WorldWideScience

Sample records for erk jnk akt

  1. Membrane-Type 1 Matrix Metal loproteinase Is Regulated by Sp1 through the Differential Activation of AKT, JNK, and ERK Pathways in Human Prostate Tumor Cells

    Directory of Open Access Journals (Sweden)

    Isis C. Sroka

    2007-05-01

    Full Text Available We and other investigators have previously shown that membrane-type 1 matrix metalloproteinase (MT1-MMP is overexpressed in invasive prostate cancer cells. However, the mechanism for this expression is not known. Here, we show that MT1-MMP is minimally expressed in nonmalignant primary prostate cells, moderately expressed in DU-145 cells, and highly expressed in invasive PC-3 and PC-3N cells. Using human MT1-MMP promoter reporter plasmids and mobility shift assays, we show that Spi regulates MT1-MMP expression in DU-145, PC-3, and PC-3N cells and in PC3-N cells using chromatin immunoprecipitation analysis and silencing RNA. Investigation of signaling pathway showed that DU-145 cells express constitutively phosphorylated extracellular stress-regulated kinase (ERK, whereas PC-3 and PC-3N cells express constitutively phosphorylated AKT/PKB and c-Jun NH2 terminal kinase (JNK. We show that MT1-MMP and Spi levels are decreased in PC-3 and PC-3N cells when phosphatidylinositol-3 kinase and JNK are inhibited, and that MT1-MMP levels are decreased in DU-145 cells when MEK is inhibited. Transient transfection of PC-3 and PC-3N cells with a dominant-negative JNK or p85, and of DU-145 cells with a dominant negative ERK, reduces MT1-MMP promoter activity. These results indicate differential signaling control of Spi-mediated transcriptional regulation of MT1-MMP in prostate cancer cell lines.

  2. NGF Accelerates Cutaneous Wound Healing by Promoting the Migration of Dermal Fibroblasts via the PI3K/Akt-Rac1-JNK and ERK Pathways

    Directory of Open Access Journals (Sweden)

    Ji-Cai Chen

    2014-01-01

    Full Text Available As a well-known neurotrophic factor, nerve growth factor (NGF has also been extensively recognized for its acceleration of healing in cutaneous wounds in both animal models and randomized clinical trials. However, the underlying mechanisms accounting for the therapeutic effect of NGF on skin wounds are not fully understood. NGF treatment significantly accelerated the rate of wound healing by promoting wound reepithelialization, the formation of granulation tissue, and collagen production. To explore the possible mechanisms of this process, the expression levels of CD68, VEGF, PCNA, and TGF-β1 in wounds were detected by immunohistochemical staining. The levels of these proteins were all significantly raised in NGF-treated wounds compared to untreated controls. NGF also significantly promoted the migration, but not the proliferation, of dermal fibroblasts. NGF induced a remarkable increase in the activity of PI3K/Akt, JNK, ERK, and Rac1, and blockade with their specific inhibitors significantly impaired the NGF-induced migration. In conclusion, NGF significantly accelerated the healing of skin excisional wounds in rats and the fibroblast migration induced by NGF may contribute to this healing process. The activation of PI3K/Akt, Rac1, JNK, and ERK were all involved in the regulation of NGF-induced fibroblast migration.

  3. Cell differentiation dependent expressed CCR6 mediates ERK-1/2, SAPK/JNK, and Akt signaling resulting in proliferation and migration of colorectal cancer cells.

    Science.gov (United States)

    Brand, Stephan; Olszak, Torsten; Beigel, Florian; Diebold, Joachim; Otte, Jan-Michel; Eichhorst, Soeren T; Göke, Burkhard; Dambacher, Julia

    2006-03-01

    The expression of CCL20 (MIP-3alpha), which chemoattracts leukocytes to sites of inflammation, has been shown in intestinal epithelial cells (IEC). Aim of this study was to analyze the role of the CCL20 receptor CCR6 in IEC and colorectal cancer (CRC) cells. Expression of CCR6 and CCL20 was analyzed by RT-PCR and immunohistochemistry. Signaling was investigated by Western blotting, proliferation by MTS assays and chemotactic cell migration by wounding assays. The effect of CCL20 on Fas-induced apoptosis was determined by flow cytometry. CCR6 and its ligand CCL20 are expressed in IEC. Moreover, CRC and CRC metastases express CCR6, which is upregulated during IEC differentiation. Stimulation of IEC with CCL20 and proinflammatory stimuli (TNF-alpha, IL-1beta, LPS) significantly upregulates CCL20 mRNA expression. CCL20 expression was significantly increased in inflamed colonic lesions in Crohn's disease and correlated significantly with the IL-8 mRNA expression in these lesions (r = 0.71) but was downregulated in CRC metastases. CCL20 activated Akt, ERK-1/2, and SAPK/JNK MAP kinases and increased IL-8 protein expression. The CCL20 mediated activation of these pathways resulted in a 2.6-fold increase of cell migration (P = 0.001) and in a significant increase of cell proliferation (P differentiation. CCR6 mediated signals result in increased IEC migration and proliferation suggesting an important role in intestinal homeostasis and intestinal inflammation by mediating chemotaxis of IEC but also in mediating migration of CRC cells. 2005 Wiley-Liss, Inc.

  4. Ethanol Extracts of Fruiting Bodies of Antrodia cinnamomea Suppress CL1-5 Human Lung Adenocarcinoma Cells Migration by Inhibiting Matrix Metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ying-Yi Chen

    2012-01-01

    Full Text Available Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea, a medicinal mushroom in Taiwan, has shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC exerted a concentration-dependent inhibitory effect on migration and motility of the highly metastatic CL1-5 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activities of matrix metalloproteinase-(MMP- 2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, that is, tissue inhibitors of MMP (TIMP-1 and TIMP-2 increased. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of Akt. Furthermore, treatment of CL1-5 cells with inhibitors specific for PI3K (LY 294002, ERK1/2 (PD98059, JNK (SP600125, and p38 MAPK (SB203580 decreased the expression of MMP-2 and MMP-9. This is the first paper confirming the antimigration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-5 cancer cells.

  5. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Su [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Park, Ji-Yun [Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of); Kang, Hyo-Jin [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Hyung-Jin [Department of Microbiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Lee, Jun, E-mail: omslee@wku.ac.kr [Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Bonecell Biotech Inc., 77, Dunsan-dong, Seo-gu, Daejeon 302-830 (Korea, Republic of)

    2014-08-08

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  6. Fucoidan/FGF-2 induces angiogenesis through JNK- and p38-mediated activation of AKT/MMP-2 signalling

    International Nuclear Information System (INIS)

    Kim, Beom Su; Park, Ji-Yun; Kang, Hyo-Jin; Kim, Hyung-Jin; Lee, Jun

    2014-01-01

    Graphical abstract: Schematic diagram of the angiogenic activity mechanism by FGF-2/fucoidan treatment in HUVECs. Fucoidan enhances the FGF-2-induced phosphorylation of p38, JNK, and ERK MAPKs. However, p38 and JNK were involved in AKT phosphorylation and MMP-2 activation and resulted in enhanced angiogenic activity, such as tube formation and migration, in HUVECs. - Highlights: • The angiogenic activity of fucoidan in HUVECs was explored. • Fucoidan enhanced HUVEC proliferation, migration, and tube formation. • Fucoidan enhanced angiogenesis through p38 and JNK but not ERK in HUVECs. • Fucoidan targeted angiogenesis-mediated AKT/MMP-2 signalling in HUVECs. - Abstract: Angiogenesis is an important biological process in tissue development and repair. Fucoidan has previously been shown to potentiate in vitro tube formation in the presence of basic fibroblast growth factor (FGF-2). However, the underlying molecular mechanism remains largely unknown. This study was designed to investigate the action of fucoidan in angiogenesis in human umbilical vein endothelial cells (HUVECs) and to explore fucoidan-signalling pathways. First, we evaluated the effect of fucoidan on cell proliferation. Matrigel-based tube formation and wound healing assays were performed to investigate angiogenesis. Matrix metalloproteinase-2 (MMP-2) mRNA expression and activity levels were analysed by reverse transcription polymerase chain reaction (RT-PCR) and zymography, respectively. Additionally, phosphorylation of mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) was detected by Western blot. The results indicate that fucoidan treatment significantly increased cell proliferation in the presence of FGF-2. Moreover, compared to the effect of FGF-2 alone, fucoidan and FGF-2 had a greater effect on tube formation and cell migration, and this effect was found to be synergistic. Furthermore, fucoidan enhanced the phosphorylation of extracellular signal-regulated kinase (ERK

  7. Epiregulin can promote proliferation of stem cells from the dental apical papilla via MEK/Erk and JNK signalling pathways.

    Science.gov (United States)

    Cao, Y; Xia, D S; Qi, S R; Du, J; Ma, P; Wang, S L; Fan, Z P

    2013-08-01

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but their molecular mechanisms of differentiation and proliferation remain unclear; this situation has restricted use of MSCs to a limited number of applications. A previous study of ours found a member of the epidermal growth factor family, epiregulin (EREG), to be involved in regulation of MSC differentiation. In the present study, we have used human dental stem cells from the apical papilla (SCAPs) to investigate the role of EREG on proliferation of MSCs. SCAPs were isolated from apical papillae of immature third molars. Retroviral short hairpin RNA (shRNA) was used to silence EREG gene expression, and human recombinant EREG protein was used to stimulate SCAPs. SCAP proliferation was examined using tetrazolium dye colorimetric assay/cell growth curve. Western blotting was performed to detect expressions of extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), mitogen-activated protein kinases 1 and 2 (MEK1/2), protein kinase B (Akt), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK). Depletion of EREG with shRNA inhibited SCAP proliferation and repressed phosphorylation of Erk1/2 and JNK. Human recombinant EREG protein promoted cell proliferation and enhanced Erk1/2, MEK and JNK phosphorylation in SCAPs. Furthermore, blocking MEK/Erk signalling with specific Erk1/2 inhibitor PD98059, or JNK signalling with specific inhibitor SP600125, abolished effects of EREG on cell proliferation. These findings indicate that EREG could enhance cell proliferation in dental tissue-derived MSCs by activating MEK/Erk and JNK signalling pathways. © 2013 John Wiley & Sons Ltd.

  8. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  9. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    International Nuclear Information System (INIS)

    Ham, Young-Mi; Mahoney, Sarah Jane

    2013-01-01

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors

  10. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via the ERK1/2 and JNK pathways.

    Science.gov (United States)

    Makino, T; Jinnin, M; Muchemwa, F C; Fukushima, S; Kogushi-Nishi, H; Moriya, C; Igata, T; Fujisawa, A; Johno, T; Ihn, H

    2010-04-01

    Basic fibroblast growth factor (bFGF, FGF-2) has been described as a multipotent cytokine that regulates cell growth as well as differentiation, matrix composition, chemotaxis, cell adhesion and migration in numerous cell types. It is known that bFGF stimulates proliferation of cultured fibroblasts. However, the detailed mechanism of fibroblast proliferation induced by bFGF in vitro still remains to be elucidated. Objectives We investigated the precise effects of bFGF on fibroblast proliferation and the signalling pathways responsible for bFGF-induced proliferation in cultured human dermal fibroblasts (HDFs). HDFs were cultured with bFGF in the presence or absence of specific inhibitors against MAPK signalling pathways including ERK, JNK and p38. The number of cells was counted and immunoblotting findings were examined for the activation of ERK1/2 and JNK. Furthermore, the inhibitory effects of ERK1, ERK2 and JNK1 were proven by the transfection of siRNA. bFGF increased the number of HDFs in a dose- and time-dependent manner. The bFGF-induced proliferation was suppressed by the MEK inhibitors PD98059 and U0126, and the JNK inhibitor SP600125. bFGF increased the phosphorylation levels of ERK1/2 and JNK1. Treatment with ERK1, ERK2 or JNK1 siRNA significantly inhibited bFGF-induced proliferation. This study indicates that ERK1/2 and JNK pathways play an important role in the bFGF-mediated effect in HDFs. This study also suggests that controlling ERK1/2 and/or JNK signalling may therefore be a new therapeutic approach for the treatment of chronic and untreatable skin ulcers.

  11. 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cell death through modulating PI3K/Akt and JNK pathways.

    Science.gov (United States)

    Han, Xiao-Hua; Cheng, Meng-Nan; Chen, Lei; Fang, Hui; Wang, Li-Juan; Li, Xue-Ting; Qu, Zhi-Qiang

    2014-10-03

    We have recently shown that 7,8-dihydroxyflavone (7,8-DHF) protects PC12 cells against 6-OHDA-induced cytotoxicity through its antioxidant activity. In the present study, we investigated the molecular mechanisms underlying the neuronal protective activity of 7,8-DHF. Western blot analysis showed that 6-OHDA (100μM, 24h) enhanced the phosphorylation of JNK and ERK1/2, but it markedly suppressed the expression of p-Akt, implying that 6-OHDA induces PC12 cell death through activating the pro-apoptotic MAPKs pathway but suppressing the survival PI3K/Akt pathway. More importantly, addition of 7,8-DHF fully prevented the activation of JNK and suppression of Akt induced by 6-OHDA. Interestingly, pretreatment with the PI3K-specific inhibitor LY294002 largely blocked 7,8-DHF function in protecting PC12 cells from 6-OHDA-induced cell death. In contrast, the MEK inhibitor PD98059 showed little effect on the protective activity of 7,8-DHF. These results suggest that 7,8-DHF might protect PC12 cells from 6-OHDA-induced cell death through activating PI3K/Akt pathway and inhibiting JNK pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Benoit Langlois

    Full Text Available BACKGROUND: The low-density lipoprotein receptor-related protein-1 (LRP-1 is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. METHODOLOGY/PRINCIPAL FINDINGS: Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. CONCLUSIONS: We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion.

  13. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  14. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions

    Directory of Open Access Journals (Sweden)

    Salvadore Christopher

    2004-09-01

    Full Text Available Abstract Background The mitogen-activated protein kinases (MAPKs have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2 has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6, were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE binding (CREB protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined. Results A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3 were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold. Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex areas. Conclusions Swim stress specifically and markedly

  15. Aloe-emodin suppresses esophageal cancer cell TE1 proliferation by inhibiting AKT and ERK phosphorylation

    Science.gov (United States)

    Chang, Xiaobin; Zhao, Jimin; Tian, Fang; Jiang, Yanan; Lu, Jing; Ma, Junfen; Zhang, Xiaoyan; Jin, Guoguo; Huang, Youtian; Dong, Zigang; Liu, Kangdong; Dong, Ziming

    2016-01-01

    Aberrant AKT and extracellular signal-regulated kinase (ERK) activation is often observed in various human cancers. Both AKT and ERK are important in the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase kinase/ERK signaling pathways, which play vital roles in cell proliferation, differentiation and survival. Compounds that are able to block these pathways have therefore a promising use in cancer treatment and prevention. The present study revealed that AKT and ERK are activated in esophageal cancer TE1 cells. Aloe-emodin, an anthraquinone present in aloe latex, can suppress TE1 cell proliferation and anchor-independent cell growth. Aloe-emodin can also reduce the number of TE1 cells in S phase. Protein analysis indicated that aloe-emodin inhibits the phosphorylation of AKT and ERK in a dose-dependent manner. Overall, the present data indicate that aloe-emodin can suppress TE1 cell growth by inhibiting AKT and ERK phosphorylation, and suggest its clinical use for cancer therapy. PMID:27602169

  16. Apoptosis Induction of Human Prostate Carcinoma DU145 Cells by Diallyl Disulfide via Modulation of JNK and PI3K/AKT Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Young Hyun Yoo

    2012-11-01

    Full Text Available Diallyl disulfide (DADS, a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound's anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4 and Fas ligand (FasL proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs, including extracellular-signal regulating kinase (ERK, p38 MAPK and c-Jun N-terminal kinase (JNK. A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059 and p38 MAPK (SB203580 had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells.

  17. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    International Nuclear Information System (INIS)

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing; Liao, Er-Yuan

    2013-01-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  18. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing, E-mail: allenylq@hotmail.com; Liao, Er-Yuan, E-mail: eyliao@21cn.com

    2013-11-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  19. Reactive oxygen species mediate nitric oxide production through ERK/JNK MAPK signaling in HAPI microglia after PFOS exposure

    International Nuclear Information System (INIS)

    Wang, Cheng; Nie, Xiaoke; Zhang, Yan; Li, Ting; Mao, Jiamin; Liu, Xinhang; Gu, Yiyang; Shi, Jiyun; Xiao, Jing; Wan, Chunhua; Wu, Qiyun

    2015-01-01

    Perfluorooctane sulfonate (PFOS), an emerging persistent contaminant that is commonly encountered during daily life, has been shown to exert toxic effects on the central nervous system (CNS). However, the molecular mechanisms underlying the neurotoxicity of PFOS remain largely unknown. It has been widely acknowledged that the inflammatory mediators released by hyper-activated microglia play vital roles in the pathogenesis of various neurological diseases. In the present study, we examined the impact of PFOS exposure on microglial activation and the release of proinflammatory mediators, including nitric oxide (NO) and reactive oxidative species (ROS). We found that PFOS exposure led to concentration-dependent NO and ROS production by rat HAPI microglia. We also discovered that there was rapid activation of the ERK/JNK MAPK signaling pathway in the HAPI microglia following PFOS treatment. Moreover, the PFOS-induced iNOS expression and NO production were attenuated after the inhibition of ERK or JNK MAPK by their corresponding inhibitors, PD98059 and SP600125. Interestingly, NAC, a ROS inhibitor, blocked iNOS expression, NO production, and activation of ERK and JNK MAPKs, which suggested that PFOS-mediated microglial NO production occurs via a ROS/ERK/JNK MAPK signaling pathway. Finally, by exposing SH-SY5Y cells to PFOS-treated microglia-conditioned medium, we demonstrated that NO was responsible for PFOS-mediated neuronal apoptosis. - Highlights: • PFOS exposure induced expression of iNOS and production of NO in HAPI microglia. • PFOS induced the production of ROS in HAPI microglia. • ERK/JNK MAPK pathways were activated following PFOS exposure in HAPI microglia. • NO released by HAPI microglia participated in the apoptosis of SH-SY5Y cells.

  20. TGFβ1 induces apoptosis in invasive prostate cancer and bladder cancer cells via Akt-independent, p38 MAPK and JNK/SAPK-mediated activation of caspases

    International Nuclear Information System (INIS)

    Al-Azayzih, Ahmad; Gao, Fei; Goc, Anna; Somanath, Payaningal R.

    2012-01-01

    Highlights: ► TGFβ induced apoptosis in invasive prostate cancer and bladder cancer cells. ► TGFβ inhibited prostate/bladder cancer cell proliferation and colony/foci formation. ► TGFβ induced prostate/bladder cancer cell apoptosis independent of Akt inhibition. ► TGFβ inhibited ERK1/2 phosphorylation in prostate/bladder cancer cells. ► TGFβ induced p38 MAPK and JNK-mediated activation of caspases-9, -8 and -3. -- Abstract: Recent findings indicate that advanced stage cancers shun the tumor suppressive actions of TGFβ and inexplicably utilize the cytokine as a tumor promoter. We investigated the effect of TGFβ1 on the survival and proliferation of invasive prostate (PC3) and bladder (T24) cancer cells. Our study indicated that TGFβ1 decreased cell viability and induced apoptosis in invasive human PC3 and T24 cells via activation of p38 MAPK-JNK-Caspase9/8/3 pathway. Surprisingly, no change in the phosphorylation of pro-survival Akt kinase was observed. We postulate that TGFβ1 pathway may be utilized for specifically targeting urological cancers without inflicting side effects on normal tissues.

  1. H₂S attenuates cognitive deficits through Akt1/JNK3 signaling pathway in ischemic stroke.

    Science.gov (United States)

    Wen, Xiangru; Qi, Dashi; Sun, Ying; Huang, Xiaojing; Zhang, Fang; Wu, Jian; Fu, Yanyan; Ma, Kai; Du, Yang; Dong, Hongyan; Liu, YongHai; Liu, Hongzhi; Song, Yuanjian

    2014-08-01

    Neuronal damage in the hippocampal formation which is more sensitive to ischemic stimulation and easily injured will cause severe learning and memory impairment. Therefore, inhibiting hippocampal neuron injuries is the main contributor for learning and memory impairment during cerebral ischemia. Hydrogen sulfide (H2S) is a new type of neurotransmitter that regulates the nervous, circulatory and immune systems as well as various adverse factors that can reduce cerebral vascular or brain parenchyma injury. During an ischemic stroke, H2S inhibits hippocampal neuronal damage, reducing learning and memory impairment. However, this molecular mechanism has not been elucidated clearly. In this study, we established four-vessel occlusion model in rats with cerebral ischemia. We found that NaHS (28 mmol/kg, intraperitoneally, for 7 days before ischemia), donor of H2S, significantly shortened the distance and time of loading onto the hidden platform in the positioning navigation process, decreased the latency in the space exploration process when cognitive testing with Morris water maze was performed during ischemic stroke in rats. NaHS also significantly shortened latency and reduced the number of errors in the platform diving experiment. The survival rate of neurons in the CA1 area of the hippocampus and the phosphorylation of Akt in the neurons were increased, the phosphorylation ASK1 and JNK3 were inhibited by NaHS. After an intracerebroventricular injection of LY294002 (inhibitor of PI3K/Akt, 10 μL, 100 nmol in 25% DMSO in PBS), the above effects of NaHS were attenuated. These findings suggest that H2S may improve the survival rate of hippocampal neurons and reduce the impairment of learning and memory by increasing the phosphorylation of Akt, inhibiting the phosphorylation of ASK1 and JNK3 in rats with induced ischemic stroke. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Effect of Bee Venom on COX-2, P38, ERK and JNK in RAW 264.7 Cells

    Directory of Open Access Journals (Sweden)

    Jae-Young Sim

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide(LPS, sodium nitroprusside(SNP, hydrogen peroxide(H2O2-induced expressions of cyclooxygenase-2(COX-2, p38, jun N-terminal Kinase(JNK and extra-signal response kinase(ERK in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of COX-2, p38, JNK and ERK were determined by western blotting with corresponding antibodies.\\ Results : 1. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly H2O2-induced expression of COX-2 compared with control, respectively. 2. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited significantly LPS, SNP and H2O2-induced expression of p38 compared with control, respectively. 3. The 1 and 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of JNK compared with control, respectively. All of bee venom inhibited insignificantly LPS and H2O2-induced expression of JNK compared with control, respectively. 4. The 5 ㎍/㎖ of bee venom inhibited significantly SNP-induced expression of ERK, the 0.5 ㎍/㎖ of bee venom increased significantly H2O2-induced expression of ERK compared with control. The 0.5, 1 and 5 ㎍/㎖ of bee venom inhibited insignificantly LPS-induced expression of ERK compared with control, respectively.

  3. PME-1 is regulated by USP36 in ERK and Akt signaling pathways.

    Science.gov (United States)

    Kim, Soo-Yeon; Choi, Jihye; Lee, Da-Hye; Park, Jun-Hyeok; Hwang, Young-Jae; Baek, Kwang-Hyun

    2018-03-25

    Deubiquitinating enzymes (DUBs) play an important role in the ubiquitin-proteasome system (UPS) by eliminating ubiquitins from substrates and inhibiting proteasomal degradation. Protein phosphatase methylesterase 1 (PME-1) inactivates protein phosphatase 2A (PP2A) and enhances the ERK and Akt signaling pathways, which increase cell proliferation and malignant cell transformation. In this study, we demonstrate that USP36 regulates PME-1 through its deubiquitinating enzyme activity. USP36 increases PME-1 stability, and depletion of USP36 decreases the PME-1 expression level. Furthermore, we demonstrate that USP36 promotes the ERK and Akt signaling pathways. In summary, it is suggested that USP36 regulates PME-1 as a DUB and participates in the ERK and Akt signaling pathways. © 2018 Federation of European Biochemical Societies.

  4. Quercetin Inhibits Pulmonary Arterial Endothelial Cell Transdifferentiation Possibly by Akt and Erk1/2 Pathways

    Directory of Open Access Journals (Sweden)

    Shian Huang

    2017-01-01

    Full Text Available This study aimed to investigate the effects and mechanisms of quercetin on pulmonary arterial endothelial cell (PAEC transdifferentiation into smooth muscle-like cells. TGF-β1-induced PAEC transdifferentiation models were applied to evaluate the pharmacological actions of quercetin. PAEC proliferation was detected with CCK8 method and BurdU immunocytochemistry. Meanwhile, the identification and transdifferentiation of PAECs were determined by FVIII immunofluorescence staining and α-SMA protein expression. The related mechanism was elucidated based on the levels of Akt and Erk1/2 signal pathways. As a result, quercetin effectively inhibited the TGF-β1-induced proliferation and transdifferentiation of the PAECs and activation of Akt/Erk1/2 cascade in the cells. In conclusion, quercetin is demonstrated to be effective for pulmonary arterial hypertension (PAH probably by inhibiting endothelial transdifferentiation possibly via modulating Akt and Erk1/2 expressions.

  5. Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium

    International Nuclear Information System (INIS)

    Liu Zhiwei; Yu Xinyuan; Shaikh, Zahir A.

    2008-01-01

    Cadmium (Cd), an endocrine disruptor, can induce a variety of signaling events including the activation of ERK1/2 and AKT. In this study, the involvement of estrogen receptors (ER) in these events was evaluated in three human breast caner cell lines, MCF-7, MDA-MB-231, and SK-BR-3. The Cd-induced signal activation patterns in the three cell lines mimicked those exhibited in response to 17β-estradiol. Specifically, treatment of MCF-7 cells, that express ERα, ERβ and GPR30, to 0.5-10 μM Cd for only 2.5 min resulted in transient phosphorylation of ERK1/2. Cd also triggered a gradual increase and sustained activation of AKT during the 60 min treatment period. In SK-BR-3 cells, that express only GPR30, Cd also caused a transient activation of ERK1/2, but not of AKT. In contrast, in MDA-MB-231 cells, that express only ERβ, Cd was unable to cause rapid activation of either ERK1/2 or AKT. A transient phosphorylation of ERα was also observed within 2.5 min of Cd exposure in the MCF-7 cells. While the estrogen receptor antagonist, ICI 182,780, did not prevent the effect of Cd on these signals, specific siRNA against hERα significantly reduced Cd-induced activation of ERK1/2 and completely blocked the activation of AKT. It is concluded that Cd, like estradiol, can cause rapid activation of ERK1/2 and AKT and that these signaling events are mediated by possible interaction with membrane ERα and GPR30, but not ERβ

  6. Clearance of Damaged Mitochondria Through PINK1 Stabilization by JNK and ERK MAPK Signaling in Chlorpyrifos-Treated Neuroblastoma Cells.

    Science.gov (United States)

    Park, Jae Hyeon; Ko, Juyeon; Park, Yun Sun; Park, Jungyun; Hwang, Jungwook; Koh, Hyun Chul

    2017-04-01

    Mitochondrial quality control and clearance of damaged mitochondria through mitophagy are important cellular activities. Studies have shown that PTEN-induced putative protein kinase 1 (PINK1) and Parkin play central roles in triggering mitophagy; however, little is known regarding the mechanism by which PINK1 modulates mitophagy in response to reactive oxygen species (ROS)-induced stress. In this study, chlorpyrifos (CPF)-induced ROS caused mitochondrial damage and subsequent engulfing of mitochondria in double-membrane autophagic vesicles, indicating that clearance of damaged mitochondria is due to mitophagy. CPF treatment resulted in PINK1 stabilization on the outer mitochondrial membrane and subsequently increased Parkin recruitment from the cytosol to the abnormal mitochondria. We found that PINK1 physically interacts with Parkin in the mitochondria of CPF-treated cells. Furthermore, a knockdown of PINK1 strongly inhibited the LC3-II protein level by blocking Parkin recruitment. This indicates that CPF-induced mitophagy is due to PINK1 stabilization in mitochondria. We observed that PINK1 stabilization was selectively regulated by ROS-mediated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling activation but not p38 signaling. In the mitochondria of CPF-exposed cells, pretreatment with specific inhibitors of JNK and ERK1/2 significantly decreased PINK1 stabilization and Parkin recruitment and blocked the LC3-II protein level. Specifically, JNK and ERK1/2 inhibition also dramatically blocked the interaction between PINK1 and Parkin. Our results demonstrated that PINK1 regulation plays a critical role in CPF-induced mitophagy. The simple interpretation of these results is that JNK and ERK1/2 signaling regulates PINK1/Parkin-dependent mitophagy in the mitochondria of CPF-treated cells. Overall, this study proposes a novel molecular regulatory mechanism of PINK1 stabilization under CPF exposure.

  7. Cyclic Compressive Stress Regulates Apoptosis in Rat Osteoblasts: Involvement of PI3K/Akt and JNK MAPK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Fanglong Song

    Full Text Available It is widely accepted that physiological mechanical stimulation suppresses apoptosis and induces synthesis of extracellular matrix by osteoblasts; however, the effect of stress overloading on osteoblasts has not been fully illustrated. In the present study, we investigated the effect of cyclic compressive stress on rat osteoblasts apoptosis, using a novel liquid drop method to generate mechanical stress on osteoblast monolayers. After treatment with different levels of mechanical stress, apoptosis of osteoblasts and activations of mitogen-activated protein kinases (MAPKs and PI3-kinase (PI3K/Akt signaling pathways were investigated. Osteoblasts apoptosis was observed after treated with specific inhibitors prior to mechanical stimulation. Protein levels of Bax/Bcl-2/caspase-3 signaling were determined using western blot with or without inhibitors of PI3K/Akt and phosphorylation of c-jun N-terminal kinase (JNK MAPK. Results showed that mechanical stimulation led to osteoblasts apoptosis in a dose-dependent manner and a remarkable activation of MAPKs and PI3K/Akt signaling pathways. Activation of PI3K/Akt protected against apoptosis, whereas JNK MAPK increased apoptosis via regulation of Bax/Bcl-2/caspase-3 activation. In summary, the PI3K/Akt and JNK MAPK signaling pathways played opposing roles in osteoblasts apoptosis, resulting in inhibition of apoptosis upon small-magnitude stress and increased apoptosis upon large-magnitude stress.

  8. The Interplay of Akt and ERK in Aβ Toxicity and Insulin-Mediated Protection in Primary Hippocampal Cell Culture.

    Science.gov (United States)

    Ghasemi, Rasoul; Moosavi, Maryam; Zarifkar, Asadollah; Rastegar, Karim; Maghsoudi, Nader

    2015-11-01

    It is not known if insulin prevents Aβ-induced cell death, MAPK, and Akt activity in isolated hippocampal cell culture. This study was aimed to explore the effect of insulin on Aβ-induced cell death and ERK and Akt signaling alteration in isolated hippocampal cell culture. Additionally, it was desirable to assess if there is any interaction between these two pathways. The hippocampal cells were derived from fetuses at the embryonic day 18-19. The cells were treated with different drugs, and MTT assay, morphological assessments, and Western blot were done. Insulin prevented Aβ-induced cell death and caspase-3 cleavage. Aβ-induced toxicity was aligned with decrement of the phosphorylated Akt (pAkt) which was prevented by insulin. The PI3 kinase inhibitor, LY294002, decreased pAkt and abolished the protective effect of insulin. Aβ exposure increased phosphorylated ERK (pERK) in parallel with cell death and apoptosis. Insulin-inhibited ERK activation (phosphorylation) induced by Aβ and PD98059 (as ERK inhibitor) did not affect the protective effect of insulin. One of the interesting finding of this study was the interplay of Akt and ERK in Aβ toxicity and insulin-mediated protection; meaning that there is an inverse relation between pERK and pAkt, in a way that PI3-Akt pathway inhibition leads to pERK increment while ERK inhibition causes Akt phosphorylation (activation). This study showed, for the first time, that insulin protects against Aβ toxicity in isolated hippocampal cell culture via modulating Akt and ERK phosphorylation and also revealed an interaction between those signals in Aβ toxicity and insulin-mediated protection.

  9. JNK/ERK-AP-1/Runx2 induction "paves the way" to cartilage load-ignited chondroblastic differentiation.

    Science.gov (United States)

    Papachristou, Dionysios J; Pirttiniemi, Pertti; Kantomaa, Tuomo; Papavassiliou, Athanasios G; Basdra, Efthimia K

    2005-09-01

    Chondro-osteogenesis and subsequently skeletal morphology are greatly influenced by mechanical loads. The exact mechanism(s) by which mechanical stimuli are transduced in chondrocytes remains obscure and appears to be equally complex with similar signal transducing systems. Here we investigated whether and to what extent the MAPK (JNK/ERK)-AP-1/Runx2 signaling pathways are engaged in this phenomenon, and assessed their involvement in the functional biology of articular cartilage. For this purpose, 14-day-old female Wistar rats were divided into 2 groups: the first group was fed hard diet (simulating physiologic temporomandibular joint (TMJ) loading), while the second group was fed soft diet (reduced TMJ loading). On day 21 (experiment initiation day - weaning day), biopsies from condyles of both groups were obtained after 6, 12 and 48 h of functional TMJ loading. Immunohistochemical methodology was employed to evaluate the expression levels of pc-Jun, c-Fos, JNK2, p-JNK, p-ERK and Runx2 due to alteration in functional load. Our data demsonstrate that the protein levels of all the aforementioned molecules were markedly increased in animals fed with the hard diet, throughout the experimental procedure. These results indicate that functional cartilage loading induces the AP-1 and Runx2 transcription factors through the JNK and ERK MAPK cascades. In as much as the above signaling mediators/effectors are considered to be crucial in the differentiation/maturation process of cartilage tissue, we pose that functional mechanical loading of condylar cartilage serves to "fine tune" chondroblastic differentiation/maturation.

  10. The mechanism by which MEK/ERK regulates JNK and p38 activity in polyamine depleted IEC-6 cells during apoptosis

    Science.gov (United States)

    Bavaria, Mitul N.; Jin, Shi; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Polyamine-depletion inhibited apoptosis by activating ERK1/2, while, preventing JNK1/2 activation. MKP-1 knockdown by SiRNA increased ERK1/2, JNK1/2, and p38 phosphorylation and apoptosis. Therefore, we predicted that polyamines might regulate MKP1 via MEK/ERK and thereby apoptosis. We examined the role of MEK/ERK in the regulation of MKP1 and JNK, and p38 activities and apoptosis. Inhibition of MKP-1 activity with a pharmacological inhibitor, sanguinarine (SA), increased JNK1/2, p38, and ERK1/2 activities without causing apoptosis. However, pre-activation of these kinases by SA significantly increased camptothecin (CPT)-induced apoptosis suggesting different roles for MAPKs during survival and apoptosis. Inhibition of MEK1 activity prevented the expression of MKP-1 protein and augmented CPT-induced apoptosis, which correlated with increased activities of JNK1/2, caspases, and DNA fragmentation. Polyamine depleted cells had higher levels of MKP-1 protein and decreased JNK1/2 activity and apoptosis. Inhibition of MEK1 prevented MKP-1 expression and increased JNK1/2 and apoptosis. Phospho-JNK1/2, phospho-ERK2, MKP-1, and the catalytic subunit of protein phosphatase 2A (PP2Ac) formed a complex in response to TNF/CPT. Inactivation of PP2Ac had no effect on the association of MKP-1 and JNK1. However, inhibition of MKP-1 activity decreased the formation of the MKP-1, PP2Ac and JNK complex. Following inhibition by SA, MKP-1 localized in the cytoplasm, while basal and CPT-induced MKP-1 remained in the nuclear fraction. These results suggest that nuclear MKP-1 translocates to the cytoplasm, binds phosphorylated JNK and p38 resulting in dephosphorylation and decreased activity. Thus, MEK/ERK activity controls the levels of MKP-1 and, thereby, regulates JNK activity in polyamine-depleted cells. PMID:24253595

  11. Relative role of upstream regulators of Akt, ERK and CREB in NCAM- and FGF2-mediated signalling

    DEFF Research Database (Denmark)

    Ditlevsen, D.K.; Owczarek, S.; Berezin, V.

    2008-01-01

    with an NCAM ligand, the C3d peptide. NCAM-mediated ERK phosphorylation depended on activation of the fibroblast growth factor receptor (FGFR), Src-family kinases, MEK (MAP and ERK kinase) and G(0)/G(i)-proteins, whereas NCAM-mediated CREB phosphorylation depended on the activity of Src-family kinases and MEK...... for phosphorylation of ERK, Akt, and CREB. MEK was required for phosphorylation of ERK and CREB, but not Akt, whereas G(0)/G(i)-proteins were necessary for phosphorylation of Akt and CREB, and cGMP was necessary for Akt phosphorylation. We thus demonstrate that even though NCAM and FGF2 have many signalling features...

  12. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK

    Directory of Open Access Journals (Sweden)

    Chiou Shih-Hwa

    2010-07-01

    Full Text Available Abstract Background Islet transplantation provides a promising cure for Type 1 diabetes; however it is limited by a shortage of pancreas donors. Bone marrow-derived multipotent mesenchymal stem cells (MSCs offer renewable cells for generating insulin-producing cells (IPCs. Methods We used a four-stage differentiation protocol, containing neuronal differentiation and IPC-conversion stages, and combined with pellet suspension culture to induce IPC differentiation. Results Here, we report adding extracellular matrix proteins (ECM such as fibronectin (FN or laminin (LAM enhances pancreatic differentiation with increases in insulin and Glut2 gene expressions, proinsulin and insulin protein levels, and insulin release in response to elevated glucose concentration. Adding FN or LAM induced activation of Akt and ERK. Blocking Akt or ERK by adding LY294002 (PI3K specific inhibitor, PD98059 (MEK specific inhibitor or knocking down Akt or ERK failed to abrogate FN or LAM-induced enhancement of IPC differentiation. Only blocking both of Akt and ERK or knocking down Akt and ERK inhibited the enhancement of IPC differentiation by adding ECM. Conclusions These data prove IPC differentiation by MSCs can be modulated by adding ECM, and these stimulatory effects were mediated through activation of Akt and ERK pathways.

  13. Sulfuretin Attenuates MPP+-Induced Neurotoxicity through Akt/GSK3β and ERK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ramesh Pariyar

    2017-12-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease. It is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress and mitochondrial dysfunction contribute to the loss of dopaminergic neurons in PD. Sulfuretin is a potent antioxidant that is reported to be beneficial in the treatment of neurodegenerative diseases. In this study, we examined the protective effect of sulfuretin against 1-methyl-4-phenyl pyridinium (MPP+-induced cell model of PD in SH-SY5Y cells and the underlying molecular mechanisms. Sulfuretin significantly decreased MPP+-induced apoptotic cell death, accompanied by a reduction in caspase 3 activity and polyADP-ribose polymerase (PARP cleavage. Furthermore, it attenuated MPP+-induced production of intracellular reactive oxygen species (ROS and disruption of mitochondrial membrane potential (MMP. Consistently, sulfuretin decreased p53 expression and the Bax/Bcl-2 ratio. Moreover, sulfuretin significantly increased the phosphorylation of Akt, GSK3β, and ERK. Pharmacological inhibitors of PI3K/Akt and ERK abolished the cytoprotective effects of sulfuretin against MPP+. An inhibitor of GSK3β mimicked sulfuretin-induced protection against MPP+. Taken together, these results suggest that sulfuretin significantly attenuates MPP+-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways in SH-SY5Y cells. Our findings suggest that sulfuretin might be one of the potential candidates for the treatment of PD.

  14. The type III secretion system (T3SS) of Chlamydophila psittaci is involved in the host inflammatory response by activating the JNK/ERK signaling pathway.

    Science.gov (United States)

    He, Qing-zhi; Zeng, Huai-cai; Huang, Yan; Hu, Yan-qun; Wu, Yi-mou

    2015-01-01

    Chlamydophila psittaci (C. psittaci) is a human zoonotic pathogen, which could result in severe respiratory disease. In the present study, we investigated the role and mechanism of the type III secretion system (T3SS) of C. psittaci in regulating the inflammatory response in host cells. C. psittaci-infected THP-1 cells were incubated with the specific T3SS inhibitor INP0007, inhibitors of ERK, p38, or JNK, and the levels of inflammatory cytokines were analyzed using Q-PCR and ELISA. The levels of ERK, p38, and JNK phosphorylation were analyzed by Western blot. Our results verified that INP0007 inhibited chlamydial growth in vitro, but the coaddition of exogenous iron completely reversed the growth deficit. INP0007 inhibited the growth of C. psittaci and decreased the levels of IL-8, IL-6, TNF-α, and IL-1β. Exogenous iron restored the chlamydial growth but not the production of inflammatory cytokines. These results demonstrated that the expression of inflammatory cytokines during infection was associated with the T3SS which reduced by incubation with ERK and JNK inhibitors, but not with p38 inhibitor. We concluded that the T3SS elicited inflammatory responses by activating the JNK or ERK signaling pathways in the infection of C. psittaci.

  15. The JNK- and AKT/GSK3β- Signaling Pathways Converge to Regulate Puma Induction and Neuronal Apoptosis Induced by Trophic Factor Deprivation

    Science.gov (United States)

    Karajgikar, Meera; Hamilton, Alison; Ferguson, Stephen S.; Cregan, Sean P.

    2012-01-01

    The AKT, GSK3 and JNK family kinases have been implicated in neuronal apoptosis associated with neuronal development and several neurodegenerative conditions. However, the mechanisms by which these kinase pathways regulate apoptosis remain unclear. In this study we have investigated the role of these kinases in neuronal cell death using an established model of trophic factor deprivation induced apoptosis in cerebellar granule neurons. BCL-2 family proteins are known to be central regulators of apoptosis and we have determined that the pro-apoptotic family member Puma is transcriptionally up-regulated in trophic factor deprived neurons and that Puma induction is required for apoptosis in vitro and in vivo. Importantly, we demonstrate that Puma induction is dependent on both JNK activation and AKT inactivation. AKT is known to regulate a number of downstream pathways, however we have determined that PI3K-AKT inactivation induces Puma expression through a GSK3β-dependent mechanism. Finally we demonstrate that the JNK and AKT/GSK3β pathways converge to regulate FoxO3a-mediated transcriptional activation of Puma. In summary we have identified a novel and critical link between the AKT, GSK3β and JNK kinases and the regulation of Puma induction and suggest that this may be pivotal to the regulation of neuronal apoptosis in neurodegenerative conditions. PMID:23056511

  16. Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: involvement of spinal astrocytes and JNK signaling in touch-evoked central sensitization and mechanical allodynia

    Science.gov (United States)

    Gao, Yong-Jing; Ji, Ru-Rong

    2010-01-01

    Activation of extracellular signal-regulated kinase (ERK) in spinal cord neurons could serve as a marker for sensitization of dorsal horn neurons in persistent pain. ERK is normally activated by high-threshold noxious stimuli. We investigated how low-threshold mechanical stimuli could activate ERK after complete Freund’s adjuvant (CFA)-induced inflammation. Unilateral injection of CFA induced ipsilateral heat hyperalgesia and bilateral mechanical allodynia. CFA-induced ERK activation in ipsilateral dorsal horn neurons declined after 2 days. Interestingly, low threshold mechanical stimulation given by light touch either on the inflamed paw or the contralateral non-inflamed paw dramatically increased ERK phosphorylation (pERK) in the dorsal horn ipsilateral to touch stimulation. Notably, light touch induced pERK mainly in superficial neurons in laminae I-IIo. Intrathecal administration of the astroglial toxin L-α-aminoadipate (L-α-AA) on post-CFA day 2 reversed CFA-induced bilateral mechanical allodynia but not heat hyperalgesia. Furthermore, L-α-AA, the glial inhibitor fluorocitrate, and a peptide inhibitor of c-Jun N-terminal Kinase (JNK) all reduced light touch-evoked ERK activation ipsilateral to touch. Collectively, these data suggest that (a) ERK can be activated in superficial dorsal horn neurons by low threshold mechanical stimulation under pathological condition and (b) ERK activation by light touch is associated with mechanical allodynia and requires an astrocyte network. PMID:20722971

  17. Biphasic effect of arsenite on cell proliferation and apoptosis is associated with the activation of JNK and ERK1/2 in human embryo lung fibroblast cells

    International Nuclear Information System (INIS)

    He Xiaoqing; Chen Rui; Yang Ping; Li Aiping; Zhou Jianwei; Liu Qizhan

    2007-01-01

    Biphasic dose-response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high-dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose-response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. In the present study, we aimed at investigating the relationship between biphasic effect of arsenite on cell proliferation and apoptosis and activation of JNK and ERK1/2 in human embryo lung fibroblast (HELF) cells. Our results demonstrated that cell proliferation may be stimulated at lower concentrations (0.1 and 0.5 μM) arsenite but inhibited at higher concentrations (5 and 10 μM). When cell apoptosis was used as the endpoint, the concentration-response curves were changed to U-shapes. During stimulation phospho-JNK levels were significantly increased at 3, 6, and 12 h after 0.1 or 0.5 μM arsenite exposure. Phospho-ERK1/2 levels were increased with different concentrations (0.1-10 μM) of arsenite at 6, 12, and 24 h. Blocking of JNK pathway with 20 μM SP600125 or ERK1/2 by 100 μM PD98059 significantly inhibited biphasic effect of arsenite in cells. Data in the present study suggest that activation of JNK and ERK1/2 may be involved in biphasic effect of arsenite when measuring cell proliferation and apoptosis in HELF cells. JNK activation seems to play a more critical role than ERK1/2 activation in the biphasic process

  18. Dissociation of Akt1 from its negative regulator JIP1 is mediated through the ASK1-MEK-JNK signal transduction pathway during metabolic oxidative stress: a negative feedback loop.

    Science.gov (United States)

    Song, Jae J; Lee, Yong J

    2005-07-04

    We have previously observed that metabolic oxidative stress-induced death domain-associated protein (Daxx) trafficking is mediated by the ASK1-SEK1-JNK1-HIPK1 signal transduction pathway. The relocalized Daxx from the nucleus to the cytoplasm during glucose deprivation participates in a positive regulatory feedback loop by binding to apoptosis signal-regulating kinase (ASK) 1. In this study, we report that Akt1 is involved in a negative regulatory feedback loop during glucose deprivation. Akt1 interacts with c-Jun NH(2)-terminal kinase (JNK)-interacting protein (JIP) 1, and Akt1 catalytic activity is inhibited. The JNK2-mediated phosphorylation of JIP1 results in the dissociation of Akt1 from JIP1 and subsequently restores Akt1 enzyme activity. Concomitantly, Akt1 interacts with stress-activated protein kinase/extracellular signal-regulated kinase (SEK) 1 (also known as MKK4) and inhibits SEK1 activity. Knockdown of SEK1 leads to the inhibition of JNK activation, JIP1-JNK2 binding, and the dissociation of Akt1 from JIP1 during glucose deprivation. Knockdown of JIP1 also leads to the inhibition of JNK activation, whereas the knockdown of Akt1 promotes JNK activation during glucose deprivation. Altogether, our data demonstrate that Akt1 participates in a negative regulatory feedback loop by interacting with the JIP1 scaffold protein.

  19. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing; Wang, Wusu; Pang, Weijun; Yang, Gongshe, E-mail: gsyang999@hotmail.com

    2016-05-15

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2B inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. - Highlights: • MAT2B up-regulates the expression of adipogenic marker genes and promotes porcine intramuscular preadipocyte differentiation. • MAT2B influences intracellular SAMe levels and further affects cell clonal expansion. • MAT2B interacts with AKT and activates AKT/ERK signaling pathway.

  20. Po2 cycling protects diaphragm function during reoxygenation via ROS, Akt, ERK, and mitochondrial channels.

    Science.gov (United States)

    Zuo, Li; Pannell, Benjamin K; Re, Anthony T; Best, Thomas M; Wagner, Peter D

    2015-12-01

    Po2 cycling, often referred to as intermittent hypoxia, involves exposing tissues to brief cycles of low oxygen environments immediately followed by hyperoxic conditions. After experiencing long-term hypoxia, muscle can be damaged during the subsequent reintroduction of oxygen, which leads to muscle dysfunction via reperfusion injury. The protective effect and mechanism behind Po2 cycling in skeletal muscle during reoxygenation have yet to be fully elucidated. We hypothesize that Po2 cycling effectively increases muscle fatigue resistance through reactive oxygen species (ROS), protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and certain mitochondrial channels during reoxygenation. Using a dihydrofluorescein fluorescent probe, we detected the production of ROS in mouse diaphragmatic skeletal muscle in real time under confocal microscopy. Muscles treated with Po2 cycling displayed significantly attenuated ROS levels (n = 5; P Po2 cycling treatment. This current investigation has discovered a correlation between KATP and mPTP and the Po2 cycling pathway in diaphragmatic skeletal muscle. Thus we have identified a unique signaling pathway that may involve ROS, Akt, ERK, and mitochondrial channels responsible for Po2 cycling protection during reoxygenation conditions in the diaphragm. Copyright © 2015 the American Physiological Society.

  1. Dienogest enhances autophagy induction in endometriotic cells by impairing activation of AKT, ERK1/2, and mTOR.

    Science.gov (United States)

    Choi, JongYeob; Jo, MinWha; Lee, EunYoung; Lee, Dong-Yun; Choi, DooSeok

    2015-09-01

    To elucidate the therapeutic mechanisms of progestin and the effects of progesterone and progestin (dienogest) on autophagy induction and regulation in endometriotic cells, specifically the effects of progesterone and dienogest on the phosphoinositide-3/protein kinase B (PI3K-AKT) and mitogen-activated protein kinase kinases 1 and 2 (MEK1/2)/extracellular-signal-regulated kinase 1/2 (ERK1/2) pathways, which activate mammalian target of rapamycin (mTOR), a major negative regulator of autophagy. In vitro study using human endometriotic cyst stromal cells (ECSCs). University medical center. Fifteen patients with ovarian endometrioma. ECSCs treated with progesterone or dienogest. Autophagy as measured by the expression of the microtubule-associated protein light chain 3-II (LC3-II) and autophagosome formation, and levels of AKT, ERK1/2, and mTOR activity to quantify the phosphorylation of AKT, ERK1/2, and S6K (the downstream target of mTOR). Progesterone treatment had not statistically significant effect on LC3-II expression, autophagosome formation, or phosphorylation of AKT, ERK1/2, or S6K in estrogen-treated ECSCs. However, dienogest treatment up-regulated LC3-II expression and stimulated autophagosome formation. These effects were accompanied by decreased activation of AKT, ERK1/2, and S6K. Furthermore, incubation of ECSCs with AKT and ERK1/2 inhibitors, which mimicked dienogest-mediated inhibition of AKT and ERK1/2 activity, suppressed S6K activity, followed by an increase in LC3-II expression. In addition, cotreatment with dienogest and 3-methyladenine (autophagy inhibitor) decreased the levels of apoptosis of ECSCs compared with the single treatment with dienogest. Our results suggest that dienogest treatment of endometriotic cells suppresses AKT and ERK1/2 activity, thereby in turn inhibiting mTOR, inducing autophagy, and promoting apoptosis. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  3. Tungsten Carbide-Cobalt Nanoparticles Induce Reactive Oxygen Species, AKT, ERK, AP-1, NF-κB, VEGF, and Angiogenesis.

    Science.gov (United States)

    Liu, Ling-Zhi; Ding, Min; Zheng, Jenny Z; Zhu, Yingxue; Fenderson, Bruce A; Li, Bingyun; Yu, Jing J; Jiang, Bing-Hua

    2015-07-01

    Powder mixtures of tungsten carbide and metallic cobalt (WC-Co) are widely used in various products. Nanoparticles are engineered structures with at least one dimension of 100 nm or smaller. WC-Co is known to be associated with lung injury and diseases. Angiogenesis is a key process during vasculature, carcinogenesis, recovery of injury, and inflammatory diseases. However, the cellular effects of WC-Co nanoparticles on angiogenesis remain to be elucidated. In this study, we investigated angiogenic response and relative mechanisms after exposure to WC-Co nanoparticles. Our results showed that WC-Co nanoparticles at 5 μg/cm(2) induced ROS production which activated AKT and ERK1/2 signaling pathways in lung epithelial cells by reactive oxygen species (ROS) staining and immunoblotting; WC-Co treatment also increased transcriptional activation of AP-1, NF-κB, and VEGF by reporter assay. Further studies demonstrated that ROS are upstream molecules of AKT and ERK signaling pathways; the activation of AP-1, NF-κB, and VEGF was through ROS generation, AKT and ERK1/2 activation. In addition, WC-Co nanoparticles affected the cells to induce angiogenesis by chicken chorioallantoic membrane (CAM) assay. These results illustrate that exposure to WC-Co nanoparticles induces angiogenic response by activating ROS, AKT, and ERK1/2 signaling pathways and the downstream molecules and elucidate the potential molecular mechanisms during this process. This information may be useful for preventing potential damage from nanoparticle exposure in the future.

  4. Plasmalogens rescue neuronal cell death through an activation of AKT and ERK survival signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available Neuronal cells are susceptible to many stresses, which will cause the apoptosis and neurodegenerative diseases. The precise molecular mechanism behind the neuronal protection against these apoptotic stimuli is necessary for drug discovery. In the present study, we have found that plasmalogens (Pls, which are glycerophospholipids containing vinyl ether linkage at sn-1 position, can protect the neuronal cell death upon serum deprivation. Interestingly, caspse-9, but not caspase-8 and caspase-12, was cleaved upon the serum starvation in Neuro-2A cells. Pls treatments effectively reduced the activation of caspase-9. Furthermore, cellular signaling experiments showed that Pls enhanced phosphorylation of the phosphoinositide 3-kinase (PI3K-dependent serine/threonine-specific protein kinase AKT and extracellular-signal-regulated kinases ERK1/2. PI3K/AKT inhibitor LY294002 and MAPK/ERK kinase (MEK inhibitor U0126 treatments study clearly indicated that Pls-mediated cell survival was dependent on the activation of these kinases. In addition, Pls also inhibited primary mouse hippocampal neuronal cell death induced by nutrient deprivation, which was associated with the inhibition of caspase-9 and caspase-3 cleavages. It was reported that Pls content decreased in the brain of the Alzheimer's patients, which indicated that the reduction of Pls content could endanger neurons. The present findings, taken together, suggest that Pls have an anti-apoptotic action in the brain. Further studies on precise mechanisms of Pls-mediated protection against cell death may lead us to establish a novel therapeutic approach to cure neurodegenerative disorders.

  5. MCP-1 Upregulates Amylin Expression in Murine Pancreatic β Cells through ERK/JNK-AP1 and NF-κB Related Signaling Pathways Independent of CCR2

    Science.gov (United States)

    Cai, Kun; Qi, Dongfei; Hou, Xinwei; Wang, Oumei; Chen, Juan; Deng, Bo; Qian, Lihua; Liu, Xiaolong; Le, Yingying

    2011-01-01

    Background Amylin is the most abundant component of islet amyloid implicated in the development of type 2 diabetes. Plasma amylin levels are elevated in individuals with obesity and insulin resistance. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is involved in insulin resistance of obesity and type 2 diabetes. We investigated the effect of MCP-1 on amylin expression and the underlying mechanisms with murine pancreatic β-cell line MIN6 and pancreatic islets. Methodology/Principal Findings We found that MCP-1 induced amylin expression at transcriptional level and increased proamylin and intermediate forms of amylin at protein level in MIN6 cells and islets. However, MCP-1 had no effect on the expressions of proinsulin 1 and 2, as well as prohormone convertase (PC) 1/3 and PC2, suggesting that MCP-1 specifically induces amylin expression in β-cells. Mechanistic studies showed that although there is no detectable CCR2 mRNA in MIN6 cells and islets, pretreatment of MIN6 cells with pertussis toxin inhibited MCP-1 induced amylin expression, suggesting that alternative Gi-coupled receptor(s) mediates the inductive effect of MCP-1. MCP-1 rapidly induced ERK1/2 and JNK phosphorylation. Inhibitors for MEK1/2 (PD98059), JNK (SP600125) or AP1 (curcumin) significantly inhibited MCP-1-induced amylin mRNA expression. MCP-1 failed to induce amylin expression in pancreatic islets isolated from Fos knockout mice. EMSA showed that JNK and ERK1/2 were involved in MCP-1-induced AP1 activation. These results suggest that MCP-1 induces murine amylin expression through AP1 activation mediated by ERK1/2 or JNK. Further studies showed that treatment of MIN6 cells with NF-κB inhibitor or overexpression of IκBα dominant-negative construct in MIN6 cells significantly inhibited MCP-1-induced amylin expression, suggesting that NF-κB related signaling also participates in MCP-1-induced murine amylin expression. Conclusions/Significance MCP-1 induces amylin expression through ERK1/2/JNK

  6. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  7. Neuroprotection of Sevoflurane Against Ischemia/Reperfusion-Induced Brain Injury Through Inhibiting JNK3/Caspase-3 by Enhancing Akt Signaling Pathway.

    Science.gov (United States)

    Wen, Xiang-Ru; Fu, Yan-Yan; Liu, Hong-Zhi; Wu, Jian; Shao, Xiao-Ping; Zhang, Xun-Bao; Tang, Man; Shi, Yue; Ma, Kai; Zhang, Fang; Wang, Yi-Wen; Tang, Hui; Han, Dong; Zhang, Pu; Wang, Shu-Ling; Xu, Zhou; Song, Yuan-Jian

    2016-04-01

    In this study, we investigated the neuroprotective effect of sevoflurane against ischemic brain injury and its underlying molecular mechanisms. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with sevoflurane alone or sevoflurane combined with LY294002/wortmannin (selective inhibitor of PI3K) before ischemia. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting and immunoprecipitation were performed to measure the phosphorylation of Akt1, PRAS40, ASK1, and JNK3 and the expression of cleaved-caspase-3. The results demonstrated that a moderate dose of sevoflurane inhalation of 2% for 2 h had significant neuroprotective effects against ischemia/reperfusion induced hippocampal neuron death. Sevoflurane significantly increased Akt and PRAS40 phosphorylation and decreased the phosphorylation of ASK1 at 6 h after reperfusion and the phosphorylation of JNK3 at 3 days after reperfusion following 15 min of transient global brain ischemia. Conversely, LY294002 and wortmannin significantly inhibited the effects of sevoflurane. Taken together, the results suggest that sevoflurane could suppress ischemic brain injury by downregulating the activation of the ASK1/JNK3 cascade via increasing the phosphorylation of Akt1 during ischemia/reperfusion.

  8. ERK, Akt, and STAT5 are differentially activated by the two growth hormone receptors subtypes of a teleost fish (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Jeffrey eKittilson

    2011-09-01

    Full Text Available Previously, we found that the teleost fish, rainbow trout, possesses two growth hormone receptor (GHR subtypes that display distinct ligand binding and agonist-induced regulation features. In this study, we used Chinese hamster ovary-K1 cells stably transfected individually with the two trout GHR subtypes, GHR1 and GHR2, to elucidate receptor-effector pathway linkages. Growth hormone (GH stimulated rapid (5-10 min phosphorylation of ERK, Akt, JAk2, and STAT5 in both GHR1- and GHR2-expressing cells; however; STAT5 was activated to a greater extent through GHR1 than through GHR2, whereas ERK and Akt were activated to a greater through GHR2 than through GHR1. Although blockade of the ERK pathway had no effect on the activation of Akt, inhibition of PI3k-Akt partially prevented activation of ERK, suggesting cross-talk between the ERK and PI3K-Akt pathways. JAK2 inhibition completely blocked activation of ERK, Akt, and STAT5, suggesting that all of these pathways link to GHR1 and GHR2 via JAK2. These findings establish important receptor-effector pathway linkages and suggest that the GHR subtypes of teleost fish may be functionally distinct.

  9. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis

    International Nuclear Information System (INIS)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-01-01

    Highlights: • Taurine zinc SDs could prevent the bile-induced reduction in L02 cell viability. • Taurine zinc SDs can prevent cholestatic liver injury. • Taurine zinc SDs can inhibit BDL-induced hepatocyte apoptosis. • Taurine zinc SDs shows the cholesterol-lowering effects on cholestasis. • Taurine zinc SDs may suppress inflammation via dampening JNK phosphorylation. - Abstract: Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160 mg/kg) for 17 days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce

  10. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner.

    Science.gov (United States)

    Li, Qingran; Ding, Chujie; Meng, Tuo; Lu, Wenjie; Liu, Wenyue; Hao, Haiping; Cao, Lijuan

    2017-12-01

    Butyrate is a typical short chain fatty acid produced by gut microbiota of which the dysmetabolism has been consistently associated with colorectal diseases. However, whether butyrate affects metastatic colorectal cancer is not clear. In this study we investigated in vitro the effect of butyrate on motility, a significant metastatic factor of colorectal cancer cells and explored the potential mechanism. By using wound healing and transwell-based invasion models, we demonstrated that pretreatment of butyrate significantly inhibited motility of HCT116, HT29, LOVO and HCT8 cells, this activity was further attributed to deactivation of Akt1 and ERK1/2. Suberanilohydroxamic acid (SAHA), another HDAC inhibitor, mimicked the inhibitory effect of butyrate on cell motility and deactivation of Akt/ERK. Furthermore, by silencing of HDAC3 with siRNA, we confirmed dependence of butyrate's effect on HDAC3, the similar reduced cell motility observed under HDAC3 silencing also indicates the significance of HDAC itself in cell motility. In conclusion, we confirmed the HDAC3-relied activity of butyrate on inhibiting motility of colorectal cancer cells via deactivating Akt/ERK signaling. Our data indicate that modulating butyrate metabolism is an effective therapeutic strategy of metastatic colorectal cancer; and HDAC3 might be a novel target for management of colorectal cancer metastasis. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. Exendin-4 Prevents Vascular Smooth Muscle Cell Proliferation and Migration by Angiotensin II via the Inhibition of ERK1/2 and JNK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Kosuke Nagayama

    Full Text Available Angiotensin II (Ang II is a main pathophysiological culprit peptide for hypertension and atherosclerosis by causing vascular smooth muscle cell (VSMC proliferation and migration. Exendin-4, a glucagon-like peptide-1 (GLP-1 receptor agonist, is currently used for the treatment of type-2 diabetes, and is believed to have beneficial effects for cardiovascular diseases. However, the vascular protective mechanisms of GLP-1 receptor agonists remain largely unexplained. In the present study, we examined the effect of exendin-4 on Ang II-induced proliferation and migration of cultured rat aortic smooth muscle cells (RASMC. The major findings of the present study are as follows: (1 Ang II caused a phenotypic switch of RASMC from contractile type to synthetic proliferative type cells; (2 Ang II caused concentration-dependent RASMC proliferation, which was significantly inhibited by the pretreatment with exendin-4; (3 Ang II caused concentration-dependent RASMC migration, which was effectively inhibited by the pretreatment with exendin-4; (4 exendin-4 inhibited Ang II-induced phosphorylation of ERK1/2 and JNK in a pre-incubation time-dependent manner; and (5 U0126 (an ERK1/2 kinase inhibitor and SP600125 (a JNK inhibitor also inhibited both RASMC proliferation and migration induced by Ang II stimulation. These results suggest that exendin-4 prevented Ang II-induced VSMC proliferation and migration through the inhibition of ERK1/2 and JNK phosphorylation caused by Ang II stimulation. This indicates that GLP-1 receptor agonists should be considered for use in the treatment of cardiovascular diseases in addition to their current use in the treatment of diabetes mellitus.

  12. TGF-β1 is Involved in Vitamin D-Induced Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Regulating the ERK/JNK Pathway

    Directory of Open Access Journals (Sweden)

    Xiaorui Jiang

    2017-08-01

    Full Text Available Background/Aims: Osteoarthritis (OA is characterized by degradation of cartilage, sole cell type of which is chondrocytes. Bone marrow-derived mesenchymal stem cells (BMSCs possess multipotency and can be directionally differentiated into chondrocytes under stimulation. This study was aimed to explore the possible roles of vitamin D and transforming growth factor-β1 (TGF-β1 in the chondrogenic differentiation of BMSCs. Methods: BMSCs were isolated from femurs and tibias of rats and characterized by flow cytometry. After stimulation with vitamin D, BMSC proliferation and migration were measured by Cell Counting Kit-8 (CCK-8 and Transwell assays, respectively. Chondrogenic differentiation was estimated through expression levels of specific markers by qRT-PCR and Western blot analysis. After stable transfection, the effects of aberrantly expressed TGF-β1 on vitamin D-induced alterations, including BMSC viability, migration and chondrogenic differentiation, were all evaluated utilizing CCK-8 assay, Transwell assay, qRT-PCR and Western blot analysis. Finally, the phosphorylation levels of key kinases in the extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK pathways were determined by Western blot analysis. Results: Vitamin D remarkably promoted BMSC viability, migration and chondrogenic differentiation. These alterations of BMSCs induced by vitamin D were reinforced by TGF-β1 overexpression while were reversed by TGF-β1 silencing. Additionally, the phosphorylation levels of ERK, JNK and c-Jun were enhanced by TGF-β1 overexpression but were reduced by TGF-β1 knockdown. Conclusion: Vitamin D promoted BMSC proliferation, migration and chondrogenic differentiation. TGF-β1 might be implicated in the vitamin D-induced alterations of BMSCs through regulating ERK/JNK pathway.

  13. The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway.

    Directory of Open Access Journals (Sweden)

    Tongda Xu

    Full Text Available The purpose of this study was to observe the effects of salvianolic acid A (SAA pretreatment on the myocardium during ischemia/reperfusion (I/R and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI. Wistar rats were divided into the following six groups: control group (CON, I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R, PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R. The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR, left ventricular systolic pressure (LVSP, left ventricular end-diastolic pressure (LVEDP, maximum rate of ventricular pressure rise and fall (±dp/dtmax, myocardial infarction areas (MIA, lactate dehydrogenase (LDH, and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4

  14. Tropisetron Protects Against Acetaminophen-Induced Liver Injury via Suppressing Hepatic Oxidative Stress and Modulating the Activation of JNK/ERK MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    2016-01-01

    Full Text Available Objectives. To investigate the protective effects of tropisetron on acetaminophen- (APAP- induced liver injury in a mice model. Methods. C57BL/6 male mice were given tropisetron (0.3 to 10 mg/kg 30 minutes before a hepatotoxic dose of acetaminophen (300 mg/kg intraperitoneally. Twenty hours after APAP intoxication, sera alanine aminotransferase (ALT and aspartate aminotransferase (AST levels, hepatic myeloperoxidase (MPO, malondialdehyde (MDA, glutathione (GSH, and superoxide dismutase (SOD activities, and liver histopathological changes were examined. The MAP kinases were also detected by western blotting. Results. Our results showed that tropisetron pretreatment significantly attenuated the acute elevations of the liver enzyme ALT level, hepatic MPO activity, and hepatocytes necrosis in a dose-dependent manner (0.3–10 mg/kg in APAP-induced hepatotoxicity mice. Tropisetron (1 and 3 mg/kg suppressed APAP-induced hepatic lipid peroxidation expression and alleviated GSH and SOD depletion. Administration of tropisetron also attenuated the phosphorylation of c-Jun-NH2-terminal protein kinase (JNK and extracellular signal-regulated kinase (ERK caused by APAP. Conclusion. Our data demonstrated that tropisetron’s hepatoprotective effect was in part correlated with the antioxidant, which were mediated via JNK and ERK pathways on acetaminophen-induced liver injury in mice.

  15. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-07-29

    Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160mg/kg) for 17days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce phosphorylation of JNK and ERK2, which suppresses inflammation, apoptosis and cholangiocyte proliferation during cholestasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  17. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt

    International Nuclear Information System (INIS)

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao; Wang, Bin; Wu, Yun-Xiang; Zhang, Shu-Jie; Irwin, Michael G.; Wong, Tak-Ming; Zhang, Ye

    2015-01-01

    Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct size and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.

  18. Vitis labruscana leaf extract ameliorates scopolamine-induced impairments with activation of Akt, ERK and CREB in mice.

    Science.gov (United States)

    Pariyar, Ramesh; Yoon, Chi-Su; Svay, Thida; Kim, Dae-Sung; Cho, Hyoung-Kwon; Kim, Sung Yeon; Oh, Hyuncheol; Kim, Youn-Chul; Kim, Jaehyo; Lee, Ho-Sub; Seo, Jungwon

    2017-12-01

    Grapes are among the most widely consumed plants and are used as a folk medicine. Vitis species have been traditionally used as anti-inflammatory, analgesic, and memory-enhancing agents, but, their biological activities of discarded grape leaves are not completely understood. We investigated the effects of alcoholic aqueous leaf extract of Vitis labruscana (LEVL) in a mouse model of memory impairment and tried to ascertain its mechanism. We also evaluated its effects in SH-SY5Y cells. LEVL (50, 100, and 150 mg/kg) was administered to ICR mice once daily for 7 days. Memory impairment was induced with intraperitoneal scopolamine injections (1 mg/kg) and measured with the Y-maze test and a passive avoidance task. LEVL-induced signaling was evaluated in SH-SY5Y cells and mouse hippocampi. We first identified quercetin-3-O-glucuronide as LEVL's major component. We then showed that LEVL promoted phosphorylation of Akt, extracellular regulated kinase (ERK), and cyclic AMP response element binding protein (CREB) and proliferation of SH-SY5Y cells. Oral LEVL administration (100 mg/kg) for 7 days significantly reversed scopolamine-induced reductions of spontaneous alternation in the Y-maze test and scopolamine-induced shortening of latency times in the passive avoidance task's retention trial. Consistent with the cell experiment results, LEVL restored scopolamine-decreased phosphorylation of Akt, ERK, and CREB and scopolamine-reduced expression of brain-derived neuroprotective factor expression in mouse hippocampi. Our results suggest that LEVL promotes phosphorylation of Akt, ERK, and CREB in the hippocampus and ameliorates scopolamine-induced memory impairment in mice. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    Energy Technology Data Exchange (ETDEWEB)

    Roffe, Suzy [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Hagai, Yosey [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel); Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Pines, Mark [Institute of Animal Sciences, Volcani Center, Bet Dagan 50250 (Israel); Halevy, Orna, E-mail: halevyo@agri.huji.ac.il [Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100 (Israel)

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  20. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    International Nuclear Information System (INIS)

    Roffe, Suzy; Hagai, Yosey; Pines, Mark; Halevy, Orna

    2010-01-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of the phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.

  1. Asparaginyl endopeptidase improves the resistance of microtubule-targeting drugs in gastric cancer through IQGAP1 modulating the EGFR/JNK/ERK signaling pathway

    Directory of Open Access Journals (Sweden)

    Cui Y

    2017-02-01

    Full Text Available Yuehong Cui,1,* Qian Li,1,* Hong Li,1 Yan Wang,1 Hongshan Wang,2 Weidong Chen,2 Shangmin Zhang,3 Jian Cao,3 Tianshu Liu1 1Medical Oncology Department, 2General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 3Pathology Department, Yale School of Medicine, New Haven, CT, USA *These authors contributed equally to this work Purpose: In recent years, understanding of the role of asparaginyl endopeptidase (AEP in tumorigenesis has steadily increased. In this study, we investigated whether AEP expression correlates with sensitivity to chemotherapeutic drugs in gastric cancer and explored the mechanism.Patients and methods: AEP expression in the serum of patients’ peripheral blood was measured by enzyme-linked immunosorbent assay. Patient survival time was evaluated using univariate and multivariate analyses. Mass spectrometry and co-immunoprecipitation assays were utilized to discover proteins that interact with AEP. Gastric cancer cell lines were established, in which AEP was overexpressed or knocked out using lentiviral CRISPR. The proliferative abilities of these cell lines in response to chemotherapy agents were evaluated using the Cell Counting Kit-8 method. Gene expression changes in these lines were assessed by real-time polymerase chain reaction and Western blot.Results: Patients with low expression of AEP were significantly more likely to have a good prognosis and experience complete response or partial response after treatment with docetaxel/S-1 regimen. Mass spectrum analysis showed that several proteins in the focal adhesion and mitogen-activated protein kinase signaling pathways interacted with AEP. IQGAP1 was confirmed to be one of the proteins interacting with AEP, and its protein level increased when AEP was knocked out. AEP knockout decreased resistance to microtubule inhibitors, including paclitaxel, docetaxel, and T-DM1. The expression levels of MDR1, p-EGFR, p-JNK, p-ERK, and p

  2. A small molecule inhibits Akt through direct binding to Akt and preventing Akt membrane translocation.

    Science.gov (United States)

    Kim, Donghwa; Sun, Mei; He, Lili; Zhou, Qing-Hua; Chen, Jun; Sun, Xia-Meng; Bepler, Gerold; Sebti, Said M; Cheng, Jin Q

    2010-03-12

    The Akt pathway is frequently hyperactivated in human cancer and functions as a cardinal nodal point for transducing extracellular and intracellular oncogenic signals and, thus, presents an exciting target for molecular therapeutics. Here we report the identification of a small molecule Akt/protein kinase B inhibitor, API-1. Although API-1 is neither an ATP competitor nor substrate mimetic, it binds to pleckstrin homology domain of Akt and blocks Akt membrane translocation. Furthermore, API-1 treatment of cancer cells results in inhibition of the kinase activities and phosphorylation levels of the three members of the Akt family. In contrast, API-1 had no effects on the activities of the upstream Akt activators, phosphatidylinositol 3-kinase, phosphatidylinositol-dependent kinase-1, and mTORC2. Notably, the kinase activity and phosphorylation (e.g. Thr(P)(308) and Ser(P)(473)) levels of constitutively active Akt, including a naturally occurring mutant AKT1-E17K, were inhibited by API-1. API-1 is selective for Akt and does not inhibit the activation of protein kinase C, serum and glucocorticoid-inducible kinase, protein kinase A, STAT3, ERK1/2, or JNK. The inhibition of Akt by API-1 resulted in induction of cell growth arrest and apoptosis selectively in human cancer cells that harbor constitutively activated Akt. Furthermore, API-1 inhibited tumor growth in nude mice of human cancer cells in which Akt is elevated but not of those cancer cells in which it is not. These data indicate that API-1 directly inhibits Akt through binding to the Akt pleckstrin homology domain and blocking Akt membrane translocation and that API-1 has anti-tumor activity in vitro and in vivo and could be a potential anti-cancer agent for patients whose tumors express hyperactivated Akt.

  3. SHP-2 promotes the maturation of oligodendrocyte precursor cells through Akt and ERK1/2 signaling in vitro.

    Directory of Open Access Journals (Sweden)

    Xiujie Liu

    Full Text Available BACKGROUND: Oligodendrocyte precursor cells (OPCs differentiate into oligodendrocytes (OLs, which are responsible for myelination. Myelin is essential for saltatory nerve conduction in the vertebrate nervous system. However, the molecular mechanisms of maturation and myelination by oligodendrocytes remain elusive. METHODS AND FINDINGS: In the present study, we showed that maturation of oligodendrocytes was attenuated by sodium orthovanadate (a comprehensive inhibitor of tyrosine phosphatases and PTPi IV (a specific inhibitor of SHP-2. It is also found that SHP-2 was persistently expressed during maturation process of OPCs. Down-regulation of endogenous SHP-2 led to impairment of oligodendrocytes maturation and this effect was triiodo-L-thyronine (T3 dependent. Furthermore, over-expression of SHP-2 was shown to promote maturation of oligodendrocytes. Finally, it has been identified that SHP-2 was involved in activation of Akt and extracellular-regulated kinases 1 and 2 (ERK1/2 induced by T3 in oligodendrocytes. CONCLUSIONS: SHP-2 promotes oligodendrocytes maturation via Akt and ERK1/2 signaling in vitro.

  4. Nigella sativa improves the carbon tetrachloride-induced lung damage in rats through repression of erk/akt pathway

    Directory of Open Access Journals (Sweden)

    Abdullah Aslan

    2015-08-01

    Full Text Available The objective of this study was to examine whether Nigella sativa plays a protective role against the damage in the lung by administering carbon tetra-chloride (CCl4 to rats. Male Wistar albino (n=28, 8 weeks old rats were divided into 4 groups: a negative control: Normal water consuming group to which no CCl4 and N. sativa was administered; b Positive control: Normal water consuming group to which no CCl4 was administered but N. sativa was administered; c CCl4 Group: Normal water consuming and group to which CCl4 was administered (1.5 mL/kg, ip; d N. sativa plus CCl4 group: CCl4 and N. sativa administered group (1.5 mL/kg, ip. Caspase-3, caspase -9, erk, akt protein syntheses were examined via Western blotting. Malondialdehyde determination in lung tissue was made using spectrophotometer. As a results, malondialdehyde amount was decreased in the CCl4 plus N. sativa group in comparison to CCl4 group whereas caspase-3, caspase-9 was increased and erk, akt had decreased. These results show that N. sativa protects the lung against oxidative damage.

  5. Stathmin decreases cholangiocarcinoma cell line sensitivity to staurosporine-triggered apoptosis via the induction of ERK and Akt signaling

    Science.gov (United States)

    Bo, Xiaobo; Wang, Yaojie; Wang, Jiwen; Shen, Sheng; Liu, Han; Suo, Tao; Pan, Hongtao; Ai, Zhilong; Liu, Houbao

    2017-01-01

    Cholangiocarcinoma is a rare, but highly fatal malignancy. However, the intrinsic mechanism involved in its tumorigenesis remains obscure. An urgent need remains for a promising target for cholangiocarcinoma biological therapies. Based on comparative proteomical technologies, we found 253 and 231 different spots in gallbladder tumor cell lines and cholangiocarcinoma cell lines, respectively, relative to non-malignant cells. Using Mass Spectrometry (MS) and database searching, we chose seven differentially expressed proteins. High Stathmin expression was found in both cholangiocarcinoma and gallbladder carcinoma cells. Stathmin expression was validated using immunohistochemistry and western blot in cholangiocarcinoma tissue samples and peritumoral tissue. It was further revealed that high Stathmin expression was associated with the repression of staurosporine-induced apoptosis in the cholangiocarcinoma cell. Moreover, we found that Stathmin promoted cancer cell proliferation and inhibited its apoptosis through protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) signaling. Integrin, β1 appears to serve as a partner of Stathmin induction of ERK and Akt signaling by inhibiting apoptosis in the cholangiocarcinoma cell. Understanding the regulation of anti-apoptosis effect by Stathmin might provide new insight into how to overcome therapeutic resistance in cholangiocarcinoma. PMID:28178656

  6. Autocrine parathyroid hormone-like hormone promotes intrahepatic cholangiocarcinoma cell proliferation via increased ERK/JNK-ATF2-cyclinD1 signaling

    Directory of Open Access Journals (Sweden)

    Jing Tang

    2017-11-01

    Full Text Available Abstract Background and aims Intrahepatic cholangiocarcinoma (ICC is an aggressive tumor with a high fatality rate. It was recently found that parathyroid hormone-like hormone (PTHLH was frequently overexpressed in ICC compared with non-tumor tissue. This study aimed to elucidate the underlying mechanisms of PTHLH in ICC development. Methods The CCK-8 assay, colony formation assays, flow cytometry and a xenograft model were used to examine the role of PTHLH in ICC cells proliferation. Immunohistochemistry (IHC and western blot assays were used to detect target proteins. Luciferase reporter, chromatin immunoprecipitation (ChIP and DNA pull-down assays were used to verify the transcription regulation of activating transcription factor-2 (ATF2. Results PTHLH was significantly upregulated in ICC compared with adjacent and normal tissues. Upregulation of PTHLH indicated a poor pathological differentiation and intrahepatic metastasis. Functional study demonstrated that PTHLH silencing markedly suppressed ICC cells growth, while specific overexpression of PTHLH has the opposite effect. Mechanistically, secreted PTHLH could promote ICC cell growth by activating extracellular signal-related kinase (ERK and c-Jun N-terminal kinase (JNK signaling pathways, and subsequently upregulated ATF2 and cyclinD1 expression. Further study found that the promoter activity of PTHLH were negatively regulated by ATF2, indicating that a negative feedback loop exists. Conclusions Our findings demonstrated that the ICC-secreted PTHLH plays a characteristic growth-promoting role through activating the canonical ERK/JNK-ATF2-cyclinD1 signaling pathways in ICC development. We identified a negative feedback loop formed by ATF2 and PTHLH. In this study, we explored the therapeutic implication for ICC patients.

  7. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway

    Directory of Open Access Journals (Sweden)

    H. Wang

    Full Text Available This study was undertaken to clarify the role and mechanism of pyruvate dehydrogenase kinase isoform 2 (PDK2 in chondrogenic differentiation of mesenchymal stem cells (MSCs. MSCs were isolated from femurs and tibias of Sprague-Dawley rats, weighing 300-400 g (5 females and 5 males. Overexpression and knockdown of PDK2 were transfected into MSCs and then cell viability, adhesion and migration were assessed. Additionally, the roles of aberrant PDK2 in chondrogenesis markers SRY-related high mobility group-box 6 (Sox6, type ΙΙ procollagen gene (COL2A1, cartilage oligomeric matrix protein (COMP, aggrecan (AGC1, type ΙX procollagen gene (COL9A2 and collagen type 1 alpha 1 (COL1A1 were measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR. The expressions of c-Jun N-terminal kinase (JNK, p38 mitogen-activated protein kinase (MAPK and extracellular regulated protein kinase (ERK were measured. Overexpressing PDK2 promoted cell viability, adhesion and inhibited cell migration in MSCs (all P<0.05. qRT-PCR assay showed a potent increase in the mRNA expressions of all chondrogenesis markers in response to overexpressing PDK2 (P<0.01 or P<0.05. PDK2 overexpression also induced a significant accumulation in mRNA and protein expressions of JNK, p38MAPK and ERK in MSCs compared to the control (P<0.01 or P<0.05. Meanwhile, silencing PDK2 exerted the opposite effects on MSCs. This study shows a preliminary positive role and potential mechanisms of PDK2 in chondrogenic differentiation of MSCs. It lays the theoretical groundwork for uncovering the functions of PDK2 and provides a promising basis for repairing cartilage lesions in osteoarthritis.

  8. Bufalin-inhibited migration and invasion in human osteosarcoma U-2 OS cells is carried out by suppression of the matrix metalloproteinase-2, ERK, and JNK signaling pathways.

    Science.gov (United States)

    Chueh, Fu-Shin; Chen, Ya-Yin; Huang, An-Cheng; Ho, Heng-Chien; Liao, Ching-Lung; Yang, Jai-Sing; Kuo, Chao-Lin; Chung, Jing-Gung

    2014-01-01

    Bufalin has been shown to exhibit multiple pharmacological activities, including induction of apoptosis in many types of cancer cell lines. Osteosarcoma is a type of cancer which is difficult to treat and the purpose of this study was to investigate the effects of bufalin on the migration and invasion of human osteosarcoma U-2 OS cells. The wound healing assay and Boyden chamber transwell assay were used for examining the migration of U-2 OS cells. Western blotting and gelatin zymography assays were used for theexpression and activities of metalloproteinase (MMP)-2, MMP-7 or MMP-9 levels. Western blotting analysis also was used for measuring the levels of growth factor receptor-bound protein 2 (GRB2), son of sevenless homolog 1 (SOS1), c-Jun N-terminal kinases 1/2 (JNK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 in bufalin-treated U-2 OS cells. Bufalin inhibited the cell migration and invasion of U-2 OS cells in vitro. Moreover, bufalin reduced MMP-2 and MMP-9 enzyme activities of U-2 OS cells. Bufalin also suppressed the protein level of MMP-2 and reduced the levels of mitogen-activated protein kinases (MAPKs) such as JNK1/2 and ERK1/2 signals in U-2 OS cells. Our results suggest that signaling pathways for bufalin-inhibited migration and invasion of U-2 OS cells might be mediated through blocking MAPK signaling and resulting in the inhibition of MMP-2. Bufalin could be a useful agent to develop as a novel antitumor agent by virtue of its ability to inhibit tumor cell migration and invasion. Copyright © 2011 Wiley Periodicals, Inc.

  9. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1 via suppression of ERK and JNK pathways in gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong Xia

    Full Text Available Cell invasion is a crucial mechanism of cancer metastasis and malignancy. Matrix metalloproteinase-9 (MMP-9 is an important proteolytic enzyme involved in the cancer cell invasion process. High expression levels of MMP-9 in gastric cancer positively correlate with tumor aggressiveness and have a significant negative correlation with patients' survival times. Recently, mechanisms suppressing MMP-9 by phytochemicals have become increasingly investigated. Chrysin, a naturally occurring chemical in plants, has been reported to suppress tumor metastasis. However, the effects of chrysin on MMP-9 expression in gastric cancer have not been well studied. In the present study, we tested the effects of chrysin on MMP-9 expression in gastric cancer cells, and determined its underlying mechanism. We examined the effects of chrysin on MMP-9 expression and activity via RT-PCR, zymography, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin inhibited phorbol-12-myristate 13-acetate (PMA-induced MMP-9 expression in a dose-dependent manner. Using AP-1 decoy oligodeoxynucleotides, we confirmed that AP-1 was the crucial transcriptional factor for MMP-9 expression. Chrysin blocked AP-1 via suppression of the phosphorylation of c-Jun and c-Fos through blocking the JNK1/2 and ERK1/2 pathways. Furthermore, AGS cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by chrysin and MMP-9 antibody. Our results suggest that chrysin may exert at least part of its anticancer effect by controlling MMP-9 expression through suppression of AP-1 activity via a block of the JNK1/2 and ERK1/2 signaling pathways in gastric cancer AGS cells.

  10. Inhibiting cycloxygenase and ornithine decarboxylase by diclofenac and alpha-difluoromethylornithine blocks cutaneous SCCs by targeting Akt-ERK axis.

    Science.gov (United States)

    Arumugam, Aadithya; Weng, Zhiping; Talwelkar, Sarang S; Chaudhary, Sandeep C; Kopelovich, Levy; Elmets, Craig A; Afaq, Farrukh; Athar, Mohammad

    2013-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of skin cancer in Caucasian populations. Its increasing incidence has been a major public health concern. Elevated expressions of ODC and COX-2 are associated with both murine and human NMSCs. Inhibition of these molecular targets singly employing their respective small molecule inhibitors showed limited success. Here, we show that combined blockade of ODC and COX-2 using their potent inhibitors, DFMO and diclofenac respectively abrogates growth of A431 epidermal xenograft tumors in nu/nu mice by more than 90%. The tumor growth inhibition was associated with a diminution in the proliferation and enhancement in apoptosis. The proliferation markers such as PCNA and cyclin D1 were reduced. TUNEL-positive apoptotic cells and cleaved caspase-3 were increased in the residual tumors. These agents also manifested direct target-unrelated effects. Reduced expression of phosphorylated MAPKAP-2, ERK, and Akt (ser(473) & thr(308)) were noticed. The mechanism by which combined inhibition of ODC/COX attenuated tumor growth and invasion involved reduction in EMT. Akt activation by ODC+COX-2 over-expression was the key player in this regard as Akt inhibition manifested effects similar to those observed by the combined inhibition of ODC+COX-2 whereas forced over-expression of Akt resisted against DFMO+diclofenac treatment. These data suggest that ODC+COX-2 over-expression together leads to pathogenesis of aggressive and invasive cutaneous carcinomas by activating Akt signaling pathway, which through augmenting EMT contributes to tumor invasion.

  11. Inhibiting cycloxygenase and ornithine decarboxylase by diclofenac and alpha-difluoromethylornithine blocks cutaneous SCCs by targeting Akt-ERK axis.

    Directory of Open Access Journals (Sweden)

    Aadithya Arumugam

    Full Text Available Non-melanoma skin cancer (NMSC is the most common type of skin cancer in Caucasian populations. Its increasing incidence has been a major public health concern. Elevated expressions of ODC and COX-2 are associated with both murine and human NMSCs. Inhibition of these molecular targets singly employing their respective small molecule inhibitors showed limited success. Here, we show that combined blockade of ODC and COX-2 using their potent inhibitors, DFMO and diclofenac respectively abrogates growth of A431 epidermal xenograft tumors in nu/nu mice by more than 90%. The tumor growth inhibition was associated with a diminution in the proliferation and enhancement in apoptosis. The proliferation markers such as PCNA and cyclin D1 were reduced. TUNEL-positive apoptotic cells and cleaved caspase-3 were increased in the residual tumors. These agents also manifested direct target-unrelated effects. Reduced expression of phosphorylated MAPKAP-2, ERK, and Akt (ser(473 & thr(308 were noticed. The mechanism by which combined inhibition of ODC/COX attenuated tumor growth and invasion involved reduction in EMT. Akt activation by ODC+COX-2 over-expression was the key player in this regard as Akt inhibition manifested effects similar to those observed by the combined inhibition of ODC+COX-2 whereas forced over-expression of Akt resisted against DFMO+diclofenac treatment. These data suggest that ODC+COX-2 over-expression together leads to pathogenesis of aggressive and invasive cutaneous carcinomas by activating Akt signaling pathway, which through augmenting EMT contributes to tumor invasion.

  12. PGD2 stimulates osteoprotegerin synthesis via AMP-activated protein kinase in osteoblasts: Regulation of ERK and SAPK/JNK.

    Science.gov (United States)

    Kainuma, Shingo; Tokuda, Haruhiko; Kuroyanagi, Gen; Yamamoto, Naohiro; Ohguchi, Reou; Fujita, Kazuhiko; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu

    2015-10-01

    AMP-activated protein kinase (AMPK), a key enzyme sensing cellular energy metabolism, is currently known to regulate multiple metabolic pathways. Osteoprotegerin plays a pivotal role in the regulation of bone metabolism by inhibiting osteoclast activation. We have previously reported that prostaglandin D2 (PGD2) stimulates the synthesis of osteoprotegerin through the activation of p38 mitogen-activated protein (MAP) kinase, p44/p42 MAP kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. On the basis of these findings, we herein investigated the implication of AMPK in PGD2-stimulated osteoprotegerin synthesis in these cells. PGD2 induced the phosphorylation of AMPKα (Thr-172) and AMPKβ (Ser-108), and the phosphorylation of acetyl-coenzyme A carboxylase, a direct AMPK substrate. Compound C, an AMPK inhibitor, which suppressed the phosphorylation of acetyl-coenzyme A carboxylase, significantly attenuated both the release and the mRNA levels of osteoprotegerin stimulated by PGD2. The PGD2-induced phosphorylation of p44/p42 MAP kinase and SAPK/JNK but not p38 MAP kinase were markedly inhibited by compound C. These results strongly suggest that AMPK regulates the PGD2-stimulated osteoprotegerin synthesis at a point upstream of p44/p42 MAP kinase and SAPK/JNK in osteoblasts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Coactivation of the PI3K/Akt and ERK signaling pathways in PCB153-induced NF-κB activation and caspase inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjiang [MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Key Lab of Birth Defects and Reproductive Health of National Health and Family Planning Commission, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020 (China); Yang, Jixin [Department of Pediatric Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030 (China); Fu, Wenjuan; Qi, Suqin; Wang, Chenmin; Quan, Chao [MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Yang, Kedi, E-mail: yangkd@mails.tjmu.edu.cn [MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China)

    2014-06-15

    Polychlorinated biphenyls (PCBs) are a group of persistent and widely distributed environmental pollutants that have various deleterious effects, e.g., neurotoxicity, endocrine disruption and reproductive abnormalities. In order to verify the hypothesis that the PI3K/Akt and MAPK pathways play important roles in hepatotoxicity induced by PCBs, Sprague–Dawley (SD) rats were dosed with PCB153 intraperitoneally at 0, 4, 16 and 32 mg/kg for five consecutive days; BRL cells (rat liver cell line) were treated with PCB153 (0, 1, 5, and 10 μM) for 24 h. Results indicated that the PI3K/Akt and ERK pathways were activated in vivo and in vitro after exposure to PCB153, and protein levels of phospho-Akt and phospho-ERK were significantly increased. Nuclear factor-κB (NF-κB) activation and caspase-3, -8 and -9 inhibition caused by PCB153 were also observed. Inhibiting the ERK pathway significantly attenuated PCB153-induced NF-κB activation, whereas inhibiting the PI3K/Akt pathway hardly influenced phospho-NF-κB level. However, inhibiting the PI3K/Akt pathway significantly elevated caspase-3, -8 and -9 activities, while the ERK pathway only synergistically regulated caspase-9. Proliferating cell nuclear antigen (PCNA), a reliable indicator of cell proliferation, was also induced. Moreover, PCB153 led to hepatocellular hypertrophy and elevated liver weight. Taken together, PCB153 leads to aberrant proliferation and apoptosis of hepatocytes through NF-κB activation and caspase inhibition, and coactivated PI3K/Akt and ERK pathways play critical roles in PCB153-induced hepatotoxicity. - Highlights: • PCB153 led to hepatotoxicity through NF-κB activation and caspase inhibition. • The PI3K/Akt and ERK pathways were coactivated in vivo and in vitro by PCB153. • The ERK pathway regulated levels of phospho-NF-κB and caspase-9. • The PI3K/Akt pathway regulated levels of caspase-3, -8 and -9.

  14. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-01-01

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy

  15. Ethyl Acetate Extracts of Semen Impatientis Inhibit Proliferation and Induce Apoptosis of Human Prostate Cancer Cell Lines through AKT/ERK Pathways.

    Science.gov (United States)

    Wang, Tao; Cai, Yang; Song, Wen; Chen, Ruibao; Hu, Dunmei; Ye, Jianhan; Liu, Lu; Peng, Wei; Zhang, Junfeng; Wang, Shaogang; Yang, Weiming; Liu, Jihong; Ding, Yufeng

    2017-01-01

    Objective. To investigate the inhibitory effect of ethyl acetate extracts of Impatiens balsamina L. on prostate cancer cells. Methods. Impatiens balsamina L. was extracted to get water, ethanol, oil ether, ethyl acetate, and butanol extracts. CCK-8 assay was used to detect the inhibitory effect. Apoptosis rates and cell cycle distribution were detected by flow cytometry. Transwell assay was performed to test the ability of migration. The expressions of Bcl-2, Bax, cleaved-caspase-3, p-ERK, ERK, p-AKT, AKT, cyclin D1, cyclin E, and MMP2 were detected by Western blot. Results. Ethyl acetate extracts had the strongest inhibitory effect. After being treated with different concentrations of ethyl acetate extracts, the percentage of G0/G1 phase increased significantly, cyclin D1 and cyclin E expression decreased, apoptosis rate was significantly higher, and the ability of migration of PC-3 and RV1 was inhibited significantly. Western blot showed that the expressions of Bcl-2, p-ERK, and p-AKT were significantly decreased, but the expressions of Bax and caspase-3 cleavage were increased. Conclusions. Impatiens balsamina L. inhibited the proliferation of human prostate cancer cells; ethyl acetate extracts have the strongest effect. It could inhibit cell proliferation and migration, cause G1 phase arrest, and induce apoptosis probably through inhibition of the AKT and ERK pathways.

  16. MEK inhibitors induce Akt activation and drug resistance by suppressing negative feedback ERK-mediated HER2 phosphorylation at Thr701.

    Science.gov (United States)

    Chen, Chia-Hung; Hsia, Te-Chun; Yeh, Ming-Hsin; Chen, Tsung-Wei; Chen, Yun-Ju; Chen, Jung-Tsu; Wei, Ya-Ling; Tu, Chih-Yen; Huang, Wei-Chien

    2017-09-01

    Targeting the MEK/ERK pathway has been viewed as a promising strategy for cancer therapy. However, MEK inhibition leads to the compensatory PI3K/AKT activation and thus contributes to the desensitization of cancer cells to MEK inhibitors. The underlying molecular mechanism of this event is not yet understood. In this study, our data showed that the induction of Akt activity by MEK inhibitors was specifically observed in HER2-positive breast cancer cells. Silence of HER2, or overexpression of HER2 kinase-dead mutant, prevents the induction of Akt activation in response to MEK inhibition, indicating HER2 as a critical regulator for this event. Furthermore, HER2 Thr701 was demonstrated as a direct phosphorylation target of ERK1/2. Inhibition of this specific phosphorylation prolonged the dimerization of HER2 with EGFR in a clathrin-dependent manner, leading to the enhanced activation of HER2 and EGFR tyrosine kinase and their downstream Akt pathway. These results suggest that suppression of ERK-mediated HER2 Thr701 phosphorylation contributes to MEK inhibitor-induced Akt activation. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  17. Effects of exosomes derived from MDA-MB-231 on proliferation of endothelial cells and the role of MAPK/ERK and PI3K/Akt pathways

    Directory of Open Access Journals (Sweden)

    Shuang LONG

    2012-11-01

    Full Text Available Objective  To investigate the effects of exosomes derived from breast cancer cell line MDA-MB-231 on proliferation of human umbilical cord vein endothelial cells (HUVECs, and evaluate the role of MAPK/ERK and PI3K/Akt signal transduction pathway during the process. Methods  Exosomes were derived and purified from MDA-MB-231 by cryogenic ultracentrifugation and density gradient centrifugation. MTT assay was carried out for measurement of cell proliferation in HUVECs with exosome of 50, 100, 200 and 400μg/ml. The states of cell cycle of HUVECs co-cultured with 200μg/ml exosomes were detected by flow cytometry. The effects of 200μg/ml exosomes on the expression of ERK, Akt and phosphorylated ERK, Akt in HUVECs were detected with Western blotting. Results  Exosomes derived from MDA-MB-231 significantly promoted HUVECs proliferation in a classical time-and dose-dependent manner. Flow cytometry revealed that, co-cultured with 200μg/ml exosomes for 24h, S-phase cells in HUVECs increased, while G1/S phase cells in HUVECs decreased. Western blotting showed that, cocultured with 200μg/ml exosomes for 24h, 48h and 72h, the expressions of phosphorylated ERK and Akt were up-regulated in a time-dependent manner. Conclusion  Exosomes derived from breast cancer cell line MDA-MB-231 may promote HUVECs proliferation, the changes in cell cycle and the continuous activation of the MAPK/ERK and PI3K/Akt signal transduction pathways may be the underlying mechanism.

  18. Distinct regulation of host responses by ERK and JNK MAP kinases in swine macrophages infected with pandemic (H1N1 2009 influenza virus.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Swine influenza is an acute respiratory disease in pigs caused by swine influenza virus (SIV. Highly virulent SIV strains cause mortality of up to 10%. Importantly, pigs have long been considered "mixing vessels" that generate novel influenza viruses with pandemic potential, a constant threat to public health. Since its emergence in 2009 and subsequent pandemic spread, the pandemic (H1N1 2009 (H1N1pdm has been detected in pig farms, creating the risk of generating new reassortants and their possible infection of humans. Pathogenesis in SIV or H1N1pdm-infected pigs remains poorly characterized. Proinflammatory and antiviral cytokine responses are considered correlated with the intensity of clinical signs, and swine macrophages are found to be indispensible in effective clearance of SIV from pig lungs. In this study, we report a unique pattern of cytokine responses in swine macrophages infected with H1N1pdm. The roles of mitogen-activated protein (MAP kinases in the regulation of the host responses were examined. We found that proinflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were significantly induced and their induction was ERK1/2-dependent. IFN-β and IFN-inducible antiviral Mx and 2'5'-OAS were sharply induced, but the inductions were effectively abolished when ERK1/2 was inhibited. Induction of CCL5 (RANTES was completely inhibited by inhibitors of ERK1/2 and JNK1/2, which appeared also to regulate FasL and TNF-α, critical for apoptosis in pig macrophages. We found that NFκB was activated in H1N1pdm-infected cells, but the activation was suppressed when ERK1/2 was inhibited, indicating there is cross-talk between MAP kinase and NFκB responses in pig macrophages. Our data suggest that MAP kinase may activate NFκB through the induction of RIG-1, which leads to the induction of IFN-β in swine macrophages. Understanding host responses and their underlying mechanisms may help identify venues for effective control of SIV and assist in

  19. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of AIF and GSH-ROS-JNK-ERK-iNOS pathway.

    Directory of Open Access Journals (Sweden)

    Avik Acharya Chowdhury

    Full Text Available BACKGROUND: Hydroxychavicol (HCH, a constituent of Piper betle leaf has been reported to exert anti-leukemic activity through induction of reactive oxygen species (ROS. The aim of the study is to optimize the oxidative stress -induced chronic myeloid leukemic (CML cell death by combining glutathione synthesis inhibitor, buthionine sulfoximine (BSO with HCH and studying the underlying mechanism. MATERIALS AND METHODS: Anti-proliferative activity of BSO and HCH alone or in combination against a number of leukemic (K562, KCL22, KU812, U937, Molt4, non-leukemic (A549, MIA-PaCa2, PC-3, HepG2 cancer cell lines and normal cell lines (NIH3T3, Vero was measured by MTT assay. Apoptotic activity in CML cell line K562 was detected by flow cytometry (FCM after staining with annexin V-FITC/propidium iodide (PI, detection of reduced mitochondrial membrane potential after staining with JC-1, cleavage of caspase- 3 and poly (ADP-ribose polymerase proteins by western blot analysis and translocation of apoptosis inducing factor (AIF by confocal microscopy. Intracellular reduced glutathione (GSH was measured by colorimetric assay using GSH assay kit. 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA and 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM were used as probes to measure intracellular increase in ROS and nitric oxide (NO levels respectively. Multiple techniques like siRNA transfection and pharmacological inhibition were used to understand the mechanisms of action. RESULTS: Non-apoptotic concentrations of BSO significantly potentiated HCH-induced apoptosis in K562 cells. BSO potentiated apoptosis-inducing activity of HCH in CML cells by caspase-dependent as well as caspase-independent but apoptosis inducing factor (AIF-dependent manner. Enhanced depletion of intracellular GSH induced by combined treatment correlated with induction of ROS. Activation of ROS- dependent JNK played a crucial role in ERK1/2 activation which subsequently induced the

  20. ERK/MAPK and PI3K/AKT signal channels simultaneously activated in nerve cell and axon after facial nerve injury.

    Science.gov (United States)

    Huang, Hai-Tao; Sun, Zhi-Gang; Liu, Hua-Wei; Ma, Jun-Tao; Hu, Min

    2017-12-01

    The in-vitro study indicated that ERK/MAPK and PI3K/AKT signal channels may play an important role in reparative regeneration process after peripheral nerve injury. But, relevant in-vivo study was infrequent. In particular, there has been no report on simultaneous activation of ERK/MAPK and PI3K/AKT signal channels in facial nerve cell and axon after facial nerve injury. The expression of P-ERK enhanced in nerve cells at the injury side on the 1 d after the rat facial nerve was cut and kept on a higher level until 14 d, but decreased on 28 d. The expression of P-AKT enhanced in nerve cells at the injury side on 1 d after injury, and kept on a higher level until 28 d. The expression of P-ERK enhanced at the near and far sections of the injured axon on 1 d, then increased gradually and reached the maximum on 7 d, but decreased on 14 d, until down to the level before the injury on 28 d. The expression of P-AKT obviously enhanced in the injured axon on 1 d, especially in the axon of the rear section, but decreased in the axon of the rear section on 7 d, while the expression of axon in the far section increased to the maximum and kept on till 14 d. On 28 d, the expression of P-AKT decreased in both rear and far sections of the axon. The facial nerve simultaneously activated ERK/MAPK and PI3K/AKT signal channels in facial nerve cells and axons after the cut injury, but the expression levels of P-ERK and P-AKT varied as the function of the time. In particular, they were quite different in axon of the far section. It has been speculated that two signal channels might have different functions after nerve injury. However, their specific regulating effects should still be testified by further studies in regenerative process of peripheral nerve injury.

  1. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Xu, Yuan; Li, Yuan; Li, Huiqiao; Pang, Ying; Zhao, Yue; Jiang, Rongrong; Shen, Lu; Zhou, Jianwei; Wang, Xinru; Liu, Qizhan

    2013-01-01

    The biphasic effects of arsenite, in which low levels of arsenite induce cell proliferation and high levels of arsenite induce DNA damage and apoptosis, apparently contribute to arsenite-induced carcinogenesis. However, the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the effects of different levels of arsenite on cell proliferation, DNA damage and apoptosis as well as on signal transduction pathways in human bronchial epithelial (HBE) cells. Our results show that a low level of arsenite activates extracellular signal-regulated kinases (ERK), which probably mediate arsenite-inhibited degradation of ubiquitinated hypoxia-inducible factor-2α (HIF-2α) in HBE cells. ERK inhibition blocks cell proliferation induced by a low level of arsenite, in part via HIF-2α. In contrast, a high level of arsenite activates c-Jun N-terminal kinases (JNK), which provoke a response to suppress ubiquitinated HIF-1α degradation. Down-regulation of HIF-1α by inhibiting JNK, however, increases the DNA damage but decreases the apoptosis induced by a high level of arsenite. Thus, data in the present study suggest that the accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in different levels of arsenite-induced biphasic effects, with low levels of arsenite inducing cell proliferation and high levels of arsenite inducing DNA damage and apoptosis in HBE cells. -- Highlights: ► Biphasic effects induced by different concentrations of arsenite. ► Different regulation of ERK or JNK signal pathway by arsenite. ► Different regulation of HIF1α or HIF 2α by arsenite.

  2. L-Arginine Stimulates Fibroblast Proliferation through the GPRC6A-ERK1/2 and PI3K/Akt Pathway

    Science.gov (United States)

    Fujiwara, Takashi; Kanazawa, Shigeyuki; Ichibori, Ryoko; Tanigawa, Tomoko; Magome, Takuya; Shingaki, Kenta; Miyata, Shingo; Tohyama, Masaya; Hosokawa, Ko

    2014-01-01

    l-Arginine is considered a conditionally essential amino acid and has been shown to enhance wound healing. However, the molecular mechanisms through which arginine stimulates cutaneous wound repair remain unknown. Here, we evaluated the effects of arginine supplementation on fibroblast proliferation, which is a key process required for new tissue formation. We also sought to elucidate the signaling pathways involved in mediating the effects of arginine on fibroblasts by evaluation of extracellular signal-related kinase (ERK) 1/2 activation, which is important for cell growth, survival, and differentiation. Our data demonstrated that addition of 6 mM arginine significantly enhanced fibroblast proliferation, while arginine deprivation increased apoptosis, as observed by enhanced DNA fragmentation. In vitro kinase assays demonstrated that arginine supplementation activated ERK1/2, Akt, PKA and its downstream target, cAMP response element binding protein (CREB). Moreover, knockdown of GPRC6A using siRNA blocked fibroblast proliferation and decreased phosphorylation of ERK1/2, Akt and CREB. The present experiments demonstrated a critical role for the GPRC6A-ERK1/2 and PI3K/Akt signaling pathway in arginine-mediated fibroblast survival. Our findings provide novel mechanistic insights into the positive effects of arginine on wound healing. PMID:24651445

  3. L-arginine stimulates fibroblast proliferation through the GPRC6A-ERK1/2 and PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Takashi Fujiwara

    Full Text Available L-arginine is considered a conditionally essential amino acid and has been shown to enhance wound healing. However, the molecular mechanisms through which arginine stimulates cutaneous wound repair remain unknown. Here, we evaluated the effects of arginine supplementation on fibroblast proliferation, which is a key process required for new tissue formation. We also sought to elucidate the signaling pathways involved in mediating the effects of arginine on fibroblasts by evaluation of extracellular signal-related kinase (ERK 1/2 activation, which is important for cell growth, survival, and differentiation. Our data demonstrated that addition of 6 mM arginine significantly enhanced fibroblast proliferation, while arginine deprivation increased apoptosis, as observed by enhanced DNA fragmentation. In vitro kinase assays demonstrated that arginine supplementation activated ERK1/2, Akt, PKA and its downstream target, cAMP response element binding protein (CREB. Moreover, knockdown of GPRC6A using siRNA blocked fibroblast proliferation and decreased phosphorylation of ERK1/2, Akt and CREB. The present experiments demonstrated a critical role for the GPRC6A-ERK1/2 and PI3K/Akt signaling pathway in arginine-mediated fibroblast survival. Our findings provide novel mechanistic insights into the positive effects of arginine on wound healing.

  4. Effects of ghrelin on activation of Akt1 and ERK1/2 pathways during in vitro maturation of bovine oocytes.

    Science.gov (United States)

    Chouzouris, Thomas-Markos; Dovolou, Eleni; Krania, Fotini; Pappas, Ioannis S; Dafopoulos, Konstantinos; Messinis, Ioannis E; Anifandis, George; Amiridis, Georgios S

    2017-04-01

    The purpose of this study was to investigate the possible molecular pathways through which ghrelin accelerates in vitro oocyte maturation. Bovine cumulus-oocyte complexes (COCs), after 18 or 24 h maturation in the absence or the presence of 800 pg ml-1 of acylated ghrelin were either assessed for nuclear maturation or underwent in vitro fertilization in standard media and putative zygotes were cultured in vitro for 8 days. In a subset of COCs the levels of phosphorylated Akt1 and ERK1/2 (MAPK1/3) were assessed at the 0th, 6th, 10th, 18th and 24th hours of in vitro maturation (IVM). At 18 and 24 h no difference existed in the proportion of matured oocytes in the ghrelin-treated group, while in the control group more (P ghrelin resulted in substantially reduced (P Ghrelin-treated oocytes expressed lower Akt1 phosphorylation rate at the 10th hour of IVM, and higher ERK1/2 at the 6th and 10th hours of IVM compared with controls. In cumulus cells, at the 18th and 24th hours of IVM Akt1 phosphorylation rate was higher in ghrelin-treated oocytes. Our results imply that ghrelin acts in a different time-dependent manner on bovine oocytes and cumulus cells modulating Akt1 and ERK1/2 phosphorylation, which brings about acceleration of the oocyte maturation process.

  5. Erk1/2 and Akt kinases are involved in the protective effect of aniracetam in astrocytes subjected to simulated ischemia in vitro.

    Science.gov (United States)

    Gabryel, Bozena; Pudelko, Anna; Malecki, Andrzej

    2004-06-28

    The present study focused on the mechanism of cytoprotective effect of aniracetam on the primary rat astrocyte cultures exposed to simulated ischemia conditions in vitro. To study these mechanisms, the aniracetam-mediated modulation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K)/Akt kinase pathways was determined. Simulated in vitro ischemia caused death of approximately 35% of astrocytes via apoptosis and decreased cell viability about 50% at 8 h. Exposure to aniracetam at concentrations of 0.1-10 microM in these conditions significantly decreased the number of apoptotic cells. Moreover, the intensification of 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolinum bromide (MTT) conversion and the decrease of lactate dehydrogenase (LDH) release after 1 and 10 microM aniracetam treatment were observed indicating a significant increase in cell viability. When cultured astrocytes were incubated during 8 h simulated ischemia with [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] (U0126), an extracellular regulated kinase 1 and 2 (Erk1/2) inhibitor or wortmannin, a phosphatidylinositol 3-kinase (PI3 kinase)/Akt inhibitor, the cell apoptosis was accelerated. These effects of used kinase inhibitors (both U0126 and wortmannin) were antagonized by adding 1 and 10 microM aniracetam to the culture medium. In addition, aniracetam significantly stimulated of phospho-Erk1/2 kinase and phospho-Akt expression. Maximum levels of Erk1/2 and Akt activation were observed as a result of treatment with 10 microM aniracetam. U0126 and wortmannin markedly attenuated the effects of aniracetam on expression of activated kinases. Results of the present study indicate that both Erk1/2 and PI 3-K/Akt kinase pathways are vital for cytoprotective effect of aniracetam.

  6. Hypochoeris radicata attenuates LPS-induced inflammation by suppressing p38, ERK, and JNK phosphorylation in RAW 264.7 macrophages.

    Science.gov (United States)

    Kim, Min-Jin; Kim, Se-Jae; Kim, Sang Suk; Lee, Nam Ho; Hyun, Chang-Gu

    2014-01-01

    Hypochoeris radicata, an invasive plant species, is a large and growing threat to ecosystem integrity on Jeju Island, a UNESCO World Heritage site. Therefore, research into the utilization of H. radicata is important and urgently required in order to solve this invasive plant problem in Jeju Island. The broader aim of our research is to elucidate the biological activities of H. radicata, which would facilitate the conversion of this invasive species into high value-added products. The present study was undertaken to identify the pharmacological effects of H. radicata flower on the production of inflammatory mediators in macrophages. The results indicate that the ethyl acetate fraction of H. radicata extract (HRF-EA) inhibited the production of pro-inflammatory molecules such as NO, iNOS, PGE2, and COX-2, and cytokines such as TNF-α, IL-1ß, and IL-6 in LPS-stimulated RAW 264.7 cells. Furthermore, the phosphorylation of MAPKs such as p38, ERK, and JNK was suppressed by HRF-EA in a concentration-dependent manner. In addition, through HPLC and UPLC fingerprinting, luteolins were also identified and quantified as extract constituents. On the basis of these results, we suggest that H. radicata may be considered possible anti-inflammatory candidates for pharmaceutical and/or cosmetic applications.

  7. Periodic Mechanical Stress Activates PKCδ-Dependent EGFR Mitogenic Signals in Rat Chondrocytes via PI3K-Akt and ERK1/2

    Directory of Open Access Journals (Sweden)

    Peng He

    2016-09-01

    Full Text Available Background/Aims: The present study aimed to analyze the mechanisms by which periodic mechanical stress is translated into biochemical signals, and to verify the important role of signaling molecules including phosphatidylinositol-3-kinase (PI3K-Akt, protein kinase C (PKC, and epidermal growth factor receptor (EGFR in chondrocyte proliferation. The effects of periodic mechanical stress on the mitogenesis of chondrocytes have been studied extensively in recent years. However, the mechanisms underlying the ability of chondrocytes to sense and respond to periodic mechanical stress need further investigation. Methods: Two steps were undertaken in the experiment. In the first step, the cells were pretreated with shRNA targeted to Akt or EGFR or PKCδ or control scrambled shRNA. Moreover, they were pretreated with LY294002, GF109203X, Gö6976, rottlerin, and AG1478. They were maintained under static conditions or periodic mechanical stress for 3 days, 8 h per day, prior to direct cell counting and CCK-8 assay, respectively. In the second step, the cells were pretreated with shRNA targeted to Akt or EGFR or PKCδ or control scrambled shRNA. Moreover, they were pretreated with LY294002, AG1478, and rottlerin. They were maintained under static conditions or periodic mechanical stress for 1 h prior to Western blot analysis. Results: Proliferation was inhibited by pretreatment with PKC or PKCδ inhibitor GF109203X or rottlerin and by short hairpin RNA (shRNA targeted to PKCδ, but not by PKCα inhibitor Gö6976 in chondrocytes in response to periodic mechanical stress. Meantime, rottlerin and shRNA targeted to PKCδ also attenuated EGFR, Akt, and ERK1/2 activation. Furthermore, inhibiting EGFR activity by AG1478 and shRNA targeted to EGFR abrogated chondrocyte proliferation and phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK1/2 subjected to periodic mechanical stress, while the phosphorylation site of PKCδ was not affected. In

  8. Suppression of protein tyrosine phosphatase PTPN22 gene induces apoptosis in T-cell leukemia cell line (Jurkat) through the AKT and ERK pathways.

    Science.gov (United States)

    Baghbani, Elham; Baradaran, Behzad; Pak, Fatemeh; Mohammadnejad, Leila; Shanehbandi, Daryoush; Mansoori, Behzad; Khaze, Vahid; Montazami, Noushin; Mohammadi, Ali; Kokhaei, Parviz

    2017-02-01

    The aim of this study was to investigate the effect of specific PTPN22 small interfering RNAs (siRNAs) on the viability and induction of apoptosis in Jurkat cells and to evaluate apoptosis signaling pathways. In this study, Jurkat cells were transfected with specific PTPN22 siRNA. Relative PTPN22 mRNA expression was measured by Quantitative Real-time PCR. Western blotting was performed to determine the protein levels of PTPN22, AKT, P-AKT, ERK, and P-ERK. The cytotoxic effects of PTPN22 siRNA were determined using the MTT assay. Apoptosis was quantified using TUNEL assay and flow cytometry. Results showed that in Jurkat cells after transfection with PTPN22 siRNA, the expression of PTPN22 in both mRNA and protein levels was effectively reduced. Moreover, siRNA transfection induced apoptosis on the viability of T-cell acute leukemia cells. More importantly, PTPN22 positively regulated the anti-apoptotic AKT kinase, which provides a powerful survival signal to T-ALL cells as well as the suppression of PTPN22 down regulated ERK activity. Our results suggest that the PTPN22 specific siRNA effectively decreases the viability of T-cell acute leukemia cells, induces apoptosis in this cell line, and therefore could be considered as a potent adjuvant in T-ALL therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Fucoxanthin prevents H2O2-induced neuronal apoptosis via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway.

    Science.gov (United States)

    Yu, Jie; Lin, Jia-Jia; Yu, Rui; He, Shan; Wang, Qin-Wen; Cui, Wei; Zhang, Jin-Rong

    2017-01-01

    Background : As a natural carotenoid abundant in chloroplasts of edible brown algae, fucoxanthin possesses various health benefits, including anti-oxidative activity in particular. Objective : In the present study, we studied whether fucoxanthin protected against hydrogen peroxide (H 2 O 2 )-induced neuronal apoptosis. Design : The neuroprotective effects of fucoxanthin on H 2 O 2 -induced toxicity were studied in both SH-SY5Y cells and primary cerebellar granule neurons. Results : Fucoxanthin significantly protected against H 2 O 2 -induced neuronal apoptosis and intracellular reactive oxygen species. H 2 O 2 treatment led to the reduced activity of phosphoinositide 3-kinase (PI3-K)/Akt cascade and the increased activity of extracellular signal-regulated kinase (ERK) pathway in SH-SY5Y cells. Moreover, fucoxanthin significantly restored the altered activities of PI3-K/Akt and ERK pathways induced by H 2 O 2 . Both specific inhibitors of glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK) significantly protected against H 2 O 2 -induced neuronal death. Furthermore, the neuroprotective effects of fucoxanthin against H 2 O 2 -induced neuronal death were abolished by specific PI3-K inhibitors. Conclusions : Our data strongly revealed that fucoxanthin protected against H 2 O 2 -induced neurotoxicity via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway, providing support for the use of fucoxanthin to treat neurodegenerative disorders induced by oxidative stress.

  10. The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age-dependent signaling differences in the hippocampus.

    Science.gov (United States)

    Kim, Su-Jeong; Guerrero, Noel; Wassef, Gabriella; Xiao, Jialin; Mehta, Hemal H; Cohen, Pinchas; Yen, Kelvin

    2016-07-26

    Humanin is a small secreted peptide that is encoded in the mitochondrial genome. Humanin and its analogues have a protective role in multiple age-related diseases including type 2 diabetes and Alzheimer's disease, through cytoprotective and neuroprotective effects both in vitro and in vivo. However, the humanin-mediated signaling pathways are not well understood. In this paper, we demonstrate that humanin acts through the GP130/IL6ST receptor complex to activate AKT, ERK1/2, and STAT3 signaling pathways. Humanin treatment increases phosphorylation in AKT, ERK 1/2, and STAT3 where PI3K, MEK, and JAK are involved in the activation of those three signaling pathways, respectively. Furthermore, old mice, but not young mice, injected with humanin showed an increase in phosphorylation in AKT and ERK1/2 in the hippocampus. These findings uncover a key signaling pathway of humanin that is important for humanin's function and also demonstrates an age-specific in vivo effect in a region of the brain that is critical for memory formation in an age-dependent manner.

  11. Dichloromethane fraction of Cimicifuga heracleifolia decreases the level of melanin synthesis by activating the ERK or AKT signaling pathway in B16F10 cells.

    Science.gov (United States)

    Jang, Ji Yeon; Lee, Jun Hyuk; Kang, Byoung Won; Chung, Kyung Tae; Choi, Yung Hyun; Choi, Byung Tae

    2009-03-01

    Cimicifuga rhizoma has long been used in traditional Korean medicine. In particular, a Cimicifuga heracleifolia extract (CHE) was reported to inhibit the formation of glutamate and the glutamate dehydrogenase activity in cultured rat islet. Glutamate activates melanogenesis by activating tyrosinase. Accordingly, it was hypothesized that a CHE might inhibit the melanogenesis-related signal pathways including the inhibition of microphthalmia-associated transcription factor (MITF)-tyrosinase signaling and/or the activation of extracellular signal-regulated kinase (ERK)-Akt signaling. The results showed that CHE inhibits the cellular melanin contents, tyrosinase activity and expression of melanogenesis-related proteins including MITF, tyrosinase and tyrosinase-related protein (TRP)s in alpha-melanocyte-stimulating hormone-stimulated B16 cells. Moreover, CHE phosphorylates MEK, ERK1/2 and Akt, which are melanogenesis inhibitory proteins. The data suggest that CHE inhibits melanogenesis signaling by both inhibiting the tyrosinase directly and activating the MEK-ERK or Akt signal pathways-mediated suppression of MITF and its downstream signal pathway, including tyrosinase and TRPs. Therefore, C. heracleifolia would be a useful therapeutic agent for treating hyperpigmentation and an effective component in whitening and/or lightening cosmetics.

  12. The WxxxE effector EspT triggers expression of immune mediators in an Erk/JNK and NF-κB-dependent manner.

    Science.gov (United States)

    Raymond, Benoit; Crepin, Valerie F; Collins, James W; Frankel, Gad

    2011-12-01

    Enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Citrobacter rodentium colonize their respective hosts while forming attaching and effacing lesions. Their infection strategy relies on translocation of a battery of type III secretion system effectors, including Map, EspM and EspT, which belong to the WxxxE/SopE family of guanine nucleotide exchange factors. Using the C. rodentium mouse model we found that EspT triggers expression of KC and TNFα in vivo. Indeed, a growing body of evidence suggests that, in addition to subversion of actin dynamics, the SopE and the WxxxE effectors activate signalling pathways involved in immune responses. In this study we found that EspT induces expression of the pro-inflammatory mediators cyclooxygenase-2 (COX-2) an enzyme involved in production of prostaglandin E(2) (PGE2), interleukin (Il)-8 and Il-1β in U937 human macrophages by activating the nuclear factor kappa-B (NF-κB), the extracellular signal-regulated kinases 1 and 2 (Erk1/2) and c-Jun N-terminal kinase (JNK) pathways. Since EspT modulates the activation of Cdc42 and Rac1, which mediates bacterial invasion into epithelial cells, we investigated the involvement of these Rho GTPases and bacterial invasion on pro-inflammatory responses and found that (i) Rac1, but not Cdc42, is involved in EspT-induced Il-8 and Il-1β secretion and (ii) cytochalasin D inhibits EspT-induced EPEC invasion into U937 but not Il-8 or Il-1β secretion. These results suggest that while EPEC translocates a number of effectors (i.e. NleC, NleD, NleE, NleH) that inhibit inflammation, a subset of strains, which encode EspT, employ an infection strategy that also involves upregulation of immune mediators. © 2011 Blackwell Publishing Ltd.

  13. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance.

    Science.gov (United States)

    McCubrey, James A; Steelman, Linda S; Chappell, William H; Abrams, Stephen L; Franklin, Richard A; Montalto, Giuseppe; Cervello, Melchiorre; Libra, Massimo; Candido, Saverio; Malaponte, Grazia; Mazzarino, Maria C; Fagone, Paolo; Nicoletti, Ferdinando; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Chiarini, Francesca; Evangelisti, Camilla; Cocco, Lucio; Martelli, Alberto M

    2012-10-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.

  14. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance

    Science.gov (United States)

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Franklin, Richard A.; Montalto, Giuseppe; Cervello, Melchiorre; Libra, Massimo; Candido, Saverio; Malaponte, Grazia; Mazzarino, Maria C.; Fagone, Paolo; Nicoletti, Ferdinando; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Chiarini, Francesca; Evangelisti, Camilla; Cocco, Lucio; Martelli, Alberto M.

    2012-01-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance. PMID:23085539

  15. Dual Inhibition of PI3K-AKT-mTOR- and RAF-MEK-ERK-signaling is synergistic in cholangiocarcinoma and reverses acquired resistance to MEK-inhibitors.

    Science.gov (United States)

    Ewald, Florian; Nörz, Dominik; Grottke, Astrid; Hofmann, Bianca T; Nashan, Björn; Jücker, Manfred

    2014-12-01

    Until today, there is no systemic treatment available for advanced cholangiocarcinoma (CCA). Recent studies have shown a frequent upregulation of the PI3K-AKT-mTOR and RAF-MEK-ERK pathways in this type of cancer. However, considering their high extend of redundancy and cross-talk, targeting only one pathway is likely to result in therapy failure and emergence of resistances. To provide a rationale for treatment of CCA with inhibitors of these respective pathways, we analyzed the effects of AKT inhibitor MK-2206, MEK inhibitor AZD6244 (ARRY-142886) and mTOR kinase inhibitor AZD8055 on three CCA cell lines in vitro, concerning proliferation, cell signaling and apoptosis. Furthermore, AZD6244 resistant cell lines have been generated to investigate, how their response may be affected by prolonged treatment with only a single inhibitor. Our data demonstrates that co-targeting of both, the PI3K/AKT/mTOR and RAF-MEK-ERK pathway, as well as vertical targeting of AKT and mTOR results in strong synergistic effects on proliferation and cell survival with combination indices below 0.3. Mechanistically, the combinatorial treatment with MK-2206 in addition to AZD8055 is necessary because AKT kinase activity was quickly restored after mTOR kinase inhibition. Interestingly, acquired MEK inhibitor resistance to AZD6244 was reversed by combined treatment with AZD6244 and either MK-2206 or AZD8055. Our data suggest that a combination of inhibitors targeting those respective pathways may be a viable approach for future application in patients with cholangiocarcinoma. AKT, mTOR and MEK are promising targets for a combinatorial treatment of cholangiocarcinoma cells even after acquisition of MEK inhibitor resistance.

  16. The quassinoid derivative NBT-272 targets both the AKT and ERK signaling pathways in embryonal tumors.

    Science.gov (United States)

    Castelletti, Deborah; Fiaschetti, Giulio; Di Dato, Valeria; Ziegler, Urs; Kumps, Candy; De Preter, Katleen; Zollo, Massimo; Speleman, Frank; Shalaby, Tarek; De Martino, Daniela; Berg, Thorsten; Eggert, Angelika; Arcaro, Alexandre; Grotzer, Michael A

    2010-12-01

    The quassinoid analogue NBT-272 has been reported to inhibit MYC, thus warranting a further effort 7to better understand its preclinical properties in models of embryonal tumors (ET), a family of childhood malignancies sharing relevant biological and genetic features such as deregulated expression of MYC oncogenes. In our study, NBT-272 displayed a strong antiproliferative activity in vitro that resulted from the combination of diverse biological effects, ranging from G(1)/S arrest of the cell cycle to apoptosis and autophagy. The compound prevented the full activation of both eukaryotic translation initiation factor 4E (eIF4E) and its binding protein 4EBP-1, regulating cap-dependent protein translation. Interestingly, all responses induced by NBT-272 in ET could be attributed to interference with 2 main proproliferative signaling pathways, that is, the AKT and the MEK/extracellular signal-regulated kinase pathways. These findings also suggested that the depleting effect of NBT-272 on MYC protein expression occurred via indirect mechanisms, rather than selective inhibition. Finally, the ability of NBT-272 to arrest tumor growth in a xenograft model of neuroblastoma plays a role in the strong antitumor activity of this compound, both in vitro and in vivo, with its potential to target cell-survival pathways that are relevant for the development and progression of ET.

  17. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways

    International Nuclear Information System (INIS)

    Cao, Qin; Qin, Liyue; Huang, Fei; Wang, Xiaoshuang; Yang, Liu; Shi, Hailian; Wu, Hui; Zhang, Beibei; Chen, Ziyu; Wu, Xiaojun

    2017-01-01

    Parkinson's disease (PD) is characterized by the progressive degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Mitochondrial dysfunction and cell apoptosis are suggested to be actively involved in the pathogenesis of PD. In the present study, the neuroprotective effect of amentoflavone (AF), a naturally occurring biflavonoid from Selaginella tamariscina, was examined in PD models both in vitro and in vivo. On SH-SY5Y cells, AF treatment dose-dependently reduced 1-methyl-4-phenylpyridinium (MPP + )-induced nuclear condensation and loss of cell viability without obvious cytotoxicity. It inhibited the activation of caspase-3 and p21 but increased the Bcl-2/Bax ratio. Further study disclosed that AF enhanced the phosphorylation of PI3K, Akt and ERK1/2 down-regulated by MPP + in SH-SY5Y cells, the effect of which could be blocked by LY294002, the inhibitor of PI3K. Consistently, AF alleviated the behavioral deterioration in pole and traction tests and rescued the loss of dopaminergic neurons in SNpc and fibers in striatum in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice. It also could enhance the activation of PI3K and Akt as well as Bcl-2/Bax ratio in SN. Moreover, AF alleviated gliosis as well as the gene expression levels of IL-1β and iNOS in SN. Collectively, these results suggested that AF protected dopaminergic neurons against MPTP/MPP + -induced neurotoxicity, which might be mediated through activation of PI3K/Akt and ERK signaling pathways in dopaminergic neurons and attenuation of neuroinflammation. - Highlights: • AF protected dopaminergic neurons against MPTP/MPP + -induced neurotoxicity. • AF modulated PI3K/Akt and ERK signaling pathways. • AF could alleviate neuroinflammation in SN.

  18. The chloroform fraction of Solanum nigrum suppresses nitric oxide and tumor necrosis factor-α in LPS-stimulated mouse peritoneal macrophages through inhibition of p38, JNK and ERK1/2.

    Science.gov (United States)

    Kang, Hee; Jeong, Ha-Deok; Choi, Ho-Young

    2011-01-01

    Solanum nigrum L., commonly known as black nightshade, is used worldwide for the treatment of skin and mucosal ulcers, liver cirrhosis and edema. We aimed to determine the anti-inflammatory active fraction of S. nigrum by serial extractions. S. nigrum was first extracted with methanol, then fractionated with chloroform and water. The effects of S. nigrum fractions, diosgenin and α-solanine on LPS/interferon-gamma-induced nitric oxide (NO) and inducible NO synthase (iNOS), or LPS-induced tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, in mouse peritoneal macrophages were determined. Western blotting analysis was used to detect LPS-induced phosphorylation of p38, JNK and ERK1/2. The chloroform fraction of S. nigrum was cytotoxic in a time and concentration dependent manner; however, the methanol and water fractions were not. The chloroform fraction reduced NO through inhibition of iNOS synthesis and inhibited TNF-α and IL-6 at the level of protein secretion; the methanol and water fractions showed a weak or no effect. The chloroform fraction also suppressed p38, JNK and ERK1/2. Diosgenin and α-solanine were cytotoxic at a high concentration. In particular, diosgenin was able to inhibit TNF-α and IL-6, but both compounds did not affect LPS-induced iNOS expression. These results indicate that the anti-inflammatory compounds of S. nigrum exist preferentially in the nonpolar fraction, ruling out the possibility that diosgenin and α-solanine are the likely candidates. The inhibition of iNOS, TNF-α and IL-6 by the chloroform fraction may be partly due to the suppression of p38, JNK and ERK1/2. Further study is required to identify the active compounds of S. nigrum.

  19. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health

    Science.gov (United States)

    Chappell, William H.; Steelman, Linda S.; Long, Jacquelyn M.; Kempf, Ruth C.; Abrams, Stephen L.; Franklin, Richard A.; Bäsecke, Jörg; Stivala, Franca; Donia, Marco; Fagone, Paolo; Malaponte, Graziella; Mazzarino, Maria C.; Nicoletti, Ferdinando; Libra, Massimo; Maksimovic-Ivanic, Danijela; Mijatovic, Sanja; Montalto, Giuseppe; Cervello, Melchiorre; Laidler, Piotr; Milella, Michele; Tafuri, Agostino; Bonati, Antonio; Evangelisti, Camilla; Cocco, Lucio; Martelli, Alberto M.; McCubrey, James A.

    2011-01-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Integral components of these pathways, Ras, B-Raf, PI3K, and PTEN are also activated/inactivated by mutations. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of these pathways can contribute to chemotherapeutic drug resistance, proliferation of cancer initiating cells (CICs) and premature aging. This review will evaluate more recently described potential uses of MEK, PI3K, Akt and mTOR inhibitors in the proliferation of malignant cells, suppression of CICs, cellular senescence and prevention of aging. Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt/mTOR pathways play key roles in the regulation of normal and malignant cell growth. Inhibitors targeting these pathways have many potential uses from suppression of cancer, proliferative diseases as well as aging. PMID:21411864

  20. Antroquinonol from Antrodia Camphorata suppresses breast tumor migration/invasion through inhibiting ERK-AP-1- and AKT-NF-κB-dependent MMP-9 and epithelial-mesenchymal transition expressions.

    Science.gov (United States)

    Lee, Wai-Theng; Lee, Tzong-Huei; Cheng, Chia-Hsiung; Chen, Ku-Chung; Chen, Yen-Chou; Lin, Cheng-Wei

    2015-04-01

    Antroquinonol (ANQ) is an ubiquinon derivative isolated from the mycelium of Antrodia camphorata. However, the effect of ANQ on breast cancer treatment is unknown. We found that ANQ significantly suppressed the migration and invasion of breast cancer MDA-MB-231 cells, and inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasiveness by MCF7 cells. ANQ inhibiting MMP-9 gene expression and enzymatic activity occurred at transcriptional regulation. Mechanistically, activation of ERK and AKT is crucial for MMP-9 gene expression, and the addition of ANQ suppressed phosphorylation of ERK and AKT. The induction of the AP-1 and NF-κB pathway participated in MMP-9 gene expression. Suppression of ERK inhibited AP-1, whereas blocking AKT diminished NF-κB activity, and treatment with ANQ suppressed both AP-1 and NF-κB signaling. Moreover, ANQ suppressed EMT protein expression, and inhibited TPA-induced EMT through downregulating the ERK-AP-1 and AKT-NF-κB signaling cascades. Together, our data showed for the first time that ANQ inhibited breast cancer invasiveness by suppressing ERK-AP-1- and AKT-NF-κB-dependent MMP-9 and EMT expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. PI3K/Akt-sensitive MEK-independent compensatory circuit of ERK activation in ER-positive PI3K-mutant T47D breast cancer cells.

    Science.gov (United States)

    Aksamitiene, Edita; Kholodenko, Boris N; Kolch, Walter; Hoek, Jan B; Kiyatkin, Anatoly

    2010-09-01

    We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent. MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation. Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Apocynin and Diphenyleneiodonium Induce Oxidative Stress and Modulate PI3K/Akt and MAPK/Erk Activity in Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Kučera, Jan; Binó, Lucia; Štefková, Kateřina; Jaroš, Josef; Vašíček, Ondřej; Večeřa, Josef; Kubala, Lukáš; Pacherník, Jiří

    2016-01-01

    Reactive oxygen species (ROS) are important regulators of cellular functions. In embryonic stem cells, ROS are suggested to influence differentiation status. Regulated ROS formation is catalyzed primarily by NADPH-dependent oxidases (NOXs). Apocynin and diphenyleneiodonium are frequently used inhibitors of NOXs; however, both exhibit uncharacterized effects not related to NOXs inhibition. Interestingly, in our model of mouse embryonic stem cells we demonstrate low expression of NOXs. Therefore we aimed to clarify potential side effects of these drugs. Both apocynin and diphenyleneiodonium impaired proliferation of cells. Surprisingly, we observed prooxidant activity of these drugs determined by hydroethidine. Further, we revealed that apocynin inhibits PI3K/Akt pathway with its downstream transcriptional factor Nanog. Opposite to this, apocynin augmented activity of canonical Wnt signaling. On the contrary, diphenyleneiodonium activated both PI3K/Akt and Erk signaling pathways without affecting Wnt. Our data indicates limits and possible unexpected interactions of NOXs inhibitors with intracellular signaling pathways.

  3. Apocynin and Diphenyleneiodonium Induce Oxidative Stress and Modulate PI3K/Akt and MAPK/Erk Activity in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Jan Kučera

    2016-01-01

    Full Text Available Reactive oxygen species (ROS are important regulators of cellular functions. In embryonic stem cells, ROS are suggested to influence differentiation status. Regulated ROS formation is catalyzed primarily by NADPH-dependent oxidases (NOXs. Apocynin and diphenyleneiodonium are frequently used inhibitors of NOXs; however, both exhibit uncharacterized effects not related to NOXs inhibition. Interestingly, in our model of mouse embryonic stem cells we demonstrate low expression of NOXs. Therefore we aimed to clarify potential side effects of these drugs. Both apocynin and diphenyleneiodonium impaired proliferation of cells. Surprisingly, we observed prooxidant activity of these drugs determined by hydroethidine. Further, we revealed that apocynin inhibits PI3K/Akt pathway with its downstream transcriptional factor Nanog. Opposite to this, apocynin augmented activity of canonical Wnt signaling. On the contrary, diphenyleneiodonium activated both PI3K/Akt and Erk signaling pathways without affecting Wnt. Our data indicates limits and possible unexpected interactions of NOXs inhibitors with intracellular signaling pathways.

  4. Activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) during hypoxia in cerebral cortical nuclei of guinea pig fetus at term: role of nitric oxide.

    Science.gov (United States)

    Maulik, Dev; Ashraf, Qazi M; Mishra, Om P; Delivoria-Papadopoulos, Maria

    2008-07-04

    Previously we have shown that cerebral tissue hypoxia results in generation of nitric oxide (NO) free radicals as well as increased expression of mitogen-activated protein kinase like extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK). The present study tested the hypothesis that administration of l-nitro-l-arginine methyl ester (L-NAME), a NOS inhibitor, prior to hypoxia prevents the hypoxia-induced activation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK) and in the cerebral cortex of the term guinea pig fetus. To test this hypothesis normoxic (Nx, n=6), hypoxic (Hx, n=7) and hypoxic pretreated with l-NAME (Hx+L-NAME, n=6) guinea pig fetuses at 60 days gestation were studied to determine the phosphorylated p38, ERK and JNK. Hypoxia was induced by exposing pregnant guinea pigs to FiO2 of 0.07 for 1h. l-NAME (30mg/kg i.p.) was administered to pregnant mothers 60min prior to hypoxia. Cerebral tissue hypoxia was documented biochemically by determining the tissue levels of ATP and phosphocreatine (PCr). Neuronal nuclei were isolated, purified and proteins separated using 12% SDS-PAGE, and then probed with specific phosphorylated ERK, JNK and p38 antibodies. Protein bands were detected by enhanced chemiluminescence, analyzed by imaging densitometry and expressed as absorbance (ODxmm2). The relative level of p-p38 was 51.41+/-9.80 (Nx), 173.67+/-3.63 (Hx), 58.56+/-3.40 (Hx+L-NAME), phypoxia decreased the relative level of phosphorylated p38, ERK and JNK at term gestation. Since a NOS inhibitor prevented the hypoxia-induced phosphorylation of p38, ERK and JNK, we conclude that the hypoxia-induced activation of p38, ERK and JNK in the cerebral cortical nuclei of guinea pig fetus at term is NO-mediated. We speculate that NO-mediated modification of cysteine residue leading to inhibition of MAP kinase phosphatases results in increased activation of p38, ERK and JNK

  5. Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38{sup MAPK} and JNK1/2 but not of ERK1/2

    Energy Technology Data Exchange (ETDEWEB)

    Posser, Thais; Rossi, Francesco M.; Oliveira, Camila S.; Leal, Rodrigo B. [Universidade Federal de Santa Catarina, Departamento de Bioquimica, Centro de Ciencias Biologicas, Florianopolis, SC (Brazil); Mendes de Aguiar, Claudia B.N.; Garcez, Ricardo C.; Trentin, Andrea G. [Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Centro de Ciencias Biologicas, Florianopolis, SC (Brazil); Moura Neto, Vivaldo [Universidade Federal do Rio de Janeiro, Departamento de Anatomia, Centro de Ciencias da Saude, Rio de Janeiro, RJ (Brazil)

    2007-06-15

    Pb(II) is a neurotoxic pollutant that produces permanent cognitive deficits in children. Pb(II) can modulate cell signaling pathways and cell viability in a variety of cell types. However, these actions are not well demonstrated on glial cells, which represent an important target for metals into the central nervous system. The present work was undertaken to determine the ability of Pb(II) in modulating the activity of mitogen activated protein kinases (MAPKs) in cultures of C6 rat glioma cells, a useful functional model for the study of astrocytes. Additionally, cell viability was analyzed by measurement of MTT reduction. Cells were exposed to lead acetate 0.1, 1, 10 {mu}M for 24 and 48 h. MAPKs activation - in particular ERK1/2, p38{sup MAPK} and JNK1/2 - were analyzed by western blotting. Results showed that 10 {mu}M Pb(II) treatment for 24 h caused a discrete stimulation of p38{sup MAPK} phosphorylation. However, 1 and 10 {mu}M Pb(II) treatment for 48 h provoked a significant stimulation in the phosphorylation state of p38{sup MAPK} and JNK1/2. The phosphorylation state of ERK1/2 was not modified by any Pb(II) treatment. Moreover, data indicate that at 48 h treatment even 1 {mu}M Pb(II) can be cytotoxic, causing impairment on cell viability. Therefore, depending on a long incubation period, a significant concomitant activation of p38{sup MAPK} and JNK1/2 by Pb(II) took place in parallel with the impairment of C6 glioma cells viability. (orig.)

  6. Xyloketal B Suppresses Glioblastoma Cell Proliferation and Migration in Vitro through Inhibiting TRPM7-Regulated PI3K/Akt and MEK/ERK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Wen-Liang Chen

    2015-04-01

    Full Text Available Glioblastoma, the most common and aggressive type of brain tumors, has devastatingly proliferative and invasive characteristics. The need for finding a novel and specific drug target is urgent as the current approaches have limited therapeutic effects in treating glioblastoma. Xyloketal B is a marine compound obtained from mangrove fungus Xylaria sp. (No. 2508 from the South China Sea, and has displayed antioxidant activity and protective effects on endothelial and neuronal oxidative injuries. In this study, we used a glioblastoma U251 cell line to (1 explore the effects of xyloketal B on cell viability, proliferation, and migration; and (2 investigate the underlying molecular mechanisms and signaling pathways. MTT assay, colony formation, wound healing, western blot, and patch clamp techniques were employed. We found that xyloketal B reduced cell viability, proliferation, and migration of U251 cells. In addition, xyloketal B decreased p-Akt and p-ERK1/2 protein expressions. Furthermore, xyloketal B blocked TRPM7 currents in HEK-293 cells overexpressing TRPM7. These effects were confirmed by using a TRPM7 inhibitor, carvacrol, in a parallel experiment. Our findings indicate that TRPM7-regulated PI3K/Akt and MEK/ERK signaling is involved in anti-proliferation and migration effects of xyloketal B on U251 cells, providing in vitro evidence for the marine compound xyloketal B to be a potential drug for treating glioblastoma.

  7. Visfatin attenuates the ox-LDL-induced senescence of endothelial progenitor cells by upregulating SIRT1 expression through the PI3K/Akt/ERK pathway.

    Science.gov (United States)

    Ming, Guang-Feng; Tang, Yong-Jun; Hu, Kai; Chen, Yao; Huang, Wei-Hua; Xiao, Jian

    2016-08-01

    Endothelial progenitor cells (EPCs) play an important role in aging-associated senescence, thereby potentially contributing to vascular pathologies. Visfatin, identified as a new adipocytokine, is closely associated with the senescence of human cells. However, the effects of visfatin on the oxidized low-density lipoprotein (ox-LDL)-induced senescence of EPCs has not yet been explored, to the best of our knowledge. For this purpose, in the present study, we examined the effects of visfatin in ox-LDL-stimulated EPCs as well as the underlying mechanism responsible for these effects. We found that visfatin attenuated the ox-LDL-induced senescence of EPCs by repressing β-galactosidase expression and recovering telomerase activity. Western blot analysis confirmed that visfatin induced a dose-dependent increase in sirtuin 1 (SIRT1) expression in EPCs and ox-LDL exposure decreased SIRT1 expression. Silencing SIRT1 abolished the inhibition of EPC senescence and the suppression of p53 expression induced by visfatin. Moreover, visfatin attenuated the inhibition of phosphorylation of Akt, phosphoinositide-3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) induced by ox-LDL. Taken together, these findings suggest that the treatment of EPCs with visfatin markedly attenuates the ox-LDL-induced senescence of EPCs by upregulating SIRT1 expression through the PI3K/Akt/ERK pathway.

  8. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping, E-mail: lping@sdu.edu.cn [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Kong, Feng; Wang, Jue [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Lu, Qinghua [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China); Xu, Haijia [Department of Cardiology, Wendeng Central Hospital of Weihai City, Shandong, Weihai 264400 (China); Qi, Tonggang [Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China); Meng, Juan [Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China)

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  9. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways

    International Nuclear Information System (INIS)

    Bin, Geng; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Liping, An; Jinglin, Ma; Cuifang, Wang; Yonggang, Chen; Yayi, Xia

    2016-01-01

    TNF-α is known to induce osteoblasts apoptosis, whereas mechanical stimulation has been shown to enhance osteoblast survival. In the present study, we found that mechanical stimulation in the form of fluid shear stress (FSS) suppresses TNF-α induced apoptosis in MC3T3-E1 cells. Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family that has been implicated in cell survival. We also demonstrated that FSS imposed by flow chamber in vitro leads to a markedly activation of ERK5, which was shown to be protective against TNF-α-induced apoptosis, whereas the transfection of siRNA against ERK5 (ERK5-siRNA) reversed the FSS-medicated anti-apoptotic effects. An initial FSS-mediated activation of ERK5 that phosphorylates AKT to increase its activity, and a following forkhead box O 3a (FoxO3a) was phosphorylated by activated AKT. Phosphorylated FoxO3a is sequestered in the cytoplasm, and prevents it from translocating to nucleus where it can increase the expression of FasL and Bim. The inhibition of AKT-FoxO3a signalings by a PI3K (PI3-kinase)/AKT inhibitor (LY294002) or the transfection of ERK5-siRNA led to the nuclear translocation of non-phosphorylated FoxO3a, and increased the protein expression of FasL and Bim. In addition, the activation of caspase-3 by TNF-α was significantly inhibited by aforementioned FSS-medicated mechanisms. In brief, the activation of ERK5-AKT-FoxO3a signaling pathways by FSS resulted in a decreased expression of FasL and Bim and an inhibition of caspase-3 activation, which exerts a protective effect that prevents osteoblasts from apoptosis. - Highlights: • Fluid shear stress inhibits osteoblast apoptosis induced by TNF-α. • Inhibition of ERK5 activity by transfection of ERK5 siRNA blocks FSS-mediated anti-apoptotic effect in osteoblast. • Activated ERK5-AKT-FoxO3a-Bim/FasL signaling pathways by FSS is required to protect osteoblast from apoptosis.

  10. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bin, Geng; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Liping, An; Jinglin, Ma; Cuifang, Wang; Yonggang, Chen [The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, 730000 Gansu (China); Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000 Gansu (China); Yayi, Xia, E-mail: xiayayildey@163.com [The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, 730000 Gansu (China); Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000 Gansu (China)

    2016-05-01

    TNF-α is known to induce osteoblasts apoptosis, whereas mechanical stimulation has been shown to enhance osteoblast survival. In the present study, we found that mechanical stimulation in the form of fluid shear stress (FSS) suppresses TNF-α induced apoptosis in MC3T3-E1 cells. Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family that has been implicated in cell survival. We also demonstrated that FSS imposed by flow chamber in vitro leads to a markedly activation of ERK5, which was shown to be protective against TNF-α-induced apoptosis, whereas the transfection of siRNA against ERK5 (ERK5-siRNA) reversed the FSS-medicated anti-apoptotic effects. An initial FSS-mediated activation of ERK5 that phosphorylates AKT to increase its activity, and a following forkhead box O 3a (FoxO3a) was phosphorylated by activated AKT. Phosphorylated FoxO3a is sequestered in the cytoplasm, and prevents it from translocating to nucleus where it can increase the expression of FasL and Bim. The inhibition of AKT-FoxO3a signalings by a PI3K (PI3-kinase)/AKT inhibitor (LY294002) or the transfection of ERK5-siRNA led to the nuclear translocation of non-phosphorylated FoxO3a, and increased the protein expression of FasL and Bim. In addition, the activation of caspase-3 by TNF-α was significantly inhibited by aforementioned FSS-medicated mechanisms. In brief, the activation of ERK5-AKT-FoxO3a signaling pathways by FSS resulted in a decreased expression of FasL and Bim and an inhibition of caspase-3 activation, which exerts a protective effect that prevents osteoblasts from apoptosis. - Highlights: • Fluid shear stress inhibits osteoblast apoptosis induced by TNF-α. • Inhibition of ERK5 activity by transfection of ERK5 siRNA blocks FSS-mediated anti-apoptotic effect in osteoblast. • Activated ERK5-AKT-FoxO3a-Bim/FasL signaling pathways by FSS is required to protect osteoblast from apoptosis.

  11. The presence and activity of SP-D in porcine coronary endothelial cells depend on Akt/PI3K, Erk and nitric oxide and decrease after multiple passaging

    DEFF Research Database (Denmark)

    Lee, Mary Y K; Sørensen, Grith L; Holmskov, Uffe

    2009-01-01

    was reduced by L-NAME, wortmannin and PD 98059. The low basal expression at #4 could be increased by DETA NONOate (donor of NO) or insulin (activator of PI(3)K/Akt). The presence of nitric oxide synthase was reduced while that of Akt 1/2 and Erk 1/2 was increased at #4. In cells both at passages 1 and 4, TNF...

  12. Autophagy Stimulus Promotes Early HuR Protein Activation and p62/SQSTM1 Protein Synthesis in ARPE-19 Cells by Triggering Erk1/2, p38MAPK, and JNK Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Nicoletta Marchesi

    2018-01-01

    Full Text Available RNA-binding protein dysregulation and altered expression of proteins involved in the autophagy/proteasome pathway play a role in many neurodegenerative disease onset/progression, including age-related macular degeneration (AMD. HuR/ELAVL1 is a master regulator of gene expression in human physiopathology. In ARPE-19 cells exposed to the proteasomal inhibitor MG132, HuR positively affects at posttranscriptional level p62 expression, a stress response gene involved in protein aggregate clearance with a role in AMD. Here, we studied the early effects of the proautophagy AICAR + MG132 cotreatment on the HuR-p62 pathway. We treated ARPE-19 cells with Erk1/2, AMPK, p38MAPK, PKC, and JNK kinase inhibitors in the presence of AICAR + MG132 and evaluated HuR localization/phosphorylation and p62 expression. Two-hour AICAR + MG132 induces both HuR cytoplasmic translocation and threonine phosphorylation via the Erk1/2 pathway. In these conditions, p62 mRNA is loaded on polysomes and its translation in de novo protein is favored. Additionally, for the first time, we report that JNK can phosphorylate HuR, however, without modulating its localization. Our study supports HuR’s role as an upstream regulator of p62 expression in ARPE-19 cells, helps to understand better the early events in response to a proautophagy stimulus, and suggests that modulation of the autophagy-regulating kinases as potential therapeutic targets for AMD may be relevant.

  13. PDGFR alpha signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90(RSK) and AKT signaling pathways

    DEFF Research Database (Denmark)

    Clement, Ditte L.; Mally, Sabine; Stock, Christian

    2013-01-01

    In fibroblasts, platelet-derived growth factor receptor alpha (PDGFR alpha) is upregulated during growth arrest and compartmentalized to the primary cilium. PDGF-AA mediated activation of the dimerized ciliary receptor produces a phosphorylation cascade through the PI3K-AKT and MEK1/2-ERK1/2 path...

  14. Kaempferol Inhibits Angiogenesis by Suppressing HIF-1α and VEGFR2 Activation via ERK/p38 MAPK and PI3K/Akt/mTOR Signaling Pathways in Endothelial Cells.

    Science.gov (United States)

    Kim, Gi Dae

    2017-12-01

    Kaempferol has been shown to inhibit vascular formation in endothelial cells. However, the underlying mechanisms are not fully understood. In the present study, we evaluated whether kaempferol exerts antiangiogenic effects by targeting extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathways in endothelial cells. Endothelial cells were treated with various concentrations of kaempferol for 24 h. Cell viability was determined by the 3- (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay; vascular formation was analyzed by tube formation, wound healing, and mouse aortic ring assays. Activation of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor receptor 2 (VEGFR2), ERK/p38 MAPK, and PI3K/Akt/mTOR was analyzed by Western blotting. Kaempferol significantly inhibited cell migration and tube formation in endothelial cells, and suppressed microvessel sprouting in the mouse aortic ring assay. Moreover, kaempferol suppressed the activation of HIF-1α, VEGFR2, and other markers of ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. These results suggest that kaempferol inhibits angiogenesis by suppressing HIF-1α and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling in endothelial cells.

  15. Rho-independent stimulation of axon outgrowth and activation of the ERK and Akt signaling pathways by C3 transferase in sensory neurons

    Directory of Open Access Journals (Sweden)

    Maria eAuer

    2012-10-01

    Full Text Available Peripheral nerve injury triggers the activation of RhoA in spinal motor and peripheral sensory neurons. RhoA activates a number of effector proteins including the Rho-associated kinase, ROCK, which targets the cytoskeleton and leads to inhibition of neurite outgrowth. Blockade of the Rho/ROCK pathway by pharmacological means improves axon regeneration after experimental injury. C3bot transferase, an exoenzyme produced by Clostridium botulinum, inactivates RhoA by ADP-ribosylation. Up to now it was not investigated thoroughly whether C3bot exerts positive effects on peripheral axon regeneration as well. In the present study, recombinant membrane permeable C3bot produced a small, but significant, axon outgrowth effect on peripheral sensory neurons dissociated from adult dorsal root ganglia of the rat. Neuronal overexpression of C3, however, did not enhance axonal growth. Moreover, transfection of plasmids encoding dominant negative RhoA or RhoA specific shRNAs failed to increase axonal growth. Furthermore, we show that the C3bot mutant, C3E174Q, which lacks RhoA inhibitory activity, still stimulates axonal growth. When analyzing possible signaling mechanisms we found that ERK (extracellular signal-regulated kinase and Akt are activated by C3bot and ERK is induced by the C3E174Q mutant. Upregulation of kinase activities by C3bot occurs significantly faster than inactivation of RhoA indicating a RhoA-independent pathway of action by C3bot. The induction of ERK signaling by C3bot was detected in embryonic hippocampal neurons, too. Taken together, although RhoA plays a central role for inhibition of axon outgrowth by myelin-derived inhibitors, it does not interfere with axonal growth of sensory neurons on a permissive substrate in vitro. C3bot blocks neuronal RhoA activity, but its positive effects on axon elongation and branching appear to be mediated by Rho independent mechanisms involving activation of axon growth promoting ERK and Akt kinases.

  16. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway.

    Science.gov (United States)

    Wang, Tingting; Seah, Serena; Loh, Xinyi; Chan, Ching-Wan; Hartman, Mikael; Goh, Boon-Cher; Lee, Soo-Chin

    2016-01-19

    Statins purportedly exert anti-tumoral effects on breast cancer. However, the biologic mechanisms for these actions are not fully elucidated. The aims of this study were 1) to explore the effects of simvastatin on apoptosis, proliferation as well as PI3K/Akt/mTOR and MAPK/ERK pathway in a window-of-opportunity breast cancer trial; 2) to further confirm findings from the clinical trial by functional studies; 3) to explore the regulatory role of mevalonate pathway on the anti-tumoral effects of simvastatin. In clinical samples, simvastatin led to increase in cleaved caspase-3 (p = 0.002) and decreased trend for Ki67 (p = 0.245). Simvastatin markedly suppressed PI3K/Akt/mTOR signalling by activating PTEN (p = 0.005) and by dephosphorylating Akt (p = 0.002) and S6RP (p = 0.033); it also inhibited MAPK/ERK pathway by dephosphorylating c-Raf (p = 0.018) and ERK1/2 (p = 0.002). In ER-positive (MCF-7, T47D) and ER-negative (MDA-MB-231, BT-549) breast cancer cells, simvastatin treatment consistently induced apoptosis and inhibited proliferation by deregulating caspase cascades and cell cycle proteins in a dose dependent manner. Concordantly, simvastatin strongly suppressed PI3K/Akt/mTOR pathway by enhancing PTEN expression and by further sequentially dephosphorylating downstream cascades including Akt, mTOR, p70S6K, S6RP and 4E-BP1. Furthermore, simvastatin significantly inhibited MAPK/ERK pathway by dephosphorylating sequential cascades such as c-Raf, MEK1/2 and ERK1/2. These simvastatin anti-tumoral effects were reversed by metabolic products of the mevalonate pathway, including mevalonate, farnesyl pyrophosphate and geranylgeranyl pyrophosphate. These findings shed light on the biological and potential anti-tumoral effects of simvastatin in breast cancer.

  17. Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats

    Energy Technology Data Exchange (ETDEWEB)

    El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com; Abdel-Rahman, Abdel A., E-mail: abdelrahmana@ecu.edu

    2015-09-15

    Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E{sub 2} modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5 g/kg i.v.) 30-min after E{sub 2} (1 μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dt{sub max}) and systolic (SBP) and diastolic (DBP) blood pressures in E{sub 2}-pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E{sub 2} promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E{sub 2} for specific medical conditions. - Highlights: • Ethanol lowers blood pressure and causes LV dysfunction in E{sub 2}-treated rats. • E{sub 2}/ethanol aggravates cardiac oxidative state via of DAPK3/Akt/ERK activation. • E{sub 2}/ethanol causes a feedback increase in cardiac HO-1, catalase and ALDH2. • Alcohol might increase risk of myocardial dysfunction in men treated with E{sub 2}.

  18. Biphasic activation of PI3K/Akt and MAPK/Erk1/2 signaling pathways in bovine herpesvirus type 1 infection of MDBK cells

    Directory of Open Access Journals (Sweden)

    Zhu Liqian

    2011-04-01

    Full Text Available Abstract Many viruses have been known to control key cellular signaling pathways to facilitate the virus infection. The possible involvement of signaling pathways in bovine herpesvirus type 1 (BoHV-1 infection is unknown. This study indicated that infection of MDBK cells with BoHV-1 induced an early-stage transient and a late-stage sustained activation of both phosphatidylinositol 3-kinase (PI3K/Akt and mitogen activated protein kinases/extracellular signal-regulated kinase 1/2 (MAPK/Erk1/2 signaling pathways. Analysis with the stimulation of UV-irradiated virus indicated that the virus binding and/or entry process was enough to trigger the early phase activations, while the late phase activations were viral protein expression dependent. Biphasic activation of both pathways was suppressed by the selective inhibitor, Ly294002 for PI3K and U0126 for MAPK kinase (MEK1/2, respectively. Furthermore, treatment of MDBK cells with Ly294002 caused a 1.5-log reduction in virus titer, while U0126 had little effect on the virus production. In addition, the inhibition effect of Ly294002 mainly occurred at the post-entry stage of the virus replication cycle. This revealed for the first time that BoHV-1 actively induced both PI3K/Akt and MAPK/Erk1/2 signaling pathways, and the activation of PI3K was important for fully efficient replication, especially for the post-entry stage.

  19. Hydronephrotic urine in the obstructed kidney promotes urothelial carcinoma cell proliferation, migration, invasion through the activation of mTORC2-AKT and ERK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Chi-Hao Chang

    Full Text Available Obstructive nephropathy is the most common presentation of urothelial carcinoma. The role of the urine in the obstructed kidney namely "hydronephrotic urine" in urothelial carcinoma has not been extensively explored. This study aims to evaluate whether hydronephrotic urine in the obstructed kidney could promote urothelial carcinoma. The hydronephrotic urine was collected from the obstructed kidneys of Sprague-Dawley rats induced by different periods of unilateral ureteral obstruction (UUO. By the inhibition of LY294002 and PD184352, we confirm that hydronephrotic urine promotes urothelial carcinoma cell (T24 and immortalized normal urothelial cells (E6 proliferation, migration and invasion in a dose-dependent manner through the activation of the mTORC2-AKT and ERK signaling pathways. Hydronephrotic urine also increases the expression of cyclin-D2, cyclin-B and CDK2. It also decreases the expression of p27 and p21 in both urothelial carcinoma cells and normal urothelial cells. By the protein array study, we demonstrate that many growth factors which promote tumor cell survival and metastasis are over-expressed in a time-dependent manner in the hydronephrotic urine, including beta-FGF, IFN-γ, PDGF-BB, PIGF, TGF-β, VEGF-A, VEGF-D and EGF. These results suggest that hydronephrotic urine promotes normal and malignant urothelial cells proliferation, migration and invasion, through the activation of the mTORC2-AKT and ERK signaling pathways. Further investigation using live animal models of tumor growth may be needed to clarify aspects of these statements.

  20. Ruta graveolens L. induces death of glioblastoma cells and neural progenitors, but not of neurons, via ERK 1/2 and AKT activation.

    Directory of Open Access Journals (Sweden)

    Maria Teresa Gentile

    Full Text Available Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138 widely used to test novel drugs in preclinical studies. Ruta graveolens' effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1 obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue's noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.

  1. TGF-β inducible early gene 1 regulates osteoclast differentiation and survival by mediating the NFATc1, AKT, and MEK/ERK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Muzaffer Cicek

    Full Text Available TGF-β Inducible Early Gene-1 (TIEG1 is a Krüppel-like transcription factor (KLF10 that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1(-/- mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1(-/- osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1(-/- precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1(-/- osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1(-/- osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1 to TIEG1(-/- cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1(-/- precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling.

  2. Effect of hypoxia on endothelial nitric oxide synthase, NO production, intracellular survival signaling (p-ERK1/2 and p-AKT) and apoptosis in human term trophoblast.

    Science.gov (United States)

    Park, Mi-Hye; Galan, Henry L; Arroyo, Juan A

    2011-04-01

    Hypoxia is commonly associated with complicated pregnancies such as intrauterine growth restriction. We evaluated the effects of hypoxia on phospho (p)-eNOS, p-ERK, p-AKT and apoptosis in human trophoblast. Isolated trophoblast were cultured in 21% oxygen or 2% oxygen for 24, 48 and 72 hr. p-eNOS, p-ERK and p-AKT protein were assessed by Western blot and apoptosis by TUNEL assay. NOx was determined in the culture media. Compared to controls, hypoxia-exposed CT showed the following: (1) decreased eNOS at 48 and 72 hr, (2) increased p-eNOS at 48 hr, (3) no differences in total NOx production, (4) increased p-ERK at 24, 48 and 72 hr, (5) increased p-AKT at 24 hr (P Hypoxia increases activation of p-ERK and induces apoptosis of cultured trophoblast. Hypoxia decreases overall total eNOS but increases p-eNOS, which may allow for NO production to be maintained in trophoblast cells. © 2010 John Wiley & Sons A/S.

  3. 13-Acetoxysarcocrassolide Induces Apoptosis on Human Gastric Carcinoma Cells Through Mitochondria-Related Apoptotic Pathways: p38/JNK Activation and PI3K/AKT Suppression

    Directory of Open Access Journals (Sweden)

    Ching-Chyuan Su

    2014-10-01

    Full Text Available 13-acetoxysarcocrassolide (13-AC, an active compound isolated from cultured Formosa soft coral Sarcophyton crassocaule, was found to possess anti-proliferative and apoptosis-inducing activities against AGS (human gastric adenocarcinoma cells gastric carcinoma cells. The anti-tumor effects of 13-AC were determined by MTT assay, colony formation assessment, cell wound-healing assay, TUNEL/4,6-Diamidino-2-phenylindole (DAPI staining, Annexin V-fluorescein isothiocyanate/propidium iodide (PI staining and flow cytometry. 13-AC inhibited the growth and migration of gastric carcinoma cells in a dose-dependent manner and induced both early and late apoptosis as assessed by flow cytometer analysis. 13-AC-induced apoptosis was confirmed through observation of a change in ΔΨm, up-regulated expression levels of Bax and Bad proteins, down-regulated expression levels of Bcl-2, Bcl-xl and Mcl-1 proteins, and the activation of caspase-3, caspase-9, p38 and JNK. Furthermore, inhibition of p38 and JNK activity by pretreatment with SB03580 (a p38-specific inhibitor and SP600125 (a JNK-specific inhibitor led to rescue of the cell cytotoxicity of 13-AC-treated AGS cells, indicating that the p38 and the JNK pathways are also involved in the 13-AC-induced cell apoptosis. Together, these results suggest that 13-AC induces cell apoptosis against gastric cancer cells through triggering of the mitochondrial-dependent apoptotic pathway as well as activation of the p38 and JNK pathways.

  4. Augmenter of liver regeneration causes different kinetics of ERK1/2 and Akt/PKB phosphorylation than EGF and induces hepatocyte proliferation in an EGF receptor independent and liver specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Ilowski, Maren; Putz, Christine [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Weiss, Thomas S. [Department of Surgery, University of Regensburg Hospital, Regensburg (Germany); Brand, Stephan [Department of Internal Medicine II, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Jauch, Karl-Walter [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Hengstler, Jan G. [Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund (Germany); Thasler, Wolfgang Erwin, E-mail: wolfgang.thasler@med.uni-muenchen.de [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany)

    2010-04-16

    Background/Aim: Augmenter of liver regeneration (ALR) is a potent growth factor which supports liver regeneration in experimental animals. The aim of this study was to compare proliferation as well as the kinetics of ERK1/2 and Akt/PKB phosphorylation by recombinant human ALR (rhALR) and EGF in human hepatocytes and extrahepatic cells. Methods: Kinetics of ERK1/2 and Akt/PKB phosphorylation were determined in primary human hepatocytes (phh) after stimulation with rhALR and EGF. Induction of proliferation was analyzed in phh and several cell lines of hepatic and extrahepatic origin by the MTT and [{sup 3}H]-thymidine assay. Results: The kinetics of ERK phosphorylation showed clear differences, whereby rhALR caused a transient and EGF a permanent increase during the observation period of 60 min. For both, Akt and ERK phosphorylation, EGF caused a faster effect with maximal levels observed already after 2 min, whereas rhALR caused maximal phosphorylation between 10 and 15 min. Using the EGF receptor inhibitor AG1478 we provide evidence of an EGF receptor independent induction of proliferation by rhALR. Furthermore, rhALR induced proliferation only in phh and the human liver derived cell lines HepG2 and Chang. In contrast, EGF enhanced proliferation in all analyzed cell types including cell lines of colon, bronchial, pancreatic and gastric origin (SW480, BC1, L36PL and GC1). Conclusion: rhALR and EGF induce different kinetics of ERK and Akt phosphorylation in human hepatocytes. The mitogenic effect of rhALR is liver specific and seems to be at least partially independent from EGF receptor mediated signaling.

  5. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Chun-Liang [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Jian, Yi-Jun [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan (China); Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting [Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan (China); Lin, Yun-Wei, E-mail: linyw@mail.ncyu.edu.tw [Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan (China)

    2015-05-15

    Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.

  6. The Inhibitory Effect of 3β-Hydroxy-12-oleanen-27-oic Acid on Growth and Motility of Human Hepatoma HepG2 Cells through JNK and Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Juanjuan Wang

    2013-01-01

    Full Text Available 3β-Hydroxy-12-oleanen-27-oic acid (ATA was a main antitumor active triterpene from the rhizomes of Astilbe chinensis. In this study, we investigated its effects on growth, apoptosis, cell cycle, motility/invasion, and metatasis in human hepatoma HepG2 cells in vitro and antimetastasis of B16-F10 melanoma in mice in vivo, as well as its molecular mechanisms of action using a high-throughput Cancer Pathway Finder PCR Array. ATA could not only induce tumor cells into apoptosis through the activation of both extrinsic and intrinsic pathways, arrest HepG2 cells in G2/M phase, but also suppress the invasion and metastasis abilities of HepG2 cells and the lung metastasis of B16-F10 melanoma in mice. PCR array assay revealed that ATA upregulated 9 genes including CDKN1A, MDM2, CFLAR (CASPER, TNFRSF10B (DR5, c-Jun, IL-8, THBS1, SERPINB5 (maspin, and TNF and downregulated 8 genes such as CCNE1, AKT, ANGPT1, TEK, TGFBR1, MMP9, U-PA, and S100A4. These results indicate that ATA could exert antitumor effects through activating JNK/MAPK and suppressing AKT signal transduction pathways and that ATA might be a potent anticancer agent.

  7. Inhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jen Wu

    2013-10-01

    Full Text Available Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF, tyrosinase, tyrosinase-related protein-1 (TRP1, and dopachrome tautomerase (Dct. In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK/extracellular signal-regulated kinase (ERK. Using inhibitors against PI3K/Akt (LY294002 or MEK/ERK-specific (PD98059, the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763 restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions.

  8. Neuroprotective effects of Arctium lappa L. roots against glutamate-induced oxidative stress by inhibiting phosphorylation of p38, JNK and ERK 1/2 MAPKs in PC12 cells.

    Science.gov (United States)

    Tian, Xing; Sui, Shuang; Huang, Jin; Bai, Jun-Peng; Ren, Tian-Shu; Zhao, Qing-Chun

    2014-07-01

    Many studies have shown that glutamate-induced oxidative stress can lead to neuronal cell death involved in the development of neurodegenerative diseases. In this work, protective effects of ethyl acetate extract (EAE) of Arctium lappa L. roots against glutamate-induced oxidative stress in PC12 cells were evaluated. Also, the effects of EAE on antioxidant system, mitochondrial pathway, and signal transduction pathway were explored. Pretreatment with EAE significantly increased cell viability, activities of GSH-Px and SOD, mitochondrial membrane potential and reduced LDH leakage, ROS formation, and nuclear condensation in a dose-dependent manner. Furthermore, western blot results revealed that EAE increased the Bcl-2/Bax ratio, and inhibited the up-regulation of caspase-3, release of cytochrome c, phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). Therefore, our results indicate that EAE may be a promising neuroprotective agent for the prevention and treatment of neurodegenerative diseases implicated with oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Osteopontin Promotes Invasion, Migration and Epithelial-Mesenchymal Transition of Human Endometrial Carcinoma Cell HEC-1A Through AKT and ERK1/2 Signaling

    Directory of Open Access Journals (Sweden)

    Yinghua Li

    2015-10-01

    Full Text Available Background/Aims: Osteopontin (OPN is an Extracellular Matrix (ECM molecule and is involved in many physiologic and pathologic processes, including cell adhesion, angiogenesis and tumor metastasis. OPN is a well-known multifunctional factor involved in various aspects of cancer progression, including endometrial cancer. In this study, we examined the significance of OPN in endometrial cancer. Methods: The proliferation, migration and invasion ability of HEC-1A cells were detected by Cell Counting Kit-8 (CCK-8, Wound scratch assay and transwell. Western blots were employed to detect the expression of Matrix metalloproteinase-2 (MMP-2 and epithelial-mesenchymal transition (EMT-related factors in HEC-1A cells treated with rhOPN. Results: rhOPN promotes cell proliferation, migration and invasion in HEC-1A cells. rhOPN influenced EMT-related factors and MMP-2 expression in HEC-1A cells. rhOPN promoted HEC-1A cells migration, invasion and EMT through protein kinase B (PKB/AKT and Extracellular regulated protein kinases (ERK1/2 signaling pathway. Conclusions: These results may open up a novel therapeutic strategy for endometrial cancer: namely, rhOPN have important roles in controlling growth of endometrial of cancer cells and suggest a novel target pathway for treatment of this cancer.

  10. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    Directory of Open Access Journals (Sweden)

    Huey-Chun Huang

    2014-01-01

    Full Text Available [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1 and microphthalmia-associated transcriptional factor (MITF. In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126 or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor (LY294002. Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH- induced melanogenesis through the acceleration of extracellular responsive kinase (ERK and phosphatidylinositol-3-kinase- (PI3K/Akt- mediated MITF degradation.

  11. Low Amount of Salinomycin Greatly Increases Akt Activation, but Reduces Activated p70S6K Levels

    Directory of Open Access Journals (Sweden)

    Sungpil Yoon

    2013-08-01

    Full Text Available The present study identified a novel salinomycin (Sal-sensitization mechanism in cancer cells. We analyzed the signal proteins Akt, Jnk, p38, Jak, and Erk1/2 in cancer cell lines that had arrested growth following low amounts of Sal treatment. We also tested the signal molecules PI3K, PDK1, GSK3β, p70S6K, mTOR, and PTEN to analyze the PI3K/Akt/mTOR pathway. The results showed that Sal sensitization positively correlates with large reductions in p70S6K activation. Interestingly, Akt was the only signal protein to be significantly activated by Sal treatment. The Akt activation appeared to require the PI3K pathway as its activation was abolished by the PI3K inhibitors LY294002 and wortmannin. The Akt activation by Sal was conserved in the other cell lines analyzed, which originated from other organs. Both Akt activation and C-PARP production were proportionally increased with increased doses of Sal. In addition, the increased levels of pAkt were not reduced over the time course of the experiment. Co-treatment with Akt inhibitors sensitized the Sal-treated cancer cells. The results thereby suggest that Akt activation is increased in cells that survive Sal treatment and resist the cytotoxic effect of Sal. Taken together; these results indicate that Akt activation may promote the resistance of cancer cells to Sal.

  12. Nitric oxide contributes to cytokine-induced apoptosis in pancreatic beta cells via potentiation of JNK activity and inhibition of Akt

    DEFF Research Database (Denmark)

    Størling, J; Binzer, J; Andersson, Annica

    2005-01-01

    Pro-inflammatory cytokines cause beta cell secretory dysfunction and apoptosis--a process implicated in the pathogenesis of type 1 diabetes. Cytokines induce the expression of inducible nitric oxide (NO) synthase (iNOS) leading to NO production. NO contributes to cytokine-induced apoptosis......, but the underlying mechanisms are unclear. The aim of this study was to investigate whether NO modulates signalling via mitogen-activated protein kinases (MAPKs) and Akt....

  13. Hyperglycemia-induced oxidative stress induces apoptosis by inhibiting PI3-kinase/Akt and ERK1/2 MAPK mediated signaling pathway causing downregulation of 8-oxoG-DNA glycosylase levels in glial cells.

    Science.gov (United States)

    Kumar, Premranjan; Rao, G Nageswar; Pal, Bibhuti Bhusan; Pal, Arttatrana

    2014-08-01

    Glial cells are very important for normal brain function and alterations in their activity due to hyperglycemia, could contribute to diabetes-related cognitive dysfunction. Oxidative insults often cause rapid changes in almost all cells including glial cells. However, pathophysiologic mechanisms that lead to diabetic complications are not completely elucidated. Therefore, we examined whether elevated glucose levels directly or indirectly disrupt antioxidant defense mechanisms causing alterations in signaling pathways, cell cycle dysregulation, and reactive oxygen/nitrogen species-mediated apoptosis in glial cells. Findings of this study demonstrated that exposure of glial cells to high glucose markedly induces cellular and molecular injuries, as evidenced by elevated levels of reactive oxygen/nitrogen species, biomolecules damage, cell cycle dysregulation, decrease in antioxidant enzymes, and decrease in cell viability. Pretreatment of cells with N-acetyl-L-cysteine reduced high glucose-induced cytotoxicity by increasing the levels of antioxidant enzymes, and decreasing the number of apoptotic cells. Further, at molecular level high glucose treatment resulted in a significant increase in phosphorylation of Akt, MAPKs, tuberin, down regulation of 8-oxoG-DNA glycosylase and increase in 8-hydroxydeoxyguanosine accumulations. Pretreatment of cells with N-acetyl-L-cysteine, phosphatidylinositol3-kinase/Akt and ERK1/2 inhibitors completely abolished the apoptotic effects of high glucose. Moreover, N-acetyl-L-cysteine significantly inhibited reactive oxygen/nitrogen species generation, elevated antioxidants levels, inhibited Akt, ERK1/2, tuberin phosphorylation, decreased 8-hydroxydeoxyguanosine accumulation and upregulated 8-oxoG-DNA glycosylase expression. Our results demonstrate that high glucose induces apoptosis and inhibits proliferation of glial cells, which may be mediated by the phosphorylation of tuberin, down regulation of 8-oxoG-DNA glycosylase and 8

  14. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a.

    Directory of Open Access Journals (Sweden)

    Mahmoud Alhosin

    Full Text Available The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO. The aim of the present study was to determine whether Concord grape juice (CGJ, which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase, SB 203580 (an inhibitor of p38 MAPK, and SP 600125 (an inhibitor of JNK. Moreover, CGJ induced the formation of reactive oxygen species (ROS in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene.

  15. CoQ10 Augments Rosuvastatin Neuroprotective Effect in a Model of Global Ischemia via Inhibition of NF-κB/JNK3/Bax and Activation of Akt/FOXO3A/Bim Cues

    Directory of Open Access Journals (Sweden)

    Sarah A. Abd El-Aal

    2017-10-01

    Full Text Available Statins were reported to lower the Coenzyme Q10 (CoQ10 content upon their inhibition of HMG-CoA reductase enzyme and both are known to possess neuroprotective potentials; therefore, the aim is to assess the possible use of CoQ10 as an adds-on therapy to rosuvastatin to improve its effect using global I/R model. Rats were allocated into sham, I/R, rosuvastatin (10 mg/kg, CoQ10 (10 mg/kg and their combination. Drugs were administered orally for 7 days before I/R. Pretreatment with rosuvastatin and/or CoQ10 inhibited the hippocampal content of malondialdehyde, nitric oxide, and boosted glutathione and superoxide dismutase. They also opposed the upregulation of gp91phox, and p47phox subunits of NADPH oxidase. Meanwhile, both agents reduced content/expression of TNF-α, iNOS, NF-κBp65, ICAM-1, and MPO. Besides, all regimens abated cytochrome c, caspase-3 and Bax, but increased Bcl-2 in favor of cell survival. On the molecular level, they increased p-Akt and its downstream target p-FOXO3A, with the inhibition of the nuclear content of FOXO3A to downregulate the expression of Bim, a pro-apoptotic gene. Additionally, both treatments downregulate the JNK3/c-Jun signaling pathway. The effect of the combination regimen overrides that of either treatment alone. These effects were reflected on the alleviation of the hippocampal damage in CA1 region inflicted by I/R. Together, these findings accentuate the neuroprotective potentials of both treatments against global I/R by virtue of their rigorous multi-pronged actions, including suppression of hippocampal oxidative stress, inflammation, and apoptosis with the involvement of the Akt/FOXO3A/Bim and JNK3/c-Jun/Bax signaling pathways. The study also nominates CoQ10 as an adds-on therapy with statins.

  16. Bergapten exerts inhibitory effects on diabetes-related osteoporosis via the regulation of the PI3K/AKT, JNK/MAPK and NF-κB signaling pathways in osteoprotegerin knockout mice.

    Science.gov (United States)

    Li, Xue-Ju; Zhu, Zhe; Han, Si-Lin; Zhang, Zi-Long

    2016-12-01

    Diabetes, as a serious metobolic disorder, poses global threat to human health. It is estimated that over 50 million individuals are already affected by diabetes. Currently, diabetes-related osteoporosis has been a research hotspot due to its high incidence rate in older individuals. Osteoprotegerin, as an important protein for the prevention of osteoporosis, has been proven to be key to the suppression of osteoporosis. Hence, the loss of function of osteoprotegerin may promote the development of osteoporosis. Bergapten, as a natural anti-inflammatory and anti-tumor agent isolated from bergamot essential oil, other citrus essential oils, and grapefruit juice, has been proven to have the ability to attenuate a number of metabolic disorders. In view of these findings, in this study, we used a high-fat diet to construct a mouse model of diabetes-related osteoporosis and a mouse model of diabetes-related osteoporosis using osteoprotegerin knockout mice. Enzyme-linked immunosorbent assay (ELISA), qPCR, western blot analysis, immunohistochemical assay, H&E staining, Oil Red O staining, Masson's staining and other biochemical analyses were used to evaluate the related signaling pathways involved in the development of diabetes-related osteoporosis. We also examined the role of osteoprotegerin in the activation of these pathways and in the development of osteoporosis, as well as the protective effects of bergapten against diabetes-related osteoporosis and on the activation of related signaling pathways. Our results revealed that in diabetes-related osteoporosis, the phosphoinositide 3-kinase (PI3K)/AKT, c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways were activated and the expression levels of related indicators were increased. At the same time, osteoprotegerin knockout further promoted the activation of these pathways. By contrast, bergapten exerted effects similar to those of

  17. Topical Insulin Accelerates Wound Healing in Diabetes by Enhancing the AKT and ERK Pathways: A Double-Blind Placebo-Controlled Clinical Trial

    Science.gov (United States)

    Lima, Maria H. M.; Caricilli, Andréa M.; de Abreu, Lélia L.; Araújo, Eliana P.; Pelegrinelli, Fabiana F.; Thirone, Ana C. P.; Tsukumo, Daniela M.; Pessoa, Ana Flávia M.; dos Santos, Marinilce F.; de Moraes, Maria A.; Carvalheira, José B. C.; Velloso, Lício A.; Saad, Mario J. A.

    2012-01-01

    Background Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. Objective The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. Research Design and Methods We investigated insulin signaling by immunoblotting during wound healing of control and diabetic animals with or without topical insulin. Diabetic patients with ulcers were randomized to receive topical insulin or placebo in a prospective, double-blind and placebo-controlled, randomized clinical trial (NCT 01295177) of wound healing. Results and Conclusions Expression of IR, IRS-1, IRS-2, SHC, ERK, and AKT are increased in the tissue of healing wounds compared to intact skin, suggesting that the insulin signaling pathway may have an important role in this process. These pathways were attenuated in the wounded skin of diabetic rats, in parallel with an increase in the time of complete wound healing. Upon topical application of insulin cream, the wound healing time of diabetic animals was normalized, followed by a reversal of defective insulin signal transduction. In addition, the treatment also increased expression of other proteins, such as eNOS (also in bone marrow), VEGF, and SDF-1α in wounded skin. In diabetic patients, topical insulin cream markedly improved wound healing, representing an attractive and cost-free method for treating this devastating complication of diabetes. Trial Registration ClinicalTrials.gov NCT01295177 PMID:22662132

  18. Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Badser136 activity and by fortifying NRF2 antioxidation system.

    Science.gov (United States)

    Shibu, Marthandam Asokan; Kuo, Chia-Hua; Chen, Bih-Cheng; Ju, Da-Tong; Chen, Ray-Jade; Lai, Chao-Hung; Huang, Pei-Jane; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Bad ser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions. © 2017 Wiley Periodicals, Inc.

  19. Activation of villous trophoblastic p38 and ERK1/2 signaling pathways in preterm preeclampsia and HELLP syndrome.

    Science.gov (United States)

    Szabo, Szilvia; Mody, Meera; Romero, Roberto; Xu, Yi; Karaszi, Katalin; Mihalik, Noemi; Xu, Zhonghui; Bhatti, Gaurav; Fule, Tibor; Hupuczi, Petronella; Krenacs, Tibor; Rigo, Janos; Tarca, Adi L; Hassan, Sonia S; Chaiworapongsa, Tinnakorn; Kovalszky, Ilona; Papp, Zoltan; Than, Nandor Gabor

    2015-07-01

    Preterm preeclampsia is associated with the failure of trophoblast invasion, placental hypoxic/ischemic injury and the release of toxic substances, which promote the terminal pathway of preeclampsia. In term preeclampsia, factors yet unknown trigger the placenta to induce the terminal pathway. The contribution of the villous trophoblast to these pathologic events has not been fully elucidated. Here we aimed to study how stress and signaling pathways influence trophoblastic functions in various subforms of preeclampsia. Tissue microarrays (TMAs) were constructed from placentas obtained from pregnant women in the following groups: 1-2) preterm preeclampsia with (n = 8) or without (n = 7) HELLP syndrome; 3) late-onset preeclampsia (n = 8); 4-5) preterm (n = 5) and term (n = 9) controls. TMA slides were stained for phosphorylated Akt-1, ERK1/2, JNK, and p38 kinases, and trophoblastic immunostainings were semi-quantitatively evaluated. BeWo cells were kept in various stress conditions, and the expression of FLT1, GCM1, LEP, and PGF was profiled by qRT-PCR, while Akt-1, ERK1/2, JNK, and p38 kinase activities were measured with phospho-kinase immunoassays. We found that: 1) Placental LEP and FLT1 expression was up-regulated in preterm preeclampsia with or without HELLP syndrome compared to controls; 2) Mean pp38 immunoscore was higher in preterm preeclampsia, especially in cases with HELLP syndrome, than in controls. 3) Mean pERK1/2 immunoscore was higher in preterm preeclampsia with HELLP syndrome than in controls. 4) In BeWo cells, ischemia up-regulated LEP expression, and it increased JNK and decreased ERK1/2 activity. 5) Hypoxia up-regulated FLT1 and down-regulated PGF expression, and it increased ERK1/2, JNK and p38 activity. 6) IL-1β treatment down-regulated PGF expression, and it increased JNK and p38 activity. 7) The p38 signaling pathway had the most impact on LEP, FLT1 and PGF expression. In conclusion, hypoxic and ischemic stress, along

  20. BMP9 inhibits proliferation and metastasis of HER2-positive SK-BR-3 breast cancer cells through ERK1/2 and PI3K/AKT pathways.

    Directory of Open Access Journals (Sweden)

    Wei Ren

    Full Text Available Bone morphogenetic protein 9 (BMP9, a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer.

  1. Expression of EGFR and Molecules Downstream to PI3K/Akt, Raf-1-MEK-1-MAP (Erk1/2, and JAK (STAT3 Pathways in Invasive Lung Adenocarcinomas Resected at a Single Institution

    Directory of Open Access Journals (Sweden)

    Alba Fabiola Torres

    2014-01-01

    Full Text Available Therapies targeting EGFR are effective in treating tumors that harbor molecular alterations; however, there is heterogeneity in long-term response to these therapies. We retrospectively analyzed protein expression of EGFR, Stat3, phospho-Akt, and phospho-Erk1/2 by immunohistochemistry in a series of resected cases from a single institution, correlated with clinicopathological variables. There were 96 patients, with the majority of cases being of low stage tumors (17 pT1a, 23 pT1b, 30 pT2a, and 18 pT2b. Histologic subtypes were 45 acinar predominant, 2 cribriform, 25 solid, 7 papillary, 11 lepidic, and 4 mucinous tumors. The EGFR score was higher in tumors with vascular invasion (P=0.013, in solid and cribriform acinar histology, and in high stage tumors (P=0.006 and P=0.01. EGFR was more likely overexpressed in solid compared to lepidic tumors (P=0.02. Acinar tumors had the highest rate of ERK1/2 positivity (19%. There was a strong correlation among positivity for ERCC1 and other markers, including STAT3 (P=0.003, Akt (P=0.02, and ERK1/ERK2 (P=0.0005. Expression of molecules downstream to EGFR varied from 12% to 31% of tumors; however, the expression did not directly correlate to EGFR expression, which may suggest activation of the cascades through different pathways. The correlation of protein expression and the new lung adenocarcinoma classification may help in the understanding of activated pathways of each tumor type, which may act in the oncogenesis and drug resistance of these tumors.

  2. G(i)α proteins exhibit functional differences in the activation of ERK1/2, Akt and mTORC1 by growth factors in normal and breast cancer cells.

    Science.gov (United States)

    Wang, Zhanwei; Dela Cruz, Rica; Ji, Fang; Guo, Sheng; Zhang, Jianhua; Wang, Ying; Feng, Gen-Sheng; Birnbaumer, Lutz; Jiang, Meisheng; Chu, Wen-Ming

    2014-02-13

    In a classic model, G(i)α proteins including G(i1)α, G(i2)α and G(i3)α are important for transducing signals from G(i)α protein-coupled receptors (G(i)αPCRs) to their downstream cascades in response to hormones and neurotransmitters. Our previous study has suggested that G(i1)α, G(i2)α and G(i3)α are also important for the activation of the PI3K/Akt/mTORC1 pathway by epidermal growth factor (EGF) and its family members. However, a genetic role of these G(i)α proteins in the activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) by EGF is largely unknown. Further, it is not clear whether these G(i)α proteins are also engaged in the activation of both the Akt/mTORC1 and ERK1/2 pathways by other growth factor family members. Additionally, a role of these G(i)α proteins in breast cancer remains to be elucidated. We found that Gi1/3 deficient MEFs with the low expression level of G(i2)α showed defective ERK1/2 activation by EGFs, IGF-1 and insulin, and Akt and mTORC1 activation by EGFs and FGFs. Gi1/2/3 knockdown breast cancer cells exhibited a similar defect in the activations and a defect in in vitro growth and invasion. The G(i)α proteins associated with RTKs, Gab1, FRS2 and Shp2 in breast cancer cells and their ablation impaired Gab1's interactions with Shp2 in response to EGF and IGF-1, or with FRS2 and Grb2 in response to bFGF. G(i)α proteins differentially regulate the activation of Akt, mTORC1 and ERK1/2 by different families of growth factors. G(i)α proteins are important for breast cancer cell growth and invasion.

  3. 4-1BB signaling activates the t cell factor 1 effector/β-catenin pathway with delayed kinetics via ERK signaling and delayed PI3K/AKT activation to promote the proliferation of CD8+ T Cells.

    Science.gov (United States)

    Lee, Do Y; Choi, Beom K; Lee, Don G; Kim, Young H; Kim, Chang H; Lee, Seung J; Kwon, Byoung S

    2013-01-01

    4-1BB (CD137), an inducible costimulatory molecule, strongly enhances the proliferation and effector function of CD8(+) T cells. Since the serine/threonine kinase, glycogen synthase kinase-3 (GSK-3), is involved in a variety of signaling pathways of cellular proliferation, migration, immune responses, and apoptosis, we examined whether 4-1BB signaling activates GSK-3/β-catenin signaling and downstream transcription factors to enhance the proliferation of CD8(+) T cells. 4-1BB signaling induces rapid activation of ERK and IκB degradation, and shows delayed activation of AKT at 24 h post 4-1BB stimulation on anti-CD3 activated T cells. ERK and AKT signals were required for sustained β-catenin levels by inactivating GSK-3, which was also observed with delayed kinetics after 4-1BB stimulation. As a transcriptional partner of β-catenin, 4-1BB signaling decreased levels of FOXO1 and increased levels of stimulatory TCF1 in CD8(+) T cells at 2-3 days but not at early time points after 4-1BB engagement. The enhanced proliferation of CD8(+) T cells due to 4-1BB signaling was completely abolished by treatment with the TCF1/β-catenin inhibitor quercetin. These results show that 4-1BB signaling enhances the proliferation of activated CD8(+) T cells by activating the TCF1/β-catenin axis via the PI3K/AKT/ERK pathway. As effects of 4-1BB on AKT, FOXO1, β-catenin and GSK-3β showed delayed kinetics it is likely that an intervening molecule induced by 4-1BB and ERK signaling in activated T cells is responsible for these effects. These effects were observed on CD8(+) but not on CD4(+) T cells. Moreover, 4-1BB appeared to be unique among several TNFRs tested in inducing increase in stimulatory over inhibitory TCF-1.

  4. ERK1/2 and Akt phosphorylation were essential for MGF E peptide regulating cell morphology and mobility but not proangiogenic capacity of BMSCs under severe hypoxia.

    Science.gov (United States)

    Sha, Yongqiang; Yang, Li; Lv, Yonggang

    2018-02-13

    Severe hypoxia inhibits the adhesion and mobility of bone marrow-derived mesenchymal stem cells (BMSCs) and limits their application in bone tissue engineering. In this study, CoCl 2 was used to simulate severe hypoxia and the effects of mechano-growth factor (MGF) E peptide on the morphology, adhesion, migration, and proangiogenic capacity of BMSCs under hypoxia were measured. It was demonstrated that severe hypoxia (500-μM CoCl 2 ) significantly caused cell contraction and reduced cell area, roundness, adhesion, and migration of BMSCs. RhoA and ROCK1 expression levels were upregulated by severe hypoxia, but p-RhoA and mobility-relevant protein (integrin β1, p-FAK and fibronectin) expression levels in BMSCs were inhibited. Fortunately, MGF E peptide could restore all abovementioned indexes except RhoA expression. MEK-ERK1/2 pathway was involved in MGF E peptide regulating cell morphological changes, mobility, and relevant proteins (except p-FAK). PI3K-Akt pathway was involved in MGF E peptide regulating cell area, mobility, and relevant proteins. Besides, severe hypoxia upregulated vascular endothelial growth factor α expression but was harmful for proangiogenic capacity of BMSCs. Our study suggested that MGF E peptide might be helpful for the clinical application of tissue engineering strategy in bone defect repair. Sever hypoxia impairs bone defect repair with bone marrow-derived mesenchymal stem cells (BMSCs). This study proved that mechano-growth factor E (MGF E) peptide could improve the severe hypoxia-induced cell contraction and decline of cell adhesion and migration of BMSCs. Besides, MGF E peptide weakened the effects of severe hypoxia on the cytoskeleton arrangement- and mobility-relevant protein expression levels in BMSCs. The underlying molecular mechanism was also verified. Finally, it was confirmed that MGF E peptide showed an adverse effect on the expression level of vascular endothelial growth factor α in BMSCs under severe hypoxia but could

  5. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways.

    Science.gov (United States)

    Adamopoulos, Christos; Piperi, Christina; Gargalionis, Antonios N; Dalagiorgou, Georgia; Spilioti, Eliana; Korkolopoulou, Penelope; Diamanti-Kandarakis, Evanthia; Papavassiliou, Athanasios G

    2016-04-01

    Endothelial dysfunction involves deregulation of the key extracellular matrix (ECM) enzyme lysyl oxidase (LOX) and the vasoconstrictor protein, endothelin-1 (ET-1), whose gene expression can be modulated by the transcriptional activators nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1). Advanced glycation end products (AGEs) present an aggravating factor of endothelial dysfunction which upon engagement to their receptor RAGE induce upregulation of mitogen-activated protein kinases (MAPKs), leading to NF-κB and AP-1 potentiation. We hypothesized that AGEs could induce NF-κΒ- and AP-1-dependent regulation of LOX and ET-1 expression via the AGE/RAGE/MAPK signaling axis. Western blot, real-time qRT-PCR, FACS analysis and electrophoretic mobility-shift assays were employed in human aortic endothelial cells (HAECs) following treatment with AGE-bovine serum albumin (AGE-BSA) to investigate the signaling pathway towards this hypothesis. Furthermore, immunohistochemical analysis of AGEs, RAGE, LOX and ET-1 expression was conducted in aortic endothelium of a rat experimental model exposed to high- or low-AGE content diet. HAECs exposed to AGE-BSA for various time points exhibited upregulation of LOX and ET-1 mRNA levels in a dose- and time-dependent manner. Exposure of HAECs to AGE-BSA also showed specific elevation of phospho(p)-ERK1/2 and p-JNK levels in a dose- and time-dependent fashion. AGE administration significantly increased NF-κΒ- and AP-1-binding activity to both LOX and ET-1 cognate promoter regions. Moreover, LOX and ET-1 overexpression in rat aortic endothelium upon high-AGE content diet confirmed the functional interrelation of these molecules. Our findings demonstrate that AGEs trigger NF-κΒ- and AP-1-mediated upregulation of LOX and ET-1 via the AGE/RAGE/MAPK signaling cascade in human endothelial cells, thus contributing to distorted endothelial homeostasis by impairing endothelial barrier function, altering ECM biomechanical properties

  6. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Chin, Hsien-Kuo; Horng, Chi-Ting; Liu, Yi-Shan; Lu, Chi-Cheng; Su, Chen-Ying; Chen, Pei-Syuan; Chiu, Hong-Yi; Tsai, Fuu-Jen; Shieh, Po-Chuen; Yang, Jai-Sing

    2018-05-01

    Anti-angiogenesis is one of the most general clinical obstacles in cancer chemotherapy. Kaempferol is a flavonoid phytochemical found in many fruits and vegetables. Our previous study revealed that kaempferol triggered apoptosis in human umbilical vein endothelial cells (HUVECs) by ROS‑mediated p53/ATM/death receptor signaling. However, the anti‑angiogenic potential of kaempferol remains unclear and its underlying mechanism warranted further exploration in VEGF‑stimulated HUVECs. In the present study, kaempferol significantly reduced VEGF‑stimulated HUVEC viability. Kaempferol treatment also inhibited cell migration, invasion, and tube formation in VEGF‑stimulated HUVECs. VEGF receptor‑2 (VEGFR‑2), and its downstream signaling cascades (such as AKT, mTOR and MEK1/2‑ERK1/2) were reduced as determined by western blotting and kinase activity assay in VEGF‑stimulated HUVECs after treatment with kaempferol. The present study revealed that kaempferol may possess angiogenic inhibition through regulation of VEGF/VEGFR‑2 and its downstream signaling cascades (PI3K/AKT, MEK and ERK) in VEGF-stimulated endothelial cells.

  7. Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways.

    Science.gov (United States)

    Rodenak-Kladniew, Boris; Castro, Agustina; Stärkel, Peter; De Saeger, Christine; García de Bravo, Margarita; Crespo, Rosana

    2018-04-15

    Linalool is a plant-derived monoterpene with anticancer activity, however its mechanisms of action remain poorly understood. The aim of this work was to elucidate the anticancer mechanisms of action of linalool in hepatocellular carcinoma (HCC) HepG2 cells. Cell viability and proliferation were determined by WST-1 assay and BrdU incorporation, respectively. Cell cycle analysis was assessed through flow cytometry (FC) and western blot (WB). Apoptosis was determined by caspase-3 activity, TUNEL assay and WB. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed by FC and fluorescence microscopy. Expression of Ras, MAPKs (ERK, JNK and p38) and Akt/mTOR pathways were evaluated by WB. Linalool (0-2.5 mM) dose-dependently inhibited cell proliferation by inducing G0/G1 cell cycle arrest, through Cdk4 and cyclin A downregulation, p21 and p27 upregulation, and apoptosis, characterized by MMP loss, caspase-3 activation, PARP cleavage and DNA fragmentation. Low concentrations of linalool (1.0 mM) reduced membrane-bound Ras and Akt activity whereas higher amounts (2.0 mM) triggered mTOR inhibition and ROS generation, in correlation with MAPKs activation and Akt phosphorylation. ROS scavenger N-acetyl-L-cysteine partially rescued HepG2 cell growth and prevented MPP depolarization, ERK and JNK activation. Moreover, specific ERK and Akt phosphorylation inhibitors potentiated linalool anti-cancer activity, pointing Akt and ERK activation as pro-survival mechanisms in response to higher concentrations of linalool. This report reveals that linalool induces G0/G1 arrest and apoptosis in HepG2 cells involving Ras, MAPKs and Akt/mTOR pathways and suggests that linalool is a promising anticancer agent for HCC therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Activation of PI3K/AKT and ERK MAPK signal pathways is required for the induction of lytic cycle replication of Kaposi's Sarcoma-associated herpesvirus by herpes simplex virus type 1

    Directory of Open Access Journals (Sweden)

    Lv Zhigang

    2011-10-01

    Full Text Available Abstract Background Kaposi's sarcoma-associated herpesvirus (KSHV is causally linked to several acquired immunodeficiency syndrome-related malignancies, including Kaposi's sarcoma (KS, primary effusion lymphoma (PEL and a subset of multicentric Castleman's disease. Regulation of viral lytic replication is critical to the initiation and progression of KS. Recently, we reported that herpes simplex virus type 1 (HSV-1 was an important cofactor that activated lytic cycle replication of KSHV. Here, we further investigated the possible signal pathways involved in HSV-1-induced reactivation of KSHV. Results By transfecting a series of dominant negative mutants and protein expressing constructs and using pharmacologic inhibitors, we found that either Janus kinase 1 (JAK1/signal transducer and activator of transcription 3 (STAT3 or JAK1/STAT6 signaling failed to regulate HSV-1-induced KSHV replication. However, HSV-1 infection of BCBL-1 cells activated phosphatidylinositol 3-kinase (PI3K/protein kinase B (PKB, also called AKT pathway and inactivated phosphatase and tensin homologue deleted on chromosome ten (PTEN and glycogen synthase kinase-3β (GSK-3β. PTEN/PI3K/AKT/GSK-3β pathway was found to be involved in HSV-1-induced KSHV reactivation. Additionally, extracellular signal-regulated protein kinase (ERK mitogen-activated protein kinase (MAPK pathway also partially contributed to HSV-1-induced KSHV replication. Conclusions HSV-1 infection stimulated PI3K/AKT and ERK MAPK signaling pathways that in turn contributed to KSHV reactivation, which provided further insights into the molecular mechanism controlling KSHV lytic replication, particularly in the context of HSV-1 and KSHV co-infection.

  9. Scutellarin Increases Cisplatin-Induced Apoptosis and Autophagy to Overcome Cisplatin Resistance in Non-small Cell Lung Cancer via ERK/p53 and c-met/AKT Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Chao-Yue Sun

    2018-02-01

    Full Text Available Cisplatin, as the first-line anti-tumor agent, is widely used for treatment of a variety of malignancies including non-small cell lung cancer (NSCLC. However, the acquired resistance has been a major obstacle for the clinical application. Scutellarin is a active flavone extracted from Erigeron breviscapus Hand-Mazz that has been shown to exhibit anticancer activities on various types of tumors. Here, we reported that scutellarin was capable of sensitizing A549/DDP cells to cisplatin by enhancing apoptosis and autophagy. Mechanistic analyses indicated that cisplatin-induced caspase-3-dependent apoptosis was elevated in the presence of scutellarin through activating extracellular signal-regulated kinases (ERK-mediated p53 pathway. Furthermore, scutellarin also promoted cisplatin-induced cytotoxic autophagy, downregulated expression of p-AKT and c-met. Deficiency of c-met reduced p-AKT level, and inhibition of p-AKT or c-met improved autophagy in A549/DDP cells. Interestingly, loss of autophagy attenuated the synergism of this combination. In vivo, the co-treatment of cisplatin and scutellarin notably reduced the tumor size when compared with cisplatin treatment alone. Notably, scutellarin significantly reduced the toxicity generated by cisplatin in tumor-bearing mice. This study identifies the unique role of scutellarin in reversing cisplatin resistance through apoptosis and autophagy, and suggests that combined cisplatin and scutellarin might be a novel therapeutic strategy for patients with NSCLC.

  10. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    International Nuclear Information System (INIS)

    Liu, Qi-Feng; Yu, Hong-Wei; Sun, Li-Li; You, Lu; Tao, Gui-Zhou; Qu, Bao-Ze

    2015-01-01

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involved in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1

  11. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Feng [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Yu, Hong-Wei [Department of Cardiology, Jinzhou Central Hospital, Jinzhou 121001 (China); Sun, Li-Li [Department of Ophthalmology, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); You, Lu; Tao, Gui-Zhou [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Qu, Bao-Ze, E-mail: qubaoze1971@hotmail.com [Department of Cardiology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China)

    2015-12-25

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involved in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1

  12. Activation of Akt/GSK3β and Akt/Bcl-2 signaling pathways in nickel-transformed BEAS-2B cells.

    Science.gov (United States)

    Pan, Jing-Ju; Chang, Qing-Shan; Wang, Xin; Son, Young-Ok; Liu, Jiankang; Zhang, Zhuo; Bi, Yong-Yi; Shi, Xianglin

    2011-11-01

    The Akt signaling pathway has been implicated in a wide range of cellular functions involving cell survival and proliferation, angiogenesis, metabolism and cell migration. Accumulating evidence suggests that Akt perturbations play an important role in human malignancy. Here, we investigated Akt perturbation in nickel-transformed cells. Chronic treatment of human bronchial epithelial BEAS-2B cells with low doses of nickel chloride resulted in cell transformation demonstrated by anchorage-independent (AI) growth, increased cell growth and alterations of cell growth pattern. Western blot assays show that phosphorylation of Akt at Ser473, but not that of p38, JNK and ERK, was increased in nickel-transformed cells compared with controls. Inhibition of Akt or PI3K by pharmacological or biochemical interference suppressed nickel AI growth and cell growth of transformed cells. Activation of Akt led to inhibition of GSK3β by phosphorylation at Ser9 in nickel-transformed cells. In addition, two major anti-apoptotic proteins of the Bcl family, Bcl-2 and Bcl-XL, were increased in nickel-transformed cells. By employing the small interfering RNA technique (siRNA), our results showed that siRNA Akt attenuated the expression of Bcl-2 and Bcl-XL in nickel-transformed cells, indicating that induction of Bcl-2 and Bcl-XL was likely mediated through Akt. ROS generation was decreased in nickel-transformed cells compared with controls. Moreover, down-regulation of retinoblastoma protein (Rb) was observed in nickel-transformed cells. Taken together, these findings demonstrate that activation of Akt, followed by GSK3β inhibition and Bcl-2, Bcl-XL up-regulation and decrease of ROS generation, along with a synergistic effect of Rb down-regulation may cause apoptosis resistance, contributing to the overall mechanism of nickel carcinogenesis.

  13. Quinuclidinone derivative 6 induced apoptosis in human breast cancer cells via sphingomyelinase and JNK signaling.

    Science.gov (United States)

    Malki, Ahmed; El Ashry, El Sayed

    2012-10-01

    Novel quinuclidinone derivatives have been previously reported by our laboratory. In this study, we investigated the impact of two novel quinuclidinone derivatives 4 and 6 on apoptotic signaling in breast cancer cells (MCF-7) and their normal counterparts (MCF-12a). Our data revealed that derivatives 4 and 6 reduced proliferation and induced apoptosis in breast cancer cells. However, derivative 6 was less cytotoxic to normal breast epithelial cells than breast cancer cells; therefore, we focused on derivative 6 for further investigation. Flow cytometric analysis showed that quinuclidinone derivative 6 reduced the percentage of MCF-7 cells in G(2)/M which is confirmed by increased expression levels of cyclin B, while it arrests MCF12a in G1 phase judging from increased p21. Quinuclidinone derivative 6 increased expression levels of p53 and Bax at both protein and mRNA levels and reduced expression level of Mdm2, Bcl2, Akt and Bcl-XL It also increased mitochondrial apoptotic pathways by activating release of cytochrome c which is consistent with activation of caspase-9 as confirmed by caspase-9 inhibitor LEHD-CHO. Finally, it increased sphingomyelinase signaling and ceramide formation as well as its downstream targets ERK1/2, p38, and JNK. Inhibition of ERK1/2 with PD98059 exerted little effect on the derivative 6-induced apoptosis and p38 inhibition with SB203580 slightly lessened apoptosis, whereas inhibition of JNK with SP600125 markedly suppressed derivative 6-induced apoptosis. These results indicate that derivative-6 induced the activation of sphingomyelinase signaling and that JNK played a pivotal role in induction of apoptosis in human breast cancer cells. In vivo studies and molecular docking experiments are now in progress for further anticancer investigations.

  14. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca2+/Akt/ERK1/2 prosurvival pathway

    Science.gov (United States)

    Petrozziello, Tiziana; Secondo, Agnese; Tedeschi, Valentina; Esposito, Alba; Sisalli, MariaJosè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe human adult-onset neurodegenerative disease affecting lower and upper motor neurons. In >20% of cases, the familial form of ALS is caused by mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1). Interestingly, administration of wild-type SOD1 to SOD1G93A transgenic rats ameliorates motor symptoms through an unknown mechanism. Here we investigated whether the neuroprotective effects of SOD1 are due to the Ca2+-dependent activation of such prosurvival signaling pathway and not to its catalytic activity. To this aim, we also examined the mechanism of neuroprotective action of ApoSOD1, the metal-depleted state of SOD1 that lacks dismutase activity, in differentiated motor neuron-like NSC-34 cells and in primary motor neurons exposed to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA). Preincubation of ApoSOD1 and SOD1, but not of human recombinant SOD1G93A, prevented cell death in motor neurons exposed to L-BMAA. Moreover, ApoSOD1 elicited ERK1/2 and Akt phosphorylation in motor neurons through an early increase of intracellular Ca2+ concentration ([Ca2+]i). Accordingly, inhibition of ERK1/2 by siMEK1 and PD98059 counteracted ApoSOD1- and SOD1-induced neuroprotection. Similarly, transfection of the dominant-negative form of Akt in NSC-34 motor neurons and treatment with the selective PI3K inhibitor LY294002 prevented ApoSOD1- and SOD1-mediated neuroprotective effects in L-BMAA-treated motor neurons. Furthermore, ApoSOD1 and SOD1 prevented the expression of the two markers of L-BMAA-induced ER stress GRP78 and caspase-12. Collectively, our data indicate that ApoSOD1, which is devoid of any catalytic dismutase activity, exerts a neuroprotective effect through an early activation of Ca2+/Akt/ERK1/2 pro-survival pathway that, in turn, prevents ER stress in a neurotoxic model of ALS. PMID:28085149

  15. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging

    Science.gov (United States)

    Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Kempf, C. Ruth; Long, Jacquelyn; Laidler, Piotr; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Stivala, Franca; Mazzarino, Maria C.; Donia, Marco; Fagone, Paolo; Malaponte, Graziella; Nicoletti, Ferdinando; Libra, Massimo; Milella, Michele; Tafuri, Agostino; Bonati, Antonio; Bäsecke, Jörg; Cocco, Lucio; Evangelisti, Camilla; Martelli, Alberto M.; Montalto, Giuseppe; Cervello, Melchiorre; McCubrey, James A.

    2011-01-01

    Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described roles of these pathways in cancer stem cells, cellular senescence and aging will be evaluated. Controlling the expression of these pathways could ameliorate human health. PMID:21422497

  16. External Qi of Yan Xin Qigong Inhibits Activation of Akt, Erk1/2 and NF-ĸB and Induces Cell Cycle Arrest and Apoptosis in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xin Yan

    2013-01-01

    Full Text Available Background/Aims: Colorectal cancer (CRC is the second leading cause of cancer death in the Western countries. Novel approaches of treatment are needed for CRC. The purpose of the present study was to investigate cytotoxic effect of external Qi of Yan Xin Qigong (YXQ-EQ on human colorectal cancer cells. Methods: The effect of YXQ-EQ on viability, cell cycle progression and apoptosis in colorectal cancer HT-29 cells was investigated. Phosphorylation of Akt and Erk1/2, activation of NF-ĸB and the expression of proteins involved in regulation of cell cycle and apoptosis were examined by Western blot analysis. Results: YXQ-EQ markedly decreased viability and blocked colony formation of HT-29 cells. YXQ-EQ downregulated cyclin D1 expression and increased accumulation of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, resulting in G1 cell cycle arrest. YXQ-EQ induced apoptosis in HT-29 cells in association with decreased expression of antiapoptotic proteins Bcl-xL, XIAP, survivin and Mcl-1 and elevated expression of proapoptotic protein Bax. YXQ-EQ significantly repressed phosphorylation of Akt and Erk1/2 and NF-ĸB activation in HT-29 cells, suggesting that YXQ-EQ may exert cytotoxic effect through regulating signaling pathways critical for cell proliferation and survival. Furthermore, YXQ-EQ treated PBS and an YXQ-EQ treated plant extract induced apoptosis in HT-29 cells. Conclusion: These findings show that YXQ-EQ has potent cytotoxic effect on HT-29 cells and suggest that YXQ-EQ could be potentially used for colorectal cancer treatment either directly or indirectly via carriers.

  17. Activation of EGFR/ERBB2 via pathways involving ERK1/2, P38 MAPK, AKT and FOXO enhances recovery of diabetic hearts from ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Saghir Akhtar

    Full Text Available This study characterized the effects of diabetes and/or ischemia on epidermal growth factor receptor, EGFR, and/or erbB2 signaling pathways on cardiac function. Isolated heart perfusion model of global ischemia was used to study the effect of chronic inhibition or acute activation of EGFR/erbB2 signaling on cardiac function in a rat model of type-1 diabetes. Induction of diabetes with streptozotocin impaired recovery of cardiac function (cardiac contractility and hemodynamics following 40 minutes of global ischemia in isolated hearts. Chronic treatment with AG825 or AG1478, selective inhibitors of erbB2 and EGFR respectively, did not affect hyperglycemia but led to an exacerbation whereas acute administration of the EGFR ligand, epidermal growth factor (EGF, led to an improvement in cardiac recovery in diabetic hearts. Diabetes led to attenuated dimerization and phosphorylation of cardiac erbB2 and EGFR receptors that was associated with reduced signaling via extracellular-signal-regulated kinase 1/2 (ERK1/2, p38 mitogen activated protein (MAP kinase and AKT (protein kinase B. Ischemia was also associated with reduced cardiac signaling via these molecules whereas EGF-treatment opposed diabetes and/or ischemia induced changes in ERK1/2, p38 MAP kinase, and AKT-FOXO signaling. Losartan treatment improved cardiac function in diabetes but also impaired EGFR phosphorylation in diabetic heart. Co-administration of EGF rescued Losartan-mediated reduction in EGFR phosphorylation and significantly improved cardiac recovery more than with either agent alone. EGFR/erbB2 signaling is an important cardiac survival pathway whose activation, particularly in diabetes, ischemia or following treatment with drugs that inhibit this cascade, significantly improves cardiac function. These findings may have clinical relevance particularly in the treatment of diabetes-induced cardiac dysfunction.

  18. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B.

    Science.gov (United States)

    Tafani, Marco; Schito, Luana; Pellegrini, Laura; Villanova, Lidia; Marfe, Gabriella; Anwar, Tahira; Rosa, Roberta; Indelicato, Manuela; Fini, Massimo; Pucci, Bruna; Russo, Matteo A

    2011-08-01

    The role of hypoxia in regulating tumor progression is still controversial. Here, we demonstrate that, similarly to what previously observed by us in human prostate and breast tumor samples, hypoxia increases expression of the receptor for advanced glycation end products (RAGE) and the purinergic receptor P2X7 (P2X7R). The role of hypoxia was shown by the fact that hypoxia-inducible factor (HIF)-1α silencing downregulated RAGE and P2X7R protein levels as well as nuclear factor-kappaB (NF-κB) expression. In contrast, NF-κB silencing reduced P2X7R expression without affecting RAGE protein levels or nuclear accumulation of HIF-1α. Treatment of hypoxic tumor cells with HMGB1 and BzATP ligands, respectively, of RAGE and P2X7R, activated a signaling pathway that, through Akt and Erk phosphorylation, determines nuclear accumulation of NF-κB and increases cell invasion. Inhibition of Akt by SH5 and Erk by INH1 prevented both nuclear translocation of NF-κB and cell invasion. Moreover, silencing RAGE and P2X7R abolished nuclear accumulation of NF-κB as well as cell invasion without affecting HIF-1α stabilization. Once in the nucleus, NF-κB would contribute to cell survival and invasion under hypoxia, by maintaining RAGE and P2X7R expression levels and matrix metalloproteinases 2 and 9 synthesis. These results show that, hypoxia can upregulate expression levels of membrane receptors that, by binding extracellular molecules eventually released by necrotic cells, contribute to the increased invasiveness of transformed tumor cells. Moreover, these observations strengthen our working hypothesis that upregulation of damage-associated molecular patterns receptors by HIF-1α represents the crucial event bridging hypoxia and inflammation in obtaining the malignant phenotype.

  19. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor-dependent MEK/ERK and PI3K/Akt activation.

    Science.gov (United States)

    Jin, Xin; Sun, Jing; Yu, Bo; Wang, Yue; Sun, Wei Jia; Yang, Jing; Huang, Su Hui; Xie, Wen Li

    2017-06-01

    Daidzein, a natural soy isoflavone, has a structure similar to estradiol and exhibiting bone-sparing effects against osteoporosis. However, the molecular mechanisms of osteogenesis remain unclear. We hypothesized that daidzein stimulates osteogenesis through estrogen receptor (ER)-dependent signal pathways. To test this hypothesis, we investigated the effects of daidzein compared with 17β-estradiol on proliferation, differentiation, and cisplatin-induced apoptosis in human osteoblast-like MG-63 cells containing 2 ER isoforms. The results showed that daidzein stimulated cell proliferation by altering cell cycle distribution, promoted cell differentiation by increasing the alkaline phosphatase activity and collagen content, and reduced cell apoptosis associated by up-regulating the expression of Bcl-xL. The above actions of daidzein were prevented by cotreatment with the ER antagonist ICI 182780. Using small interfering RNA technology, we further demonstrated that the effects of daidzein on alkaline phosphatase activity, collagen content, and cell apoptosis are mediated by both ERα and ERβ, whereas the effects on cell proliferation are primarily mediated by ERα. However, the effects of 17β-estradiol on osteoblastic proliferation and survival are mediated by both ER isotypes, and the effects on osteoblastic differentiation are primarily mediated by ERα. The use of specific inhibitors indicated that activation of the mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK/ERK) and phosphoinositide 3-kinase/protein kinase B or PKB (PI3K/Akt) signaling pathway at least partially accounts for these effects of daidzein. Taken together, the results indicate that daidzein stimulates osteogenesis through facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via activation of MEK/ERK and PI3K/Akt in an ER-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Allium Roseum L. Extract Exerts Potent Suppressive Activities on Chronic Myeloid Leukemia K562 Cell Viability Through the Inhibition of BCR-ABL, PI3K/Akt, and ERK1/2Pathways and the Abrogation of VEGF Secretion.

    Science.gov (United States)

    Souid, Soumaya; Najjaa, Hanen; Riahi-Chebbi, Ichrak; Haoues, Meriam; Neffati, Mohamed; Arnault, Ingrid; Auger, Jacques; Karoui, Habib; Essafi, Makram; Essafi-Benkhadir, Khadija

    2017-01-01

    Use of plant extracts, alone or combined to the current chemotherapy as chemosensitizers, has emerged as a promising strategy to overcome tumor drug resistance. Here, we investigated the anticancer activity of Allium roseum L. extracts, a wild edible species in North Africa, on human Chronic Myeloid Leukemia (CML) K562 cells. The dehydrated aqueous extract (DAE) disturbed the cell cycle progression and induced the apoptosis of K562 cells. Chemical analysis of DAE showed a diversity of organosulfur compounds S-alk(en)yl-cysteine sulfoxides (RCSO) and high amount of allicin, suggesting that such molecule may be behind its antitumor effect. DAE was efficient in inhibiting K562 cell viability. DAE inhibitory effect was associated with the dephosphorylation of the BCR-ABL kinase and interfered with ERK 1/2 , Akt, and STAT5 pathways. Furthermore, we found that DAE-induced inactivation of Akt kinase led to the activation of its target FOXO3 transcription factor, enhancing the expression of FOXO3-regulated proapoptotic effectors, Bim and Bax, and cell cycle inhibitor p27. Finally, we found that DAE reduced the secretion of vascular endothelial growth factor. Overall, our data suggest that A. roseum extract has great potential as a nontoxic cheap and effective alternative to conventional chemotherapy.

  1. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5.

    Science.gov (United States)

    Zhao, Yingmei; Tian, Binqiang; Wang, Yong; Ding, Haiying

    2017-10-26

    BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. MATERIAL AND METHODS The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20-100 µM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. RESULTS Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. CONCLUSIONS Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.

  2. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei; Man, Xiao-Yong [Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 (China); Li, Chun-Ming [Department of Dermatology, Second Affiliated Hospital, Nanchang University School of Medicine, Nanchang, Jiangxi 330000 (China); Chen, Jia-Qi; Zhou, Jiong; Cai, Sui-Qing; Lu, Zhong-Fa [Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 (China); Zheng, Min, E-mail: minz@zju.edu.cn [Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009 (China)

    2012-08-15

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF{sub 165} stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF{sub 165}-induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF{sub 165}. Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: Black-Right-Pointing-Pointer We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. Black-Right-Pointing-Pointer VEGF{sub 165} stimulated proliferation of human DP cells in a dose-dependent manner. Black-Right-Pointing-Pointer This stimulation was through VEGFR-2-mediated activation of ERK.

  3. Stimulation of JNK Phosphorylation by the PTTH in Prothoracic Glands of the Silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Shi-Hong Gu

    2018-02-01

    Full Text Available In this study, phosphorylation of c-Jun N-terminal kinase (JNK by the prothoracicotropic hormone (PTTH was investigated in prothoracic glands (PGs of the silkworm, Bombyx mori. Results showed that JNK phosphorylation was stimulated by the PTTH in time- and dose-dependent manners. In vitro activation of JNK phosphorylation in PGs by the PTTH was also confirmed in an in vivo experiment, in which a PTTH injection greatly increased JNK phosphorylation in PGs of day-6 last instar larvae. JNK phosphorylation caused by PTTH stimulation was greatly inhibited by U73122, a potent and specific inhibitor of phospholipase C (PLC and an increase in JNK phosphorylation was also detected when PGs were treated with agents (either A23187 or thapsigargin that directly elevated the intracellular Ca2+ concentration, thereby indicating involvement of PLC and Ca2+. Pretreatment with an inhibitor (U0126 of mitogen-activated protein kinase (MAPK/extracellular signal-regulated kinase (ERK kinase (MEK and an inhibitor (LY294002 of phosphoinositide 3-kinase (PI3K failed to significantly inhibit PTTH-stimulated JNK phosphorylation, indicating that ERK and PI3K were not related to JNK. We further investigated the effect of modulation of the redox state on JNK phosphorylation. In the presence of either an antioxidant (N-acetylcysteine, NAC or diphenylene iodonium (DPI, PTTH-stimulated JNK phosphorylation was blocked. The JNK kinase inhibitor, SP600125, markedly inhibited PTTH-stimulated JNK phosphorylation and ecdysteroid synthesis. The kinase assay of JNK in PGs confirmed its stimulation by PTTH and inhibition by SP600125. Moreover, PTTH treatment did not affect JNK or Jun mRNA expressions. Based on these findings, we concluded that PTTH stimulates JNK phosphorylation in Ca2+- and PLC-dependent manners and that the redox-regulated JNK signaling pathway is involved in PTTH-stimulated ecdysteroid synthesis in B. mori PGs.

  4. Suppression of breast cancer proliferation and induction of apoptosis via AKT and ERK1/2 signal transduction pathways by synthetic polypeptide derived from viral macrophage inflammatory protein II.

    Science.gov (United States)

    Yang, Qingling; Chen, Changjie; Yang, Zhifeng; Gao, Yangjun; Tang, Jie

    2011-08-01

    SDF-1α, a ligand for the chemokine receptor CXCR4, is well known for mediating the migration of breast cancer cells. In a previous study we demonstrated that a synthetic 21-mer peptide antagonist of CXCR4 (NT21MP) derived from the viral macrophage inflammatory protein II could antagonize tumor growth in vivo by inhibiting cellular proliferation and inducing apoptosis in breast cancer cells. However, the role of SDF-1α in the signaling pathways underlying the proliferation of human breast cancer cells and associated signaling pathways and inhibiting signal pathways of NT21MP remained unclear. The present study investigated the mechanism of NT21MP on anti-tumor in breast cancer in vitro. The effect of NT21MP on the viability of cells was determined by the MTT assay. Annexin V-FITC and PI staining was performed to detect early stage apoptosis in SKBR3 cells treated with SDF-1α and AMD3100 or NT21MP. Western blotting techniques were used to assay the composition of phosphoproteomics and total proteins present in the SKBR3 breast cancer cells. RT-PCR and Western blotting technique were used to detect the effect of NT21MP and AMD3100 on Bcl-2 and Bax expression. The results indicated that SDF-1α prevented apoptosis and promoted the proliferation of SKBR3 human breast cancer cells. As compared with untreated SKBR3 cells, Treatment with SDF-1α significantly increased cell viability, and NT21MP abolished the protective effects of SDF-1α dose-dependently (PSKBR3 cells with NT21MP significantly attenuated the antiapoptotic effects of SDF-1α as compared with SKBR3 cells without NT21MP pretreatment. The proliferative and anti-apoptotic effects of SDF-1α in SKBR3 cells were associated with an increase in AKT and ERK1/2 phosphorylation as well as a decrease in Bax expression and an increase in Bcl-2 expression. These changes in intracellular processes were blocked by NT21MP in a dose-dependent manner(PSKBR3 cells by reducing the levels of phosphorylated AKT and ERK1/2, as

  5. Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Tsubaki, Masanobu; Satou, Takao; Itoh, Tatsuki; Imano, Motohiro; Ogaki, Mitsuhiko; Yanae, Masashi; Nishida, Shozo

    2012-01-01

    Osteosarcoma is one of the most common primary malignant bone tumors in children and adolescents. Some patients continue to have a poor prognosis, because of the metastatic disease. YM529/ONO-5920 is a nitrogen-containing bisphosphonate that has been used for the treatment of osteoporosis. YM529/ONO-5920 has recently been reported to induce apoptosis in various tumors including osteosarcoma. However, the mode of metastasis suppression in osteosarcoma by YM529/ONO-5920 is unclear. In the present study, we investigated whether YM529/ONO-5920 inhibited tumor cell migration, invasion, adhesion, or metastasis in the LM8 mouse osteosarcoma cell line. We found that YM529/ONO-5920 significantly inhibited metastasis, cell migration, invasion, and adhesion at concentrations that did not have antiproliferative effects on LM8 cells. YM529/ONO-5920 also inhibited the mRNA expression and protein activities of matrix metalloproteinases (MMPs). In addition, YM529/ONO-5920 suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and the serine/threonine protein kinase B (Akt) by the inhibition of Ras prenylation. Moreover, U0126, a mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, also inhibited LM8 cell migration, invasion, adhesion, and metastasis, as well as the mRNA expression and protein activities of MMP-1, MMP-2, MMP-9, and MT1-MMP. The results indicated that YM529/ONO-5920 suppressed the Ras/MEK/ERK and Ras/PI3K/Akt pathways, thereby inhibiting LM8 cell migration, invasion, adhesion, and metastasis. These findings suggest that YM529/ONO-5920 has potential clinical applications for the treatment of tumor cell metastasis in osteosarcoma. -- Highlights: ► We investigated whether YM529/ONO-5920 inhibited tumor metastasis in osteosarcoma. ► YM529/ONO-5920 inhibited metastasis, cell migration, invasion, and adhesion. ► YM529/ONO-5920 suppressed Ras signalings. ► YM529/ONO-5920

  6. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells.

    Directory of Open Access Journals (Sweden)

    Daniel V Correia

    Full Text Available BACKGROUND: The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+ T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+ TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, CONCLUSIONS/SIGNIFICANCE: The development of

  7. Nelumbo nucifera Gaertn leaves extract inhibits the angiogenesis and metastasis of breast cancer cells by downregulation connective tissue growth factor (CTGF) mediated PI3K/AKT/ERK signaling.

    Science.gov (United States)

    Chang, Chun-Hua; Ou, Ting-Tsz; Yang, Mon-Yuan; Huang, Chi-Chou; Wang, Chau-Jong

    2016-07-21

    Nelumbo nucifera Gaertn (Nymphaeaceae) has been recognized as a medicinal plant, which was distributed throughout the Asia. The aqueous extract of Nelumbo nucifera leaves extract (NLE) has various biologically active components such as polyphenols, flavonoids, oligomeric procyanidines. However, the role of NLE in breast cancer therapy is poorly understood. The purpose of this study was to identify the hypothesis that NLE can suppress tumor angiogenesis and metastasis through CTGF (connective tissue growth factor), which has been implicated in tumor angiogenesis and progression in breast cancer MDA-MB-231 cells. We examined the effects of NLE on angiogenesis in the chicken chorioallantoic membrane (CAM) model. The data showed that NLE could reduce the chorionic plexus at day 17 in CAM and the duration of this inhibition was dose-dependent. In Xenograft model, NLE treatment significantly reduced tumor weight and CD31 (capillary density) over control, respectively. We examined the role of angiogenesis involved restructuring of endothelium using human umbilical vein endothelial cell (HUVEC) in Matrigel angiogenesis model. The results indicated that vascular-like structure formation was further blocked by NLE treatment. Moreover, knockdown of CTGF expression markedly reduced the expression of MMP2 as well as VEGF, and attenuated PI3K-AKT-ERK activation, indication that these signaling pathways are crucial in mediating CTGF function. The present results suggest that NLE might be useful for treatment in therapy-resistance triple negative breast cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Melatonin Modulates Endoplasmic Reticulum Stress and Akt/GSK3-Beta Signaling Pathway in a Rat Model of Renal Warm Ischemia Reperfusion

    Directory of Open Access Journals (Sweden)

    Kaouther Hadj Ayed Tka

    2015-01-01

    Full Text Available Melatonin (Mel is widely used to attenuate ischemia/reperfusion (I/R injury in several organs. Nevertheless, the underlying mechanisms remain unclear. This study was conducted to explore the effect of Mel on endoplasmic reticulum (ER stress, Akt and MAPK cascades after renal warm I/R. Eighteen Wistar rats were randomized into three groups: Sham, I/R, and Mel + I/R. The ischemia period was 60 min followed by 120 min of reperfusion. Mel (10 mg/kg was administrated 30 min prior to ischemia. The creatinine clearance, MDA, LDH levels, and histopathological changes were evaluated. In addition, Western blot was performed to study ER stress and its downstream apoptosis as well as phosphorylation of Akt, GSK-3β, VDAC, ERK, and P38. Mel decreased cytolysis and lipid peroxidation and improved renal function and morphology compared to I/R group. Parallely, it significantly reduced the ER stress parameters including GRP 78, p-PERK, XBP 1, ATF 6, CHOP, and JNK. Simultaneously, p-Akt level was significantly enhanced and its target molecules GSK-3β and VDAC were inhibited. Furthermore, the ERK and P38 phosphorylation were evidently augmented after Mel administration in comparison to I/R group. In conclusion, Mel improves the recovery of renal function by decreasing ER stress and stimulating Akt pathway after renal I/R injury.

  9. Sensitization of cancer cells to radiation by selenadiazole derivatives by regulation of ROS-mediated DNA damage and ERK and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Qiang [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou (China); Zhou, Yangliang; Lan, Guoqiang; Yang, Liye; Zheng, Wenjie; Liang, Yuanwei [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Chen, Tianfeng, E-mail: tchentf@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou 510632 (China)

    2014-06-20

    Highlights: • Selenadiazole derivatives could be used as an effective and low toxic sensitizer for radiotherapy. • Selenadiazole derivatives enhances radiation-induced growth inhibition on A375 cells through induction of G2/M arrest. • ROS-mediated signaling pathways play important roles in radiosensitization of selenadiazole derivatives. - Abstract: X-ray-based radiotherapy represents one of the most effective ways in treating human cancers. However, radioresistance and side effect remain as the most challenging issue. This study describes the design and application of novel selenadiazole derivatives as radiotherapy sensitizers to enhance X-ray-induced inhibitory effects on A375 human melanoma and Hela human cervical carcinoma cells. The results showed that, pretreatment of the cells with selenadiazole derivatives dramatically enhance X-ray-induced growth inhibition and colony formation. Flow cytometry analysis indicates that the sensitization by selenadiazole derivatives was mainly caused by induction of G2/M cell cycle arrest. Results of Western blotting demonstrated that the combined treatment-induced A375 cells growth inhibition was achieved by triggering reactive oxygen species-mediated DNA damage involving inactivation of AKT and MAPKs. Further investigation revealed that selenadiazole derivative in combination with X-ray could synergistically inhibit the activity of thioredoxin reductase-1 in A375 cells. Taken together, these results suggest that selenadiazole derivatives can act as novel radiosensitizer with potential application in combating human cancers.

  10. The MEK-ERK pathway negatively regulates bim expression through the 3' UTR in sympathetic neurons

    Science.gov (United States)

    2011-01-01

    Background Apoptosis plays a critical role during neuronal development and disease. Developing sympathetic neurons depend on nerve growth factor (NGF) for survival during the late embryonic and early postnatal period and die by apoptosis in its absence. The proapoptotic BH3-only protein Bim increases in level after NGF withdrawal and is required for NGF withdrawal-induced death. The regulation of Bim expression in neurons is complex and this study describes a new mechanism by which an NGF-activated signalling pathway regulates bim gene expression in sympathetic neurons. Results We report that U0126, an inhibitor of the prosurvival MEK-ERK pathway, increases bim mRNA levels in sympathetic neurons in the presence of NGF. We find that this effect is independent of PI3-K-Akt and JNK-c-Jun signalling and is not mediated by the promoter, first exon or first intron of the bim gene. By performing 3' RACE and microinjection experiments with a new bim-LUC+3'UTR reporter construct, we show that U0126 increases bim expression via the bim 3' UTR. We demonstrate that this effect does not involve a change in bim mRNA stability and by using PD184352, a specific MEK1/2-ERK1/2 inhibitor, we show that this mechanism involves the MEK1/2-ERK1/2 pathway. Finally, we demonstrate that inhibition of MEK/ERK signalling independently reduces cell survival in NGF-treated sympathetic neurons. Conclusions These results suggest that in sympathetic neurons, MEK-ERK signalling negatively regulates bim expression via the 3' UTR and that this regulation is likely to be at the level of transcription. This data provides further insight into the different mechanisms by which survival signalling pathways regulate bim expression in neurons. PMID:21762482

  11. Protective effect of sauchinone against regional myocardial ischemia/reperfusion injury: inhibition of p38 MAPK and JNK death signaling pathways.

    Science.gov (United States)

    Kim, Seok Jai; Jeong, Cheol Won; Bae, Hong Beom; Kwak, Sang Hyun; Son, Jong-Keun; Seo, Chang-Seob; Lee, Hyun-Jung; Lee, JongUn; Yoo, Kyung Yeon

    2012-05-01

    Sauchinone has been known to have anti-inflammatory and antioxidant effects. We determined whether sauchinone is beneficial in regional myocardial ischemia/reperfusion (I/R) injury. Rats were subjected to 20 min occlusion of the left anterior descending coronary artery, followed by 2 hr reperfusion. Sauchinone (10 mg/kg) was administered intraperitoneally 30 min before the onset of ischemia. The infarct size was measured 2 hr after resuming the perfusion. The expression of cell death kinases (p38 and JNK) and reperfusion injury salvage kinases (phosphatidylinositol-3-OH kinases-Akt, extra-cellular signal-regulated kinases [ERK1/2])/glycogen synthase kinase (GSK)-3β was determined 5 min after resuming the perfusion. Sauchinone significantly reduced the infarct size (29.0% ± 5.3% in the sauchinone group vs 44.4% ± 6.1% in the control, P death signaling pathways.

  12. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Wei-Ru Huang

    Full Text Available Avian reovirus (ARV protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128 of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  13. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways.

    Science.gov (United States)

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication.

  14. Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways.

    Science.gov (United States)

    Zhao, Jingkun; Ou, Baochi; Han, Dingpei; Wang, Puxiongzhi; Zong, Yaping; Zhu, Congcong; Liu, Di; Zheng, Minhua; Sun, Jing; Feng, Hao; Lu, Aiguo

    2017-03-29

    Metastasis is a major cause of death in human colorectal cancer patients. However, the contribution of chemokines in the tumor microenvironment to tumor metastasis is not fully understood. Herein, we examinined several chemokines in colorectal cancer patients using chemokine ELISA array. Immunohistochemistry was used to detect expression of CXCL5 in colorectal cancer patients tissues. Human HCT116 and SW480 cell lines stably transfected with CXCL5, shCXCL5 and shCXCR2 lentivirus plasmids were used in our in vitro study. Immunoblot, immunofluorescence and transwell assay were used to examine the molecular biology and morphological changes in these cells. In addition, we used nude mice to detect the influence of CXCL5 on tumor metastasis in vivo. We found that CXCL5 was overexpressed in tumor tissues and associated with advanced tumor stage as well as poor prognosis in colorectal cancer patients. We also demonstrated that CXCL5 was primarily expressed in the tumor cell cytoplasm and cell membranes, which may indicate that the CXCL5 was predominantly produced by cancer epithelial cells instead of fibroblasts in the tumor mesenchyme. Additionally, overexpression of CXCL5 enhanced the migration and invasion of colorectal cancer cells by inducing the epithelial-mesenchymal transition (EMT) through activation of the ERK/Elk-1/Snail pathway and the AKT/GSK3β/β-catenin pathway in a CXCR2-dependent manner. The silencing of Snail and β-catenin attenuated CXCL5/CXCR2-enhanced cell migration and invasion in vitro. The elevated expression of CXCL5 can also potentiate the metastasis of colorectal cancer cells to the liver in vivo in nude mice intrasplenic injection model. In conclusion, our findings support CXCL5 as a promoter of colorectal cancer metastasis and a predictor of poor clinical outcomes in colorectal cancer patients.

  15. Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors.

    Science.gov (United States)

    Pineda, David; Ampurdanés, Coral; Medina, Manel G; Serratosa, Joan; Tusell, Josep Maria; Saura, Josep; Planas, Anna M; Navarro, Pilar

    2012-04-01

    Inflammatory responses mediated by glial cells play a critical role in many pathological situations related to neurodegeneration such as Alzheimer's disease. Tissue plasminogen activator (tPA) is a serine protease which best-known function is fibrinolysis, but it is also involved in many other physiological and pathological events as microglial activation. Here, we found that tPA is required for Aβ-mediated microglial inflammatory response and tumor necrosis factor-α release. We further investigated the molecular mechanism responsible for tPA-mediated microglial activation. We found that tPA induces a catalytic-independent rapid and sustained activation of extracellular signal-regulated kinase (ERK)1/2, Jun N-terminal kinase (JNK), Akt, and p38 signaling pathways. Inhibition of ERK1/2 and JNK resulted in a strong inhibition of microglial activation, whereas Akt inhibition led to increased inflammatory response, suggesting specific functions for each signaling pathway in the regulation of microglial activation. Furthermore, we demonstrated that AnnexinA2 and Galectin-1 receptors are involved in tPA signaling and inflammatory response in glial cells. This study provides new evidences supporting that tPA plays a cytokine-like role in glial activation by triggering receptor-mediated intracellular signaling circuits and opens new therapeutic strategies for the treatment of neurological disorders in which neuroinflammation plays a pathogenic role. Copyright © 2011 Wiley-Liss, Inc.

  16. Regorafenib induces extrinsic and intrinsic apoptosis through inhibition of ERK/NF-κB activation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Tsai, Jai-Jen; Pan, Po-Jung; Hsu, Fei-Ting

    2017-02-01

    The aim of the present study was to investigate the role of NF-κB inactivation in regorafenib-induced apoptosis in human hepatocellular carcinoma SK-HEP-1 cells. SK-HEP-1 cells were treated with different concentrations of the NF-κB inhibitor 4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine (QNZ) or regorafenib for different periods. The effects of QNZ and regorafenib on cell viability, expression of NF-κB-modulated anti-apoptotic proteins and apoptotic pathways were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, DNA gel electrophoresis, flow cytometry and NF-κB reporter gene assay. Inhibitors of various kinases including AKT, c-Jun N-terminal kinase (JNK), P38 and extracellular signal-regulated kinase (ERK) were used to evaluate the mechanism of regorafenib-induced NF-κB inactivation. The results demonstrated that both QNZ and regorafenib significantly inhibited the expression of anti-apoptotic proteins and triggered extrinsic and intrinsic apoptosis. We also demonstrated that regorafenib inhibited NF-κB activation through ERK dephosphorylation. Taken all together, our findings indicate that regorafenib triggers extrinsic and intrinsic apoptosis through suppression of ERK/NF-κB activation in SK-HEP-1 cells.

  17. Antitumor activity of miR-34a in peritoneal mesothelioma relies on c-MET and AXL inhibition: persistent activation of ERK and AKT signaling as a possible cytoprotective mechanism

    Directory of Open Access Journals (Sweden)

    Rihan El Bezawy

    2017-01-01

    Full Text Available Abstract Background The value of microRNAs (miRNAs as novel targets for cancer therapy is now widely recognized. However, no information is currently available on the expression/functional role of miRNAs in diffuse malignant peritoneal mesothelioma (DMPM, a rapidly lethal disease, poorly responsive to conventional treatments, for which the development of new therapeutic strategies is urgently needed. Here, we evaluated the expression and biological effects of miR-34a—one of the most widely deregulated miRNAs in cancer and for which a lipid-formulated mimic is already clinically available—in a large cohort of DMPM clinical samples and a unique collection of in house-developed preclinical models, with the aim to assess the potential of a miR-34a-based approach for disease treatment. Methods miR-34a expression was determined by qRT-PCR in 45 DMPM and 7 normal peritoneum specimens as well as in 5 DMPM cell lines. Following transfection with miR-34a mimic, the effects on DMPM cell phenotype, in terms of proliferative potential, apoptotic rate, invasion ability, and cell cycle distribution, were assessed. In addition, three subcutaneous and orthotopic DMPM xenograft models were used to examine the effect of miR-34a on tumorigenicity. The expression of miRNA targets and the activation status of relevant pathways were investigated by western blot. Results miR-34a was found to be down-regulated in DMPM clinical specimens and cell lines compared to normal peritoneal samples. miR-34a reconstitution in DMPM cells significantly inhibited proliferation and tumorigenicity, induced an apoptotic response, and declined invasion ability, mainly through the down-regulation of c-MET and AXL and the interference with the activation of downstream signaling. Interestingly, a persistent activation of ERK1/2 and AKT in miR-34a-reconstituted cells was found to counteract the antiproliferative and proapoptotic effects of miRNA, yet not affecting its anti

  18. Lemur Tyrosine Kinase-3 Suppresses Growth of Prostate Cancer Via the AKT and MAPK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Pengcheng Sun

    2017-08-01

    Full Text Available Background/Aims: Lemur tyrosine kinase (LMTK-3 is a member of the receptor tyrosine kinase (RTK family. Abnormal expression of LMTK-3 exists in various types of cancers, especially in endocrine-resistant breast cancers; however, the precise level of expression and the biological function in prostate cancer are poorly understood. Methods: In the present study, we determined the expression of LMTK-3 in prostate cancer using immunohistochemistry and Western blotting. We infected PC3 and LNCaP cells with lentivirus-LMTK-3 and observed the biologic characteristics of the PC3 and LNCaP cells in vitro with TUNEL, and migration and invasion assays, respectively. We also established a transplant tumor model of human prostate cancer with infected cells in 15 BALB/c-nu/nu nude mice. Results: LMTK-3 was expressed in prostate epithelial cells. There was a significant decline in the level of LMTK-3 expression in prostate cancers compared to normal tissues. LMTK-3 inhibited PC3 and LNCaP cell growth, migration, and invasion, and induced cell apoptosis in vitro. We also observed that LMTK-3 induced PC3 cell apoptosis in vivo. Further study showed that LMTK-3 inhibited phosphorylation of AKT and ERK, and promoted phosphorylation and activation of p38 kinase and Jun kinase (JNK. Conclusion: Recombinant lentivirus with enhanced expression of LMTK-3 inhibited prostate cancer cell growth and induced apoptosis in vitro and in vivo. AKT and MAPK signaling pathways may contribute to the process.

  19. Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Hong Sam-Pyo

    2009-02-01

    Full Text Available Abstract Background The Akt/PKB family of kinases is frequently activated in human cancers, including oral squamous cell carcinoma (OSCC. Akt-induced epithelial-to-mesenchymal transition (EMT involves downregulation of E-cadherin, which appears to result from upregulation of the transcription repressor Snail. Recently, it was proposed that carcinoma cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting transition (MErT in order to adapt the microenvironments and re-expression of E-cadherin be a critical indicator of MErT. However, the precise mechanism and biologic or clinical importance of the MErT in cancers have been little known. This study aimed to investigate whether Akt inhibition would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in OSCC cells with low or negative expression of E-cadherin. We also investigate whether inhibition of Akt activity would affect the E-cadherin repressors and signaling molecules like NF-κB, ERK, and p38. Methods We screened several OSCC cell lines in order to select suitable cell line models for inducing MErT, using immunoblotting and methylation specific-PCR. We examined whether Akt inhibitor phosphatidylinositol ether lipid analogues (PIA treatment would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in KB and KOSCC-25B cells using RT-PCR, immunoblotting, immunofluorescence analysis, and in vitro migration assay. We also investigated whether inhibition of Akt activity would affect the E-cadherin repressors, including Snail, Twist, and SIP-1/ZEB-2 and signaling molecules like NF-κB, ERK, JNK, and p38 using RT-PCR, immunoblotting, and immunofluorescence analysis. Results Of the 7 OSCC cell lines, KB and KOSCC-25B showed constitutively activated phosphorylated Akt and low or negative expression of E-cadherin. Inhibition of Akt activity by PIA decreased NF-κB signaling

  20. Tentacle extract from the jellyfish Cyanea capillata increases proliferation and migration of human umbilical vein endothelial cells through the ERK1/2 signaling pathway.

    Science.gov (United States)

    Wang, Beilei; Liu, Dan; Wang, Chao; Wang, Qianqian; Zhang, Hui; Liu, Guoyan; He, Qian; Zhang, Liming

    2017-01-01

    Wound healing is a complex biological process, and current research finds that jellyfish have a great capacity for promoting growth and healing. However, the underlying mechanisms remain unclear. Thus, this study was conducted to investigate the molecular mechanisms and effects of a tentacle extract (TE) from the jellyfish Cyanea capillata (C. capillata) on cell proliferation and migration in human umbilical vein endothelial cells (HUVECs). First, our results showed that TE at the concentration of 1 μg/ml could promote cell proliferation over various durations, induce a transition of the cells from the G1-phase to the S/G2-phase of the cell cycle, and increase the expression of cell cycle proteins (CyclinB1 and CyclinD1). Second, we found that TE could activate the PI3K/Akt, ERK1/2 and JNK MAPK signaling pathways but not the NF-κB signaling pathway or the apoptosis signaling cascade. Finally, we demonstrated that the TE-induced expression of cell cycle proteins was decreased by ERK1/2 inhibitor PD98059 but not by PI3K inhibitor LY294002 or JNK inhibitor SP600125. Similarly, the TE-enhanced migration ability of HUVECs was also markedly attenuated by PD98059. Taken together, our findings indicate that TE-induced proliferation and migration in HUVECs mainly occurred through the ERK1/2 MAPK signaling pathway. These results are instructively important for further research on the isolation and purification of growth-promoting factors from C. capillata and are hopeful as a means to improve human wound repair in unfavorable conditions.

  1. Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving β-catenin.

    Science.gov (United States)

    Wu, Xuelun; Li, Shilun; Xue, Peng; Li, Yukun

    2017-11-15

    Previous studies have proven that glucagon-like peptide-1 (GLP-1) and its receptor agonist exert favorable anabolic effects on skeletal metabolism. However, whether GLP-1 could directly impact osteoblast-mediated bone formation is still controversial, and the underlying molecular mechanism remains to be elucidated. Thus in this paper, we investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, on murine MC3T3-E1 preosteoblasts proliferation and differentiation and explored the potential cellular basis. Our study confirmed the presence of GLP-1R in MC3T3-E1, and demonstrated that liraglutide promotes osteoblasts proliferation at an intermediate concentration (100nM) and time (48h), upregulated the expression of osteoblastogenic biomarkers at various stages, and stimulated osteoblastic mineralization. Liraglutide also elevated the intracellular cAMP level and phosphorylation of AKT, ERK and β-catenin simultaneously with increased nuclear β-catenin content and transcriptional activity. Pretreatment of cells with the inhibitors LY294002, PD98059, H89 and GLP-1R and β-catenin siRNA partially blocked the liraglutide-induced signaling activation and attenuated the facilitating effect of liraglutide on MC3T3-E1 cells. Collectively, liraglutide was capable of acting upon osteoblasts directly through GLP-1R by activating PI3K/AKT, ERK1/2, cAMP/PKA/β-cat-Ser675 signaling to promote bone formation via GLP-1R. Thus, GLP-1 analogues may be potential therapeutic strategy for the treatment of osteoporosis in diabetics. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Grape seed proanthocyanidin inhibits inflammatory responses in hepatic stellate cells by modulating the MAPK, Akt and NF-κB signaling pathways.

    Science.gov (United States)

    Lee, Jin-Woo; Kim, Young Il; Kim, Youngchul; Choi, Minji; Min, Seoyeon; Joo, Yong Hoon; Yim, Sung-Vin; Chung, Namhyun

    2017-07-01

    In the present study, we aimed to investigate the molecular mechanisms and prophylactic effects of grape seed proanthocyanidin (GSP) on lipopolysaccharide (LPS)-stimulated human hepatic stellate cells (HSCs). Cell counting and MTT assays were used to assess cell viability in the absence or presence of GSP. Reverse transcription-quantitative PCR (RT-qPCR) was performed for several inflammation-related genes (NOD1, NOD2, TLR2, TLR4, IL-1 β, IL-6, IL-8, iNOS and COX-2). The expression of anti-inflammatory cell signaling molecules, including c-Jun N-terminal kinase (JNK), p38, extracellular signal regulated kinase (ERK), Akt, nuclear factor-κB (NF-κB), inhibitory-κBα (IκBα), iNOS and COX-2, was evaluated by western blot analysis. Finally, IL-8 levels in the culture supernatant of HSCs were measured by ELISA. Pretreatment with GSP before LPS treatment significantly suppressed the mRNA expression of pro-inflammatory cytokines such as IL-1β, IL-6 and IL-8. GSP inhibited mRNA expression of LPS-induced TLR4, NOD2 and COX-2, in addition to inhibiting the expression of iNOS. GSP also inhibited LPS-induced NF-κB activation and IκBα phosphorylation. Concomitantly, GSP dose-dependently suppressed the activation of MAP kinases (JNK, ERK and p38) and Akt in LPS-stimulated HSCs. These data suggest that GSP inhibits inflammatory responses in HSCs by inactivating the NF-κB signaling pathway via MAP kinases. Thus, GSP may be considered as a novel drug for the treatment of hepatic inflammation, infectious diseases and fibrosis.

  3. JNK1 Mediates Lipopolysaccharide-Induced CD14 and SR-AI Expression and Macrophage Foam Cell Formation

    Directory of Open Access Journals (Sweden)

    Dong An

    2018-01-01

    Full Text Available Foam cell formation is the key process in the development of atherosclerosis. The uptake of oxidized low-density lipoprotein (oxLDL converts macrophages into foam cells. We recently reported that lipopolysaccharide (LPS-induced foam cell formation is regulated by CD14 and scavenger receptor AI (SR-AI. In this study, we employed pharmaceutical and gene knockdown approaches to determine the upstream molecular mediators, which control LPS-induced foam cell formation. Our results demonstrated that the specific c-Jun N-terminal kinase (JNK pathway inhibitor, SP600125, but neither the specific inhibitor of extracellular signaling-regulated kinase (ERK kinase MEK1/2, U0126, nor the specific inhibitor of p38 MAPK, SB203580, significantly blocks LPS-induced oxLDL uptake, suggesting that the JNK pathway is the upstream mediator of LPS-induced oxLDL uptake/foam cell formation. To address whether JNK pathway mediates LPS-induced oxLDL uptake is due to JNK pathway-regulated CD14 and SR-AI expression, we assessed whether the pharmaceutical inhibitor of JNK influences LPS-induced expression of CD14 and SR-AI. Our results indicate that JNK pathway mediates LPS-induced CD14 and SR-AI expression. To conclusively address the isoform role of JNK family, we depleted JNK isoforms using the JNK isoform-specific siRNA. Our data showed that the depletion of JNK1, but not JNK2 blocked LPS-induced CD14/SR-AI expression and foam cell formation. Taken together, our results reveal for the first time that JNK1 is the key mediator of LPS-induced CD14 and SR-AI expression in macrophages, leading to LPS-induced oxLDL uptake/foam cell formation. We conclude that the novel JNK1/CD14/SR-AI pathway controls macrophage oxLDL uptake/foam cell formation.

  4. Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement

    Science.gov (United States)

    Alrashdan, Yazan A.; Alkhouri, Hatem; Chen, Emily; Lalor, Daniel J.; Poniris, Maree; Henness, Sheridan; Brightling, Christopher E.; Burgess, Janette K.; Armour, Carol L.; Ammit, Alaina J.

    2012-01-01

    CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma. PMID:22387292

  5. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    Science.gov (United States)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  6. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Lianzhu Lin

    Full Text Available Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid. The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  7. Kupffer Cell-Derived Tnf Triggers Cholangiocellular Tumorigenesis through JNK due to Chronic Mitochondrial Dysfunction and ROS.

    Science.gov (United States)

    Yuan, Detian; Huang, Shan; Berger, Emanuel; Liu, Lei; Gross, Nina; Heinzmann, Florian; Ringelhan, Marc; Connor, Tracy O; Stadler, Mira; Meister, Michael; Weber, Julia; Öllinger, Rupert; Simonavicius, Nicole; Reisinger, Florian; Hartmann, Daniel; Meyer, Rüdiger; Reich, Maria; Seehawer, Marco; Leone, Valentina; Höchst, Bastian; Wohlleber, Dirk; Jörs, Simone; Prinz, Marco; Spalding, Duncan; Protzer, Ulrike; Luedde, Tom; Terracciano, Luigi; Matter, Matthias; Longerich, Thomas; Knolle, Percy; Ried, Thomas; Keitel, Verena; Geisler, Fabian; Unger, Kristian; Cinnamon, Einat; Pikarsky, Eli; Hüser, Norbert; Davis, Roger J; Tschaharganeh, Darjus F; Rad, Roland; Weber, Achim; Zender, Lars; Haller, Dirk; Heikenwalder, Mathias

    2017-06-12

    Intrahepatic cholangiocarcinoma (ICC) is a highly malignant, heterogeneous cancer with poor treatment options. We found that mitochondrial dysfunction and oxidative stress trigger a niche favoring cholangiocellular overgrowth and tumorigenesis. Liver damage, reactive oxygen species (ROS) and paracrine tumor necrosis factor (Tnf) from Kupffer cells caused JNK-mediated cholangiocellular proliferation and oncogenic transformation. Anti-oxidant treatment, Kupffer cell depletion, Tnfr1 deletion, or JNK inhibition reduced cholangiocellular pre-neoplastic lesions. Liver-specific JNK1/2 deletion led to tumor reduction and enhanced survival in Akt/Notch- or p53/Kras-induced ICC models. In human ICC, high Tnf expression near ICC lesions, cholangiocellular JNK-phosphorylation, and ROS accumulation in surrounding hepatocytes are present. Thus, Kupffer cell-derived Tnf favors cholangiocellular proliferation/differentiation and carcinogenesis. Targeting the ROS/Tnf/JNK axis may provide opportunities for ICC therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Regulation of heat shock proteins 27 and 70, p-Akt/p-eNOS and MAPKs by Naringin Dampens myocardial injury and dysfunction in vivo after ischemia/reperfusion.

    Directory of Open Access Journals (Sweden)

    Neha Rani

    Full Text Available Naringin has antioxidant properties that could improve redox-sensitive myocardial ischemia reperfusion (IR injury. This study was designed to investigate whether naringin restores the myocardial damage and dysfunction in vivo after IR and the mechanisms underlying its cardioprotective effects. Naringin (20-80 mg/kg/day, p.o. or saline were administered to rats for 14 days and the myocardial IR injury was induced on 15(th day by occluding the left anterior descending coronary artery for 45 min and subsequent reperfusion for 60 min. Post-IR rats exhibited pronounced cardiac dysfunction as evidenced by significantly decreased mean arterial pressure, heart rate, +LVdP/dt max (inotropic state, -LVdP/dt max (lusitropic state and increased left ventricular end diastolic pressure as compared to sham group, which was improved by naringin. Further, on histopathological and ultrastructural assessments myocardium and myocytes appeared more normal in structure and the infarct size was reduced significantly in naringin 40 and 80 mg/kg/day group. This amelioration of post-IR-associated cardiac injury by naringin was accompanied by increased nitric oxide (NO bioavailability, decreased NO inactivation to nitrotyrosine, amplified protein expressions of Hsp27, Hsp70, β-catenin and increased p-eNOS/eNOS, p-Akt/Akt, and p-ERK/ERK ratio. In addition, IR-induced TNF-α/IKK-β/NF-κB upregulation and JNK phosphorylation were significantly attenuated by naringin. Moreover, western blotting and immunohistochemistry analysis of apoptotic signaling pathway further established naringin cardioprotective potential as it upregulated Bcl-2 expression and downregulated Bax and Caspase-3 expression with reduced TUNEL positivity. Naringin also normalized the cardiac injury markers (lactate dehydrogenase and creatine kinase-MB, endogenous antioxidant activities (superoxide dismutase, reduced glutathione and glutathione peroxidase and lipid peroxidation levels. Thus, naringin

  9. JNK mitogen-activated protein kinase limits calcium-dependent chloride secretion across colonic epithelial cells.

    LENUS (Irish Health Repository)

    Donnellan, Fergal

    2010-01-01

    Neuroimmune agonists induce epithelial Cl(-) secretion through elevations in intracellular Ca2+ or cAMP. Previously, we demonstrated that epidermal growth factor receptor (EGFR) transactivation and subsequent ERK MAPK activation limits secretory responses to Ca2+-dependent, but not cAMP-dependent, agonists. Although JNK MAPKs are also expressed in epithelial cells, their role in regulating transport function is unknown. Here, we investigated the potential role for JNK in regulating Cl(-) secretion in T(84) colonic epithelial cells. Western blot analysis revealed that a prototypical Ca2+-dependent secretagogue, carbachol (CCh; 100 microM), induced phosphorylation of both the 46-kDa and 54-kDa isoforms of JNK. This effect was mimicked by thapsigargin (TG), which specifically elevates intracellular Ca2+, but not by forskolin (FSK; 10 microM), which elevates cAMP. CCh-induced JNK phosphorylation was attenuated by the EGFR inhibitor, tyrphostin-AG1478 (1 microM). Pretreatment of voltage-clamped T(84) cells with SP600125 (2 microM), a specific JNK inhibitor, potentiated secretory responses to both CCh and TG but not to FSK. The effects of SP600125 on CCh-induced secretion were not additive with those of the ERK inhibitor, PD98059. Finally, in apically permeabilized T(84) cell monolayers, SP600125 potentiated CCh-induced K+ conductances but not Na+\\/K+ATPase activity. These data demonstrate a novel role for JNK MAPK in regulating Ca2+ but not cAMP-dependent epithelial Cl(-) secretion. JNK activation is mediated by EGFR transactivation and exerts its antisecretory effects through inhibition of basolateral K+ channels. These data further our understanding of mechanisms regulating epithelial secretion and underscore the potential for exploitation of MAPK-dependent signaling in treatment of intestinal transport disorders.

  10. Antiplatelet action of indirubin-3'-monoxime through suppression of glycoprotein VI-mediated signal transduction: a possible role for ERK signaling in platelets.

    Science.gov (United States)

    Lee, Jung-Jin; Han, Joo-Hui; Jung, Sang-Hyuk; Lee, Sang-Gil; Kim, In-Su; Cuong, Nguyen Manh; Huong, Tran Thu; Khanh, Pham Ngoc; Kim, Young Ho; Yun, Yeo-Pyo; Ma, Jin Yeul; Myung, Chang-Seon

    2014-12-01

    We investigated the antiplatelet activity of indirubin-3'-monoxime (I3O) and the underlying mechanisms. In a rat carotid artery injury model, oral administration (20 mg/kg/day) of I3O for 3 days significantly prolonged occlusion time, and ADP- and collagen-induced platelet aggregation. In washed platelets in vitro, I3O potently inhibited collagen-induced platelet aggregation by suppressing phospholipase Cγ2 (PLCγ2) phosphorylation, subsequently blocking diacylglycerol and arachidonic acid (AA) formation, P-selectin secretion and the production of thromboxane B2. Platelet aggregation induced by phorbol-12-myristate 13-acetate, a protein kinase C (PKC) activator, was inhibited by I3O. Both I3O and U0126, an extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor, markedly reduced collagen-induced phosphorylation of ERK1/2 and p47, resulting in the blockade of cyclooxygenase (COX)-mediated AA metabolite production in AA-treated platelets. I3O suppressed phosphorylation of JNK, p38, GSK-3β, and AKT. I3O inhibited glycoprotein VI (GPVI), as a collagen receptor, by suppressing the phosphorylation of tyrosine kinase Syk of GPVI and the phosphorylation of PLCγ2 and ERK1/2 stimulated by convulxin, as a specific stimulator. Our results indicate that an antiplatelet effect of I3O is due to the suppression of GPVI-mediated signaling pathways. In collagen-stimulated platelets, ERK1/2 phosphorylation is adenylyl cyclase-dependent and leads to the modulation of PKC-p47 signaling and COX-1-mediated AA-metabolic pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Development of ERK Activity Sensor, an in vitro, FRET-based sensor of Extracellular Regulated Kinase activity

    Directory of Open Access Journals (Sweden)

    Alberola-Ila José

    2005-07-01

    Full Text Available Abstract Background Study of ERK activation has thus far relied on biochemical assays that are limited to the use of phospho-specific antibodies and radioactivity in vitro, and analysis of whole cell populations in vivo. As with many systems, fluorescence resonance energy transfer (FRET can be utilized to make highly sensitive detectors of molecular activity. Here we introduce FRET-based ERK Activity Sensors, which utilize variants of Enhanced Green Fluorescent Protein fused by an ERK-specific peptide linker to detect ERK2 activity. Results ERK Activity Sensors display varying changes in FRET upon phosphorylation by active ERK2 in vitro depending on the composition of ERK-specific peptide linker sequences derived from known in vivo ERK targets, Ets1 and Elk1. Analysis of point mutations reveals specific residues involved in ERK binding and phosphorylation of ERK Activity Sensor 3. ERK2 also shows high in vitro specificity for these sensors over two other major MAP Kinases, p38 and pSAPK/JNK. Conclusion EAS's are a convenient, non-radioactive alternative to study ERK dynamics in vitro. They can be utilized to study ERK activity in real-time. This new technology can be applied to studying ERK kinetics in vitro, analysis of ERK activity in whole cell extracts, and high-throughput screening technologies.

  12. A quantitative RNAi screen for JNK modifiers identifies Pvr as a novel regulator of Drosophila immune signaling.

    Directory of Open Access Journals (Sweden)

    David Bond

    2009-11-01

    Full Text Available Drosophila melanogaster responds to gram-negative bacterial challenges through the IMD pathway, a signal transduction cassette that is driven by the coordinated activities of JNK, NF-kappaB and caspase modules. While many modifiers of NF-kappaB activity were identified in cell culture and in vivo assays, the regulatory apparatus that determines JNK inputs into the IMD pathway is relatively unexplored. In this manuscript, we present the first quantitative screen of the entire genome of Drosophila for novel regulators of JNK activity in the IMD pathway. We identified a large number of gene products that negatively or positively impact on JNK activation in the IMD pathway. In particular, we identified the Pvr receptor tyrosine kinase as a potent inhibitor of JNK activation. In a series of in vivo and cell culture assays, we demonstrated that activation of the IMD pathway drives JNK-dependent expression of the Pvr ligands, Pvf2 and Pvf3, which in turn act through the Pvr/ERK MAP kinase pathway to attenuate the JNK and NF-kappaB arms of the IMD pathway. Our data illuminate a poorly understood arm of a critical and evolutionarily conserved innate immune response. Furthermore, given the pleiotropic involvement of JNK in eukaryotic cell biology, we believe that many of the novel regulators identified in this screen are of interest beyond immune signaling.

  13. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yun-Jeong; Cho, Hyun-Ji [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Magae, Junji [Magae Bioscience Institute, 49-4 Fujimidai, Tsukuba 300-1263 (Japan); Lee, In-Kyu [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Park, Keun-Gyu, E-mail: kpark@knu.ac.kr [Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 700-721 (Korea, Republic of); Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  14. L-DOPA modulates cell viability through the ERK-c-Jun system in PC12 and dopaminergic neuronal cells.

    Science.gov (United States)

    Park, Keun Hong; Shin, Keon Sung; Zhao, Ting Ting; Park, Hyun Jin; Lee, Kyung Eun; Lee, Myung Koo

    2016-02-01

    L-DOPA causes neurotoxicity by modulating the Epac-ERK system in PC12 cells. This study investigated the effects of a single treatment with L-DOPA and multiple treatments with L-DOPA (MT-LD) on ERK1/2 and JNK1/2-c-Jun systems. In PC12 cells, a toxic L-DOPA concentration (200 μM) induced sustained ERK1/2 and JNK1/2 phosphorylation that was inhibited by the Epac inhibitor brefeldin A, but not by the PKA inhibitor H89. This ERK1/2 and JNK1/2 phosphorylation was also inhibited by ERK1/2 (U0126) and JNK1/2 (SP600125) inhibitors, respectively, but sustained ERK1/2 phosphorylation was not affected by JNK1/2 phosphorylation. A non-toxic L-DOPA concentration (20 μM) induced c-Jun phosphorylation (Ser73) via transient ERK1/2 phosphorylation, whereas the toxic L-DOPA concentration induced c-Jun phosphorylation (Ser63) and c-Jun expression via Epac-sustained ERK1/2-JNK1/2 phosphorylation, which then enhanced cleaved caspase-3 expression. MT-LD (20 μM) initially enhanced c-Jun phosphorylation (Ser73) (for 1-4 days), but later (5-6 days) induced c-Jun phosphorylation (Ser63) and c-Jun expression. In the 6-hydroxydopamine-lesioned rat model of Parkinson's disease, L-DOPA administration (10 mg/kg) protected against neurotoxicity through c-Jun phosphorylation (Ser73) for 1-2 weeks. However, L-DOPA administration (10 or 30 mg/kg) showed neurotoxicity through c-Jun phosphorylation (Ser63) and c-Jun expression via ERK1/2 phosphorylation for 3-4 weeks. Thus, in PC12 cells, non-toxic L-DOPA treatment maintained cell survival through c-Jun phosphorylation (Ser73). By contrast, toxic L-DOPA treatment or MT-LD (20 μM) induced c-Jun phosphorylation (Ser63) and c-Jun expression via Epac-dependent sustained ERK1/2 and JNK1/2 phosphorylation, which subsequently led to cell death. These results were validated by those obtained after long-term L-DOPA administration in a rat model of Parkinson's disease. Our data indicate that L-DOPA causes neurotoxicity via the ERK1/2-c-Jun system in

  15. In vivo treatment with diphenyl ditelluride induces neurodegeneration in striatum of young rats: Implications of MAPK and Akt pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heimfarth, Luana; Loureiro, Samanta Oliveira; Dutra, Márcio Ferreira; Andrade, Cláudia; Pettenuzzo, Letícia; Guma, Fátima T. Costa Rodrigues; Gonçalves, Carlos Alberto Saraiva [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil); Batista Teixeira da Rocha, João [Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS Brazil (Brazil); Pessoa-Pureur, Regina, E-mail: rpureur@ufrgs.br [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil)

    2012-10-15

    In the present report 15 day-old Wistar rats were injected with 0.3 μmol of diphenyl ditelluride (PhTe){sub 2}/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6 days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein—GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe){sub 2} significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe){sub 2} provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe){sub 2} treated striatal slices suggested apoptotic cell death. (PhTe){sub 2} exposure decreased Akt immunoreactivity, however phospho-GSK-3-β (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe){sub 2}-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis. -- Highlights: ► Diphenyl ditelluride causes apoptotic neuronal death in the striatum of young rats. ► Diphenyl ditelluride causes reactive astrogliosis in the striatum of rats. ► Diphenyl ditelluride disrupts the homeostasis of the cytoskeleton of the striatum. ► The actions of diphenyl ditelluride are mediated by MAPK and Akt

  16. Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Chellaiah Meenakshi A

    2010-09-01

    Full Text Available Abstract Background Osteopontin (OPN has been shown to play many roles in the progression of cancer. We have recently demonstrated the activation of Akt by OPN. Integrin-linked kinase and PI3-kinase are integral proteins in OPN/AKT pathway in PC3 cells. To investigate the role of the extracellular receptors in OPN signaling, we have examined the spatio-temporal regulation of CD44 and integrin αvβ3 receptor in OPN-induced Akt activation in PC3 cells. Results Here, our studies demonstrate that OPN can activate Akt either through the αVβ3 integrin or the CD44 cell surface receptor. Members of the Mitogen Activated Protein Kinase (MAPK family have been shown to be up-regulated in a variety of human cancers and have been implicated in the metastatic behavior. Our studies have demonstrated an increase in the phosphorylation of c-Raf at Ser259 and Ser338 in PC3 cells over-expressing OPN. This increase matches up with the Erk1/2 phosphorylation at Thr202/204 and activation. However, the inhibition of Akt activity augments the phosphorylation state of ERK1/2 to two to three fold with a concomitant reduction in the phosphorylation state of c-Raf at Ser259. Conclusions Regulation c-Raf phosphorylation at Ser259 has a role in the anti-apoptotic pathways mediated by Akt or Raf/MEK/ERK proteins. OPN may have dual effects in the activation of Erk1/2. We propose this based on the observations that while OPN activates c-Raf and Erk1/2; it also acts to inhibit c-Raf and Erk1/2 activation through Akt pathway. Our observations suggest that the activation of c-Raf-ERK cascade may promote cell cycle arrest in prostate cancer cells and OPN signaling has a role in the anti-apoptotic mechanism.

  17. Sinulariolide Suppresses Human Hepatocellular Carcinoma Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 through MAPKs and PI3K/Akt Signaling Pathways

    Science.gov (United States)

    Wu, Yu-Jen; Neoh, Choo-Aun; Tsao, Chia-Yu; Su, Jui-Hsin; Li, Hsing-Hui

    2015-01-01

    Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma. PMID:26204832

  18. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways.

    Science.gov (United States)

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells' apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro's dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days.

  19. The JNK Signaling Pathway in Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Keren Grynberg

    2017-10-01

    Full Text Available Fibrosis of the glomerular and tubulointerstitial compartments is a common feature of chronic kidney disease leading to end-stage renal failure. This fibrotic process involves a number of pathologic mechanisms, including cell death and inflammation. This review focuses on the role of the c-Jun amino terminal kinase (JNK signaling pathway in the development of renal fibrosis. The JNK pathway is activated in response to various cellular stresses and plays an important role in cell death and inflammation. Activation of JNK signaling is a common feature in most forms of human kidney injury, evident in both intrinsic glomerular and tubular cells as well as in infiltrating leukocytes. Similar patterns of JNK activation are evident in animal models of acute and chronic renal injury. Administration of JNK inhibitors can protect against acute kidney injury and suppress the development of glomerulosclerosis and tubulointerstitial fibrosis. In particular, JNK activation in tubular epithelial cells may be a pivotal mechanism in determining the outcome of both acute kidney injury and progression of chronic kidney disease. JNK signaling promotes tubular epithelial cell production of pro-inflammatory and pro-fibrotic molecules as well as tubular cell de-differentiation toward a mesenchymal phenotype. However, the role of JNK within renal fibroblasts is less well-characterized. The JNK pathway interacts with other pro-fibrotic pathways, most notable with the TGF-β/SMAD pathway. JNK activation can augment TGF-β gene transcription, induce expression of enzymes that activate the latent form of TGF-β, and JNK directly phosphorylates SMAD3 to enhance transcription of pro-fibrotic molecules. In conclusion, JNK signaling plays an integral role in several key mechanisms operating in renal fibrosis. Targeting of JNK enzymes has therapeutic potential for the treatment of fibrotic kidney diseases.

  20. Role of ErbB2 mediated AKT and MAPK pathway in gall bladder cell proliferation induced by argemone oil and butter yellow. Argemone oil and butter yellow induced gall bladder cell proliferation.

    Science.gov (United States)

    Mishra, Vivek; Ansari, Kausar M; Khanna, Raj; Das, Mukul

    2012-06-01

    The effect of noncytotoxic doses of argemone oil (AO) and butter yellow (BY), the common adulterants in edible oil, on free radical generation and signaling pathway for cell proliferation in primary cells of gall bladder (GB) was undertaken. AO and BY showed no cytotoxicity at 0.1 μl/ml and 0.1 μg/ml concentration, respectively. AO caused significant increase in ROS after 30 min and RNS after 24 h in GB cells while no change was observed following BY treatment. Enhanced level of COX-2 was observed following AO (0.1 μl/ml) and BY (0.1 μg/ml) treatment to cells for 24 h. AO treatment caused phosphorylation of ErbB2, AKT, ERK, and JNK along with increased thymidine uptake indicating cell proliferation ability in GB cells. BY treatment also showed significant expression of these proteins with the exception of phosphorylated JNK. These results suggest that AO and BY have cell proliferative potential in GB cells following up-regulation of COX-2 and ErbB2; however, their downstream signaling molecules and free radical generation have differential response, indicating that the mechanism of proliferation is different for both compounds and may have relevance in gall bladder cancer.

  1. Neurotrophic Effect of Asiatic acid, a Triterpene of Centella asiatica Against Chronic 1-Methyl 4-Phenyl 1, 2, 3, 6-Tetrahydropyridine Hydrochloride/Probenecid Mouse Model of Parkinson's disease: The Role of MAPK, PI3K-Akt-GSK3β and mTOR Signalling Pathways.

    Science.gov (United States)

    Nataraj, Jagatheesan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed

    2017-05-01

    Regulation of various signalling (Ras-MAPK, PI3K and AKT) pathways by augmented activity of neurotrophic factors (NTFs) could prevent or halt the progress of dopaminergic loss in Parkinson's disease (PD). Various in vitro and in vivo experimental studies indicated anti-parkinsonic potential of asiatic acid (AA), a pentacyclic triterpene obtained from Centella asiatica. So the present study is designed to determine the neurotrophic effect of AA against 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride/probenecid (MPTP/p) neurotoxicity in mice model of PD. AA treatment for 5 weeks significantly attenuated MPTP/p induced motor abnormalities, dopamine depletion and diminished expressions NTFs and tyrosine kinase receptors (TrKB). We further, revealed that AA treatment significantly inhibited the MPTP/p-induced phosphorylation of MAPK/P38 related proteins such as JNK and ERK. Moreover, AA treatment increased the phosphorylation of PI3K, Akt, GSK-3β and mTOR, suggesting that AA activated PI3K/Akt/mTOR signalling pathway, which might be the cause of neuroprotection offered by AA. The present findings provided more elaborate in vivo evidences to support the neuroprotective effect of AA on dopaminergic neurons of chronic Parkinson's disease mouse model and the potential of AA to be developed as a possible new therapeutic target to treat PD.

  2. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Wu, Wen-Jeng [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Huang, Huei-Sheng, E-mail: huanghs@mail.ncku.edu.tw [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-15

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21{sup WAF1/CIP1}) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF

  3. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    International Nuclear Information System (INIS)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling; Yeh, Bi-Wen; Wu, Wen-Jeng; Huang, Huei-Sheng

    2015-01-01

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21 WAF1/CIP1 ) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF mediates

  4. Sodium fluoride induces apoptosis in odontoblasts via a JNK-dependent mechanism.

    Science.gov (United States)

    Li, Peng; Xue, Yunpeng; Zhang, Wenbin; Teng, Fei; Sun, Yong; Qu, Tiejun; Chen, Xingxing; Cheng, Xiaogang; Song, Bing; Luo, Wenjing; Yu, Qing

    2013-06-07

    Sodium fluoride (NaF) is widely used for the treatment of dental caries and dentin hypersensitivity. However, its pro-apoptotic effect on odontoblasts may lead to harmful side-effects. The purpose of this study was to evaluate the pro-apoptotic effects of NaF in odontoblasts and elucidate the possible underlying molecular mechanisms. NaF generated cytotoxic effects in odontoblast-lineage cell (OLC) in a dose- and time-dependent manner. Exposure of cells to 4mM NaF for 24h induced caspase-3 activation, ultrastructural alterations, and resulted in the translocation of Bax to the mitochondria and the release of cytochrome c from the mitochondrial inter-membrane space into the cytosol, indicating that fluoride-mediated apoptosis is mitochondria-dependent. Fluoride treatment also increased phosphorylation of JNK and ERK, but not p38, and apoptosis induced by fluoride was notably or partly suppressed by treatment with JNK or ERK inhibitors, respectively. Taken together, these findings suggest that NaF induces apoptosis in OLC odontoblasts through a JNK-dependent mitochondrial pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Fusaric acid (FA) protects heart failure induced by isoproterenol (ISP) in mice through fibrosis prevention via TGF-β1/SMADs and PI3K/AKT signaling pathways.

    Science.gov (United States)

    Li, Xin; Zhang, Zhou-Long; Wang, Hui-Fen

    2017-09-01

    Fusaric acid (FA) is a novel compound derived from a class of nicotinic acid derivatives, exhibiting activity against cancers. However, its role in regulating cardiac injury is limited. Our study was aimed to investigate the role and the underlying molecular mechanism of FA in heart fibrosis and hypertrophy. Isoproterenol (ISP) was used to induce cardiac fibrosis and hypertrophy in vitro and in vivo. FA administration ameliorated hypertrophy by reducing atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β -myosin heavy chain (β-MHC) in vitro and in vivo. Additionally, FA reduced collagen accumulation and fibrosis-related signals, including α- smooth muscle actin (α-SMA), Collagen type I and Collagen type III. Transforming growth factor-β1 (TGF-β1)/SMADs and mitogen-activated protein kinases (MAPKs), including p38, extracellular signal regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), signalling pathways were highly activated for ISP induction, which were prevented due to FA administration. Further, FA suppressed ISP-induced PI3K/AKT activity in a dose dependent manner. Of note, FA-reduced MAPKs phosphorylation was associated with phosphoinositide 3-Kinase (PI3K)/Protein kinase B (AKT) activity caused by ISP. However, PI3K/AKT activation showed no effects on TGF-β1/SMADs expression in FA-treated cells after ISP exposure. Together, FA might be an effective candidate agent for preventing cardiac fibrosis by modulating TGF-β1/SMADs and PI3K/AKT signalling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-04-01

    Full Text Available Tingfang Yang,1 Shuluan Yao,2 Xianfeng Zhang,3 Yan Guo2 1Department of Pediatrics, Jining No 1 People’s Hospital, Shandong Province, People’s Republic of China; 2Department of Respiratory Medicine, Jining Medical University Affiliated Hospital, Shandong Province, People’s Republic of China; 3Department of Psychiatry, Jining Psychiatric Hospital, Shandong Province, People’s Republic of China Abstract: T-cell acute lymphoblastic leukemia (T-ALL as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro, the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 µg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. Keywords: andrographolide, PI3K, AKT, Burkitt lymphoma, Jurkat cell

  7. Alcohol Dehydrogenase Protects against Endoplasmic Reticulum Stress-Induced Myocardial Contractile Dysfunction via Attenuation of Oxidative Stress and Autophagy: Role of PTEN-Akt-mTOR Signaling.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Pang

    Full Text Available The endoplasmic reticulum (ER plays an essential role in ensuring proper folding of the newly synthesized proteins. Aberrant ER homeostasis triggers ER stress and development of cardiovascular diseases. ADH is involved in catalyzing ethanol to acetaldehyde although its role in cardiovascular diseases other than ethanol metabolism still remains elusive. This study was designed to examine the impact of ADH on ER stress-induced cardiac anomalies and underlying mechanisms involved using cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were subjected to the ER stress inducer tunicamycin (1 mg/kg, i.p., for 48 hrs. Myocardial mechanical and intracellular Ca(2+ properties, ER stress, autophagy and associated cell signaling molecules were evaluated.ER stress compromised cardiac contractile function (evidenced as reduced fractional shortening, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration and impaired intracellular Ca(2+ homeostasis, oxidative stress and upregulated autophagy (increased LC3B, Atg5, Atg7 and p62, along with dephosphorylation of PTEN, Akt and mTOR, all of which were attenuated by ADH. In vitro study revealed that ER stress-induced cardiomyocyte anomaly was abrogated by ADH overexpression or autophagy inhibition using 3-MA. Interestingly, the beneficial effect of ADH was obliterated by autophagy induction, inhibition of Akt and mTOR. ER stress also promoted phosphorylation of the stress signaling ERK and JNK, the effect of which was unaffected by ADH transgene.Taken together, these findings suggested that ADH protects against ER stress-induced cardiac anomalies possibly via attenuation of oxidative stress and PTEN/Akt/mTOR pathway-regulated autophagy.

  8. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes

    International Nuclear Information System (INIS)

    Arsenic is well known as a carcinogen predisposing humans to some severe diseases and also as an effective medicine for treating acute promyelocytic leukemia, syphilis, and psoriasis. Multiple active mechanisms, including cell cycle arrest and apoptosis, have been proposed in therapy; however, the opposing effects of arsenic remain controversial. Our previous study found that arsenic trioxide (ATO)-induced activation of p21 WAF1/CIP1 (p21) led to A431 cell death through the antagonistic effects of the signaling of ERK1/2 and JNK1. In the current study, the inhibitory effects of JNK1 on ATO-induced p21 expression were explored. Over-expression of JNK1 in A431 cells could inhibit p21 expression, which was associated with HDAC1 and TGIF. Using the GST pull-down assay and fluorescence resonance energy transfer analysis, N-terminal domain (amino acids 1-108) of TGIF, critical to its binding with c-Jun, was found. Using reporter assays, requirement of the C-terminal domain (amino acids 138-272) of TGIF to suppress ATO-induced p21 expression was observed. Thus, the domains of TGIF that carried out its inhibitory effects on p21 were identified. Finally, treatment with JNK inhibitor SP600125 could enhance ATO-induced apoptosis of HaCaT keratinocytes by using flow cytometry.

  9. Huaier Aqueous Extract Induces Hepatocellular Carcinoma Cells Arrest in S Phase via JNK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chengshuo Zhang

    2015-01-01

    Full Text Available Huaier aqueous extract, the main active constituent of Huaier proteoglycan, has antihepatocarcinoma activity in experimental and clinical settings. However, the potential and associated antihepatoma mechanisms of Huaier extract are not yet fully understood. Therefore, in this study, we aimed to elucidate the inhibitory proliferation effect of Huaier extract on apoptosis and cycle of HepG2 and Bel-7402 cells. Our data demonstrated that incubation with Huaier extract resulted in a marked decrease in cell viability dose-dependently. Flow cytometric analysis showed that a 48 h treatment of Huaier extract caused cell apoptosis. Typical apoptotic nucleus alterations were observed with fluorescence microscope after Hoechst staining. Immunoblot analysis further demonstrated that Huaier extract activated caspase 3 and PARP. Additionally, Huaier extract inhibited the activity of p-ERK, p-p38, and p-JNK in terms of MAPK. Furthermore, Huaier extract induced HCC cells arrest in S phase and decreased the cycle related protein expression of β-catenin and cyclin D1. Studies with JNK specific inhibitor, SP600125, showed that Huaier extract induced S phase arrest and decreased β-catenin and cyclin D1 expression via JNK signaling pathway. In conclusion, we verify that Huaier extract causes cell apoptosis and induces hepatocellular carcinoma cells arrest in S phase via JNK pathway, which advances our understanding on the molecular mechanisms of Huaier extract in hepatocarcinoma management.

  10. Diverse Roles of JNK and MKK Pathways in the Brain

    Directory of Open Access Journals (Sweden)

    Tokiwa Yamasaki

    2012-01-01

    Full Text Available The c-Jun NH2-terminal protein kinase (JNK plays important roles in a broad range of physiological processes. JNK is controlled by two upstream regulators, mitogen-activated protein kinase kinase (MKK 4 and MKK7, which are activated by various MAPKKKs. Studies employing knockout mice have demonstrated that the JNK signaling pathway is involved in diverse phenomena in the brain, regulating brain development and maintenance as well as animal metabolism and behavior. Furthermore, examination of single or combined knockout mice of Jnk1, Jnk2, and Jnk3 has revealed both functional differences and redundancy among JNK1, JNK2, and JNK3. Phenotypic differences between knockouts of MKK4 and MKK7 have also been observed, suggesting that the JNK signaling pathway in the brain has a complex nature and is intricately regulated. This paper summarizes the functional properties of the major JNK signaling components in the developing and adult brain.

  11. ERK2 Mediates Metabolic Stress Response to Regulate Cell Fate.

    Science.gov (United States)

    Shin, Sejeong; Buel, Gwen R; Wolgamott, Laura; Plas, David R; Asara, John M; Blenis, John; Yoon, Sang-Oh

    2015-08-06

    Insufficient nutrients disrupt physiological homeostasis, resulting in diseases and even death. Considering the physiological and pathological consequences of this metabolic stress, the adaptive responses that cells utilize under this condition are of great interest. We show that under low-glucose conditions, cells initiate adaptation followed by apoptosis responses using PERK/Akt and MEK1/ERK2 signaling, respectively. For adaptation, cells engage the ER stress-induced unfolded protein response, which results in PERK/Akt activation and cell survival. Sustained and extreme energetic stress promotes a switch to isoform-specific MEK1/ERK2 signaling, induction of GCN2/eIF2α phosphorylation, and ATF4 expression, which overrides PERK/Akt-mediated adaptation and induces apoptosis through ATF4-dependent expression of pro-apoptotic factors including Bid and Trb3. ERK2 activation during metabolic stress contributes to changes in TCA cycle and amino acid metabolism, and cell death, which is suppressed by glutamate and α-ketoglutarate supplementation. Taken together, our results reveal promising targets to protect cells or tissues from metabolic stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival.

    Science.gov (United States)

    Jacque, Emilie; Schweighoffer, Edina; Tybulewicz, Victor L J; Ley, Steven C

    2015-06-01

    B cell activating factor (BAFF) stimulation of the BAFF receptor (BAFF-R) is essential for the homeostatic survival of mature B cells. Earlier in vitro experiments with inhibitors that block MEK 1 and 2 suggested that activation of ERK 1 and 2 MAP kinases is required for BAFF-R to promote B cell survival. However, these inhibitors are now known to also inhibit MEK5, which activates the related MAP kinase ERK5. In the present study, we demonstrated that BAFF-induced B cell survival was actually independent of ERK1/2 activation but required ERK5 activation. Consistent with this, we showed that conditional deletion of ERK5 in B cells led to a pronounced global reduction in mature B2 B cell numbers, which correlated with impaired survival of ERK5-deficient B cells after BAFF stimulation. ERK5 was required for optimal BAFF up-regulation of Mcl1 and Bcl2a1, which are prosurvival members of the Bcl-2 family. However, ERK5 deficiency did not alter BAFF activation of the PI3-kinase-Akt or NF-κB signaling pathways, which are also important for BAFF to promote mature B cell survival. Our study reveals a critical role for the MEK5-ERK5 MAP kinase signaling pathway in BAFF-induced mature B cell survival and homeostatic maintenance of B2 cell numbers. © 2015 Jacque et al.

  13. LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes.

    Science.gov (United States)

    Rorato, Rodrigo; Borges, Beatriz de Carvalho; Uchoa, Ernane Torres; Antunes-Rodrigues, José; Elias, Carol Fuzeti; Elias, Lucila Leico Kagohara

    2017-07-04

    Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.

  14. Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Directory of Open Access Journals (Sweden)

    Benzhi Cai

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases.

  15. Apoptosis of Bone Marrow Mesenchymal Stem Cells Caused by Homocysteine via Activating JNK Signal

    Science.gov (United States)

    Liu, Yanju; Yang, Fan; Chen, Hongyang; Yin, Kun; Tan, Xueying; Zhu, Jiuxin; Pan, Zhenwei; Wang, Baoqiu; Lu, Yanjie

    2013-01-01

    Bone marrow mesenchymal stem cells (BMSCs) are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases. PMID:23667638

  16. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Science.gov (United States)

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. PMID:27114702

  17. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wakao, Kazufumi [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Takadama, Tadatoshi; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Shigemi, Zenpei; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Higashi, Chizuka; Ohga, Rie; Taira, Takahiro [Department of Molecular Cell Biology, Faculty of Medicine, University of Yamanashi, Chuoh-shi 409-3898 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-02-07

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  18. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    International Nuclear Information System (INIS)

    Wakao, Kazufumi; Watanabe, Tadashi; Takadama, Tadatoshi; Ui, Sadaharu; Shigemi, Zenpei; Kagawa, Hiroki; Higashi, Chizuka; Ohga, Rie; Taira, Takahiro; Fujimuro, Masahiro

    2014-01-01

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  19. Titration of signalling output: insights into clinical combinations of MEK and AKT inhibitors.

    Science.gov (United States)

    Stewart, A; Thavasu, P; de Bono, J S; Banerji, U

    2015-07-01

    We aimed to understand the relative contributions of inhibiting MEK and AKT on cell growth to guide combinations of these agents. A panel of 20 cell lines was exposed to either the MEK inhibitor, PD0325901, or AKT inhibitor, AKT 1/2 inhibitor. p-ERK and p-S6 ELISAs were used to define degrees of MEK and AKT inhibition, respectively. Growth inhibition to different degrees of MEK and AKT inhibition, either singly or in combination using 96-h sulphorhodamine assays was then studied. A significantly greater growth inhibition was seen in BRAF(M) and PIK3CA(M) cells upon maximal MEK (P = 0.004) and AKT inhibition (P = 0.038), respectively. KRAS(M) and BRAF/PIK3CA/KRAS(WT) cells were not significantly more likely to be sensitive to MEK or AKT inhibition. Significant incremental growth inhibition of the combination of MEK + AKT over either MEK or AKT inhibition alone was seen when MEK + AKT was inhibited maximally and not when sub-maximal inhibition of both MEK + AKT was used (11/20 cell lines versus 1/20 cell lines; P = 0.0012). KRAS(M) cells are likely to benefit from combinations of MEK and AKT inhibitors. Sub-maximally inhibiting both MEK and AKT within a combination, in a majority of instances, does not significantly increase growth inhibition compared with maximally inhibiting MEK or AKT alone and alternative phase I trial designs are needed to clinically evaluate such combinations. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  20. Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Kučera, Jan; Netušilová, Julie; Sladeček, Stanislava; Lánová, Martina; Vašíček, Ondřej; Štefková, Kateřina; Navrátilová, Jarmila; Kubala, Lukáš; Pacherník, Jiří

    2017-01-01

    Hypoxia is involved in the regulation of stem cell fate, and hypoxia-inducible factor 1 (HIF-1) is the master regulator of hypoxic response. Here, we focus on the effect of hypoxia on intracellular signaling pathways responsible for mouse embryonic stem (ES) cell maintenance. We employed wild-type and HIF-1 α -deficient ES cells to investigate hypoxic response in the ERK, Akt, and STAT3 pathways. Cultivation in 1% O 2 for 24 h resulted in the strong dephosphorylation of ERK and its upstream kinases and to a lesser extent of Akt in an HIF-1-independent manner, while STAT3 phosphorylation remained unaffected. Downregulation of ERK could not be mimicked either by pharmacologically induced hypoxia or by the overexpression. Dual-specificity phosphatases (DUSP) 1, 5, and 6 are hypoxia-sensitive MAPK-specific phosphatases involved in ERK downregulation, and protein phosphatase 2A (PP2A) regulates both ERK and Akt. However, combining multiple approaches, we revealed the limited significance of DUSPs and PP2A in the hypoxia-mediated attenuation of ERK signaling. Interestingly, we observed a decreased reactive oxygen species (ROS) level in hypoxia and a similar phosphorylation pattern for ERK when the cells were supplemented with glutathione. Therefore, we suggest a potential role for the ROS-dependent attenuation of ERK signaling in hypoxia, without the involvement of HIF-1.

  1. Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Jan Kučera

    2017-01-01

    Full Text Available Hypoxia is involved in the regulation of stem cell fate, and hypoxia-inducible factor 1 (HIF-1 is the master regulator of hypoxic response. Here, we focus on the effect of hypoxia on intracellular signaling pathways responsible for mouse embryonic stem (ES cell maintenance. We employed wild-type and HIF-1α-deficient ES cells to investigate hypoxic response in the ERK, Akt, and STAT3 pathways. Cultivation in 1% O2 for 24 h resulted in the strong dephosphorylation of ERK and its upstream kinases and to a lesser extent of Akt in an HIF-1-independent manner, while STAT3 phosphorylation remained unaffected. Downregulation of ERK could not be mimicked either by pharmacologically induced hypoxia or by the overexpression. Dual-specificity phosphatases (DUSP 1, 5, and 6 are hypoxia-sensitive MAPK-specific phosphatases involved in ERK downregulation, and protein phosphatase 2A (PP2A regulates both ERK and Akt. However, combining multiple approaches, we revealed the limited significance of DUSPs and PP2A in the hypoxia-mediated attenuation of ERK signaling. Interestingly, we observed a decreased reactive oxygen species (ROS level in hypoxia and a similar phosphorylation pattern for ERK when the cells were supplemented with glutathione. Therefore, we suggest a potential role for the ROS-dependent attenuation of ERK signaling in hypoxia, without the involvement of HIF-1.

  2. Acquisition of apoptotic resistance in cadmium-induced malignant transformation: specific perturbation of JNK signal transduction pathway and associated metallothionein overexpression.

    Science.gov (United States)

    Qu, Wei; Fuquay, Richard; Sakurai, Teruaki; Waalkes, Michael P

    2006-08-01

    Prior work has shown that chronic cadmium exposed rat liver epithelial cells (CCE-LE) become malignantly transformed after protracted low level cadmium exposure. Acquisition of apoptotic resistance is common in oncogenesis and the present work explores this possibility in CCE-LE cells. CCE-LE cells were resistant to apoptosis induced by etoposide or an acute high concentration of cadmium as assessed by flow cytometry with annexin/FITC. Three key mitogen-activated protein kinases (MAPKs), namely ERK1/2, JNK1/2, and p38, were phosphorylated in CCE-LE cells after acute cadmium exposure. However, the levels of phosphorylated JNK1/2 were markedly decreased in CCE-LE cells compared to control. JNK kinase activity was also suppressed in CCE-LE cells exposed to cadmium. Epidermal growth factor (EGF), used as a positive control for stimulating JNK phosphorylation, was much less effective in CCE-LE cells than control cells. Ro318220 (Ro), a strong activator of JNK, increased phosphorylated JNK1/2 to levels similar to the cadmium-treated control cells and also enhanced apoptosis in response to cadmium in CCE-LE cells. Metallothionein (MT), which is thought to potentially inhibit apoptosis, was strongly overexpressed in CCE-LE cells. Further, in MT knockout (MT-/-) fibroblasts, JNK1/2 phosphorylation was markedly increased after cadmium exposure compared with similarly treated wild-type (MT+/+) cells. These results indicate cadmium-transformed cells acquired apoptotic resistance, which may be linked to the specific suppression of the JNK pathway and is associated with MT overexpression, which, in turn, may impact this signal transduction pathway. The acquisition of apoptotic resistance may play an important role in cadmium carcinogenesis by contributing to both tumor initiation and malignant progression.

  3. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.; Lin, W.-L.; Tseng, T.-H.

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration and anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of β4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin β4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By

  4. A combination of four effective components derived from Sheng-mai san attenuates hydrogen peroxide-induced injury in PC12 cells through inhibiting Akt and MAPK signaling pathways.

    Science.gov (United States)

    Cao, Guo-Sheng; Li, Shao-Xia; Wang, Yan; Xu, Ying-Qiong; Lv, Yan-Ni; Kou, Jun-Ping; Yu, Bo-Yang

    2016-07-01

    The present study was designed to investigate whether a combination of four effective components derived from Sheng-mai san (SMXZF; ginsenoside Rb1: ginsenoside Rg1: DT-13: Schizandrol A as 6 : 9 : 4 : 5) could attenuate hydrogen peroxide (H2O2)-induced injury in PC12 cells, focusing on the Akt and MAPK pathways . The PC12 cells were exposed to H2O2 (400 μmol·L(-1)) for 1 h in the presence or absence of SMXZF pre-treatment for 24 h. Cell viability was measured by MTT assay. The efflux of lactate dehydrogenase (LDH), the intracellular content of malondialdehyde (MDA), the activities of superoxide dismutase (SOD), and caspase-3 were also determined. Cell apoptosis was measured by Hoechst 33342 staining and Annexin V-FITC/PI staining method. The expression of Bcl-2, Bax, cleaved caspase-3, Akt, and MAPKs were detected by Western blotting analyses. SMXZF pretreatment significantly increased the cell viability and SOD activity and improved the cell morphological changes, while reduced the levels of LDH and MDA at the concentrations of 0.1, 1 and 10 μg·mL(-1). SMXZF also inhibited H2O2-induced apoptosis in PC12 cells. Moreover, SMXZF reduced the activity of caspase-3, up-regulated the protein ratio of Bcl-2 and Bax and inhibited the expression of cleaved caspase-3, p-Akt, p-p38, p-JNK and p-ERK1/2 in H2O2-induced PC12 cells. Co-incubation of Akt inhibitor or p38 inhibitor partly attenuated the protection of SMXZF against H2O2-injured PC12 cells. In conclusion, our findings suggested that SMXZF attenuated H2O2-induced injury in PC12 cells by inhibiting Akt and MAPKs signaling pathways, which might shed insights on its neuroprotective mechanism. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. CLP induces apoptosis in human leukemia K562 cells through Ca(2+) regulating extracellular-related protein kinase ERK activation.

    Science.gov (United States)

    Wang, C L; Ng, T B; Cao, X H; Jiang, Y; Liu, Z K; Wen, T Y; Liu, F

    2009-04-18

    The cyclic lipopeptide (CLP) has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in CLP-induced apoptosis are still uncharacterized in human leukemic K562 cells. The current study investigated the molecular mechanism of action of CLP, purified from Bacillus natto T-2. CLP-induced a sustained increase in concentration of intracellular Ca(2+). This increase in [Ca(2+)]i was associated with CLP-induced cell apoptosis and ERK phosphorylation. CLP-induced cell apoptosis was reversed by PD98059 (an inhibitor of ERK), but not by SB203580 (an inhibitor of p38) and SP200125 (an inhibitor of JNK), suggesting that the action of CLP on K562 cells was via ERK, but not via p38 and JNK. On the other hand, pretreatment with Bapta-AM, a well-known calcium chelator, partially blocked CLP-induced apoptosis, indicating that the elevation of [Ca(2+)]i may play an important role in the apoptosis. Collectively, in K562 cells, CLP-induced an increase in [Ca(2+)]i which evoked ERK phosphorylation. This ERK phosphorylation subsequently activated Bax, cytochrome c and caspase-3 leading to apoptosis.

  6. ERK and JNK activation is essential for oncogenic transformation by v-Rel

    Czech Academy of Sciences Publication Activity Database

    Králová, Jarmila; Sheely, J.; Liss, A. S.; Bose, H. R.

    2010-01-01

    Roč. 29, č. 47 (2010), s. 6267-6279 ISSN 0950-9232 R&D Projects: GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z50520514 Keywords : v-Rel, NF-kappa B * transformation, oncogenesis * MAPK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.414, year: 2010

  7. Tumor necrosis factor-α induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-κB in A549 cells

    International Nuclear Information System (INIS)

    Lin, C.-C.; Tseng, Hsiao-Wei; Hsieh, Hsi-Lung; Lee, Chiang-Wen; Wu, C.-Y.; Cheng, C.-Y.; Yang, C.-M.

    2008-01-01

    Matrix metalloproteinases (MMPs), in particular MMP-9, have been shown to be induced by cytokines including tumor necrosis factor-α (TNF-α) and contributes to airway inflammation. However, the mechanisms underlying MMP-9 expression induced by TNF-α in human A549 cells remain unclear. Here, we showed that TNF-α induced production of MMP-9 protein and mRNA is determined by zymographic, Western blotting, RT-PCR and ELISA assay, which were attenuated by inhibitors of MEK1/2 (U0126), JNK (SP600125), and NF-κB (helenalin), and transfection with dominant negative mutants of ERK2 (ΔERK) and JNKJNK), and siRNAs for MEK1, p42 and JNK2. TNF-α-stimulated phosphorylation of p42/p44 MAPK and JNK were attenuated by pretreatment with the inhibitors U0126 and SP600125 or transfection with dominant negative mutants of ΔERK and ΔJNK. Furthermore, the involvement of NF-κB in TNF-α-induced MMP-9 production was consistent with that TNF-α-stimulated degradation of IκB-α and translocation of NF-κB into the nucleus which were blocked by helenalin, but not by U0126 and SP600125, revealed by immunofluorescence staining. The regulation of MMP-9 gene transcription by MAPKs and NF-κB was further confirmed by gene luciferase activity assay. MMP-9 promoter activity was enhanced by TNF-α in A549 cells transfected with wild-type MMP-9-Luc, which was inhibited by helenalin, U0126, or SP600125. In contrast, TNF-α-stimulated MMP-9 luciferase activity was totally lost in cells transfected with mutant-NF-κB MMP-9-luc. Moreover, pretreatment with actinomycin D and cycloheximide attenuated TNF-α-induced MMP-9 expression. These results suggest that in A549 cells, phosphorylation of p42/p44 MAPK, JNK, and transactivation of NF-κB are essential for TNF-α-induced MMP-9 gene expression

  8. Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways.

    Science.gov (United States)

    Zeng, Ke-Wu; Wang, Shu; Dong, Xin; Jiang, Yong; Tu, Peng-Fei

    2014-02-15

    Microglia-involved neuroinflammation is thought to promote brain damage in various neurodegenerative disorders. Therefore, novel therapeutics suppressing microglia over-activation could prove useful for neuroprotection in inflammation-mediated neurodegenerative diseases. DSF-52 is a novel sesquiterpene dimer compound isolated from medical plant Artemisia argyi by our group. In this study, we investigated whether DSF-52 inhibited the neuroinflammatory responses in lipopolysaccharide (LPS)-activated microglia. Our findings showed that DSF-52 inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), as well as mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage inflammatory protein-1α (MIP-1α) in LPS-activated BV-2 microglia. Moreover, DSF-52 markedly up-regulated mRNA levels of anti-inflammatory cytokine IL-10. Mechanism study indicated that DSF-52 suppressed Akt/IκB/NF-κB inflammation pathway against LPS treatment. Also, DSF-52 down-regulated the phosphorylation levels of JNK and p38 MAPKs, but not ERK. Furthermore, DSF-52 blocked Jak2/Stat3 dependent inflammation pathway through inhibiting Jak2 and Stat3 phosphorylation, as well as Stat3 nuclear translocation. We concluded that the inhibitory ability of DSF-52 on microglia-mediated neuroinflammation may offer a novel neuroprotective modality and could be potentially useful in inflammation-mediated neurodegenerative diseases. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development.

    Science.gov (United States)

    Mouchel-Vielh, Emmanuèle; Rougeot, Julien; Decoville, Martine; Peronnet, Frédérique

    2011-03-14

    Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  10. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Directory of Open Access Journals (Sweden)

    Peronnet Frédérique

    2011-03-01

    Full Text Available Abstract Background Mitogen-activated protein kinase (MAPK cascades (p38, JNK, ERK pathways are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  11. Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38

    Directory of Open Access Journals (Sweden)

    Yung-Ming Chang

    2011-01-01

    Full Text Available The earthworm, which has stasis removal and wound-healing functions, is a widely used Chinese herbal medicine in China. Schwann cell migration is critical for the regeneration of injured nerves. Schwann cells provide an essentially supportive activity for neuron regeneration. However, the molecular migration mechanisms induced by earthworms in Schwann cells remain unclear. Here, we investigate the roles of MAPK (ERK1/2, JNK and p38 pathways for earthworm-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9 production in Schwann cells. Moreover, earthworm induced phosphorylation of ERK1/2 and p38, but not JNK, activate the downstream signaling expression of PAs and MMPs in a time-dependent manner. Earthworm-stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with U0126 and SB203580, resulting in migration and uPA-related signal pathway inhibition. The results were confirmed using small interfering ERK1/2 and p38 RNA. These results demonstrated that earthworms can stimulate Schwann cell migration and up-regulate PAs and MMP2/9 expression mediated through the MAPK pathways, ERK1/2 and p38. Taken together, our data suggests the MAPKs (ERK1/2, p38-, PAs (uPA, tPA-, MMP (MMP2, MMP9 signaling pathway of Schwann cells regulated by earthworms might play a major role in Schwann cell migration and nerve regeneration.

  12. Camel Milk Ameliorates 5-Fluorouracil-Induced Renal Injury in Rats: Targeting MAPKs, NF-κB and PI3K/Akt/eNOS Pathways

    Directory of Open Access Journals (Sweden)

    Hany H. Arab

    2018-04-01

    Full Text Available Background/Aims: The clinical utility of 5-fluorouracil (5-FU is limited by its nephrotoxicity. Camel milk (CM has previously displayed beneficial effects in toxicant-induced nephropathies. The current study aimed to investigate the potential of CM to attenuate 5-FU-induced nephrotoxicity in rats. Methods: Renal tissues were studied in terms of oxidative stress, inflammation and apoptosis. The levels of renal injury markers, inflammatory cytokines along with NOX-1, Nrf-2 and HO-1 were assessed by ELISA. The expression of MMP-2, MMP-9, NF-κBp65, p53, Bax and PCNA were detected by Immunohistochemistry. To gain an insight into the molecular signaling mechanisms, we determined the effect of CM on MAPKs, NF-κB and PI3K/Akt/eNOS pathways by Western blotting. Results: CM lowered 5-FU-triggered increase of creatinine, BUN, Kim-1 and NGAL renal injury biomarkers and attenuated the histopathological aberrations. It suppressed oxidative stress and augmented renal antioxidant armory (GSH, SOD, GPx, TAC with restoration of NOX-1, Nrf-2 and HO-1 levels. CM also suppressed renal inflammation as indicated by inhibition of MPO, TNF-α, IL-1β, IL-18 and MCP-1 proinflammatory mediators and downregulation of MMP-2 and MMP-9 expression with boosting of IL-10. Regarding MAPKs signaling, CM suppressed the phosphorylation of p38 MAPK, JNK1/2 and ERK1/2 and inhibited NF-κB activation. For apoptosis, CM downregulated p53, Bax, CytC and caspase-3 proapoptotic signals with enhancement of Bcl-2 and PCNA. It also enhanced PI3K p110α, phospho-Akt and phospho-eNOS levels with augmentation of renal NO, favoring cell survival. Equally important, CM preconditioning enhanced 5-FU cytotoxicity in MCF-7, HepG-2, HCT-116 and PC-3 cells, thus, justifying their concomitant use. Conclusion: The current findings pinpoint, for the first time, the marked renoprotective effects of CM that were mediated via ROS scavenging, suppression of MAPKs and NF-κB along with activation of PI3K/Akt

  13. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway.

    Science.gov (United States)

    Kim, Chae E; Lee, Seung J; Seo, Kyo W; Park, Hye M; Yun, Jung W; Bae, Jin U; Bae, Sun S; Kim, Chi D

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B(4) (LTB(4)) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB(4) production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB(4). Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB(4), subsequent MMP-9 production and plaque rupture.

  14. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    International Nuclear Information System (INIS)

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-01-01

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B 4 (LTB 4 ) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB 4 production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB 4 . Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB 4 , subsequent MMP-9 production and plaque rupture.

  15. Wnt-11 signaling leads to down-regulation of the Wnt/β-catenin, JNK/AP-1 and NF-κB pathways and promotes viability in the CHO-K1 cells

    International Nuclear Information System (INIS)

    Railo, Antti; Nagy, Irina I.; Kilpelaeinen, Pekka; Vainio, Seppo

    2008-01-01

    The Wnt family of glycoprotein growth factors controls a number of central cellular processes such as proliferation, differentiation and ageing. All the Wnt proteins analyzed so far either activate or inhibit the canonical β-catenin signaling pathway that regulates transcription of the target genes. In addition, some of them activate noncanonical signaling pathways that involve components such as the JNK, heterotrimeric G proteins, protein kinase C, and calmodulin-dependent protein kinase II, although the precise signaling mechanisms are only just beginning to be revealed. We demonstrate here that Wnt-11 signaling is sufficient to inhibit not only the canonical β-catenin mediated Wnt signaling but also JNK/AP-1 and NF-κB signaling in the CHO cells, thus serving as a noncanonical Wnt ligand in this system. Inhibition of the JNK/AP-1 pathway is mediated in part by the MAPK kinase MKK4 and Akt. Moreover, protein kinase C is involved in the regulation of JNK/AP-1 by Wnt-11, but not of the NF-κB pathway. Consistent with the central role of Akt, JNK and NF-κB in cell survival and stress responses, Wnt-11 signaling promotes cell viability. Hence Wnt-11 is involved in coordination of key signaling pathways

  16. Polymeric immunoglobulin receptor-mediated invasion of Streptococcus pneumoniae into host cells requires a coordinate signaling of SRC family of protein-tyrosine kinases, ERK, and c-Jun N-terminal kinase.

    Science.gov (United States)

    Agarwal, Vaibhav; Asmat, Tauseef M; Dierdorf, Nina I; Hauck, Christof R; Hammerschmidt, Sven

    2010-11-12

    Streptococcus pneumoniae are commensals of the human nasopharynx with the capacity to invade mucosal respiratory cells. PspC, a pneumococcal surface protein, interacts with the human polymeric immunoglobulin receptor (pIgR) to promote bacterial adherence to and invasion into epithelial cells. Internalization of pneumococci requires the coordinated action of actin cytoskeleton rearrangements and the retrograde machinery of pIgR. Here, we demonstrate the involvement of Src protein-tyrosine kinases (PTKs), focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinases (MAPK) in pneumococcal invasion via pIgR. Pharmacological inhibitors of PTKs and MAPKs and genetic interference with Src PTK and FAK functions caused a significant reduction of pIgR-mediated pneumococcal invasion but did not influence bacterial adhesion to host cells. Furthermore, pneumococcal ingestion by host cells induces activation of ERK1/2 and JNK. In agreement with activated JNK, its target molecule and DNA-binding protein c-Jun was phosphorylated. We also show that functionally active Src PTK is essential for activation of ERK1/2 upon pneumococcal infections. In conclusion, these data illustrate the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells.

  17. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Aiping Lan

    Full Text Available Hydrogen sulfide (H(2S has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl(2 is a well-known hypoxia mimetic agent. We have demonstrated that H(2S protects against CoCl(2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK, in particular, extracellular signal-regulated kinase1/2(ERK1/2 and p38MAPK are involved in the neuroprotection of H(2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl(2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α, decreased cystathionine-β synthase (CBS, a synthase of H(2S expression, and increased generation of reactive oxygen species (ROS, leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H(2S or N-acetyl-L cystein (NAC, a ROS scavenger. CoCl(2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK. Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK significantly prevented CoCl(2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl(2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl(2-induced injuries and that H(2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury.

  18. Supercritical Fluid Extract of Spent Coffee Grounds Attenuates Melanogenesis through Downregulation of the PKA, PI3K/Akt, and MAPK Signaling Pathways.

    Science.gov (United States)

    Huang, Huey-Chun; Wei, Chien-Mei; Siao, Jen-Hung; Tsai, Tsang-Chi; Ko, Wang-Ping; Chang, Kuei-Jen; Hii, Choon-Hoon; Chang, Tsong-Min

    2016-01-01

    The mode of action of spent coffee grounds supercritical fluid CO2 extract (SFE) in melanogenesis has never been reported. In the study, the spent coffee grounds were extracted by the supercritical fluid CO2 extraction method; the chemical constituents of the SFE were investigated by gas chromatography-mass spectrometry (GC-MS). The effects of the SFE and its major fatty acid components on melanogenesis were evaluated by mushroom tyrosinase activity assay and determination of intracellular tyrosinase activity and melanin content. The expression level of melanogenesis-related proteins was analyzed by western blotting assay. The results revealed that the SFE of spent coffee grounds (1-10 mg/mL) and its major fatty acids such as linoleic acid and oleic acid (6.25-50 μM) effectively suppressed melanogenesis in the B16F10 murine melanoma cells. Furthermore, the SFE decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). The SFE also decreased the protein expression levels of p-JNK, p-p38, p-ERK, and p-CREB. Our results revealed that the SFE of spent coffee grounds attenuated melanogenesis in B16F10 cells by downregulation of protein kinase A (PKA), phosphatidylinositol-3-kinase (PI3K/Akt), and mitogen-activated protein kinases (MAPK) signaling pathways, which may be due to linoleic acid and oleic acid.

  19. Supercritical Fluid Extract of Spent Coffee Grounds Attenuates Melanogenesis through Downregulation of the PKA, PI3K/Akt, and MAPK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Huey-Chun Huang

    2016-01-01

    Full Text Available The mode of action of spent coffee grounds supercritical fluid CO2 extract (SFE in melanogenesis has never been reported. In the study, the spent coffee grounds were extracted by the supercritical fluid CO2 extraction method; the chemical constituents of the SFE were investigated by gas chromatography-mass spectrometry (GC-MS. The effects of the SFE and its major fatty acid components on melanogenesis were evaluated by mushroom tyrosinase activity assay and determination of intracellular tyrosinase activity and melanin content. The expression level of melanogenesis-related proteins was analyzed by western blotting assay. The results revealed that the SFE of spent coffee grounds (1–10 mg/mL and its major fatty acids such as linoleic acid and oleic acid (6.25–50 μM effectively suppressed melanogenesis in the B16F10 murine melanoma cells. Furthermore, the SFE decreased the expression of melanocortin 1 receptor (MC1R, microphthalmia-associated transcription factor (MITF, tyrosinase, tyrosinase-related protein-1 (TRP-1, and tyrosinase-related protein-2 (TRP-2. The SFE also decreased the protein expression levels of p-JNK, p-p38, p-ERK, and p-CREB. Our results revealed that the SFE of spent coffee grounds attenuated melanogenesis in B16F10 cells by downregulation of protein kinase A (PKA, phosphatidylinositol-3-kinase (PI3K/Akt, and mitogen-activated protein kinases (MAPK signaling pathways, which may be due to linoleic acid and oleic acid.

  20. The effect of noise exposure on insulin sensitivity in mice may be mediated by the JNK/IRS1 pathway.

    Science.gov (United States)

    Liu, Lijie; Fang, Cong; Yang, Jing; Zhang, Hongyu; Huang, Yi; Xuan, Chuanying; Wang, Yongfang; Li, Shengwei; Sha, Jun; Zha, Mingming; Guo, Min

    2018-02-12

    Epidemiological studies have suggested that noise exposure may increase the risk of type 2 diabetes mellitus (T2DM), and experimental studies have demonstrated that noise exposure can induce insulin resistance in rodents. The aim of the present study was to explore noise-induced processes underlying impaired insulin sensitivity in mice. Male ICR mice were randomly divided into four groups: a control group without noise exposure and three noise groups exposed to white noise at a 95-dB sound pressure level for 4 h/day for 1, 10, or 20 days (N1D, N10D, and N20D, respectively). Systemic insulin sensitivity was evaluated at 1 day, 1 week, and 1 month post-noise exposure (1DPN, 1WPN, and 1MPN) via insulin tolerance tests (ITTs). Several insulin-related processes, including the phosphorylation of Akt, IRS1, and JNK in the animals' skeletal muscles, were examined using standard immunoblots. Biomarkers of inflammation (circulating levels of TNF-α and IL-6) and oxidative stress (SOD and CAT activities and MDA levels in skeletal muscles) were measured via chemical analyses. The data obtained in this study showed the following: (1) The impairment of systemic insulin sensitivity was transient in the N1D group but prolonged in the N10D and N20D groups. (2) Noise exposure led to enhanced JNK phosphorylation and IRS1 serine phosphorylation as well as reduced Akt phosphorylation in skeletal muscles in response to exogenous insulin stimulation. (3) Plasma levels of TNF-α and IL-6, CAT activity, and MDA concentrations in skeletal muscles were elevated after 20 days of noise exposure. Impaired insulin sensitivity in noise-exposed mice might be mediated by an enhancement of the JNK/IRS1 pathway. Inflammation and oxidative stress might contribute to insulin resistance after chronic noise exposure.

  1. Ligand-based modeling of Akt3 lead to potent dual Akt1/Akt3 inhibitor.

    Science.gov (United States)

    Al-Sha'er, Mahmoud A; Taha, Mutasem O

    2018-02-13

    Akt1 and Akt3 are important serine/threonine-specific protein kinases involved in G2 phase required by cancer cells to maintain cell cycle and to prevent cell death. Accordingly, inhibitors of these kinases should have potent anti-cancer properties. This prompted us to use pharmacophore/QSAR modeling to identify optimal binding models and physicochemical descriptors that explain bioactivity variation within a set of 74 diverse Akt3 inhibitors. Two successful orthogonal pharmacophores were identified and further validated using receiver operating characteristic (ROC) curve analyses. The pharmacophoric models and associated QSAR equation were applied to screen the national cancer institute (NCI) list of compounds for new Akt3 inhibitors. Six hits showed significant experimental anti-Akt3 IC 50 values, out of which one compound exhibited dual low micromolar anti-Akt1 and anti-Akt3 inhibitory profiles. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. HER Specific TKIs Exert Their Antineoplastic Effects on Breast Cancer Cell Lines through the Involvement of STAT5 and JNK.

    Directory of Open Access Journals (Sweden)

    Daphne Gschwantler-Kaulich

    Full Text Available HER-targeted tyrosine kinase inhibitors (TKIs have demonstrated pro-apoptotic and antiproliferative effects in vitro and in vivo. The exact pathways through which TKIs exert their antineoplastic effects are, however, still not completely understood.Using Milliplex assays, we have investigated the effects of the three panHER-TKIs lapatinib, canertinib and afatinib on signal transduction cascade activation in SKBR3, T47D and Jurkat neoplastic cell lines. The growth-inhibitory effect of blockade of HER and of JNK and STAT5 signaling was measured by proliferation- and apoptosis-assays using formazan dye labeling of viable cells, Western blotting for cleaved PARP-1 and immunolabeling for active caspase 3, respectively.All three HER-TKIs clearly inhibited proliferation and increased apoptosis in HER2 overexpressing SKBR3 cells, while their effect was less pronounced on HER2 moderately expressing T47D cells where they exerted only a weak antiproliferative and essentially no pro-apoptotic effect. Remarkably, phosphorylation/activation of JNK and STAT5A/B were inhibited by HER-TKIs only in the sensitive, but not in the resistant cells. In contrast, phosphorylation/activation of ERK/MAPK, STAT3, CREB, p70 S6 kinase, IkBa, and p38 were equally affected by HER-TKIs in both cell lines. Moreover, we demonstrated that direct pharmacological blockade of JNK and STAT5 abrogates cell growth in both HER-TKI-sensitive as well as -resistant breast cancer cells, respectively.We have shown that HER-TKIs exert a HER2 expression-dependent anti-cancer effect in breast cancer cell lines. This involves blockade of JNK and STAT5A/B signaling, which have been found to be required for in vitro growth of these cell lines.

  3. Integrin β1, myosin light chain kinase and myosin IIA are required for activation of PI3K-AKT signaling following MEK inhibition in metastatic triple negative breast cancer

    Science.gov (United States)

    Choi, Cheolwon; Kwon, Junyeob; Lim, Sunyoung; Helfman, David M.

    2016-01-01

    The effectiveness of targeted therapies against the Ras-ERK signaling pathway are limited due to adaptive resistance of tumor cells. Inhibition of the Ras-ERK pathway can result in activation of the PI3K-AKT pathway, thereby diminishing the therapeutic effects of targeting ERK signaling. Here we investigated the crosstalk between the Ras-ERK and PI3K-AKT pathways in MDA-MB-231 breast cancer cell lines that have a preference to metastasize to lung (LM2), brain (BrM2) or bone (BoM2). Inhibition of the Ras-ERK pathway reduced motility in both parental and BoM2 cells. In contrast, inhibition of the Ras-ERK pathway in BrM2 and LM2 cells resulted in activation of PI3K-AKT signaling that was responsible for continued cell motility. Analysis of the cross talk between Ras-ERK and PI3K-AKT signaling pathways revealed integrin β1, myosin light chain kinase (MLCK) and myosin IIA are required for the activation of PI3K-AKT following inhibition of the Ras-ERK pathway. Furthermore, feedback activation of the PI3K-AKT pathway following MEK suppression was independent of the epidermal growth factor receptor. Thus, integrin β1, MLCK, and myosin IIA are factors in the development of resistance to MEK inhibitors. These proteins could provide an opportunity to develop markers and therapeutic targets in a subgroup of triple negative breast cancer (TNBC) that exhibit resistance against MEK inhibition. PMID:27563827

  4. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  5. Nitric oxide affects ERK signaling through down-regulation of MAP kinase phosphatase levels during larval development of the ascidian Ciona intestinalis.

    Directory of Open Access Journals (Sweden)

    Immacolata Castellano

    Full Text Available In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO production, MAP kinases (ERK, JNK and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways.

  6. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases

    DEFF Research Database (Denmark)

    Kampen, G T; Stafford, S; Adachi, T

    2000-01-01

    not be detected. The kinase activity of ERK2 and p38 paralleled phosphorylation. PD980 59, an inhibitor of the ERK2-activating enzyme MEK (MAP ERK kinase), blocked phosphorylation of ERK2 in a concentration-dependent manner. The functional relevance of ERK2 and p38 was studied using PD98 059 and the p38 inhibitor...... was assessed using Boyden microchambers. Eotaxin (10(-11) to 10(-7) mol/L) induced concentration-dependent phosphorylation of ERK2 and p38. Phosphorylation was detectable after 30 seconds, peaked at about 1 minute, and returned to baseline after 2 to 5 minutes. Phosphorylation of JNK above baseline could...... SB202 190. PD98 059 and SB202 190 both caused inhibition of eotaxin-induced ECP release and chemotaxis. We conclude that eotaxin induces a rapid concentration-dependent activation of ERK2 and p38 in eosinophils and that the activation of these MAP kinases is required for eotaxin...

  7. Inhibitory Effects of Resveratrol on PDGF-BB-Induced Retinal Pigment Epithelial Cell Migration via PDGFRβ, PI3K/Akt and MAPK pathways

    Science.gov (United States)

    Chan, Chi-Ming; Chang, Hsun-Hsien; Wang, Vin-Chi; Huang, Chuen-Lin; Hung, Chi-Feng

    2013-01-01

    Purpose In diseases such as proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy, and age-related macular degeneration, retinal pigment epithelial (RPE) cells proliferate and migrate. Moreover, platelet-derived growth factor (PDGF) has been shown to enhance proliferation and migration of RPE cells in PVR. Even resveratrol can suppress the migration and adhesion of many cell types, its effects on RPE cell migration and adhesion remain unknown. In this study, we investigated the inhibitory effects of resveratrol on RPE cell migration induced by PDGF-BB, an isoform of PDGF, and adhesion to fibronectin, a major ECM component of PVR tissue. Methods The migration of RPE cells was assessed by an electric cell-substrate impedance sensing migration assay and a Transwell migration assay. A cell viability assay was used to determine the viability of resveratrol treated-cells. The cell adhesion to fibronectin was examined by an adhesion assay. The interactions of resveratrol with PDGF-BB were analyzed by a dot binding assay. The PDGF-BB-induced signaling pathways were determined by western blotting and scratch wound healing assay. Results Resveratrol inhibited PDGF-BB-induced RPE cell migration in a dose-dependent manner, but showed no effects on ARPE19 cell adhesion to fibronectin. The cell viability assay showed no cytotoxicity of resveratrol on RPE cells and the dot binding assay revealed no direct interactions of resveratrol with PDGF-BB. Inhibitory effects of resveratrol on PDGF-BB-induced platelet-derived growth factor receptor β (PDGFRβ) and tyrosine phosphorylation and the underlying pathways of PI3K/Akt, ERK and p38 activation were found; however, resveratrol and PDGF-BB showed no effects on PDGFRα and JNK activation. Scratch wound healing assay demonstrated resveratrol and the specific inhibitors of PDGFR, PI3K, MEK or p38 suppressed PDGF-BB-induced cell migration. Conclusions These results indicate that resveratrol is an effective inhibitor

  8. Midazolam activates caspase, MAPKs and endoplasmic reticulum stress pathways, and inhibits cell cycle and Akt pathway, to induce apoptosis in TM3 mouse Leydig progenitor cells

    Directory of Open Access Journals (Sweden)

    Kang FC

    2018-03-01

    Full Text Available Fu-Chi Kang,1,* Shu-Chun Wang,2,* Ming-Min Chang,2 Bo-Syong Pan,3 Kar-Lok Wong,4 Ka-Shun Cheng,4,5 Edmund Cheung So,4,6 Bu-Miin Huang2,7 1Department of Anesthesia, Chi Mei Medical Center, Chiali, Tainan, Taiwan, Republic of China; 2Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; 3Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA; 4Department of Anesthesia, China Medical University, Taichung, Taiwan, Republic of China; 5Department of Anesthesiology, The Qingdao University Yuhuangding Hospital, Yantai, Shandong, China; 6Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan, Republic of China; 7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China *These authors contributed equally to this work Background: Midazolam (MDZ has powerful hypnosis, amnesia, anti-anxiety and anticonvulsant effects. Studies have shown that prenatally developmental toxicity of diazepam can be observed in many organs/tissues. However, it remains elusive in male reproductive system.Materials and methods: TM3 mouse Leydig progenitor cell line was used to determine whether MDZ has any unfavorable effects.Results: Midazolam significantly decreased cell viability in dose- and time-dependent manners in TM3 cells. In flow cytometry analysis, midazolam significantly increased subG1 phase cell numbers, and annexin V/PI double staining assay further confirmed that MDZ induced apoptosis in TM3 cells. Moreover, MDZ significantly induced the expression of caspase-8 and -3 proteins and the phosphorylation of JNK, ERK1/2 and p38. Besides, MDZ didn’t activate Akt pathway in TM3 cells. Furthermore, the expressions of p-EIF2α, ATF4, ATF3 and CHOP were induced by midazolam, suggesting that midazolam could induce apoptosis through endoplasmic reticulum (ER stress

  9. Expression of molecules related to AKT pathway as putative regulators of ameloblastoma local invasiveness.

    Science.gov (United States)

    Cecim, Rodolpho L; Carmo, Hicso A F; Kataoka, Maria S S; Freitas, Vanessa M; de Melo Alves Júnior, Sérgio; Pedreira, Erick N; Jaeger, Ruy G; Pinheiro, Joao J V

    2014-02-01

    Ameloblastoma is an odontogenic neoplasm with local invasiveness and high recurrence. We previously suggested that growth factors, matrix metalloproteinases (MMPs), and TIMPs influence ameloblastoma invasiveness (Pathol. Res. Pract., 208, 2012, 225; Oral. Surg. Oral. Med. Oral. Pathol. Oral Radiol. Endod., 111, 2011, 474). Signals generated by this molecular network would be transduced by ERK 1/2 pathway (Oral. Surg. Oral. Med. Oral. Pathol. Oral Radiol. Endod., 111, 2011, 474). Others signaling pathways may influence ameloblastoma biology. Here, we studied expression of AKT and related molecules in ameloblastoma. Fourteen cases of solid/multicystic ameloblastomas were examined. Immunohistochemistry was carried out to detected AKT (phospho-AKT), NF-қB (phospho-NF-қB), β-catenin, cyclin-D1, and COX-2 in ameloblastoma samples. These molecules were evaluated in neoplastic cells and stroma. All proteins were detected in ameloblastoma. Expression of these markers was quantified and compared. Spearman's rank test was carried out to address positive correlations between proteins (P Ameloblastoma had a significant positive correlation of AKT (phospho-AKT) with β-catenin. β-catenin correlated with Cyclin-D1 and COX-2 in neoplastic cells. AKT (phospho-AKT) correlated with β-catenin; β-catenin with Cyclin-D1; AKT (phospho-AKT) with NF-қB (phospho-NF-қB); and NF-қB (phospho-NF-қB) with COX-2 in stromal cells. Results suggest that proteins studied are present and probably involved in a functional pathway in neoplastic cells and stroma and may therefore influence the local invasiveness of ameloblastoma. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury.

    Science.gov (United States)

    Wen, X-R; Li, C; Zong, Y-Y; Yu, C-Z; Xu, J; Han, D; Zhang, G-Y

    2008-10-15

    It is well documented that heat-shock protein (hsp90) plays an essential role in maintaining stability and activity of its clients. Recent studies have shown that geldanamycin (GA), an inhibitor of hsp90, could decrease the protein of mixed-lineage kinase (MLK) 3 and activate Akt; our previous research documented that MLK3 and Akt and subsequent c-Jun N-terminal kinase (JNK) were involved in neuronal cell death in ischemic brain injury. Here, we investigated whether GA could decrease the protein of MLK3 and activate Akt in rat four-vessel occlusion ischemic model. Our results showed that global cerebral ischemia followed by reperfusion could enhance the association of hsp90 with MLK3, the association of hsp90 with Src, and JNK3 activation. As a result, GA decreased the protein of MLK3 and down-regulated JNK activation. On the other hand, Src kinase was activated and phosphorylated Cbl, which then recruited the p85 subunit of phosphatidylinositol 3-kinase (PI-3K), resulting in PI-3K activation, and as a consequence increased Akt activation, which inhibited ASK1 activation and down-regulated JNK3 activation. In summary, our results indicated that GA showed a dual inhibitory role on JNK3 activation and exerted strong neuroprotection in vivo and in vitro, which provides a new possible approach for stroke therapy.

  11. Neuroprotection against spinal cord ischemia-reperfusion injury induced by different ischemic postconditioning methods: roles of phosphatidylinositol 3-kinase-Akt and extracellular signal-regulated kinase.

    Science.gov (United States)

    Jiang, Xiaojing; Ai, Chunyu; Shi, Enyi; Nakajima, Yoshiki; Ma, Hong

    2009-12-01

    The authors compared the neuroprotective effects induced by two ischemic postconditioning methods and sought to determine the roles of phosphatidylinositol 3-kinase-Akt and extracellular signal-regulated kinase (ERK) in this neuroprotection. Spinal cord ischemia was induced in rabbits by occlusion of the infrarenal aorta with a balloon catheter for 25 min. Postconditioning was accomplished by either five cycles of 1-min occlusion and 1-min reperfusion (standard postconditioning) or control of the perfusion pressure between 45 and 55 mmHg at the first 10 min of reperfusion (modified postconditioning). Motor function was assessed with the Tarlov score during a 28-day observation period. Histologic examination of lumbar spinal cords was performed. Expressions of Akt and ERK in the spinal cord were evaluated by Western blot. Compared with the controls, the two postconditioning methods markedly increased Tarlov scores 1, 3, 7, and 28 days after spinal cord ischemia and number of intact motor neurons in the lumbar spinal cord. No significant difference in Tarlov scores and number of intact motor neurons was detected between the two postconditioning method groups. The two postconditioning methods enhanced the expressions of phospho-Akt and phospho-ERK in spinal cords. The neuroprotective effects and the increases in phospho-Akt and phospho-ERK were abolished by administration of phosphatidylinositol 3-kinase-Akt inhibitor LY-294002 or ERK inhibitor PD-98059. The two postconditioning methods possess comparable neuroprotective effects on the spinal cord and share a common molecular mechanism, in which phosphatidylinositol 3-kinase and ERK pathways play crucial roles.

  12. Gardenamide A Protects RGC-5 Cells from H2O2-Induced Oxidative Stress Insults by Activating PI3K/Akt/eNOS Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Rikang Wang

    2015-09-01

    Full Text Available Gardenamide A (GA protects the rat retinal ganglion (RGC-5 cells against cell apoptosis induced by H2O2. The protective effect of GA was completely abrogated by the specific phosphoinositide 3-kinase (PI3K inhibitor LY294002, and the specific protein kinase B (Akt inhibitor Akt VIII respectively, indicating that the protective mechanism of GA is mediated by the PI3K/Akt signaling pathway. The specific extracellular signal-regulated kinase (ERK1/2 inhibitor PD98059 could not block the neuroprotection of GA. GA attenuated the levels of reactive oxygen species (ROS and malondialdehyde (MDA induced by H2O2. Western blotting showed that GA promoted the phosphorylation of ERK1/2, Akt and endothelial nitric oxide synthase (eNOS, respectively, and effectively reversed the H2O2-inhibited phosphorylation of these three proteins. LY294002 completely inhibited the GA-activated phosphorylation of Akt, while only partially inhibiting eNOS. This evidence implies that eNOS may be activated directly by GA. PD98059 attenuated only partially the GA-induced phosphorylation of ERK1/2 with/without the presence of H2O2, indicating that GA may activate ERK1/2 directly. All these results put together confirm that GA protects RGC-5 cells from H2O2 insults via the activation of PI3K/Akt/eNOS signaling pathway. Whether the ERK1/2 signaling pathway is involved requires further investigations.

  13. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway

    International Nuclear Information System (INIS)

    Ghosh, Jyotirmoy; Das, Joydeep; Manna, Prasenjit; Sil, Parames C.

    2009-01-01

    Cardiac dysfunction is a major cause of morbidity and mortality worldwide due to its complex pathogenesis. However, little is known about the mechanism of arsenic-induced cardiac abnormalities and the use of antioxidants as the possible protective agents in this pathophysiology. Conditionally essential amino acid, taurine, accounts for 25% to 50% of the amino acid pool in myocardium and possesses antioxidant properties. The present study has, therefore, been carried out to investigate the underlying mechanism of the beneficial role of taurine in arsenic-induced cardiac oxidative damage and cell death. Arsenic reduced cardiomyocyte viability, increased reactive oxygen species (ROS) production and intracellular calcium overload, and induced apoptotic cell death by mitochondrial dependent caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. These changes due to arsenic exposure were found to be associated with increased IKK and NF-κB (p65) phosphorylation. Pre-exposure of myocytes to an IKK inhibitor (PS-1145) prevented As-induced caspase-3 and PARP cleavage. Arsenic also markedly increased the activity of p38 and JNK MAPKs, but not ERK to that extent. Pre-treatment with SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated NF-κB and IKK phosphorylation indicating that p38 and JNK MAPKs are mainly involved in arsenic-induced NF-κB activation. Taurine treatment suppressed these apoptotic actions, suggesting that its protective role in arsenic-induced cardiomyocyte apoptosis is mediated by attenuation of p38 and JNK MAPK signaling pathways. Similarly, arsenic intoxication altered a number of biomarkers related to cardiac oxidative stress and other apoptotic indices in vivo and taurine supplementation could reduce it. Results suggest that taurine prevented arsenic-induced myocardial pathophysiology, attenuated NF-κB activation via IKK, p38 and JNK MAPK signaling pathways and could possibly provide a protection against As

  14. JNK2 promotes endothelial cell alignment under flow.

    Directory of Open Access Journals (Sweden)

    Cornelia Hahn

    Full Text Available Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.

  15. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    International Nuclear Information System (INIS)

    Yoshida, Ikuma; Ibuki, Yuko

    2014-01-01

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications

  16. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ikuma; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2014-12-15

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  17. Evodiamine from Evodia rutaecarpa induces apoptosis via activation of JNK and PERK in human ovarian cancer cells.

    Science.gov (United States)

    Chen, Tze-Chien; Chien, Chih-Chiang; Wu, Ming-Shun; Chen, Yen-Chou

    2016-01-15

    Evodiamine (EVO; 8,13,13b,14-tetrahydro-14-methylindolo[2'3'-3,4]pyrido[2,1-b]quinazolin-5-[7H]-one derived from the traditional herbal medicine Evodia rutaecarpa was reported to possess anticancer activity; however, the anticancer mechanism of EVO against the viability of human ovarian cancer cells is still unclear. A number of studies showed that chemotherapeutic benefits may result from targeting the endoplasmic reticular (ER) stress signaling pathway. The objective of the study is to investigate the mechanism by which ER stress protein PERK plays in EVO-induced apoptosis of human ovarian cancer cells. Cell death analysis was performed by MTT assay, DNA fragmentation assay, and Giemsa staining. DiOC6 staining was used for mitochondrial membrane potential measurement. Protein levels were analyzed by Western blotting. Pharmacological studies using MAPK inhibitors and PERK inhibitor GSK2606414 were involved. The viability of human ovarian cancer cells A2780, A2780CP, ES-2, and SKOV-3 was inhibited by EVO at various concentrations in accordance with increases in the percentage of apoptotic cells, DNA ladders, and cleavage of caspase 3 and poly(ADP ribose) polymerase (PARP) proteins. Decreased viability of cells was reversed by adding caspase inhibitors VAD and DEVD in SKOV-3 and A2780CP cells, and incubation of cells with JNK inhibitor SP600125 (SP) and JNKI, but not other MAPK and AKT inhibitors including PD98059, SB203580, significantly prevented the apoptosis elicited by EVO in human ovarian cancer cells. Furthermore, increased expression of phospho-eIF2α (peIF2α) and phospho-PERK (pPERK) proteins was detected in EVO-treated human ovarian cancer cells, and that was inhibited by adding JNK inhibitors SP600125 and JNKI. Application of a PERK inhibitor GSK2606414 showed a significant protection of human ovarian cancer cells A2780 and A2780CP from EVO-induced apoptosis. EVO disruption of mitochondrial membrane potential (MMP) was also inhibited by adding JNK or

  18. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae.

    Science.gov (United States)

    He, Yingzi; Cai, Chengfu; Sun, Shaoyang; Wang, Xu; Li, Wenyan; Li, Huawei

    2016-08-09

    The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway.

  19. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ping Lin

    Full Text Available Caffeic acid phenethyl ester (CAPE treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.

  20. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms.

    Directory of Open Access Journals (Sweden)

    Alfredo Csibi

    Full Text Available Angiotensin II (Ang II plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O(2(*--dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt. Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser(473 and Thr(308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3alpha phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(PHoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr(156/139, close to their active site Asp(166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein

  1. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

    Directory of Open Access Journals (Sweden)

    Ming Lu

    2018-01-01

    Full Text Available Objective(s: Vascular smooth muscle cells (VSMCs play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs. Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway.   Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway.

  2. ERK1/2 is involved in luteal cell autophagy regulation during corpus luteum regression via an mTOR-independent pathway.

    Science.gov (United States)

    Choi, JongYeob; Jo, MinWha; Lee, EunYoung; Choi, DooSeok

    2014-10-01

    Autophagy is known to be regulated by the phosphoinositide-3 kinase (PI3K)-protein kinase B (AKT) and/or mitogen-activated protein kinase 1/2 (MEK1/2)-extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, leading to activation of mammalian target of rapamycin (mTOR), a major negative regulator of autophagy. However, some reports have also suggested that autophagic regulation by the PI3K-AKT and/or MEK1/2-ERK1/2 pathways may not be mediated by mTOR activity, and there is no direct evidence of the involvement of these pathways in luteal cell autophagy regulation. To elucidate the luteal cell-specific regulatory mechanisms of autophagy induction during corpus luteum (CL) regression, we evaluated whether luteal cell autophagy is regulated by the PI3K-AKT pathway and/or MEK1/2-ERK1/2 pathway and if this regulation is mediated by mTOR. We found that autophagy induction increased despite mTOR activation in luteal cells cultured with prostaglandin F2α (PGF2α), an important mediator of CL regression, suggesting that PGF2α-induced autophagy is independent of mTOR regulation. We also found that PGF2α-induced autophagy was not mediated by AKT activity, because AKT inhibition using a PI3K inhibitor (wortmannin) did not change autophagy induction or mTOR activity. In contrast, ERK1/2 activity increased in PGF2α-treated luteal cells, as did the levels of autophagy induction despite increased mTOR activity. Furthermore, PGF2α-mediated up-regulation of luteal cell autophagy was reversed by addition of ERK1/2 inhibitors, despite a decrease in mTOR activity. These in vitro results suggest that luteal cell autophagy is induced by increased ERK1/2 activity during CL regression, and is independent of mTOR activity. This finding was further supported by in vivo experiments in a pseudo-pregnant rat model, which showed that induction of luteal cell autophagy increased during luteal stage progression and that this was accompanied by increased ERK1/2 and mTOR activity. Taken

  3. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    International Nuclear Information System (INIS)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki; Kume, Toshiaki; Fukushima, Nobuyuki; Akaike, Akinori; Kawabata, Atsufumi

    2011-01-01

    Highlights: ► Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. ► Activation of ERK mediates the toxicity of hydrogen sulfide. ► Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H 2 S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H 2 S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H 2 S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  4. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko; Yamasaki, Yoshiko; Matsuda, Sachi; Okamoto, Yukari; Sekimoto, Teruki; Fukatsu, Anna; Nishikawa, Hiroyuki [Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Kume, Toshiaki [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Sciences, Kinki University School of Science and Engineering, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Akaike, Akinori [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Kawabata, Atsufumi, E-mail: kawabata@phar.kindai.ac.jp [Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypan blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.

  5. Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells

    Directory of Open Access Journals (Sweden)

    Jae-Myung Yoo

    2017-04-01

    Full Text Available N-acetyl serotonin (NAS as a melatonin precursor has neuroprotective actions. Nonetheless, it is not clarified how NAS protects neuronal cells against oxidative stress. Recently, we have reported that N-palmitoyl serotonins possessed properties of antioxidants and neuroprotection. Based on those, we hypothesized that NAS, a N-acyl serotonin, may have similar actions in oxidative stress-induced neuronal cells, and examined the effects of NAS based on in vitro and in vivo tests. NAS dose-dependently inhibited oxidative stress-induced cell death in HT-22 cells. Moreover, NAS suppressed glutamate-induced apoptosis by suppressing expression of AIF, Bax, calpain, cytochrome c and cleaved caspase-3, whereas it enhanced expression of Bcl-2. Additionally, NAS improved phosphorylation of tropomyosin-related kinase receptor B (TrkB and cAMP response element-binding protein (CREB as well as expression of brain-derived neurotrophic factor (BDNF, whereas the inclusion of each inhibitor of JNK, p38 or Akt neutralized the neuroprotective effect of NAS, but not that of ERK. Meanwhile, NAS dose-dependently reduced the level of reactive oxygen species, and enhanced the level of glutathione in glutamate-treated HT-22 cells. Moreover, NAS significantly increased expression of heme oxygenase-1, NAD(PH quinine oxidoreductase-1 and glutamate-cysteine ligase catalytic subunit as well as nuclear translocation of NF-E2-related factor-2. Separately, NAS at 30 mg/kg suppressed scopolamine-induced memory impairment and cell death in CA1 and CA3 regions in mice. In conclusion, NAS shows actions of antioxidant and anti-apoptosis by activating TrkB/CREB/BDNF pathway and expression of antioxidant enzymes in oxidative stress-induced neurotoxicity. Therefore, such effects of NAS may provide the information for the application of NAS against neurodegenerative diseases.

  6. Fibroblast growth factor 2 induces proliferation and distribution of G2 /M phase of bovine endometrial cells involving activation of PI3K/AKT and MAPK cell signaling and prevention of effects of ER stress.

    Science.gov (United States)

    Lim, Whasun; Bae, Hyocheol; Bazer, Fuller W; Song, Gwonhwa

    2018-04-01

    Fibroblast growth factor 2 (FGF2) is abundantly expressed in conceptuses and endometria during pregnancy in diverse animal models including domestic animals. However, its intracellular mechanism of action has not been reported for bovine endometrial cells. Therefore, the aim of this study was to identify functional roles of FGF2 in bovine endometrial (BEND) cell line which has served as a good model system for investigating regulation of signal transduction following treatment with interferon-tau (IFNT) in vitro. Results of present study demonstrated that administration of FGF2 to BEND cells increased their proliferation and regulated the cell cycle through DNA replication by an increase of PCNA and Cyclin D1. FGF2 also increased phosphorylation of AKT, P70S6K, S6, ERK1/2, JNK, and P38 in BEND cells in a dose-dependent manner, and expression of each of those transcription factors was inhibited by their respective pharmacological inhibitor including Wormannin, U0126, and SP600125. In addition, the increase in proliferation of BEND cells and activation of the protein kinases in response to FGF2 was suppressed by BGJ398, a FGFR inhibitor. Furthermore, proliferation of BEND cells was inhibited by tunicamycin, but treatment of BEND cells with FGF2 restored proliferation of BEND cells. Consistent with this result, the stimulated unfolded protein response (UPR) regulatory proteins induced by tunicamycin were down-regulated by FGF2. Results of this study suggest that FGF2 promotes proliferation of BEND cells and likely enhances uterine capacity and maintenance of pregnancy by activating cell signaling via the PI3K and MAPK pathways and by restoring ER stress through the FGFR. © 2017 Wiley Periodicals, Inc.

  7. Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats.

    Science.gov (United States)

    Wang, Haidong; Li, Deyuan; Hu, Zhongze; Zhao, Siming; Zheng, Zhejun; Li, Wei

    2016-06-30

    To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1-β) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols.

  8. Selenite exacerbates hepatic insulin resistance in mouse model of type 2 diabetes through oxidative stress-mediated JNK pathway

    International Nuclear Information System (INIS)

    Zhou, Jun; Xu, Gang; Bai, Zhaoshuai; Li, Kaicheng; Yan, Junyan; Li, Fen; Ma, Shuai; Xu, Huibi; Huang, Kaixun

    2015-01-01

    Recent evidence suggests a potential pro-diabetic effect of selenite treatment in type 2 diabetics; however, the underlying mechanisms remain elusive. Here we investigated the effects and the underlying mechanisms of selenite treatment in a nongenetic mouse model of type 2 diabetes. High-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice were orally gavaged with selenite at 0.5 or 2.0 mg/kg body weight/day or vehicle for 4 weeks. High-dose selenite treatment significantly elevated fasting plasma insulin levels and insulin resistance index, in parallel with impaired glucose tolerance, insulin tolerance and pyruvate tolerance. High-dose selenite treatment also attenuated hepatic IRS1/Akt/FoxO1 signaling and pyruvate kinase gene expressions, but elevated the gene expressions of phosphoenolpyruvate carboxyl kinase (PEPCK), glucose 6-phosphatase (G6Pase), peroxisomal proliferator-activated receptor-γ coactivator 1α (PGC-1α) and selenoprotein P (SelP) in the liver. Furthermore, high-dose selenite treatment caused significant increases in MDA contents, protein carbonyl contents, and a decrease in GSH/GSSG ratio in the liver, concurrent with enhanced ASK1/MKK4/JNK signaling. Taken together, these findings suggest that high-dose selenite treatment exacerbates hepatic insulin resistance in mouse model of type 2 diabetes, at least in part through oxidative stress-mediated JNK pathway, providing new mechanistic insights into the pro-diabetic effect of selenite in type 2 diabetes. - Highlights: • Selenite exacerbates hepatic insulin resistance in HFD/STZ-induced diabetic mice. • Selenite elevates hepatic gluconeogenesis and reduces glycolysis in diabetic mice. • Selenite exacerbates hepatic oxidative stress and triggers JNK signaling pathway. • Selenite elevates hepatic selenoprotein P expression in diabetic mice.

  9. Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways.

    Science.gov (United States)

    Geng, Shanshan; Wang, Shijia; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Zhu, Jianyun; Jiang, Ye; Yang, Xue; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhu, Mingming; Wu, Rui; Huang, Cong; Zhong, Caiyun

    2017-04-15

    Bisphenol A (BPA) is an artificial environmental endocrine disrupting chemicals. Accumulating evidence indicates that exposure to BPA contributes to insulin resistance through diverse mechanism including inflammation and oxidative stress. Previous studies have suggested curcumin as a safe phytochemical which can improve obesity-related insulin resistance, inflammation and oxidative stress. The present study aimed to investigate the ability of curcumin to prevent BPA-induced insulin resistance in vitro and the underlying mechanism. Following the establishmet of in vitro insulin resistance via BPA treatment in human liver HepG2 cells, the protective effects of curcumin were determiend. We showed that treatment of HepG2 cells with 100nM BPA for 5days induced significantly decreased glucose consumption, impaired insulin signaling, elevation of pro-inflammatory cytokines and oxidative stress, and activation of signaling pathways; inhibition of JNK and p38 pathways, but not ERK nor NF-κB pathways, improved glucose consumption and insulin signaling in BPA-treated HepG2 cells. Moreover, we revealed that curcumin effectively attenuated the spectrum of effects of BPA-triggered insulin resistance, whereas pretreatment with JNK and p38 agonist anisomycin could significantly compensate the effects caused by curcumin. These data illustrated the role of JNK/p38 activation in BPA-induced insulin resistance and suggested curcumin as a promising candidate for the intervention of BPA-induced insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. AKT Inhibition in Solid Tumors With AKT1 Mutations.

    Science.gov (United States)

    Hyman, David M; Smyth, Lillian M; Donoghue, Mark T A; Westin, Shannon N; Bedard, Philippe L; Dean, Emma J; Bando, Hideaki; El-Khoueiry, Anthony B; Pérez-Fidalgo, José A; Mita, Alain; Schellens, Jan H M; Chang, Matthew T; Reichel, Jonathan B; Bouvier, Nancy; Selcuklu, S Duygu; Soumerai, Tara E; Torrisi, Jean; Erinjeri, Joseph P; Ambrose, Helen; Barrett, J Carl; Dougherty, Brian; Foxley, Andrew; Lindemann, Justin P O; McEwen, Robert; Pass, Martin; Schiavon, Gaia; Berger, Michael F; Chandarlapaty, Sarat; Solit, David B; Banerji, Udai; Baselga, José; Taylor, Barry S

    2017-07-10

    Purpose AKT1 E17K mutations are oncogenic and occur in many cancers at a low prevalence. We performed a multihistology basket study of AZD5363, an ATP-competitive pan-AKT kinase inhibitor, to determine the preliminary activity of AKT inhibition in AKT-mutant cancers. Patients and Methods Fifty-eight patients with advanced solid tumors were treated. The primary end point was safety; secondary end points were progression-free survival (PFS) and response according to Response Evaluation Criteria in Solid Tumors (RECIST). Tumor biopsies and plasma cell-free DNA (cfDNA) were collected in the majority of patients to identify predictive biomarkers of response. Results In patients with AKT1 E17K-mutant tumors (n = 52) and a median of five lines of prior therapy, the median PFS was 5.5 months (95% CI, 2.9 to 6.9 months), 6.6 months (95% CI, 1.5 to 8.3 months), and 4.2 months (95% CI, 2.1 to 12.8 months) in patients with estrogen receptor-positive breast, gynecologic, and other solid tumors, respectively. In an exploratory biomarker analysis, imbalance of the AKT1 E17K-mutant allele, most frequently caused by copy-neutral loss-of-heterozygosity targeting the wild-type allele, was associated with longer PFS (hazard ratio [HR], 0.41; P = .04), as was the presence of coincident PI3K pathway hotspot mutations (HR, 0.21; P = .045). Persistent declines in AKT1 E17K in cfDNA were associated with improved PFS (HR, 0.18; P = .004) and response ( P = .025). Responses were not restricted to patients with detectable AKT1 E17K in pretreatment cfDNA. The most common grade ≥ 3 adverse events were hyperglycemia (24%), diarrhea (17%), and rash (15.5%). Conclusion This study provides the first clinical data that AKT1 E17K is a therapeutic target in human cancer. The genomic context of the AKT1 E17K mutation further conditioned response to AZD5363.

  11. Preclinical testing of PI3K/AKT/mTOR signaling inhibitors in a mouse model of ovarian endometrioid adenocarcinoma.

    Science.gov (United States)

    Wu, Rong; Hu, Tom C; Rehemtulla, Alnawaz; Fearon, Eric R; Cho, Kathleen R

    2011-12-01

    Genetically engineered mouse (GEM) models of ovarian cancer that closely recapitulate their human tumor counterparts may be invaluable tools for preclinical testing of novel therapeutics. We studied murine ovarian endometrioid adenocarcinomas (OEA) arising from conditional dysregulation of canonical WNT and PI3K/AKT/mTOR pathway signaling to investigate their response to conventional chemotherapeutic drugs and mTOR or AKT inhibitors. OEAs were induced by injection of adenovirus expressing Cre recombinase (AdCre) into the ovarian bursae of Apc(flox/flox); Pten(flox/flox) mice. Tumor-bearing mice or murine OEA-derived cell lines were treated with cisplatin and paclitaxel, mTOR inhibitor rapamycin, or AKT inhibitors API-2 or perifosine. Treatment effects were monitored in vivo by tumor volume and bioluminescence imaging, in vitro by WST-1 proliferation assays, and in OEA tissues and cells by immunoblotting and immunostaining for levels and phosphorylation status of PI3K/AKT/mTOR signaling pathway components. Murine OEAs developed within 3 weeks of AdCre injection and were not preceded by endometriosis. OEAs responded to cisplatin + paclitaxel, rapamycin, and AKT inhibitors in vivo. In vitro studies showed that response to mTOR and AKT inhibitors, but not conventional cytotoxic drugs, was dependent on the status of PI3K/AKT/mTOR signaling. AKT inhibition in APC(-)/Pten(-) tumor cells resulted in compensatory upregulation of ERK signaling. The studies show the utility of this GEM model of ovarian cancer for preclinical testing of novel PI3K/AKT/mTOR signaling inhibitors and provide evidence for compensatory signaling, suggesting that multiple rather than single agent targeted therapy will be more efficacious for treating ovarian cancers with activated PI3K/AKT/mTOR signaling. ©2011 AACR.

  12. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Zheng Xu

    2016-12-01

    Full Text Available Diabetes mellitus is a chronic metabolic condition that affects carbohydrate, lipid and protein metabolism and may impair numerous organs and functions of the organism. Cardiac dysfunction afflicts many patients who experience the oxidative stress of the heart. Diabetic cardiomyopathy (DCM is one of the major complications that accounts for more than half of diabetes-related morbidity and mortality cases. Chronic hyperglycemia and hyperlipidemia from diabetes mellitus cause cardiac oxidative stress, endothelial dysfunction, impaired cellular calcium handling, mitochondrial dysfunction, metabolic disturbances, and remodeling of the extracellular matrix, which ultimately lead to DCM. Although many studies have explored the mechanisms leading to DCM, the pathophysiology of DCM has not yet been fully clarified. In fact, as a potential mechanism, the associations between DCM development and mitogen-activated protein kinase (MAPK activation have been the subjects of tremendous interest. Nonetheless, much remains to be investigated, such as tissue- and cell-specific processes of selection of MAPK activation between pro-apoptotic vs. pro-survival fate, as well as their relation with the pathogenesis of diabetes and associated complications. In general, it turns out that MAPK signaling pathways, such as extracellular signal-regulated kinase 1/2 (ERK1/2, c-Jun N-terminal protein kinase (JNK and p38 MAP kinase, are demonstrated to be actively involved in myocardial dysfunction, hypertrophy, fibrosis and heart failure. As one of MAPK family members, the activation of ERK1/2 has also been known to be involved in cardiac hypertrophy and dysfunction. However, many recent studies have demonstrated that ERK1/2 signaling activation also plays a crucial role in FGF21 signaling and exerts a protective environment of glucose and lipid metabolism, therefore preventing abnormal healing and cardiac dysfunction. The duration, extent, and subcellular compartment of ERK1

  13. GADD45a Regulates Olaquindox-Induced DNA Damage and S-Phase Arrest in Human Hepatoma G2 Cells via JNK/p38 Pathways

    Directory of Open Access Journals (Sweden)

    Daowen Li

    2017-01-01

    Full Text Available Olaquindox, a quinoxaline 1,4-dioxide derivative, is widely used as a feed additive in many countries. The potential genotoxicity of olaquindox, hence, is of concern. However, the proper mechanism of toxicity was unclear. The aim of the present study was to investigate the effect of growth arrest and DNA damage 45 alpha (GADD45a on olaquindox-induced DNA damage and cell cycle arrest in HepG2 cells. The results showed that olaquindox could induce reactive oxygen species (ROS-mediated DNA damage and S-phase arrest, where increases of GADD45a, cyclin A, Cdk 2, p21 and p53 protein expression, decrease of cyclin D1 and the activation of phosphorylation-c-Jun N-terminal kinases (p-JNK, phosphorylation-p38 (p-p38 and phosphorylation-extracellular signal-regulated kinases (p-ERK were involved. However, GADD45a knockdown cells treated with olaquindox could significantly decrease cell viability, exacerbate DNA damage and increase S-phase arrest, associated with the marked activation of p-JNK, p-p38, but not p-ERK. Furthermore, SP600125 and SB203580 aggravated olaquindox-induced DNA damage and S-phase arrest, suppressed the expression of GADD45a. Taken together, these findings revealed that GADD45a played a protective role in olaquindox treatment and JNK/p38 pathways may partly contribute to GADD45a regulated olaquindox-induced DNA damage and S-phase arrest. Our findings increase the understanding on the molecular mechanisms of olaquindox.

  14. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    Full Text Available BACKGROUND: Fucoidan extract (FE, an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities. METHODOLOGY/PRINCIPAL FINDING: FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP through loss of mitochondrial membrane potential (ΔΨm and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK, p38, and extracellular signal-regulated kinase (ERK 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS, which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases. CONCLUSIONS/SIGNIFICANCE: These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.

  15. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.

    Directory of Open Access Journals (Sweden)

    Qian-Wen Wang

    Full Text Available Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.

  16. Adenosine A2A receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Ahmad, Aftab; Schaack, Jerome B.; White, Carl W.; Ahmad, Shama

    2013-01-01

    Highlights: •A 2A receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A 2A receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A 2A receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A 2A receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A 2A receptor. A 2A receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A 2A receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A 2A receptor-overexpressing HLMVECs. Adenoviral-mediated A 2A receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A 2A receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A 2A receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A 2A receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A 2A -mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A 2A receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways

  17. ROS mediates interferon gamma induced phosphorylation of Src, through the Raf/ERK pathway, in MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Zibara, Kazem; Zeidan, Asad; Bjeije, Hassan; Kassem, Nouhad; Badran, Bassam; El-Zein, Nabil

    2017-03-01

    Interferon gamma (IFN-ɣ) is a pleiotropic cytokine which plays dual contrasting roles in cancer. Although IFN-ɣ has been clinically used to treat various malignancies, it was recently shown to have protumorigenic activities. Reactive oxygen species (ROS) are overproduced in cancer cells, mainly due to NADPH oxidase activity, which results into several changes in signaling pathways. In this study, we examined IFN-ɣ effect on the phosphorylation levels of key signaling proteins, through ROS production, in the human breast cancer cell line MCF-7. After treatment by IFN-ɣ, results showed a significant increase in the phosphorylation of STAT1, Src, raf, AKT, ERK1/2 and p38 signaling molecules, in a time specific manner. Src and Raf were found to be involved in early stages of IFN-ɣ signaling since their phosphorylation increased very rapidly. Selective inhibition of Src-family kinases resulted in an immediate significant decrease in the phosphorylation status of Raf and ERK1/2, but not p38 and AKT. On the other hand, IFN-ɣ resulted in ROS generation, through H 2 O 2 production, whereas pre-treatment with the ROS inhibitor NAC caused ROS inhibition and a significant decrease in the phosphorylation levels of AKT, ERK1/2, p38 and STAT1. Moreover, pretreatment with a selective NOX1 inhibitor resulted in a significant decrease of AKT phosphorylation. Finally, no direct relationship was found between ROS production and calcium mobilization. In summary, IFN-ɣ signaling in MCF-7 cell line is ROS-dependent and follows the Src/Raf/ERK pathway whereas its signaling through the AKT pathway is highly dependent on NOX1.

  18. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Holmstroem, Therese E.; Mattsson, Charlotte L.; Wang, Yanling; Iakovleva, Irina; Petrovic, Natasa [Department of Physiology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm (Sweden); Nedergaard, Jan, E-mail: jan@metabol.su.se [Department of Physiology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm (Sweden)

    2010-10-01

    In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one G{sub i}-protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.

  19. AKT and MET signalling mediates antiapoptotic radioresistance in head neck cancer cell lines.

    Science.gov (United States)

    Ettl, Tobias; Viale-Bouroncle, Sandra; Hautmann, Matthias G; Gosau, Martin; Kölbl, Oliver; Reichert, Torsten E; Morsczeck, Christian

    2015-02-01

    Induction of apoptosis is a major mechanism of radiosensitivity in different types of cancer. In contrast, EGFR/PI3K/AKT signalling and recently the presence of so-called cancer stem cells are discussed as reasons for radioresistance. The study investigates mechanisms of apoptosis, key oncogenes of the PI3K/AKT pathway and the presence of cancer cells with stem cell properties during irradiation in two cell lines (PCI-9A, and PCI-15) of head and neck squamous cell carcinoma. WST-1-tests, qRT-PCR, western blots and FACS analysis were performed for analysis. The two cell lines presented different degrees of cell death upon irradiation. The radiosensitive cell line PCI-9A showed increased apoptosis after irradiation measured by expressed cleaved caspases 3 and 7 while the radioresistant cell line PCI-15 upregulated antiapoptotic Survivin and BCL2A1 mRNA. Besides, increased PI3K/AKT- and ERK1/2-signalling was associated with radioresistance accompanied by loss of PTEN function through phosphorylation on S380. Blockade of pAKT increased radiation-induced cell death, and moreover, led to an upregulation of pMET in the radioresistant cell line. The percentage of ALDH-positive tumour cells was markedly decreased after irradiation in the radiosensitive cell line. Functional apoptosis is mandatory for sensitivity to irradiation in head neck cancer cells. Upregulation of the AKT-pathway seems to be one reason for poor radioresponse. Activated MET may also predict radioresistance, possibly through ERK1/2 signalling. Moreover MET may indicate the presence of cancer stem cells facilitating radioresistance as shown by increased ALDH expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. BIM-Mediated AKT Phosphorylation Is a Key Modulator of Arsenic Trioxide-Induced Apoptosis in Cisplatin-Sensitive and -Resistant Ovarian Cancer Cells

    Science.gov (United States)

    Yuan, Zhu; Wang, Fang; Zhao, Zhiwei; Zhao, Xinyu; Qiu, Ji; Nie, Chunlai; Wei, Yuquan

    2011-01-01

    Background Chemo-resistance to cisplatin-centered cancer therapy is a major obstacle to the effective treatment of human ovarian cancer. Previous reports indicated that arsenic trioxide (ATO) induces cell apoptosis in both drug-sensitive and -resistant ovarian cancer cells. Principal Findings In this study, we determined the molecular mechanism of ATO-induced apoptosis in ovarian cancer cells. Our data demonstrated that ATO induced cell apoptosis by decreasing levels of phosphorylated AKT (p-AKT) and activating caspase-3 and caspase-9. Importantly, BIM played a critical role in ATO-induced apoptosis. The inhibition of BIM expression prevented AKT dephosphorylation and inhibited caspase-3 activation during cell apoptosis. However, surprisingly, gene silencing of AKT or FOXO3A had little effect on BIM expression and phosphorylation. Moreover, the activation of caspase-3 by ATO treatment improved AKT dephosphorylation, not only by cleaving the regulatory A subunit of protein phosphatase 2A (PP2A), but also by increasing its activation. Furthermore, our data indicated that the c-Jun N-terminal kinases (JNK) pathway is involved in the regulation of BIM expression. Conclusions We demonstrated the roles of BIM in ATO-induced apoptosis and the molecular mechanisms of BIM expression regulated by ATO during ovarian cancer cell apoptosis. Our findings suggest that BIM plays an important role in regulating p-AKT by activating caspase-3 and that BIM mediates the level of AKT phosphorylation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells. PMID:21655183

  1. JNK at the crossroad of obesity, insulin resistance, and cell stress response

    Directory of Open Access Journals (Sweden)

    Giovanni Solinas

    2017-02-01

    Major conclusion: Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.

  2. JNK at the crossroad of obesity, insulin resistance, and cell stress response

    OpenAIRE

    Solinas, Giovanni; Becattini, Barbara

    2016-01-01

    Background: The cJun-N-terminal-kinase (JNK) plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival, depending on the specific context. JNK is also one of the most investigated signal transducers in obesity and insulin resistance, and studies have identified new molecular mechanisms linking obesity and insulin resistance. Emerging evidence indicates that whereas JNK1 and JNK2 isoforms promote the development of obesity and in...

  3. CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity

    International Nuclear Information System (INIS)

    Dey, Nandini; Howell, Brian W.; De, Pradip K.; Durden, Donald L.

    2005-01-01

    Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation

  4. Activation of p38/JNK pathway is responsible for embelin induced apoptosis in lung cancer cells: transitional role of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Deepa R Avisetti

    Full Text Available The natural product embelin has been demonstrated to possess a wide range of therapeutic properties, however, the mechanisms by which it exerts anticancer effects are not yet clear. By monitoring the molecular changes associated during early apoptotic phase, we have identified the crucial role of oxidative stress induced MAP kinase signalling as a predominant mechanism for its anticancer effects. Treatment of A549 lung cancer cells with embelin resulted in the enhancement of phospho-p38 and phospho-JNK levels as early as 4h. Pretreatment of cells with specific inhibitors of p38 (PD169316 and JNK (SP600125 abrogated embelin-induced caspase-3 activation. Studies employing embelin in the presence or absence of specific MAP kinase inhibitors indicated that the observed changes in phosphorylation levels of p38, JNK and ERK 1/2 are solely due to embelin and not because of cross-talk between MAP kinases. Reactive oxygen species (ROS play a crucial role in embelin induced alterations in MAP kinase phosphorylation and apoptosis as pretreatment of cells with FeTMPyP mitigated this effect. The observed changes are not due to the inhibitory effect of embelin on XIAP as cells treated with SMAC-N7-Ant peptide, a specific inhibitor of XIAP's BIR3 domain did not mimic embelin induced apoptotic effects. The findings of the present study clearly indicate the crucial role of p38 and JNK pathways in embelin induced apoptosis and provide us with new clues for improving its therapeutic efficacy.

  5. Biphasic Estradiol-induced AKT Phosphorylation Is Modulated by PTEN via MAP Kinase in HepG2 Cells

    Science.gov (United States)

    Marino, Maria; Acconcia, Filippo; Trentalance, Anna

    2003-01-01

    We reported previously in HepG2 cells that estradiol induces cell cycle progression throughout the G1–S transition by the parallel stimulation of both PKC-α and ERK signaling molecules. The analysis of the cyclin D1 gene expression showed that only the MAP kinase pathway was involved. Here, the presence of rapid/nongenomic, estradiol-regulated, PI3K/AKT signal transduction pathway, its modulation by the levels of the tumor suppressor PTEN, its cross-talk with the ERK pathway, and its involvement in DNA synthesis and cyclin D1 gene promoter activity have all been studied in HepG2 cells. 17β-Estradiol induced the rapid and biphasic phosphorylation of AKT. These phosphorylations were independent of each other, being the first wave of activation independent of the estrogen receptor (ER), whereas the second was dependent on ER. Both activations were dependent on PI3K activity; furthermore, the ERK pathway modulated AKT phosphorylation by acting on the PTEN levels. The results showed that the PI3K pathway, as well as ER, were strongly involved in both G1–S progression and cyclin D1 promoter activity by acting on its proximal region (-254 base pairs). These data indicate that in HepG2 cells, different rapid/nongenomic estradiol-induced signal transduction pathways modulate the multiple steps of G1–S phase transition. PMID:12808053

  6. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  7. Aconitase regulation of erythropoiesis correlates with a novel licensing function in erythropoietin-induced ERK signaling.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Talbot

    Full Text Available Erythroid development requires the action of erythropoietin (EPO on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability. In the current study, a regulatory role for aconitase during erythropoiesis was ascertained using a direct inhibitory strategy.In C57BL/6 mice, infusion of an aconitase active-site inhibitor caused a hypoplastic anemia and suppressed responsiveness to hemolytic challenge. In a murine model of polycythemia vera, aconitase inhibition rapidly normalized red cell counts, but did not perturb other lineages. In primary erythroid progenitor cultures, aconitase inhibition impaired proliferation and maturation but had no effect on viability or ATP levels. This inhibition correlated with a blockade in EPO signal transmission specifically via ERK, with preservation of JAK2-STAT5 and Akt activation. Correspondingly, a physical interaction between ERK and mitochondrial aconitase was identified and found to be sensitive to aconitase inhibition.Direct aconitase inhibition interferes with erythropoiesis in vivo and in vitro, confirming a lineage-selective regulatory role involving its enzymatic activity. This inhibition spares metabolic function but impedes EPO-induced ERK signaling and disturbs a newly identified ERK-aconitase physical interaction. We propose a model in which aconitase functions as a licensing factor in ERK-dependent proliferation and differentiation, thereby providing a regulatory input for iron in EPO-dependent erythropoiesis. Directly targeting aconitase may provide an alternative to phlebotomy in the treatment of polycythemia vera.

  8. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis.

    Science.gov (United States)

    Giacoppo, Sabrina; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela

    2017-01-01

    This study was aimed to investigate whether treatment with purified cannabidiol (CBD) may counteract the development of experimental multiple sclerosis (MS), by targeting the PI3K/Akt/mTOR pathway. Although the PI3K/Akt/mTOR pathway was found to be activated by cannabinoids in several immune and non-immune cells, currently, there is no data about the effects of CBD in the PI3K/Akt/mTOR activity in MS. Experimental Autoimmune Encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein peptide (MOG) 35-55 . After EAE onset, which occurs approximately 14days after disease induction, mice were daily intraperitoneally treated with CBD (10mg/kg mouse) and observed for clinical signs of EAE. At 28days from EAE-induction, mice were euthanized and spinal cord tissues were sampled to perform immunohistochemical evaluations and western blot analysis. Our results showed a clear downregulation of the PI3K/Akt/mTOR pathway following EAE induction. CBD treatment was able to restore it, increasing significantly the phosphorylation of PI3K, Akt and mTOR. Also, an increased level of BNDF in CBD-treated mice seems to be involved in the activation of PI3K/Akt/mTOR pathway. In addition, our data demonstrated that therapeutic efficacy of CBD treatment is due to reduction of pro-inflammatory cytokines, like IFN-γ and IL-17 together with an up-regulation of PPARγ. Finally, CBD was found to promote neuronal survival by inhibiting JNK and p38 MAP kinases. These results provide an interesting discovery about the regulation of the PI3K/Akt/mTOR pathway by cannabidiol administration, that could be a new potential therapeutic target for MS management. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The broad-spectrum metalloproteinase inhibitor BB-94 inhibits growth, HER3 and Erk activation in fulvestrant-resistant breast cancer cell lines

    DEFF Research Database (Denmark)

    Kirkegaard, Tove; Yde, Christina Westmose; Kveiborg, Marie

    2014-01-01

    and consequently increased cell growth. In this study, we investigated the importance of HER receptors, in particular HER3, and HER ligand shedding for growth and signaling in human MCF-7 breast cancer cells and MCF-7-derived sublines resistant to the antiestrogen fulvestrant. The HER3/HER4 ligand heregulin 1β...... induced phosphorylation of HER3, Akt and Erk, and partly rescued fulvestrant-inhibited growth of MCF-7 cells. HER3 ligands were found to be produced and shed from the fulvestrant-resistant cells as conditioned medium from fulvestrant-resistant MCF-7 cells induced phosphorylation of HER3 and Akt in MCF-7......-resistant cells, was able to inhibit growth and activation of HER3 and Erk in resistant cells. Compared to MCF-7, fulvestrant-resistant cells have increased HER3 phosphorylation, but knockdown of HER3 had no inhibitory effect on resistant cell growth. The EGFR inhibitor gefitinib exhibited only a minor growth...

  10. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Noriko [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp [Department of Pathology, Medical School, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Watanabe-Kushima, Shoko [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Shinohara, Takashi [Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501 (Japan); Nakano, Toru, E-mail: tnakano@patho.med.osaka-u.ac.jp [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Department of Pathology, Medical School, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-02-12

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.

  11. Activation of the Stress Response Kinase JNK (c-Jun N-terminal Kinase) Attenuates Insulin Action in Retina through a p70S6K1-dependent Mechanism.

    Science.gov (United States)

    Miller, William P; Ravi, Suhana; Martin, Tony D; Kimball, Scot R; Dennis, Michael D

    2017-02-03

    Despite recent advances in therapeutics, diabetic retinopathy remains a leading cause of vision impairment. Improvement in the treatment of diabetic retinopathy requires a better understanding of the molecular mechanisms that cause neurovascular complications, particularly in type 2 diabetes. Recent studies demonstrate that rodents fed a high fat diet exhibit retinal dysfunction concomitant with attenuated Akt phosphorylation. The purpose of the present study was to evaluate the impact of a high fat/high sucrose diet on retinal insulin signaling and evaluate the mechanism(s) responsible for the changes. Mice fed a high fat/sucrose diet exhibited attenuated Akt phosphorylation in the retina as compared with mice fed normal chow. Retinas of mice fed a high fat/sucrose diet also exhibited elevated levels of activated JNK as well as enhanced p70S6K1 autoinhibitory domain phosphorylation. In cells, JNK activation enhanced p70S6K1 phosphorylation and mTORC1-dependent activation of the kinase, as evidenced by enhanced phosphorylation of key substrates. Rictor phosphorylation by p70S6K1 was specifically enhanced by the addition of phosphomimetic mutations in the autoinhibitory domain and was more sensitive to inhibition of the kinase as compared with rpS6. Notably, rictor and IRS-1 phosphorylation by p70S6K1 attenuate insulin action through a negative feedback pathway. Indeed, p70S6K1 inhibition prevented the repressive effect of JNK activation on insulin action in retinas. Overall, the results identify the JNK/S6K1 axis as a key molecular mechanism whereby a high fat/sucrose diet impairs insulin action in retina. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    Science.gov (United States)

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A.; Topping, David L.

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  13. Piperine Attenuates Pathological Cardiac Fibrosis Via PPAR-γ/AKT Pathways

    Directory of Open Access Journals (Sweden)

    Zhen-Guo Ma

    2017-04-01

    Full Text Available Mitogen-activated protein kinases (MAPKs and AMP­activated protein kinase α (AMPKα play critical roles in the process of cardiac hypertrophy. Previous studies have demonstrated that piperine activates AMPKα and reduces the phosphorylation of extracellular signal-regulated kinase (ERK. However, the effect of piperine on cardiac hypertrophy remains completely unknown. Here, we show that piperine-treated mice had similar hypertrophic responses as mice treated with vehicle but exhibited significantly attenuated cardiac fibrosis after pressure overload or isoprenaline (ISO injection. Piperine inhibited the transformation of cardiac fibroblasts to myofibroblasts induced by transforming growth factor-β (TGF-β or angiotensin II (Ang II in vitro. This anti-fibrotic effect was independent of the AMPKα and MAPK pathway. Piperine blocked activation of protein kinase B (AKT and, downstream, glycogen synthase kinase 3β (GSK3β. The overexpression of constitutively active AKT or the knockdown of GSK3β completely abolished the piperine-mediated protection of cardiac fibroblasts. The cardioprotective effects of piperine were blocked in mice with constitutively active AKT. Pretreatment with GW9662, a specific inhibitor of peroxisome proliferator activated receptor-γ (PPAR-γ, reversed the effect elicited by piperine in vitro. In conclusion, piperine attenuated cardiac fibrosis via the activation of PPAR-γ and the resultant inhibition of AKT/GSK3β.

  14. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Inesta-Vaquera, Francisco A. [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain); Campbell, David G.; Arthur, J. Simon C. [MRC Protein Phosphorylation Unit, Sir James Black Building, School of Life Sciences, University of Dundee, Dundee DD1 5EH (United Kingdom); Cuenda, Ana, E-mail: acuenda@cnb.csic.es [Departamento de Inmunologia y Oncologia, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco-UAM, 28049 Madrid (Spain)

    2010-08-13

    Research highlights: {yields} hDlg is phosphorylated during mitosis in multiple residues. {yields} Prospho-hDlg is excluded from the midbody during mitosis. {yields} hDlg is not phosphorylated by p38{gamma} or JNK1/2 during mitosis. {yields} ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  15. ERK5 pathway regulates the phosphorylation of tumour suppressor hDlg during mitosis

    International Nuclear Information System (INIS)

    Inesta-Vaquera, Francisco A.; Campbell, David G.; Arthur, J. Simon C.; Cuenda, Ana

    2010-01-01

    Research highlights: → hDlg is phosphorylated during mitosis in multiple residues. → Prospho-hDlg is excluded from the midbody during mitosis. → hDlg is not phosphorylated by p38γ or JNK1/2 during mitosis. → ERK5 pathway mediates hDlg phosphorylation in mitosis. -- Abstract: Human disc-large (hDlg) is a scaffold protein critical for the maintenance of cell polarity and adhesion. hDlg is thought to be a tumour suppressor that regulates the cell cycle and proliferation. However, the mechanism and pathways involved in hDlg regulation during these processes is still unclear. Here we report that hDlg is phosphorylated during mitosis, and we establish the identity of at least three residues phosphorylated in hDlg; some are previously unreported. Phosphorylation affects hDlg localisation excluding it from the contact point between the two daughter cells. Our results reveal a previously unreported pathway for hDlg phosphorylation in mitosis and show that ERK5 pathway mediates hDlg cell cycle dependent phosphorylation. This is likely to have important implications in the correct timely mitotic entry and mitosis progression.

  16. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Bohmann Dirk

    2005-06-01

    Full Text Available Abstract Background The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. Results Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. Conclusion This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.

  17. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Notcovich, Cintia [Laboratorio de Patologia y Farmacologia Molecular, Instituto de Biologia y Medicina Experimental (Argentina); Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Diez, Federico [Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Tubio, Maria Rosario [Laboratorio de Patologia y Farmacologia Molecular, Instituto de Biologia y Medicina Experimental (Argentina); Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Baldi, Alberto [Laboratorio de Patologia y Farmacologia Molecular, Instituto de Biologia y Medicina Experimental (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Kazanietz, Marcelo G. [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Davio, Carlos [Laboratorio de Farmacologia de Receptores, Catedra de Quimica Medicinal, Departamento de Farmacologia, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Shayo, Carina, E-mail: cshayo@dna.uba.ar [Laboratorio de Patologia y Farmacologia Molecular, Instituto de Biologia y Medicina Experimental (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    2010-02-01

    It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G{sub 11}-coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changes in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP {beta}2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or {beta}2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [{sup 3}H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.

  18. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways

    International Nuclear Information System (INIS)

    Notcovich, Cintia; Diez, Federico; Tubio, Maria Rosario; Baldi, Alberto; Kazanietz, Marcelo G.; Davio, Carlos; Shayo, Carina

    2010-01-01

    It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G 11 -coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changes in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP β2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or β2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [ 3 H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.

  19. Csk-Induced Phosphorylation of Src at Tyrosine 530 is Essential for H2O2-Mediated Suppression of ERK1/2 in Human Umbilical Vein Endothelial Cells

    Science.gov (United States)

    Jeon, Bo Kyung; Kwon, Kihwan; Kang, Jihee Lee; Choi, Youn-Hee

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) are key signal transducers involved in various cellular events such as growth, proliferation, and differentiation. Previous studies have reported that H2O2 leads to phosphorylation of extracellular signal-regulated kinase (ERK), one of the MAPKs in endothelial cells. The current study shows that H2O2 suppressed ERK1/2 activation and phosphorylation at specific concentrations and times in human umbilical vein endothelial cells but not in immortalized mouse aortic endothelial cells or human astrocytoma cell line CRT-MG. Phosphorylation of other MAPK family members (i.e., p38 and JNK) was not suppressed by H2O2. The decrease in ERK1/2 phosphorylation induced by H2O2 was inversely correlated with the level of phosphorylation of Src tyrosine 530. Using siRNA, it was found that H2O2-induced suppression of ERK1/2 was dependent on Csk. Physiological laminar flow abrogated, but oscillatory flow did not affect, the H2O2-induced suppression of ERK1/2 phosphorylation. In conclusion, H2O2-induced Csk translocation to the plasma membrane leads to phosphorylation of Src at the tyrosine 530 residue resulting in a reduction of ERK1/2 phosphorylation. Physiological laminar flow abrogates this effect of H2O2 by inducing phosphorylation of Src tyrosine 419. These findings broaden our understanding of signal transduction mechanisms in the endothelial cells against oxidative stress. PMID:26234813

  20. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways.

    Directory of Open Access Journals (Sweden)

    Linshan Shang

    2010-04-01

    Full Text Available Advanced glycation end-products (AGEs have been implicated in diverse pathological settings including diabetes, inflammation and acute ischemia/reperfusion injury in the heart. AGEs interact with the receptor for AGEs (RAGE and transduce signals through activation of MAPKs and proapoptotic pathways. In the current study, adult cardiomyocytes were studied in an in vitro ischemia/reperfusion (I/R injury model to delineate the molecular mechanisms underlying RAGE-mediated injury due to hypoxia/reoxygenation (H/R.Cardiomyocytes isolated from adult wild-type (WT, homozygous RAGE-null (RKO, and WT mice treated with soluble RAGE (sRAGE were subjected to hypoxia for 30 minutes alone or followed by reoxygenation for 1 hour. In specific experiments, RAGE ligand carboxymethyllysine (CML-AGE (termed "CML" in this manuscript was evaluated in vitro. LDH, a marker of cellular injury, was assayed in the supernatant in the presence or absence of signaling inhibitor-treated cardiomyocytes. Cardiomyocyte levels of heterogeneous AGEs were measured using ELISA. A pronounced increase in RAGE expression along with AGEs was observed in H/R vs. normoxia in WT cardiomyocytes. WT cardiomyocytes after H/R displayed increased LDH release compared to RKO or sRAGE-treated cardiomyocytes. Our results revealed significant increases in phospho-JNK in WT cardiomyocytes after H/R. In contrast, neither RKO nor sRAGE-treated cardiomyocytes exhibited increased phosphorylation of JNK after H/R stress. The impact of RAGE deletion on GSK-3beta phosphorylation in the cardiomyocytes subjected to H/R revealed significantly higher levels of phospho-GSK-3beta/total GSK-3beta in RKO, as well as in sRAGE-treated cardiomyocytes versus WT cardiomyocytes after H/R. Further investigation established a key role for Akt, which functions upstream of GSK-3beta, in modulating H/R injury in adult cardiomyocytes.These data illustrate key roles for RAGE-ligand interaction in the pathogenesis of

  1. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2015-11-01

    Full Text Available Background/Aims: Mesenchymal stem cell (MSC based therapies may be useful for treating acute respiratory distress syndrome (ARDS, but the underlying mechanisms are incompletely understood. We investigated the impact of human umbilical cord Wharton's jelly-derived MSC (hUC-MSC secreted factors on alveolar epithelial cells under septic conditions and determined the relevant intracellular signaling pathways. Methods: Human alveolar epithelial cells (AEC and primary human small airway epithelial cells (SAEC were subjected to lipopolysaccharide (LPS with or without the presence of hUC-MSC-conditioned medium (CM. Proliferation and migration of AEC and SAEC were determined via an MTT assay, a wound healing assay and a transwell migration assay (only for AEC. Protein phosphorylation was determined by western blot and the experiments were repeated in presence of small-molecule inhibitors. The hMSC-secretory proteins were identified by LC-MS/MS mass spectrometry. Results: MSC-CM enhanced proliferation and migration. Activation of JNK and P38, but not ERK, was required for the proliferation and migration of AEC and SAEC. Pretreatment of AEC or SAEC with SP600125, an inhibitor of JNK1 or SB200358, an inhibitor of P38, significantly reduced cell proliferation and migration. An array of proteins including TGF-beta receptor type-1, TGF-beta receptor type-2, Ras-related C3 botulinum toxin substrate 1 and Ras-related C3 botulinum toxin substrate 2 which influencing the proliferation and migration of AEC and SAEC were detected in MSC-CM. Conclusion: Our data suggest MSC promote epithelial cell repair through releasing a repertoire of paracrine factors via activation of JNK and P38 MAPK.

  2. Cantharidin Induced Oral Squamous Cell Carcinoma Cell Apoptosis via the JNK-Regulated Mitochondria and Endoplasmic Reticulum Stress-Related Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chin-Chuan Su

    Full Text Available Oral cancer is a subtype of head and neck cancer which represents 2.65% of all human malignancies. Most of oral cancer is histopathologically diagnosed as oral squamous cell carcinoma (OSCC. OSCC is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. How to prevention and treatment of OSCC is important and imperative. Here, we investigated the therapeutic effect and molecular mechanism of cantharidin, an active compound isolated from blister beetles, on OSCC in vitro. Results showed that cantharidin significantly decreased cell viability in human tongue squamous carcinoma-derived SAS, CAL-27, and SCC-4 cell lines. The further mechanistic studies were carried out in SAS cells. Cantharidin also significantly increased apoptosis-related signals, including caspase-9, caspase-7 and caspase-3 proteins. Besides, cantharidin decreased mitochondrial transmembrane potential (MMP and induced cytochrome c and apoptosis inducing factor (AIF release. Cantharidin also increased Bax, Bid, and Bak protein expressions and decreased Bcl-2 protein expression. Cantharidin could also increase the endoplasmic reticulum (ER stress signals, including the expressions of phosphorylated eIF-2α and CHOP, but not Grp78 and Grp94. Furthermore, cantharidin reduced pro-caspase-12 protein expression. In signals of mitogen-activated protein kinases, cantharidin increased the phosphorylation of JNK, but not ERK and p38. Transfection of shRNA-JNK to OSCC cells effectively reversed the cantharidin-induced cell apoptotic signals, including the mitochondrial and ER stress-related signaling molecules. Taken together, these findings suggest that cantharidin induces apoptosis in OSCC cells via the JNK-regulated mitochondria and ER stress-related signaling pathways.

  3. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways.

    Directory of Open Access Journals (Sweden)

    Bruno A Cardoso

    Full Text Available The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi, albeit with poorer tolerance. Here, we show that bone marrow (BM stromal cells (HS-5 protected MPN-derived cell lines (SET-2; HEL and UKE-1 and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN.

  4. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways

    Science.gov (United States)

    Cardoso, Bruno A.; Belo, Hélio; Barata, João T.; Almeida, António M.

    2015-01-01

    The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN) are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi), albeit with poorer tolerance. Here, we show that bone marrow (BM) stromal cells (HS-5) protected MPN-derived cell lines (SET-2; HEL and UKE-1) and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN. PMID:26623653

  5. APP upregulation contributes to retinal ganglion cell degeneration via JNK3.

    Science.gov (United States)

    Liu, Chao; Zhang, Cheng-Wu; Zhou, Yi; Wong, Wan Qing; Lee, Liying Corinne; Ong, Wei Yi; Yoon, Sung Ok; Hong, Wanjin; Fu, Xin-Yuan; Soong, Tuck Wah; Koo, Edward H; Stanton, Lawrence W; Lim, Kah-Leong; Xiao, Zhi-Cheng; Dawe, Gavin S

    2018-03-01

    Axonal injury is a common feature of central nervous system insults. Upregulation of amyloid precursor protein (APP) is observed following central nervous system neurotrauma and is regarded as a marker of central nervous system axonal injury. However, the underlying mechanism by which APP mediates neuronal death remains to be elucidated. Here, we used mouse optic nerve axotomy (ONA) to model central nervous system axonal injury replicating aspects of retinal ganglion cell (RGC) death in optic neuropathies. APP and APP intracellular domain (AICD) were upregulated in retina after ONA and APP knockout reduced Tuj1 + RGC loss. Pathway analysis of microarray data combined with chromatin immunoprecipitation and a luciferase reporter assay demonstrated that AICD interacts with the JNK3 gene locus and regulates JNK3 expression. Moreover, JNK3 was found to be upregulated after ONA and to contribute to Tuj1 + RGC death. APP knockout reduced the ONA-induced enhanced expression of JNK3 and phosphorylated JNK (pJNK). Gamma-secretase inhibitors prevented production of AICD, reduced JNK3 and pJNK expression similarly, and protected Tuj1 + RGCs from ONA-induced cell death. Together these data indicate that ONA induces APP expression and that gamma-secretase cleavage of APP releases AICD, which upregulates JNK3 leading to RGC death. This pathway may be a novel target for neuronal protection in optic neuropathies and other forms of neurotrauma.

  6. UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells.

    Science.gov (United States)

    Wegner, Marthe-Susanna; Schömel, Nina; Gruber, Lisa; Örtel, Stephanie Beatrice; Kjellberg, Matti Aleksi; Mattjus, Peter; Kurz, Jennifer; Trautmann, Sandra; Peng, Bing; Wegner, Martin; Kaulich, Manuel; Ahrends, Robert; Geisslinger, Gerd; Grösch, Sabine

    2018-03-17

    The UDP-glucose ceramide glucosyltransferase (UGCG) is a key enzyme in the synthesis of glycosylated sphingolipids, since this enzyme generates the precursor for all complex glycosphingolipids (GSL), the GlcCer. The UGCG has been associated with several cancer-related processes such as maintaining cancer stem cell properties or multidrug resistance induction. The precise mechanisms underlying these processes are unknown. Here, we investigated the molecular mechanisms occurring after UGCG overexpression in breast cancer cells. We observed alterations of several cellular properties such as morphological changes, which enhanced proliferation and doxorubicin resistance in UGCG overexpressing MCF-7 cells. These cellular effects seem to be mediated by an altered composition of glycosphingolipid-enriched microdomains (GEMs), especially an accumulation of globotriaosylceramide (Gb3) and glucosylceramide (GlcCer), which leads to an activation of Akt and ERK1/2. The induction of the Akt and ERK1/2 signaling pathway results in an increased gene expression of multidrug resistance protein 1 (MDR1) and anti-apoptotic genes and a decrease of pro-apoptotic gene expression. Inhibition of the protein kinase C (PKC) and phosphoinositide 3 kinase (PI3K) reduced MDR1 gene expression. This study discloses how changes in UGCG expression impact several cellular signaling pathways in breast cancer cells resulting in enhanced proliferation and multidrug resistance.

  7. cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance

    OpenAIRE

    Sabio, Guadalupe; Davis, Roger J.

    2010-01-01

    The cJun NH2-terminal kinase isoform JNK1 is implicated in the mechanism of obesity-induced insulin resistance. Feeding a high fat diet causes activation of the JNK1 signaling pathway, insulin resistance, and obesity in mice. Germ-line ablation of Jnk1 prevents both diet-induced obesity and insulin resistance. Genetic analysis indicates that the effects of JNK1 on insulin resistance can be separated from effects of JNK1 on obesity. Emerging research indicates that JNK1 plays multiple roles in...

  8. PI-103 and Quercetin Attenuate PI3K-AKT Signaling Pathway in T- Cell Lymphoma Exposed to Hydrogen Peroxide.

    Directory of Open Access Journals (Sweden)

    Akhilendra Kumar Maurya

    Full Text Available Phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT pathway has been considered as major drug target site due to its frequent activation in cancer. AKT regulates the activity of various targets to promote tumorigenesis and metastasis. Accumulation of reactive oxygen species (ROS has been linked to oxidative stress and regulation of signaling pathways for metabolic adaptation of tumor microenvironment. Hydrogen peroxide (H2O2 in this context is used as ROS source for oxidative stress preconditioning. Antioxidants are commonly considered to be beneficial to reduce detrimental effects of ROS and are recommended as dietary supplements. Quercetin, a ubiquitous bioactive flavonoid is a dietary component which has attracted much of interest due to its potential health-promoting effects. Present study is aimed to analyze PI3K-AKT signaling pathway in H2O2 exposed Dalton's lymphoma ascite (DLA cells. Further, regulation of PI3K-AKT pathway by quercetin as well as PI-103, an inhibitor of PI3K was analyzed. Exposure of H2O2 (1mM H2O2 for 30min to DLA cells caused ROS accumulation and resulted in increased phosphorylation of PI3K and downstream proteins PDK1 and AKT (Ser-473 and Thr-308, cell survival factors BAD and ERK1/2, as well as TNFR1. However, level of tumor suppressor PTEN was declined. Both PI-103 & quercetin suppressed the enhanced level of ROS and significantly down-regulated phosphorylation of AKT, PDK1, BAD and level of TNFR1 as well as increased the level of PTEN in H2O2 induced lymphoma cells. The overall result suggests that quercetin and PI3K inhibitor PI-103 attenuate PI3K-AKT pathway in a similar mechanism.

  9. The neuroprotective action of pyrroloquinoline quinone against glutamate-induced apoptosis in hippocampal neurons is mediated through the activation of PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Zhang Qi; Shen Mi; Ding Mei; Shen Dingding; Ding Fei

    2011-01-01

    Pyrroloquinoline quinone (PQQ), a cofactor in several enzyme-catalyzed redox reactions, possesses a potential capability of scavenging reactive oxygen species (ROS) and inhibiting cell apoptosis. In this study, we investigated the effects of PQQ on glutamate-induced cell death in primary cultured hippocampal neurons and the possible underlying mechanisms. We found that glutamate-induced apoptosis in cultured hippocampal neurons was significantly attenuated by the ensuing PQQ treatment, which also inhibited the glutamate-induced increase in Ca2+ influx, caspase-3 activity, and ROS production, and reversed the glutamate-induced decrease in Bcl-2/Bax ratio. The examination of signaling pathways revealed that PQQ treatment activated the phosphorylation of Akt and suppressed the glutamate-induced phosphorylation of c-Jun N-terminal protein kinase (JNK). And inhibition of phosphatidylinositol-3-kinase (PI3K)/Akt cascade by LY294002 and wortmannin significantly blocked the protective effects of PQQ, and alleviated the increase in Bcl-2/Bax ratio. Taken together, our results indicated that PQQ could protect primary cultured hippocampal neurons against glutamate-induced cell damage by scavenging ROS, reducing Ca2+ influx, and caspase-3 activity, and suggested that PQQ-activated PI3K/Akt signaling might be responsible for its neuroprotective action through modulation of glutamate-induced imbalance between Bcl-2 and Bax. - Research Highlights: →PQQ attenuated glutamate-induced cell apoptosis of cultured hippocampal neurons. →PQQ inhibited glutamate-induced Ca 2+ influx and caspase-3 activity. →PQQ reduced glutamate-induced increase in ROS production. →PQQ affected phosphorylation of Akt and JNK signalings after glutamate injury. →PI3K/Akt was required for neuroprotection of PQQ by modulating Bcl-2/Bax ratio.

  10. ERK phosphorylation regulates sleep and plasticity in Drosophila.

    Directory of Open Access Journals (Sweden)

    William M Vanderheyden

    Full Text Available Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK(SEM pan-neuronally in the adult fly using GeneSwitch (Gsw Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.

  11. Unfertilized Xenopus eggs die by Bad-dependent apoptosis under the control of Cdk1 and JNK.

    Directory of Open Access Journals (Sweden)

    David Du Pasquier

    Full Text Available Ovulated eggs possess maternal apoptotic execution machinery that is inhibited for a limited time. The fertilized eggs switch off this time bomb whereas aged unfertilized eggs and parthenogenetically activated eggs fail to stop the timer and die. To investigate the nature of the molecular clock that triggers the egg decision of committing suicide, we introduce here Xenopus eggs as an in vivo system for studying the death of unfertilized eggs. We report that after ovulation, a number of eggs remains in the female body where they die by apoptosis. Similarly, ovulated unfertilized eggs recovered in the external medium die within 72 h. We showed that the death process depends on both cytochrome c release and caspase activation. The apoptotic machinery is turned on during meiotic maturation, before fertilization. The death pathway is independent of ERK but relies on activating Bad phosphorylation through the control of both kinases Cdk1 and JNK. In conclusion, the default fate of an unfertilized Xenopus egg is to die by a mitochondrial dependent apoptosis activated during meiotic maturation.

  12. Phosphorylation of threonine residues on Shc promotes ligand binding and mediates crosstalk between MAPK and Akt pathways in breast cancer cells

    KAUST Repository

    Suen, K.M.

    2017-12-06

    Scaffold proteins play important roles in regulating signalling network fidelity, the absence of which is often the basis for diseases such as cancer. In the present work, we show that the prototypical scaffold protein Shc is phosphorylated by the extracellular signal-regulated kinase, Erk. In addition, Shc threonine phosphorylation is specifically up-regulated in two selected triple-negative breast cancer (TNBC) cell lines. To explore how Erk-mediated threonine phosphorylation on Shc might play a role in the dysregulation of signalling events, we investigated how Shc affects pathways downstream of EGF receptor. Using an in vitro model and biophysical analysis, we show that Shc threonine phosphorylation is responsible for elevated Akt and Erk signalling, potentially through the recruitment of the 14-3-3 ζ and Pin-1 proteins.

  13. Nicotinamide mononucleotide inhibits JNK activation to reverse Alzheimer disease.

    Science.gov (United States)

    Yao, Zhiwen; Yang, Wenhao; Gao, Zhiqiang; Jia, Peng

    2017-04-24

    Amyloid-β (Aβ) oligomers have been accepted as major neurotoxic agents in the therapy of Alzheimer's disease (AD). It has been shown that the activity of nicotinamide adenine dinucleotide (NAD+) is related with the decline of Aβ toxicity in AD. Nicotinamide mononucleotide (NMN), the important precursor of NAD+, is produced during the reaction of nicotinamide phosphoribosyl transferase (Nampt). This study aimed to figure out the potential therapeutic effects of NMN and its underlying mechanisms in APPswe/PS1dE9 (AD-Tg) mice. We found that NMN gave rise to a substantial improvement in behavioral measures of cognitive impairments compared to control AD-Tg mice. In addition, NMN treatment significantly decreased β-amyloid production, amyloid plaque burden, synaptic loss, and inflammatory responses in transgenic animals. Mechanistically, NMN effectively controlled JNK activation. Furthermore, NMN potently progressed nonamyloidogenic amyloid precursor protein (APP) and suppressed amyloidogenic APP by mediating the expression of APP cleavage secretase in AD-Tg mice. Based on our findings, it was suggested that NMN substantially decreases multiple AD-associated pathological characteristically at least partially by the inhibition of JNK activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Serum cholesterol selectively regulates glucocorticoid sensitivity through activation of JNK.

    Science.gov (United States)

    Yang, Nan; Caratti, Giorgio; Ince, Louise M; Poolman, Toryn M; Trebble, Peter J; Holt, Cathy M; Ray, David W; Matthews, Laura C

    2014-11-01

    Glucocorticoids (Gc) are potent anti-inflammatory agents with wide clinical application. We have previously shown that increased serum concentration significantly attenuates regulation of a simple Gc-responsive reporter. We now find that glucocorticoid receptor (GR) regulation of some endogenous transactivated but not transrepressed genes is impaired, suggesting template specificity. Serum did not directly affect GR expression, activity or trafficking, implicating GR crosstalk with other signalling pathways. Indeed, a JNK inhibitor completely abolished the serum effect. We identified the Gc modulating serum component as cholesterol. Cholesterol loading mimicked the serum effect, which was readily reversed by JNK inhibition. Chelation of serum cholesterol with methyl-β-cyclodextrin or inhibition of cellular cholesterol synthesis with simvastatin potentiated the Gc response. To explore the effect in vivo we used ApoE(-/-) mice, a model of hypercholesterolaemia. Consistent with our in vitro studies, we find no impact of elevated cholesterol on the expression of GR, or on the hypothalamic-pituitary-adrenal axis, measured by dexamethasone suppression test. Instead we find selective Gc resistance on some hepatic target genes in ApoE(-/-) mice. Therefore, we have discovered an unexpected role for cholesterol as a selective modulator of Gc action in vivo. Taken together these findings reveal a new environmental constraint on Gc action with relevance to both inflammation and cancer. © 2014 The authors.

  15. Hybrid cells derived from breast epithelial cell/breast cancer cell fusion events show a differential RAF-AKT crosstalk

    Directory of Open Access Journals (Sweden)

    Özel Cem

    2012-04-01

    Full Text Available Abstract Background The biological phenomenon of cell fusion has been linked to several characteristics of tumour progression, including an enhanced metastatogenic capacity and an enhanced drug resistance of hybrid cells. We demonstrated recently that M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics spontaneously fused with MDA-MB-435-Hyg breast cancer cells, thereby giving rise to stable M13MDA435 hybrid cells, which are characterised by a unique gene expression profile and migratory behaviour. Here we investigated the involvement of the PLC-β/γ1, PI3K/AKT and RAS-RAF-ERK signal transduction cascades in the EGF and SDF-1α induced migration of two M13MDA435 hybrid cell clones in comparison to their parental cells. Results Analysis of the migratory behaviour by using the three-dimensional collagen matrix migration assay showed that M13SV1-EGFP-Neo cells as well as M13MDA435 hybrid cells, but not the breast cancer cell line, responded to EGF stimulation with an increased locomotory activity. By contrast, SDF-1α solely stimulated the migration of M13SV1-EGFP-Neo cells, whereas the migratory activity of the other cell lines was blocked. Analysis of signal transduction cascades revealed a putative differential RAF-AKT crosstalk in M13MDA435-1 and -3 hybrid cell clones. The PI3K inhibitor Ly294002 effectively blocked the EGF induced migration of M13MDA435-3 hybrid cells, whereas the EGF induced locomotion of M13MDA435-1 hybrid cells was markedly increased. Analysis of RAF-1 S259 phosphorylation, being a major mediator of the negative regulation of RAF-1 by AKT, showed decreased pRAF-1 S259 levels in LY294002 treated M13MDA435-1 hybrid cells. By contrast, pRAF-1 S259 levels remained unaltered in the other cell lines. Inhibition of PI3K/AKT signalling by Ly294002 relieves the AKT mediated phosphorylation of RAF-1, thereby restoring MAPK signalling. Conclusions Here we show that hybrid cells could evolve exhibiting a

  16. IL-33 attenuates anoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibition of PKCβ/JNK pathway.

    Directory of Open Access Journals (Sweden)

    Tao Rui

    Full Text Available Interleukin-33 (IL-33 is a new member of the IL-1 cytokine family. The objectives of present study are to assess whether IL-33 can protect cardiomyocytes from anoxia/reoxygenation (A/R-induced injury and the mechanism involved in the protection.Cardiomyocytes derived from either wild type or JNK1(-/- mice were challenged with an A/R with or without IL-33. Myocyte apoptosis was assessed by measuring caspase 3 activity, fragmented DNA and TUNEL staining. In addition, cardiomyocyte oxidative stress was assessed by measuring DHR123 oxidation; PKCβII and JNK phosphorylation were assessed with Western blot.Challenge of cardiomyocytes with an A/R resulted in cardiomyocyte oxidative stress, PKCβII and JNK phosphorylation, and myocyte apoptosis. Treatment of the cardiomyocytes with IL-33 attenuated the A/R-induced myocyte oxidative stress, prevented PKCβII and JNK phosphorylation and attenuated the A/R-induced myocyte apoptosis. The protective effect of the IL-33 did not show in cardiac myocytes with siRNA specific to PKCβII or myocytes deficient in JNK1. Inhibition of PKCβII prevented the A/R-induced JNK phosphorylation, but inhibition of JNK1 showed no effect on A/R-induced PKCβII phosphorylation.Our results indicate that IL-33 prevents the A/R-induced myocyte apoptosis through inhibition of PKCβ/JNK pathway.

  17. JNK1 protects against glucolipotoxicity-mediated beta-cell apoptosis

    DEFF Research Database (Denmark)

    Prause, Michala; Christensen, Dan Ploug; Billestrup, Nils

    2014-01-01

    Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity. Endoplas......Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity....... Endoplasmic reticulum (ER) and oxidative stress are elicited by palmitate and high glucose concentrations further potentiating JNK activity. Our aim was to determine the role of the JNK subtypes JNK1, JNK2 and JNK3 in palmitate and high glucose-induced β-cell apoptosis. We established insulin-producing INS1...... INS1 cells showed increased apoptosis and cleaved caspase 9 and 3 compared to non-sense shRNA expressing control INS1 cells when exposed to palmitate and high glucose associated with increased CHOP expression, ROS formation and Puma mRNA expression. JNK2 shRNA expressing INS1 cells did not affect...

  18. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuening [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States); Pesakhov, Stella [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Harrison, Jonathan S [Department of Medicine, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08903 (United States); Kafka, Michael; Danilenko, Michael [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Studzinski, George P, E-mail: studzins@njms.rutgers.edu [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States)

    2015-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D{sub 3} (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. - Highlights: • ERK5 has at least some functions in AML cells which are distinct from those of ERK1/2. • ERK5 activity negatively controls the expression of M-CSFR. • ERK5 retards the progression of differentiation from monocyte to functional macrophage.

  19. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kaifeng, E-mail: kaifeng_wangdr@sina.com [Cancer center, the Affiliated Hospital of Hangzhou Normal University, Hangzhou (China); Fan, Yaohua [Oncology Department, No. 1 Hospital of Jiaxing, Zhejiang Province, Jiaxing (China); Chen, Gongying [Oncology Department, The Affiliated Hospital Hangzhou Normal University, Hangzhou (China); Wang, Zhengrong [Taizhou Hospital, Zhejiang Province, Taizhou (China); Kong, Dexin; Zhang, Peng [Oncology Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou (China)

    2016-05-27

    The search for novel anti-hepatocellular carcinoma (HCC) agents is important. Mammalian target of rapamycin (mTOR) hyper-activation plays a pivotal role in promoting HCC tumorigenesis and chemoresistance. The current preclinical study evaluated the potential anti-HCC activity by a potent mTOR kinase inhibitor, WAY-600. We showed that WAY-600 inhibited survival and proliferation of HCC cell lines (HepG2 and Huh7) and primary human HCC cells. Caspase-dependent apoptosis was activated by WAY-600 in above HCC cells. Reversely, caspase inhibitors largely attenuated WAY-600's lethality against HCC cells. At the signaling level, WAY-600 blocked mTOR complex 1/2 (mTORC1/2) assemble and activation, yet activated MEK-ERK pathway in HCC cells. MEK-ERK inhibitors, PD-98059 and MEK-162, or MEK1/2 shRNA significantly potentiated WAY-600's cytotoxicity in HCC cells. Further studies showed that WAY-600 intraperitoneal (i.p.) administration in nude mice inhibited p-AKT Ser-473 and displayed significant anti-cancer activity against HepG2 xenografts. Remarkably, co-administration of MEK-162 further potentiated WAY-600's anti-HCC activity in vivo. These preclinical results demonstrate the potent anti-HCC activity by WAY-600, either alone or with MEK-ERK inhibitors. -- Highlights: •WAY-600 inhibits HCC cell survival and proliferation in vitro. •WAY-600 activates caspase-dependent apoptosis in HCC cells. •WAY-600 blocks mTORC1/2 activation, but activates MEK-ERK in HCC cells. •MEK-ERK inhibitors or MEK1/2 shRNA enhances WAY-600's cytotoxicity against HCC cells. •MEK-162 co-administration potentiates WAY-600-induced the anti-HepG2 tumor efficacy.

  20. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models

    International Nuclear Information System (INIS)

    Wang, Kaifeng; Fan, Yaohua; Chen, Gongying; Wang, Zhengrong; Kong, Dexin; Zhang, Peng

    2016-01-01

    The search for novel anti-hepatocellular carcinoma (HCC) agents is important. Mammalian target of rapamycin (mTOR) hyper-activation plays a pivotal role in promoting HCC tumorigenesis and chemoresistance. The current preclinical study evaluated the potential anti-HCC activity by a potent mTOR kinase inhibitor, WAY-600. We showed that WAY-600 inhibited survival and proliferation of HCC cell lines (HepG2 and Huh7) and primary human HCC cells. Caspase-dependent apoptosis was activated by WAY-600 in above HCC cells. Reversely, caspase inhibitors largely attenuated WAY-600's lethality against HCC cells. At the signaling level, WAY-600 blocked mTOR complex 1/2 (mTORC1/2) assemble and activation, yet activated MEK-ERK pathway in HCC cells. MEK-ERK inhibitors, PD-98059 and MEK-162, or MEK1/2 shRNA significantly potentiated WAY-600's cytotoxicity in HCC cells. Further studies showed that WAY-600 intraperitoneal (i.p.) administration in nude mice inhibited p-AKT Ser-473 and displayed significant anti-cancer activity against HepG2 xenografts. Remarkably, co-administration of MEK-162 further potentiated WAY-600's anti-HCC activity in vivo. These preclinical results demonstrate the potent anti-HCC activity by WAY-600, either alone or with MEK-ERK inhibitors. -- Highlights: •WAY-600 inhibits HCC cell survival and proliferation in vitro. •WAY-600 activates caspase-dependent apoptosis in HCC cells. •WAY-600 blocks mTORC1/2 activation, but activates MEK-ERK in HCC cells. •MEK-ERK inhibitors or MEK1/2 shRNA enhances WAY-600's cytotoxicity against HCC cells. •MEK-162 co-administration potentiates WAY-600-induced the anti-HepG2 tumor efficacy.

  1. Down-Regulation by Resveratrol of Basic Fibroblast Growth Factor-Stimulated Osteoprotegerin Synthesis through Suppression of Akt in Osteoblasts

    Science.gov (United States)

    Kuroyanagi, Gen; Otsuka, Takanobu; Yamamoto, Naohiro; Matsushima-Nishiwaki, Rie; Nakakami, Akira; Mizutani, Jun; Kozawa, Osamu; Tokuda, Haruhiko

    2014-01-01

    It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2) on osteoprotegerin (OPG) synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP) kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation. PMID:25290095

  2. The PPARα - FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway

    Science.gov (United States)

    Vernia, Santiago; Cavanagh-Kyros, Julie; Garcia-Haro, Luisa; Sabio, Guadalupe; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Xu, Jia; Shulha, Hennady P.; Garber, Manuel; Gao, Guangping; Davis, Roger J.

    2014-01-01

    The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). JNK therefore causes decreased expression of PPARα target genes that increase fatty acid oxidation / ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα - FGF21 hormone axis suppresses the metabolic effects of JNK-deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver. PMID:25043817

  3. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer.

    Science.gov (United States)

    Zinn, Rebekah L; Gardner, Eric E; Marchionni, Luigi; Murphy, Sara C; Dobromilskaya, Irina; Hann, Christine L; Rudin, Charles M

    2013-06-01

    New therapies are critically needed to improve the outcome for patients with small cell lung cancer (SCLC). Insulin-like growth factor 1 receptor (IGF-1R) inhibition is a potential treatment strategy for SCLC: the IGF-1R pathway is commonly upregulated in SCLC and has been associated with inhibition of apoptosis and stimulation of proliferation through downstream signaling pathways, including phosphatidylinositol-3-kinase-Akt and mitogen-activated protein kinase. To evaluate potential determinants of response to IGF-1R inhibition, we assessed the relative sensitivity of 19 SCLC cell lines to OSI-906, a small molecule inhibitor of IGF-1R, and the closely related insulin receptor. Approximately one third of these cell lines were sensitive to OSI-906, with an IC50 OSI-906. Interestingly, OSI-906 sensitive lines expressed significantly lower levels of baseline phospho-ERK relative to resistant lines (P = 0.006). OSI-906 treatment resulted in dose-dependent inhibition of phospho-IGF-1R and phospho-Akt in both sensitive and resistant cell lines, but induced apoptosis and cell-cycle arrest only in sensitive lines. We tested the in vivo efficacy of OSI-906 using an NCI-H187 xenograft model and two SCLC patient xenografts in mice. OSI-906 treatment resulted in 50% tumor growth inhibition in NCI-H187 and 30% inhibition in the primary patient xenograft models compared with mock-treated animals. Taken together our data support IGF-1R inhibition as a viable treatment strategy for a defined subset of SCLC and suggest that low pretreatment levels of phospho-ERK may be indicative of sensitivity to this therapeutic approach. ©2013 AACR

  4. Discovering Functional ERK Substrates Regulating Caenorhabditis elegans Germline Development.

    Science.gov (United States)

    Chen, Jessica Jie; Arur, Swathi

    2017-01-01

    The Rat Sarcoma (RAS) GTPAse-mediated extracellular signal-regulated kinase (ERK) pathway regulates multiple biological processes across metazoans. In particular during Caenorhabditis elegans oogenesis, ERK signaling has been shown to regulate over seven distinct biological processes in a temporal and sequential manner. To fully elucidate how ERK signaling cascade orchestrates these different biological processes in vivo, identification of the direct functional substrates of the pathway is critical. This chapter describes the methods that were used to identify ERK substrates in a global manner and study their functions in the germline. These approaches can also be generally applied to study ERK-dependent biological processes in other systems.

  5. Nrf2-AKT interactions regulate heme oxygenase 1 expression in kidney epithelia during hypoxia and hypoxia-reoxygenation.

    Science.gov (United States)

    Potteti, Haranatha R; Tamatam, Chandramohan R; Marreddy, Rakesh; Reddy, Narsa M; Noel, Sanjeev; Rabb, Hamid; Reddy, Sekhar P

    2016-11-01

    Ischemia-reperfusion (IR)-induced kidney injury is a major clinical problem, but its underlying mechanisms remain unclear. The transcription factor known as nuclear factor, erythroid 2-like 2 (NFE2L2 or Nrf2) is crucial for protection against oxidative stress generated by pro-oxidant insults. We have previously shown that Nrf2 deficiency enhances susceptibility to IR-induced kidney injury in mice and that its upregulation is protective. Here, we examined Nrf2 target antioxidant gene expression and the mechanisms of its activation in both human and murine kidney epithelia following acute (2 h) and chronic (12 h) hypoxia and reoxygenation conditions. We found that acute hypoxia modestly stimulates and chronic hypoxia strongly stimulates Nrf2 putative target HMOX1 expression, but not that of other antioxidant genes. Inhibition of AKT1/2 or ERK1/2 signaling blocked this induction; AKT1/2 but not ERK1/2 inhibition affected Nrf2 levels in basal and acute hypoxia-reoxygenation states. Unexpectedly, chromatin immunoprecipitation assays revealed reduced levels of Nrf2 binding at the distal AB1 and SX2 enhancers and proximal promoter of HMOX1 in acute hypoxia, accompanied by diminished levels of nuclear Nrf2. In contrast, Nrf2 binding at the AB1 and SX2 enhancers significantly but differentially increased during chronic hypoxia and reoxygenation, with reaccumulation of nuclear Nrf2 levels. Small interfering-RNA-mediated Nrf2 depletion attenuated acute and chronic hypoxia-inducible HMOX1 expression, and primary Nrf2-null kidney epithelia showed reduced levels of HMOX1 induction in response to both acute and chronic hypoxia. Collectively, our data demonstrate that Nrf2 upregulates HMOX1 expression in kidney epithelia through a distinct mechanism during acute and chronic hypoxia reoxygenation, and that both AKT1/2 and ERK1/2 signaling are required for this process. Copyright © 2016 the American Physiological Society.

  6. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera).

    Science.gov (United States)

    Snell, Terry W; Johnston, Rachel K; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-04-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism's growth rate to the resource environment. Important remaining problems are the identification of the pathways that interact with TOR and their characterization as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal kinase (JNK) signaling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan by 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of the mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to the lifespan, we quantified mitochondria activity using the fluorescent

  7. Minireview: Targeting GPCR Activated ERK Pathways for Drug Discovery.

    Science.gov (United States)

    Eishingdrelo, Haifeng; Kongsamut, Sathapana

    2013-01-01

    It has become clear in recent years that multiple signal transduction pathways are employed upon GPCR activation. One of the major cellular effectors activated by GPCRs is extracellular signal-regulated kinase (ERK). Both G-protein and β-arrestin mediated signaling pathways can lead to ERK activation. However, depending on activation pathway, the subcellular destination of activated ERK1/2 may be different. G-protein -dependent ERK activation results in the translocation of active ERK to the nucleus, whereas ERK activated via an arrestin-dependent mechanism remains largely in the cytoplasm. The subcellular location of activated ERK1/2 determines the downstream signaling cascade. Many substrates of ERK1/2 are found in the nucleus: nuclear transcription factors that participate in gene transcription, cell proliferation and differentiation. ERK1/2 substrates are also found in cytosol and other cellular organelles: they may play roles in translation, mitosis, apoptosis and cross-talk with other signaling pathways. Therefore, determining specific subcellular locations of activated ERK1/2 mediated by GPCR ligands would be important in correlating signaling pathways with cellular physiological functions. While GPCR-stimulated selective ERK pathway activation has been studied in several receptor systems, exploitation of these different signaling cascades for therapeutics has not yet been seriously pursued. Many old drug candidates were identified from screens based on G-protein signaling assays, and their activity on β-arrestin signaling pathways being mostly unknown, especially regarding their subcellular ERK pathways. With today's knowledge of complicated GPCR signaling pathways, drug discovery can no longer rely on single-pathway approaches. Since ERK activation is an important signaling pathway and associated with many physiological functions, targeting the ERK pathway, especially specific subcellular activation pathways should provide new avenues for GPCR drug

  8. Disassociation of insulin action and Akt/FOXO signaling in skeletal muscle of older Akt-deficient mice

    Science.gov (United States)

    Merrell, Erin; Cinquino, Nicholas; Gaugler, Megan; Ng, Lily

    2012-01-01

    The purpose of the present study was to determine the effect of Akt gene ablation on Akt/Forkhead Box O (FOXO) signaling and atrogene expression. This was accomplished by studying wild-type (WT) and isoform-specific Akt knockout (Akt1−/− and Akt2−/−) mice. The ability of insulin to promote Akt phosphorylation on Ser473 was significantly lower in extensor digitorum longus (EDL) and soleus muscles from Akt1−/− and Akt2−/− mice compared with WT mice. Total Akt1 protein levels were significantly lower in EDL muscles of Akt2−/− mice compared with WT mice, a process that appears to be posttranscriptionally regulated as Akt1 mRNA levels were unchanged. The loss of Akt1 protein in EDL muscles of Akt2−/− mice does not appear to be due to insulin resistance because 4 mo of a high-fat diet failed to reduce Akt1 protein levels in muscles of WT mice. Although FOXO3a phosphorylation and atrogin-1 expression were unaltered in muscles of Akt1−/− and Akt2−/− mice, the expression of the atrogenes Bnip3 and gabarapl were significantly elevated in muscles of both Akt1 and Akt2 knockout mice. Finally, the expression of striated activator of Rho signaling was significantly increased in muscles of Akt2−/− mice compared with Akt1−/− and WT mice. Our results demonstrate that the ablation of Akt isoforms disassociates insulin action and Akt/FOXO signaling to atrogenes. PMID:23100026

  9. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China); Guo, T.Q. [School of Life Sciences, Jilin University, Changchun (China); Wang, Z.Y. [State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun (China); Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J. [School of Life Sciences, Jilin University, Changchun (China); Zhang, X.L. [Faculty of ScienceNational University of Singapore (Singapore); Liu, Y. [School of Life Sciences, Jilin University, Changchun (China); Teng, L.S. [School of Life Sciences, Jilin University, Changchun (China); The State Engineering Laboratory of AIDS Vaccine, Jilin University, Changchun (China)

    2014-07-25

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases.

  10. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells

    International Nuclear Information System (INIS)

    Wang, D.; Guo, T.Q.; Wang, Z.Y.; Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J.; Zhang, X.L.; Liu, Y.; Teng, L.S.

    2014-01-01

    The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases

  11. Regulation of synaptic MAPK/ERK phosphorylation in the rat striatum and medial prefrontal cortex by dopamine and muscarinic acetylcholine receptors.

    Science.gov (United States)

    Xue, Bing; Mao, Li-Min; Jin, Dao-Zhong; Wang, John Q

    2015-10-01

    Dopamine and acetylcholine are two principal transmitters in the striatum and are usually balanced to modulate local neural activity and to maintain striatal homeostasis. This study investigates the role of dopamine and muscarinic acetylcholine receptors in the regulation of a central signaling protein, i.e., the mitogen-activated protein kinase (MAPK). We focus on the synaptic pool of MAPKs because of the fact that these kinases reside in peripheral synaptic structures in addition to their somatic locations. We show that a systemic injection of dopamine D1 receptor (D1R) agonist SKF81297 enhances phosphorylation of extracellular signal-regulated kinases (ERKs), a prototypic subclass of MAPKs, in the adult rat striatum. Similar results were observed in another dopamine-responsive region, the medial prefrontal cortex (mPFC). The dopamine D2 receptor agonist quinpirole had no such effects. Pretreatment with a positive allosteric modulator (PAM) of muscarinic acetylcholine M4 receptors (M4Rs), VU0152100, attenuated the D1R agonist-stimulated ERK phosphorylation in the two regions, whereas the PAM itself did not alter basal ERK phosphorylation. All drug treatments had no effect on phosphorylation of c-Jun N-terminal kinases (JNKs), another MAPK subclass, in the striatum and mPFC. These results demonstrate that dopamine and acetylcholine are integrated to control synaptic ERK but not JNK activation in striatal and mPFC neurons in vivo. Activation of M4Rs exerts an inhibitory effect on the D1R-mediated upregulation of synaptic ERK phosphorylation. © 2015 Wiley Periodicals, Inc.

  12. MEK-ERK inhibition potentiates WAY-600-induced anti-cancer efficiency in preclinical hepatocellular carcinoma (HCC) models.

    Science.gov (United States)

    Wang, Kaifeng; Fan, Yaohua; Chen, Gongying; Wang, Zhengrong; Kong, Dexin; Zhang, Peng

    2016-05-27

    The search for novel anti-hepatocellular carcinoma (HCC) agents is important. Mammalian target of rapamycin (mTOR) hyper-activation plays a pivotal role in promoting HCC tumorigenesis and chemoresistance. The current preclinical study evaluated the potential anti-HCC activity by a potent mTOR kinase inhibitor, WAY-600. We showed that WAY-600 inhibited survival and proliferation of HCC cell lines (HepG2 and Huh7) and primary human HCC cells. Caspase-dependent apoptosis was activated by WAY-600 in above HCC cells. Reversely, caspase inhibitors largely attenuated WAY-600's lethality against HCC cells. At the signaling level, WAY-600 blocked mTOR complex 1/2 (mTORC1/2) assemble and activation, yet activated MEK-ERK pathway in HCC cells. MEK-ERK inhibitors, PD-98059 and MEK-162, or MEK1/2 shRNA significantly potentiated WAY-600's cytotoxicity in HCC cells. Further studies showed that WAY-600 intraperitoneal (i.p.) administration in nude mice inhibited p-AKT Ser-473 and displayed significant anti-cancer activity against HepG2 xenografts. Remarkably, co-administration of MEK-162 further potentiated WAY-600's anti-HCC activity in vivo. These preclinical results demonstrate the potent anti-HCC activity by WAY-600, either alone or with MEK-ERK inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. cAMP-dependent proteolysis of GATA-6 is linked to JNK-signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, Hironori [Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694 (Japan); Maeda, Masatomo, E-mail: mmaeda@iwate-med.ac.jp [Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6. Black-Right-Pointing-Pointer Effect of a JNK activator anisomycin on the proteolysis was examined. Black-Right-Pointing-Pointer Anisomycin stimulated the export of nuclear GATA-6 into the cytoplasm. Black-Right-Pointing-Pointer JNK activated the CRM1 mediated nuclear export of GATA-6. Black-Right-Pointing-Pointer JNK further stimulated slowly the degradation of GATA-6 by cytoplasmic proteasomes. -- Abstract: A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6 by proteasomes around its IC50. We further examined the effects of SP600125 on the degradation of GATA-6 in detail, since an activator of JNK (anisomycin) is available. Interestingly, anisomycin immediately stimulated the export of nuclear GATA-6 into the cytoplasm, and then the cytoplasmic content of GATA-6 decreased slowly through degradation by proteasomes. Such an effect of anisomycin was inhibited by SP600125, indicating that the observed phenomenon might be linked to the JNK signaling pathway. The inhibitory effect of SP600125 could not be ascribed to the inhibition of PKA, since phosphorylation of CREB occurred in the presence of dbcAMP and SP600125. The nuclear export of GATA-6 was inhibited by leptomycin B, suggesting that CRM1-mediated export could be activated by anisomycin. Furthermore, it seems likely that the JNK activated by anisomycin may stimulate not only the nuclear export of GATA-6 through CRM1 but also the degradation of GATA-6 by cytoplasmic proteasomes. In contrast, A-kinase might activate only the latter process through JNK.

  14. Role of Stress Kinase JNK in Binge Alcohol-Evoked Atrial Arrhythmia.

    Science.gov (United States)

    Yan, Jiajie; Thomson, Justin K; Zhao, Weiwei; Gao, Xianlong; Huang, Fei; Chen, Biyi; Liang, Qingrong; Song, Long-Sheng; Fill, Michael; Ai, Xun

    2018-04-03

    Excessive binge alcohol drinking has acute cardiac arrhythmogenic effects, including promotion of atrial fibrillation (AF), which underlies "Holiday Heart Syndrome." The mechanism that couples binge alcohol abuse with AF susceptibility remains unclear. We previously reported stress-activated c-Jun N-terminal kinase (JNK) signaling contributes to AF development. This is interesting because JNK is implicated in alcohol-caused organ malfunction beyond the heart. The purpose of this study was to detail how JNK promotes binge alcohol-evoked susceptibility to AF. The authors found binge alcohol-exposure leads to activated JNK, specifically JNK2. Furthermore, binge alcohol induces AF (24- vs. 1.8-Hz burst pacing-induced episodes per attempt per animal), higher incidence of diastolic intracellular Ca 2+ activity (Ca 2+ waves, sarcoplasmic reticulum [SR] Ca 2+ leakage), and membrane voltage (V m ) and systolic Ca 2+ release spatiotemporal heterogeneity (Δt Vm-Ca ). These changes were completely eliminated by JNK inhibition both in vivo and in vitro. calmodulin kinase II (CaMKII) is a proarrhythmic molecule known to drive SR Ca 2+ mishandling. The authors report for the first time that binge alcohol activates JNK2, which subsequently phosphorylates the CaMKII protein, enhancing CaMKII-driven SR Ca 2+ mishandling. CaMKII inhibition eliminates binge alcohol-evoked arrhythmic activities. Our studies demonstrate that binge alcohol exposure activates JNK2 in atria, which then drives CaMKII activation, prompting aberrant Ca 2+ waves and, thus, enhanced susceptibility to atrial arrhythmia. Our results reveal a previously unrecognized form of alcohol-driven kinase-on-kinase proarrhythmic crosstalk. Atrial JNK2 function represents a potential novel therapeutic target to treat and/or prevent AF. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Epidermal growth factor increases the expression of Nestin in rat reactive astrocytes through the Ras-Raf-ERK pathway.

    Science.gov (United States)

    Gao, Wei-Lu; Tian, Feng; Zhang, Sheng-Quan; Zhang, Hui; Yin, Zong-Sheng

    2014-03-06

    Astrocytes undergo de-differentiation and become activated during a response to injury. Several studies have found that reactive astrocytes re-express markers, such as Nestin, which are normally expressed in neural stem cells. It was recently shown that the epidermal growth factor receptor (EGFR) is up-regulated in astrocytes after injury and promotes reactive astrocyte transformation. However, the signaling pathways involved in this process have not been elucidated. In the present study, we showed that Nestin was strongly expressed in reactive astrocytes. Furthermore, as shown by immunoblot analyses, epidermal growth factor (EGF) regulated Nestin expression through EGFR activation. Inhibition of the PLCγ, PI3K, ERK, p38, and JNK pathways did not affect Nestin expression in reactive astrocytes. However, treatment with a Raf-1 inhibitor inhibited Nestin expression in a concentration-dependent manner. Taken together, the signaling analyses revealed that EGF induced and regulated Nestin expression through activation of the Ras-Raf--ERK signaling pathway. This is the first study to show that Nestin expression is regulated by an extracellular signaling molecule in reactive astrocytes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Inactivation of JNK2 as carcinogenic factor in colitis-associated and sporadic colorectal carcinogenesis.

    Science.gov (United States)

    Lessel, Wiebke; Silver, Andrew; Jechorek, Doerthe; Guenther, Thomas; Roehl, Friedrich-Wilhelm; Kalinski, Thomas; Roessner, Albert; Poehlmann-Nitsche, Angela

    2017-05-01

    We recently reported that dysregulated c-Jun N-terminal kinases (JNK) activity causes defective cell cycle checkpoint control, inducing neoplastic transformation in a cellular ulcerative colitis (UC) model. In the quiescent chronic phase of UC, p-p54 JNK was down-regulated and p-p46 JNK was up-regulated. Both were up-regulated in the acute phase. Consequently, increased p21WAF1 and γ-H2AX, two JNK-regulated proteins, induced cell cycle arrest. Their down-regulation led to checkpoint override, causing increased proliferation and undetected DNA damage in quiescent chronic phase, all characteristics of tumorigenesis. We investigated expression of p-JNK2, p-JNK1-3, p21WAF1, γ-H2AX and Ki67 by immunohistochemistry in cases of quiescent UC (QUC), active UC (AUC), UC-dysplasia and UC-related colorectal carcinoma (UC-CRC). Comparison was made to normal healthy colorectal mucosa, sporadic adenoma and colorectal carcinoma (CRC), diverticulitis and Crohns disease (CD). We found p-JNK2 up-regulation in AUC and its early down-regulation in UC-CRC and CRC carcinogenesis. With down-regulated p-JNK2, p21WAF1 was also decreased. Ki67 was inversely expressed, showing increased proliferation early in UC-CRC and CRC carcinogenesis. p-JNK1-3 was increased in AUC and QUC. Less increased γ-H2AX in UC-CRC compared to CRC gave evidence that colitis-triggered inflammation masks DNA damage, thus contributing to neoplastic transformation. We hypothesize that JNK-dependent cell cycle arrest is important in AUC, while chronic inflammation causes dysregulated JNK activity in quiescent phase that may contribute to checkpoint override, promoting UC carcinogenesis. We suggest restoring p-JNK2 expression as a novel therapeutic strategy to early prevent the development of UC-related cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway.

    Science.gov (United States)

    Vasilcanu, Daiana; Girnita, Ada; Girnita, Leonard; Vasilcanu, Radu; Axelson, Magnus; Larsson, Olle

    2004-10-14

    The insulin-like growth factor-1 receptor (IGF-1R) is crucial for many functions in neoplastic cells, for example, antiapoptosis. Recently, we demonstrated that the cyclolignan PPP efficiently inhibited phosphorylation of IGF-1R without interfering with insulin receptor activity. PPP preferentially reduced phosphorylated Akt, as compared to phosphorylated Erk1/2, and caused apoptosis. Now, we aimed to investigate how PPP inhibits the IGF-1R tyrosine kinase (IGF-1RTK) and the PI3K/Akt apoptotic pathway. Using a baculovirus driven IGF-1RTK we found that PPP interfered with tyrosine phosphorylation in the activation loop of the kinase domain. Specifically, it blocked phosphorylation of tyrosine (Y) 1136, while sparing the two others (Y1131 and Y1135). To explore the impact of inhibition of Y1136 on Akt phosphorylation we transfected P6 cells (overexpressing IGF-1R) and malignant melanoma cells with different IGF-1R mutants, including Y1136F (tyrosine replaced by phenylalanine). Y1136F was found to strongly decrease IGF-1 stimulated phosphorylation of Akt. Conversely, Akt phosphorylation was weakly affected in the Y1131F transfectant. Taken together, our data suggest that the preferential inhibition of phosphorylated Akt, after PPP treatment, may be due to specific inhibition of Y1136. PPP was proven not to interfere directly with Akt or any of its downstream molecules in the apoptotic pathway.

  18. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells.

    Science.gov (United States)

    Häggblad Sahlberg, Sara; Mortensen, Anja C; Haglöf, Jakob; Engskog, Mikael K R; Arvidsson, Torbjörn; Pettersson, Curt; Glimelius, Bengt; Stenerlöw, Bo; Nestor, Marika

    2017-01-01

    AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.

  19. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    International Nuclear Information System (INIS)

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Shin, Hwa K.; Bae, Sun S.; Kim, Chi D.

    2010-01-01

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B 4 (LTB 4 ) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT 1 (cysLT 1 ) receptor antagonist, REV-5901 as well as a BLT 1 receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB 4 and cysLT (LTC 4 and LTD 4 ) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB 4 and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  20. Ubiquitous hazardous metal lead induces TNF-α in human phagocytic THP-1 cells: Primary role of ERK 1/2

    International Nuclear Information System (INIS)

    Khan, Mohd Imran; Islam, Najmul; Sahasrabuddhe, Amogh A.; Mahdi, Abbas Ali; Siddiqui, Huma; Ashquin, Mohd; Ahmad, Iqbal

    2011-01-01

    Induction of tumor necrosis factor-α (TNF-α) in response to lead (Pb) exposure has been implicated in its immunotoxicity. However, the molecular mechanism by which Pb upregulates the level of TNF-α is wagely known. An attempt was therefore made to elucidate the mechanistic aspect of TNF-α induction, mainly focusing transcriptional and post transcriptional regulation via mitogen activated protein kinases (MAPKs) activation. We observed that exposure of Pb to human monocytic THP-1 cells resulted in significant enhanced production of TNF-α m-RNA and protein secretion. Moreover, the stability of TNF-α m-RNA was also increased as indicated by its half life. Notably, activation of ERK 1/2, p38 and JNK in Pb exposed THP-1 was also evident. Specific inhibitor of ERK1/2, PD 98059 caused significant inhibition in production and stability of TNF-α m-RNA. However, SB 203580 partially inhibited production and stability of TNF-α m-RNA. Interestingly, a combined exposure of these two inhibitors completely blocked modulation of TNF-α m-RNA. Data tends to suggest that expression and stability of TNF-α induction due to Pb exposure is mainly regulated through ERK. Briefly, these observations are useful in understanding some mechanistic aspects of proinflammatory and immunotoxicity of Pb, a globally acknowledged key environmental contaminant.

  1. Ubiquitous hazardous metal lead induces TNF-{alpha} in human phagocytic THP-1 cells: Primary role of ERK 1/2

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohd Imran [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India); Islam, Najmul [Department of Biochemistry, J.N Medical College, Aligarh Muslim University, Aligarh (India); Sahasrabuddhe, Amogh A. [Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow (India); Mahdi, Abbas Ali [Department of Biochemistry, C.S.M. Medical University, Lucknow (India); Siddiqui, Huma; Ashquin, Mohd [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India); Ahmad, Iqbal, E-mail: ahmadi@sify.com [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India)

    2011-05-15

    Induction of tumor necrosis factor-{alpha} (TNF-{alpha}) in response to lead (Pb) exposure has been implicated in its immunotoxicity. However, the molecular mechanism by which Pb upregulates the level of TNF-{alpha} is wagely known. An attempt was therefore made to elucidate the mechanistic aspect of TNF-{alpha} induction, mainly focusing transcriptional and post transcriptional regulation via mitogen activated protein kinases (MAPKs) activation. We observed that exposure of Pb to human monocytic THP-1 cells resulted in significant enhanced production of TNF-{alpha} m-RNA and protein secretion. Moreover, the stability of TNF-{alpha} m-RNA was also increased as indicated by its half life. Notably, activation of ERK 1/2, p38 and JNK in Pb exposed THP-1 was also evident. Specific inhibitor of ERK1/2, PD 98059 caused significant inhibition in production and stability of TNF-{alpha} m-RNA. However, SB 203580 partially inhibited production and stability of TNF-{alpha} m-RNA. Interestingly, a combined exposure of these two inhibitors completely blocked modulation of TNF-{alpha} m-RNA. Data tends to suggest that expression and stability of TNF-{alpha} induction due to Pb exposure is mainly regulated through ERK. Briefly, these observations are useful in understanding some mechanistic aspects of proinflammatory and immunotoxicity of Pb, a globally acknowledged key environmental contaminant.

  2. MEK/ERK pathway activation by insulin receptor isoform alteration is associated with the abnormal proliferation and differentiation of intestinal epithelial cells in diabetic mice.

    Science.gov (United States)

    Ouyang, Hui; Yang, Hong-Sheng; Yu, Tao; Shan, Ti-Dong; Li, Jie-Yao; Huang, Can-Ze; Zhong, Wa; Xia, Zhong-Sheng; Chen, Qi-Kui

    2016-02-01

    In previous studies, we have reported the abnormal proliferation and differentiation of intestinal epithelial cells (IECs) in diabetes mellitus (DM) mice. The insulin receptor (IR) and its downstream mitogen-activated protein kinase kinase (MAPKK also known as MEK)/extracellular-regulated protein kinase (ERK) pathway is a classic pathway associated with cell proliferation and differentiation. The purpose of the present study is to investigate the role of the MEK/ERK pathway in abnormal proliferation and differentiation of IECs in DM mice. DM mouse models were induced by intraperitoneal injection of streptozotocin. The expression levels of the IR and its isoforms in IECs of DM mice and in IEC-6 cells were investigated. To ensure that the downstream pathways were monitored, QPCR and Western blotting were performed to detect the expression levels of MEK1/2, ERK1/2, PI3K, and Akt. Moreover, siRNA for IR-A and U0126, a specific inhibitor of MEK, were used to further investigate the relationship between the IR/MEK/ERK pathway and abnormal proliferation and differentiation of IECs in DM mice. In DM mice, excessive proliferation, disturbed differentiation, and a high ratio of IR-A/IR-B were detected in IECs. The expression levels of MEK1, MEK2, and ERK1/2 and their phosphorylated proteins in DM mice were significantly higher than those in the control group (P < 0.05), which could be offset by using siRNA for IR-A. The abnormal proliferation and differentiation of IECs in DM mice were normalized after the in vivo administration of U0126. The abnormal proliferation and differentiation of IECs in DM mice are associated with high IR-A/IR-B ratio and increased IR/MEK/ERK pathway activity.

  3. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling

    International Nuclear Information System (INIS)

    Gao, Zhan; Bu, Yongjun; Liu, Xiaozhuan; Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling; Li, Qiaoyun; Fu, Jianhong; Yu, Zengli

    2016-01-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. - Highlights: • TCDD exposure promoted cell proliferation and EMT of hFPECs; • AhR signaling was activated and required for TCDD-induced EMT; • TCDD-mediated EMT of hFPECs involved the activation of EGFR/ERK signaling; • TCDD exposure had no effect on TGFβ3/Smad pathway.

  4. PRMT8 Controls the Pluripotency and Mesodermal Fate of Human Embryonic Stem Cells By Enhancing the PI3K/AKT/SOX2 Axis.

    Science.gov (United States)

    Jeong, Ho-Chang; Park, Soon-Jung; Choi, Jong-Jin; Go, Young-Hyun; Hong, Soon-Ki; Kwon, Ok-Seon; Shin, Joong-Gon; Kim, Rae-Kwon; Lee, Mi-Ok; Lee, Su-Jae; Shin, Hyoung Doo; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2017-09-01

    Basic fibroblast growth factor (bFGF) supplementation is critical to maintain the pluripotency of human pluripotent stem cells (hPSCs) through activation of PI3K/AKT, rather than MEK/ERK pathway. Thus, elaborate molecular mechanisms that preserve PI3K/AKT signaling upon bFGF stimulation may exist in hPSCs. Protein arginine methyltransferase 8 (PRMT8) was expressed and then its level gradually decreased during spontaneous differentiation of human embryonic stem cells (hESCs). PRMT8 loss- or gain-of-function studies demonstrated that PRMT8 contributed to longer maintenance of hESC pluripotency, even under bFGF-deprived conditions. Direct interaction of membrane-localized PRMT8 with p85, a regulatory subunit of PI3K, was associated with accumulation of phosphoinositol 3-phosphate and consequently high AKT activity. Furthermore, the SOX2 induction, which was controlled by the PRMT8/PI3K/AKT axis, was linked to mesodermal lineage differentiation. Thus, we propose that PRMT8 in hESCs plays an important role not only in maintaining pluripotency but also in controlling mesodermal differentiation through bFGF signaling toward the PI3K/AKT/SOX2 axis. Stem Cells 2017;35:2037-2049. © 2017 AlphaMed Press.

  5. Role of the JNK Pathway in Varicella-Zoster Virus Lytic Infection and Reactivation

    Science.gov (United States)

    Kurapati, Sravya; Sadaoka, Tomohiko; Rajbhandari, Labchan; Jagdish, Balaji; Shukla, Priya; Ali, Mir A.; Kim, Yong Jun; Lee, Gabsang; Cohen, Jeffrey I.

    2017-01-01

    ABSTRACT Mechanisms of neuronal infection by varicella-zoster virus (VZV) have been challenging to study due to the relatively strict human tropism of the virus and the paucity of tractable experimental models. Cellular mitogen-activated protein kinases (MAPKs) have been shown to play a role in VZV infection of nonneuronal cells, with distinct consequences for infectivity in different cell types. Here, we utilize several human neuronal culture systems to investigate the role of one such MAPK, the c-Jun N-terminal kinase (JNK), in VZV lytic infection and reactivation. We find that the JNK pathway is specifically activated following infection of human embryonic stem cell-derived neurons and that this activation of JNK is essential for efficient viral protein expression and replication. Inhibition of the JNK pathway blocked viral replication in a manner distinct from that of acyclovir, and an acyclovir-resistant VZV isolate was as sensitive to the effects of JNK inhibition as an acyclovir-sensitive VZV isolate in neurons. Moreover, in a microfluidic-based human neuronal model of viral latency and reactivation, we found that inhibition of the JNK pathway resulted in a marked reduction in reactivation of VZV. Finally, we utilized a novel technique to efficiently generate cells expressing markers of human sensory neurons from neural crest cells and established a critical role for the JNK pathway in infection of these cells. In summary, the JNK pathway plays an important role in lytic infection and reactivation of VZV in physiologically relevant cell types and may provide an alternative target for antiviral therapy. IMPORTANCE Varicella-zoster virus (VZV) has infected over 90% of people worldwide. While primary infection leads to the typically self-limiting condition of chickenpox, the virus can remain dormant in the nervous system and may reactivate later in life, leading to shingles or inflammatory diseases of the nervous system and eye with potentially severe

  6. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells.

    Science.gov (United States)

    Olianas, Maria C; Dedoni, Simona; Onali, Pierluigi

    2016-11-01

    Antidepressants have been shown to affect glial cell functions and intracellular signaling through mechanisms that are still not completely understood. In the present study, we provide evidence that in glial cells the lysophosphatidic acid (LPA) receptor LPA 1 mediates antidepressant-induced growth factor receptor transactivation, ERK1/2 signaling, and protection from oxidative stress. Thus, in C6 glioma cells and rat cortical astrocytes, ERK1/2 activation induced by either amitriptyline or mianserin was antagonized by Ki16425 and VPC 12249 (S), which block LPA 1 and LPA 3 receptors, and by AM966, which selectively blocks LPA 1 Cell depletion of LPA 1 with siRNA treatment markedly reduced antidepressant- and LPA-induced ERK1/2 phosphorylation. LPA 1 blockade prevented antidepressant-induced phosphorylation of the transcription factors CREB and Elk-1. Antidepressants and LPA signaling to ERK1/2 was abrogated by cell treatment with pertussis toxin and by the inhibition of fibroblast growth factor (FGF) receptor (FGF-R) and platelet-derived growth factor receptor (PDGF-R) tyrosine kinases. Both Ki16425 and AM966 suppressed antidepressant-induced phosphorylation of FGF-R. Moreover, blockade of LPA 1 or inhibition of FGF-R and PDGF-R activities prevented antidepressant-stimulated Akt and GSK-3β phosphorylations. Mianserin protected C6 glioma cells and astrocytes from apoptotic cell death induced by H 2 O 2 , as indicated by increased cell viability, decreased expression of cleaved caspase 3, reduced cleavage of poly-ADP ribose polymerase and inhibition of DNA fragmentation. The protective effects of mianserin were antagonized by AM966. These data indicate that LPA 1 constitutes a novel molecular target of the regulatory actions of tricyclic and tetracyclic antidepressants in glial cells. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Ultrafine particles from diesel engines induce vascular oxidative stress via JNK activation.

    Science.gov (United States)

    Li, Rongsong; Ning, Zhi; Cui, Jeffery; Khalsa, Bhavraj; Ai, Lisong; Takabe, Wakako; Beebe, Tyler; Majumdar, Rohit; Sioutas, Constantinos; Hsiai, Tzung

    2009-03-15

    Exposure to particulate air pollution is linked to increased incidences of cardiovascular diseases. Ambient ultrafine particles (UFP) from diesel vehicle engines have been shown to be proatherogenic in ApoE knockout mice and may constitute a major cardiovascular risk in humans. We posited that circulating nano-sized particles from traffic pollution sources induce vascular oxidative stress via JNK activation in endothelial cells. Diesel UFP were collected from a 1998 Kenworth truck. Intracellular superoxide assay revealed that these UFP dose-dependently induced superoxide (O(2)(-)) production in human aortic endothelial cells (HAEC). Flow cytometry showed that UFP increased MitoSOX red intensity specific for mitochondrial superoxide. Protein carbonyl content was increased by UFP as an indication of vascular oxidative stress. UFP also up-regulated heme oxygenase-1 (HO-1) and tissue factor (TF) mRNA expression, and pretreatment with the antioxidant N-acetylcysteine significantly decreased their expression. Furthermore, UFP transiently activated JNK in HAEC. Treatment with the JNK inhibitor SP600125 and silencing of both JNK1 and JNK2 with siRNA inhibited UFP-stimulated O(2)(-) production and mRNA expression of HO-1 and TF. Our findings suggest that JNK activation plays an important role in UFP-induced oxidative stress and stress response gene expression.

  8. Conformations of JNK3α splice variants analyzed by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Park, Ji Young; Yun, Youngjoo; Chung, Ka Young

    2017-03-01

    c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family that regulate apoptosis, inflammation, cytokine production, and metabolism. MAPKs undergo various splicing within their kinase domains. Unlike other MAPKs, JNKs have alternative splicing at the C-terminus, resulting in long and short variants. Functional or conformational effects due to the elongated C-terminal tail in the long splice variants have not been investigated nor has the conformation of the C-terminal tail been analyzed. Here, we analyzed the conformation of the elongated C-terminal tail and investigated conformational differences between long and short splice variants of JNKs using JNK3α2 and JNK3α1 as models. We adopted hydrogen/deuterium exchange mass spectrometry (HDX-MS) to analyze the conformation. HDX-MS revealed that the C-terminal tail is mostly intrinsically disordered, and that the conformation of the kinase domain of JNK3α2 is more dynamic than that of JNK3α1. The different conformation dynamics between long and short splice variants of JNK3α might affect the cellular functions of JNK3. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling.

    Science.gov (United States)

    Mann, Koren K; Davison, Kelly; Colombo, Myrian; Colosimo, April L; Diaz, Zuanel; Padovani, Alessandra M S; Guo, Qi; Scrivens, P James; Gao, Wenli; Mader, Sylvie; Miller, Wilson H

    2006-01-05

    Very little is known concerning the toxicity of antimony, despite its commercial use as a flame retardant and medical use as a treatment for parasitic infections. Our previous studies show that antimony trioxide (Sb(2)O(3)) induces growth inhibition in patient-derived acute promyelocytic leukemia (APL) cell lines, a disease in which a related metal, arsenic trioxide (As(2)O(3)), is used clinically. However, signaling pathways initiated by Sb(2)O(3) treatment remain undefined. Here, we show that Sb(2)O(3) treatment of APL cells is associated with increased apoptosis as well as differentiation markers. Sb(2)O(3)-induced reactive oxygen species (ROS) correlated with increased apoptosis. In addition, when we decreased the buffering capacity of the cell by depleting glutathione, ROS production and apoptosis was enhanced. Arsenic-resistant APL cells with increased glutathione levels exhibited increased cross-resistance to Sb(2)O(3). Based on studies implicating c-jun kinase (JNK) in the mediation of the response to As(2)O(3), we investigated the role for JNK in Sb(2)O(3)-induced apoptosis. Sb(2)O(3) activates JNK and its downstream target, AP-1. In fibroblasts with a genetic deletion in SEK1, an upstream regulator of JNK, Sb(2)O(3)-induced growth inhibition as well as JNK activation was decreased. These data suggest roles for ROS and the SEK1/JNK pathway in the cytotoxicity associated with Sb(2)O(3) exposure.

  10. WISP-2 in human gastric cancer and its potential metastatic suppressor role in gastric cancer cells mediated by JNK and PLC-γ pathways.

    Science.gov (United States)

    Ji, Jiafu; Jia, Shuqin; Jia, Yongning; Ji, Ke; Hargest, Rachel; Jiang, Wen G

    2015-09-15

    It has recently been shown that WISP proteins (Wnt-inducted secreted proteins), a group of intra- and extra-cellular regulatory proteins, have been implicated in the initiation and progression of a variety of tumour types including colorectal and breast cancer. However, the role of WISP proteins in gastric cancer (GC) cells and their clinical implications have not yet been elucidated. The expression of WISP molecules in a cohort of GC patients was analysed using real-time quantitative PCR and immunohistochemistry. The expression of a panel of recognised epithelial-mesenchymal transition (EMT) markers was quantified using Q-PCR in paired tumour and normal tissues. WISP-2 knockdown (kd) sublines using ribozyme transgenes were created in the GC cell lines AGS and HGC27. Subsequently, several biological functions, including cell growth, adhesion, migration and invasion, were studied. Potential pathways for the interaction of EMT, extracellular matrix and MMP were evaluated. Overexpression of WISP-2 was detected in GC and significantly correlated with early tumour node-metastasis staging, differentiation status and positively correlated with overall survival and disease-free survival of the patients. WISP-2 expression was inversely correlated with that of Twist and Slug in paired samples. Kd of WISP-2 expression promoted the proliferation, migration and invasion of GC cells. WISP-2 suppressed GC cell metastasis through reversing EMT and suppressing the expression and activity of MMP9 and MMP2 via JNK and ERK. Cell motility analysis indicated that WISP-2 kd contributed to GC cells' motility and can be attenuated by PLC-γ and JNK small inhibitors. Increased expression of WISP-2 in GC is positively correlated with favourable clinical features and the survival of patients with GC and is a negative regulator of growth, migration and invasion in GC cells. These findings suggest that WISP-2 is a potential tumour suppressor in GC.

  11. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms.

    Science.gov (United States)

    Cho, Hyun-Ji; Jeong, Yun-Jeong; Park, Kwan-Kyu; Park, Yoon-Yub; Chung, Il-Kyung; Lee, Kwang-Gill; Yeo, Joo-Hong; Han, Sang-Mi; Bae, Young-Seuk; Chang, Young-Chae

    2010-02-17

    Bee venom has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and for the relief of pain in traditional oriental medicine. The purpose of this study is to elucidate the effects of bee venom on MMP-9 expression and determine possible mechanisms by which bee venom relieves or prevents the expression of MMP-9 during invasion and metastasis of breast cancer cells. We examined the expression and activity of MMP-9 and possible signaling pathway affected in PMA-induced MCF-7 cells. Bee venom was obtained from the National Institute of Agricultural Science and Technology of Korea. Matrigel invasion assay, wound-healing assay, zymography assay, western blot assay, electrophoretic mobility shift assay and luciferase gene assay were used for assessment. Bee venom inhibited cell invasion and migration, and also suppressed MMP-9 activity and expression, processes related to tumor invasion and metastasis, in PMA-induced MCF-7 cells. Bee venom specifically suppressed the phosphorylation of p38/JNK and at the same time, suppressed the protein expression, DNA binding and promoter activity of NF-kappaB. The levels of phosphorylated ERK1/2 and c-Jun did not change. We also investigated MMP-9 inhibition by melittin, apamin and PLA(2), representative single component of bee venom. We confirmed that PMA-induced MMP-9 activity was significantly decreased by melittin, but not by apamin and phospholipase A(2). These data demonstrated that the expression of MMP-9 was abolished by melittin, the main component of bee venom. Bee venom inhibits PMA-induced MMP-9 expression and activity by inhibition of NF-kappaB via p38 MAPK and JNK signaling pathways in MCF-7 cells. These results indicate that bee venom can be a potential anti-metastatic and anti-invasive agent. This useful effect may lead to future clinical research on the anti-cancer properties of bee venom. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant

    DEFF Research Database (Denmark)

    Frogne, Thomas; Benjaminsen, Rikke V; Sonne-Hansen, Katrine

    2008-01-01

    Seven fulvestrant resistant cell lines derived from the estrogen receptor alpha positive MCF-7 human breast cancer cell line were used to investigate the importance of epidermal growth factor receptor (ErbB1-4) signaling. We found an increase in mRNA expression of EGFR and the ErbB3/ErbB4 ligand...... activation was observed only in the parental MCF-7 cells. The downstream kinases pAkt and pErk were increased in five of seven and in all seven resistant cell lines, respectively. Treatment with the EGFR inhibitor gefitinib preferentially inhibited growth and reduced the S phase fraction in the resistant...

  13. Role of JNK isoforms in the development of neuropathic pain following sciatic nerve transection in the mouse

    Directory of Open Access Journals (Sweden)

    Manassero Giusi

    2012-05-01

    Full Text Available Abstract Background Current tools for analgesia are often only partially successful, thus investigations of new targets for pain therapy stimulate great interest. Consequent to peripheral nerve injury, c-Jun N-terminal kinase (JNK activity in cells of the dorsal root ganglia (DRGs and spinal cord is involved in triggering neuropathic pain. However, the relative contribution of distinct JNK isoforms is unclear. Using knockout mice for single isoforms, and blockade of JNK activity by a peptide inhibitor, we have used behavioral tests to analyze the contribution of JNK in the development of neuropathic pain after unilateral sciatic nerve transection. In addition, immunohistochemical labelling for the growth associated protein (GAP-43 and Calcitonin Gene Related Peptide (CGRP in DRGs was used to relate injury related compensatory growth to altered sensory function. Results Peripheral nerve injury produced pain–related behavior on the ipsilateral hindpaw, accompanied by an increase in the percentage of GAP43-immunoreactive (IR neurons and a decrease in the percentage of CGRP-IR neurons in the lumbar DRGs. The JNK inhibitor, D-JNKI-1, successfully modulated the effects of the sciatic nerve transection. The onset of neuropathic pain was not prevented by the deletion of a single JNK isoform, leading us to conclude that all JNK isoforms collectively contribute to maintain neuropathy. Autotomy behavior, typically induced by sciatic nerve axotomy, was absent in both the JNK1 and JNK3 knockout mice. Conclusions JNK signaling plays an important role in regulating pain threshold: the inhibition of all of the JNK isoforms prevents the onset of neuropathic pain, while the deletion of a single splice JNK isoform mitigates established sensory abnormalities. JNK inactivation also has an effect on axonal sprouting following peripheral nerve injury.

  14. Curcumin inhibits placental inflammation to ameliorate LPS-induced adverse pregnancy outcomes in mice via upregulation of phosphorylated Akt.

    Science.gov (United States)

    Zhou, Jianjun; Miao, Huishuang; Li, Xiujun; Hu, Yali; Sun, Haixiang; Hou, Yayi

    2017-02-01

    Excessive inflammation results in adverse pregnancy outcomes, including embryonic resorption, fetal growth restriction, and preeclampsia. This study investigated whether curcumin, a highly safe anti-inflammation drug, had protective effect on lipopolysaccharide (LPS)-treated pregnant mice. A mouse model of LPS-induced adverse pregnancy outcomes was generated by daily administering LPS from GD 13.5 to GD 16.5. Curcumin was given from GD 0.5. The effects of curcumin on maternal hypertension, proteinuria, pregnancy outcomes, as well as proinflammatory factors, chemokines, Akt, JNK, and P38 levels in placenta were examined. Systolic blood pressure (156.6 ± 5.056 versus 125.5 ± 3.617 mmHg; P LPS+curcumin-treated group, as compared with the LPS-treated group. Curcumin also increased the number of live pups, fetal weight, and placental weight, while it decreased fetal resorption rate. Moreover, increased placental TNF-α, IL-1β, and IL-6 expressions in LPS-treated group were significantly suppressed after curcumin administration. Furthermore, decreased p-Akt level in placenta induced by LPS was improved by curcumin. Of note, the expression of p-Akt increased by curcumin was accompanied by the decreased chemokines MCP-1 and MIP-1 levels and fewer CD68-positive macrophages in the placenta. Curcumin inhibited the expression of proinflammatory factors and macrophage infiltration in placenta and ameliorated LPS-induced adverse pregnancy outcomes in mice by inhibiting inflammation via upregulation of phosphorylated Akt.

  15. HER2 induces cell proliferation and invasion of non-small-cell lung cancer by upregulating COX-2 expression via MEK/ERK signaling pathway

    Directory of Open Access Journals (Sweden)

    Chi F

    2016-05-01

    Full Text Available Feng Chi, Rong Wu, Xueying Jin, Min Jiang, Xike Zhu Department of Medical Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China Abstract: HER2 positivity has been well studied in various cancers, but its importance in non-small-cell lung cancer (NSCLC is still being explored. In this study, quantitative reverse transcription polymerase chain reaction (qRT-PCR was performed to detect HER2 and COX-2 expression in NSCLC tissues. Then, pcDNA3.1-HER2 was used to overexpress HER2, while HER2 siRNA and COX-2 siRNA were used to silence HER2 and COX-2 expression. MTT assay and invasion assay were used to detect the effects of HER2 on cell proliferation and invasion. Our study revealed that HER2 and COX-2 expression were upregulated in NSCLC tissues and HER2 exhibited a significant positive correlation with the levels of COX-2 expression. Overexpression of HER2 evidently elevated COX-2 expression, while silencing of HER2 evidently decreased COX-2 expression. Furthermore, overexpressed HER2 induced the ERK phosphorylation, and this was abolished by the treatment with U0126, a pharmacological inhibitor of MEK, an upstream kinase of ERK. HER2-induced expression and promoter activity of COX-2 were also suppressed by U0126, suggesting that the MEK/ERK signaling pathway regulates COX-2 expression. In addition, HER2 induced activation of AKT signaling pathway, which was reversed by pretreatment with U0126 and COX-2 siRNA. MTT and invasion assays revealed that HER2 induced cell proliferation and invasion that were reversed by pretreatment with U0126 and COX-2 siRNA. In this study, our results demonstrated for the first time that HER2 elevated COX-2 expression through the activation of MEK/ERK pathway, which subsequently induced cell proliferation and invasion via AKT pathway in NSCLC tissues. Keywords: HER2, MEK/ERK, COX-2, AKT signaling pathway, non-small-cell lung cancer

  16. BDNF ACTIVATION OF ERK IS AUTONOMOUS FROM THE DOMINANT EXTRASYNAPTIC NMDA RECEPTOR ERK SHUT-OFF PATHWAY

    OpenAIRE

    MULHOLLAND, P. J.; LUONG, N. T.; WOODWARD, J. J.; CHANDLER, L. J.

    2007-01-01

    NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shut-off pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro an...

  17. Effect of Thyrotropin on Osteopontin, Integrin αvβ3, and VCAM-1 in the Endothelium via Activation of Akt

    Directory of Open Access Journals (Sweden)

    Yumeng Yan

    2016-09-01

    Full Text Available Numerous epidemiological studies have shown that subclinical hypothyroidism (SCH can impair endothelial function and cause dyslipidemia. Studies have evaluated the effects of thyroid stimulating hormone (TSH on endothelial cells, but the mechanism underlying the proatherosclerotic effect of increased TSH levels remains unclear. In the present study, SCH rat models were established in thyroidectomized Wistar rats that were given ʟ-T4 daily. The results showed that in vivo, the expression of osteopontin (OPN vascular cell adhesion molecule (VCAM-1, and levels of integrin αvβ3 in the aortic tissue in SCH and Hypothyroidism (CH groups was higher than in the control group. However, the effect in the SCH group was higher than in the CH group. In vitro, results showed that different concentration and time gradients of TSH stimulation could increase the expression of OPN, VCAM-1, and integrin αvβ3, and this was accompanied by extracellular signal regulated kinase 1/2 (Erk1/2 and Akt activation in human umbilical vein endothelial cells (HUVECs. TSH induced elevation of these proatherosclerotic factors was partially suppressed by a specific Akt inhibitor but not by a specific Erk inhibitor. Findings suggested that the endothelial dysfunction caused by SCH was related to increased proatherosclerotic factors induced by TSH via Akt activation.

  18. Momordica charantia extracts ameliorate insulin resistance by regulating the expression of SOCS-3 and JNK in type 2 diabetes mellitus rats.

    Science.gov (United States)

    Ma, Chunyu; Yu, Hongyu; Xiao, Ying; Wang, Huijiao

    2017-12-01

    Momordica charantia L. (Cucurbitaceae) has long been widely used as a traditional remedy for diabetes mellitus in some countries. However, detailed antidiabetic mechanisms are largely unknown. This study clarified the ameliorating effects of M. charantia ethanol extracts (MCE) on the insulin resistance in type 2 diabetes mellitus (T2DM) rats. T2DM rat model was established by high-fat diet and streptozotocin (STZ) injection. Diabetic rats were randomized into five groups: the model control group (n = 8) (common diet), the high-fat diet metformin (50 mg/kg/d), and the three-dose MCE (100, 200, and 400 mg/kg/d) groups (n = 8 each). After 8  weeks, the fasting serum glucose, insulin, TNF-α, and IL-6 were measured, and the relevant factors of glucose and insulin were monitored by glycogen dyeing, RT-PCR, and western blot, respectively. The 8-week treatment of 400 mg/kg MCE significantly lowered body weight (330.1 versus 365.9 g), serum glucose (7.41 versus 16.63 mmol/L), insulin (12.06 versus 15.89 mIU/L), TNF-α (52.72 versus 81.83 ng/L), and IL-6 (104.81 versus 135.74 ng/L) in comparison with those of the diabetic control group (p < 0.05). It was the same for skeletal muscle glucose transporter 4 (GLUT-4) protein, and glycogen level, suppressor of cytokine signaling-3 (SOCS-3), c-Jun N-terminal kinase (JNK), and Akt expression at both protein and mRNA levels in liver (p < 0.05). MCE can ameliorate insulin resistance in T2DM rats. This effect may be related to the regulation of mRNA and protein levels of SOCS-3 and JNK.

  19. Constitutively activated ERK sensitizes cancer cells to doxorubicin ...

    Indian Academy of Sciences (India)

    2017-02-03

    Feb 3, 2017 ... Constitutively activated ERK sensitizes cancer cells to doxorubicin: Involvement of p53-EGFR-ERK pathway. RATNA KUMARI. 1,†. , SURBHI CHOUHAN. 1,†. , SNAHLATA SINGH. 1,†. , RISHI RAJ CHHIPA. 2. ,. AMRENDRA KUMAR AJAY. 3 and MANOJ KUMAR BHAT*. National Centre for Cell Science, ...

  20. Constitutively activated ERK sensitizes cancer cells to doxorubicin ...

    Indian Academy of Sciences (India)

    2017-02-03

    Feb 3, 2017 ... The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxic stress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. We investigated the involvement of activation of ERK signalling as a ...

  1. Involvement of p53-EGFR-ERK pathway

    Indian Academy of Sciences (India)

    The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxicstress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. Weinvestigated the involvement of activation of ERK signalling as a consequence of ...

  2. Constitutively activated ERK sensitizes cancer cells to doxorubicin ...

    Indian Academy of Sciences (India)

    The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxicstress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. Weinvestigated the involvement of activation of ERK signalling as a consequence of ...

  3. ERK5 and cell proliferation: nuclear localization is what matters

    Directory of Open Access Journals (Sweden)

    Nestor Gomez

    2016-09-01

    Full Text Available ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumour growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote

  4. JNK activation is required for TNFα-induced apoptosis in human hepatocarcinoma cells.

    Science.gov (United States)

    Minero, Valerio Giacomo; Khadjavi, Amina; Costelli, Paola; Baccino, Francesco Maria; Bonelli, Gabriella

    2013-09-01

    A frequent distinctive feature of tumors, hepatocellular carcinomas included, is resistance to apoptosis induced by a variety of agents, among which the pleiotropic cytokine tumor necrosis factor-α (TNF). Compared to other cell types, hepatocytes and hepatoma-derived cell lines are poorly susceptible to TNF-induced apoptosis, which is largely ascribed to activation of the prosurvival transcription factor NF-κB and can be overcome by associating TNF to low doses of protein synthesis inhibitors or other drugs. This study analyses the molecular mechanisms by which TNF, in combination with cycloheximide (CHX), induces apoptosis in human hepatoma-derived Huh7 cells, focusing on the role played by JNK. Huh7 cell cultures were treated with TNF + CHX in the presence or in the absence of the pancaspase inhibitor zVADfmk or of the JNK inhibitor SP600125 as well as after suppression of JNK expression by RNAi. Apoptosis was assessed both by light microscopy and by flow cytometry, JNK and caspase activation by western blotting and/or enzymatic assay. TNF + CHX-induced death of Huh7 cells involved JNK activation since it was partially prevented by suppressing JNK activity or expression. Moreover, apoptosis was significantly reduced also by zVADfmk, while SP600125 and zVADfmk combined totally abrogated cell death in an additive fashion. These results demonstrate a causal role for JNK and caspases in TNF+CHX-induced apoptosis of Huh7 human hepatoma cells. Therefore, strategies aimed at enhancing both pathways should provide a profitable basis to overcome the resistance of hepatocarcinoma cells to TNF-dependent apoptosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Phosphoproteomics Reveals MAPK Inhibitors Enhance MET- and EGFR-Driven AKT Signaling in KRAS-Mutant Lung Cancer.

    Science.gov (United States)

    Kim, Jae-Young; Welsh, Eric A; Fang, Bin; Bai, Yun; Kinose, Fumi; Eschrich, Steven A; Koomen, John M; Haura, Eric B

    2016-10-01

    Pathway inhibition of the RAS-driven MAPK pathway using small-molecule kinase inhibitors has been a key focus for treating cancers driven by oncogenic RAS, yet significant clinical responses are lacking. Feedback reactivation of ERK driven by drug-induced RAF activity has been suggested as one of the major drug resistance mechanisms, especially in the context of oncogenic RAS. To determine whether additional adaptive resistance mechanisms may coexist, we characterized global phosphoproteomic changes after MEK inhibitor selumetinib (AZD6244) treatment in KRAS-mutant A427 and A549 lung adenocarcinoma cell lines employing mass spectrometry-based phosphoproteomics. We identified 9,075 quantifiable unique phosphosites (corresponding to 3,346 unique phosphoproteins), of which 567 phosphosites were more abundant and 512 phosphosites were less abundant after MEK inhibition. Selumetinib increased phosphorylation of KSR-1, a scaffolding protein required for assembly of MAPK signaling complex, as well as altered phosphorylation of GEF-H1, a novel regulator of KSR-1 and implicated in RAS-driven MAPK activation. Moreover, selumetinib reduced inhibitory serine phosphorylation of MET at Ser985 and potentiated HGF- and EGF-induced AKT phosphorylation. These results were recapitulated by pan-RAF (LY3009120), MEK (GDC0623), and ERK (SCH772984) inhibitors, which are currently under early-phase clinical development against RAS-mutant cancers. Our results highlight the unique adaptive changes in MAPK scaffolding proteins (KSR-1, GEF-H1) and in RTK signaling, leading to enhanced PI3K-AKT signaling when the MAPK pathway is inhibited. This study highlights the unique adaptive changes in MAPK scaffolding proteins (KSR-1, GEF-H1) and in RTK signaling, leading to enhanced PI3K/AKT signaling when the MAPK pathway is inhibited. Mol Cancer Res; 14(10); 1019-29. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells

    Science.gov (United States)

    Park, SE; Sapkota, K; Kim, S; Kim, H; Kim, SJ

    2011-01-01

    BACKGROUND AND PURPOSE Kaempferol, a dietary flavonoid and phyto-oestrogen, is known to have anti-inflammatory properties. Microglial activation has been implicated in various neurodegenerative diseases. Anti-inflammatory effects of kaempferol and the underlying mechanisms were investigated by using LPS-stimulated microglial BV2 cells. EXPERIMENTAL APPROACH Cell viability was measured using MTT and neutral red assays. elisa, Western blot, immunocytochemistry and electrophoretic mobility-shift assay were used to analyse NO, PGE2, TNF-α and IL-1β production, inducible NOS (iNOS), COX-2 expression and the involvement of signalling pathways such as toll-like receptor-4 (TLR4), MAPK cascades, PKB (AKT) and NF-κB. Accumulation of reaction oxygen species (ROS) was measured by nitroblue tetrazolium and 2′7′-dichlorofluorescein diacetate assay. Matrix metalloproteinase activity was investigated by zymography and immunoblot assay. Phagocytotic activity was assessed by use of latex beads. KEY RESULTS Kaempferol significantly attenuated LPS-induced NO, PGE2, TNF-α, IL-1β and ROS production and phagocytosis in a concentration-dependent manner. Kaempferol suppressed the expression of iNOS, COX-2, MMP-3 and blocked the TLR4 activation. Moreover, kaempferol inhibited LPS-induced NF-κB activation and p38 MAPK, JNK and AKT phosphorylation. CONCLUSION AND IMPLICATIONS Kaempferol was able to reduce LPS-induced inflammatory mediators through the down-regulation of TLR4, NF-κB, p38 MAPK, JNK and AKT suggesting that kaempferol has therapeutic potential for the treatment of neuroinflammatory diseases. PMID:21449918

  7. Ghrelin protects against palmitic acid or lipopolysaccharide-induced hepatocyte apoptosis through inhibition of MAPKs/iNOS and restoration of Akt/eNOS pathways.

    Science.gov (United States)

    Mao, Yuqing; Wang, Jianbo; Yu, Fujun; Li, Zhengyang; Li, Huanqing; Guo, Chuanyong; Fan, Xiaoming

    2016-12-01

    Ghrelin has been shown to exert various biological functions. However, the effect and mechanism of ghrelin on PA- or LPS-induced liver injury remains unknown. Normal human hepatocyte lines (LO2 and 7701) were pretreated with ghrelin (10 -8 M) for 30min before stimulation with lipopolysaccharide (LPS) or palmitic acid (PA). The proliferation and apoptosis of cells were detected with CCK8, Hoechst staining and flow cytometric analysis. Levels of NO of cell supernatants were examined by enzyme-linked immunosorbent assay (ELISA). The protein levels and mRNA of target genes of endothelial NOS (eNOS) and inducible NOS (iNOS) were measured by western blotting, immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR). The expression of Bax, Bcl2, caspase 3, p-Akt, p-P38 and p-JNK were detected by western blotting. Results of CCK8, Hoechst staining and flow cytometric analysis showed that ghrelin-pretreatment attenuated LPS- or PA- induced cellular proliferation inhibition and apoptosis induction. ELISA results revealed that ghrelin pretreatment reduced levels of NO of cell supernatants (Pghrelin- pretreated group were significantly reduced compared with LPS- or PA- treated group, while protein levels of eNOS were restored by ghrelin pretreatment. Results of qRT-PCR showed that mRNA levels of Bax, iNOS were reduced by ghrelin pretreatment, while levels of mRNA of Bcl2 and eNOS were increased (Pghrelin pretreatment, while the protein levels of p-JNK, p-P38 and caspase 3 were reduced. The restoration of eNOS could be reversed by an Akt inhibitor. Ghrelin pretreatment attenuated LPS- or PA-induced hepatocyte apoptosis, which may least partly via inhibition of mitogen-activated protein kinases (MAPKs)/iNOS and restoration of Akt/eNOS pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Insulin rapidly stimulates L-arginine transport in human aortic endothelial cells via Akt.

    Science.gov (United States)

    Kohlhaas, Christine F; Morrow, Valerie A; Jhakra, Neelam; Patil, Vrushali; Connell, John M C; Petrie, John R; Salt, Ian P

    2011-09-09

    Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca(2+)-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, L-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated L-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3'-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular L-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the L-arginine transport inhibitor, L-lysine. Basal L-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated L-arginine transport remained unaltered. The increase in L-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Insulin rapidly stimulates l-arginine transport in human aortic endothelial cells via Akt

    Science.gov (United States)

    Kohlhaas, Christine F.; Morrow, Valerie A.; Jhakra, Neelam; Patil, Vrushali; Connell, John M.C.; Petrie, John R.; Salt, Ian P.

    2011-01-01

    Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca2+-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, l-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated l-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3′-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular l-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the l-arginine transport inhibitor, l-lysine. Basal l-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated l-arginine transport remained unaltered. The increase in l-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions. PMID:21871446

  10. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  11. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Science.gov (United States)

    Lee, Beom Seob; Kim, Soo Hyuk; Oh, Jaewon; Jin, Taewon; Choi, Eun Young; Park, Sungha; Lee, Sang-Hak; Chung, Ji Hyung; Kang, Seok-Min

    2014-01-01

    C-reactive protein (CRP) is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  12. Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway.

    Science.gov (United States)

    Li, Wei; Ma, Xiaoqian; Li, Na; Liu, Huasheng; Dong, Qiong; Zhang, Juan; Yang, Cejun; Liu, Yin; Liang, Qi; Zhang, Shengwang; Xu, Chang; Song, Wei; Tan, Shiming; Rong, Pengfei; Wang, Wei

    2016-12-10

    Deregulation of glycolysis was often observed in human cancer cells. In the present study, we reported resveratrol, a small polyphenol, which has been intensively studied in various tumor models, has a profound anti-tumor effect on human non-small cell lung cancer (NSCLC) via regulation of glycolysis. Resveratrol impaired hexokinase II (HK2)-mediated glycolysis, and markedly inhibited anchorage-dependent and -independent growth of NSCLC cells. Exposure to resveratrol decreased EGFR and downstream kinases Akt and ERK1/2 activation. Moreover, we revealed that resveratrol impaired glucose metabolism by mainly inhibiting expression of HK2 mediated by the Akt signaling pathway, and exogenous overexpression of constitutively activated Akt1 in NSCLC cells substantially rescued resveratrol-induced glycolysis suppression. The in vivo data indicated that resveratrol obviously suppressed tumor growth in a xenograft mouse model. Our results suggest targeting HK2 or metabolic enzymes appears to be a new approach for clinical NSCLC prevention or treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation.

    Science.gov (United States)

    Lochhead, Pamela A; Clark, Jonathan; Wang, Lan-Zhen; Gilmour, Lesley; Squires, Matthew; Gilley, Rebecca; Foxton, Caroline; Newell, David R; Wedge, Stephen R; Cook, Simon J

    2016-01-01

    ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRAS(G12C/G13D) or BRAF(V600E). Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.

  14. Xenoestrogen-Induced ERK-1 and ERK-2 Activation via Multiple Membrane-Initiated Signaling Pathways

    Science.gov (United States)

    Bulayeva, Nataliya N.; Watson, Cheryl S.

    2004-01-01

    Xenoestrogens can mimic or antagonize the activity of physiological estrogens, and the suggested mechanism of xenoestrogen action involves binding to estrogen receptors (ERs). However, the failure of various in vitro or in vivo assays to show strong genomic activity of xenoestrogens compared with estradiol (E2) makes it difficult to explain their ability to cause abnormalities in animal (and perhaps human) reproductive functions via this pathway of steroid action. E2 has also been shown to initiate rapid intracellular signaling, such as changes in levels of intracellular calcium, cAMP, and nitric oxide, and activations of a variety of kinases, via action at the membrane. In this study, we demonstrate that several xenoestrogens can rapidly activate extracellular-regulated kinases (ERKs) in the pituitary tumor cell line GH3/B6/F10, which expresses high levels of the membrane receptor for ER-α(mER). We tested a phytoestrogen (coumestrol), organochlorine pesticides or their metabolites (endosulfan, dieldrin, and DDE), and detergent by-products of plastics manufacturing (p-nonylphenol and bisphenol A). These xenoestrogens (except bisphenol A) produced rapid (3–30 min after application), concentration (10−14–10−8 M)-dependent ERK-1/2 phosphorylation but with distinctly different activation patterns. To identify signaling pathways involved in ERK activation, we used specific inhibitors of ERs, epidermal growth factor receptors, Ca2+ signaling, Src and phosphoinositide-3 kinases, and a membrane structure disruption agent. Multiple inhibitors blocked ERK activation, suggesting simultaneous use of multiple pathways and complex signaling web interactions. However, inhibitors differentially affected each xenoestrogen response examined. These actions may help to explain the distinct abilities of xenoestrogens to disrupt reproductive functions at low concentrations. PMID:15531431

  15. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Shashi Kant

    2017-09-01

    Full Text Available Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA activation of a non-receptor tyrosine kinase (SRC-dependent cJun NH2-terminal kinase (JNK signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway.

  16. The JNK pathway is a key mediator of Anopheles gambiae antiplasmodial immunity.

    Directory of Open Access Journals (Sweden)

    Lindsey S Garver

    Full Text Available The innate immune system of Anopheles gambiae mosquitoes limits Plasmodium infection through multiple molecular mechanisms. For example, midgut invasion by the parasite triggers an epithelial nitration response that promotes activation of the complement-like system. We found that suppression of the JNK pathway, by silencing either Hep, JNK, Jun or Fos expression, greatly enhanced Plasmodium infection; while overactivating this cascade, by silencing the suppressor Puckered, had the opposite effect. The JNK pathway limits infection via two coordinated responses. It induces the expression of two enzymes (HPx2 and NOX5 that potentiate midgut epithelial nitration in response to Plasmodium infection and regulates expression of two key hemocyte-derived immune effectors (TEP1 and FBN9. Furthermore, the An. gambiae L3-5 strain that has been genetically selected to be refractory (R to Plasmodium infection exhibits constitutive overexpression of genes from the JNK pathway, as well as midgut and hemocyte effector genes. Silencing experiments confirmed that this cascade mediates, to a large extent, the drastic parasite elimination phenotype characteristic of this mosquito strain. In sum, these studies revealed the JNK pathway as a key regulator of the ability of An. gambiae mosquitoes to limit Plasmodium infection and identified several effector genes mediating these responses.

  17. Apical deficiency triggers JNK-dependent apoptosis in the embryonic epidermis of Drosophila

    Science.gov (United States)

    Kolahgar, Golnar; Bardet, Pierre-Luc; Langton, Paul F.; Alexandre, Cyrille; Vincent, Jean-Paul

    2011-01-01

    Epithelial homeostasis and the avoidance of diseases such as cancer require the elimination of defective cells by apoptosis. Here, we investigate how loss of apical determinants triggers apoptosis in the embryonic epidermis of Drosophila. Transcriptional profiling and in situ hybridisation show that JNK signalling is upregulated in mutants lacking Crumbs or other apical determinants. This leads to transcriptional activation of the pro-apoptotic gene reaper and to apoptosis. Suppression of JNK signalling by overexpression of Puckered, a feedback inhibitor of the pathway, prevents reaper upregulation and apoptosis. Moreover, removal of endogenous Puckered leads to ectopic reaper expression. Importantly, disruption of the basolateral domain in the embryonic epidermis does not trigger JNK signalling or apoptosis. We suggest that apical, not basolateral, integrity could be intrinsically required for the survival of epithelial cells. In apically deficient embryos, JNK signalling is activated throughout the epidermis. Yet, in the dorsal region, reaper expression is not activated and cells survive. One characteristic of these surviving cells is that they retain discernible adherens junctions despite the apical deficit. We suggest that junctional integrity could restrain the pro-apoptotic influence of JNK signalling. PMID:21693518

  18. A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress.

    Science.gov (United States)

    Kant, Shashi; Standen, Claire L; Morel, Caroline; Jung, Dae Young; Kim, Jason K; Swat, Wojciech; Flavell, Richard A; Davis, Roger J

    2017-09-19

    Obesity is a major risk factor for the development of metabolic syndrome and type 2 diabetes. How obesity contributes to metabolic syndrome is unclear. Free fatty acid (FFA) activation of a non-receptor tyrosine kinase (SRC)-dependent cJun NH 2 -terminal kinase (JNK) signaling pathway is implicated in this process. However, the mechanism that mediates SRC-dependent JNK activation is unclear. Here, we identify a role for the scaffold protein JIP1 in SRC-dependent JNK activation. SRC phosphorylation of JIP1 creates phosphotyrosine interaction motifs that bind the SH2 domains of SRC and the guanine nucleotide exchange factor VAV. These interactions are required for SRC-induced activation of VAV and the subsequent engagement of a JIP1-tethered JNK signaling module. The JIP1 scaffold protein, therefore, plays a dual role in FFA signaling by coordinating upstream SRC functions together with downstream effector signaling by the JNK pathway. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. MAPK/ERK and Wnt/β-Catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells

    International Nuclear Information System (INIS)

    Jin, Caixia; Samuelson, Lisa; Cui, Cai-Bin; Sun, Yangzhong; Gerber, David A.

    2011-01-01

    Highlights: → Activation of MAPK/ERK pathway with epidermal growth factor (EGF) significantly increased Sca-1 + HPC proliferation and colony formation. → Activation of either IL-6/STAT3 or Wnt/β-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. → Wnt/β-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation and maintain long-term HPCs in vitro. -- Abstract: Hepatic progenitor cells (HPCs) persist in adulthood and have the potential to play a major role in regenerating diseased liver. However, the signaling pathways that both directly and indirectly regulate HPCs' self-renewal and differentiation remain elusive. Previously, we identified a bipotent, stem cell antigen-1 (Sca-1) positive HPC population from naive adult liver tissue. In the present study, we aimed to investigate the involvement of various signaling pathways in Sca-1 + HPC proliferation. Epidermal growth factor (EGF) supplementation shows a significant increase in Sca-1 + HPC proliferation and colony formation while stimulating phosphorylation of ERK1/2 and activating the induction of Cyclin D1. There were no demonstrable effects of EGF on Akt. The MEK inhibitor, PD0325901, inhibits proliferation and ERK1/2 phosphorylation while also suppressing the expression of Cyclin D1. In addition, activation of either IL-6/STAT3 or Wnt/β-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. The Wnt/β-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation ratio and maintain long-term HPC in vitro. The data indicates that the MAPK/ERK pathway is both essential and critical for HPC proliferation, and the Wnt signaling pathway is not sufficient, while it works synergistically with the MAPK/ERK signaling pathway to promote HPC proliferation.

  20. Suppression of c-Myc enhances p21WAF1/CIP1 -mediated G1 cell cycle arrest through the modulation of ERK phosphorylation by ascochlorin.

    Science.gov (United States)

    Jeong, Yun-Jeong; Hoe, Hyang-Sook; Cho, Hyun-Ji; Park, Kwan-Kyu; Kim, Dae-Dong; Kim, Cheorl-Ho; Magae, Junji; Kang, Dong Wook; Lee, Sang-Rae; Chang, Young-Chae

    2018-02-01

    Numerous anti-cancer agents inhibit cell cycle progression via a p53-dependent mechanism; however, other genes such as the proto-oncogene c-Myc are promising targets for anticancer therapy. In the present study, we provide evidence that ascochlorin, an isoprenoid antibiotic, is a non-toxic anti-cancer agent that induces G1 cell cycle arrest and p21 WAF1/CIP1 expression by downregulating of c-Myc protein expression. Ascochlorin promoted the G1 arrest, upregulated p53 and p21 WAF1/CIP1 , and downregulated c-Myc in HCT116 cells. In p53-deficient cells, ascochlorin enhanced the expression of G1 arrest-related genes except p53. Small interfering RNA (siRNA) mediated c-Myc silencing indicated that the transcriptional repression of c-Myc was related to ascochlorin-mediated modulation of p21 WAF1/CIP1 expression. Ascochlorin suppressed the stabilization of the c-Myc protein by inhibiting ERK and P70S6K/4EBP1 phosphorylation, whereas it had no effect on c-Myc degradation mediated by PI3K/Akt/GSK3β. The ERK inhibitor PD98059 and siRNA-mediated ERK silencing induced G1 arrest and p21 WAF1/CIP1 expression by downregulating c-Myc in p53-deficient cells. These results indicated that ascochlorin-induced G1 arrest is associated with the repression of ERK phosphorylation and c-Myc expression. Thus, we reveal a role for ascochlorin in inhibiting tumor growth via G1 arrest, and identify a novel regulatory mechanism for ERK/c-Myc. © 2017 Wiley Periodicals, Inc.

  1. Caffeic Acid Phenethyl Ester (Propolis Extract) Ameliorates Insulin Resistance by Inhibiting JNK and NF-κB Inflammatory Pathways in Diabetic Mice and HepG2 Cell Models.

    Science.gov (United States)

    Nie, Jiarui; Chang, Yaning; Li, Yujia; Zhou, Yingjun; Qin, Jiawen; Sun, Zhen; Li, Haibin

    2017-10-18

    Caffeic acid phenethyl ester (CAPE), extracted from propolis, was evaluated for the ameliorative effects on insulin resistance and the mechanisms were identified, using non-insulin-dependent diabetes mellitus (NIDDM) model mice and insulin resistance (IR) model cells. After 5 weeks of CAPE supplementation, insulin sensitivity, hyperlipidemia, and peroxisome proliferator-activated receptor-α (PPAR-α) levels were improved in mice. Proinflammatory cytokines in serum and the expressions of tumor necrosis factor-alpha (TNF-α) mRNA in tissues were markedly downregulated from CAPE-treated mice. In vitro, CAPE supplement significantly improved glucose consumption, glucose uptake, glycogen content, and oxidative stress and decreased expression of glucose-6-phosphatase (G6Pase) mRNA in cells. Both in vivo and in vitro, CAPE enhanced p-Akt (Ser473) and p-insulin receptor substrate (IRS)-1 (Tyr612), but inhibited p-JNK (Thr183/Tyr185), p-NF-κB p65 (Ser536), and nuclear translocation of p-NF-κB p65 (Ser536). In summary, CAPE can ameliorate insulin resistance through modulation of JNK and NF-κB signaling pathway in mice and HepG2 cells.

  2. Decoy receptor 3 suppresses FasL-induced apoptosis via ERK1/2 activation in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Li, Dechun; Zhao, Xin; Song, Shiduo; Zhang, Lifeng; Zhu, Dongming [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Wang, Zhenxin [Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Chen, Xiaochen [Department of Pathology, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai 200090 (China); Zhou, Jian, E-mail: zhoujian20150602@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2015-08-07

    Resistance to Fas Ligand (FasL) mediated apoptosis plays an important role in tumorigenesis. Decoy receptor 3 (DcR3) is reported to interact with FasL and is overexpressed in some malignant tumors. We sought to investigate the role of DcR3 in resistance to FasL in pancreatic cancer. We compared expression of apoptosis related genes between FasL-resistant SW1990 and FasL-sensitive Patu8988 pancreatic cell lines by microarray analysis. We explored the impact of siRNA knockdown of, or exogenous supplementation with, DcR3 on FasL-induced cell growth inhibition in pancreatic cancer cell lines and expression of proteins involved in apoptotic signaling. We assessed the level of DcR3 protein and ERK1/2 phosphorylation in tumor and non-tumor tissue samples of 66 patients with pancreatic carcinoma. RNAi knockdown of DcR3 expression in SW1990 cells reduced resistance to FasL-induced apoptosis, and supplementation of Patu8988 with rDcR3 had the opposite effect. RNAi knockdown of DcR3 in SW1990 cells elevated expression of caspase 3, 8 and 9, and reduced ERK1/2 phosphorylation (P < 0.05), but did not alter phosphorylated-Akt expression. 47 tumor tissue specimens, but only 15 matched non-tumor specimens stained for DcR3 (χ{sup 2} = 31.1447, P < 0.001). The proliferation index of DcR3 positive specimens (14.26  ±  2.67%) was significantly higher than that of DcR3 negative specimens (43.58  ±  7.88%, P < 0.01). DcR3 expression positively correlated with p-ERK1/2 expression in pancreatic cancer tissues (r = 0.607, P < 0.001). DcR3 enhances ERK1/2 phosphorylation and opposes FasL signaling in pancreatic cancer cells. - Highlights: • We investigated the role of DcR3 in FasL resistance in pancreatic cancer. • Knockdown of DcR3 in SW1990 cells reduced resistance to FasL-induced apoptosis. • DcR3 knockdown also elevated caspase expression, and reduced ERK1/2 phosphorylation. • Tumor and non-tumor tissues were collected from 66 pancreatic carcinoma patients

  3. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47phox pathway

    International Nuclear Information System (INIS)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung; Yen, Feng-Lin; Chiang, Yao-Chang; Lee, Chiang-Wen

    2014-01-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47 phox /JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47 phox inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation

  4. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Horng [Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan (China); Lin, Zih-Chan [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liang, Chan-Jung [Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Yen, Feng-Lin [Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Institute of Biomedical Sciences, Sun Yat-Sen University, 70 Lienhai Rd., Kaohsiung, Taiwan (China); Chiang, Yao-Chang [Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan (China); China Medical University, Taichung, Taiwan (China); Lee, Chiang-Wen, E-mail: cwlee@gw.cgust.edu.tw [Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China)

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phox activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving inflammation.

  5. ERK2, but not ERK1, mediates acquired and "de novo" resistance to imatinib mesylate: implication for CML therapy.

    Directory of Open Access Journals (Sweden)

    Clara I Aceves-Luquero

    Full Text Available Resistance to Imatinib Mesylate (IM is a major problem in Chronic Myelogenous Leukaemia management. Most of the studies about resistance have focused on point mutations on BCR/ABL. However, other types of resistance that do not imply mutations in BCR/ABL have been also described. In the present report we aim to study the role of several MAPK in IM resistance not associate to BCR/ABL mutations. Therefore we used an experimental system of resistant cell lines generated by co-culturing with IM (K562, Lama 84 as well as primary material from resistant and responder patient without BCR/ABL mutations. Here we demonstrate that Erk5 and p38MAPK signaling pathways are not implicated in the acquired resistance phenotype. However, Erk2, but not Erk1, is critical for the acquired resistance to IM. In fact, Bcr/Abl activates preferentially Erk2 in transient transfection in a dose dependent fashion through the c-Abl part of the chimeric protein. Finally, we present evidences demonstrating how constitutive activation of Erk2 is a de novo mechanism of resistance to IM. In summary our data support the use of therapeutic approaches based on Erk2 inhibition, which could be added to the therapeutic armamentarium to fight CML, especially when IM resistance develops secondary to Erk2 activation.

  6. Titanium dioxide nanoparticles induce human eosinophil adhesion onto endothelial EA.hy926 cells via activation of phosphoinositide 3-kinase/Akt cell signalling pathway.

    Science.gov (United States)

    Murphy-Marion, Maxime; Girard, Denis

    2018-02-01

    The use of nanoparticles (NPs) for developing new therapeutic strategies in a variety of diseases is gaining increasing attention. However, NPs could possess undesired effects, including pro-inflammatory activities. Despite the fact that several studies reported that NPs may induce or exacerbate eosinophilic inflammation in vivo in rodents, the information regarding the direct interaction between NPs and human eosinophils is lacking. In the present study, we test the possibility that NPs could alter the capacity of human eosinophils to adhere onto a cellular substratum. Using a panel of NPs, we found that several were able to increase the adhesion of human eosinophil onto endothelial EA.hy926 cells. Among them, TiO 2 NPs were the most potent and we therefore pursue this study with these NPs. TiO 2 NPs were found to increase the adhesion of eosinophils in a concentration dependent fashion. TiO 2 NPs did not alter the cell surface expression of a panel of cellular adhesion molecules, but CD29. Indeed, a weak to moderate, but significant, decrease of CD29 was observed after 30min but returned to normal levels after 90min. TiO 2 NPs were found to activate Akt, one important target of phosphoinositide 3-kinase (PI3K). However, despite the fact that cells were fully responsive to the cytokine GM-CSF activating both Akt and Erk-1/2, TiO 2 NPs did not activate Erk-1/2. Using a pharmacological approach with the PI3K/Akt inhibitor, wortmannin, the ability of TiO 2 NPs to activate Akt was drastically inhibited and, further, their capacity to increase adhesion of eosinophils was reversed. This study provides insights into the effects of NPs on the biology of human eosinophils indicating that as other agents, NPs, namely TiO 2 NPs, can induce intracellular events associated with a cellular function, adhesion. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Campylobacter jejuni induces an anti-inflammatory response in human intestinal epithelial cells through activation of phosphatidylinositol 3-kinase/Akt pathway

    DEFF Research Database (Denmark)

    Li, Yiping; Vegge, Christina S.; Brøndsted, Lone

    2011-01-01

    to activate phosphatidylinositol 3-kinase (PI3K)/Akt pathway and induce pro-inflammatory interleukin-8(IL-8) as well as anti-inflammatory cytokine IL-10 in human intestinal epithelial cell line Colo 205. The signalling pathways PI3K/Akt and mitogen-activated protein (MAP)kinases ERK and p38 were involved in C....... jejuni-induced IL-8 and IL-10 expression. Inhibition of PI3K resulted in augmentation of C. jejuni-induced IL-8 production, concomitant with down-regulation of IL-10 mRNA, indicating an anti-inflammatory response was activated and associated with the activation of P13K/Akt. Similar effect was observed...... for cytolethal distending toxin (CDT) deficient mutants. Moreover, we demonstrated that heat-killed bacteria were able to induce IL-8 and IL-10 expression to a lower level than live bacteria. We therefore conclude that C. jejuni activate a PI3K/Akt-dependent anti-inflammatory pathway in human intestinal...

  8. Relaxin attenuates aristolochic acid induced human tubular epithelial cell apoptosis in vitro by activation of the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Xie, Xiang-Cheng; Zhao, Ning; Xu, Qun-Hong; Yang, Xiu; Xia, Wen-Kai; Chen, Qi; Wang, Ming; Fei, Xiao

    2017-06-01

    Aristolochic acid nephropathy remains a leading cause of chronic kidney disease (CKD), however few treatment strategies exist. Emerging evidence has shown that H2 relaxin (RLX) possesses powerful antifibrosis and anti-apoptotic properties, therefore we aimed to investigate whether H2 relaxin can be employed to reduce AA-induced cell apoptosis. Human proximal tubular epithelial (HK-2) cells exposed to AA-I were treated with or without administration of H2 RLX. Cell viability was examined using the WST-8 assay. Apoptotic morphologic alterations were observed using the Hoechst 33342 staining method. Apoptosis was detected using flow cytometry. The expression of caspase 3, caspase 8, caspase 9, ERK1/2, Bax, Bcl-2, and Akt proteins was determined by Western blot. Co-treatment with RLX reversed the increased apoptosis observed in the AA-I only treated group. RLX restored expression of phosphorylated Akt which found to be decreased in the AA-I only treated cells. RLX co-treatment led to a decrease in the Bax/Bcl-2 ratio as well as the cleaved form of caspase-3 compared to the AA-I only treated cells. This anti-apoptotic effect of RLX was attenuated by co-administration of the Akt inhibitor LY294002. The present study demonstrated H2 RLX can decrease AA-I induced apoptosis through activation of the PI3K/Akt signaling pathway.

  9. The angiogenic related functions of bone marrow mesenchymal stem cells are promoted by CBDL rat serum via the Akt/Nrf2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Cheng-Cheng; Chen, Bing; Gu, Jian-Teng; Ning, Jiao-Lin; Chen, Lin; Zeng, Jing; Yi, Bin, E-mail: yibin1974@163.com; Lu, Kai-Zhi, E-mail: lukaizhi2010@163.com

    2016-05-15

    Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile duct ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS. - Highlights: • Peripheral blood MSCs was increased in CBDL rats; however, the difference found for the number of BM-MSCs was not significant. • The directional migration, proliferation and ability to secrete VEGF of BM-MSCs were

  10. Regorafenib inhibits tumor progression through suppression of ERK/NF-κB activation in hepatocellular carcinoma bearing mice.

    Science.gov (United States)

    Weng, Mao-Chi; Wang, Mei-Hui; Tsai, Jai-Jen; Kuo, Yu-Cheng; Liu, Yu-Chang; Hsu, Fei-Ting; Wang, Hsin-Ell

    2018-03-13

    Regorafenib has been demonstrated in our previous study to trigger apoptosis through suppression of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) activation in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro However, the effect of regorafenib on NF-κB-modulated tumor progression in HCC in vivo is ambiguous. The aim of the present study is to investigate the effect of regorafenib on NF-κB-modulated tumor progression in HCC bearing mouse model. pGL4.50 luciferase reporter vector transfected SK-Hep1 (SK-Hep1/ luc2 ) and Hep3B 2.1-7 tumor bearing mice were established and used for this study. Mice were treated with vehicle or regorafenib (20 mg/kg/day by gavage) for 14 days. Effects of regorafenib on tumor growth and protein expression together with toxicity of regorafenib were evaluated with digital caliper and bioluminescence imaging (BLI), ex vivo Western blotting immunohistochemistry (IHC) staining, and measurement of body weight and pathological examination of liver tissue, respectively, in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor bearing mice. The results indicated regorafenib significantly reduced tumor growth and expression of phosphorylated ERK, NF-κB p65 (Ser536), phosphorylated AKT and tumor progression-associated proteins. In addition, we found regorafenib induced both extrinsic and intrinsic apoptotic pathways. Body weight and liver morphology were not affected by regorafenib treatment. Our findings present the mechanism of tumor progression inhibition by regorafenib is linked to suppression of ERK/NF-κB signaling in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor-bearing mice. ©2018 The Author(s).

  11. Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Sharma, Girish; Goalstone, Marc Lee

    2007-01-01

    ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment ( 50 for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1 nM, whereas the EC 50 for A-II was 2 nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2

  12. Ras- ERK signaling in behavior: old questions and new perspectives

    Directory of Open Access Journals (Sweden)

    Stefania eFasano

    2011-11-01

    Full Text Available The role of Ras-ERK signaling in behavioral plasticity is well established. Inhibition studies using the blood-brain barrier permeable drug SL327 have conclusively demonstrated that this neuronal cell signaling cascade is a crucial component of the synaptic machinery implicated in the formation of various forms of long-term memory, from spatial learning to fear and operant conditioning. However, abnormal Ras-ERK signaling has also been linked to a number of neuropsychiatric conditions, including mental retardation syndromes (RASopathies, drug addiction and L-DOPA induced Dyskinesia (LID. The work recently done on these brain disorders has pointed to previously underappreciated roles of Ras-ERK in specific subsets of neurons, like GABAergic interneurons of the hippocampus or the cortex, as well as in the medium spiny neurons of the striatum. Here we will highlight the open questions related to Ras-ERK signaling in these behavioral manifestations and propose crucial experiments for the future.

  13. Secretogranin III promotes angiogenesis through MEK/ERK signaling pathway.

    Science.gov (United States)

    Tang, Fen; Pacheco, Mario Thiego F; Chen, Ping; Liang, Dan; Li, Wei

    2018-01-01

    Secretogranin III (Scg3) was recently discovered as the first highly diabetic retinopathy-associated angiogenic factor, and its neutralizing antibody alleviated the disease with high efficacy in diabetic mice. Investigation of its molecular mechanisms will facilitate the translation of this novel therapy. Scg3 was reported to induce the phosphorylation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK). Here we characterized the importance of MEK/ERK activation to Scg3 angiogenic activity. Our results showed that MEK inhibitor PD98059 blocked Scg3-induced proliferation of human umbilical vein endothelial cells (HUVECs). This finding was corroborated by PD98059 inhibition of HUVEC migration and tube formation. Furthermore, ERK inhibitor SCH772984 also suppressed Scg3-induced proliferation and migration of HUVECs. Taken together, these findings suggest that MEK-ERK pathway plays an important role in Scg3-induced angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Regulation of ERK-MAPK signaling in human epidermis.

    Science.gov (United States)

    Cursons, Joseph; Gao, Jerry; Hurley, Daniel G; Print, Cristin G; Dunbar, P Rod; Jacobs, Marc D; Crampin, Edmund J

    2015-07-25

    The skin is largely comprised of keratinocytes within the interfollicular epidermis. Over approximately two weeks these cells differentiate and traverse the thickness of the skin. The stage of differentiation is therefore reflected in the positions of cells within the tissue, providing a convenient axis along which to study the signaling events that occur in situ during keratinocyte terminal differentiation, over this extended two-week timescale. The canonical ERK-MAPK signaling cascade (Raf-1, MEK-1/2 and ERK-1/2) has been implicated in controlling diverse cellular behaviors, including proliferation and differentiation. While the molecular interactions involved in signal transduction through this cascade have been well characterized in cell culture experiments, our understanding of how this sequence of events unfolds to determine cell fate within a homeostatic tissue environment has not been fully characterized. We measured the abundance of total and phosphorylated ERK-MAPK signaling proteins within interfollicular keratinocytes in transverse cross-sections of human epidermis using immunofluorescence microscopy. To investigate these data we developed a mathematical model of the signaling cascade using a normalized-Hill differential equation formalism. These data show coordinated variation in the abundance of phosphorylated ERK-MAPK components across the epidermis. Statistical analysis of these data shows that associations between phosphorylated ERK-MAPK components which correspond to canonical molecular interactions are dependent upon spatial position within the epidermis. The model demonstrates that the spatial profile of activation for ERK-MAPK signaling components across the epidermis may be maintained in a cell-autonomous fashion by an underlying spatial gradient in calcium signaling. Our data demonstrate an extended phospho-protein profile of ERK-MAPK signaling cascade components across the epidermis in situ, and statistical associations in these data

  15. Indirubin-3-Oxime Prevents H2O2-Induced Neuronal Apoptosis via Concurrently Inhibiting GSK3β and the ERK Pathway.

    Science.gov (United States)

    Yu, Jie; Zheng, Jiacheng; Lin, Jiajia; Jin, Linlu; Yu, Rui; Mak, Shinghung; Hu, Shengquan; Sun, Hongya; Wu, Xiang; Zhang, Zaijun; Lee, Mingyuen; Tsim, Wahkeung; Su, Wei; Zhou, Wenhua; Cui, Wei; Han, Yifan; Wang, Qinwen

    2017-05-01

    Oxidative stress-induced neuronal apoptosis plays an important role in many neurodegenerative disorders. In this study, we have shown that indirubin-3-oxime, a derivative of indirubin originally designed for leukemia therapy, could prevent hydrogen peroxide (H 2 O 2 )-induced apoptosis in both SH-SY5Y cells and primary cerebellar granule neurons. H 2 O 2 exposure led to the increased activities of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) in SH-SY5Y cells. Indirubin-3-oxime treatment significantly reversed the altered activity of both the PI3-K/Akt/GSK3β cascade and the ERK pathway induced by H 2 O 2 . In addition, both GSK3β and mitogen-activated protein kinase inhibitors significantly prevented H 2 O 2 -induced neuronal apoptosis. Moreover, specific inhibitors of the phosphoinositide 3-kinase (PI3-K) abolished the neuroprotective effects of indirubin-3-oxime against H 2 O 2 -induced neuronal apoptosis. These results strongly suggest that indirubin-3-oxime prevents H 2 O 2 -induced apoptosis via concurrent inhibiting GSK3β and the ERK pathway in SH-SY5Y cells, providing support for the use of indirubin-3-oxime to treat neurodegenerative disorders caused or exacerbated by oxidative stress.

  16. Intrinsic JNK-MAPK pathway involvement requires daf-16-mediated immune response during Shigella flexneri infection in C. elegans.

    Science.gov (United States)

    Marudhupandiyan, Shanmugam; Balamurugan, Krishnaswamy

    2017-06-01

    The c-Jun N-terminal kinase-mitogen-activated protein kinase (JNK-MAPK) pathway assists in modulating signals for growth, survival, and metabolism, thereby coordinating many cellular events during normal and stress conditions. To understand the role of the JNK-MAPK pathway during bacterial infection, an in vivo model organism Caenorhabditis elegans was used. In order to check the involvement of the JNK-MAPK pathway, the survival rate of C. elegans wild type (WT), and JNK-MAPK pathway mutant worms' upon exposure to selective Gram-positive and Gram-negative pathogenic bacteria, was studied. Among the pathogens, Shigella flexneri M9OT was found to efficiently colonize inside the WT and JNK-MAPK pathway mutant worms. qPCR studies had suggested that the above pathway-specific genes kgb-2 and jnk-1 were prominently responsible for the immune response elicited by the host during the M9OT infection. In addition, daf-16, which is a major transcription factor of the insulin/insulin growth factor-1 signaling (IIS) pathway, was also found to be involved during the host response. Crosstalk between IIS and JNK-MAPK pathways has probably been involved in the activation of the host immune system, which consequently leads to lifespan extension. Furthermore, it is also observed that daf-16 activation by JNK-MAPK pathway leads to antimicrobial response, by activating lys-7 expression. These findings suggest that JNK-MAPK is not the sole pathway that enhances the immunity of the host. Nonetheless, the IIS pathway bridges the JNK-MAPK pathway that influences in protecting the host in counter to the M9OT infection.

  17. Periodontitis contributes to adipose tissue inflammation through the NF-B, JNK and ERK pathways to promote insulin resistance in a rat model.

    Science.gov (United States)

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor- B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Effects of Extremely Low Frequency Electromagnetic Fields on Melanogenesis through p-ERK and p-SAPK/JNK Pathways in Human Melanocytes

    Directory of Open Access Journals (Sweden)

    Yu-Mi Kim

    2017-10-01

    Full Text Available This study evaluated frequency-dependent effects of extremely low frequency electromagnetic fields (ELF-EMFs on melanogenesis by melanocytes in vitro. Melanocytes were exposed to 2 mT EMFs at 30–75 Hz for 3 days before melanogenesis was examined. Exposure to ELF-EMFs at 50 and 60 Hz induced melanogenic maturation without cell damage, without changing cell proliferation and mitochondrial activity. Melanin content and tyrosinase activity of cells exposed to 50 Hz were higher than in controls, and mRNA expression of tyrosinase-related protein-2 was elevated relative to controls at 50 Hz. Phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB levels were higher than controls in cells exposed to ELF-EMFs at 50–75 Hz. Immunohistochemical staining showed that melanocyte-specific markers (HMB45, Melan-A were strongly expressed in cells exposed to EMFs at 50 and 60 Hz compared to controls. Thus, exposure to ELF-EMFs at 50 Hz could stimulate melanogenesis in melanocytes, through activation of p-CREB and p-p38 and inhibition of phosphorylated extracellular signal-regulated protein kinase and phosphorylated stress-activated protein kinase/c-Jun N-terminal kinase. The results may form the basis of an appropriate anti-gray hair treatment or be applied in a therapeutic device for inducing repigmentation in the skin of vitiligo patients.

  19. Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function.

    Science.gov (United States)

    Virtakoivu, Reetta; Mai, Anja; Mattila, Elina; De Franceschi, Nicola; Imanishi, Susumu Y; Corthals, Garry; Kaukonen, Riina; Saari, Markku; Cheng, Fang; Torvaldson, Elin; Kosma, Veli-Matti; Mannermaa, Arto; Muharram, Ghaffar; Gilles, Christine; Eriksson, John; Soini, Ylermi; Lorens, James B; Ivaska, Johanna

    2015-06-01

    Epithelial-mesenchymal transition (EMT) in cells is a developmental process adopted during tumorigenesis that promotes metastatic capacity. In this study, we advance understanding of EMT control in cancer cells with the description of a novel vimentin-ERK axis that regulates the transcriptional activity of Slug (SNAI2). Vimentin, ERK, and Slug exhibited overlapping subcellular localization in clinical specimens of triple-negative breast carcinoma. RNAi-mediated ablation of these gene products inhibited cancer cell migration and cell invasion through a laminin-rich matrix. Biochemical analyses demonstrated direct interaction of vimentin and ERK, which promoted ERK activation and enhanced vimentin transcription. Consistent with its role as an intermediate filament, vimentin acted as a scaffold to recruit Slug to ERK and promote Slug phosphorylation at serine-87. Site-directed mutagenesis established a requirement for ERK-mediated Slug phosphorylation in EMT initiation. Together, these findings identified a pivotal step in controlling the ability of Slug to organize hallmarks of EMT. ©2015 American Association for Cancer Research.

  20. ShenFu Preparation Protects AML12 Cells Against Palmitic Acid-Induced Injury Through Inhibition of Both JNK/Nox4 and JNK/NFκB Pathways

    Directory of Open Access Journals (Sweden)

    Jia-Fu Ji

    2018-02-01

    Full Text Available Background/Aims: Nonalcoholic steatohepatitis includes steatosis along with liver inflammation, hepatocyte injury and fibrosis. In this study, we investigated the protective role and the potential mechanisms of a traditional Chinese medicine ShenFu (SF preparation in an in vitro hepatic steatosis model. Methods: In palmitic acid (PA-induced murine hepatic AML12 cell injury, effects of SF preparation on cellular apoptosis and intracellular triglyceride (iTG level were assessed using TUNEL and TG Colorimetric Assay. Reactive oxygen species (ROS and mitochondrial membrane potential (MMP levels were measured using DCF and JC-1 assay. Cytokine levels were evaluated using ELISA assay. Immunoblot was used to compare the activation level of c-Jun N terminal kinase (JNK, NADPH oxidase (Nox4, and NFκB pathways. Results: Addition of SF preparation prevented PA-mediated increase of apoptosis and iTG as well as IL-8 and IL-6. In PA-treated cell, SF preparation reduced the level of Nox4 and ROS, while increasing the level of MMP and the expression of manganese superoxide dismutase (MnSOD and catalase, indicating emendation of mitochondrial dysfunction. Nox4 inhibitor GKT137381 prevented PA-induced increase of ROS and apoptosis, while decreasing iTG slightly and not influencing the level of IL-8 and IL-6. SF preparation prevented PA-induced upregulation of phospho-JNK. JNK inhibitor SP600125 prevented PA-mediated increase of Nox4, IL-8, IL-6 and iTG. Nuclear translocation of NFκB/p65 was detected in PA-treated cells, which was prevented by SF preparation. An IκB degradation inhibitor, BAY11-7082, prevented PA-induced increase of IL-8 and IL-6 as well as iTG, whereas it only decreased ROS levels slightly and showed no influence on cellular apoptosis. Conclusion: SF preparation shows a beneficial role in prevention of hepatocyte injury by attenuating oxidative stress and cytokines production at least partially through inhibition of JNK/Nox4 and JNK

  1. Traditional Korean Herbal Formula Samsoeum Attenuates Adipogenesis by Regulating the Phosphorylation of ERK1/2 in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Soo-Jin Jeong

    2015-01-01

    Full Text Available Adipogenesis is the cell differentiation process from preadipocytes into adipocytes and the critical action in the development of obesity. In the present study, we conducted in vitro analyses to investigate the inhibitory effects of Samsoeum (SSE, a traditional herbal decoction. SSE had no significant cytotoxic effect against either the undifferentiated or differentiated 3T3-L1 cells. Oil Red O staining results showed that SSE significantly inhibited fat accumulation in adipocytes. SSE treatment consistently reduced the intracellular triglyceride content in the cells. SSE significantly inactivated glycerol-3-phosphate dehydrogenase (GPDH, a major link between carbohydrate and lipid metabolisms in 3T3-L1 adipocytes, and markedly inhibited the production of leptin, an important adipokine, in differentiated cells. SSE markedly suppressed the mRNA expression of the adipogenesis-related genes peroxisome proliferator-activated receptor-gamma (PPAR-γ, CCAAT/enhancer binding protein-alpha (C/EBP-α, fatty acid synthase (FAS, lipoprotein lipase (LPL, and