materials on titanium, zirconium and aluminium nitride base under the electron beam effect

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Kuzenkova, M.A.; Slutskin, M.G.; Kravchuk, L.A.

    1977-01-01

    Erosion resistance of composites based on nitrides of titanium, zirconium and aluminium to spark and electron beam processing has been studied. The erosion resistance in spark processing is shown to depend on specific electric resistance of the alloys. TiN-AlN and ZrN-AlN alloys containing more than 70% AlN (with specific electric resistance more than 10 6 -10 7 ohm/cm) caot be processed by spark method. It is shown that erosion of the composites by an electron beam depends primarily on the rate of evaporation of the components

  10. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    Directory of Open Access Journals (Sweden)

    Gabriela Cristina de Oliveira

    Full Text Available This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15: GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3 for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05. The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm. The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  11. Soil erosion under multiple time-varying rainfall events

    Science.gov (United States)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  12. Calculation code for erosion-corrosion induced wall thinning in piping systems

    International Nuclear Information System (INIS)

    Henzel, N.; Kastner, W.; Stellwag, B.; Erve, M.

    1988-01-01

    There was great material erosion mainly in consequence of an extremely unfavourable geometry at the damaged place in Surry-2. The pipeline sections affected in Trojan were in the area of action of great sources of turbulence, i.e.: less than 10 pipe diameters from junctions, elbows etc. Because of the many parameters which determine the amount of material removal by erosion-corrosion, the analysis of such damage is only possible using a computer program. The main purpose of such a PC code called WATHEC developed by Siemens/KWU is not the subsequent confirmation of damage which has occurred, but its application for preventive diagnosis in pipeline systems. (orig./DG) [de

  13. Microstructure and elevated-temperature erosion-oxidation behaviour of aluminized 9Cr-1Mo Steel

    OpenAIRE

    Huttunen, E.; Honkanen, M.; Tsipas, Sophia Alexandra; Omar, H.; Tsipas, D.

    2012-01-01

    Degradation of materials by a combination of erosive wear and atmospheric oxidation at elevated temperatures constitutes a problem in some power generation processes, such as fluidized-bed combustion. In this work, 9Cr-1Mo steel, a common tube material in combustion chambers, is coated by a pack cementation method from an Al-containing pack in order to improve the resistance to erosion-oxidation at elevated temperatures. The resulting coating is studied in terms of microstructure and microhar...

  14. Erosion of pelvicol used in sacrocolpopexy.

    Science.gov (United States)

    Mukati, Marium S; Shobeiri, S Abbas

    2013-01-01

    Biologic graft materials are used more frequently in pelvic reconstructive surgeries. We describe here the complete process of removal of such a biologic graft in the office. We report a case of a 69-year-old woman with pig dermal graft erosion 1 year after placement. The patient presented with complaints of vaginal discharge. Upon examination, the graft material was seen eroding through the vaginal apex. The pig tissue was removed whole and intact in the office without complications. Transvaginal removal of pig tissue in the office relieved the patient's symptoms.

  15. The relationship between gross and net erosion of beryllium at elevated temperature

    International Nuclear Information System (INIS)

    Doerner, R.P.; Jepu, I.; Nishijima, D.; Safi, E.; Bukonte, L.; Lasa, A.; Nordlund, K.; Schwarz-Selinger, T.

    2015-01-01

    Surface temperature is a critical variable governing plasma–material interactions. PISCES-B injects controllable amounts of Be impurities into the plasma to balance, or exceed, the erosion rate of beryllium from samples in un-seeded plasma exposures. At low temperature, an order of magnitude more beryllium, than the beryllium mass loss measured in un-seeded discharges, needs to be seeded into the plasma to achieve no mass loss from a sample. At elevated temperature, no mass loss is achieved when the beryllium-seeding rate equals the mass loss rate in un-seeded discharges. Molecular dynamics simulations show that below 500 K, Be adatoms have difficulty surmounting the Ehrlich–Schwoebel barrier at the edge of a terrace. Above this temperature, an Arrhenius behavior is observed with an activation energy of 0.32 eV. Qualitatively, this indicates that at low surface temperature the deposited atoms may be more easily re-eroded, accounting for the increased seeding needed to balance the erosion

  16. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    Science.gov (United States)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  17. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    Science.gov (United States)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  18. Prevalence of Candida Species in Erosive Oral Lichen Planus

    Directory of Open Access Journals (Sweden)

    Masoumeh Mehdipour

    2010-03-01

    Full Text Available Background and aims. The clinical management of oral lichen planus poses considerable difficulties to the clinician. In recent years, researchers have focused on the presence of pathogenic microorganisms such as Candida albicans in the patients with refractory lichen planus. The aim of the present study was to investigate the prevalence of candida species in the erosive oral lichen planus lesions. Materials and methods. Twenty-one patients with erosive oral lichen planus and twenty-one healthy individuals aged 18-60 were randomly selected; samples were taken from the tongue, saliva and buccal mucosa with swab friction. Theses samples were sent to the laboratory for determining the presence of candida species in cultures and direct examination method. Results. No significant difference was found between healthy individuals and patients with erosive lichen planus regarding presence of candida species. The type of candida in the evaluated samples was Candida albicans in both healthy and patient groups. Conclusion. According to the results, candida was not confirmed as an etiologic factor for erosive lichen planus lesions.

  19. Material control evaluation

    International Nuclear Information System (INIS)

    Waddoups, I.G.; Anspach, D.A.; Abbott, J.A.

    1993-01-01

    Changes in the Department of Energy's (DOE) scope of work have stimulated several laboratories and commercial companies to develop and apply technology to enhance nuclear material control. Accountability, inventory, radiation exposure, and insider protection concerns increase as many DOE facilities require increased storage. This paper summarizes a study of the existing material control technologies. The goal of the study is to identify, characterize, and quantify the trade-offs associated with using these technologies to provide real-time information on stored nuclear material that in turn supports decreasing the frequency of inventories conducted by site personnel

  20. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  1. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    Science.gov (United States)

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  2. Testing the Control of Mineral Supply Rates on Chemical Erosion Rates in the Klamath Mountains

    Science.gov (United States)

    West, N.; Ferrier, K.

    2016-12-01

    The relationship between rates of chemical erosion and mineral supply is central to many problems in Earth science, including how tightly Earth's climate should be coupled to tectonics, how strongly nutrient supply to soils and streams depends on soil production, and how much lithology affects landscape evolution. Despite widespread interest in this relationship, there remains no consensus on how closely coupled chemical erosion rates should be to mineral supply rates. To address this, we have established a network of field sites in the Klamath Mountains along a latitudinal transect that spans an expected gradient in mineral supply rates associated with the geodynamic response to the migration of the Mendocino Triple Junction. Here, we present new measurements of regolith geochemistry and topographic analyses that will be compared with cosmogenic 10Be measurements to test hypotheses about supply-limited and kinetically-limited chemical erosion on granodioritic ridgetops. Previous studies in this area suggest a balance between rock uplift rates and basin wide erosion rates, implying the study ridgetops may have adjusted to an approximate steady state. Preliminary data are consistent with a decrease in chemical depletion fraction (CDF) with increasing ridgetop curvature. To the extent that ridgetop curvature reflects ridgetop erosion rates, this implies that chemical erosion rates at these sites are influenced by both mineral supply rates and dissolution kinetics.

  3. Influence of powder and spray parameters on erosion and corrosion properties of HVOF sprayed WC-Co-Cr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Berget, John

    1998-07-01

    Thermal spraying is a generic term including various processes used to deposit coatings on surfaces. The coating material is in the form of powder or a wire and is melted or softened by means of a heat source. A gas stream accelerates the material towards a prepared surface and deposits it there to form the coating. Examples of components being maintained by application of thermal spray coatings are gate valves and ball valves for the offshore industry and turbine blades in power generations installations. Recent investigation has shown that the commonly used coating material WC-Co is not corrosion resistant. But it can be improved by the addition of Cr. The main objective of this thesis is to study the influence of spray process control variables and powder characteristics on the erosion and erosion-corrosion properties of the coatings. Spray process variables investigated include energy input, powder feed rate and spray distance. Powder characteristics studied are average size of the WC particles, relative proportions of Co and Cr in the metal phase and powder grain size distribution.

  4. Erosion evaluation capability of the IVVS for ITER applications

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Ferri de Collibus, Mario; Florean, Marco; Francucci, Massimo; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Dubus, Gregory; Damiani, Carlo [Fusion For Energy c/Josep Pla, 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2014-10-15

    Highlights: •High resolution laser radar range images for hostile environment (IVVS). •Evaluation of the erosion on the surface scanned by IVVS laser radar. •Erosion evaluation procedure and software. •Test and results of the erosion evaluation procedure. -- Abstract: In ITER it is foreseen the use of the In Vessel Viewing System (IVVS), whose scanning head is a 3D laser imaging system able to obtain high-resolution intensity and range images in hostile environments. The IVVS will be permanently installed into a port extension, therefore it has to be compliant with ITER primary vacuum requirements. In the frame of a Fusion for Energy Grant, an investigation of the expected IVVS metrology performances was required to evaluate the device capability to detect erosions on ITER first wall and divertor and to estimate the amount of eroded material. In ENEA Frascati laboratories, an IVVS probe prototype was developed along with a method and a computational procedure applied to a reference erosion plate target simulating ITER vessel components and their possible erosions. Experimental tests were carried out by this system performing several scans of the reference target with different incidence angles, estimating the eroded volume and comparing this volume with its true value. A dedicated study has been also done by changing the power of the laser source; a discussion about the quality of the 3D laser images is reported. The main results obtained during laboratory tests and data processing are presented and discussed.

  5. Relations between rainfall–runoff-induced erosion and aeolian deposition at archaeological sites in a semi-arid dam-controlled river corridor

    Science.gov (United States)

    Collins, Brian D.; Bedford, David; Corbett, Skye C.; Fairley, Helen C.; Cronkite-Ratcliff, Collin

    2016-01-01

    Process dynamics in fluvial-based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam-building affect fluvial processes, the complexity in local response can be further increased by flood- and sediment-limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi-temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446-km-long semi-arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam-controlled fluvial sand bar deposition, aeolian sand transport, and rainfall-induced erosion. Empirical rainfall-erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration-excess overland flow and gullying govern large-scale (centimeter- to decimeter-scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic-driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four-minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short

  6. Integration of fluvial erosion factors for predicting landslides along meandering rivers

    Science.gov (United States)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi

    2015-04-01

    River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order bank. In contrast, river sediment in the downstream is an erosion agent eroding the concave bank laterally, but also depositing on the concave side and protecting

  7. Visualization and mechanisms of splashing erosion of electrodes in a DC air arc

    International Nuclear Information System (INIS)

    Wu, Yi; Cui, Yufei; Rong, Mingzhe; Yang, Fei; Sun, Hao; Niu, Chunping; Fan, Shaodi; Murphy, Anthony B

    2017-01-01

    The splashing erosion of electrodes in a DC atmospheric-pressure air arc has been investigated by visualization of the electrode surface and the sputtered droplets, and tracking of the droplet trajectories, using image processing techniques. A particle tracking velocimetry algorithm has been introduced to measure the sputtering velocity distribution. Erosion of both tungsten–copper and tungsten–ceria electrodes is studied; in both cases electrode erosion is found to be dominated by droplet splashing rather than metal evaporation. Erosion is directly influenced by both melting and the formation of plasma jets, and can be reduced by the tuning of the plasma jet and electrode material. The results provide an understanding of the mechanisms that lead to the long lifetime of tungsten–copper electrodes, and may provide a path for the design of the electrode system subjected to electric arc to minimize erosion. (letter)

  8. Visualization and mechanisms of splashing erosion of electrodes in a DC air arc

    Science.gov (United States)

    Wu, Yi; Cui, Yufei; Rong, Mingzhe; Murphy, Anthony B.; Yang, Fei; Sun, Hao; Niu, Chunping; Fan, Shaodi

    2017-11-01

    The splashing erosion of electrodes in a DC atmospheric-pressure air arc has been investigated by visualization of the electrode surface and the sputtered droplets, and tracking of the droplet trajectories, using image processing techniques. A particle tracking velocimetry algorithm has been introduced to measure the sputtering velocity distribution. Erosion of both tungsten-copper and tungsten-ceria electrodes is studied; in both cases electrode erosion is found to be dominated by droplet splashing rather than metal evaporation. Erosion is directly influenced by both melting and the formation of plasma jets, and can be reduced by the tuning of the plasma jet and electrode material. The results provide an understanding of the mechanisms that lead to the long lifetime of tungsten-copper electrodes, and may provide a path for the design of the electrode system subjected to electric arc to minimize erosion.

  9. Prediction for disruption erosion of ITER plasma facing components; a comparison of experimental and numerical results

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Akiba, M.; Seki, M.; Hassanein, A.; Tanchuk, V.

    1991-01-01

    An evaluation is given for the prediction for disruption erosion in the International Thermonuclear Engineering Reactor (ITER). At first, a description is given of the relation between plasma operating paramters and system dimensions to the predictions of loading parameters of Plasma Facing Components (PFC) in off-normal events. Numerical results from ITER parties on the prediction of disruption erosion are compared for a few typical cases and discussed. Apart from some differences in the codes, the observed discrepancies can be ascribed to different input data of material properties and boundary conditions. Some physical models for vapour shielding and their effects on numerical results are mentioned. Experimental results from ITER parties, obtained with electron and laser beams, are also compared. Erosion rates for the candidate ITER PFC materials are shown to depend very strongly on the energy deposition parameters, which are based on plasma physics considerations, and on the assumed material loss mechanisms. Lifetimes estimates for divertor plate and first wall armour are given for carbon, tungsten and beryllium, based on the erosion in the thermal quench phase. (orig.)

  10. Mapping erosion from space

    NARCIS (Netherlands)

    Vrieling, A.

    2007-01-01

    Soil erosion by water is the most important land degradation problem worldwide. Spatial information on erosion is required for defining effective soil and water conservation strategies. Satellite remote sensing can provide relevant input to regional erosion assessment. This thesis comprises a review

  11. Numerical insight into the micromechanics of jet erosion of a cohesive granular material

    Directory of Open Access Journals (Sweden)

    Cuéllar Pablo

    2017-01-01

    Full Text Available Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.

  12. Numerical insight into the micromechanics of jet erosion of a cohesive granular material

    Science.gov (United States)

    Cuéllar, Pablo; Benseghier, Zeyd; Luu, Li-Hua; Bonelli, Stéphane; Delenne, Jean-Yves; Radjaï, Farhang; Philippe, Pierre

    2017-06-01

    Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.

  13. Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar

    Science.gov (United States)

    Rengers, Francis K.; Tucker, G.E.; Moody, J.A.; Ebel, Brian

    2016-01-01

    Erosion following a wildfire is much greater than background erosion in forests because of wildfire-induced changes to soil erodibility and water infiltration. While many previous studies have documented post-wildfire erosion with point and small plot-scale measurements, the spatial distribution of post-fire erosion patterns at the watershed scale remains largely unexplored. In this study lidar surveys were collected periodically in a small, first-order drainage basin over a period of 2 years following a wildfire. The study site was relatively steep with slopes ranging from 17° to > 30°. During the study period, several different types of rain storms occurred on the site including low-intensity frontal storms (2.4 mm h−1) and high-intensity convective thunderstorms (79 mm h−1). These storms were the dominant drivers of erosion. Erosion resulting from dry ravel and debris flows was notably absent at the site. Successive lidar surveys were subtracted from one another to obtain digital maps of topographic change between surveys. The results show an evolution in geomorphic response, such that the erosional response after rain storms was strongly influenced by the previous erosional events and pre-fire site morphology. Hillslope and channel roughness increased over time, and the watershed armored as coarse cobbles and boulders were exposed. The erosional response was spatially nonuniform; shallow erosion from hillslopes (87% of the study area) contributed 3 times more sediment volume than erosion from convergent areas (13% of the study area). However, the total normalized erosion depth (volume/area) was highest in convergent areas. From a detailed understanding of the spatial locations of erosion, we made inferences regarding the processes driving erosion. It appears that hillslope erosion is controlled by rain splash (for detachment) and overland flow (for transport and quasi-channelized erosion), with the sites of highest erosion corresponding to locations

  14. Melt layer macroscopic erosion of tungsten and other metals under plasma heat loads simulating ITER off-normal events

    International Nuclear Information System (INIS)

    Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Kulik, N.V.; Landman, I.; Wuerz, H.

    2002-01-01

    This paper is focused on experimental analysis of metal layer erosion and droplet splashing of tungsten and other metals under heat loads typical for ITER FEAT off-normal events,such as disruptions and VDE's. Plasma pressure gradient action on melt layer results in erosion crater formation with mountains of displaced material at the crater edge. It is shown that macroscopic motion of melt layer and surface cracking are the main factors responsible for tungsten damage. Weight loss measurements of all exposed materials demonstrate inessential contribution of evaporation process to metals erosion

  15. Conception de couches minces tribologiques pour augmenter la resistance a l'erosion par impacts de particules

    Science.gov (United States)

    Hassani, Salim

    calculation variables include impact velocity (in the range of 50--300 m/s), particle size and the mechanical properties of both the target and the impacting particle. Specifically, we investigate the impact response of coatings fabricated by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). This includes single and multilayer TiN and nanocomposite nc-TiN/a-SiN1.3 and nc-TiCN/a-SiCN systems on titanium alloy and stainless steel substrates. In particular, we correlate the thickness and the coating macroscopic properties, such as hardness, Young's modulus, and toughness with the erosion. The calculations confirmed earlier findings that for a single layer coating, a combination of low modulus and a high thickness lead to local stress reduction and hence possible erosion resistance enhancement. The FE simulations have further shown that a tensile stress exceeding a critical stress sigmacrit = 3.95 GPa can be easily produced by a single particle impact. For each combination of particle velocity and size, a map of tensile stresses in the TiN coating, corresponding to the predicted erosion performance, was produced. The FE model has then been extended to multilayer coating systems containing superhard nanocomposite materials. These coatings configurations, when combined with tailored mechanical properties have shown to provide an improvement of the performance over comparable single layer configurations. The development of high performance erosion-resistant coatings also requires understanding of stress propagation upon particle impact. In the second part of this work, we apply a finite element methodology to enhance and optimize the resistance of protective coatings to erosion by solid particles with appropriate stress management. A controlled distribution of the initial residual stress in the coating was used to counteract impact stress, while a Young's modulus distribution was applied to optimize impact energy spreading throughout the coating

  16. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft

    Science.gov (United States)

    Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.

    2002-01-01

    Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.

  17. Observation and measurement of erosion-corrosion in nuclear plants influence of chemical conditioning

    International Nuclear Information System (INIS)

    Bodmer, M.; Svoboda, R.; Ziffermayer, G.

    1984-01-01

    The erosion-corrosion caused by wet steam leads to considerable damage of certain components of the thermal cycle and, the metallic oxides which are formed are carried by the circulating fluid and form deposits particularly on heat exchangers. This paper describes the measurements and the observations techniques that were used. The experimental data permits to quantify the material resistance as well as the transportation of oxydes during the successive periodes during which a modification of both the conception and the material were introduced. The analysis of trace quantities of Fe, Cr, Ni, CO... permit to determine the attack of various materials as well as the transportation of the respective oxides. The analysis of the circulating fluid and the measurements of the respective quantities of deposits allows to evaluate the calculations of transport, deposit and oxides removal. The erosion-corrosion phenomenon is dependent upon the environment. A modification of the conditioning (higher pH in PWR, use of oxidizing agents in BWR) permits only a limited reduction of erosion-corrosion and may even present some disadvantages [fr

  18. Following of erosive wash of soil in variants with different intercrops

    Directory of Open Access Journals (Sweden)

    Barbora Badalíková

    2010-01-01

    Full Text Available In a pilot experiment established in a sugar beet growing region the erosive washing away of soil was studied in the years 2006 to 2008. The area is located at an altitude of 246 m with the long-term mean precipitation of 500 mm and the mean annual temperature of 8.4 °C. The soils are classified as Chernozem, moderately heavy, loamy, with a good supply of nutrients, humus content of 2.30 % and an alkaline soil reaction. Slope gradient is 12 %, exposition is NE. To study the role of intercrops in erosion control, three variants were established after the harvest of the main crop, two variants with different intercrops and one (control with no intercrop. These were Variant 1 with Secale cereale L. var. multicaule METZG. ex ALEF., a non-freezing intercrop, Variant 2 with cluster mallow (Malva verticillata L., a freezing intercrop, and a control variant with no intercrop. In Variant 1 Secale cereale L. var. multicaule was desiccated with the herbicide Roundup in early spring. All the variants involved maize as the main crop. In variants 1 and 2, maize was sown in intercrop residues after seedbed preparation by Vario and a compactor. In Variant 3 maize was sown after conventional seedbed preparation. For assessment of soil conditions soil samples were taken to determine soil physical and chemical properties and water content in the soil. Soil loss by erosion was determined using specially-designed pockets. Erosive washing away of soil was monitored during the entire growing season of maize. The variants in which intercrops were used were found very effective in soil erosion control. In Variant 3 (control without surface crop residues, the washing away of soil was recorded with each heavy torrential rain. During the all years the total amount of soil loss by erosion in this treatment was 2.25 t . ha−1.

  19. Interfacial reaction effects on erosion of aluminum matrix composites

    International Nuclear Information System (INIS)

    Tu, J.P.; Hiroshima Univ., Higashi-Hiroshima; Matsumura, M.

    1999-01-01

    Alumina borate (A 18 B 4 O 33 ) whisker reinforced aluminum composites have attracted interest because of their high specific strength, high modulus and low cost. An obvious feature of the microstructure in A 18 B 4 O 33 /Al composite is that an interfacial reaction exists between the whisker and the aluminum alloy. In order to discuss the influence of interface interaction between the whisker and matrix on the erosion resistance of composites, two reaction treatments are conducted. From the results of the treated composites, it can be obtained about the erosion characteristics of the composite materials under steady-state conditions

  20. Erosive gastritis

    International Nuclear Information System (INIS)

    Mohammed, S.H.; Conrad, C.; Kjoergaad, J.

    1982-01-01

    Erosive gastritis is a well-defined radiologic and endoscopic entity. It is one of the common causes of upper gastrointestinal bleeding, yet it is seldom diagnosed and often confused with a number of other diseases. This communication re-emphasizes the characteristic endoscopic and radiologic features of erosive gastritis and its differential diagnosis. Two representative cases are reported. (orig.)

  1. Erosive gastritis

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, S.H.; Conrad, C.; Kjoergaad, J.

    1982-08-01

    Erosive gastritis is a well-defined radiologic and endoscopic entity. It is one of the common causes of upper gastrointestinal bleeding, yet it is seldom diagnosed and often confused with a number of other diseases. This communication re-emphasizes the characteristic endoscopic and radiologic features of erosive gastritis and its differential diagnosis. Two representative cases are reported.

  2. Development of MCESC software for selecting the best stormwater erosion and sediment control measure in Malaysian construction sites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hadu, Ibrahiem Abdul Razak; Sidek, Lariyah Mohd [Civil Engineering Universiti Tenaga Nasional, Kajan, Selangor (Malaysia); Desa, Mohamed Nor Mohamed; Basri, Noor Ezlin Ahmad [Civil and Structural Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2012-07-01

    Malaysia located in a tropical region which is interested with a heavy rainfall through the whole seasons of the year. Construction stages usually associated with soil disturbing due to land clearing and grading activities, this combined with the tropical climate in Malaysia, will generate an enormous amount of soil to be eroded and then deposited into the adjacent water bodies. There are many kinds of mitigation measures used so as to reduce the impact of erosion and sedimentation that are generated due to the stormwater in construction sites. This paper aims to develop and apply Multi Criteria Analysis (MCA) software called Multi Criteria Erosion and Sediment Control (MCESC) software in which it can be applied in selecting the best stormwater control measure by depending on specified criteria and criterion weight. Visual Basic 6 was adopted as a development tool. This software can help the engineers, contractors on site and decision makers to find the best stormwater control measure in any construction site in Malaysia. Users of the MCESC software are given the opportunity to select the best stormwater control measure via expert's judgments that are built in the system or via their own expertise. MCESC software has many benefits since the experts are not always available and the consultancy is a costly issue which add further financial allocations to the project.

  3. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  4. Mapping Soil Erosion Factors and Potential Erosion Risk for the National Park "Central Balkan"

    Science.gov (United States)

    Ilieva, Diliana; Malinov, Ilia

    2014-05-01

    Soil erosion is widely recognised environmental problem. The report aims at presenting the main results from assessment and mapping of the factors of sheet water erosion and the potential erosion risk on the territory of National Park "Central Balkan". For this purpose, the Universal Soil Loss Equation (USLE) was used for predicting soil loss from erosion. The influence of topography (LS-factor) and soil erodibility (K-factor) was assessed using small-scale topographic and soil maps. Rainfall erosivity (R-factor) was calculated from data of rainfalls with amounts exceeding 9.5 mm from 14 hydro-meteorological stations. The values of the erosion factors (R, K and LS) were presented for the areas of forest, sub-alpine and alpine zones. Using the methods of GIS, maps were plotted presenting the area distribution among the classes of the soil erosion factors and the potential risk in the respective zones. The results can be used for making accurate decisions for soil conservation and sustainable land management in the park.

  5. Standard test method for liquid impingement erosion using rotating apparatus

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers tests in which solid specimens are eroded or otherwise damaged by repeated discrete impacts of liquid drops or jets. Among the collateral forms of damage considered are degradation of optical properties of window materials, and penetration, separation, or destruction of coatings. The objective of the tests may be to determine the resistance to erosion or other damage of the materials or coatings under test, or to investigate the damage mechanisms and the effect of test variables. Because of the specialized nature of these tests and the desire in many cases to simulate to some degree the expected service environment, the specification of a standard apparatus is not deemed practicable. This test method gives guidance in setting up a test, and specifies test and analysis procedures and reporting requirements that can be followed even with quite widely differing materials, test facilities, and test conditions. It also provides a standardized scale of erosion resistance numbers applicab...

  6. Technology development by the U.S. industry to resolve erosion-corrosion

    International Nuclear Information System (INIS)

    Chexal, B.; Dietrich, N.; Horowitz, J.; Layman, W.; Randall, G.; Shevde, V.

    1990-01-01

    Erosion-corrosion is a flow-accelerated corrosion process that leads to wall thinning (metal loss) of steel piping exposed to flowing water or wet steam. The rate of metal loss depends on a complex interplay of several parameters. These parameters include water chemistry, material composition, and hydrodynamics. Erosion-corrosion of plant piping can lead to costly outages and repairs, and can raise concerns about plant reliability and safety. Pipe wall degradation rates as high as 1.5 mm/year have occurred, resulting in pipe ruptures at both fossil and nuclear plants. The Nuclear Management and Resource Council (NUMARC) and EPRI have developed inspection planning methods and tools to help utilities identify areas of piping that might undergo erosion-corrosion. These tools provide utilities with the ability to predict wall thinning and to assess various remedial options. This allows utilities to plan and perform inspections, and to correct problems found during inspection. The U.S. electric power industry has developed the knowledge and the tools needed to protect against erosion-corrosion, and utilities have implemented erosion-corrosion monitoring programs. This paper describes EPRI's technical developments that support the utilities in determining where to inspect for erosion-corrosion. 15 refs, 7 figs

  7. The influence of rill density on soil erosion against USLE-soil erosion methode

    OpenAIRE

    Rizalihadi, A.M.; Faimah, B.E.; Nazia, C.L.

    2013-01-01

    Land and water is one of the major natural resource which has an important role for human life. Exploitation of land in catchment areas that not correspond to its carrying capacity will cause damage. One of the effect is increassing the soil erosion. Continuous erosion will also lead to increased sediment transport in rivers that disrupt the ship navigation on estuary due sediment accumulation. At present, soil erosion is estimated using USLE method, which is only limited to the erosion in th...

  8. An Iterative Method for Estimating Airfoil Deformation due to Solid Particle Erosion

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2014-04-01

    Full Text Available Helicopter blades are currently constructed with composite materials enveloping honeycomb cores with only the leading and trailing edges made of metal alloys. In some cases, the erosive wear of the bound between the composite skin and metallic leading edge leads to full blade failure. It is therefore the goal of this paper to provide a method for simulating the way an airfoil is deformed through the erosion process. The method involves computational fluid dynamics simulations, scripts for automatic meshing and spreadsheet calculators for estimating the erosion and, ultimately, the airfoil deformation. Further work could include more complex meshing scripts allowing the use of similar methods for turbo-machineries.

  9. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  10. Nozzle erosion characterization and minimization for high-pressure rocket motor applications

    Science.gov (United States)

    Evans, Brian

    Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure. Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant

  11. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean-Paul [Purdue Univ., West Lafayette, IN (United States)

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  12. Saliva and dental erosion.

    Science.gov (United States)

    Buzalaf, Marília Afonso Rabelo; Hannas, Angélicas Reis; Kato, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. This review discusses the role of salivary factors on the development of dental erosion. A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  13. Effectiveness of Plants and Vegetation in Erosion Control and Restoration

    NARCIS (Netherlands)

    Sandercock, P.; Hooke, J.; De Baets, S.; Poesen, J.; Meerkerk, A.; van Wesemael, B.; Cammeraat, L.H.; Hooke, J.; Sandercock, P.

    2017-01-01

    In this chapter the approaches and methods used to measure plant effectiveness in reducing runoff and erosion are explained and results presented for each of the major land units, hillslopes and channels. Evaluations of the properties of plants required are made to inform plant selection for

  14. Study on the characteristics of the impingement erosion-corrosion for Cu-Ni Alloy sprayed coating(I)

    International Nuclear Information System (INIS)

    Lee, Sang Yeol; Lim, Uh Joh; Yun, Byoung Du

    1998-01-01

    Impingement erosion-corrosion test and electrochemical corrosion test in tap water(5000Ω-cm) and seawater(25Ω-cm). Thermal spraying coated Cu-Ni alloy on the carbon steel was carried out. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of the substrate(SS41) and Cu-Ni thermal spray coating were investigated. The erosion-corrosion control efficiency of Cu-Ni coating to substrate was also estimated quantitatively. Main results obtained are as follows : 1) Under the flow velocity of 13m/s, impingement erosion-corrosion of Cu-Ni coating is under the control of electrochemical corrosion factor rather than that of mechanical erosion. 2) The corrosion potential of Cu-Ni coating becomes more noble than that of substrate, and the current density of Cu-Ni coating under the corrosion potential is drained lowly than that of substrate. 3) The erosion-corrosion control efficiency of Cu-Ni coating to substrate is excellent in the tap water of high specific resistance solution, but it becomes dull in the seawater of low specific resistance. 4) The corrosion control efficiency of Cu-Ni coating to substrate in the seawater appears to be higher than that in the tap water

  15. Auto consolidated cohesive sediments erosion; Erosion des sediments cohesifs en autoconsolidation

    Energy Technology Data Exchange (ETDEWEB)

    Ternat, F

    2007-02-15

    Pollutants and suspended matters of a river can accumulate into the sedimentary column. Once deposited, they are submitted to self-weight consolidation processes, ageing and burying, leading to an increase of their erosion resistance. Pollutant fluxes can be related to sedimentary fluxes, determined by threshold laws. In this work, an erosion threshold model is suggested by introducing a cohesion force into the usual force balance. A model of cohesion is developed on the basis of interactions between argillaceous cohesive particles (clays), particularly the Van der Waals force, whose parameterization is ensured by means of granulometry and porosity. Artificial erosion experiments were performed in a recirculating erosion flume with natural cored sediments where critical shear stress measurements were performed. Other analyses provided granulometry and porosity. The results obtained constitute a good database for the literature. The model is then applied to the experimental conditions and gives good agreement with measurements. An example of the accounting for self-weight consolidation processes is finally suggested, before finishing on a Mohr like diagram dedicated to soft cohesive sediment erosion. (author)

  16. 1 Indigenous Approach to the Control of Soil Erosion among Small ...

    African Journals Online (AJOL)

    Choice-Academy

    Ethiopian Journal of Environmental Studies and Management Vol.1 No.1 March. 2008. * Department of ... KEY WORDS- Indigenous knowledge, Soil erosion, Asa, Kwara. Introduction rosion is ... recipients of these innovations. Local farmers.

  17. Protection against productivity versus erosion vineyards. Testing of vegetal covers in slope crops; Proteccion contra la erosion versus productividad en venidos. Ensayos de cubiertas vegetales en cultivos en pendiente

    Energy Technology Data Exchange (ETDEWEB)

    Marques, M. J.; Ruiz-Colmenero, M.; Garcia-Munoz, S.; Cabello, F.; Munoz-Organero, G.; Perez-Jimenez, M. A.; Bienes, R.

    2009-07-01

    Temporary and permanent cover crops were used in three rain fed vineyards in the Center of Spain. They were sown in the middle of the strips to assess their ability to control erosion as well as their influence on grape production. Data from the year 2008 are compared with those obtained with traditional tillage treatment. The permanent cover formed by Brachypodium distachyon showed better ability to control erosion but it produced a decrease in production in young vines. barley and rye treatments were temporary covers, mowed in spring. They also reduced the erosion compared with the tillage however they did not appear to affect the vineyard production. (Author)

  18. Erosion dynamics of tungsten fuzz during ELM-like heat loading

    Science.gov (United States)

    Sinclair, G.; Tripathi, J. K.; Hassanein, A.

    2018-04-01

    Transient heat loading and high-flux particle loading on plasma facing components in fusion reactors can lead to surface melting and possible erosion. Helium-induced fuzz formation is expected to exacerbate thermal excursions, due to a significant drop in thermal conductivity. The effect of heating in edge-localized modes (ELMs) on the degradation and erosion of a tungsten (W) fuzz surface was examined experimentally in the Ultra High Flux Irradiation-II facility at the Center for Materials Under Extreme Environment. W foils were first exposed to low-energy He+ ion irradiation at a fluence of 2.6 × 1024 ions m-2 and a steady-state temperature of 1223 K. Then, samples were exposed to 1000 pulses of ELM-like heat loading, at power densities between 0.38 and 1.51 GW m-2 and at a steady-state temperature of 1223 K. Comprehensive erosion analysis measured clear material loss of the fuzz nanostructure above 0.76 GW m-2 due to melting and splashing of the exposed surface. Imaging of the surface via scanning electron microscopy revealed that sufficient heating at 0.76 GW m-2 and above caused fibers to form tendrils to conglomerate and form droplets. Repetitive thermal loading on molten surfaces then led to eventual splashing. In situ erosion measurements taken using a witness plate and a quartz crystal microbalance showed an exponential increase in mass loss with energy density. Compositional analysis of the witness plates revealed an increase in the W 4f signal with increasing energy density above 0.76 GW m-2. The reduced thermal stability of the fuzz nanostructure puts current erosion predictions into question and strengthens the importance of mitigation techniques.

  19. Soil erosion model predictions using parent material/soil texture-based parameters compared to using site-specific parameters

    Science.gov (United States)

    R. B. Foltz; W. J. Elliot; N. S. Wagenbrenner

    2011-01-01

    Forested areas disturbed by access roads produce large amounts of sediment. One method to predict erosion and, hence, manage forest roads is the use of physically based soil erosion models. A perceived advantage of a physically based model is that it can be parameterized at one location and applied at another location with similar soil texture or geological parent...

  20. Rainfall erosivity in Europe.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  1. Effect of hard second-phase particles on the erosion resistance of model alloys

    International Nuclear Information System (INIS)

    Kosel, T.H.; Aptekar, S.S.

    1986-01-01

    The dependence of erosion rate on second phase volume fraction (SPVF) has been studied for Cu/Al/sub 2/O/sub 3/ and Cu/WC(W/sub 2/C) model alloys produced by pressing and sintering. The intention was to investigate the reasons for the poor contribution to erosion resistance made by large hard second phase particles (SPP) in other studies. The results show that for Cu/Al/sub 2/O/sub 3/ alloys, the erosion rate generally increased with SPVF, demonstrating a negative contribution to erosion resistance. This occurred despite the fact that the measured erosion rate of monolithic Al/sub 2/O/sub 3/ was lower by one to two orders of magnitude than that of the pure matrix. Changing from severe erosion with large erodent particles at high velocity to mild conditions with small erodent at low velocity caused a change from depression of the SPPs to protrusion from the surface, with some improvement of the relative erosion resistance compared to the pure matrix. For Cu/WC(W/sub 2/C) alloys, changing from severe to mild erosion conditions caused a change from an increase of erosion with SPVF to a decrease. The results are discussed in terms of the increased microfracture of the unsupported edges of the second phase particles compared to a flat single-phase surface. This edge is consistent with the results, and explains observations not predicted by existing theories for erosion of single-phase materials. A model is introduced which predicts a new averaging law for the erosion rate of a two-phase alloy in terms of erosion rates of its constituent phases

  2. Report of the Material Control and Material Accounting Task Force

    International Nuclear Information System (INIS)

    1978-03-01

    In September 1977 a Task Force was formed to complete a study of the role of material control and material accounting in NRC's safeguards program. The Task Force's assignment was to: define the roles and objectives of material control and material accounting in the NRC safeguards program; recommend goals for the material control and material accounting systems based on their roles and objectives; assess the extent to which the existing safeguards regulatory base meets or provides the capability to meet the recommended goals; and provide direction for material control and material accounting development, including both near-term and long-term upgrades. The study was limited to domestic nuclear facilities possessing significant amounts of plutonium, uranium-233 or highly enriched uranium in unsealed form. The Task Force findings are reported

  3. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    Science.gov (United States)

    Farahmand, Parisa

    In oil and gas industry, soil particles, crude oil, natural gas, particle-laden liquids, and seawater can carry various highly aggressive elements, which accelerate the material degradation of component surfaces by combination of slurry erosion, corrosion, and wear mechanisms. This material degradation results into the loss of mechanical properties such as strength, ductility, and impact strength; leading to detachment, delamination, cracking, and ultimately premature failure of components. Since the failure of high valued equipment needs considerable cost and time to be repaired or replaced, minimizing the tribological failure of equipment under aggressive environment has been gaining increased interest. It is widely recognized that effective management of degradation mechanisms will contribute towards the optimization of maintenance, monitoring, and inspection costs. The hardfacing techniques have been widely used to enhance the resistance of surfaces against degradation mechanisms. Applying a surface coating improves wear and corrosion resistance and ensures reliability and long-term performance of coated parts. A protective layer or barrier on the components avoids the direct mechanical and chemical contacts of tool surfaces with process media and will reduce the material loss and ultimately its failure. Laser cladding as an advanced hardfacing technique has been widely used for industrial applications in order to develop a protective coating with desired material properties. During the laser cladding, coating material is fused into the base material by means of a laser beam in order to rebuild a damaged part's surface or to enhance its surface function. In the hardfacing techniques such as atmospheric plasma spraying (APS), high velocity oxygen-fuel (HVOF), and laser cladding, mixing of coating materials with underneath surface has to be minimized in order to utilize the properties of the coating material most effectively. In this regard, laser cladding offers

  4. Report of the Material Control and Material Accounting Task Force: appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Five appendixes are presented. The first comprises a chronological development of material control and material accounting requirements. The second gives a description of current NRC control and material accounting requirements, practices, and capabilities. In the third a description is given of NRC's research and technical assistance program concerning the measurement and measurement quality control elements of licensee material control and material accounting systems. The fourth covers some special considerations related to inventory differences and their analysis. In the fifth a detailed description is presented of the evaluation methodologies used in development of improved material control and material accounting systems

  5. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    Science.gov (United States)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a

  6. Report on the study of erosion and H-recycle/inventory of carbon/graphite

    International Nuclear Information System (INIS)

    Haasz, A.A.; Davis, J.W.

    1990-04-01

    This study investigated the erosion and hydrogen retention capacity of graphite under plasma exposure by performing controlled plasma simulation experiments using a low-energy high-flux mass analyzed ion accelerator. The authors studied radiation-enhanced sublimation (RES) of graphite, the effect of ion angle of incidence on physical sputtering, the effect of oxygen on hydrocarbon formation during O 2 /H 2 impact, chemical erosion of boron carbide, and the effect of thermal atoms on self-sputtering of graphite. The flux dependence of RES is nearly linear (power of .91) for the extended flux range of 10 13 - 10 17 H + /cm 2 s. Physical sputtering yields were enhanced for off-normal angles of incidence, especially for highly-oriented polished surfaces. Oxygen did not appear to have an effect on the hydrocarbon formation rate; however, some erosion through CO formation was observed. Although large transients were observed in hydrocarbon production in B 4 C, steady-state levels were typically about two orders of magnitude below the erosion rate of graphite. To investigate carbon self-sputtering, thermal H 0 atoms were added to impacting C + ions, simulating a condition existing in the tokamak plasma edge. This led to a synergistic enhancement of the chemical erosion process. For C + /H+0 flux ratios of less than about 10 -1 the chemical erosion yield exceeds unity. Work on hydrogen retention concentrated on the study of H + trapping in different types of graphites as a function of flux and fluence of incident H + . The amount of H trapped in the near-surface region of graphite reaches a saturation level, a function of graphite temperature and impacting H + energy. The amount of H trapped in graphite beyond the ion range was found to increase with increasing fluence and varied for different graphites tested. It seems that hydrogen diffuses through grain boundaries and open porosity in the material until trapped by available carbon bonds

  7. Protective effect of calcium nanophosphate and CPP-ACP agents on enamel erosion

    International Nuclear Information System (INIS)

    Carvalho, Fabiola Galbiatti de; Santos, Rogerio Lacerda dos; Silva Filho, Tiago Joao da; Carlo, Hugo Lemes; Lima, Bruno Alessandro Silva Guedes de

    2013-01-01

    The aim of this study was to assess the effect of different remineralizing agents on enamel microhardness (KHN) and surface topography after an erosive challenge. Forty-eight human enamel specimens (4 X 4 mm) were randomly assigned to 4 groups: control (no treatment), fluoride varnish, calcium nanophosphate paste and casein phosphopeptide-amorphous calcium phosphate paste (CPP-ACP). Both pastes were applied for 5 minutes, and fluoride varnish, for 24 h. Four daily erosive cycles of 5 minutes of immersion in a cola drink and 2 h in artificial saliva were conducted for 5 days. KHN readings were performed at baseline and after 5 days. The percentage of enamel hardness change (%KHN) was obtained after erosion. The surface topography was evaluated by atomic force microscopy (AFM). The data were tested using ANOVA, Tukey's and paired-T tests (p < 0.05). After an erosive challenge, there was no statistically significant difference between the control (96.8 ± 11.4 KHN / 72.4 ± 3.0 %KHN) and the varnish (91.7 ± 14.1 KHN / 73.4 ± 5.5 %KHN) groups. The nanophosphate group showed lower enamel hardness loss (187.2 ± 27.9 /49.0 ± 7.9 %KHN), compared with the CPP-ACP group (141.8 ± 16.5 /60.6 ± 4.0 %KHN), and both were statistically different from the varnish and the control groups. AFM images showed a rough surface for the control and the varnish groups, a non-homogeneous layer with globular irregularities for CPP-ACP, and a thick homogeneous layer for the nanophosphate group. None of the agents provided protection against the development of erosion; however, nanophosphate paste was able to reduce enamel surface softening after the erosive challenge. (author)

  8. Protective effect of calcium nanophosphate and CPP-ACP agents on enamel erosion

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fabiola Galbiatti de; Santos, Rogerio Lacerda dos, E-mail: fabigalbi@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), Patos, PB (Brazil). Dept. de Ciencias Biologicas. Div. de Odontologia; Silva Filho, Tiago Joao da; Carlo, Hugo Lemes [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Dept. de Odontologia Restauradora; Lima, Bruno Alessandro Silva Guedes de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Tecnologia Mecanica. Lab. de Solidificacao Rapida

    2013-11-15

    The aim of this study was to assess the effect of different remineralizing agents on enamel microhardness (KHN) and surface topography after an erosive challenge. Forty-eight human enamel specimens (4 X 4 mm) were randomly assigned to 4 groups: control (no treatment), fluoride varnish, calcium nanophosphate paste and casein phosphopeptide-amorphous calcium phosphate paste (CPP-ACP). Both pastes were applied for 5 minutes, and fluoride varnish, for 24 h. Four daily erosive cycles of 5 minutes of immersion in a cola drink and 2 h in artificial saliva were conducted for 5 days. KHN readings were performed at baseline and after 5 days. The percentage of enamel hardness change (%KHN) was obtained after erosion. The surface topography was evaluated by atomic force microscopy (AFM). The data were tested using ANOVA, Tukey's and paired-T tests (p < 0.05). After an erosive challenge, there was no statistically significant difference between the control (96.8 ± 11.4 KHN / 72.4 ± 3.0 %KHN) and the varnish (91.7 ± 14.1 KHN / 73.4 ± 5.5 %KHN) groups. The nanophosphate group showed lower enamel hardness loss (187.2 ± 27.9 /49.0 ± 7.9 %KHN), compared with the CPP-ACP group (141.8 ± 16.5 /60.6 ± 4.0 %KHN), and both were statistically different from the varnish and the control groups. AFM images showed a rough surface for the control and the varnish groups, a non-homogeneous layer with globular irregularities for CPP-ACP, and a thick homogeneous layer for the nanophosphate group. None of the agents provided protection against the development of erosion; however, nanophosphate paste was able to reduce enamel surface softening after the erosive challenge. (author)

  9. Rainfall erosivity map for Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    Monthly rainfall data, spanning over a period of more than thirty years, were used to compute rainfall erosivity indices for various stations in Ghana, using the Fournier index, c, defined as p 2 /P, where p is the rainfall amount in the wettest month and P is the annual rainfall amount. Values of the rainfall erosivity indices ranged from 24.5 mm at Sunyani in the mid-portion of Ghana to 180.9 mm at Axim in the south western coastal portion. The indices were used to construct a rainfall erosivity map for the country. The map revealed that Ghana may be broadly divided into five major erosion risk zones. The middle sector of Ghana is generally in the low erosion risk zone; the northern sector is in the moderate to severe erosion risk zone, while the coastal sector is in the severe to extreme severe erosion risk zone. (author). 11 refs, 1 fig., 1 tab

  10. 'pre-erosive' radiologic signs of rheumatoid arthritis in soft tissue radiography of the hands

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, P; Virtama, P [Turku Univ. (Finland). Dept. of Diagnostic Radiology

    1978-01-01

    Soft tissue radiography of the hands using the mammographic immersion technique was performed on 119 patients, having definite or classical rheumatoid arthritis, and on 123 controls of matching age, sex, and professional distribution. A total of 7744 finger joints and carpal borders were investigated for joint swelling, periarticular edema, pre-erosive and erosive bone changes, joint space narrowing, and osteoarthritic joint margin spurs. Slight joint swelling and pre-erosive bone changes were found in connection with osteoarthritic joint changes in elderly control patients. Periarticular edema and moderate to massive joint swelling were quite reliable signs for synovitis. The incidence of pre-erosive bone signs was significantly greater in the rheumatoid arthritis group than in the control group, especially in patients less than 60 years old. These signs can be regarded as suggestive of rheumatoid arthritis; probability diagnosis could be performed using these signs and the Bayesian approach.

  11. Minimizing post-fire erosion using rainwater harvesting practices

    Science.gov (United States)

    P. R. Garcia-Chevesich; R. Valdes; D. Neary; R. Pizarro

    2015-01-01

    Though wildfires can lead to tremendous rates of soil erosion, they also have several beneficial effects on natural areas. Plants in ecosystems that are susceptible to wildfires often survive through adaptation processes that include physical protection against heat, increased growth after a wildfire event and production of flammable materials that stimulate fire and...

  12. Quantifying accelerated soil erosion through ecological site-based assessments of wind and water erosion

    Science.gov (United States)

    This work explores how organising soil erosion assessments using established groupings of similar soils (ecological sites) can inform systems for managing accelerated soil erosion. We evaluated aeolian sediment transport and fluvial erosion rates for five ecological sites in southern New Mexico, USA...

  13. Rill erosion rates in burned forests

    Science.gov (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2011-01-01

    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  14. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  15. Plasma-material interactions

    International Nuclear Information System (INIS)

    Wilson, K.L.

    1984-01-01

    Plasma-interactive components must be resistant to erosion processes, efficient in heat removal, and effective in minimizing tritium inventory and permeation. As long as plasma edge temperatures are 50 eV, no one material can satisfy the diverse requirements imposed by these plasma materials interactions. The only solution is the design of duplex, or even more complicated, structures. The material that faces the plasma should be low atomic number, with acceptable erosion and evaporation characteristics. The substrate material must have high thermal conductivity for heat removal. Finally, materials must be selected judiciously for tritium compatibility. In conclusion, materials play a critical role in the achievement of safe and economical magnetic fusion energy. Improvements in materials have already led to many advances in present day device operation, but additional innovative materials solutions are required for the critical plasma materials interaction issues in future power reactors

  16. Corneal erosions, bacterial contamination of contact lenses, and microbial keratitis.

    Science.gov (United States)

    Willcox, Mark D P; Naduvilath, Thomas J; Vaddavalli, Pravin K; Holden, Brien A; Ozkan, Jerome; Zhu, Hua

    2010-11-01

    To estimate the rate of corneal erosion coupled with gram-negative bacterial contamination of contact lenses and compare this with the rate of microbial keratitis (MK) with contact lenses. The rate of corneal erosion and contact lens contamination by gram-negative bacteria were calculated from several prospective trials. These rates were used to calculate the theoretical rate of corneal erosion happening at the same time as wearing a contact lens contaminated with gram-negative bacteria. This theoretical rate was then compared with the rates of MK reported in various epidemiological and clinical trials. Corneal erosions were more frequent during extended wear (0.6-2.6% of visits) compared with daily wear (0.01-0.05% of visits). No corneal erosions were observed for lenses worn on a daily disposable basis. Contamination rates for lenses worn on a daily disposable basis were the lowest (2.4%), whereas they were the highest for low Dk lenses worn on an extended wear basis (7.1%). The estimated rate of corneal erosions occurring at the same time as wearing lenses contaminated with gram-negative bacteria was the lowest during daily wear of low Dk lenses (1.56/10,000 [95% CI: 0.23-10.57]) and the highest during extended wear of high Dk lenses (38.55/10,000 [95% CI: 24.77-60.04]). These rates were similar in magnitude to the rates reported for MK of different hydrogel lenses worn on differing wear schedules. The coincidence of corneal erosions during lens wear with gram-negative bacterial contamination of lenses may account for the relative incidence of MK during lens wear with different lens materials and modes of use.

  17. Development of a high velocity rain erosion test method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong Teak; Jin, Doo Han [Korea University of Technology and Education, Cheonan (Korea, Republic of); Kang, Hyung [Agency for Defense Development, Daejeon (Korea, Republic of)

    2009-07-01

    The nose of a missile, flying through raining region with a supersonic speed, is subjected to the rain erosion because the nose is made of a brittle ceramic material. A simple yet very effective rain erosion test method is developed. The sabot assembly similar to the hypodermic syringe carries specific amount of water is launched by a low pressure air gun. After the stopper stop the sabot assembly by impact, the steel plunger continues moving toward to squeeze the silicon rubber in front. The pressurized silicon rubber then is squeezed through the orifice in front of the sabot at high velocity, thus, accelerates the water droplet to higher velocity. The droplet velocity up to 800m/s is successfully attained using a low pressure air gun. The ceramic specimen assembly is placed in front of the high speed water droplet and the rain erosion damage on the surface of the specimen is observed.

  18. Experimental comparison of cavitation erosion rates of different steels used in hydraulic turbines

    International Nuclear Information System (INIS)

    Ton-That, L

    2010-01-01

    The prediction of cavitation erosion rates has an important role in order to evaluate the exact life of components in fluid machineries. Hydro-Quebec has studied this phenomenon for several years, in particular in hydraulic turbine runners, to try to understand the different degradation mechanisms related to this phenomenon. This paper presents part of this work. In this study, we carried out experimental erosion tests to compare different steels used in actual hydraulic turbine runners (carbon steels, austenitic and martensitic stainless steels) to high strength steels in terms of cavitation erosion resistance. The results for these different classes of steels are presented. The tests have been performed in a cavitating liquid jet apparatus according to the ASTM G134-95 standard to simulate the flow conditions. The mass loss has been followed during the exposure time. The maximum depth of erosion, the mean depth of erosion, and the mean depth erosion rate are determined. As a result we found that ASTM-A514 high strength steels present excellent cavitation erosion resistance properties. The cavitation eroded surface is followed by optical profilometry technique. Determination of mechanical properties and examinations of the eroded surfaces of the samples have also been carried out in order to identify the erosion mechanisms involved in the degradation of these kinds of materials.

  19. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  20. Farmers' perceptions of erosion by wind and water in northern Burkina Faso

    NARCIS (Netherlands)

    Visser, S.M.; Leenders, J.K.; Leeuwis, M.

    2003-01-01

    Wind and water erosion are widespread phenomena throughout the Sahel, especially in the early rainy season, when high-intensity rainstorms are often preceded by severe windstorms. This paper describes the results of a survey on the farmers' perceptions of wind and water erosion processes and control

  1. Erosion of common structural materials and the degradation of suspended particles in flowing suspension of graphite powder in carbon dioxide gas

    International Nuclear Information System (INIS)

    Garton, D.A.; Hawes, R.I.; Rose, P.W.

    1968-06-01

    Experiments have been performed to examine the erosion of common materials of construction by a flowing suspension of graphite powder in carbon dioxide gas and the degradation of the graphite powder in the suspension. The suspension was circulated through a stainless steel loop at a pressure of 200 p.s.i.g. and bulk fluid temperature of 100-150 deg. C. No change in the weight of pins of mild steel, stainless steel and zircaloy, which were placed across the flow stream in a region where the velocity approached 100 ft./sec, could be detected after 350 hours of circulation. Examination of micro-photographs of the cross sections of the specimens showed no change in the structure of the metals. Considerable erosion of graphite pins producing a 6% decrease in the weight was observed under similar conditions. Detailed spectrographic analysis of the suspended powder taken at various times during the experiment showed no noticeable increase in the impurity content which could be attributed to erosion of the test specimens. A considerable increase in the tungsten, tin and cobalt concentration was observed and this is attributed to wear of the pump seal surfaces. The mean particle size of the suspended graphite powder was observed to decrease rapidly from 5 microns to 3 microns after only a few hours of circulation in the loop. After this initial period there was little further change in the particle size, the mean diameter being 2.85 microns after 167 hours of circulation. (author)

  2. Estimates of soil erosion using cesium-137 tracer models.

    Science.gov (United States)

    Saç, M M; Uğur, A; Yener, G; Ozden, B

    2008-01-01

    The soil erosion was studied by 137Cs technique in Yatagan basin in Western Turkey, where there exist intensive agricultural activities. This region is subject to serious soil loss problems and yet there is not any erosion data towards soil management and control guidelines. During the soil survey studies, the soil profiles were examined carefully to select the reference points. The soil samples were collected from the slope facets in three different study areas (Kirtas, Peynirli and Kayisalan Hills). Three different models were applied for erosion rate calculations in undisturbed and cultivated sites. The profile distribution model (PDM) was used for undisturbed soils, while proportional model (PM) and simplified mass balance model (SMBM) were used for cultivated soils. The mean annual erosion rates found using PDM in undisturbed soils were 15 t ha(-1) year(-1) at the Peynirli Hill and 27 t ha(-1) year(-1) at the Kirtas Hill. With the PM and SMBM in cultivated soils at Kayişalan, the mean annual erosion rates were obtained to be 65 and 116 t ha(-1) year(-1), respectively. The results of 137Cs technique were compared with the results of the Universal Soil Loss Equation (USLE).

  3. Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems

    Directory of Open Access Journals (Sweden)

    Jan H. Mol

    2013-09-01

    Full Text Available In tropical countries soil erosion is often increased due to high erodibility of geologically old and weathered soils; intensive rainfall; inappropriate soil management; removal of forest vegetation cover; and mining activities. Stream ecosystems draining agricultural or mining areas are often severely impacted by the high loads of eroded material entering the stream channel; increasing turbidity; covering instream habitat and affecting the riparian zone; and thereby modifying habitat and food web structures. The biodiversity is severely threatened by these negative effects as the aquatic and riparian fauna and flora are not adapted to cope with excessive rates of erosion and sedimentation. Eroded material may also be polluted by pesticides or heavy metals that have an aggravating effect on functions and ecosystem services. Loss of superficial material and deepening of erosion gullies impoverish the nutrient and carbon contents of the soils; and lower the water tables; causing a “lose-lose” situation for agricultural productivity and environmental integrity. Several examples show how to interrupt this vicious cycle by integrated catchment management and by combining “green” and “hard” engineering for habitat restoration. In this review; we summarize current findings on this issue from tropical countries with a focus on case studies from Suriname and Brazil.

  4. Testing model parameters for wave‐induced dune erosion using observations from Hurricane Sandy

    Science.gov (United States)

    Overbeck, Jacquelyn R.; Long, Joseph W.; Stockdon, Hilary F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave‐impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision‐making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  5. Testing model parameters for wave-induced dune erosion using observations from Hurricane Sandy

    Science.gov (United States)

    Overbeck, J. R.; Long, J. W.; Stockdon, H. F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave-impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision-making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  6. Protection against productivity versus erosion vineyards. Testing of vegetal covers in slope crops

    International Nuclear Information System (INIS)

    Marques, M. J.; Ruiz-Colmenero, M.; Garcia-Munoz, S.; Cabello, F.; Munoz-Organero, G.; Perez-Jimenez, M. A.; Bienes, R.

    2009-01-01

    Temporary and permanent cover crops were used in three rain fed vineyards in the Center of Spain. They were sown in the middle of the strips to assess their ability to control erosion as well as their influence on grape production. Data from the year 2008 are compared with those obtained with traditional tillage treatment. The permanent cover formed by Brachypodium distachyon showed better ability to control erosion but it produced a decrease in production in young vines. barley and rye treatments were temporary covers, mowed in spring. They also reduced the erosion compared with the tillage however they did not appear to affect the vineyard production. (Author)

  7. FY 1993 report on the Material Committee; 1993 nendo zairyo iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The paper reported the FY 1993 activities of the Material Committee on the R and D of materials in coal liquefaction, coal gasification, coal utilization hydrogen production, etc. As to metal materials, a PSU implant test on 3Cr-1Mo base high-strength steel was conducted to examine mainly the hydrogen erosion resistance. Concerning surface coatings, aiming at improving the sulfuration corrosion resistance of Al{sub 2}O{sub 3} atmospheric plasma spraying materials, survey of the deterioration with age was made by inserting a test piece in which the structure of coated bed was altered into the PSU reaction tower. Relating to the R and D of trial manufacture of plant use equipment materials, study was made of the evaluation of characteristics of materials for improvement/trial manufacture of gasifier use refractory and the effect of improvement in erosion by coarsening treatment of mullite ceramics. As to the development of the control valve, etc., the control valve was manufactured using sintering diamond as sheet ring material and wolfram carbide as plug material, and the demonstrative test under the actual environment in PSU was carried out. The demonstrative test was also made on slurry flow meter and block valve. (NEDO)

  8. Wind Erosion Induced Soil Degradation in Northern China: Status, Measures and Perspective

    Directory of Open Access Journals (Sweden)

    Zhongling Guo

    2014-12-01

    Full Text Available Soil degradation is one of the most serious ecological problems in the world. In arid and semi-arid northern China, soil degradation predominantly arises from wind erosion. Trends in soil degradation caused by wind erosion in northern China frequently change with human activities and climatic change. To decrease soil loss by wind erosion and enhance local ecosystems, the Chinese government has been encouraging residents to reduce wind-induced soil degradation through a series of national policies and several ecological projects, such as the Natural Forest Protection Program, the National Action Program to Combat Desertification, the “Three Norths” Shelter Forest System, the Beijing-Tianjin Sand Source Control Engineering Project, and the Grain for Green Project. All these were implemented a number of decades ago, and have thus created many land management practices and control techniques across different landscapes. These measures include conservation tillage, windbreak networks, checkerboard barriers, the Non-Watering and Tube-Protecting Planting Technique, afforestation, grassland enclosures, etc. As a result, the aeolian degradation of land has been controlled in many regions of arid and semiarid northern China. However, the challenge of mitigating and further reversing soil degradation caused by wind erosion still remains.

  9. Erosion-corrosion resistance properties of 316L austenitic stainless steels after low-temperature liquid nitriding

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong

    2018-05-01

    The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.

  10. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    International Nuclear Information System (INIS)

    Garcia-Chevesich, Pablo A.; Alvarado, Sergio; Neary, Daniel G.; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. - We emphasize the urgent need to implement erosion and sediment control politics in Santiago, to decrease PM10 concentrations in the city's air, based on the US experience

  11. Urine metabolic profiling for the pathogenesis research of erosive oral lichen planus.

    Science.gov (United States)

    Li, Xu-Zhao; Yang, Xu-Yan; Wang, Yu; Zhang, Shuai-Nan; Zou, Wei; Wang, Yan; Li, Xiao-Nan; Wang, Ling-Shu; Zhang, Zhi-Gang; Xie, Liang-Zhen

    2017-01-01

    Oral lichen planus (OLP) is a relatively common chronic immune-pathological and inflammatory disease and potentially oral precancerous lesion. Erosive OLP patients show the higher rate of malignant transformation than patients with non-erosive OLP. Identifying the potential biomarkers related to erosive OLP may help to understand the pathogenesis of the diseases. Metabolic profiles were compared in control and patient subjects with erosive OLP by using ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods An integrative analysis was used to identify the perturbed metabolic pathways and pathological processes that may be associated with the disease. In total, 12 modulated metabolites were identified and considered as the potential biomarkers of erosive OLP. Multiple metabolic pathways and pathological processes were involved in erosive OLP. The dysregulations of these metabolites could be used to explain the pathogenesis of the disease, which could also be the potential therapeutic targets for the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    Science.gov (United States)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  13. Determination of effective factors on the occurrence of digitated gully erosion in the AghEmam(2 watershed

    Directory of Open Access Journals (Sweden)

    Maryam Mohammad Ebrahimi

    2017-03-01

    Full Text Available Introduction: Soil erosion by water is one of the most important processes of land degradation, especially in semi-arid areas. Among different types of the soil erosion, gully erosion accounts as one of the most critical processes which can cause soil destruction, changes in landscape and water resources filling of reservoir of dams,decrease in water transport capacity of rivers and agricultural lands destruction in the lowland areas. Based on the Posen definition, gully is a river with high slope walls and an erosive high slope and active head which occurs by erosion resulted from the surface flow (usually during or after high density rainfalls. Different factors play role in occurrence and development of gullies and sediment production resulted of this kind of erosion which includes slope, amount and distribution of rainfall intensity, construction operations, vegetable cover destruction, land-use change, unsuitable utilization, and susceptibility of bed materials to the erosion and flood. Considering the importance of gully erosion and the way of its occurrence and development and its control, more comprehensive studies are needed to be done. Although, some studies have done in this subject that some of them are depicted below: Rinkez et al showed that gully erosion is further occurred in soils with high exchangeable sodium percentage and sodium absorption ratio and they depicted that these two factors are important indices for soil diffusion amount in gullies. Buma and imson investigated factors such as electricity conductivity, calcium carbonate percentage, and the type of clay mineral in white, brown, and gray samples of marl in the Peter area, Spain. According to their results, factors such as electrical conductivity and sodium absorption ratio had high correlation with erosivity of the Bad Lands. Material and Methods: Agh Emam(2 watershed is located between 55º 42´ 53˝ to 55º 45´ 43˝ eastern longitudes and 37º 41´ 01˝ to 37º 46

  14. Scales and erosion

    Science.gov (United States)

    There is a need to develop scale explicit understanding of erosion to overcome existing conceptual and methodological flaws in our modelling methods currently applied to understand the process of erosion, transport and deposition at the catchment scale. These models need to be based on a sound under...

  15. Does a more sophisticated storm erosion model improve probabilistic erosion estimates?

    NARCIS (Netherlands)

    Ranasinghe, R.W.M.R.J.B.; Callaghan, D.; Roelvink, D.

    2013-01-01

    The dependency between the accuracy/uncertainty of storm erosion exceedance estimates obtained via a probabilistic model and the level of sophistication of the structural function (storm erosion model) embedded in the probabilistic model is assessed via the application of Callaghan et al.'s (2008)

  16. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    Boulitrop, D.; Gauchon, J.P.; Lecoffre, Y.

    1984-05-01

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel [fr

  17. Prevalence of Dental Erosion among the Young Regular Swimmers in Kaunas, Lithuania

    Directory of Open Access Journals (Sweden)

    Andrius Zebrauskas

    2014-07-01

    Full Text Available Objectives: To determine prevalence of dental erosion among competitive swimmers in Kaunas, the second largest city in Lithuania. Material and Methods: The study was designed as a cross-sectional survey, with a questionnaire and clinical examination protocols. The participants were 12 - 25 year-old swimmers regularly practicing in the swimming pools of Kaunas. Of the total of 132 participants there were 76 (12 - 17 year-old and 56 (18 - 25 year-old individuals; in Groups 1 and 2, respectively. Participants were examined for dental erosion, using a portable dental unit equipped with fibre-optic light, compressed air and suction, and standard dental instruments for oral inspection. Lussi index was applied for recording dental erosion. The completed questionnaires focused on the common erosion risk factors were returned by all participants. Results: Dental erosion was found in 25% of the 12 - 17 year-olds, and in 50% of 18 - 25 years-olds. Mean value of the surfaces with erosion was 6.31 (SD 4.37. All eroded surfaces were evaluated as grade 1. Swimming training duration and the participants’ age correlated positively (Kendall correlation, r = 0.65, P < 0.001, meaning that older swimmers had practiced for longer period. No significant correlation between occurrence of dental erosion and the analyzed risk factors (gastroesophageal reflux disease, frequent vomiting, dry mouth, regular intake of acidic medicines, carbonated drinks was found in both study groups. Conclusions: Prevalence of dental erosion of very low degree was high among the regular swimmers in Kaunas, and was significantly related to swimmers’ age.

  18. Highly erodible terrain in agriculture land against chipped pruned branches. Or how to stop the soil erosion with low investment

    Science.gov (United States)

    Cerdà, A.

    2009-04-01

    The session on "Soil erosion and sediment control with vegetation and bioengineering on severely eroded terrain" pays special attention to the severe soil erosion suffered on steep slopes and erodible parent materials and soils. Within the last 20 years, in the Mediterranean lands, the citrus orchards were reallocated on steep slopes due to the urban development and better climatic and management conditions of the new plantations. The lack of vegetation cover on the new slope plantations of citrus resulted in high erosion rates. Those non-sustainable soil losses were measured by means of rainfall simulation experiments, Gerlach collectors, geomorphological transect and topographical measurements. The October 2007 and October 2008 rainy periods resulted in sheet, rill and gully erosion. Some recently planted orchards (2005) had the first pruning season in 2008. The pruned chipped branches reduced the soil losses to 50 % of the expected, although the litter (pruned branches) covered 4.67 % of the soil. This is why a research was developed by means of simulated rainfall experiments to determine the vegetation cover (litter, mainly leaves) to protect the soil to reach a sustainable erosion rate. Rainfall simulation experiments at 43 mm h-1 where performed on 1 m2 plots covered with 0, 3, 7, 15, 30, 45, 60, 80 and 100 % litter cover (pruned chipped branches) to determine the sustainable litter cover to avoid the soil losses. The results show that more that 45 % litter cover almost reduces the soil losses to negligible rates. The results confirm that 4 % of vegetation cover reduces the soil losses to 50 %. Key words: Agriculture land, erodible terrain, land management, citrus, erosion, Spain, Valencia, herbicides. Acknowledgements, We thanks the financial support of the Ministerio de Ciencia e Innovación by means of the project CGL2008-02879/BTE, "PERDIDA DE SUELO EN NUEVAS EXPLOTACIONES CITRICOLAS EN PENDIENTE. ESTRATEGIAS PARA EL CONTROL DE LA EROSION HIDRICA"

  19. Dynamic control of low-Z material deposition and tungsten erosion by strike point sweeping on DIII-D

    Directory of Open Access Journals (Sweden)

    J. Guterl

    2017-08-01

    Full Text Available Carbon deposition on tungsten between ELMs was investigated in DIII-D in semi-attached/detached H-mode plasma conditions using fixed outer strike point (OSP positions. Carbon deposition during plasma exposure of tungsten was monitored in-situ by measuring the reflectivity of the tungsten sample surface. No significant carbon deposition, i.e., without strong variations of the reflectivity, was observed during these experiments including discharges at high densities. In contrast, ERO modeling predicts a significant carbon deposition on the tungsten surface for those high density plasma conditions. The surface reflectivity decreases with methane injection, consistent with increased carbon coverage, as expected. The sweeping of OSP leads to a pronounced increase of the surface reflectivity, suggesting that the strike point sweeping may provide an effective means to remove carbon coating from tungsten surface. The ERO modeling however predicts again a regime of carbon deposition for these experiments. The discrepancies between carbon deposition regime predicted by the ERO model and the experimental observations suggest that carbon erosion during ELMs may significantly affect carbon deposition on tungsten.

  20. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion.

    Science.gov (United States)

    Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su

    2013-01-01

    Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the (137)Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of (137)Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. (137)Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion.

  1. A history of wind erosion prediction models in the United States Department of Agriculture prior to the Wind Erosion Prediction System

    Science.gov (United States)

    Tatarko, John; Sporcic, Michael A.; Skidmore, Edward L.

    2013-09-01

    The Great Plains experienced an influx of settlers in the late 1850s-1900. Periodic drought was hard on both settlers and the soil and caused severe wind erosion. The period known as the Dirty Thirties, 1931-1939, produced many severe windstorms, and the resulting dusty sky over Washington, DC helped Hugh Hammond Bennett gain political support for the Soil Conservation Act of 1937 that started the USDA Soil Conservation Service (SCS). Austin W. Zingg and William S. Chepil began wind erosion studies at a USDA laboratory at Kansas State University in 1947. Neil P. Woodruff and Francis H. Siddoway published the first widely used model for wind erosion in 1965, called the Wind Erosion Equation (WEQ). The WEQ was solved using a series of charts and lookup tables. Subsequent improvements to WEQ included monthly magnitudes of the total wind, a computer version of WEQ programmed in FORTRAN, small-grain equivalents for range grasses, tillage systems, effects of residue management, crop row direction, cloddiness, monthly climate factors, and the weather. The SCS and the Natural Resources Conservation Service (NRCS) produced several computer versions of WEQ with the goal of standardizing and simplifying it for field personnel including a standalone version of WEQ was developed in the late 1990s using Microsoft Excel. Although WEQ was a great advancement to the science of prediction and control of wind erosion on cropland, it had many limitations that prevented its use on many lands throughout the United States and the world. In response to these limitations, the USDA developed a process-based model know as the Wind Erosion Prediction System (WEPS). The USDA Agricultural Research Service has taken the lead in developing science and technology for wind erosion prediction.

  2. Rinsing with antacid suspension reduces hydrochloric acid-induced erosion.

    Science.gov (United States)

    Alves, Maria do Socorro Coelho; Mantilla, Taís Fonseca; Bridi, Enrico Coser; Basting, Roberta Tarkany; França, Fabiana Mantovani Gomes; Amaral, Flávia Lucisano Botelho; Turssi, Cecilia Pedroso

    2016-01-01

    Mouthrinsing with antacids, following erosive episodes, have been suggested as a preventative strategy to minimize tooth surface loss due to their neutralizing effect. The purpose of this in situ study was to evaluate the effect of an antacid suspension containing sodium alginate, sodium bicarbonate and calcium carbonate in controlling simulated erosion of enamel of intrinsic origin. The experimental units were 48 slabs (3×3×2mm) of bovine enamel, randomly divided among 12 volunteers who wore palatal appliances with two enamel slabs. One of them was exposed extra-orally twice a day to 25mL of a hydrochloric acid (HCl) solution (0.01M, pH 2) for 2min. There were two independent phases, lasting 5 days each. In the first phase, according to a random scheme, half of the participants rinsed with 10mL of antacid suspension (Gaviscon(®), Reckitt Benckiser Healthcare Ltd.), while the remainder was rinsed with deionized water, for 1min. For the second phase, new slabs were inserted and participants switched to the treatment not received in the first stage. Therefore, the groups were as follows: (a) erosive challenge with HCl+antacid suspension; (b) erosive challenge with HCl+deionized water (DIW); (c) no erosive challenge+antacid suspension; (d) no erosive challenge+DIW. Specimens were assessed in terms of surface loss using optical profilometry and Knoop microhardness. The data were analyzed using repeated measures two-way analysis of variance and Tukey's tests. Compared to DIW rinses, surface loss of enamel was significantly lower when using an antacid rinse following erosive challenges (p=0.015). The Knoop microhardness of the enamel was significantly higher when the antacid rinse was used (p=0.026). The antacid suspension containing sodium alginate, sodium bicarbonate and calcium carbonate, rinsed after erosive challenges of intrinsic origin, reduced enamel surface loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The behaviour of composites, glass ionomers and compomers in erosive conditions – in vitro study

    Directory of Open Access Journals (Sweden)

    Borş Andreea

    2014-10-01

    Full Text Available Objective: The aim of this in vitro study was to evaluate the influence of erosive conditions on the wear resistance of aesthetic direct restorative materials. Methods: Six dental filling materials were tested: two composites (Filtek Z550 and X-tra fil, two compomers (Dyract Extra and Twinky Star and two glass ionomers (Ketac Molar and Fuji II LC. Twenty disks (10mm×2mm of each material were prepared (n=120 and kept in artificial saliva at 37˚C for 24 hours. Specimens were cycled in acidic soft drink (Coca-Cola 5×/day, for 5’, over 30 days. Initial surface roughness ISR (Ra-μm and final surface roughness FSR were measured using a profilometer. The wear rate was calculated as difference of final minus the initial roughness (ΔSR=FSR-ISR. For statistical analysis t-test and one-way ANOVA test were used by GraphPad Prism version 5.03 statistical software. The level of significance was set at p<0.05. Results: The erosive wear rates (mean±SD, μm after exposure to acidic beverage were: 0.30±0.03 (Ketac Molar, 0.28±0.04 (Fuji II LC, 0.27±0.00 (Filtek Z550, 0.23±0.01 (X-tra fil, 0.20±0.00 (Twinky Star and 0.14±0.01 Dyract Extra, respectively. There were significant differences between the tested materials (p<0.05. Conclusions: Dental filling materials had different behaviour under the same erosive condition, however all investigated aesthetic restorative materials showed surface degradation. These findings suggest that erosive wear resistance of tooth coloured restoratives could influence their longevity in intraoral acidic conditions. Acknowledgements: The study was supported by the Internal Research Grant no. 5/30.01.2013 of the University of Medicine and Pharmacy of Tirgu Mureş.

  4. Protection and control of nuclear materials

    International Nuclear Information System (INIS)

    Jalouneix, J.; Winter, D.

    2007-01-01

    In the framework of the French regulation on nuclear materials possession, the first liability is the one of operators who have to know at any time the quantity, quality and localization of any nuclear material in their possession. This requires an organization of the follow up and of the inventory of these materials together with an efficient protection against theft or sabotage. The French organization foresees a control of the implementation of this regulation at nuclear facilities and during the transport of nuclear materials by the minister of industry with the sustain of the institute of radiation protection and nuclear safety (IRSN). This article presents this organization: 1 - protection against malevolence; 2 - national protection and control of nuclear materials: goals, administrative organization, legal and regulatory content (authorization, control, sanctions), nuclear materials protection inside facilities (physical protection, follow up and inventory, security studies), protection of nuclear material transports (physical protection, follow up), control of nuclear materials (inspection at facilities, control of nuclear material measurements, inspection of nuclear materials during transport); 3 - international commitments of France: non-proliferation treaty, EURATOM regulation, international convention on the physical protection of nuclear materials, enforcement in France. (J.S.)

  5. Human-induced C erosion and burial across spatial and temporal scales. (Invited)

    Science.gov (United States)

    van oost, K.

    2013-12-01

    Anthropogenic land cover change and soil erosion are tightly coupled: accelerated erosion and deposition of soil are inevitable consequences of the removal of vegetative cover and increased exposure of the soil surface to erosion. A significant portion of the earth surface has now been disturbed and this has locally accelerated erosion 10- to 100-fold. Although there is now growing awareness that the erosion-induced C flux may be an important factor determining global and regional net terrestrial ecosystem C balances, the significance of this disturbance for the past, present and future C cycle remains uncertain. In this paper, we argue that the significance for both past and present C budgets remains poorly quantified due to uncertainty about the contribution of biotic versus erosion-induced C fluxes because of their intrinsically different space and time scales. Carbon erosion research in agro-ecosystems has traditionally focused on short-term processes, i.e. single events to a few decades and longer-term observations of C and sediment dynamics are therefore rare. Likewise, C cycling is typically studied at the profile-scale while erosion processes operate over various spatial scales and whole-watershed approaches are therefore needed. We address this issue here by synthesizing 3 case studies where we report results of a measurement campaign to characterize the erosional control on vertical carbon fluxes from degraded land. First, using signatures in soil sedimentary archives, we integrate the effects of accelerated C erosion across point, hillslope and catchment scale for a temperate river catchment over the period of agriculture to demonstrate that accounting for the non-steady-state C dynamics in geomorphic active systems is pertinent to understand both past and future anthropogenic global change. Secondly, we report year-round soil respiration measurements with high temporal resolution along an erosion gradient on cultivated sloping land in the Chinese Loess

  6. Erhversbetinget erosion?

    DEFF Research Database (Denmark)

    Dige, Irene; Gjørup, Hans; Nyvad, Bente

    2012-01-01

    Baggrund – I forbindelse med dental erosion er en grundig udredning af patienten vigtig, således at årsagen til erosionernes opståen findes, og der kan iværksættes adækvat forebyggende indsats. En sådan udredning er ikke mindst vigtig, når arbejdsmiljøet mistænkes. Patienttilfælde – En 30-årig...... arbejdsskade, men ikke anerkendt, da erosioner ikke er optaget på Arbejdsskadestyrelsens liste over erhvervssygdomme. En systematisk registrering af lignende tilfælde kunne imidlertid på sigt ændre retspraksis for fremtidige patienter med arbejdsbetinget erosion....... patient, der arbejder som pladesmed, blev henvist til Landsdels- og Videnscenter, Århus Sygehus, med henblik på udredning af patientens kraftige slid. Patienten udviste ikke-alderssvarende tandslid af emalje og dentin svarende til erosion forårsaget af syredampe i arbejdsmiljøet, muligvis forstærket af...

  7. Report of the Material Control and Material Accounting Task Force: the role of material control and material accounting in the safeguards program

    International Nuclear Information System (INIS)

    1978-03-01

    Results are presented of NRC Task Force investigations to identify the functions of a safeguards program in relation to the NRC safeguards objective, define the role and objectives of material control and material accounting systems within that program, develop goals for material control and material accounting based on those roles and objectives, assess current material control and material accounting requirements and performance levels in the light of the goals, and recommend future actions needed to attain the proposed goals. It was found that the major contribution of material accounting to the safeguards program is in support of the assurance function. It also can make secondary contributions to the prevention and response functions. In the important area of loss detection, a response measure, it is felt that limitations inherent in material accounting for some fuel cycle operations limit its ability to operate as a primary detection system to detect a five formula kilogram loss with high assurance (defined by the Task Force as a probability of detection of 90 percent or more) and that, in those cases, material accounting can act only in a backup role. Physical security and material control must make the primary contributions to the prevention and detection of theft, so that safeguards do not rely primarily for detection capabilities on material accounting. There are several areas of accounting that require more emphasis than is offered by the current regulatory base. These areas include: timely shipper-receiver difference analysis and reconciliation; a demand physical inventory capability; improved loss localization;discard measurement verification; timely recovery of scrap; improved measurement and record systems; and limits on cumulative inventory differences and shipper-receiver differences. An increased NRC capability for monitoring and analyzing licensee accounting data and more timely and detailed submittals of data to NRC by licensees are recommended

  8. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China

    Directory of Open Access Journals (Sweden)

    Y. Li

    2017-05-01

    Full Text Available Soil loss tolerance (T value is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a, and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.

  9. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    Science.gov (United States)

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The 'pre-erosive' radiologic signs of rheumatoid arthritis in soft tissue radiography of the hands

    International Nuclear Information System (INIS)

    Maekelae, P.; Virtama, P.

    1978-01-01

    Soft tissue radiography of the hands using the mammographic immersion technique was performed on 119 patients, having definite or classical rheumatoid arthritis, and on 123 controls of matching age, sex, and professional distribution. A total of 7744 finger joints and carpal borders were investigated for joint swelling, periarticular edema, pre-erosive and erosive bone changes, joint space narrowing, and osteoarthritic joint margin spurs. Slight joint swelling and pre-erosive bone changes were found in connection with osteoarthritic joint changes in elderly control patients. Periarticular edema and moderate to massive joint swelling were quite reliable signs for synovitis. The incidence of pre-erosive bone signs was significantly greater in the rheumatoid arthritis group than in the control group, especially in patients less than 60 years old. These signs can be regarded as suggestive of rheumatoid arthritis; probability diagnosis could be performed using these signs and the Bayesian approach. (orig.) [de

  11. Farmers' identification of erosion indicators and related erosion damage in the Central Highlands of Kenya

    NARCIS (Netherlands)

    Sterk, G.; Okoba, B.O.

    2006-01-01

    Most soil and water conservation planning approaches rely on empirical assessment methods and hardly consider farmers' knowledge of soil erosion processes. Farmers' knowledge of on-site erosion indicators could be useful in assessing the site-specific erosion risk before planning any conservation

  12. Analysis and control of erosion by solid particles in the elements of the flow system of steam turbines; Analisis y control de erosion por particulas solidas en los elementos del sistema de flujo de turbinas de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Mazur Czerwiec, Zdzislaw; Campos Amezcua, Alfonso; Campos Amezcua, Rafael [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2010-07-01

    The analysis of erosion by solid particles is presented of different elements of the flow channel of the steam turbines that operate in Mexico: nozzles, stop valves, blade bosses, labyrinth seals and rotor disc; using tools of of Computational Fluid Dynamics (CFD). In these main elements of turbines a strong problem of erosion was registered that threatens the reliable operation of the turbines, its availability and its optimal yield. With base on the results of the numerical analyses, the design modifications of the different elements were developed from the flow channel of the steam turbines, in order to reduce the erosion and thus diminishing the energy losses and increasing the steam turbine efficiency. This work presents the main benefits that the Thermoelectric Power Plants obtain with the reduction of the erosion by solid particles that affect the critical components of steam turbines: extension of the period between maintenance, replacement of components, reduction of operation and maintenance costs of the turbines, and extension of the useful life of the main components. [Spanish] Se presenta el analisis de erosion por particulas solidas de diferentes elementos del canal de flujo de las turbinas de vapor que operan en Mexico: toberas, valvula de paro, tetones de los alabes, sellos de laberinto y disco del rotor; utilizando herramientas de Dinamica de Fluidos Computacional (DFC). En estos elementos principales de turbinas se registro un fuerte problema de erosion que amenaza la operacion confiable de las turbinas, su disponibilidad y su rendimiento optimo. Con base en los resultados de los analisis numericos, se desarrollaron las modificaciones de diseno de los diferentes elementos del canal de flujo de las turbinas de vapor, con el proposito de reducir la erosion y asi, disminuir las perdidas de energia e incrementar el rendimiento de las turbinas de vapor. Este trabajo presenta los principales beneficios que obtienen las Centrales Termoelectricas con la

  13. Erosion experiments in swelling clays and result evaluation

    International Nuclear Information System (INIS)

    Sane, Petri; Turtiainen, M.; Koskinen, K.

    2012-01-01

    Document available in extended abstract form only. The performance of the bentonite buffer in KBS-3-nuclear waste repository concept relies strongly on the sufficient dry density of the buffer layer surrounding the deposition canister. As the buffer density is essentially fixed during the installation process, erosive mass loss of the buffer material remains as the most significant process reducing the density of the buffer. Most important parameters affecting the mass loss in the erosion process are the groundwater flow rate through the deposition hole from fractures in the surrounding rock and groundwater chemistry. Based on the rock suitability criteria for individual deposition holes in ONKALO, the Finnish spent nuclear fuel repository, the groundwater flow conditions in a single deposition hole/deposition hole tunnel section can be characterized in sufficient certainty in terms of maximum groundwater inflow rate; 0.1 L/min, i.e., deposition holes with larger inflows will not be used. Based on different climate scenarios the evolution of the groundwater chemistry can also be assessed and certain reference bounding salinities can be determined and corresponding fixed laboratory use reference solutions can be defined, most important being the current groundwater composition at deposition depth, which can be defined as 10 g/L reference solution as Total Dissolved Solids (TDS) per a liter of groundwater, relevant salts being NaCl and CaCl 2 . Additional reference salinities relevant to the ONKALO-repository are 1 g/L and 70 g/L, salt composition varying. Based on these fixed environmental parameters, testing of the erosive properties of the buffer can be performed with sufficient reliability. The current material type chosen for the Posiva buffer material in deposition hole is Wyoming MX-80 bentonite with sufficiently high montmorillonite content ensuring sufficient swelling. The dry density and water ratio of the buffer are also currently fixed in the design to

  14. Studies of tungsten erosion at the inner and outer main chamber wall of the ASDEX Upgrade tokamak

    Science.gov (United States)

    Tabasso, A.; Maier, H.; Roth, J.; Krieger, K.; ASDEX Upgrade Team

    2001-03-01

    A critical issue for the choice of main chamber first wall materials in future fusion devices such as ITER is the erosion rate due to bombardment by charge-exchange (CX) neutrals. Due to the relatively small flux density of impacting particles, respective measurements are only possible using long term samples (LTS) exposed for a full experimental campaign. In ASDEX Upgrade, CX erosion has been studied extensively for tungsten on the inner heat shield by placing four W coated tiles at different poloidal positions in one toroidal sector. During the same campaign, several LTS were placed at different poloidal and toroidal positions of the outer wall. 13C and Cu coated graphite probes were also used in order to test and compare W low and medium Z alternatives. The erosion results from the probes are compared with the calculated erosion [W. Eckstein, C. Garcia-Rosales, J. Roth, W. Ottenberger IPP Report, IPP 9/82]; [H. Verbeek, J. Stober, D. Coster, W. Eckstein, R. Schneider Nucl. Fus. 38 (1998) 12] and a figure of merit (F. of M.) between several materials is proposed which also takes into account the plasma isotope effect in CX erosion.

  15. Studies of tungsten erosion at the inner and outer main chamber wall of the ASDEX Upgrade tokamak

    International Nuclear Information System (INIS)

    Tabasso, A.; Maier, H.; Roth, J.; Krieger, K.

    2001-01-01

    A critical issue for the choice of main chamber first wall materials in future fusion devices such as ITER is the erosion rate due to bombardment by charge-exchange (CX) neutrals. Due to the relatively small flux density of impacting particles, respective measurements are only possible using long term samples (LTS) exposed for a full experimental campaign. In ASDEX Upgrade, CX erosion has been studied extensively for tungsten on the inner heat shield by placing four W coated tiles at different poloidal positions in one toroidal sector. During the same campaign, several LTS were placed at different poloidal and toroidal positions of the outer wall. 13 C and Cu coated graphite probes were also used in order to test and compare W low and medium Z alternatives. The erosion results from the probes are compared with the calculated erosion [W. Eckstein, C. Garcia-Rosales, J. Roth, W. Ottenberger IPP Report, IPP 9/82]; [H. Verbeek, J. Stober, D. Coster, W. Eckstein, R. Schneider Nucl. Fus. 38 (1998) 12] and a figure of merit (F. of M.) between several materials is proposed which also takes into account the plasma isotope effect in CX erosion

  16. Prevalence and risk factors of dental erosion in American children.

    Science.gov (United States)

    Habib, Mariam; Hottel, Timothy L; Hong, Liang

    2013-01-01

    The purpose of this study was to assess the prevalence and characteristics of dental erosion in children aged 2-4 years old and 12 years old. 243 subjects were recruited from daycare centers, preschools, and grade schools; they received dental examinations assessing their condition of dental erosion, including both depth and area of tooth surface loss on four maxillary incisors. Questionnaires were given to the subjects to obtain socio-demographic, oral health behaviors at home, and access to dental care. Dental erosion was analyzed and risk factors were assessed using Chi-Square and logistic regression analysis. The subjects were 60% Caucasians, 31% Black, 7% Hispanic and others were 2%. 34% of children could not get the dental care they needed within the past 12 months and 61% of all children brushed their teeth twice or more daily. Overall, 12% of study children had dental erosion with 13% for 2-4 years old and 10% for 12 years old, with the majority of erosive lesions within enamel. Family income (OR 3.98, p = 0.021) and acidic fruit juice consumption (OR 2.38, p = 0.038) were significant risk factors for dental erosion, even after controlling for other factors, such as source of drinking water and oral hygiene using logistic regression analysis. Dental erosion is a relatively common problem among the children in this study and it is seen as a multi-factorial process.

  17. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V.I.; Garkusha, I.E. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H

    2003-03-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion.

  18. Influence of plasma pressure gradient on melt layer macroscopic erosion of metal targets in disruption simulation experiments

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Garkusha, I.E.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Makhlaj, V.A.; Solyakov, D.G.; Wuerz, H.

    2003-01-01

    Melt layer erosion of metal targets under pulsed high heat loads is discussed. Tungsten, copper, aluminum, and titanium targets were exposed to perpendicular and inclined plasma impact in the quasi-steady-state plasma accelerator QSPA Kh-50. Melt layer motion results in erosion crater formation with rather large mountains of the resolidified material at the crater edge. It is shown that macroscopic motion of the melt layer and surface cracking are the main factors responsible for tungsten erosion

  19. Reassessment of soil erosion on the Chinese loess plateau: were rates overestimated?

    Science.gov (United States)

    Zhao, Jianlin; Govers, Gerard

    2014-05-01

    in significantly higher erodibility values than those obtained from field data. Overestimations of the P and LS factors are mainly due to the fact that erosion control measures such as terracing are not accounted for and that erroneous scaling functions are used on permanently vegetated areas. Our findings have not only important implications with respect to the mobilization of sediments by agricultural erosion: we will also need to reassess the impact of erosion on biogeochemicaly cycling and crop productivity. Fu, B., Liu, Y., Lü, Y., He, C., Zeng, Y., & Wu, B. (2011). Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8(4), 284-293. doi:10.1016/j.ecocom.2011.07.003 Nearing, M. A. (1997). A single, continuous function for slope steepness influence on soil loss. Soil Science Society of American Journal, 61(3), 917-919. Quinton, J. N., Govers, G., Van Oost, K., & Bardgett, R. D. (2010). The impact of agricultural soil erosion on biogeochemical cycling. Nature Geoscience, 3(5), 311-314. doi:10.1038/ngeo838 Sun, W., Shao, Q., & Liu, J. (2013). Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. Journal of Geographical Sciences, 23(6), 1091-1106. doi:10.1007/s11442-013-1065-z

  20. Advances in soil erosion modelling through remote sensing data availability at European scale

    Science.gov (United States)

    Panagos, Panos; Karydas, Christos; Borrelli, Pasqualle; Ballabio, Cristiano; Meusburger, Katrin

    2014-08-01

    Under the European Union's Thematic Strategy for Soil Protection, the European Commission's Directorate-General for the Environment (DG Environment) has identified the mitigation of soil losses by erosion as a priority area. Policy makers call for an overall assessment of soil erosion in their geographical area of interest. They have asked that risk areas for soil erosion be mapped under present land use and climate conditions, and that appropriate measures be taken to control erosion within the legal and social context of natural resource management. Remote sensing data help to better assessment of factors that control erosion, such as vegetation coverage, slope length and slope angle. In this context, the data availability of remote sensing data during the past decade facilitates the more precise estimation of soil erosion risk. Following the principles of the Universal Soil Loss Equation (USLE), various options to calculate vegetative cover management (C-factor) have been investigated. The use of the CORINE Land Cover dataset in combination with lookup table values taken from the literature is presented as an option that has the advantage of a coherent input dataset but with the drawback of static input. Recent developments in the Copernicus programme have made detailed datasets available on land cover, leaf area index and base soil characteristics. These dynamic datasets allow for seasonal estimates of vegetation coverage, and their application in the G2 soil erosion model which represents a recent approach to the seasonal monitoring of soil erosion. The use of phenological datasets and the LUCAS land use/cover survey are proposed as auxiliary information in the selection of the best methodology.

  1. Revisit of Criteria and Evidence for the Tectonic Erosion vs Accretion in East Asian Margin

    Science.gov (United States)

    Kimura, G.; Hamahashi, M.

    2015-12-01

    Accretionary and erosive margins provide tectonic end-members in subduction zone and how these tectonic processes might be recorded and recognizable in ancient subduction complexes remains a challenging issue. Tectonic erosion includes sediment subduction and basal erosion along the plate boundary megathrust and drags down the crust of the upper plate into the mantle. Geologic evidence for the erosion is commonly based on lost geological tectono-stratigraphic data, i.e. gaps in the record and indirect phenomena such as subsidence of the forearc slopes. A topographically rough surface such as seamount has been suggested to work like an erosive saw carving the upper plate. Another mechanism of basal erosion has been suggested to be hydrofracturing of upper plate materials due to dehydration-induced fluid pressures, resulting in entrainment of upper plate materials into the basal décollement. Considering the interaction between the ~30 km thick crust of the upper plate and subducting oceanic plate, a subduction dip angle of ~15°, and convergent rate of ~10 cm/year, at least ~1 Ma of continuous basal erosion is necessary to induce clear subsidence of the forearc because the width of plate interface between the upper crustal and subducting plates is about 115 km (30/cos15°). In several examples of subduction zones, for example the Japan Trench and the Middle America Trench off Costa Rica, the subsidence of a few thousand metres of the forearc, combined with a lack of accretionary prism over a period of several million years, suggest that the erosive condition needs to be maintained for several to tens of million years.Such age gaps in the accretionary complex, however, do not automatically imply that tectonic erosion has taken place, as other interpretations such as no accretion, cessation of subduction, and/or later tectonic modification, are also possible. Recent drilling in the forearc of the Nankai Trough suggests that the accretion was ceased between ~12 Ma to

  2. The influence of rolled erosion control systems on soil temperature and surface albedo: part I. A greenhouse experiment

    International Nuclear Information System (INIS)

    Sutherland, R.A.; Menard, T.; Perry, J.L.; Penn, D.C.

    1998-01-01

    A greenhouse study examined the influences of various surface covers (a bare control soil and seven rolled erosion control systems—RECS) on surface radiative properties, and soil temperature. In our companion paper we examine relationships with soil moisture, biomass production, and nutrient assimilation. Randomization and replication were key components to our study of microclimate under tropical radiation conditions. The bare Oxisol control soil exhibited the most extreme microclimatic conditions with the lowest albedo (not significantly different from that of P300© North American Green, a dark green polypropylene system), and the highest mean and maximum hourly temperatures recorded at depths of 5 and 8 cm. This hostile climatic environment was not conducive to biomass production or moisture storage and it is likely that the observed soil surface crusts impeded plant emergence. Rolled erosion control systems, on the other hand, generally moderated soil temperatures by reflecting more shortwave radiation, implying less heat energy at the surface for conduction to the soil. The result was that RECS exhibited lower mean soil temperatures, higher minimum temperatures and lower maximum soil temperatures. An aspen excelsior system (Curlex I© Excelsior) had the highest albedo and the soil beneath this system exhibited the greatest temperature modulation. Open-weave systems composed of jute (Geojute© Price & Pictures) and coconut fibers (BioD-Mat 70© RoLanka) were the RECS most similar in temperature response to the bare control soil. Other systems examined were intermediate in their temperature response and surface albedo (i.e., SC150BN© North American Green, C125© North American Green and Futerra© Conwed Fibers). (author)

  3. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.

    1998-05-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point of two divertor plasma conditions: (1) attached (Te > 40 eV) ELMing plasmas and (2) detached (Te 10 cm/year, even with incident heat flux 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood and that effective sputtering yields are > 10%. In ELM-free discharges, this erosion rate can account for the rate of carbon accumulation in the core plasma. Divertor plasma detachment eliminates physical sputtering, while spectroscopically measured chemical erosion yields are also found to be low (Y(C/D + ) ≤ 2.0 x 10 -3 ). This leads to suppression of net erosion at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates (∼ 10 microm/s) at the OSP of an attached plasma. Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  4. Impact of cornstalk buffer strip on hillslope soil erosion and its hydrodynamic understanding

    Science.gov (United States)

    Soil erosion is still a serious concern on the Loess Plateau despite extensive soil conservation measures. Cornstalk buffer strip is not well utilized on the Loess Plateau, and there is little information on the hydrodynamic understanding of this soil erosion control practice. A simulated rainfall e...

  5. Erosion processes acting in semi-arid climate zone of the Ebro Basin (Bardenas Reales, NE of Spain); Procesos de erosion actuantes en una zona de clima semiarido de la Depresion del Ebro (Bardenas Reales, NE de Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Marin, C.; Desir, G.

    2009-07-01

    Bardenas Reales is an erosive depression located in the central-western part of the Ebro Depression. May different erosion processes act on this zone: gullying, piping, mud slides and armoured mud balls among others that contribute to export great quantity of material outside the basin. Depending on lithology and physico-chemical properties erosion acting processes differ. The knowledge of that processes help us to understand the great amount of soil loss that take place on the studied zone, bigger than those recommended. (Author) 8 refs.

  6. Molybdenum erosion measurements in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States); LaBombard, B.; Lipshultz, B.; Pappas, D.; Pitcher, C.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McCracken, G.M. [JET Joint Undertaking, Abingdon (United Kingdom)

    1998-05-01

    Erosion of molybdenum was measured on a set of 21 tiles after a run campaign of 1,090 shots in the Alcator C-Mod tokamak. The net erosion of molybdenum, was determined from changes in the depth of a thin chromium marker layer measured by Rutherford backscattering. Net Mo erosion was found to be approximately 150 nm near the outer divertor strike point, and much less everywhere else. Gross erosion rates by sputtering were estimated using ion energies and fluxes obtained from Langmuir probe measurements of edge-plasma conditions. Predicted net erosion using calculated gross erosion with prompt redeposition and measured net erosion agree within a factor of 3. Sputtering by boron and molybdenum impurities dominates erosion.

  7. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  8. Improved Element Erosion Function for Concrete-Like Materials with the SPH Method

    Directory of Open Access Journals (Sweden)

    Jiří Kala

    2016-01-01

    Full Text Available The subject of the paper is a description of a simple test from the field of terminal ballistics and the handling of issues arising during its simulation using the numerical techniques of the finite element method. With regard to the possible excessive reshaping of the finite element mesh there is a danger that problems will arise such as the locking of elements or the appearance of negative volumes. It is often necessary to introduce numerical extensions so that the simulations can be carried out at all. When examining local damage to structures, such as the penetration of the outer shell or its perforation, it is almost essential to introduce the numerical erosion of elements into the simulations. However, when using numerical erosion, the dissipation of matter and energy from the computational model occurs in the mathematical background to the calculation. It is a phenomenon which can reveal itself in the final result when a discrepancy appears between the simulations and the experiments. This issue can be solved by transforming the eroded elements into smoothed particle hydrodynamics particles. These newly created particles can then assume the characteristics of the original elements and preserve the matter and energy of the numerical model.

  9. The Monitoring Erosion of Agricultural Land and spatial database of erosion events

    Science.gov (United States)

    Kapicka, Jiri; Zizala, Daniel

    2013-04-01

    In 2011 originated in The Czech Republic The Monitoring Erosion of Agricultural Land as joint project of State Land Office (SLO) and Research Institute for Soil and Water Conservation (RISWC). The aim of the project is collecting and record keeping information about erosion events on agricultural land and their evaluation. The main idea is a creation of a spatial database that will be source of data and information for evaluation and modeling erosion process, for proposal of preventive measures and measures to reduce negative impacts of erosion events. A subject of monitoring is the manifestations of water erosion, wind erosion and slope deformation in which cause damaged agriculture land. A website, available on http://me.vumop.cz, is used as a tool for keeping and browsing information about monitored events. SLO employees carry out record keeping. RISWC is specialist institute in the Monitoring Erosion of Agricultural Land that performs keeping the spatial database, running the website, managing the record keeping of events, analysis the cause of origins events and statistical evaluations of keeping events and proposed measures. Records are inserted into the database using the user interface of the website which has map server as a component. Website is based on database technology PostgreSQL with superstructure PostGIS and MapServer UMN. Each record is in the database spatial localized by a drawing and it contains description information about character of event (data, situation description etc.) then there are recorded information about land cover and about grown crops. A part of database is photodocumentation which is taken in field reconnaissance which is performed within two days after notify of event. Another part of database are information about precipitations from accessible precipitation gauges. Website allows to do simple spatial analysis as are area calculation, slope calculation, percentage representation of GAEC etc.. Database structure was designed

  10. An investigation of bergmounds as analogs to erosion control factors on protective barriers

    International Nuclear Information System (INIS)

    Chamness, M.A.

    1993-09-01

    Included in several of the final disposal strategies proposed in the Interim Hanford Waste Management Plan (DOE-RL 1986a) is design of a protective barrier to isolate the underlying waste sites from the environment. The conceptual protective barrier design requires a fine-grained sediment to retain precipitation near the top of the barrier where evapotranspiration can recycle the moisture back into the atmosphere. The design incorporates gravel into the topsoil as one way to reduce its erosion. Information is needed to determine the optimal ratio of gravel to topsoil needed to reduce erosion without significantly reducing evapotranspiration, and its effect on erosion. Bergmounds are mounds with a gravelly surface that were formed about 13,000 years ago and represent natural analogs to the topsoil portion of the protective barrier. The primary goal of this study was to identify characteristics of bergmounds and the effects of these characteristics, especially the gravelly surface, on the amount and rate of erosion. A secondary goal was to apply a technique normally used to estimate vegetation cover to measure percent gravel cover, and to compare this technique with particle size distribution based on weight percent. Four bergmounds were investigated for this study, two in a windy site and two in a more sheltered site. Each bergmound was sampled in eight locations. Two methods were used to estimate the amount of surface gravel: the ocular point-intercept method which estimates the percent gravel cover, and sieved samples of the surface sediments which measure the percent gravel by weight. Holes were dug at each bergmound's eight sampling sites to examine and sample the subsurface sediments

  11. Reconciling water harvesting and soil erosion control by thoughtful implementation of SWC measures

    Science.gov (United States)

    Bellin, N.; Vanacker, V.; van Wesemael, B.

    2012-04-01

    -agricultural catchments have been found only partially filled with sediments. Extensive reforestation programs, recovery of natural vegetation (dense matorral) and abandonment of agricultural fields in the Sierras led to a strong reduction of the sediment transport towards the river system. Although the effect of the check dams on the transport of sediment has not been important, the check dams have played a major role in flood control in the area. Our data indicate that thoughtful design of SWC schemes is necessary to reconcile water harvesting, erosion mitigation and flood control. Currently, the erosion hotspots are clearly localized in the agricultural fields, and not in the marginal lands in the Sierras. The combination of on-site and off-site SWC measures in the agricultural areas is highly efficient to reduce fluxes of sediment and surface water.

  12. Effect of Duration of Irrigation with Sodium Hypochlorite in Clinical Protocol of MTAD on Removal of Smear Layer and Creating Dentinal Erosion

    Science.gov (United States)

    Lotfi, Mehrdad; Moghaddam, Negar; Vosoughhosseini, Sepideh; Zand, Vahid; Saghiri, Mohammad Ali

    2012-01-01

    Background and aims The aim of the present study was to compare 1.3% sodium hypochlorite (NaOCl) in MTAD (mixture of tetracycline isomer, acid, and detergent) for the removal of the smear layer and induction of canal erosion. Materials and methods 38 maxillary incisors were divided in three experimental groups of 10 and two positive and negative control groups of each 4 teeth, and prepared using rotary files. In test groups, 1.3% NaOCl was used for 5, 10 and 20 minutes during preparation followed by MTAD as the final rinse. In negative control group, 5.25% NaOCl was used for 10 minutes followed by 17% Ethylenediamine Tetra-Acetic Acid (EDTA) as the final rinse. In positive control group, dis-tilled water was used for 10 minutes during preparation and then as the final rinse. The samples were examined under scan-ning electron microscope, and the smear layer and dentinal erosion scores were recorded. Results Five and 10 min groups had significant differences with 20 min group (p < 0.05). In apical third, 5 and 10 min groups had also significant differences with 20 min (p < 0.05). In the coronal thirds, when the time of irrigation with 1.3% NaOCl increased from 5 min to 20 min, erosion also increased significantly. However, 5 and 10 min groups had no signifi-cant differences with negative control group. Conclusion The use of 1.3% sodium hypochlorite for 5 and 10 minutes in the MTAD protocol removes the smear layer in the coronal and middle thirds but does not induce erosion. PMID:22991642

  13. Erosion and redeposition at the vessel walls in fusion devices

    International Nuclear Information System (INIS)

    Naujoks, D.; Behrisch, R.

    1995-01-01

    The plasma induced erosion and redeposition at the vessel walls in today's fusion devices have been investigated both with the computer simulation code ERO, and in experiments. Well prepared carbon probes with implanted and evaporated markers in the surface layers have been exposed in the scrape-off layer (SOL) of several tokamaks such as JET, TEXTOR and ASDEX-Upgrade. The main plasma parameters (electron density and temperature, impurity concentration in the SOL) are simultaneously determined. After exposure to single plasma discharges, erosion and redeposition of the marker material were measured by surface layer analysis with MeV ion beam techniques. The experimental results were compared with the results from the ERO code. The measured erosion/redeposition could be described with ERO, which takes into account the impurity concentration in the SOL, the dynamical change of the surface composition (causing a modification of the sputtering yield during the exposure) and ExB drift effects. ((orig.))

  14. Gastric Mucosal Erosions - Radiologic evaluation -

    International Nuclear Information System (INIS)

    Kim, Seung Hyup

    1985-01-01

    70 cases of gastric mucosal erosions were diagnosed by double contrast upper gastrointestinal examinations and endoscopic findings. Analyzing the radiologic findings of these 70 cases of gastric mucosal erosions, the following results were obtained. 1. Among the total 70 cases, 65 cases were typical varioliform erosions showing central depressions and surrounding mucosal elevations. Remaining 5 cases were erosions of acute phase having multiple irregular depressions without surrounding elevations. 2. The gastric antrum was involved alone or in part in all cases. Duodenal bulb was involved with gastric antrum in 4 cases. 3. The majority of the cases had multiple erosions. There were only 2 cases of single erosion. 4. In 65 cases of varioliform erosions; 1) The diameter of the surrounding elevations varied from 3 to 20 mm with the majority (47 cases) between 6 and 10 mm. 2) In general, the surrounding elevations with sharp margin on double contrast films were also clearly demonstrated on compression films but those with faint margin were not. 3) The size of the central barium collections varied from pinpoint to 10 mm with the majority under 5 mm. The shape of the central barium collections in majority of the cases were round with a few cases of linear, triangular or star-shape. 5. In 5 cases of acute phase erosions; 1) All the 5 cases were females. 2) On double contrast radiography, all the cases showed multiple irregular depressed lesions without surrounding elevations. 3) 1 case had the history of hematemesis. 4) In 1 case, there was marked radiological improvement on follow-up study of 2 months interval. 6. In 23 cases, there were coexistent diseases with gastric mucosal erosions. These were 13 cases of duodenal bulb ulcers,7 cases of benign gastric ulcers and 3 others

  15. Quantifying erosion over timescales of one million years: A photogrammetric approach on the amount of Rhenish erosion in southwestern Germany

    Science.gov (United States)

    Strasser, Annette; Strasser, Marcel; Seyfried, Hartmut

    2010-10-01

    The Lein valley in southwestern Germany possesses well-preserved Pliocene to mid Pleistocene land surfaces featuring a gentle relief and sediments accumulated by former tributaries of the Danube. This ancient Danubian land surface was captured and incised by mid Pleistocene to Holocene tributaries of the River Rhine. In a photogrammetric approach we calculated the volume of material extracted by Rhenish erosion providing a first quantification of the effects of stream piracy on timescales of about 1 Ma. Using stereoscopic surface modelling software a DEM was generated with a resolution of 5 m. From borehole data, literature, geological maps, and own field observations we determined the morphometric parameters of the ancient Danubian Ur-Lein valley. The gradient was imported as a 3D-breakline into the model where it controls the reinterpolation of surrounding data points. The result is a high-resolution DEM of the valley of the Ur-Lein. Subtraction of the DEM of the actual landscape from the DEM of the ancient Ur-Lein valley yields a model representing the rock volume eroded by the Rhenish Lein which totals 1.39 km 3 and converts into a rate of erosion between 63 and 74 mm/ka over a period of 700 to 600 ka, respectively, in accordance with figures obtained elsewhere in Central Europe through cosmogenic nuclides. It reflects the dominance of frequent fluctuations in climate and is considered to be mainly a product of strong changes in temperature and related processes during the transitional times between mid to late Pleistocene warm and cold states. A filtering procedure applied to cold and transitional state erosion rates of the Middle and Late Pleistocene yielded peak values between 66 and 77 mm/ka, up to three times higher than the modern rate or the rate of warm-state episodes. An assessment of the contribution of Rhenish stream piracy on long-term mid Pleistocene denudation under changing climate conditions resulted in a maximum 4.9-fold acceleration.

  16. Erosi Tanah Akibat Operasi Pemanenan Hutan (Soil Erosion Caused by Forest Harvesting Operations

    Directory of Open Access Journals (Sweden)

    Ujang Suwarna

    2011-05-01

    Full Text Available Forest harvesting operation has been known as an activity that should be considered as the main cause of soil erosion. Indonesia, the second largest owner of tropical forest, should have a serious consideration to the operation.  Therefore, the study was conducted in logged over area of a natural production forest.  The objectives of the study was to examine level of soil erosion caused by forest harvesting operations and to analyze a strategy to control level of the erosion based on its influencing factors. The study showed that forest harvesting operations caused soil erosion.  Factors that influenced the high level of the erosion were high level of precipitation, lack on planning of forest harvesting operations, no applying treatment of cross drain and cover crop in the new skidding roads, no culture of carefulness in the operations, and low human resource capacity in applying environmentally friendly forest harvesting techniques. Keywords: soil erosion, forest harvesting, logged over area, skidding road

  17. Introduction to littoral erosion problem in Uraba (Arboletes-Turbo area) Colombian Caribbean Coast

    International Nuclear Information System (INIS)

    Correa; Ivan D; Vernette, Georges

    2004-01-01

    Shoreline retreat has been the net dominant historical trend along the 145 km-length littoral between Arboletes and Turbo (southern Caribbean of Colombia). For the last four decades, there were identified in this littoral shoreline retreat of about 50-100 m in several places (Uveros, Damaquiel, Zapata, Turbo) and a maximum of 1.6 km in the Punta Rey-Arboletes area, where land losses were of 4.5 km 2 , at exceptional rates of 40 rn/year. The synthesis of the available information suggest that the general susceptibility to erosion between Arboletes and turbo could be related primarily to relative sea level rise, associated to tectonic movements as well as to the effects of mud diapirism and hydroisostacy. In the more critical areas (Arboletes, Turbo), the natural erosive trends were accelerated by anthropic actions, including river diversion (Turbo), beach mining and inadequate (or total absence) practices for controlling residual and natural waters. Up to august 2000, there were invested about $ Col 10.000 billions in 155 engineering defenses (groins, sea walls and rip-rap which totalize 6.2 km of total length and a volume of materials of 37.000 m 3 ). With few exceptions, groins have not been successful and are now part of the problem, accelerating shore erosion along the adjacent sectors. In the short term, the littoral erosion between Arboletes and turbo is caused both by marine and by sub aerial factors. it is facilitated by the poor lithological strengths of cliffs and marine terraces, mainly composed of highly fractured and weathered claystones and mudstones (with stratification and weakness planes dipping toward sea) and non-consolidated, easily liquefacted, fine sediments; both conditions facilitate the occurrence of rocks falls, slides and mud flows that result in high figures of cliff retreat (3 to 4 m), specially during the first 15 days of the summer-winter transition (April) and in high waves periods. The case of the littoral erosion between Arboletes

  18. Application of a new criterion for assessing the susceptibility to internal erosion

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Garner, S.J. [BC Hydro, Burnaby, BC (Canada); Fannin, R.J. [British Columbia Univ., Vancouver, BC (Canada)

    2009-07-01

    Occasionally, internal erosion can occur in internally unstable soils that are subject to seepage flow. This paper presented a modification to the Kenney-Lau criterion for assessing susceptibility to internal erosion in widely-graded cohesionless soils. The original Kenney-Lau criterion and the newly-proposed Li-Fannin criteria were both used to evaluate the grading stability of filter and core materials from two zoned earthfill dams in British Columbia. Using a statistical approach, the criteria were applied to construction data to account for the many gradation curves available within the specification envelope for materials used in construction. The paper discussed the implications of the findings within the context of laboratory permeameter tests on the same soils, and also based on a sinkhole incident at one of the dams. It was concluded that the Kenney-Lau method appears to be less conservative for predicting the internal instability of widely graded materials. 16 refs., 5 figs.

  19. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    rejuvenation of the lithosphere. The onset time and the vigor of SSC and, hence, the new equilibrium thermal state of the lithosphere atop the plume wake depends on the Rayleigh number (Ra) in the unstable layer at the base of the lithosphere, which is controlled by the temperature anomaly and rheology in the plume-fed layer. For vigorous, hot plumes, SSC onset times do not depend on plate velocity. For more sluggish plumes, SSC onset times decrease with increasing plate velocity. This behavior is explained by differences in the thermal structure of the lithosphere, due to variations in the spreading behavior of the plume material at the lithosphere base. Reduction of the viscosity in partial molten areas and decrease in density of the depleted residuum enhance the vigor of small-scale convection in the plume-fed low-viscosity layer at the lithosphere base, leading to more effective erosion of the base of the lithosphere.

  20. Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting

    Science.gov (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-04-01

    during flushing events. Further, the photographs clearly show the erosional development of a UFCS (upstream-facing convex surface) feature with an upstream-facing surface full of impact marks, a sharp crest-line, and an adjacent downstream-facing surface preserved from sediment impacts. This pilot study documents that bedrock erosion painting provides an easy, cost-efficient and clear qualitative method for detecting the spatial distribution of bedrock erosion and inferring its controlling factors. Our results show that the susceptibility of a painted surface to abrasion is controlled by its position in the channel and its spatial orientation relative to the sediment-laden flow. Erosion painting is a scientifically useful form of graffiti that could be widely applied in both natural and laboratory settings, providing insight into patterns and processes of erosion.

  1. Effects of surface treatment on the cavitation erosion of high-chrome steel, zirconium, titanium and their alloys

    International Nuclear Information System (INIS)

    Marinin, V.G.

    1994-01-01

    The erosion resistance of some structural materials used for equipment components of the first and second circuits of NPPs is studied under cavitation created by an ultrasonic vibrator. It appears that after various thermomechanical treatments (programmed loading, low-temperature rolling) and coating deposition (titanium, zirconium and titanium nitride), the erosion resistance of the materials under consideration increases and the plasticity value is not notably modified. The titanium coatings deposited onto the steel increase the corrosion-fatigue resistance in a sodium chloride environment, in several cases

  2. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  3. Soil Erosion and Nutrient Losses control by Plant Covers: Environmental Implications for a Subtropical Agroecosystem (SE Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Pleguezuelo, C. R.; Duran-Zuazo, V. H.; Martin-Peinado, F. J.; Franco-Tarifa, D.; Martinez-Raya, A.; Francia-Martinez, J. R.; Carceles-Rodriguez, B.; Arroyo-Panadero, L.; Casado, J. P.

    2009-07-01

    Soil erosion, in addition to causing on-site loss of topsoil and reducing the productivity of the land, brings about major off-site environmental effects such as water body pollution and eutrophication. In the Mediterranean area, this fact is especially relevant where precipitation is characterized by scarcity, torrent storms and extreme variability in space and time. To study the effects of soil erosion runoff potential pollution we installed six erosion plots on the taluses of orchard terraces where an intensive irrigated agriculture based on subtropical crops has been established. (Author)

  4. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    Science.gov (United States)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  5. Evaluation of air jet erosion profiles in metal mesh supported SCR plate catalyst based on glass fiber concentrations

    Science.gov (United States)

    Rajath, S.; Nandakishora, Y.; Siddaraju, C.; Roy, Sukumar

    2018-04-01

    This paper explains the evaluation of erosion profiles in metal mesh supported SCR plate catalyst structures in which the glass fibers concentration in the catalyst material is considered as prime factor for erosion resistance and mechanical strength. The samples are prepared and tested at the specified and constant conditions like velocity as 30m/s, sand flow rate as 2g/min, average particle diameter 300 µm and all these samples were tested at different angles at impact preferably 15°,30°,45°,60°,75°,and 90° as per ASTM G76 standards. Say, if 5% glass fibers are present in catalyst material, then erosion resistance increases, but the density of glass fibers is very less because each glass fiber is approximately 20 microns in diameter and weight of individual is negligible. The composition in which 2% fiber is present has slightly higher erosion comparatively, but 3% glass fibers or more foreign inclusion like excessive binders can be eliminated that contributes much for the conversion of NOx. So 2% -3% glass fibers are preferred and optimized based on NOx conversion and erosion resistance property.

  6. Temperature-dependent erosivity of drinks in a model simulating oral fluid dynamics.

    Science.gov (United States)

    Steiger-Ronay, Valerie; Steingruber, Andrea; Becker, Klaus; Aykut-Yetkiner, Arzu; Wiedemeier, Daniel B; Attin, Thomas

    2018-03-01

    Aim of this investigation was to study the temperature-dependent in vitro enamel erosion of five acidic drinks and citric acid under controlled conditions in an artificial mouth. The erosive potential of Orange juice, Coca-Cola Zero, Sprite Zero, two fruit teas and citric acid (control) was investigated on bovine enamel specimens at temperatures between 5 °C and 55 °C. The pH values and total calcium content of all test drinks were determined. Specimens were immersed into an artificial mouth to imitate physiological oral conditions for 60 h. Cyclic de- and re-mineralization was performed, imitating the intake of six drinks in six h followed by a six-hour remineralization phase, where only artificial saliva ran over the specimens. Total erosive enamel loss was determined by contact profilometry. Differences in substance loss at different temperatures were tested for statistical significance (p-values ≤ 0.05) by means of ANOVA. Rising liquid temperature did not result in a considerable change of pH. Highest substance loss was observed for citric acid (33.6 ± 6 μm to 38.7 ± 6 μm), while only little erosion was induced by fruit tea (0.8 ± 1 μm to 5.9 ± 1 μm). Rising liquid temperature did not result in significantly increased substance loss for citric acid, orange juice and Coca-Cola Zero. Sprite Zero and both fruit teas, however, caused significantly (p < 0.001) more enamel loss at elevated temperature. Not all investigated drinks showed a temperature-induced change in erosivity. For some erosive beverages it can be recommended to keep the consummation temperature as low as possible to decrease the risk of erosive tooth substance loss. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Internal erosion under spillway rested on an embankment dam

    Directory of Open Access Journals (Sweden)

    Mohammad Sedghi-Asl

    2015-12-01

    Full Text Available In this paper we investigate the mechanism of internal erosion caused in the right abutment of the Shahghasem dam’s spillway. Shahghasem dam is an earthen dam located in Yasouj, in southwest of Iran. A significant hole and pipe have been observed in the corner of the right abutment from upstream view. The foundation is Marlstone, which has low cohesion and susceptible for internal erosion and piping in some conditions. Going through details of the design maps has shown that Lane’s criteria for selecting safe dimensions of the seepage control measures have not been considered properly. A series of the supportive walls are designed to attach to the right part of the spillway in order to increase the length of seepage. The pipe route of the erosion should also be grouted with high quality concrete.

  8. Enhancing rates of erosion and uplift through glacial perturbations

    Science.gov (United States)

    Norton, Kevin; Schlunegger, Fritz; Abbühl, Luca

    2010-05-01

    Research over the past decade has shown that the pattern of modern rock uplift in the Swiss Alps correlates with both long-term (thermochronometers) and short-term (cosmogenic nuclide-derived denudation rates, sediment loads, lake fills) measures of erosion. This correlation has been attributed alternately to isostatic causes (compensation to erosion and/or glacial unloading) and tectonic forces (ongoing collision and partial delamination). Of these potential driving forces, only isostatic compensation to erosion fits all available structural, geodetic, and flexural models. We explore this uplift-erosion relationship by analyzing river channel steepness for Alpine rivers. Zones of oversteepening, and hence enhanced stream power, are associated with glacial erosion and deposition during LGM and earlier glaciations, resulting in the focusing of erosion into the inner gorges which connect hanging tributary valleys to the main glacial trunk valley. These inner gorges are transient zones in which fluvial and hillslope processes are in the process of re-adjusting this glacially perturbed landscape. Bedrock properties also play a major role in the response time of these adjustments. Glacially generated knickzones are located within 5 km of the trunk stream in the Rhone valley where resistant lithologies dominate (gneiss), whereas the knickzones have migrated as much as 10 km or further in the less resistant rocks (buendnerschists) of the Rhine valley. We suggest that the rock uplift pattern is controlled by surface denudation as set by the glacial-interglacial history of the Alps. Rapid, focused erosion results in rapid rock uplift rates in the Central Swiss Alps, where glaciers were most active. An interesting ramification of this reasoning is that in the absence of glacial perturbation, both rock uplift rates and denudation rates would be substantially lower in this isostatically compensated mountain belt.

  9. Material control system simulator user's manual

    International Nuclear Information System (INIS)

    Hollstien, R.B.

    1978-01-01

    This report describes the use of a Material Control System Simulator (MCSS) program for determination of material accounting uncertainty and system response to particular adversary action sequences that constitute plausible material diversion attempts. The program is intended for use in situations where randomness, uncertainty, or interaction of adversary actions and material control system components make it difficult to assess safeguards effectiveness against particular material diversion attempts

  10. Study on pipe wastage mechanism by liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Higashi, Yuma; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi; Ohmori, Shuichi; Mori, Michitsugu; Tezuka, Kenichi

    2009-01-01

    Evaluation of wastage speed for nuclear power plant maintains plant reliability and power up rating is important. There are two main cause of wastage flow accelerated corrosion (FAC) and mechanical erosion. This study is to develop evaluating the wastage speed by liquid droplet impingement erosion (LDIE). LDIE often occurs at downstream of corner of pipe or orifice. In this study, the liquid drop impinging tests were conducted with the test pieces mounted on a high speed rotating disk that cross thin water down jet and produced LDIE phenomena. The amount of the wastage by LDIE was evaluated by changing the rotational speed, the impingement frequency, and test piece materials. In addition, the generation mechanism of erosion was investigated by observing the surface of the test piece with a microscope. There is a method of evaluating by the mass difference before and after experiments. But this method is not correct because error becomes larger for mass measurement in the experiment, for the lost mass by LDIE is very little amount. Therefore, the method was developed to measure the volume in the erosion part. In this method, depth of LDIE was measured by the accuracy of ±0.01μm; therefore accurate measurement of the wastage can be improved. (author)

  11. Soil erosion in Iran: Issues and solutions

    Science.gov (United States)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    scale using the Taguchi method. Journal of Hydrology, 448, 174-180. Asadi, H., Moussavi, A., Ghadiri, H., Rose, C. W. 2011. Flow-driven soil erosion processes and the size selectivity of sediment. Journal of Hydrology, 406(1), 73-81. Asadi, H., Raeisvandi, A., Rabiei, B., Ghadiri, H. 2012. Effect of land use and topography on soil properties and agronomic productivity on calcareous soils of a semiarid region, Iran. Land Degradation & Development, 23(5), 496-504. Ayoubi, S., Ahmadi, M., Abdi, M. R., Abbaszadeh Afshar, F. 2012. Relationships of 137 Cs inventory with magnetic measures of calcareous soils of hilly region in Iran. Journal of environmental radioactivity, 112, 45-51. Ayoubi, S., Mokhtari Karchegani, P., Mosaddeghi, M. R., Honarjoo, N. 2012. Soil aggregation and organic carbon as affected by topography and land use change in western Iran. Soil and Tillage Research, 121, 18-26. Emadodin, I., Bork, H. R. 2012. Degradation of soils as a result of long-term human-induced transformation of the environment in Iran: an overview. Journal of Land Use Science, 7(2), 203-219. Emadodin, I., Narita, D., Bork, H. R. 2012. Soil degradation and agricultural sustainability: an overview from Iran. Environment, Development and Sustainability, 14(5), 611-625. Haddadchi, A., Nosrati, K., Ahmadi, F. 2014. Differences between the source contribution of bed material and suspended sediments in a mountainous agricultural catchment of western Iran. CATENA, 116, 105-113. Heshmati, M., Arifin, A., Shamshuddin, J., Majid, N. M. 2012. Predicting N, P, K and organic carbon depletion in soils using MPSIAC model at the Merek catchment, Iran. Geoderma, 175, 64-77. Jafari, R., Bakhshandehmehr, L. 2013. Quantitative mapping and assessment of environmentally sensitive areas to desertification in central Iran. Land Degradation & Development.DOI: 10.1002/ldr.2227 Kavian, A., Azmoodeh, A., Solaimani, K. 2014. Deforestation effects on soil properties, runoff and erosion in northern Iran. Arabian

  12. Erosion of water-based cements evaluated by volumetric and gravimetric methods.

    Science.gov (United States)

    Nomoto, Rie; Uchida, Keiko; Momoi, Yasuko; McCabe, John F

    2003-05-01

    To compare the erosion of glass ionomer, zinc phosphate and polycarboxylate cements using volumetric and gravimetric methods. For the volumetric method, the eroded depth of cement placed in a cylindrical cavity in PMMA was measured using a dial gauge after immersion in an eroding solution. For the gravimetric method, the weight of the residue of a solution in which a cylindrical specimen had been immersed was measured. 0.02 M lactic acid solution (0.02 M acid) and 0.1 M lactic acid/sodium lactate buffer solution (0.1 M buffer) were used as eroding solutions. The pH of both solutions was 2.74 and the test period was 24 h. Ranking of eroded depth and weight of residue was polycarboxylate>zinc phosphate>glass ionomers. Differences in erosion were more clearly defined by differences in eroded depth than differences in weight of residue. In 0.02 M acid, the erosion of glass ionomer using the volumetric method was effected by the hygroscopic expansion. In 0.1 M buffer, the erosion for polycarboxylate and zinc phosphate using the volumetric method was much greater than that using the gravimetric method. This is explained by cryo-SEM images which show many holes in the surface of specimens after erosion. It appears that zinc oxide is dissolved leaving a spongy matrix which easily collapses under the force applied to the dial gauge during measurement. The volumetric method that employs eroded depth of cement using a 0.1 M buffer solution is able to quantify erosion and to make material comparisons.

  13. Damage mechanisms and metallic materials development in multiphase flow

    International Nuclear Information System (INIS)

    Zheng, Yugui; Liu, Wei; Yao, Zhiming; Ke, Wei

    2002-01-01

    The investigation on the synergistic effects among corrosion, slurry erosion and cavitation erosion has special significance for hydraulic turbines operated in Yangtze River and Yellow River where the high concentration solid particles exist in water. Two typical metallic materials i.e. Cr-Mn-N stainless steel and Ni-Ti shapememory-alloy, and two typical materials used for hydraulic turbines 20SiMn and 0Cr13Ni5Mo as compared materials were selected in order to investigate the roles of work-hardening ability and martensitic transformation as well as pseudoelastics in damage mechanism in multiphase flow. Both modified rotating disk rig and ultrasonic vibration facility were used to simulate the possible damage mechanism of materials in multiphase flow. The effects of corrosion on cavitation erosion were investigated through adding 3wt% NaCl. The degradation mechanism was analyzed by electrochemical test, SEM observation, hardness and roughness measurement. The results showed that there was a strong synergistic interaction among electrochemical corrosion, slurry erosion and cavitation erosion for 20SiMn in liquid-solid two-phase medium. In contrast, corrosion played little role for 0Cr13Ni5Mo. Cr-Mn-N stainless steel with high Mn content showed better resistance to cavitation erosion and slurry erosion than 0Cr13Ni5Mo, which was mainly due to its good work-hardening ability as well as strain-induced martensite transformation. The cavitation micro-cracks for Cr-Mn-N stainless steel were parallel to the specimen surface in contrast with 0Cr13Ni5Mo whose micro-cracks were perpendicular to the surface. Ni-Ti alloy with pseudoelasticity showed excellent resistance to combined interaction of cavitation erosion and slurry erosion

  14. Transient and steady-state erosion of in-situ reinforced silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Karasek, K.R. [Allied Signal Research and Technology, Des Plaines, IL (United States); Whalen, P.J. [Allied Signal, Inc., Morristown, NJ (United States); Rateick, R.G. Jr. [Allied Signal Aerospace, South Bend, IN (United States); Hamilton, A.C. [Michigan Technological Univ., Houghton, MI (United States); Routbort, J.L. [Argonne National Lab., IL (United States)

    1994-10-01

    Relative to most other materials silicon nitride is very erosion resistant. However, the resulting surface flaws degrade strength - a serious concern for component designers. AlliedSignal Ceramic Components GS-44 in-situ reinforced silicon nitride was eroded in a slinger apparatus. Both transient (extremely low level) and steady-state erosion regimes were investigated. Alumina particles with effective average diameters of 140 Jim and 63 {mu}m were used at velocities of 50 m/s, 100 m/s, and 138 m/s. Biaxial tensile strength was measured. Strength decreased by about 15% after a very small erodent dosage and then remained virtually constant with further erosion. In-situ reinforcement produces R-curve behavior in which the fracture toughness increases with crack size. The effect of this is quite dramatic with strength loss being significantly less than expected for a normal silicon nitride with constant fracture toughness.

  15. Flexural strength of fluorapatite-leucite and fuorapatite porcelains exposed to erosive agents in cyclic immersion

    Directory of Open Access Journals (Sweden)

    Peerapong Junpoom

    2011-04-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the fexural strength of two porcelain materials (IPS d.SIGN and IPS e.max Ceram exposed to erosive agents. MATERIAL AND METHODS: One hundred and twenty bar-shaped specimens were made from each of fuorapatite-leucite porcelain (IPS d.SIGN and fuorapatite porcelain (IPS e.max Ceram and divided into 8 groups of 15 specimens each. Six groups were alternately immersed in the following storage agents for 30 min: deionized water (control, citrate buffer solution, pineapple juice, green mango juice, cola soft drink and 4% acetic acid. Then, they were immersed for 5 min in deionized water at 37ºC. Seven cycles were completed, totalizing 245 min. A 7th group was continuously immersed in 4% acetic acid at 80ºC for 16 h. The final, 8th, group was stored dry at 37ºC for 245 min. Three-point bending tests were performed in a universal testing machine. The data were analyzed statistically by 2-way ANOVA, Tukey's HSD test and t-test at signifcance level of 0.05. RESULTS: The fexural strengths of all groups of each porcelain after exposure to erosive agents in cyclic immersion did not differ signifcantly (p>0.05. For both types of porcelain, dry storage at 37ºC yielded the highest fexural strength, though without signifcant difference from the other groups (p>0.05. The fexural strengths of all groups of fuorapatite porcelains were signifcantly higher (p<0.05 than those of the fuorapatite-leucite porcelains. CONCLUSIONS: This study demonstrated that the erosive agents evaluated did not affect the fexural strength of the tested dental porcelains.

  16. Erosion corrosion in power plant piping systems - Calculation code for predicting wall thinning

    International Nuclear Information System (INIS)

    Kastner, W.; Erve, M.; Henzel, N.; Stellwag, B.

    1990-01-01

    Extensive experimental and theoretical investigations have been performed to develop a calculation code for wall thinning due to erosion corrosion in power plant piping systems. The so-called WATHEC code can be applied to single-phase water flow as well as to two-phase water/steam flow. Only input data which are available to the operator of the plant are taken into consideration. Together with a continuously updated erosion corrosion data base the calculation code forms one element of a weak point analysis for power plant piping systems which can be applied to minimize material loss due to erosion corrosion, reduce non-destructive testing and curtail monitoring programs for piping systems, recommend life-extending measures. (author). 12 refs, 17 figs

  17. Erosion processes acting in semi-arid climate zone of the Ebro Basin (Bardenas Reales, NE of Spain)

    International Nuclear Information System (INIS)

    Marin, C.; Desir, G.

    2009-01-01

    Bardenas Reales is an erosive depression located in the central-western part of the Ebro Depression. May different erosion processes act on this zone: gullying, piping, mud slides and armoured mud balls among others that contribute to export great quantity of material outside the basin. Depending on lithology and physico-chemical properties erosion acting processes differ. The knowledge of that processes help us to understand the great amount of soil loss that take place on the studied zone, bigger than those recommended. (Author) 8 refs.

  18. Consideration of some fundamental erosion processes encountered in hypervelocity electromagnetic propulsion

    International Nuclear Information System (INIS)

    Buckingham, A.C.; Hawke, R.S.

    1982-01-01

    Experimental and theoretical research has been conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams have been launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressures in the tens of megabars range are obtained for high pressure equation-of-state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The heating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined. It is found that while frictional heating and consequent sliding contact erosion are minor contributors to the overall erosion process, the same cannot be said for plasma impingement, penetration, and almost simultaneous induction current (Joule) heating

  19. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.; Buzhinskij, O.I.; Opimach, I.V.

    1998-08-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point (OSP) of two divertor plasma conditions: attached (T e > 40 eV) ELMing plasmas, and detached (T e 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood. In the attached cases, physical sputtering (with enhancement from self-sputtering and oblique incidence) is dominant, and the effective sputtering yield, Y, is greater than 10%. In ELM-free discharges, the total OSP net erosion rate is equal to the rate of carbon accumulation in the core plasma. For the detached divertor cases, the cold incident plasma eliminates physical sputtering. Attempts to measure chemically eroded hydrocarbon molecules spectroscopically indicate an upper limit of Y ≤ 0.1% for the chemical sputtering yield. Net erosion is suppressed at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/exposure-year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates at the OSP of an attached plasma (∼ 10 microm/s > 1,000x erosion rate of aligned surfaces). Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  20. Dental erosion--an overview with emphasis on chemical and histopathological aspects.

    Science.gov (United States)

    Lussi, A; Schlueter, N; Rakhmatullina, E; Ganss, C

    2011-01-01

    The quality of dental care and modern achievements in dental science depend strongly on understanding the properties of teeth and the basic principles and mechanisms involved in their interaction with surrounding media. Erosion is a disorder to which such properties as structural features of tooth, physiological properties of saliva, and extrinsic and intrinsic acidic sources and habits contribute, and all must be carefully considered. The degree of saturation in the surrounding solution, which is determined by pH and calcium and phosphate concentrations, is the driving force for dissolution of dental hard tissue. In relation to caries, with the calcium and phosphate concentrations in plaque fluid, the 'critical pH' below which enamel dissolves is about 5.5. For erosion, the critical pH is lower in products (e.g. yoghurt) containing more calcium and phosphate than plaque fluid and higher when the concentrations are lower. Dental erosion starts by initial softening of the enamel surface followed by loss of volume with a softened layer persisting at the surface of the remaining tissue. Dentine erosion is not clearly understood, so further in vivo studies, including histopathological aspects, are needed. Clinical reports show that exposure to acids combined with an insufficient salivary flow rate results in enhanced dissolution. The effects of these and other interactions result in a permanent ion/substance exchange and reorganisation within the tooth material or at its interface, thus altering its strength and structure. The rate and severity of erosion are determined by the susceptibility of the dental tissues towards dissolution. Because enamel contains less soluble mineral than dentine, it tends to erode more slowly. The chemical mechanisms of erosion are also summarised in this review. Special attention is given to the microscopic and macroscopic histopathology of erosion. Copyright © 2011 S. Karger AG, Basel.