WorldWideScience

Sample records for erie coastal marshes

  1. Use of historical and geospatial data to guide the restoration of a Lake Erie coastal marsh

    Science.gov (United States)

    Kowalski, Kurt P.; Wilcox, Douglas A.

    1999-01-01

    Historical and geospatial data were used to identify the relationships between water levels, wetland vegetation, littoral drift of sediments, and the condition of a protective barrier beach at Metzger Marsh, a coastal wetland in western Lake Erie, to enhance and guide a joint federal and state wetland restoration project. Eleven sets of large-scale aerial photographs dating from 1940 through 1994 were interpreted to delineate major vegetation types and boundaries of the barrier beach. A geographic information system (GIS) was then used to digitize the data and calculate the vegetated area and length of barrier beach. Supplemented by paleoecological and sedimentological analyses, aerial photographic interpretation revealed that Metzger Marsh was once a drowned-river-mouth wetland dominated by sedges and protected by a sand barrier beach. Extremely high water levels, storm events, and reduction of sediments in the littoral drift contributed to the complete destruction of the barrier beach in 1973 and prevented its recovery. The extent of wetland vegetation, correlated to water levels and condition of the barrier beach, decreased from a high of 108 ha in 1940 to a low of 33 ha in 1994. The lack of an adequate sediment supply and low probability of a period of extremely low lake levels in the near future made natural reestablishment of the barrier beach and wetland vegetation unlikely. Therefore, the federal and state managers chose to construct a dike to replace the protective barrier beach. Recommendations stemming from this historical analysis, however, resulted in the incorporation of a water-control structure in the dike that will retain a hydrologic connection between wetland and lake. Management of the wetland will seek to mimic processes natural to the wetland type identified by this analysis.

  2. Assessing biomass of diverse coastal marsh ecosystems using statistical and machine learning models

    Science.gov (United States)

    Mo, Yu; Kearney, Michael S.; Riter, J. C. Alexis; Zhao, Feng; Tilley, David R.

    2018-06-01

    The importance and vulnerability of coastal marshes necessitate effective ways to closely monitor them. Optical remote sensing is a powerful tool for this task, yet its application to diverse coastal marsh ecosystems consisting of different marsh types is limited. This study samples spectral and biophysical data from freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops statistical and machine learning models to assess the marshes' biomass with combined ground, airborne, and spaceborne remote sensing data. It is found that linear models derived from NDVI and EVI are most favorable for assessing Leaf Area Index (LAI) using multispectral data (R2 = 0.7 and 0.67, respectively), and the random forest models are most useful in retrieving LAI and Aboveground Green Biomass (AGB) using hyperspectral data (R2 = 0.91 and 0.84, respectively). It is also found that marsh type and plant species significantly impact the linear model development (P biomass of Louisiana's coastal marshes using various optical remote sensing techniques, and highlights the impacts of the marshes' species composition on the model development and the sensors' spatial resolution on biomass mapping, thereby providing useful tools for monitoring the biomass of coastal marshes in Louisiana and diverse coastal marsh ecosystems elsewhere.

  3. A Climate Change Adaptation Strategy for Management of Coastal Marsh Systems

    Science.gov (United States)

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, includin...

  4. The protective role of coastal marshes: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Christine C Shepard

    Full Text Available BACKGROUND: Salt marshes lie between many human communities and the coast and have been presumed to protect these communities from coastal hazards by providing important ecosystem services. However, previous characterizations of these ecosystem services have typically been based on a small number of historical studies, and the consistency and extent to which marshes provide these services has not been investigated. Here, we review the current evidence for the specific processes of wave attenuation, shoreline stabilization and floodwater attenuation to determine if and under what conditions salt marshes offer these coastal protection services. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a thorough search and synthesis of the literature with reference to these processes. Seventy-five publications met our selection criteria, and we conducted meta-analyses for publications with sufficient data available for quantitative analysis. We found that combined across all studies (n = 7, salt marsh vegetation had a significant positive effect on wave attenuation as measured by reductions in wave height per unit distance across marsh vegetation. Salt marsh vegetation also had a significant positive effect on shoreline stabilization as measured by accretion, lateral erosion reduction, and marsh surface elevation change (n = 30. Salt marsh characteristics that were positively correlated to both wave attenuation and shoreline stabilization were vegetation density, biomass production, and marsh size. Although we could not find studies quantitatively evaluating floodwater attenuation within salt marshes, there are several studies noting the negative effects of wetland alteration on water quantity regulation within coastal areas. CONCLUSIONS/SIGNIFICANCE: Our results show that salt marshes have value for coastal hazard mitigation and climate change adaptation. Because we do not yet fully understand the magnitude of this value, we propose that decision

  5. Monitoring coastal marshes biomass with CASI: a comparison of parametric and non-parametric models

    Science.gov (United States)

    Mo, Y.; Kearney, M.

    2017-12-01

    Coastal marshes are important carbon sinks that face multiple natural and anthropogenic stresses. Optical remote sensing is a powerful tool for closely monitoring the biomass of coastal marshes. However, application of hyperspectral sensors on assessing the biomass of diverse coastal marsh ecosystems is limited. This study samples spectral and biophysical data from coastal freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops parametric and non-parametric models for using the Compact Airborne Spectrographic Imager (CASI) to retrieve the marshes' biomass. Linear models and random forest models are developed from simulated CASI data (48 bands, 380-1050 nm, bandwidth 14 nm). Linear models are also developed using narrowband vegetation indices computed from all possible band combinations from the blue, red, and near infrared wavelengths. It is found that the linear models derived from the optimal narrowband vegetation indices provide strong predictions for the marshes' Leaf Area Index (LAI; R2 > 0.74 for ARVI), but not for their Aboveground Green Biomass (AGB; R2 > 0.25). The linear models derived from the simulated CASI data strongly predict the marshes' LAI (R2 = 0.93) and AGB (R2 = 0.71) and have 27 and 30 bands/variables in the final models through stepwise regression, respectively. The random forest models derived from the simulated CASI data also strongly predict the marshes' LAI and AGB (R2 = 0.91 and 0.84, respectively), where the most important variables for predicting LAI are near infrared bands at 784 and 756 nm and for predicting ABG are red bands at 684 and 670 nm. In sum, the random forest model is preferable for assessing coastal marsh biomass using CASI data as it offers high R2 for both LAI and AGB. The superior performance of the random forest model is likely to due to that it fully utilizes the full-spectrum data and makes no assumption of the approximate normality of the sampling population. This study offers solutions

  6. Analysis of change in marsh types of coastal Louisiana, 1978-2001

    Science.gov (United States)

    Linscombe, Robert G.; Hartley, Stephen B.

    2011-01-01

    Scientists and geographers have provided multiple datasets and maps to document temporal changes in vegetation types and land-water relationships in coastal Louisiana. Although these maps provide useful historical information, technological limitations prevented these and other mapping efforts from providing sufficiently detailed calculations of areal changes and shifts in habitat coverage. The current analysis of habitat change draws upon these past mapping efforts but is based on an advanced, geographic information system dataset that was created by using Landsat 5 Thematic Mapper imagery and digital orthophoto quarter quadrangles. The objective of building this dataset was to more specifically define land-water relationships over time in coastal Louisiana, and it provides the most detailed analysis of vegetation shifts to date. In the current study, we have attempted to explain these vegetation shifts by interpreting them in the context of rainfall records, data from the Palmer Drought Severity Index, and salinity data. During the 23 years we analyzed, total marsh acreage decreased, with conversion of marsh to open water. Furthermore, the general trend across coastal Louisiana was a shift to increasingly fresh marsh types. Although fresh marsh remained almost the same during the 1978-88 study period, there were greater increases during the 1988-2001 study periods. Intermediate marsh followed the same pattern, whereas brackish marsh showed a reverse (decreasing) pattern. Changes in saline (saltwater) marsh were minimal. Interpreting shifts in marsh vegetation types by using climate and salinity data provides better understanding of factors influencing these changes and, therefore, can improve our ability to make predictions about future marsh loss related to vegetation changes. Results of our study indicate that precipitation fluctuations prior to vegetation surveys impacted salinities differently across the coast. For example, a wet 6 months prior to the survey

  7. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H; Barthelmie, R J; Crippa, P; Doubrawa, P; Pryor, S C

    2014-01-01

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve

  8. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term

  9. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  10. Regeneration of coastal marsh vegetation impacted by hurricanes Katrina and Rita

    Science.gov (United States)

    Middleton, B.A.

    2009-01-01

    The dynamics of plant regeneration via seed and vegetative spread in coastal wetlands dictate the nature of community reassembly that takes place after hurricanes or sea level rise. The objectives of my project were to evaluate the potential effects of saltwater intrusion and flooding of Hurricanes Katrina and Rita on seedling regeneration in coastal wetlands of the Gulf Coast. Specifically I tested hypotheses to determine for species in fresh, brackish and salt marshes of the Gulf Coast if 1) the pattern of seed germination and seedling recruitment differed with distance from the shoreline, and 2) seed germination and seedling recruitment for various species were reduced in higher levels of water depth and salinity. Regarding Hypothesis 1, seedling densities increased with distance from the shoreline in fresh and brackish water marshes while decreasing with distance from the shoreline in salt marshes. Also to test Hypothesis 1, I used a greenhouse seed bank assay to examine seed germination from seed banks collected at distances from the shoreline in response to various water depths and salinity levels using a nested factorial design. For all marsh types, the influence of water level and salinity on seed germination shifted with distance from the shoreline (i.e., three way interaction of the main effects of distance nested within site, water depth, and salinity). Data from the seed bank assay were also used to test Hypothesis 2. The regeneration of species from fresh, brackish, and salt marshes were reduced in conditions of high salinity and/or water, so that following hurricanes or sea level rise, seedling regeneration could be reduced. Among the species of these coastal marshes, there was some flexibility of response, so that at least some species were able to germinate in either high or low salinity. Salt marshes had a few fresher marsh species in the seed bank that would not germinate without a period of fresh water input (e.g., Sagittaria lancifolia) as well

  11. Coastal Marsh Longevity, Ecological Succession, and Organic Carbon Dynamics During Early Holocene Sea-Level Rise

    Science.gov (United States)

    Vetter, L.; Schreiner, K. M.; Rosenheim, B. E.; Tornqvist, T. E.

    2016-02-01

    Coastal marsh environments perform essential ecosystem services, including nutrient filtering, soil organic matter storage, and storm surge abatement, yet much is still unknown about their formation and fate under periods of sea-level change. During the early Holocene (7-10 ka), rapid sea-level rise in coastal Louisiana was one of the primary controls over marsh development and longevity. Here, we investigate plant community composition and succession and soil organic matter storage in early Holocene coastal marshes in Louisiana using bulk elemental ratios, lignin phenol biomarkers and stable isotopes from peat layers. Sediment cores were collected in southeastern Louisiana and contain a record of an early Holocene transgressive sea-level sequence 16-25 m below present sea-level. The sedimentary record consists of an immature paleosol overlain by basal peat that accumulated in an estuarine marsh, overlain by marine lagoonal muds. A re-established marsh peat is present 1-4 m above the initial transition to marine conditions, indicating a sequence of marsh development, sea-level rise and onset of marine conditions, and then further marsh development as the rate of relative sea-level rise decelerated. Plant community composition in coastal marshes was determined through cupric oxide oxidation and lignin-phenol and non-lignin-phenol biomarker abundances. The degradation state of soil organic matter and the specific source of stabilized organic matter within the sedimentary peats were determined through lignin-phenol biomarker ratios. Organic matter sources ranged from terrestrial to marine over the course of sea-level rise, and different sites showed different amounts of marine organic matter influence and different levels of terrestrial organic matter degradation. These results have important implications for reconstructing the response of coastal marshes and their plant communities to accelerated rates of sea-level rise projected through 2100.

  12. Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data

    Science.gov (United States)

    Couvillion, Brady R.; Beck, Holly

    2013-01-01

    Forecasting marsh collapse in coastal Louisiana as a result of changes in sea-level rise, subsidence, and accretion deficits necessitates an understanding of thresholds beyond which inundation stress impedes marsh survival. The variability in thresholds at which different marsh types cease to occur (i.e., marsh collapse) is not well understood. We utilized remotely sensed imagery, field data, and elevation data to help gain insight into the relationships between vegetation health and inundation. A Normalized Difference Vegetation Index (NDVI) dataset was calculated using remotely sensed data at peak biomass (August) and used as a proxy for vegetation health and productivity. Statistics were calculated for NDVI values by marsh type for intermediate, brackish, and saline marsh in coastal Louisiana. Marsh-type specific NDVI values of 1.5 and 2 standard deviations below the mean were used as upper and lower limits to identify conditions indicative of collapse. As marshes seldom occur beyond these values, they are believed to represent a range within which marsh collapse is likely to occur. Inundation depth was selected as the primary candidate for evaluation of marsh collapse thresholds. Elevation relative to mean water level (MWL) was calculated by subtracting MWL from an elevation dataset compiled from multiple data types including light detection and ranging (lidar) and bathymetry. A polynomial cubic regression was used to examine a random subset of pixels to determine the relationship between elevation (relative to MWL) and NDVI. The marsh collapse uncertainty range values were found by locating the intercept of the regression line with the 1.5 and 2 standard deviations below the mean NDVI value for each marsh type. Results indicate marsh collapse uncertainty ranges of 30.7–35.8 cm below MWL for intermediate marsh, 20–25.6 cm below MWL for brackish marsh, and 16.9–23.5 cm below MWL for saline marsh. These values are thought to represent the ranges of

  13. Determining the Contribution of Non-Carbonate Alkalinity from Intertidal Salt Marshes to Coastal Buffering Capacity

    Science.gov (United States)

    Anderson, L. B.; Gonneea, M. E.; Wang, A. Z.; Chu, S. N.

    2016-02-01

    Coastal ocean acidification varies with high magnitude and frequency due to both natural and anthropogenic factors, and levels of acidity in coastal waters have important consequences for environmental concerns such as local settlement of bivalve populations. Therefore, it is useful to fully evaluate measurements that increase understanding of coastal ocean acidification dynamics. This study focuses on the quantification and characterization of alkalinity, the ability of a specific water parcel to buffer against inputs of acidity. There has been limited research on the magnitude and composition of non-carbonate alkalinity (NCA) generated in coastal environments. Specifically, this study evaluates the contribution of NCA to total alkalinity (TA) in an intertidal salt marsh, assesses NCA dynamics within the marsh, and begins to determine composition of NCA. We demonstrated that it was possible to develop a CO2-free full titration system modeled after Cai et al. (1998) that produced reasonable values for TA and NCA. From initial use of this system, it was evident that NCA was a significant contributor to TA within the Sage Lot Pond salt marsh, and that NCA was dominated by organic/unknown alkalinity. Preliminary observations indicated that NCA variability in the marsh was directly proportional to water flux entering the tidal creek from Sage Lot Pond. The source of higher NCA concentrations in Sage Lot Pond was unknown, but may have been due to organic/unknown alkalinity generated in a different part of the marsh and exported to our specific tidal creek site. Preliminary assessment of NCA composition indicates an acid/base species with a pK value of 6.46. From evaluation of NCA magnitude and relation to water flux, it is reasonable to conclude that NCA generated within salt marshes may be a significant source of buffering capacity to the coastal ocean.

  14. Development of a Climate Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    Science.gov (United States)

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  15. Development of a Climate-Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    Science.gov (United States)

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  16. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  17. A New Approach to Monitoring Coastal Marshes for Persistent Flooding

    Science.gov (United States)

    Kalcic, M. T.; Undersood, Lauren W.; Fletcher, Rose

    2012-01-01

    Many areas in coastal Louisiana are below sea level and protected from flooding by a system of natural and man-made levees. Flooding is common when the levees are overtopped by storm surge or rising rivers. Many levees in this region are further stressed by erosion and subsidence. The floodwaters can become constricted by levees and trapped, causing prolonged inundation. Vegetative communities in coastal regions, from fresh swamp forest to saline marsh, can be negatively affected by inundation and changes in salinity. As saltwater persists, it can have a toxic effect upon marsh vegetation causing die off and conversion to open water types, destroying valuable species habitats. The length of time the water persists and the average annual salinity are important variables in modeling habitat switching (cover type change). Marsh type habitat switching affects fish, shellfish, and wildlife inhabitants, and can affect the regional ecosystem and economy. There are numerous restoration and revitalization projects underway in the coastal region, and their effects on the entire ecosystem need to be understood. For these reasons, monitoring persistent saltwater intrusion and inundation is important. For this study, persistent flooding in Louisiana coastal marshes was mapped using MODIS (Moderate Resolution Imaging Spectroradiometer) time series of a Normalized Difference Water Index (NDWI). The time series data were derived for 2000 through 2009, including flooding due to Hurricane Rita in 2005 and Hurricane Ike in 2008. Using the NDWI, duration and extent of flooding can be inferred. The Time Series Product Tool (TSPT), developed at NASA SSC, is a suite of software developed in MATLAB(R) that enables improved-quality time series images to be computed using advanced temporal processing techniques. This software has been used to compute time series for monitoring temporal changes in environmental phenomena, (e.g. NDVI times series from MODIS), and was modified and used to

  18. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana

  19. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    Science.gov (United States)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths

  20. The shift from hold-the-line to management retreat and implications to coastal change: Farlington Marshes, a case of conflicts

    Science.gov (United States)

    Esteves, L. S.; Foord, J.; Draux, H.

    2012-04-01

    Although it can be argued that coastal erosion is primarily a natural process, in many developed coasts it has been triggered or intensified by human-induced activities affecting local sediment budget and pathways. For a long time, coastal engineering works have been used to reshape the world's coastlines to accommodate for social and economic needs. The realisation that such interference with natural processes would result in cascading environmental impacts at various temporal and spatial scales is relatively recent. As a result, a series of regulations have been implemented to mitigate further damage to coastal environments and compensatory measures are now required as part of licensing approval for certain coastal activities. For example, the construction and upgrade of coastal defences are now constrained due to potential detrimental impacts caused on adjacent designated European habitats or species. This study evaluates how a shift from socio-economic needs to a natural-conservancy focus is influencing coastal management approaches in England and the implications for coastal evolution. More specifically, Farlington Marshes (Portsmouth, southern England) will be used as a case study to assess how complex interactions between natural coastal processes, coastal defences and the need for environmental conservation are affecting shoreline changes, evolution of intertidal habitats and biodiversity. Farlington Marshes are designated grazing marshes of national and European importance and a valued recreational area used by local residents. Seawalls built in the 18th century protect the freshwater habitats from flooding but cause detrimental impact on intertidal habitats of Langstone Habour, which are also designated conservation areas (Ramsar, Special Areas of Conservation, Special Protection Areas, Sites of Special Scientific Interest). The presence of seawalls has caused erosion and coastal squeeze, which are the main causes of the rapid loss of saltmarshes observed

  1. Limits on the adaptability of coastal marshes to rising sea level

    Science.gov (United States)

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; D'Alpaos, Andrea; Morris, James T.; Mudd, Simon M.; Temmerman, Stijn

    2010-01-01

    Assumptions of a static landscape inspire predictions that about half of the world's coastal wetlands will submerge during this century in response to sea-level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea-level assessments, we find that non-linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea-level rise where suspended sediment concentrations are greater than ~20 mg/L. Under scenarios of more rapid sea-level rise (e.g., those that include ice sheet melting), marshes will likely submerge near the end of the 21st century. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processes to modify their physical environment.

  2. Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013

    Science.gov (United States)

    Hartley, Stephen B.; Couvillion, Brady R.; Enwright, Nicholas M.

    2017-05-30

    The Bureau of Ocean Energy Management researchers often require detailed information regarding emergent marsh vegetation types (such as fresh, intermediate, brackish, and saline) for modeling habitat capacities and mitigation. In response, the U.S. Geological Survey in cooperation with the Bureau of Ocean Energy Management produced a detailed change classification of emergent marsh vegetation types in coastal Louisiana from 2007 and 2013. This study incorporates two existing vegetation surveys and independent variables such as Landsat Thematic Mapper multispectral satellite imagery, high-resolution airborne imagery from 2007 and 2013, bare-earth digital elevation models based on airborne light detection and ranging, alternative contemporary land-cover classifications, and other spatially explicit variables. An image classification based on image objects was created from 2007 and 2013 National Agriculture Imagery Program color-infrared aerial photography. The final products consisted of two 10-meter raster datasets. Each image object from the 2007 and 2013 spatial datasets was assigned a vegetation classification by using a simple majority filter. In addition to those spatial datasets, we also conducted a change analysis between the datasets to produce a 10-meter change raster product. This analysis identified how much change has taken place and where change has occurred. The spatial data products show dynamic areas where marsh loss is occurring or where marsh type is changing. This information can be used to assist and advance conservation efforts for priority natural resources.

  3. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  4. Consequences of climate change, eutrophication, and other anthropogenic impacts to coastal salt marshes: multiple stressors reduce resiliency and sustainability

    Science.gov (United States)

    Watson, E. B.; Wigand, C.; Nelson, J.; Davey, E.; Van Dyke, E.; Wasson, K.

    2011-12-01

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the impacts of future sea level rise combined with other anthropogenic stressors to salt marsh sustainability through the implementation of field and laboratory mesocosms, manipulative experiments, correlative studies, and predictive modeling conducted in central California and southern New England salt marshes. We report on measurements of soil respiration, decomposition, sediment accumulation, and marsh elevation, which considered jointly suggest an association between nitrate input and marsh elevation loss resulting from mineralization of soil organic matter. Furthermore, use of imaging techniques (CT scans) has shown differences in belowground root and rhizome structure associated with fertilization, resulting in a loss of sediment cohesion promoted by fine root structure. Additionally, field and greenhouse mesocosm experiments have provided insight into the specific biogeochemical processes responsible for plant mortality at high immersion or salinity levels. In conclusion, we have found that poor water quality (i.e. eutrophication) leads to enhanced respiration and decomposition of soil organic matter, which ultimately contributes to a loss of salt marsh sustainability. However, marsh deterioration studied at field sites (Jamaica Bay, NY and Elkhorn Slough, CA) is associated not only with enhanced nutrient loads, but also increased immersion due to tidal range increases resulting from dredging. To ensure the continuation of the ecosystem services provided by tidal wetlands and to develop sustainable management strategies that provide favorable outcomes under a variety of future sea level rise and land use scenarios, we need to develop a better understanding of the relative impacts of the

  5. Impact of Coastal Development and Marsh Width Variability on Groundwater Quality in Estuarine Tidal Creeks

    Science.gov (United States)

    Shanahan, M.; Wilson, A. M.; Smith, E. M.

    2017-12-01

    Coastal upland development has been shown to negatively impact surface water quality in tidal creeks in the southeastern US, but less is known about its impact on groundwater. We sampled groundwater in the upland and along the marsh perimeter of tidal creeks located within developed and undeveloped watersheds. Samples were analyzed for salinity, dissolved organic carbon, nitrogen and phosphorus concentrations. Groundwater samples collected from the upland in developed and undeveloped watersheds were compared to study the impact of development on groundwater entering the marsh. Groundwater samples collected along the marsh perimeter were analyzed to study the impact of marsh width variability on groundwater quality within each creek. Preliminary results suggest a positive correlation between salinity and marsh width in undeveloped watersheds, and a higher concentration of nutrients in developed versus undeveloped watersheds.

  6. Monitoring duration and extent of storm-surge and flooding in Western Coastal Louisiana marshes with Envisat ASAR data

    Science.gov (United States)

    Ramsey, E.; Lu, Z.; Suzuoki, Y.; Rangoonwala, A.; Werle, D.

    2011-01-01

    Inundation maps of coastal marshes in western Louisiana were created with multitemporal Envisat Advanced Synthetic Aperture (ASAR) scenes collected before and during the three months after Hurricane Rita landfall in September 2005. Corroborated by inland water-levels, 7 days after landfall, 48% of coastal estuarine and palustrine marshes remained inundated by storm-surge waters. Forty-five days after landfall, storm-surge inundated 20% of those marshes. The end of the storm-surge flooding was marked by an abrupt decrease in water levels following the passage of a storm front and persistent offshore winds. A complementary dramatic decrease in flood extent was confirmed by an ASAR-derived inundation map. In nonimpounded marshes at elevations ;80 cm during the first month after Rita landfall. After this initial period, drainage from marshes-especially impounded marshes-was hastened by the onset of offshore winds. Following the abrupt drops in inland water levels and flood extent, rainfall events coinciding with increased water levels were recorded as inundation re-expansion. This postsurge flooding decreased until only isolated impounded and palustrine marshes remained inundated. Changing flood extents were correlated to inland water levels and largely occurred within the same marsh regions. Trends related to incremental threshold increases used in the ASAR change-detection analyses seemed related to the preceding hydraulic and hydrologic events, and VV and HH threshold differences supported their relationship to the overall wetland hydraulic condition.

  7. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    Science.gov (United States)

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  8. Hydrocarbon Degradation and Sulfate Reduction in a Coastal Marsh of North Florida

    Science.gov (United States)

    Hsieh, Y.; Bugna, G. C.; Robinson, L.

    2001-05-01

    Hydrocarbon contamination of coastal waters has been an environmental concern for sometime. Coastal wetlands, which are rich in organic matter and microbial activities, have been considered natural systems that could degrade hydrocarbon in contaminated coastal waters. This study was initiated to investigate the potential of hydrocarbon degradation in a coastal salt marsh of North Florida with special reference to sulfate reduction. Freshly collected surface marsh sediments (0-20 cm) were incubated in a laboratory at ambient temperature (23.2° C) with the treatments of: 1) Control (i.e., no treatment), 2) +(crude) oil, 3) +NO3-1+oil, and 4) +MoO4-2+oil. Carbon dioxide evolution from the incubation was collected and analyzed for the total amount and the 13C signature. The NO3-1 and MoO4-2 treatments were intended to block the sulfate reduction activity. The results show that the indigenous organic matter and the crude oil have distinct δ 13C values of -19.8 and -27.6 \\permil, respectively, relative to PDB. Evolved CO2 concentrations and δ 13C values also indicate that microbial populations can adapt to the presence of anthropogenic hydrocarbons. Blocking of sulfate reducers by MoO4-2 addition started to reduce the carbon dioxide evolution rates after a 4-d incubation. After a 48-d incubation, the carbon dioxide evolution of the MoO4-2-treated samples was reduced to only 23 % of the non-MoO4-2-treated samples, indicating the increased significant role of sulfate reducers in digesting older soil organic matter and the hydrocarbons. T-tests also indicated that in NO3-1 treatment, δ 13C values significantly depleted (p=0.1) while CO2 concentration remained relatively constant. These indicate that while denitrifiers played a role in the degradation, the microbial population is predominantly composed of sulfate reducers. Salt marshes would be a much more significant source of CH4 if SO4-2 is suppressed. All MoO4-2-treated samples produced significant amount of methane

  9. Hydrology of Fritchie Marsh, coastal Louisiana

    Science.gov (United States)

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  10. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.

    Science.gov (United States)

    Nelson, Joanna L; Zavaleta, Erika S

    2012-01-01

    Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N) before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4)NO(3))-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a) aboveground biomass, b) plant tissue N concentrations, c) N stock sequestered in plants, and d) shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.

  11. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    Science.gov (United States)

    Smith, Thomas J.; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  12. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.

    Directory of Open Access Journals (Sweden)

    Joanna L Nelson

    Full Text Available Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4NO(3-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a aboveground biomass, b plant tissue N concentrations, c N stock sequestered in plants, and d shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.

  13. Coastal salt-marshes in Albania

    OpenAIRE

    JULIAN SHEHU; ALMA IMERI; RUDINA KOCI; ALFRED MULLAJ

    2014-01-01

    The salt marshes of Albania comprise a narrow belt along the Adriatic and Ionian Seas. They have been the subject of a range of human activities causing habitat loss. Enclosure for agricultural use, ports and other infrastructure has reduced many salt marshes to a narrow fringe along estuary shores. Salt marshes are important for a range of interests. In particular they support a range of specialist plant communities and associated animals (especially breeding and wintering birds) and often h...

  14. Effects of marsh pond terracing on coastal wintering waterbirds before and after Hurricane Rita.

    Science.gov (United States)

    O'Connell, Jessica L; Nyman, John A

    2011-11-01

    From February to March 2005-2006, we surveyed wintering waterbirds to test effects of terracing on coastal pond use before and after Hurricane Rita. Marsh terracing is intended to slow coastal marsh loss in the Chenier Plain by slowing marsh erosion and encouraging vegetation expansion. Terraces also increase marsh edge in ponds, possibly benefiting waterbirds. We monitored paired terraced and unterraced ponds in three sites within southwestern Louisiana's Chenier Plain. Waterbirds were 75% more numerous in terraced than unterraced ponds. Waterbird richness was similar among ponds when corrected for number of individuals, suggesting terracing increased bird density but did not provide habitat unique from unterraced ponds. Birds were 93% more numerous following Hurricane Rita, mostly due to an influx of migrating waterfowl. Year round residents were similar in number before and after Hurricane Rita. Resident richness did not differ among years after correcting for number of observed individuals. Wading and dabbling foragers were more abundant in terraced ponds and these two guilds represented 74% of birds observed. We detected no difference among ponds for other guilds, i.e., probing, aerial, and diving foragers. Increasing proportion of mash edge increased bird density disproportionately: On average ponds with 10% edge had 6 birds observed and ponds with 30% edge had 16 birds observed. Terraces increased habitat interspersion and were an effective tool for increasing numbers of wintering waterfowl and wading birds. The extent to which terraces were sustainable following hurricane forces is unknown.

  15. Effects of Marsh Pond Terracing on Coastal Wintering Waterbirds Before and After Hurricane Rita

    Science.gov (United States)

    O'Connell, Jessica L.; Nyman, John A.

    2011-11-01

    From February to March 2005-2006, we surveyed wintering waterbirds to test effects of terracing on coastal pond use before and after Hurricane Rita. Marsh terracing is intended to slow coastal marsh loss in the Chenier Plain by slowing marsh erosion and encouraging vegetation expansion. Terraces also increase marsh edge in ponds, possibly benefiting waterbirds. We monitored paired terraced and unterraced ponds in three sites within southwestern Louisiana's Chenier Plain. Waterbirds were 75% more numerous in terraced than unterraced ponds. Waterbird richness was similar among ponds when corrected for number of individuals, suggesting terracing increased bird density but did not provide habitat unique from unterraced ponds. Birds were 93% more numerous following Hurricane Rita, mostly due to an influx of migrating waterfowl. Year round residents were similar in number before and after Hurricane Rita. Resident richness did not differ among years after correcting for number of observed individuals. Wading and dabbling foragers were more abundant in terraced ponds and these two guilds represented 74% of birds observed. We detected no difference among ponds for other guilds, i.e., probing, aerial, and diving foragers. Increasing proportion of mash edge increased bird density disproportionately: On average ponds with 10% edge had 6 birds observed and ponds with 30% edge had 16 birds observed. Terraces increased habitat interspersion and were an effective tool for increasing numbers of wintering waterfowl and wading birds. The extent to which terraces were sustainable following hurricane forces is unknown.

  16. Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

    Science.gov (United States)

    Piazza, Sarai C.; Steyer, Gregory D.; Cretini, Kari F.; Sasser, Charles E.; Visser, Jenneke M.; Holm, Guerry O.; Sharp, Leigh A.; Evers, D. Elaine; Meriwether, John R.

    2011-01-01

    Hurricanes Katrina and Rita made landfall in 2005, subjecting the coastal marsh communities of Louisiana to various degrees of exposure. We collected data after the storms at 30 sites within fresh (12), brackish/intermediate (12), and saline (6) marshes to document the effects of saltwater storm surge and sedimentation on marsh community dynamics. The 30 sites were comprised of 15 pairs. Most pairs contained one site where data collection occurred historically (that is, prestorms) and one Coastwide Reference Monitoring System site. Data were collected from spring 2006 to fall 2007 on vegetative species composition, percentage of vegetation cover, aboveground and belowground biomass, and canopy reflectance, along with discrete porewater salinity, hourly surface-water salinity, and water level. Where available, historical data acquired before Hurricanes Katrina and Rita were used to compare conditions and changes in ecological trajectories before and after the hurricanes. Sites experiencing direct and indirect hurricane influences (referred to in this report as levels of influence) were also identified, and the effects of hurricane influence were tested on vegetation and porewater data. Within fresh marshes, porewater salinity was greater in directly impacted areas, and this heightened salinity was reflected in decreased aboveground and belowground biomass and increased cover of disturbance species in the directly impacted sites. At the brackish/intermediate marsh sites, vegetation variables and porewater salinity were similar in directly and indirectly impacted areas, but porewater salinity was higher than expected throughout the study. Interestingly, directly impacted saline marsh sites had lower porewater salinity than indirectly impacted sites, but aboveground biomass was greater at the directly impacted sites. Because of the variable and site-specific nature of hurricane influences, we present case studies to help define postdisturbance baseline conditions in

  17. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  18. Organic carbon isotope systematics of coastal marshes

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Lubberts, R.K.; Van de Plassche, O.

    1997-01-01

    Measurements of nitrogen, organic carbon and delta(13)C are presented for Spartina-dominated marsh sediments from a mineral marsh in SW Netherlands and from a peaty marsh in Massachusetts, U.S.A. delta(13)C Of organic carbon in the peaty marsh sediments is similar to that of Spartina material,

  19. Bio-geomorphic feedback causes alternative stable landscape states: insights from coastal marshes and tidal flats

    Science.gov (United States)

    Temmerman, Stijn; Wang, Chen

    2014-05-01

    Many bio-geomorphic systems, such as hill slopes, river floodplains, tidal floodplains and dune areas, seem to be vulnerable to shifts between alternative bare and vegetated landscape states, and these shifts seem to be driven by bio-geomorphic feedbacks. Here we search for empirical evidence for alternative stable state behavior in intertidal flats and marshes, where bio-geomorphic interactions are known to be intense. Large-scale transitions have been reported worldwide between high-elevation vegetated marshes and low-elevation bare flats in intertidal zones of deltas, estuaries, and coastal embayments. It is of significant importance to understand and predict such transitions, because vegetated marshes provide significant services to coastal societies. Previous modeling studies suggest that the ecological theory of catastrophic shifts between alternative stable ecosystem states potentially explains the transition between bare flats and vegetated marshes. However, up to now only few empirical evidence exists. In our study, the hypothesis is empirically tested that vegetated marshes and bare tidal flats can be considered as alternative stable landscape states with rapid shifts between them. We studied historical records (1930s - 2000s) of intertidal elevation surveys and aerial pictures from the Westerschelde estuary (SW Netherlands). Our results demonstrated the existence of: (1) bimodality in the intertidal elevation distribution, i.e., the presence of two peaks in the elevation frequency distribution corresponding to a completely bare state and a densely vegetated state; (2) the relatively rapid transition in elevation when intertidal flats evolve from bare to vegetated states, with sedimentation rates that are 2 to 8 times faster than during the stable states; (3) a threshold elevation above which the shift from bare to vegetated state has a high chance to occur. Our observations demonstrate the abrupt non-linear shift between low-elevation bare flats and high

  20. Variations in organic carbon chemistry in the Gulf Coast and coastal marshes following the Deepwater Horizon oil spill

    Science.gov (United States)

    Holloway, J. M.; Orem, W. H.; Aiken, G.; Varonka, M. S.; Butler, K.; Kokaly, R. F.

    2011-12-01

    Record volumes of oil released from the Macondo well following the explosion of the Deepwater Horizon offshore oil-drilling platform in the Gulf of Mexico significantly impacted coastal marshes in Barataria Bay, Louisiana. Remote sensing and water sampling was conducted by the U.S. Geological Survey to evaluate the extent of impact. Water samples were collected offshore from near the spill site July 5-10, 2010 to characterize molecular organic carbon chemistry on unfiltered samples and dissolved organic carbon (DOC) on filtered samples. Three field visits were conducted in July 7-10, August 12-14, and August 24-26, 2010, to collect samples from the soil-water interface in coastal marshes along lower Barataria Bay and the Bird's Foot Delta at the distal end of the Mississippi River Delta. Visible oil in the marsh was observed as thick coatings on vegetation and soil and as sheens at the water surface. Samples were extracted for hydrocarbons with dichloromethane, separated into aliphatic, aromatic and polar compound classes using standard column techniques, and analyzed by gas chromatography/mass spectrometry. A significant amount of oil was observed "dissolved" in the water column with a hydrocarbon distribution resembling that of the surface oil slick. While oils maintained many of the more volatile lower molecular weight components near the spill site, these were mostly gone in the onshore Barataria Bay samples, leaving mostly higher molecular weight components. Dissolved organic carbon was characterized using concentration, fluorescence index (FI), specific ultratviolet absorbance (SUVA) and excitation/emission fluorescence (EEM). Offshore samples had distinctive EEMs patterns, SUVA and FI. With few exceptions, marsh samples had EEMs patterns more similar to previously extracted organic matter from the Mississippi River than to the offshore oil. In spite of visible oil sheen in unfiltered water from contaminated shorelines and no visible sign of impact on

  1. From Marshes to the Continental Shelf: Results of the Western Component of the US EPA National Coastal Assessment

    Science.gov (United States)

    W. G. Nelson; H. II Lee; J. O. Lamberson

    2006-01-01

    The National Coastal Assessment of the US EPA began field work in the Western US in 1999-2000. Probabilistic sampling for biotic and abiotic condition indicators was conducted at 381 stations within estuaries and coastal embayments of Washington, Oregon and California. In 2002, intertidal and low salt marsh habitats were sampled at an additional 190 stations. As part...

  2. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  3. Galveston Bay Marsh Terracing 2001-2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marsh terracing is used to restore coastal wetlands by converting shallow nonvegetated bottom to intertidal marsh. Terraces are constructed from excavated bottom...

  4. Distribution of native mussel (unionidae) assemblages in coastal areas of Lake Erie, Lake St. Clair, and connecting channels, twenty-five years after a dreissenid invasion

    Science.gov (United States)

    Zanatta, David T.; Bossenbroek, Jonathan M.; Burlakova, Lyubov E.; Crail, Todd D.; Szalay, Ferenc de; Griffith, Traci A.; Kapusinski, Douglas; Karatayev, Alexander Y.; Krebs, Robert A.; Meyer, Elizabeth S.; Paterson, Wendy L.; Prescott, Trevor J.; Rowe, Matthew T.; Schloesser, Donald W.; Walsh, Mary C.

    2015-01-01

    Over the past 25 years, unionid mussels in the Laurentian Great Lakes of North America have been adversely impacted by invasive dreissenid mussels, which directly (e.g., by attachment to unionid shells) and indirectly (e.g., by competing for food) cause mortality. Despite the invasion, unionids have survived in several areas in the presence of dreissenid mussels. We investigated current spatial patterns in these native mussel refuges based on surveys for unionid mussels across 48 sampling locations (141 sites) in 2011 and 2012, and documented species abundance and diversity in coastal areas of lakes St. Clair and Erie. The highest-quality assemblages of native mussels (densities, richness, and diversity) appear to be concentrated in the St. Clair delta, where abundance continues to decline, as well as in in Thompson Bay of Presque Isle in Lake Erie and in just a few coastal wetlands and drowned river-mouths in the western basin of Lake Erie. The discovery of several new refuge areas suggests that unionids have a broader distribution within the region than previously thought.

  5. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    Science.gov (United States)

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China. © 2014 John Wiley & Sons Ltd.

  6. Coastal marsh degradation: modeling the influence of vegetation die-off patterns on flow and sedimentation

    Science.gov (United States)

    Schepers, Lennert; Wang, Chen; Kirwan, Matthew; Belluco, Enrica; D'Alpaos, Andrea; Temmerman, Stijn

    2014-05-01

    Coastal marshes are vulnerable ecosystems that provide ecosystem functions such as storm protection and carbon sequestration. However, degradation of vegetated marshes into bare tidal flats or open water has been reported as a worldwide phenomenon, threatening their valuable wetland functions. Moreover, tidal marshes and bare flats are considered as alternative stable ecosystem states, which implies that, once vegetated marshes have degraded to bare flats, the (re)conversion from bare flats to marsh vegetation may be very difficult. Recent aerial photo analysis has demonstrated that the degradation or die-off of a marsh area is a spatial process, whereby vegetation is typically replaced by non-vegetated areas in the form of interior marsh pools, also known as ponds or marsh basins. On a small scale, these pools have similar characteristics among different marshes worldwide: pools that are located further away from tidal channels and with broad channel connections to the tidal channel system appear to have low surface elevations and a low probability for marsh recovery (this is re-establishment of vegetation on the surface). Interior pools located closer to, but that are not connected to channels on the other hand, are positioned on higher elevations and are more likely to recover. These findings may have important implications for the restoration potential of degraded marshes and their functions. We hypothesize that bio-geomorphologic interactions are the main mechanisms causing these differences in elevation and recovery potential of interior marsh pools: pools that are not connected to the channel system, are separated from the channel by vegetation, which reduces the flow velocity, increases sedimentation and may explain our observation of higher surface elevation of this type of pools. In contrast, pools that are connected with the channel system are not protected by vegetation and will experience higher flow velocities and lower sedimentation rates or even

  7. Influence of Black Mangrove Expansion on Salt Marsh Food Web Dynamics in Coastal Louisiana

    Science.gov (United States)

    Powell, C.; Baustian, M. M.; Polito, M. J.

    2017-12-01

    The range of black mangroves (Avicennia germinans) is projected to expand in the northern Gulf of Mexico due to reduced winter freeze events and an increased rate of droughts. The colonization of mangroves in salt marshes alters habitat structure and creates a novel basal carbon source for consumers. This addition may modify trophic linkages and the structure of estuarine food webs. To understand the implications of mangrove expansion on food web dynamics of traditional Spartina alterniflora marshes, two sites in coastal Louisiana with three habitat types, marsh-dominated, mangrove-dominated, and a transition or mix of the two, were studied. Community composition of juvenile nekton was sampled using fyke nets, minnow traps, and suction sampling and analyzed for abundance and diversity. Primary carbon sources (emergent vegetation, phytoplankton, macroalgae, benthic microalgae, submerged aquatic vegetation, and soil organic matter) and consumers ((blue crabs (Callinectes sapidus), brown shrimp (Farfantepenaeus aztecus), grass shrimp (Palaemonetes spp.), Gulf killifish (Fundulus grandis), periwinkle snails (Littoraria irrorata), eastern oysters (Crassostrea virginica), and southern ribbed mussels (Geukensia granosissima)) collected at each habitat type were measured using stable isotope analysis (δ13C, δ15N, δ34S) to identify trophic level, basal carbon sources, and assess how mangrove carbon is incorporated into salt marsh food webs. While data analysis is ongoing, preliminary results indicate that basal carbon sources supporting some marsh consumers (e.g., periwinkle snails) shift between habitat types, while others remain static (e.g., grass shrimp). This research will further develop our understanding of how climate induced shifts in vegetation influences valued marsh-dependent consumers in the estuarine ecosystems of northern Gulf of Mexico.

  8. Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions

    Science.gov (United States)

    Yang, P.; Bastviken, D.; Lai, D. Y. F.; Jin, B. S.; Mou, X. J.; Tong, C.; Yao, Y. C.

    2017-12-01

    In this study, we compared the CH4 and N2O fluxes from a tidal brackish Cyperus malaccensis marsh ecosystem and nearby shrimp ponds, converted from C. malaccensis marsh in the last 3-4 years, in the Min River estuary of southeast China over the aquaculture period of the year. Significant differences in CH4 and N2O fluxes were observed in space (between brackish marsh and shrimp ponds) and in time (between sampling occasions that were distributed over the aquaculture period). CH4 fluxes from the shrimp ponds were on an average 10-fold higher than from the brackish marsh. N2O emissions, on the other hand, were lower from the shrimp pond (25% of the emissions from the brackish marsh). Accessory data indicates that these patterns were primarily linked to water level variability and temperature (all fluxes), sediment porewater sulfate concentrations (CH4 flux) and total nitrogen concentrations (N2O flux). Our research demonstrates that the coastal marsh ecosystem converted to aquaculture ponds considerably alter emissions of CH4 and N2O and provides input to the global discussion on how to account for emissions from various types of flooded land in greenhouse gas inventories.

  9. DENITRIFICATION ENZYME ACTIVITY OF FRINGE SALT MARSHES IN NEW ENGLAND (USA)

    Science.gov (United States)

    Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seaso...

  10. Nitrogen removal through N cycling from sediments in a constructed coastal marsh as assessed by 15N-isotope dilution.

    Science.gov (United States)

    Ro, Hee-Myong; Kim, Pan-Gun; Park, Ji-Suk; Yun, Seok-In; Han, Junho

    2018-04-01

    Constructed coastal marsh regulates land-born nitrogen (N) loadings through salinity-dependent microbial N transformation processes. A hypothesis that salinity predominantly controls N removal in marsh was tested through incubation in a closed system with added- 15 NH 4 + using sediments collected from five sub-marshes in Shihwa marsh, Korea. Time-course patterns of concentrations and 15 N-atom% of soil-N pools were analyzed. Sediments having higher salinity and lower soil organic-C and acid-extractable organic-N exhibited slower rates of N mineralization and immobilization, nitrification, and denitrification. Rates of denitrification were not predicted well by sediment salinity but by its organic-C, indicating heterotrophic denitrification. Denitrification dominated N-loss from this marsh, and nitrogen removal capacity of this marsh was estimated at 337 kg N day -1 (9.9% of the daily N-loadings) considering the current rooting depth of common reeds (1.0 m). We showed that sediment N removal decreases with increasing salinity and can increase with increasing organic-C for heterotrophic denitrification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes

    Science.gov (United States)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-01-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  12. Effects of Disturbance Associated With Seismic Exploration for Oil and Gas Reserves in Coastal Marshes

    Science.gov (United States)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  13. Consequences of Climate Change, Eutrophication, and Other Anthropogenic Impacts to Coastal Salt Marshes: Multiple Stressors Reduce Resiliency and Sustainability

    Science.gov (United States)

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the ...

  14. Great Lakes clams find refuge from zebra mussels in restored, lake-connected marsh (Ohio)

    Science.gov (United States)

    Nichols, S. Jerrine; Wilcox, Douglas A.

    2004-01-01

    Since the early 1990s, more than 95 percent of the freshwater clams once found in Lake Erie have died due to the exotic zebara mussel (Dreissena polymorpha). Zebra mussels attach themselves to native clams in large numbers, impeding the ability of the clams to eat and burrow. However, in 1996, we discovered a population of native clams in Metzger Marsh in western Lake Erie (about 50 miles [80 km] east of Toledo) that were thriving despite the longtime presence of zebra mussel in surrounding waters. At that time, Metzger Marsh was undergoing extensive restoration, including construction of a dike to replace the eroded barrier beach and of a water-control structure to maintain hydrologic connections with the lake (Wilcox and Whillans 1999). The restoration plan called for a drawdown of water levels to promote plant growth from the seedbank -- a process that would also destroy most of the clam population. State and federal resource managers recommended removing as many clams as possible to a site that was isolated from zebra mussels, and then returning them to the marsh after it was restored. We removed about 7,000 native clams in 1996 and moved them back to Metzger Marsh in 1999.

  15. Marshes on the Move: Testing effects of seawater intrusion on vegetation communities of the salt marsh-upland ecotone

    Science.gov (United States)

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress to...

  16. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NARCIS (Netherlands)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive

  17. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. © 2012 Blackwell Publishing Ltd.

  18. Inorganic Carbon and Oxygen Dynamics in a Marsh-dominated Estuary

    Science.gov (United States)

    Wang, S. R.; Di Iorio, D.; Cai, W. J.; Hopkinson, C.

    2017-12-01

    A free-water mass balance-based study was conducted to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. Open water diurnal O2 and dissolved inorganic carbon (DIC) were measured seasonally in a salt marsh-estuary in Georgia, U.S.A. with a focus on the marsh-estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m-2 yr-1) greatly exceeding gross primary production (28 mol m-2 yr-1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air-water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation. With the increase of global temperature and sea level rise, salt marshes are likely to export more inorganic carbon to the atmosphere and the coastal ocean due to the decrease of solubility, the increase of aquatic and benthic metabolic activities and the longer marsh inundation.

  19. CO2 and CH4 fluxes in a Spartina salt marsh and brackish Phragmites marsh in Massachusetts

    Science.gov (United States)

    Tang, J.; Wang, F.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    Coastal salt marshes play an important role in global and regional carbon cycling. Tidally restricted marshes reduce salinity and provide a habitat suitable for Phragmites invasion. We measured greenhouse gas (GHG) emissions (CO2 and CH4) continuously with the eddy covariance method and biweekly with the static chamber method in a Spartina salt marsh and a Phragmites marsh on Cape Cod, Massachusetts, USA. We did not find significant difference in CO2 fluxes between the two sites, but the CH4 fluxes were much higher in the Phragmites site than the Spartina marsh. Temporally, tidal cycles influence the CO2 and CH4 fluxes in both sites. We found that the salt marsh was a significant carbon sink when CO2 and CH4 fluxes were combined. Restoring tidally restricted marshes will significantly reduce CH4 emissions and provide a strong ecosystem carbon service.

  20. Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Bai, Junhong; Li, Shanze; Zhang, Shuyan

    2018-02-01

    Determining how human disturbance affects plant community persistence and species conservation is one of the most pressing ecological challenges. The large-scale disturbance form defense structures usually have a long-term and potential effect on phytocommunity in coastal saltmarshes. Coastal defense structures usually remove the effect of tidal wave on tidal salt marshes. As a consequence, edaphic factors such as the salinity and moisture contents are disturbed by tidal action blocking. However, few previous studies have explicitly addressed the response of halophyte species persistence and dynamics to the changing edaphic conditions. The understanding of the response of species composition in seed banks and aboveground vegetation to the stress is important to identify ecological effect of coastal defense structures and provide usefully insight into restoration. Here, we conducted a field study to distinguish the density, species composition and relationships of seed bank with aboveground vegetation between tidal flat wetlands with and without coastal defense structures. We also addressed the role of edaphic condition in vegetation degradation caused by coastal defense structures in combination with field monitor and greenhouse experiments. Our results showed the density of the seed bank and aboveground vegetation in the tidal flat without coastal defense structures was significantly lower than the surrounded flat with coastal defense structures. A total of 14 species were founded in the surrounded flat seed bank and 11 species in the tidal flat, but three species were only recorded in aboveground vegetation of the tidal flat which was much lower than 24 aboveground species in the surrounded flat. The absent of species in aboveground vegetation contributed to low germination rate which depend on the edaphic condition. The germination of seeds in the seed bank were inhabited by high soil salinity in the tidal flat and low soil moisture in the surrounded flat. Our

  1. Spartina alterniflora alters ecosystem DMS and CH4 emissions and their relationship along interacting tidal and vegetation gradients within a coastal salt marsh in Eastern China

    Science.gov (United States)

    Wang, Jinxin; Wang, Jinshu

    2017-10-01

    Invasive Spartina alterniflora accumulates organic carbon rapidly and can utilize a wide range of potential precursors for dimethyl sulfide (DMS) production, as well as a wide variety of methanogenic substrates. Therefore, we predicted that S. alterniflora invasion would alter the relationships between DMS and methane (CH4) fluxes along the interacting gradients of tidal influence and vegetation, as well as the ecosystem-atmosphere exchange of DMS and CH4. In this study, we used static flux chambers to measure DMS and CH4 fluxes in August (growing season) and December (non-growing season) of 2013, along creek and vegetation transects in an Eastern Chinese coastal salt marsh. S. alterniflora invasion dramatically increased DMS and CH4 emission rates by 3.8-513.0 and 2.0-127.1 times the emission rates within non-vegetated regions and regions populated with native species, respectively, and significantly altered the spatial distribution of DMS and CH4 emissions. We also observed a substantial amount of variation in the DMS and CH4 fluxes along the elevation gradient in the salt marsh studied. A significant relationship between DMS and CH4 fluxes was observed, with the CH4 flux passively related to the DMS flux. The correlation between CH4 and DMS emissions along the vegetation transects was more significant than along the tidal creek. In the S. alterniflora salt marsh, the relationship between DMS and CH4 fluxes was more significant than within any other salt marsh. Additionally, CH4 emissions within the S. alterniflora salt marsh were more sensitive to the variation in DMS emissions than within any other vegetation zone. The spatial variability in the relationship observed between DMS and CH4 fluxes appears to be at least partly due to the alteration of substrates involved in DMS and CH4 by S. alterniflora invasion. In the S. alterniflora salt marsh, methanogenesis was more likely to be derived from non-competitive substrates than competitive substrates, but within

  2. Loss of 'blue carbon' from coastal salt marshes following habitat disturbance.

    Directory of Open Access Journals (Sweden)

    Peter I Macreadie

    Full Text Available Increased recognition of the global importance of salt marshes as 'blue carbon' (C sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2 if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora sediment C levels following seagrass (Thallasiatestudinum wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA, we recorded 296 patches (7.5 ± 2.3 m(2 mean area ± SE of vegetation loss (aged 3-12 months in a salt marsh meadow the size of a soccer field (7 275 m(2. Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.

  3. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    Science.gov (United States)

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  4. Gulf-Wide Information System, Environmental Sensitivity Index Marsh, Geographic NAD83, LDWF (2001) [esi_fresh_marsh_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) fresh marsh data of coastal Louisiana. The ESI is a classification and ranking system, which...

  5. Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh

    Directory of Open Access Journals (Sweden)

    J. J. Kelleway

    2017-08-01

    Full Text Available Coastal salt marshes are dynamic, intertidal ecosystems that are increasingly being recognised for their contributions to ecosystem services, including carbon (C accumulation and storage. The survival of salt marshes and their capacity to store C under rising sea levels, however, is partially reliant upon sedimentation rates and influenced by a combination of physical and biological factors. In this study, we use several complementary methods to assess short-term (days deposition and medium-term (months accretion dynamics within a single marsh that contains three salt marsh vegetation types common throughout southeastern (SE Australia.We found that surface accretion varies among vegetation assemblages, with medium-term (19 months bulk accretion rates in the upper marsh rush (Juncus assemblage (1.74 ± 0.13 mm yr−1 consistently in excess of estimated local sea-level rise (1.15 mm yr−1. Accretion rates were lower and less consistent in both the succulent (Sarcocornia, 0.78 ± 0.18 mm yr−1 and grass (Sporobolus, 0.88 ± 0.22 mm yr−1 assemblages located lower in the tidal frame. Short-term (6 days experiments showed deposition within Juncus plots to be dominated by autochthonous organic inputs with C deposition rates ranging from 1.14 ± 0.41 mg C cm−2 d−1 (neap tidal period to 2.37 ± 0.44 mg C cm−2 d−1 (spring tidal period, while minerogenic inputs and lower C deposition dominated Sarcocornia (0.10 ± 0.02 to 0.62 ± 0.08 mg C cm−2 d−1 and Sporobolus (0.17 ± 0.04 to 0.40 ± 0.07 mg C cm−2 d−1 assemblages.Elemental (C : N, isotopic (δ13C, mid-infrared (MIR and 13C nuclear magnetic resonance (NMR analyses revealed little difference in either the source or character of materials being deposited among neap versus spring tidal periods. Instead, these analyses point to substantial redistribution of materials within the Sarcocornia and

  6. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy

    Science.gov (United States)

    Hu, Kelin; Chen, Qin; Wang, Hongqing; Hartig, Ellen K.; Orton, Philip M.

    2018-01-01

    The salt marshes of Jamaica Bay serve as a recreational outlet for New York City residents, mitigate wave impacts during coastal storms, and provide habitat for critical wildlife species. Hurricanes have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. In this study, the Delft3D modeling suite was utilized to examine the effects of Hurricane Sandy (2012) on salt marsh morphology in Jamaica Bay. Observed marsh elevation change and accretion from rod Surface Elevation Tables and feldspar Marker Horizons (SET-MH) and hydrodynamic measurements during Hurricane Sandy were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model. The model results agreed well with in situ field measurements. The validated model was then used to detect salt marsh morphological change due to Sandy across Jamaica Bay. Model results indicate that the island-wide morphological changes in the bay's salt marshes due to Sandy were in the range of −30 mm (erosion) to +15 mm (deposition), and spatially complex and heterogeneous. The storm generated paired deposition and erosion patches at local scales. Salt marshes inside the west section of the bay showed erosion overall while marshes inside the east section showed deposition from Sandy. The net sediment amount that Sandy brought into the bay is only about 1% of the total amount of reworked sediment within the bay during the storm. Numerical experiments show that waves and vegetation played a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Furthermore, without the protection of vegetation, the marsh islands of Jamaica Bay would experience both more erosion and less accretion in coastal storms.

  7. Estimating patterns in Spartina alterniflora belowground biomass within salt marshes

    Science.gov (United States)

    O'Connell, J. L.; Mishra, D. R.; Alber, M.; Byrd, K. B.

    2017-12-01

    Belowground biomass of marsh plants, such as Spartina alterniflora, help prevent marsh loss because they promote soil accretion, stabilize soils and add organic matter. However, site-wide estimates of belowground biomass are difficult to obtain because root:shoot ratios vary considerably both within species and across sites. We are working to develop a data fusion tool that can predict key characteristics of S. alterniflora, including belowground biomass and plant canopy N, based on satellite imagery. We used field observations from four salt marsh locations along the Georgia Coast, including one that is studied as part of the Georgia Coastal Ecosystems LTER project. From field and remote-sensing data, we developed a hybrid modeling approach to estimate % foliar N (a surrogate for plant assimilated nutrients). Partial Least squares (PLS) regression analysis of Landsat-8 spectral bands could predict variation in foliar N and belowground biomass, suggesting this public data source might be utilized for site-wide assessment of plant biophysical variables in salt marshes. Spectrally estimated foliar N and aboveground biomass were associated with belowground biomass and root:shoot ratio in S. alterniflora. This mirrors results from a previous study from the Sacramento-San Joaquin Delta, CA, on Scheonoplectus acutus, a marsh plant found in some tidal freshwater marshes. Therefore remote sensing may be a useful tool for measuring whole plant productivity among multiple coastal marsh species.

  8. Gulf-Wide Information System, Environmental Sensitivity Index Brackish Marsh, Geographic NAD83, LDWF (2001) [esi_brackish_marsh_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) brackish marshes data of coastal Louisiana. The ESI is a classification and ranking system, which...

  9. Gulf-Wide Information System, Environmental Sensitivity Index Intermediate Marsh, Geographic NAD83, LDWF (2001) [esi_intermediate_marsh_LDWF_2001

    Data.gov (United States)

    Louisiana Geographic Information Center — This data set contains Environmental Sensitivity Index (ESI) intermediate marshes data of coastal Louisiana. The ESI is a classification and ranking system, which...

  10. Salt Marshes as Potential Indicatore of Global Climate Change

    DEFF Research Database (Denmark)

    Kim, Daehyun; Cairens, David; Jung, S.H.

    2011-01-01

    Coastal scientists postulate that salt marshes are significantly affected by dynamics of global climate. However, few studies have explicitly proposed a perspective that regards salt marshes as potential indicators of climate change. This review article evaluates the possibility of salt marshes...... as indicators of global climate change, focusing upon three major aspects: sedimentary, vegetation, and biogeochemical dynamics. The previous literature concerned with these aspects commonly argues that the primary impact of climate change on salt marshes occurs via sea-level variations, because hydrologic...... fluctuations regulate the frequency, duration, and depth of over-marsh flooding events. Sedimentary, floristic, and biogeochemical dynamics prove to be significantly influenced by sealevel changes regardless of climate zones, and hence, undoubtedly possess a potential for indicating climate signatures. However...

  11. A description of the nearshore fish communities in the Huron-Erie Corridor using multiple gear types

    Science.gov (United States)

    Francis, James T.; Chiotti, Justin A.; Boase, James C.; Thomas, Mike V.; Manny, Bruce A.; Roseman, Edward F.

    2013-01-01

    Great Lakes coastal wetlands provide a critical habitat for many fish species throughout their life cycles. Once home to one of the largest wetland complexes in the Great Lakes, coastal wetlands in the Huron–Erie Corridor (HEC) have decreased dramatically since the early 1900s. We characterized the nearshore fish communities at three different wetland complexes in the HEC using electrofishing, seines, and fyke nets. Species richness was highest in the Detroit River (63), followed by the St. Clair Delta (56), and Western Lake Erie (47). The nearshore fish communities in the Detroit River and St. Clair Delta consisted primarily of shiners, bluntnose minnow, centrarchids, and brook silverside, while the Western Lake Erie sites consisted of high proportions of non-native taxa including common carp, gizzard shad, goldfish, and white perch. Species richness estimates using individual-based rarefaction curves were higher when using electrofishing data compared to fyke nets or seine hauls at each wetland. Twelve fish species were captured exclusively during electrofishing assessments, while one species was captured exclusively in fyke nets, and none exclusively during seine hauls. Western Lake Erie wetlands were more indicative of degraded systems with lower species richness, lower proportion of turbidity intolerant species, and increased abundance of non-native taxa. This work highlights the importance of coastal wetlands in the HEC by capturing 69 different fish species utilizing these wetlands to fulfill life history requirements and provides insight when selecting gears to sample nearshore littoral areas.

  12. Will Restored Tidal Marshes Be Sustainable?

    Directory of Open Access Journals (Sweden)

    Michelle Orr

    2003-10-01

    Full Text Available We assess whether or not restored marshes in the San Francisco Estuary are expected to be sustainable in light of future landscape scale geomorphic processes given typical restored marsh conditions. Our assessment is based on a review of the literature, appraisal of monitoring data for restored marshes, and application of vertical accretion modeling of organic and inorganic sedimentation. Vertical accretion modeling suggests that salt marshes in San Pablo Bay will be sustainable for moderate relative sea level rise (3 to 5 mm yr-1 and average sediment supply (c. 100 mg L-1. Accelerated relative sea level rise (above 6 mm yr-1 and/or reduced sediment supply (50 mg L-1 will cause lowering of the marsh surface relative to the tide range and may cause shifts from high to low marsh vegetation by the year 2100. Widespread conversion of marsh to mudflat-"ecological drowning"-is not expected within this time frame. Marshes restored at lower elevations necessary to aid the natural development of channel systems (c. 0.5 m below mean higher high water are predicted to accrete to high marsh elevations by the year 2100 for moderate relative sea level rise and sediment supply conditions. Existing rates of sediment accretion in restored fresh water tidal marshes of the Delta of greater than 9 mm yr-1 and slightly lower drowning elevations suggest that these marshes will be resilient against relatively high rates of sea level rise. Because of higher rates of organic production, fresh water marshes are expected to be less sensitive to reduced sediment availability than salt marshes. The ultimate long-term threat to the sustainability of tidal marshes is the interruption of coastal rollover-the process by which landward marsh expansion in response to sea level rise compensates for shoreline erosion. Bay front development now prevents most landward marsh expansion, while shoreline erosion is expected to accelerate as sea level rises.

  13. Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds

    Directory of Open Access Journals (Sweden)

    Catherine E. Lovelock

    2017-05-01

    Full Text Available The sediments of coastal wetlands contain large stores of carbon which are vulnerable to oxidation once disturbed, resulting in high levels of CO2 emissions that may be avoided if coastal ecosystems are conserved or restored. We used a simple model to estimate CO2 emissions from mangrove forests, seagrass beds, and tidal marshes based on known decomposition rates for organic matter in these ecosystems under either oxic or anoxic conditions combined with assumptions of the proportion of sediment carbon being deposited in either oxic or anoxic environments following a disturbance of the habitat. Our model found that over 40 years after disturbance the cumulative CO2 emitted from tidal marshes, mangrove forests, and seagrass beds were ~70–80% of the initial carbon stocks in the top meter of the sediment. Comparison of our estimates of CO2 emissions with empirical studies suggests that (1 assuming 50% of organic material moves to an oxic environment after disturbance gives rise to estimates that are similar to CO2 emissions reported for tidal marshes; (2 field measurements of CO2 emissions in disturbed mangrove forests were generally higher than our modeled emissions that assumed 50% of organic matter was deposited in oxic conditions, suggesting higher proportions of organic matter may be exposed to oxic conditions after disturbance in mangrove ecosystems; and (3 the generally low observed rates of CO2 emissions from disturbed seagrasses compared to our estimates, assuming removal of 50% of the organic matter to oxic environments, suggests that lower proportions may be exposed to oxic conditions in seagrass ecosystems. There are significant gaps in our knowledge of the fate of wetland sediment carbon in the marine environment after disturbance. Greater knowledge of the distribution, form, decomposition, and emission rates of wetland sediment carbon after disturbance would help to improve models.

  14. Coatal salt marshes and mangrove swamps in China

    Science.gov (United States)

    Yang, Shi-Lun; Chen, Ji-Yu

    1995-12-01

    Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.

  15. Effects of nitrogen loading on greenhouse gas emissions in salt marshes

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Mora, J.; Chen, X.; Carey, J.

    2014-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. We tested the hypothesis that anthropogenic nitrogen loading alters greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate to triplicate plots bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. Our results will facilitate model development to simulate GHG emissions in coastal wetlands and support methodology development to assess carbon credits in preserving and restoring coastal wetlands.

  16. Profiles of Wind and Turbulence in the Coastal Atmospheric Boundary Layer of Lake Erie

    KAUST Repository

    Wang, H

    2014-06-16

    Prediction of wind resource in coastal zones is difficult due to the complexity of flow in the coastal atmospheric boundary layer (CABL). A three week campaign was conducted over Lake Erie in May 2013 to investigate wind characteristics and improve model parameterizations in the CABL. Vertical profiles of wind speed up to 200 m were measured onshore and offshore by lidar wind profilers, and horizontal gradients of wind speed by a 3-D scanning lidar. Turbulence data were collected from sonic anemometers deployed onshore and offshore. Numerical simulations were conducted with the Weather Research Forecasting (WRF) model with 2 nested domains down to a resolution of 1-km over the lake. Initial data analyses presented in this paper investigate complex flow patterns across the coast. Acceleration was observed up to 200 m above the surface for flow coming from the land to the water. However, by 7 km off the coast the wind field had not yet reached equilibrium with the new surface (water) conditions. The surface turbulence parameters over the water derived from the sonic data could not predict wind profiles observed by the ZephlR lidar located offshore. Horizontal wind speed gradients near the coast show the influence of atmospheric stability on flow dynamics. Wind profiles retrieved from the 3-D scanning lidar show evidence of nocturnal low level jets (LLJs). The WRF model was able to capture the occurrence of LLJ events, but its performance varied in predicting their intensity, duration, and the location of the jet core.

  17. Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion.

    Science.gov (United States)

    Coverdale, Tyler C; Brisson, Caitlin P; Young, Eric W; Yin, Stephanie F; Donnelly, Jeffrey P; Bertness, Mark D

    2014-01-01

    Direct and indirect human impacts on coastal ecosystems have increased over the last several centuries, leading to unprecedented degradation of coastal habitats and loss of ecological services. Here we document a two-century temporal disparity between salt marsh accretion and subsequent loss to indirect human impacts. Field surveys, manipulative experiments and GIS analyses reveal that crab burrowing weakens the marsh peat base and facilitates further burrowing, leading to bank calving, disruption of marsh accretion, and a loss of over two centuries of sequestered carbon from the marsh edge in only three decades. Analogous temporal disparities exist in other systems and are a largely unrecognized obstacle in attaining sustainable ecosystem services in an increasingly human impacted world. In light of the growing threat of indirect impacts worldwide and despite uncertainties in the fate of lost carbon, we suggest that estimates of carbon emissions based only on direct human impacts may significantly underestimate total anthropogenic carbon emissions.

  18. Effect of hurricanes and violent storms on salt marsh

    Science.gov (United States)

    Leonardi, N.; Ganju, N. K.; Fagherazzi, S.

    2016-12-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  19. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.

    Science.gov (United States)

    Coldren, G A; Barreto, C R; Wykoff, D D; Morrissey, E M; Langley, J A; Feller, I C; Chapman, S K

    2016-11-01

    Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones. © 2016 by the Ecological Society of America.

  20. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    Science.gov (United States)

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  1. Structural Classification of Marshes with Polarimetric SAR Highlighting the Temporal Mapping of Marshes Exposed to Oil

    Directory of Open Access Journals (Sweden)

    Elijah Ramsey

    2015-09-01

    Full Text Available Empirical relationships between field-derived Leaf Area Index (LAI and Leaf Angle Distribution (LAD and polarimetric synthetic aperture radar (PolSAR based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.

  2. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Engel, Annette Summers; Liu, Chang; Paterson, Audrey T; Anderson, Laurie C; Turner, R Eugene; Overton, Edward B

    2017-10-15

    Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria , Firmicutes , Bacteroidetes , and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria ( Rhizobiales ), Chloroflexi ( Dehalococcoidia ), and Planctomycetes Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts. IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial

  3. 226Ra, 228Ra, 223Ra, and 224Ra in coastal waters with application to coastal dynamics and groundwater input

    International Nuclear Information System (INIS)

    Moore, W.S.

    1997-01-01

    Four radium isotopes offer promise in unraveling the complex dynamics of coastal ocean circulation and groundwater input. Each isotope is produced by decay of a thorium parent bound to sediment. The activities of these thorium isotopes and the sediment-water distribution coefficient for radium provide an estimate of the source function of each Ra isotope to the water. In salt marshes that receive little surface water input, Ra activities which exceed coastal ocean values must originate within the marsh. In North Inlet, South Carolina, the activities of 226 Ra exported from the marsh far exceed the activities generated within the marsh. To supply the exported activities, substantial groundwater input is required. In the coastal region itself, 226 Ra activities exceed the amount that can be supplied from rivers. Here also, substantial groundwater input is required. Within the coastal ocean, 223 Ra and 224 Ra may be used to determine mixing rates with offshore waters. Shore-perpendicular profiles of 223 Ra and 224 Ra show consistent trends which may be modeled as eddy diffusion coefficients of 350-540 m 2 s -1 . These coefficients allow an assessment of cross-shelf transport and provide further insight on the importance of groundwater to coastal regions. (author)

  4. High spatial variability in biogeochemical rates and microbial communities across Louisiana salt marsh landscapes

    Science.gov (United States)

    Roberts, B. J.; Chelsky, A.; Bernhard, A. E.; Giblin, A. E.

    2017-12-01

    Salt marshes are important sites for retention and transformation of carbon and nutrients. Much of our current marsh biogeochemistry knowledge is based on sampling at times and in locations that are convenient, most often vegetated marsh platforms during low tide. Wetland loss rates are high in many coastal regions including Louisiana which has the highest loss rates in the US. This loss not only reduces total marsh area but also changes the relative allocation of subhabitats in the remaining marsh. Climate and other anthropogenic changes lead to further changes including inundation patterns, redox conditions, salinity regimes, and shifts in vegetation patterns across marsh landscapes. We present results from a series of studies examining biogeochemical rates, microbial communities, and soil properties along multiple edge to interior transects within Spartina alterniflora across the Louisiana coast; between expanding patches of Avicennia germinans and adjacent S. alterniflora marshes; in soils associated with the four most common Louisiana salt marsh plants species; and across six different marsh subhabitats. Spartina alterniflora marsh biogeochemistry and microbial populations display high spatial variability related to variability in soil properties which appear to be, at least in part, regulated by differences in elevation, hydrology, and redox conditions. Differences in rates between soils associated with different vegetation types were also related to soil properties with S. alterniflora soils often yielding the lowest rates. Biogeochemical process rates vary significantly across marsh subhabitats with individual process rates differing in their hotspot habitat(s) across the marsh. Distinct spatial patterns may influence the roles that marshes play in retaining and transforming nutrients in coastal regions and highlight the importance of incorporating spatial sampling when scaling up plot level measurements to landscape or regional scales.

  5. Assessing the recovery of coastal wetlands from oil spills

    International Nuclear Information System (INIS)

    Mendelssohn, I.A.; Hester, M.W.; Hill, J.M.

    1993-01-01

    The impact of oil spills on coastal environments and the ability of these systems to exhibit long-term recovery has received increased attention in recent years. Although oil spills can have significant short-term impacts on coastal marshes, the long-term effects and eventual recovery are not well documented. Estuarine marshes have sometimes been reported to exhibit slow recovery after oil spills, whereas in other instances they appear to have great resiliency, with complete recovery after one or two years. To document and understand this phenomenon better, we have investigated the long-term recovery of a south Louisiana estuarine marsh exposed to an accidental spill of crude oil. Although a pipeline rupture releasing Louisiana crude oil caused the near complete mortality of a brackish marsh dominated by Spartina patens and S. alterniflora, this marsh completely recovered four years after the spill with no differences in plant species cover between oiled and reference marshes. Remotely sensed imagery of the study site confirmed the relatively rapid recovery demonstrated by the ground truth data. Louisiana's coastal marshes are naturally experiencing rapid rates of deterioration. Land loss rates, determined from aerial imagery, at the spill site and adjacent reference areas before and after the spill demonstrated that the long-term loss rates were not affected by the spill event

  6. Medium and large sized mammal assemblages in coastal dunes and adjacent marshes in southern Rio Grande do Sul State, Brazil - doi: 10.4025/actascibiolsci.v35i1.11705

    Directory of Open Access Journals (Sweden)

    Eduardo Resende Secchi

    2012-12-01

    Full Text Available This paper presents data on species composition and use of habitat of medium and large sized mammal assemblages in a coastal dunes segment and adjacent marshes at Rio Grande municipality, southern Rio Grande do Sul State, Brazil. Records were obtained through visualization of living animals and identification of footprints, feces and remains. From November 2007 to September 2008, nine 600 m long and 5 m wide linear transects were settled on coastal dunes segment (frontal and intermediate dunes and adjacent marshes, parallel to ocean shore on a 23 km section at Cassino Beach. Transects were settled in areas under high, medium and low levels of anthropic occupancy (A1, A2 and A3, respectively, being three transects on each area. Fourteen species were recorded, distributed in five orders and 10 families. Lepus europaeus was the most frequent species (81.9% of the transect walks, present in all areas and seasons, followed by Lycalopex gimnocercus (23.5% and Conepatus chinga (10.3%.  Five species were present on A1, seven on A2 and fourteen on A3. Seven species were recorded on frontal dunes, nine on intermediate dunes and 13 on adjacent marshes.  

  7. Marshes on the Move: Testing effects of seawater intrusion on ...

    Science.gov (United States)

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress tolerance and interspecific interactions. As seawater inundates progressively higher marsh elevations, shifts in marsh vegetation communities landward may herald salt marsh “migration”, which could allow continuity of marsh function and ecosystem service provision. To elucidate possible effects of seawater intrusion on marsh-upland edge plant communities, a space-for-time approach was replicated at two Rhode Island salt marshes. At each site, peat blocks (0.5 m x 0.5 m x 0.5 m, n=6) with intact upland-marsh edge vegetation were transplanted downslope into the regularly-inundated mid-marsh. Procedural controls (n=3) were established at each elevation by removing and replacing peat blocks, and natural controls (n=3) consisted of undisturbed plots. During peak productivity, each plot was assessed for species composition, percent cover and average height. Results demonstrate stunting of marsh-upland edge vegetation in response to increased inundation, and the beginnings of colonization of the transplanted plots by salt marsh species. The extent of colonization differed between the two sites, suggesting that site-specific factors govern vegetation responses to increased inundation.

  8. Salt marsh and seagrass communities of Bakkhali Estuary, Cox's Bazar, Bangladesh

    Science.gov (United States)

    Hena, M. K. Abu; Short, F. T.; Sharifuzzaman, S. M.; Hasan, M.; Rezowan, M.; Ali, M.

    2007-10-01

    The species identification, distribution pattern, density and biomass of salt marsh and seagrass plants with some of the ecological parameters were studied in the Bakkhali river estuary, Cox's Bazar, Bangladesh during the first half of 2006. Two salt marsh species ( Spartina sp. and Imperata cylindrica) and one seagrass species ( Halophila beccarii) were identified during this investigation, providing the first reports of Spartina sp. and H. beccarii in coastal Bangladesh. Seagrass H. beccarii was found in an accreted area and co-existing with salt marsh, and scattered sparsely in the salt marsh habitat and macroalgae Ulva intestinalis. Flowering and fruiting were recorded from the seagrass H. beccarri during January and February. No flowers and fruits were observed for the salt marsh Spartina sp. during the study period. Results showed that the shoot density of Spartina ranged from 400 to 2875 shoots m -2 with the highest total biomass (165.80 g dry weight (DW) m -2) in March. Shoot density of H. beccarii ranged from 2716 to 14320 shoots m -2 in this estuarine coastal environment. The total biomass of seagrass was higher (17.56 g DW m -2) in March compared to the other months. The highest H. beccarii above ground (AG) biomass and below ground (BG) biomass were 9.59 g DW m -2 and 9.42 g DW m -2, respectively. These parameters are comparable with those generally observed for the salt marsh and seagrass species in the other places of the world.

  9. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  10. Common Marsh Plants of the United States and Canada. Resource Publication 93.

    Science.gov (United States)

    Hotchkiss, Neil

    Described in this guide are the emergent and semiemergent plants most likely to be found in inland and coastal marshes. The guide is intended for field identification of marsh plants without resources to technical botanical keys. The plants are discussed in seven groups. Within each group the kinds which resemble one another most closely are next…

  11. Refractory organic matter in coastal salt marshes-effect on C sequestration calculations.

    Science.gov (United States)

    Leorri, Eduardo; Zimmerman, Andrew R; Mitra, Siddhartha; Christian, Robert R; Fatela, Francisco; Mallinson, David J

    2018-08-15

    The age and ability of salt marshes to accumulate and sequester carbon is often assessed using the carbon isotopic signatures (Δ 14 C and δ 13 C) of sedimentary organic matter. However, transfers of allochthonous refractory carbon (C RF ) from the watershed to marshes would not represent new C sequestration. To better understand how refractory carbon (C RF ) inputs affect assessments of marsh age and C sequestration, Δ 14 C and δ 13 C of both total organic carbon (TOC), C RF , and non-C RF organic matter fractions were measured in salt marshes from four contrasting systems on the North Atlantic coast. To our knowledge, no salt marsh sediment study has considered refractory or allochthonous carbon in carbon budget calculations or the impact on chronologies. Stable and radiogenic isotope data suggest that while TOC was dominated by autochthonous plant inputs, C RF was dominated by locally recycled or allochthonous C, the delivery of which was controlled by the size and slope of each watershed. Steep-gradient rivers analyzed delivered Δ 14 C-depleted C RF to their estuarine marshes, while the site located in the low-gradient river was associated with larger C RF content. Finally, the marsh isolated from riverine input contained the least fraction of TOC as C RF . Laterally transported C RF caused only a small offset in Δ 14 C in relation to TOC in low-gradient systems (average Δ 14 C offset was -44.4 and -24.2‰ at each location). However, the presence of allochthonous Δ 14 C-depleted C RF in sediments of steep-gradient rivers led to large overestimates of the time of organic matter deposition (i.e. apparent age was older than the 'true' time of deposition) (Δ 14 C offset ranged from -170.6 to -528.9‰). Further, reliance on TOC or loss on ignition analyses to calculate C sequestration by marshes might produce overestimates of at least as much as 10 to 20% since neither account for the lateral transport of allochthonous carbon. Copyright © 2018 Elsevier B

  12. Liikennesuunnittelu eri kaavoitusvaiheissa

    OpenAIRE

    Verkamo, Harri

    2008-01-01

    Tässä insinöörityössä kartoitettiin eri kaavavaiheiden liikennesuunnitelmia ja niiden sisältöä. Kartoituksen pohjalta laadittiin ohjeistus Helsingin kaupunkisuunnitteluviraston liikennesuunnitteluosastolle. Nykyään kaupunkisuunnitteluvirastossa ei ole ohjeita suunnittelijoiden avuksi eri kaavavaiheiden liikennesuunnitelmien laadintaan, mutta sellaiselle on selkeä tarve. Johdonmukaisella ohjeistuksella saadaan luotua yhtenäisempi käytäntö eri kaavavaiheiden liikennesuunnitelmien laatimiselle. ...

  13. The effects of crude oil and the effectiveness of cleaner application following oiling on US Gulf of Mexico coastal marsh plants.

    Science.gov (United States)

    Pezeshki, S R; DeLaune, R D; Jugsujinda, A

    2001-01-01

    Field studies were conducted in two different marsh habitats in Louisiana coastal wetlands to evaluate the effects of oiling (using South Louisiana Crude oil, SLC) and the effectiveness of a shoreline cleaner (COREXIT 9580) in removing oil from plant canopies. The study sites represented two major marsh habitats; the brackish marsh site was covered by Spartina patens and the freshwater marsh was covered by Sagittaria lancifolia. Field studies were conducted in each habitat using replicated 5.8 m2 plots that were subjected to three treatments; oiled only, oiled + cleaner (cleaner was used 2 days after oiling), and a control. Plant gas exchange responses, survival, growth, and biomass accumulation were measured. Results indicated that oiling led to rapid reductions in leaf gas exchange rates in both species. However, both species in 'oiled + cleaned' plots displayed improved leaf conductance and CO2 fixation rates. Twelve weeks after treatment initiation, photosynthetic carbon fixation in both species had recovered to normal levels. Over the short-term, S. patens showed more sensitivity to oiling with SLC than S. lancifolia as was evident from the data of the number of live shoots and above-ground biomass. Above-ground biomass remained significantly lower than control in S. patens under 'oiled' and 'oiled + cleaned' treatments while it was comparable to controls in S. lancifolia. These studies indicated that the cleaner removed oil from marsh grasses and alleviated the short-term impact of oil on gas exchange function of the study plants. However, use of cleaner had no detectable effects on above-ground biomass production or regeneration at the end of the first growing season in S. patens. Similarly, no beneficial effects of cleaner on carbon fixation and number of live shoots were apparent beyond 12 weeks in S. lancifolia.

  14. Tritium kinetics in a freshwater marsh ecosystem

    International Nuclear Information System (INIS)

    Adams, L.W.

    1976-01-01

    Ten curies of tritium (as tritiated water, HTO) were applied to a 2-ha enclosed Lake Erie marsh in northwestern Ohio on 29 October 1973. Tritium kinetics in the marsh water, bottom sediment, and selected aquatic plants and animals were determined. Following HTO application, peak tritium levels in the sediment were observed on day 13 in the top 1-cm layer, on day 27 at the 5-cm depth, and on day 64 at the 10-cm depth. Peak levels at 15 and 20 cm were not discernible, although there was some movement of HTO to the 20-cm depth. A model based on diffusion theory described tritium movement through the sediment. Unbound and bound tritium levels in curly-leaf pondweed (Potamogeton crispus), pickerelweed (Pontederia cordata), and smartweed (Polygonum lapathifolium) generally tended to follow tritium levels in marsh water. The unbound tritium:marsh water tritium ratio was significantly larger (P < 0.001) in curly-leaf pondweed than in either of the two emergents. Tritium uptake into the unbound compartments of crayfish (Procambarus blandingi), carp (Cyprinus carpio), and bluegills (Lepomis macrochirus) was rapid. For crayfish, maximum HTO levels were observed on days 3 and 2 for viscera and muscle, respectively. Unbound HTO in carp viscera peaked on day 2, and levels in carp muscle reached a maximum in 4 hours. Maximum levels of unbound HTO in bluegill viscera and muscle were observed on day 1. After peak levels were obtained, unbound HTO paralleled marsh water HTO activity in all species. Tritium uptake into the bound compartments was not as rapid nor were the levels as high as for unbound HTO in any of the species. Peak bound levels in crayfish viscera were observed on day 20 and maximum levels in muscle were noted on day 10. Bound tritium in carp viscera and muscle reached maximum levels on day 20. In bluegills, peaks were reached on days 7 and 5 for viscera and muscle, respectively. Bound tritium in all species decreased following maximum levels

  15. Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France

    Directory of Open Access Journals (Sweden)

    J. F. Breilh

    2013-06-01

    Full Text Available This study aims to assess the performance of raster-based flood modeling methods on a wide diversity of coastal marshes. These methods are applied to the flooding associated with the storm Xynthia, which severely hit the western coast of France in February 2010. Static and semi-dynamic methods are assessed using a combination of LiDAR data, post-storm delineation of flooded areas and sea levels originating from both tide gauge measurements and storm surge modeling. Static methods are applied to 27 marshes showing a wide geomorphological diversity. It appears that these methods are suitable for marshes with a small distance between the coastline and the landward boundary of the marsh, which causes these marshes to flood rapidly. On the contrary, these methods overpredict flooded areas for large marshes where the distance between the coastline and the landward boundary of the marsh is large, because the flooding cannot be considered as instantaneous. In this case, semi-dynamic methods based on surge overflowing volume calculations can improve the flooding prediction significantly. This study suggests that static and semi-dynamic flood modeling methods can be attractive and quickly deployed to rapidly produce predictive flood maps of vulnerable areas under certain conditions, particularly for small distances between the coastline and the landward boundary of the low-lying coastal area.

  16. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  17. Long-Term Spartina alterniflora biomass, productivity, porewater chemistry and marsh elevation in North Inlet Estuary, Georgetown, SC: 1984-2011.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The salt marsh in the North Inlet estuary was sampled approximately monthly for estimates of biomass, productivity, porewater chemistry, and salt marsh elevation....

  18. Tidal salt marshes of the southeast Atlantic Coast: A community profile

    Energy Technology Data Exchange (ETDEWEB)

    Wiegert, R.G.; Freeman, B.J.

    1990-09-01

    This report is part of a series of community profiles on the ecology of wetland and marine communities. This particular profile considers tidal marshes of the southeastern Atlantic coast, from North Carolina south to northern Florida. Alone among the earth's ecosystems, coastal communities are subjected to a bidirectional flooding sometimes occurring twice each day; this flooding affects successional development, species composition, stability, and productivity. In the tidally influenced salt marsh, salinity ranges from less than 1 ppt to that of seawater. Dominant plant species include cordgrasses (Spartina alterniflora and S. cynosuroides), black needlerush (Juncus romerianus), and salt marsh bulrush (Scirpus robustus). Both terrestrail and aquatic animals occur in salt marshes and include herons, egrets ospreys (Pandion haliaetus), bald eagles (Haliaeetus leucocephalus), alligators (Alligator Mississippiensis), manatees (Trichecus manatus), oysters, mussels, and fiddler crabs. Currently, the only significant direct commercial use of the tidal salt marshes is by crabbers seeking the blue crab Callinectes sapidus, but the marshes are quite important recreationally, aesthetically, and educationally. 151 refs., 45 figs., 6 tabs.

  19. Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes

    Science.gov (United States)

    Takekawa, John Y.; Thorne, Karen M.; Buffington, Kevin J.; Spragens, Kyle A.; Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Overton, Cory T.; Casazza, Michael L.

    2013-01-01

    The International Panel on Climate Change has identified coastal ecosystems as areas that will be disproportionally affected by climate change. Current sea-level rise projections range widely with 0.57 to 1.9 meters increase in mea sea level by 2100. The expected accelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk, especially those in topographically low-gradient areas. We assessed marsh accretion and plant community state changes through 2100 at 12 tidal salt marshes around San Francisco Bay estuary with a sea-level rise response model. Detailed ground elevation, vegetation, and water level data were collected at all sites between 2008 and 2011 and used as model inputs. Sediment cores (taken by Callaway and others, 2012) at four sites around San Francisco Bay estuary were used to estimate accretion rates. A modification of the Callaway and others (1996) model, the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER), was utilized to run sea-level rise response models for all sites. With a mean sea level rise of 1.24 m by 2100, WARMER projected that the vast majority, 95.8 percent (1,942 hectares), of marsh area in our study will lose marsh plant communities by 2100 and to transition to a relative elevation range consistent with mudflat habitat. Three marshes were projected to maintain marsh vegetation to 2100, but they only composed 4.2 percent (85 hectares) of the total marsh area surveyed.

  20. Coastal resuspension

    International Nuclear Information System (INIS)

    Garland, J.A.

    1991-11-01

    There are several potential mechanisms for the suspension in air of radioactive or other pollutants from coastal sea water, beaches, mud banks and salt marshes. Available measurements rarely allow these mechanisms to be distinguished. The limited data show a broad spread of results. When normalised by the concentration of radionuclides in beach sediments most of the data indicate concentrations equivalent to 1 to 30 μg m -3 of sediment suspended in air, both for sampling sites on open coasts and near estuaries. Limited evidence for sampling sites located on salt marshes indicates about 0.2 μg m -3 of suspended sediment. These values represent the aggregate effect of the mechanisms that operate at a limited number of coastal locations. At other locations it is possible that additional mechanisms will contribute to the suspension of sediment. (Author)

  1. Changes in assimilation of C3 marsh plants by resident fishes in estuarine systems with distinct hydrogeomorphology features.

    Directory of Open Access Journals (Sweden)

    Adna Ferreira Garcia

    2015-11-01

    Full Text Available Although saltmarshes are widely recognized as important habitats providing shelter for estuarine organisms and protection against predators, there is still no consensus on the trophic value of marsh plants for estuarine food webs. We employed stable isotopes to evaluate differences in assimilation of nutrients derived from marsh plants with C3 (Juncus acutus, Scirpus maritimus, Scirpus olneyi and C4 (Spartina densiflora photosynthetic pathways by resident fishes in three estuaries with contrasting hydrogeomorphology characteristics. Carbon (δ13C and nitrogen (δ15N stable isotope ratios of basal food sources (C3 and C4 marsh plants, macroalgae, seagrass and seston and estuarine resident fishes (Achirus garmani, Atherinella brasiliensis, Genidens genidens, Ctenogobius shufeldti, Jenynsia multidentata, Odonthestes argentinensis were analyzed in two choked lagoons (Tramandai-29°S, Patos-30°S and a coastal river (Chui-33°S. Average δ13C values of consumers were statistically significant higher in the two choked-type estuaries (Tramandaí: -16.11; Patos: -15.82 than in the coastal river (Chui: -24.32 (p0.292. SIAR mixing models revealed that the most assimilated basal food sources by consumers in the choked-type lagoon estuaries were a pool of 13C enriched food sources (macroalgae, C4 marsh and seagrass and seston (95% credibility interval: 0.38 to 0.80 and 0.00 to 0.54, respectively. In contrast, nutrients derived from C3-marsh plants were the main basal food source assimilated by estuarine resident fishes at the coastal river (0.33 to 0.87. These findings could be explained by the absence of extensive shallow embayments and a steeper slope at the coastal river that could promote higher transport of C3-marsh detritus and, consequently, higher assimilation by estuarine fishes. In contrast, detritus derived from C3 marsh plants could be trapped in the upper intertidal zone of choked-typed estuaries and, consequently, be less available for aquatic

  2. Tritium behaviour in aquatic plants and animals in a freshwater marsh ecosystem

    International Nuclear Information System (INIS)

    Adams, L.W.; Peterle, T.J.; White, G.C.

    1979-01-01

    Ten curies of tritium as tritiated water (HTO) were experimentally added to an enclosed 2-ha Lake Erie marsh on 20 October 1973. Tritium kinetics in selected plants and animals were determined over a one-year period. Tritium levels in the marsh bottom sediment averaged 1.8 times the marsh water levels, with little evidence of tritium concentration above the marsh water tritium levels in the flora and fauna. The unbound tritium: marsh water tritium ratios in smartweed (Polygonum lapathifolium) and pickerelweed (Pontederia cordata) (both emergents) were lower than the same ratio for pondweed (Potamogeton crispus) (a submergent). There was some evidence of bound tritium buildup in midsummer, particularly in the pondweed. Tritium uptake into the unbound compartments of crayfish (Procambarus blandingi), carp (Cyprinus carpio) and bluegills (Lepomis macrochirus) was rapid. For crayfish, maximum HTO levels were observed on days 2 and 3 following treatment for muscle and viscera respectively. Unbound HTO in carp muscle peaked in 4 hours and the level in carp viscera reached a maximum in 2 days, in bluegill muscle and viscera on day 1. Unbound HTO in all species decreased following peak levels, paralleling marsh water HTO activity. Tritium uptake into the bound compartments was not as rapid nor were the levels as high as for unbound HTO in the fauna. The peak bound level in crayfish muscle was observed on day 10 (bound : unbound ratio of 0.34) and the maximum level in viscera was noted on day 20 (bound : unbound ratio of 0.23). Bound tritium in carp muscle and viscera reached maximum levels on day 20 (bound : unbound ratios of 0.25 and 0.39 respectively). In bluegills, peaks were reached on days 5 and 7 (bound : unbound ratios of 0.35 and 0.38 for muscle and viscera respectively). Bound tritium in all species decreased following maximum levels

  3. Brackish marsh zones as a waterfowl habitat resource in submerged aquatic vegetation beds in the northern Gulf of Mexico

    Science.gov (United States)

    DeMarco, Kristin; Hillmann, Eva R.; Brasher, Michael G.; LaPeyre, Megan K.

    2016-01-01

    Submerged aquatic vegetation (SAV) beds are shallow coastal habitats that are increasingly exposed to the effects of sea-level rise (SLR). In the northern Gulf of Mexico (nGoM), an area especially vulnerable to SLR, the abundance and distribution of SAV food resources (seeds, rhizomes, and tissue) can influence the carrying capacity of coastal marshes to support wintering waterfowl. Despite the known importance of SAV little is known about their distribution across coastal landscapes and salinity zones or how they may be impacted by SLR. We estimated SAV cover and seed biomass in coastal marshes from Texas to Alabama from 1 June – 15 September 2013 to assess variation in SAV and seed resource distribution and abundance across the salinity gradient. Percent cover of SAV was similar among salinity zones (10%–20%) although patterns of distribution differed. Specifically, SAV occurred less frequently in saline zones, but when present the percent coverage was greater than in fresh, intermediate and brackish. Mean seed biomass varied greatly and did not differ significantly among salinity zones. However, when considering only seed species identified as waterfowl foods, the mean seed biomass was lower in saline zones (1.2 g m–2). Alteration of nGoM marshes due to SLR will likely shift the distribution and abundance of SAV resources, and these shifts may affect carrying capacity of coastal marshes for waterfowl and other associated species.

  4. Groundwater dependence of coastal lagoons: The case of La Pletera salt marshes (NE Catalonia)

    Science.gov (United States)

    Menció, A.; Casamitjana, X.; Mas-Pla, J.; Coll, N.; Compte, J.; Martinoy, M.; Pascual, J.; Quintana, X. D.

    2017-09-01

    Coastal wetlands are among the most productive ecosystems of the world, playing an important role in coastal defense and wildlife conservation. These ecosystems, however, are usually affected by human activities, which may cause a loss and degradation of their ecological status, a decline of their biodiversity, an alteration of their ecological functioning, and a limitation of their ecosystem services. La Pletera salt marshes (NE Spain) are located in a region mainly dominated by agriculture and tourism activities. Part of these wetlands and lagoons has been affected by an incomplete construction of an urban development and in this moment is the focus of a Life+ project, whose aim is to restore this protected area. Several studies have analyzed the role of hydrological regime in nutrients, phytoplankton and zooplankton in this area, however, the role of groundwater was never considered as a relevant factor in the lagoon dynamics, and its influence is still unknown. In this study, the hydrogeological dynamics in La Pletera salt marshes has been analyzed, as a basis to set sustainable management guidelines for this area. In order to determine their dependence on groundwater resources, monthly hydrochemical (with major ions and nutrients) and isotopic (δ18OH2O and δD) campaigns have been conducted, from November 2014 to October 2015. In particular, groundwater from six wells, surface water from two nearby streams and three permanent lagoons, and sea water was considered in these surveys. Taking into account the meteorological data and the water levels in the lagoons, the General Lake Model has been conducted to determine, not only evaporation and rainfall occurring in the lagoons, but also the total inflows and outflows. In addition, the Gonfiantini isotopic model, together with equilibrium chemical-speciation/mass transfer models, has been used to analyze the evaporation and the physicochemical processes affecting the lagoons. Results show that during the dry

  5. Nitrous oxide emissions could reduce the blue carbon value of marshes on eutrophic estuaries

    Science.gov (United States)

    Roughan, Brittney L.; Kellman, Lisa; Smith, Erin; Chmura, Gail L.

    2018-04-01

    The supply of nitrogen to ecosystems has surpassed the Earth’s Planetary Boundary and its input to the marine environment has caused estuarine waters to become eutrophic. Excessive supply of nitrogen to salt marshes has been associated with shifts in species’ distribution and production, as well as marsh degradation and loss. Our study of salt marshes in agriculturally intensive watersheds shows that coastal eutrophication can have an additional impact. We measured gas fluxes from marsh soils and verified emissions of nitrous oxide (N2O) in nitrogen-loaded marshes while the reference marsh was a sink for this gas. Salt marsh soils are extremely efficient carbon sinks, but emissions of N2O, a greenhouse gas 298 times more potent than CO2, reduces the value of the carbon sink, and in some marshes, may counterbalance any value of stored carbon towards mitigation of climate change. Although more research is merited on the nitrogen transformations and carbon storage in eutrophic marshes, the possibility of significant N2O emissions should be considered when evaluating the market value of carbon in salt marshes subject to high levels of nitrogen loading.

  6. Using water quality to assess ecological condition in the St. Marys River and Huron-Erie Corridor

    Science.gov (United States)

    The St. Marys River and Huron-Erie-Corridor were assessed by EPA for the first time in 2014-2016 as part of the National Coastal Condition Assessment (NCCA). NCCA uses a probabilistic survey design to allow unbiased assessment of ecological condition across the entire Great Lakes...

  7. Delineation of marsh types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama, in 2010

    Science.gov (United States)

    Enwright, Nicholas M.; Hartley, Stephen B.; Couvillion, Brady R.; Michael G. Brasher,; Jenneke M. Visser,; Michael K. Mitchell,; Bart M. Ballard,; Mark W. Parr,; Barry C. Wilson,

    2015-07-23

    Coastal zone managers and researchers often require detailed information regarding emergent marsh vegetation types (that is, fresh, intermediate, brackish, and saline) for modeling habitat capacities and needs of marsh dependent taxa (such as waterfowl and alligator). Detailed information on the extent and distribution of emergent marsh vegetation types throughout the northern Gulf of Mexico coast has been historically unavailable. In response, the U.S. Geological Survey, in collaboration with the Gulf Coast Joint Venture, the University of Louisiana at Lafayette, Ducks Unlimited, Inc., and the Texas A&M University-Kingsville, produced a classification of emergent marsh vegetation types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama.

  8. Salt Marsh Sustainability in New England: Progress and Remaining Challenges

    Science.gov (United States)

    Natural resource managers, conservationists, and scientists described marsh loss and degradation in many New England coastal systems at the 2014 “Effects of Sea Level Rise on Rhode Island’s Salt Marshes” workshop, organized by the Narragansett Bay National Estuarine Research Rese...

  9. Measuring the Role of Ecological Shift and Environmental Change on Organic Carbon Stocks in Salt Marshes and Mangrove Dominated Wetlands from the Texas Gulf Coast

    Science.gov (United States)

    Norwood, M. J.; Louchouarn, P.; Armitage, A. R.; HighField, W.; Brody, S.; White, N.

    2014-12-01

    Texas coastal wetlands are dynamic marsh-mangrove ecotones that play an important role in fishery recruitment, storm buffering, and carbon storage. Historically, C4 salt marsh plants, such as Spartina alterniflora, have dominated the Texas Gulf Coast. For the past 2-3 decades, some of these ecosystems have experienced community shifts with woody tropical plants (Avicennia germinans) competing for resources. This study presents new results on the carbon sequestration potential following such ecological shifts as well as coastal development and wetland loss along the coast of Texas. The recorded change from native grass-dominated C4 salt marshes to wood-dominated C3 mangroves over the last 20 years (1990-2010: 4,660 km2) leads to a non-significant loss in aboveground organic carbon (OC) stocks (-6.5.106 g OC). The most substantial loss of aboveground OC in Texas coastal salt marshes is due to the transformation of these wetlands into tidal flats and open water (-7.53.108 g OC). Similarly, the largest losses in aboveground OC stocks from mangrove ecosystems (-1.57.107 g OC) are due to replacement by open water. Along with the decrease in aboveground OC stocks, we identified a significant decrease in sedimentary OC inventories due to the loss of salt marsh and mangrove coverage (-3.69.109 g OC and 5.71.107 g OC, respectively). In contrast, mangrove expansion into mudflat and salt marsh environments led to a positive addition in aboveground OC stocks (2.78.108 g OC) and increased OC sedimentary inventories (2.32.109 g OC). Mangrove expansion offsets only 70% of the total calculated OC loss (-4.51.109 g OC) in coastal wetlands along the Texas gulf coast over the 20-year study period. This deficit loss is primarily attributed to environmental pressures on coastal salt marshes (i.e., sea level rise, urban and coastal development, erosion).

  10. Does vegetation prevent wave erosion of salt marsh edges?

    Science.gov (United States)

    Feagin, R A; Lozada-Bernard, S M; Ravens, T M; Möller, I; Yeager, K M; Baird, A H

    2009-06-23

    This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves.

  11. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.

    Science.gov (United States)

    Davis, Jenny L; Currin, Carolyn A; O'Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

  12. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.

    Directory of Open Access Journals (Sweden)

    Jenny L Davis

    Full Text Available Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

  13. Effects of grazing management on biodiversity across trophic levels-The importance of livestock species and stocking density in salt marshes

    NARCIS (Netherlands)

    van Klink, Roel; Nolte, Stefanie; Mandema, Freek; Lagendijk, D. D. Georgette; WallisDeVries, Michiel F.; Bakker, Jan P.; Esselink, Peter; Smit, Christian

    2016-01-01

    European coastal salt marshes are important for the conservation of numerous species of specialist plants, invertebrates, breeding and migratory birds. When these marshes are managed for nature conservation purposes, livestock grazing is often used to counter the dominance of the tall grass

  14. Behaviour of horses and cattle at two stocking densities in a coastal salt marsh

    NARCIS (Netherlands)

    Nolte, S.; Weyde, van der C.; Esselink, P.; Smit, C.; Wieren, van S.E.; Bakker, J.P.

    2017-01-01

    Livestock grazing has been practiced in salt marshes in the Wadden Sea area since 600 B.C. Currently livestock grazing is also applied for conservation management. However, effects of such grazing management on salt marshes are likely to vary depending on the species of livestock and stocking

  15. Behaviour of horses and cattle at two stocking densities in a coastal salt marsh

    NARCIS (Netherlands)

    Nolte, S.; Van der Weyde, C; Esselink, Peter; Smit, C.; Van Wieren, S.E.; Bakker, Jan P.

    Livestock grazing has been practiced in salt marshes in the Wadden Sea area since 600 B.C. Currently livestock grazing is also applied for conservation management. However, effects of such grazing management on salt marshes are likely to vary depending on the species of livestock and stocking

  16. Marsh canopy structure changes and the Deepwater Horizon oil spill

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  17. Understanding Spatial and Temporal Shifts in Blue Carbon, Piermont Marsh, Lower Hudson Estuary, NY

    Science.gov (United States)

    Peteet, D. M.; Nichols, J. E.; Kenna, T. C.; Corbett, E. J.; Allen, K. A.; Newton, R.; Vincent, S.; Haroon, A.; Shumer, M.

    2015-12-01

    Piermont Marsh is a National Estuarine Research Reserve (NERR) protected brackish wetland in the lower Hudson Valley. It serves as a nursery for fish, a coastal buffer in storms, a repository of native wetland species unique to the Hudson, and a paleoenvironmental archive. At risk for disappearance due to rising sea level, we assess the present carbon stores and their spatial and temporal variability through time. Determining the depth of peat in transects throughout Piermont Marsh (41°N, 73°55'W), is one step in reconstructing the stores of carbon in the marsh and how they have shifted over millennia. Through the last decade, we have focused field efforts on probing the depths of the marsh through a series of transects and in acquiring sediment cores from which we establish sedimentation rates and carbon storage through time. AMS C-14 dating, XRF fluorescence, pollen analysis, and Cesium-137 provide chronological control for the sedimentation rates, pollution history, and an understanding of the regional and local shifts in vegetation. C-13 and pollen measurements in selected cores indicate major shifts in local vegetation with coastal eutrophication as the marsh has been invaded, first by Typha angustifolia in the nineteenth century and then by Phragmites australis in the twentieth century up to the present. N-15 measurements indicate a large shift in nitrogen as humans have impacted the marsh. We present a comprehensive, three-dimensional view of the effects of climate, vegetation, and human impact on the carbon storage of Piermont Marsh. This project provided a site for a place- and project-based learning through Lamont-Doherty's Secondary School Field Research Program. Many of the field samples were collected by young investigators from schools in New York City and towns near Piermont.

  18. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Erie

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  19. Effects of grazing management on biodiversity across trophic levels – The importance of livestock species and stocking density in salt marshes

    NARCIS (Netherlands)

    Klink, van Roel; Nolte, Stefanie; Mandema, Freek S.; Lagendijk, D.D.G.; Wallis de Vries, Michiel; Bakker, Jan P.; Esselink, Peter; Smit, Christian

    2016-01-01

    European coastal salt marshes are important for the conservation of numerous species of specialist plants, invertebrates, breeding and migratory birds. When these marshes are managed for nature conservation purposes, livestock grazing is often used to counter the dominance of the tall grass

  20. Geomorphic influences on the contribution of vegetation to soil C accumulation and accretion in Spartina alterniflora marshes

    Directory of Open Access Journals (Sweden)

    T. Elsey-Quirk

    2018-01-01

    Full Text Available Salt marshes are important hotspots of long-term belowground carbon (C storage, where plant biomass and allochthonous C can be preserved in the soil for thousands of years. However, C accumulation rates, as well as the sources of C, may differ depending on environmental conditions influencing plant productivity, allochthonous C deposition, and C preservation. For this study, we examined the relationship between belowground root growth, turnover, decay, above- and belowground biomass, and previously reported longer-term rates of total, labile, and refractory organic C accumulation and accretion in Spartina alterniflora-dominated marshes across two mid-Atlantic, US estuaries. Tidal range, long-term rates of mineral sedimentation, C accumulation, and accretion were higher and salinities were lower in marshes of the coastal plain estuary (Delaware Bay than in the coastal lagoon (Barnegat Bay. We expected that the conditions promoting high rates of C accumulation would also promote high plant productivity and greater biomass. We further tested the influence of environmental conditions on belowground growth (roots + rhizomes, decomposition, and biomass of S. alterniflora. The relationship between plant biomass and C accumulation rate differed between estuaries. In the sediment-limited coastal lagoon, rates of total, labile, and refractory organic C accumulation were directly and positively related to above- and belowground biomass. Here, less flooding and a higher mineral sedimentation rate promoted greater above- and belowground biomass and, in turn, higher soil C accumulation and accretion rates. In the coastal plain estuary, the C accumulation rate was related only to aboveground biomass, which was positively related to the rate of labile C accumulation. Soil profiles indicated that live root and rhizome biomass was positively associated with labile C density for most marshes, yet high labile C densities below the live root zone and in

  1. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements

    Science.gov (United States)

    Choi, Yonghoon; Wang, Yang

    2004-12-01

    Coastal wetlands are sensitive to global climate change and may play an important role in the global carbon cycle. However, the dynamics of carbon (C) cycling in coastal wetlands and its response to sea level change associated with global warming is still poorly understood. In this study, we estimated the long-term and short-term rates of C accumulation, using C and C isotopic measurements of peat cores collected along a soil chronosequence, in a coastal wetland in north Florida. The long-term C accumulation rates determined by examining the C inventory and the radioactive decay of radiocarbon as a function of depth in the peat cores decrease with time from ˜130 ± 9 g C/m2/yr over the last century to ˜13 ± 2 g C/m2/yr over the millennium timescale. The short-term C accumulation rates estimated by examining the differences in the radiocarbon and C contents of the surfacial peat between archived (1985, 1988) and present (1996 and 1997) samples range from 42 to 193 g C/m2/yr in low marsh, from 18 to 184 g C/m2/yr in middle marsh, and from -50 to 181 g C/m2/yr in high marsh. The high end-values of our estimated short-term C accumulation rates are comparable to the estimated rates of C sequestration in coastal wetlands reported by [2003], but are significantly higher than our estimated long-term rates in the marshes and are also much higher than the published rates of C sequestration in northern peatlands. The higher recent rates of C accumulation in coastal marshes, in comparison with the longer-term rates, are due to slow but continuous decomposition of organic matter in the peat over time. However, other factors such as increased primary production in the coastal wetland over the last decades or century, due to a rise in mean sea level and/or CO2 and nitrogen fertilization effect, could also have contributed to the large difference between the recent and longer-term rates. Our data indicate that salt marshes in this area have been and continue to be a sink for

  2. How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?

    Science.gov (United States)

    Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.

    2013-12-01

    Intertidal coastal environments are prone to changes induced by sea level rise, increases in storminess, and anthropogenic disturbances. It is unclear how changes in external drivers may affect the dynamics of low energy coastal environments because their response is non-linear, and characterized by many thresholds and discontinuities. As such, process-based modeling of the ecogeomorphic processes underlying the dynamics of these ecosystems is useful, not only to predict their change through time, but also to generate new hypotheses and research questions. Here, a three-point dynamic model was developed to investigate how internal and external processes affect the behavior of coupled marsh mudflat systems. The model directly incorporates ecogeomorphological feedbacks between wind waves, salt marsh vegetation, allochthonous sediment loading, tidal flat vegetation and sea level rise. The model was applied to examine potential trajectories of salt marshes on the Eastern seaboard of the United States, including those in the Plum Island Ecosystems (PIE), Virginia Coast Reserve (VCR) and Georgia Coastal Ecosystems (GCE) long term ecological research (LTER) sites. While these sites are undergoing similar rates of relative sea level rise (RSLR), they have distinct differences in site specific environmental drivers including tides, wind waves, allochthonous sediment supply and the presence or absence of seagrass. These differences lead to the emergence of altered behaviors in the coupled salt marsh-tidal flat system. For marsh systems without seagrass or significant riverine sediment supply, conditions similar to those at PIE, results indicated that horizontal and vertical marsh evolution respond in opposing ways to wave induced processes. Marsh horizontal retreat is triggered by large mudflats and strong winds, whereas small mudflats and weak winds reduce the sediment supply to the salt marsh, decreasing its capability to keep pace with sea level rise. Marsh expansion and

  3. Assessing Near-surface Heat, Water Vapor and Carbon Dioxide Exchange Over a Coastal Salt-marsh

    Science.gov (United States)

    Bogoev, I.; O'Halloran, T. L.; LeMoine, J.

    2017-12-01

    Coastal ecosystems play an important role in mitigating the effects of climate change by storing significant quantities of carbon. A growing number of studies suggest that vegetated estuarine habitats, specifically salt marshes, have high long-term rates of carbon sequestration, perhaps even higher than mature tropical and temperate forests. Large amounts of carbon, accumulated over thousands of years, are stored in the plant materials and sediment. Improved understanding of the factors that control energy and carbon exchange is needed to better guide restoration and conservation management practices. To that end, we recently established an observation system to study marsh-atmosphere interactions within the North Inlet-Winyah Bay National Estuarine Research Reserve. Near-surface fluxes of heat, water vapor (H2O) and carbon dioxide (CO2) were measured by an eddy-covariance system consisting of an aerodynamic open-path H2O / CO2 gas analyzer with a spatially integrated 3D sonic anemometer/thermometer (IRGASON). The IRGASON instrument provides co-located and highly synchronized, fast response H2O, CO2 and air- temperature measurements, which eliminates the need for spectral corrections associated with the separation between the sonic anemometer and the gas analyzer. This facilitates calculating the instantaneous CO2 molar mixing ratio relative to dry air. Fluxes computed from CO2 and H2O mixing ratios, which are conserved quantities, do not require post-processing corrections for air-density changes associated with temperature and water vapor fluctuations. These corrections are particularly important for CO2, because they could be even larger than the measured flux. Here we present the normalized frequency spectra of air temperature, water vapor and CO2, as well as their co-spectra with the co-located vertical wind. We also show mean daily cycles of sensible, latent and CO2 fluxes and analyze correlations with air/water temperature, wind speed and light availability.

  4. Forecasting tidal marsh elevation and habitat change through fusion of Earth observations and a process model

    Science.gov (United States)

    Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.

    2016-01-01

    Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors

  5. 75 FR 51379 - Safety Zone; Celebrate Erie, Presque Isle Bay, Erie, PA

    Science.gov (United States)

    2010-08-20

    ... display. DATES: This rule is effective from 9:30 p.m. until 10:30 p.m. on August 22, 2010. ADDRESSES...: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Presque Isle Bay... Presque Isle Bay in Erie, PA during the Celebrate Erie fireworks display, August 22, 2010. This temporary...

  6. Methane emissions from different coastal wetlands in New England, US

    Science.gov (United States)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  7. Chasing boundaries and cascade effects in a coupled barrier-marsh-lagoon system

    Science.gov (United States)

    Lorenzo-Trueba, Jorge; Mariotti, Giulio

    2017-08-01

    The long-term dynamic evolution of an idealized barrier-marsh-lagoon system experiencing sea-level rise is studied by coupling two existing numerical models. The barrier model accounts for the interaction between shoreface dynamics and overwash flux, which allows the occurrence of barrier drowning. The marsh-lagoon model includes both a backbarrier marsh and an interior marsh, and accounts for the modification of the wave regime associated with changes in lagoon width and depth. Overwash, the key process that connects the barrier shoreface with the marsh-lagoon ecosystems, is formulated to account for the role of the backbarrier marsh. Model results show that a number of factors that are not typically associated with the dynamics of coastal barriers can enhance the rate of overwash-driven landward migration by increasing backbarrier accommodation space. For instance, lagoon deepening could be triggered by marsh edge retreat and consequent export of fine sediment via tidal dispersion, as well as by an expansion of inland marshes and consequent increase in accommodation space to be filled in with sediment. A deeper lagoon results in a larger fraction of sediment overwash being subaqueous, which coupled with a slow shoreface response sending sediment onshore can trigger barrier drowning. We therefore conclude that the supply of fine sediments to the back-barrier and the dynamics of both the interior and backbarrier marsh can be essential for maintaining the barrier system under elevated rates of sea-level rise. Our results highlight the importance of considering barriers and their associated backbarriers as part of an integrated system in which sediment is exchanged.

  8. Distribution of foraminifera in Chincoteague Bay and the marshes of Assateague Island and the adjacent vicinity, Maryland and Virginia

    Science.gov (United States)

    Ellis, Alisha M.; Shaw, Jaimie; Osterman, Lisa E.; Smith, Christopher G.

    2017-11-28

    Scientists from the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of estuarine, marsh, and sandy washover surface sediments from Chincoteague Bay, Tom’s Cove, and the surrounding Assateague Island and Delmarva Peninsula in March–April and October 2014, after Hurricane Sandy. Micropaleontology samples were collected as part of a complementary USGS Coastal and Marine Geology Program Sea-level and Storm Impacts on Estuarine Environments and Shorelines project study. For comparison with estuarine and overwash deposited foraminifera, a group of scientists from the USGS Woods Hole Coastal and Marine Science Center in Massachusetts collected samples offshore of Assateague Island on the inner continental shelf during a seafloor mapping study in the summer of 2014 and shipped select samples to the St. Petersburg Coastal and Marine Science Center. The micropaleontological subsamples analyzed for foraminifera at each site can be used to establish a foraminiferal baseline assemblage that takes into consideration the seasonal variability of the various species, regarding density and geographic extent, which are influenced by transient and stable environmental parameters. By understanding what parameters affect the various foraminiferal assemblages, researchers can delineate how alterations in salinity, temperature, or marsh-to-bay interactions, such as marsh erosion, might affect that assemblage.

  9. Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle.

    Science.gov (United States)

    Rochlin, Ilia; Morris, James T

    2017-08-01

    The 18.6-yr lunar-nodal cycle drives changes in tidal amplitude globally, affecting coastal habitat formation, species and communities inhabiting rocky shores, and salt marsh vegetation. However, the cycle's influence on salt marsh fauna lacked sufficient long-term data for testing its effect. We circumvented this problem by using salt marsh mosquito records obtained over a period of over four decades in two estuaries in the northeastern USA. Salt marsh mosquito habitat is near the highest tide level where the impact of the nodal cycle on flood frequency is greatest. Wavelet spectral and cross-correlation analyses revealed periodicity in salt marsh mosquito abundance that was negatively correlated with tidal amplitude. Tidal amplitude was a significant predictor of salt marsh mosquito abundance with the cycle maxima coinciding with lower mosquito populations, possibly due to access by predatory fish. However, these effects were detected only at the location with extensive salt marsh habitat and astronomical tides and were weakened or lacked significance at the location with small microtidal salt marshes and wind-driven tides. Mosquitoes can serve as proxy indicators for numerous invertebrate species on the salt marsh. These predictable cycles and their effects need to be taken into consideration when investigating, restoring, or managing intertidal communities that are also facing sea-level rise. © 2017 by the Ecological Society of America.

  10. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses

    NARCIS (Netherlands)

    Bouma, T.J.; Olenin, S.; Reise, K.; Ysebaert, T.

    2009-01-01

    Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and

  11. Sedimentological and radiochemical characteristics of marsh deposits from Assateague Island and the adjacent vicinity, Maryland and Virginia, following Hurricane Sandy

    Science.gov (United States)

    Smith, Christopher G.; Marot, Marci E.; Ellis, Alisha M.; Wheaton, Cathryn J.; Bernier, Julie C.; Adams, C. Scott

    2015-09-15

    The effect of tropical and extratropical cyclones on coastal wetlands and marshes is highly variable and depends on a number of climatic, geologic, and physical variables. The impacts of storms can be either positive or negative with respect to the wetland and marsh ecosystems. Small to moderate amounts of inorganic sediment added to the marsh surface during storms or other events help to abate pressure from sea-level rise. However, if the volume of sediment is large and the resulting deposits are thick, the organic substrate may compact causing submergence and a loss in elevation. Similarly, thick deposits of coarse inorganic sediment may also alter the hydrology of the site and impede vegetative processes. Alternative impacts associated with storms include shoreline erosion at the marsh edge as well as potential emergence. Evaluating the outcome of these various responses and potential long-term implications is possible from a systematic assessment of both historical and recent event deposits. A study was conducted by the U.S. Geological Survey to assess the sedimentological and radiochemical characteristics of marsh deposits from Assateague Island and areas around Chincoteague Bay, Maryland and Virginia, following Hurricane Sandy in 2012. The objectives of this study were to (1) characterize the surficial sediment of the relict to recent washover fans and back-barrier marshes in the study area, and (2) characterize the sediment of six marsh cores from the back-barrier marshes and a single marsh island core near the mainland. These geologic data will be integrated with other remote sensing data collected along Assateague Island in Maryland and Virginia and assimilated into an assessment of coastal wetland response to storms.

  12. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    Science.gov (United States)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new

  13. Salt-Marsh Landscapes and the Signatures of Biogeomorphic Feedbacks

    Science.gov (United States)

    D'Alpaos, A.; Marani, M.

    2014-12-01

    Salt marshes are coastal ecosystems which play a large role in the bio-geomorphological evolution of intertidal areas. The dense stands of halophytic plants which populate salt-marsh systems largely contribute to govern their dynamics, influencing marsh hydrodynamics and sediment transport through enhanced flow resistance and settling, and direct particle capture by plant stems. In addition, plants are known to increase vertical accretion through direct organic accretion. Looking across the salt-marsh landscape can one see the signatures of feedbacks between landscape and biota? Field evidence and the results of biomorphodynamic models indeed show that the interplay between physical and biological processes generates some striking biological and morphological patterns at different scales. One such pattern, vegetation zonation, consists in a mosaic of vegetation patches, of approximately uniform composition, displaying sharp transitions in the presence of extremely small topographic gradients. Here we extend the model proposed by Marani et al. (2013) to a two-dimensional framework, furthermore including the effect of direct capture of sediment particles by plant stems. This allows us to account for the effect of the drainage density of tidal networks on the observed biogeomorphic patterns and to model the coupled evolution of marsh platforms and channel networks cutting through them. A number of different scenarios have been modelled to analyze the changes induced in bio-geomorphic patterns by plants with different characteristics, within marshes characterized by different drainage densities, or subjected to changing environmental forcing such as rates of relative sea level rise and sediment supply. Model results emphasize that zonation patterns are a signature of bio-geomorphic feedbacks with vegetation acting as a landscape constructor which feeds back on, directly alters, and contributes to shape tidal environments. In addition, model results show that

  14. Salt Marsh Formation in the Lower Hudson River Estuary

    Science.gov (United States)

    Merley, Michael; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high

  15. Impact and Recovery Pattern of a Spring Fire on a Pacific Coast Marsh - Observations and Implications for Endangered Species

    Science.gov (United States)

    Brown, L. N.; Willis, K. S.; Ambrose, R. F.; MacDonald, G. M.

    2015-12-01

    The flammability of California coastal marsh vegetation is highest in winter and spring when dominant high marsh plants such as Sarcocornia pacifica are dormant. With climate change the number of cool-season fires are increasing in the state, and marsh systems are becoming more vulnerable to fire disturbance. Very little information exists in peer-reviewed or grey literature on the presence of fire in Pacific Coast tidal marshes. In 1993, the Green Meadows fire in Ventura County, California burned a small portion of tidally influenced Sarcocornia­-dominated marsh at Point Mugu. After the May 2013 Springs Fire burned a similar portion of the salt marsh vegetation, we conducted a two-year vegetation recovery survey using transects of surface vegetation plots and MODIS derived NDVI remote sensing monitoring. Recovery during the first year was limited. Sixteen months into the recovery period, percent plant coverage reached an average of approximately 60% for all plots in the burned area, as opposed to an average of 100% in control plots, and remained at that level for the duration of the study. NDVI did not approach near pre-fire conditions until 19 months after the fire. While recovery may have been influenced by California's current extreme drought conditions, the recurrence of fire and rate of recovery raise many important questions as to the role of fire in Pacific coast tidal marshes. For example, the lack of Salicornia cover over more than an entire breeding season would be detrimental to protected species such as Rallus obsoletus. Fire adds new vulnerabilities on critical tidal marsh habitat already taxed by the threat of sea-level rise, coastal squeeze and invasive species.

  16. Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model

    Science.gov (United States)

    Marsooli, Reza; Orton, Philip M.; Mellor, George

    2017-07-01

    Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.

  17. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    Science.gov (United States)

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  18. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.

    Science.gov (United States)

    Leonardi, Nicoletta; Ganju, Neil K; Fagherazzi, Sergio

    2016-01-05

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  19. Limitations and potential of satellite imagery to monitor environmental response to coastal flooding

    Science.gov (United States)

    Ramsey, Elijah W.; Werle, Dirk; Suzuoki, Yukihiro; Rangoonwala, Amina; Lu, Zhong

    2012-01-01

    Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensing data collected before and after Hurricanes Gustav and Ike in 2008. These included synthetic aperture radar (SAR) data obtained from the (1) C-band advance SAR (ASAR) aboard the Environmental Satellite, (2) phased-array type L-band SAR (PALSAR) aboard the Advanced Land Observing Satellite, and (3) optical data obtained from Thematic Mapper (TM) sensor aboard the Land Satellite (Landsat). In estuarine marshes, L-band SAR and C-band ASAR provided accurate flood extent information when depths averaged at least 80 cm, but only L-band SAR provided consistent subcanopy detection when depths averaged 50 cm or less. Low performance of inundation mapping based on C-band ASAR was attributed to an apparent inundation detection limit (>30 cm deep) in tall Spartina alterniflora marshes, a possible canopy collapse of shoreline fresh marsh exposed to repeated storm-surge inundations, wind-roughened water surfaces where water levels reached marsh canopy heights, and relatively high backscatter in the near-range portion of the SAR imagery. A TM-based vegetation index of live biomass indicated that the severity of marsh dieback was linked to differences in dominant species. The severest impacts were not necessarily caused by longer inundation but rather could be caused by repeated exposure of the palustrine marsh to elevated salinity floodwaters. Differential impacts occurred in estuarine marshes. The more brackish marshes on average suffered higher impacts than the more saline marshes, particularly the nearshore coastal marshes occupied by S. alterniflora.

  20. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    Science.gov (United States)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the

  1. Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary

    Science.gov (United States)

    Zhang, Tianyu; Chen, Huaipu; Cao, Haobing; Ge, Zhenming; Zhang, Liquan

    2017-07-01

    Coastal wetlands play an important role in the global carbon cycle. Large quantities of sediment deposited in the Changjiang (Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands, the expansion of saltmarsh vegetation, and carbon sequestration. In this study, using the Chongming Dongtan Wetland in the Changjiang estuary as the study area, the spatial and temporal distribution of soil organic carbon (SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013. There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area, and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southern area. More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat. The total organic carbon (TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter; in the below-ground biomass, they gradually increased from spring to winter. The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P. australis and Spartina alterniflora marshes, but were lower in the below-ground biomass in S. mariqueter marsh. Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter. The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order: P. australis marsh > S. alterniflora marsh > S. mariqueter marsh > bare mudflat. The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect. These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.

  2. Annual net ecosystem exchanges of carbon dioxide and methane from a temperate brackish marsh: should the focus of marsh restoration be on brackish environments?

    Science.gov (United States)

    Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.; Ferner, M. C.; Schile, L. M.; Spinelli, G.

    2015-12-01

    The exchange and transport of carbon in tidally driven, saline marsh ecosystems provide habitat and trophic support for coastal wildlife and fisheries, while potentially accumulating and storing carbon at some of the highest rates compared to other ecosystems. However, due to the predicted rise in sea level over the next century, the preservation and restoration of estuarine habitats is necessary to compensate for their expected decline. In addition, restoration of these marsh systems can also reduce the impacts of global climate change as they assimilate as much carbon as their freshwater counterparts, while emitting less methane due to the higher concentrations of sulfate in seawater. Unfortunately, in brackish marshes, with salinity concentrations less than 18 parts per thousand (ppt), simple relationships between methane production, salinity and sulfate concentrations are not well known. Here we present the net ecosystem exchange (NEE) of carbon dioxide and methane, as calculated by the eddy covariance method, from a brackish marsh ecosystem in the San Francisco Estuary where salinity ranges from oligohaline (0.5-5 ppt) to mesohaline (5-18 ppt) conditions. Daily rates of carbon dioxide and methane NEE ranged from approximately 10 gC-CO2 m-2 d-1 and 0 mgC-CH4 m-2 d-1, during the winter to -15 gC-CO2 m-2 d-1 and 30 mgC-CH4 m-2 d-1, in the summer growing season. A comparison between similar measurements made from freshwater wetlands in the Sacramento-San Joaquin Delta found that the daily rates of carbon dioxide NEE were similar, but daily rates of methane NEE were just a small fraction (0-15%). Our research also shows that the daily fluxes of carbon dioxide and methane at the brackish marsh were highly variable and may be influenced by the tidal exchanges of seawater. Furthermore, the observed decline in methane production from summer to fall may have resulted from a rise in salinity and/or a seasonal decline in water and air temperatures. Our research goals are

  3. Searching for the Source of Salt Marsh Buried Mercury.

    Science.gov (United States)

    Brooke, C. G.; Nelson, D. C.; Fleming, E. J.

    2016-12-01

    Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.

  4. Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion

    Science.gov (United States)

    Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.

    2017-07-01

    Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.

  5. A forward-looking, national-scale remote sensing-based model of tidal marsh aboveground carbon stocks

    Science.gov (United States)

    Holmquist, J. R.; Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Windham-Myers, L.; Thomas, N.

    2017-12-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our goal was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest algorithm we tested Sentinel-1 radar backscatter metrics and Landsat vegetation indices as predictors of biomass. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=310 g/m2, 10.3% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. Louisiana palustrine emergent marshes had the highest C density (2.67 ±0.08 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ±0.06 Mg/ha). This modeling and data synthesis effort will allow for aboveground

  6. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  7. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences.

    Science.gov (United States)

    Narayan, Siddharth; Beck, Michael W; Reguero, Borja G; Losada, Iñigo J; van Wesenbeeck, Bregje; Pontee, Nigel; Sanchirico, James N; Ingram, Jane Carter; Lange, Glenn-Marie; Burks-Copes, Kelly A

    2016-01-01

    There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences-i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i) a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences) and (ii) analyses of the effectiveness of coastal habitats (natural defences) in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i) analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii) synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii) estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a) the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b) the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become more cost

  8. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences.

    Directory of Open Access Journals (Sweden)

    Siddharth Narayan

    Full Text Available There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences-i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences and (ii analyses of the effectiveness of coastal habitats (natural defences in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become

  9. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    Science.gov (United States)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-07-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  10. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    Science.gov (United States)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-05-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  11. The sedimentological characteristics and geochronology of the marshes of Dauphin Island, Alabama

    Science.gov (United States)

    Ellis, Alisha M.; Smith, Christopher G.; Marot, Marci E.

    2018-03-22

    In August 2015, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center collected 11 push cores from the marshes of Dauphin Island and Little Dauphin Island, Alabama. Sample site environments included high marshes, low salt marshes, and salt flats, and varied in distance from the shoreline. The sampling efforts were part of a larger study to assess the feasibility and sustainability of proposed restoration efforts for Dauphin Island, Alabama, and to identify trends in shoreline erosion and accretion. The data presented in this publication can provide a basis for assessing organic and inorganic sediment accumulation rates and temporal changes in accumulation rates over multiple decades at multiple locations across the island. This study was funded by the National Fish and Wildlife Foundation, via the Gulf Environmental Benefit Fund. This report serves as an archive for the sedimentological and geochemical data derived from the marsh cores. Downloadable data are available and include Microsoft Excel spreadsheets (.xlsx), comma-separated values (.csv) text files, JPEG files, and formal Federal Geographic Data Committee metadata in a U.S. Geological Survey data release.

  12. Carbon stocks in mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA: Vegetative and soil characteristics.

    Science.gov (United States)

    Moyer, R. P.; Radabaugh, K.; Chappel, A. R.; Powell, C.; Bociu, I.; Smoak, J. M.

    2017-12-01

    When compared to other terrestrial environments, coastal "blue carbon" habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and sedimentary peat deposits. This study quantified total carbon stocks in vegetation and soil of 17 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. The average vegetative carbon stock in mangrove forests was 60.1 ± 2.7 Mg ha-1. Mangrove forests frequently consisted of a few large Avicennia germinans trees with smaller, abundant Rhizophora mangle and/or Laguncularia racemosa trees. The average vegetative carbon stock was 11.8 ± 3.7 Mg ha-1 for salt marshes and 2.0 ± 1.2 Mg ha-1 for salt barrens. Vegetative carbon did not significantly differ between natural and newly created salt marsh habitats, indicating that mature restored wetlands can be included with natural wetlands for the calculation of vegetative carbon in coastal blue carbon assessments. Peat deposits were generally less than 50 cm thick and organic content rapidly decreased with depth in all habitats. Soil in this study was analyzed in 1 cm intervals; the accuracy of subsampling or binning soil into depth intervals of 2-5 cm was also assessed. In most cases, carbon stock values obtained from these larger sampling intervals were not statistically different from values obtained from sampling at 1 cm intervals. In the first 15 cm, soil in mangrove forests contained an average of 15.1% organic carbon by weight, salt marshes contained 6.5%, and salt barrens contained 0.8%. Total carbon stock in mangroves was 187.1±17.3 Mg ha-1, with 68% of that carbon stored in soil. Salt marshes contained an average of 65.2±25.3 Mg ha-1 (82% soil carbon) and salt barrens had carbon stocks of 21.4±7.4 Mg ha-1 (89% soil carbon). These values were much lower than global averages for

  13. Michigan 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the MI coasts of Lake Huron, Lake Erie and the St....

  14. Pennsylvania 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Erie coast of PA in 2006. The data types...

  15. Ohio 2006 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Erie coast of OH in 2006. The data types...

  16. Pennsylvania 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Lake Erie coast of PA in 2007. The data types...

  17. Strong tidal modulation of net ecosystem exchange in a salt marsh in North Inlet, South Carolina

    Science.gov (United States)

    O'Halloran, T. L.; Smith, E. M.; Bogoev, I.

    2017-12-01

    Along the southeastern US, intertidal salt marshes represent a critical habitat at the interface of the terrestrial and marine environments and perform a variety of ecological functions and services that make them of great economic importance for coastal communities They provide essential fish and shellfish habitat, with a majority of all commercially- and recreationally important fish species being dependent on intertidal marsh habitat during some portion of their life cycle. The penaeid shrimp industry, South Carolina's most economically important fishery, would cease to exist without the critical nursery function provided by intertidal salt marshes. Smooth cordgrass (Spartina alterniflora) is a keystone species in the high salinity marshes of the southeastern U.S., and its functioning is essential to the health and survival of salt marshes under rising sea levels. To better quantify and facilitate prediction of future salt marsh productivity, in May of 2017, we established a new integrated eddy covariance tower system to measure the net ecosystem exchange of carbon in a salt marsh in coastal South Carolina. The tower site is co-located with long-term, ongoing measurements as part of the North Inlet-Winyah Bay National Estuarine Research Reserve (NI-WB NERR). Current sampling conducted within the eddy flux footprint includes: annual measures of the vegetation community at the time of peak biomass; bi-monthly measures of sediment elevation at Sediment Elevation Tables (SETs) located at the upper and lower ends of the flux footprint; monthly sediment porewater salinity and nutrient (ammonium, orthophosphate) and sulfide concentrations; and biannual sediment elevation surveys by RTK-GPS. A suite of water quality measurements are made every 15 minutes in the main creek that floods the marsh platform in the flux footprint. Here we present our first six months of observations investigating the abiotic drivers of productivity on daily (intratidal) to monthly timescales

  18. Growth of common brackish marsh macrophytes under altered hydrology and salinity regimes

    Science.gov (United States)

    Howard, Rebecca J.; Biagas, Janelda M.; Allain, Larry K.

    2016-01-01

    Coastal marsh plants are increasingly subject to physicochemical stressors under rising sea levels, and the maintenance of marsh ecological functions can depend on the ability of individual species and communities to tolerate or adapt to altered conditions. We conducted a greenhouse experiment to identify hydrology and salinity effects on growth of three common brackish marsh macrophytes of coastal Florida, USA: Distichlis spicata, Juncus roemerianus, and Spartina bakeri. The species were potted as monocultures and exposed to three salinities (0, 15, or 28 psu) and two hydrologic conditions (saturated, tidal) over 22 months. Final stem density of J. roemerianus and S. bakeri did not differ among treatments. In D. spicata, however, stem density was lowest at 28 psu and lower in tidal compared to saturated conditions. Mean stem height of all species was lowest at 28 psu. Aboveground biomass of J. roemerianus was not affected by the treatments, but in D. spicata andS. bakeri it was lowest at 28 psu. Results indicated that J. roemerianus was the most adaptable species and may, therefore, be more resilient to climate-change driven stressors. However, plant-plant interactions such as interspecific competition and facilitation can alter the response of individual species to environmental factors.

  19. Wave attenuation across a tidal marsh in San Francisco Bay

    Science.gov (United States)

    Foster-Martinez, Madeline R.; Lacy, Jessica; Ferner, Matthew C.; Variano, Evan A.

    2018-01-01

    Wave attenuation is a central process in the mechanics of a healthy salt marsh. Understanding how wave attenuation varies with vegetation and hydrodynamic conditions informs models of other marsh processes that are a function of wave energy (e.g. sediment transport) and allows for the incorporation of marshes into coastal protection plans. Here, we examine the evolution of wave height across a tidal salt marsh in San Francisco Bay. Instruments were deployed along a cross-shore transect, starting on the mudflat and crossing through zones dominated by Spartina foliosa and Salicornia pacifica. This dataset is the first to quantify wave attenuation for these vegetation species, which are abundant in the intertidal zone of California estuaries. Measurements were collected in the summer and winter to assess seasonal variation in wave attenuation. Calculated drag coefficients of S. foliosa and S. pacifica were similar, indicating equal amounts of vegetation would lead to similar energy dissipation; however, S. pacifica has much greater biomass close to the bed (<20 cm) and retains biomass throughout the year, and therefore, it causes more total attenuation. S. foliosa dies back in the winter, and waves often grow across this section of the marsh. For both vegetation types, attenuation was greatest for low water depths, when the vegetation was emergent. For both seasons, attenuation rates across S. pacifica were the highest and were greater than published attenuation rates across similar (Spartina alterniflora) salt marshes for the comparable depths. These results can inform designs for marsh restorations and management plans in San Francisco Bay and other estuaries containing these species.

  20. Using Imaging Spectroscopy to Map Changing Distributions of Dominant Species in Oil-Contaminated Salt Marshes of Louisiana

    Science.gov (United States)

    Beland, M. C.; Roberts, D. A.; Peterson, S.; Biggs, T. W.; Kokaly, R. F.; Piazza, S.; Roth, K. L.; Khanna, S.; Ustin, S.

    2016-12-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes. Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010-2012 for oiled and non-oiled shorelines. CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%). Marshes that were heavily contaminated with oil exhibited variable responses from 2010-2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non

  1. Transport of mecoprop from agricultural soils to an adjacent salt marsh

    International Nuclear Information System (INIS)

    Fletcher, Caroline A.; Scrimshaw, Mark D.; Lester, John N.

    2004-01-01

    Salt marshes are important ecological areas and play a significant role in coastal flood defence schemes. In many areas of the UK they are adjacent to agricultural areas utilised for the growth of cereal crops, for which mecoprop is used as a selective herbicide in the control of broad-leafed weeds. This study measured concentrations of mecoprop in soils, drainage ditch waters and sediments and salt marsh sediments over a period of 138 days following spring application. Soil concentrations of up to 1827 μg/g were recorded after application, which demonstrated a half life for mecoprop of from 9 to 12 days, with first order kinetics. However, a major rainfall event 9 days after application resulted in significant transport of herbicide to the salt marsh via subsurface field drains, drainage ditches and discharge sluice. Mecoprop concentrations of up to 386 μg/l observed in water samples were above UK guidelines

  2. The role of succulent halophytes in the water balance of salt marsh rodents.

    Science.gov (United States)

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  3. New York 2007 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Niagara River and Lake Erie and Lake Ontario...

  4. The discharge of nitrate-contaminated groundwater from developed shoreline to marsh-fringed estuary

    Science.gov (United States)

    Portnoy, J.W.; Nowicki, B.L.; Roman, C.T.; Urish, D.W.

    1998-01-01

    As residential development, on-site wastewater disposal, and groundwater contamination increase in the coastal zone, assessment of nutrient removal by soil and sedimentary processes becomes increasingly important. Nitrogen removal efficiency depends largely on the specific flow paths taken by groundwater as it discharges into nitrogen-limited estuarine waters. Shoreline salinity surveys, hydraulic studies, and thermal infrared imagery indicated that groundwater discharge into the Nauset Marsh estuary (Eastham, Massachusetts) occurred in high-velocity seeps immediately seaward of the upland-fringing salt marsh. Discharge was highly variable spatially and occurred through permeable, sandy sediments during low tide. Seepage chamber monitoring showed that dissolved inorganic nitrogen (principally nitrate) traversed nearly conservatively from the aquifer through shallow estuarine sediments to coastal waters at flux rates of 1–3 mmol m−2 h−1. A significant relationship between pore water NO3-N concentrations and NO3-N flux rates may provide a rapid method of estimating nitrogen loading from groundwater to the water column.

  5. Effects of invasive cordgrass on presence of Marsh Grassbird in an area where it is not native.

    Science.gov (United States)

    Ma, Zhijun; Gan, Xiaojing; Choi, Chi-Yeung; Li, Bo

    2014-02-01

    The threatened Marsh Grassbird (Locustella pryeri) first appeared in the salt marsh in east China after the salt marsh was invaded by cordgrass (Spartina alterniflora), a non-native invasive species. To understand the dependence of non-native Marsh Grassbird on the non-native cordgrass, we quantified habitat use, food source, and reproductive success of the Marsh Grassbird at the Chongming Dongtan (CMDT) salt marsh. In the breeding season, we used point counts and radio-tracking to determine habitat use by Marsh Grassbirds. We analyzed basal food sources of the Marsh Grassbirds by comparing the δ(13) C isotope signatures of feather and fecal samples of birds with those of local plants. We monitored the nests through the breeding season and determined the breeding success of the Marsh Grassbirds at CMDT. Density of Marsh Grassbirds was higher where cordgrass occurred than in areas of native reed (Phragmites australis) monoculture. The breeding territory of the Marsh Grassbird was composed mainly of cordgrass stands, and nests were built exclusively against cordgrass stems. Cordgrass was the major primary producer at the base of the Marsh Grassbird food chain. Breeding success of the Marsh Grassbird at CMDT was similar to breeding success within its native range. Our results suggest non-native cordgrass provides essential habitat and food for breeding Marsh Grassbirds at CMDT and that the increase in Marsh Grassbird abundance may reflect the rapid spread of cordgrass in the coastal regions of east China. Our study provides an example of how a primary invader (i.e., cordgrass) can alter an ecosystem and thus facilitate colonization by a second non-native species. © 2013 Society for Conservation Biology.

  6. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    Science.gov (United States)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management

  7. New York 2011 Lidar Coverage, USACE National Coastal Mapping Proram

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the NY coasts of Lake Erie and Lake Ontario in 2011....

  8. Effect of temperature and dispersant (COREXIT® EC 9500A) on aerobic biodegradation of benzene in a coastal salt marsh sediment.

    Science.gov (United States)

    Tao, Rui; Olivera-Irazabal, Miluska; Yu, Kewei

    2018-08-01

    The coastal ecosystem in the northern Gulf of Mexico (GoM) has been seriously impacted by the 2010 BP oil spill. Two experiments were conducted to study the effect of temperature and addition of the dispersant on biodegradation of benzene, as a representative of petroleum hydrocarbon, in a coastal salt marsh sediment under aerobic conditions. The results show that benzene biodegradation was approximately 6 time faster under aerobic conditions (Eh > +300 mV) than under anaerobic iron-reduction conditions (+14 mV  10 °C > 30 °C as expected in a saline environment. Application of the dispersant caused initial fluctuations of benzene vapor pressure during the incubation due to its hydrophobic and hydrophilic nature of the molecules. Presence of the dispersant shows an inhibitory effect on benzene biodegradation, and the inhibition increased with concentration of the dispersant. The Gulf coast sediment seems in a favorable scenario to recover from the BP oil spill with an average temperature around 20 °C in spring and fall season. Application of the dispersant may be necessary for the oil spill rescue operation, but its side effects may deserve further investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-05-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%-44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all

  10. Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

    Science.gov (United States)

    Beland, Michael; Roberts, Dar A.; Peterson, Seth H.; Biggs, Trent W.; Kokaly, Raymond F.; Piazza, Sarai; Roth, Keely L.; Khanna, Shruti; Ustin, Susan L.

    2016-01-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010 to 2012 for oiled and non-oiled shorelines.CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28 m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%).Marshes that were heavily contaminated with oil exhibited variable responses from 2010 to 2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines

  11. Coastal vertebrate exposure to predicted habitat changes due to sea level rise

    Science.gov (United States)

    Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel; Moore, Clinton; Cooper, Robert J.

    2015-01-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species’ fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species’ foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  12. Grazing management can counteract the impacts of climate change-induced sea level rise on salt marsh-dependent waterbirds

    DEFF Research Database (Denmark)

    Clausen, Kevin Kuhlmann; Stjernholm, Michael; Clausen, Preben

    2013-01-01

    with these changes. In addition, we quantify the areal extent of inadequate salt marsh management in four EU Special Protection Areas for Birds, and demonstrate concurrent population dynamics in four species relying on managed habitats. We conclude by investigating potential compensation for climate change......1) Climate change–induced rises in sea level threaten to drastically reduce the areal extent of important salt marsh habitats for large numbers of waterfowl and waders. Furthermore, recent changes in management practice have rendered existent salt marshes unfavourable to many birds, as lack...... (around 1 cow per hectare) is an important initiative to counteract the accelerating climate change–induced habitat loss in near-coastal areas across the globe, and to secure priority salt marsh habitats that support internationally important populations of breeding, wintering and staging waterfowl...

  13. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments

    International Nuclear Information System (INIS)

    Lin, Q.; Mendelssohn, I.A.; Henry, C.B. Jr.; Roberts, P.O.; Walsh, M.M.; Overton, E.B.; Portier, R.J.

    1999-01-01

    Although bioremediation for oil spill cleanup has received considerable attention in recent years, its satisfactory use in the cleanup of oil spills in the wetland environment is still generally untested. A study of the often most used bioremediation agents, fertiliser, microbial product and soil oxidation, as a means of enhancing oil biodegradation in coastal mineral and sandy marsh substrates was conducted in controlled greenhouse conditions. Artificially weathered south Louisiana crude oil was applied to sods of marsh (soil and intact vegetation) at the rate of 2 l m -2 . Fertiliser application enhanced marsh plant growth, soil microbial populations, and oil biodegradation rate. The live aboveground biomass of Spartina alterniflora with fertiliser application was higher than that without fertiliser. The application of fertiliser significantly increased soil microbial respiration rates, indicating the potential for enhancing oil biodegradation. Bioremediation with fertiliser application significantly reduced the total targeted normal hydrocarbons (TTNH) and total targeted aromatic hydrocarbons (TTAH) remaining in the soil, by 81% and 17%, respectively, compared to those of the oil controls. TTNH/hopane and TTAAH/hopane ratios showed a more consistent reduction, further suggesting an enhancement of oil biodegradation by fertilisation. Furthermore, soil type affected oil bioremediation; the extent of fertiliser-enhanced oil biodegradation was greater for sandy (13% TTNH remaining in the treatments with fertiliser compared to the control) than for mineral soils (26% of the control), suggesting that fertiliser application was more effective in enhancing TTNH degradation in the former. Application of microbial product and soil oxidant had no positive effects on the variables mentioned above under the present experimental conditions, suggesting that microbial degraders are not limiting biodegradation in this soil. Thus, the high cost of microbial amendments during

  14. Rates and probable causes of freshwater tidal marsh failure, Potomac River Estuary, Northern Virginia, USA

    Science.gov (United States)

    Litwin, Ronald J.; Smoot, Joseph P.; Pavich, Milan J.; Markewich, Helaine Walsh; Oberg, Erik T.; Steury, Brent W.; Helwig, Ben; Santucci, Vincent L.; Sanders, Geoffrey

    2013-01-01

    Dyke Marsh, a distal tidal marsh along the Potomac River estuary, is diminishing rapidly in areal extent. This study documents Dyke Marsh erosion rates from the early-1860s to the present during pre-mining, mining, and post-mining phases. From the late-1930s to the mid-1970s, Dyke Marsh and the adjacent shallow riverbottom were mined for gravel, resulting in a ~55 % initial loss of area. Marsh loss continued during the post-mining phase (1976–2012). Causes of post-mining loss were unknown, but were thought to include Potomac River flooding. Post-mining areal-erosion rates increased from 0.138 ha yr−1 (~0.37 ac yr−1) to 0.516 ha yr−1(~1.67 ac yr−1), and shoreline-erosion rates increased from 0.76 m yr−1 (~2.5 ft yr−1) to 2.60 m yr−1 (~8.5 ft yr−1). Results suggest the accelerating post-mining erosion reflects a process-driven feedback loop, enabled by the marsh's severely-altered geomorphic and hydrologic baseline system; the primary post-mining degradation process is wave-induced erosion from northbound cyclonic storms. Dyke Marsh erosion rates are now comparable to, or exceed, rates for proximal coastal marshes in the same region. Persistent and accelerated erosion of marshland long after cessation of mining illustrates the long-term, and potentially devastating, effects that temporally-restricted, anthropogenic destabilization can have on estuarine marsh systems.

  15. Groundwater Dynamics along Forest-Marsh-Tidal Creek Transects in North Inlet Estuary, South Carolina: 1994-1996

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — Ground water level elevations were collected every 10 to 15 days from piezometers stationed along three forest-marsh-tidal creek transects (B, C, and D) across the...

  16. Sources and distribution of sedimentary organic matter along the Andong salt marsh, Hangzhou Bay

    Science.gov (United States)

    Yuan, Hong-Wei; Chen, Jian-Fang; Ye, Ying; Lou, Zhang-Hua; Jin, Ai-Min; Chen, Xue-Gang; Jiang, Zong-Pei; Lin, Yu-Shih; Chen, Chen-Tung Arthur; Loh, Pei Sun

    2017-10-01

    Lignin oxidation products, δ13C values, C/N ratios and particle size were used to investigate the sources, distribution and chemical stability of sedimentary organic matter (OM) along the Andong salt marsh located in the southwestern end of Hangzhou Bay, China. Terrestrial OM was highest at the upper marshes and decreased closer to the sea, and the distribution of sedimentary total organic carbon (TOC) was influenced mostly by particle size. Terrestrial OM with a C3 signature was the predominant source of sedimentary OM in the Spartina alterniflora-dominated salt marsh system. This means that aside from contributions from the local marsh plants, the Andong salt marsh received input mostly from the Qiantang River and the Changjiang Estuary. Transect C, which was situated nearer to the Qiantang River mouth, was most likely influenced by input from the Qiantang River. Likewise, a nearby creek could be transporting materials from Hangzhou Bay into Transect A (farther east than Transect C), as Transect A showed a signal resembling that of the Changjiang Estuary. The predominance of terrestrial OM in the Andong salt marsh despite overall reductions in sedimentary and terrestrial OM input from the rivers is most likely due to increased contributions of sedimentary and terrestrial OM from erosion. This study shows that lower salt marsh accretion due to the presence of reservoirs upstream may be counterbalanced by increased erosion from the surrounding coastal areas.

  17. Tidal marsh susceptibility to sea-level rise: importance of local-scale models

    Science.gov (United States)

    Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.

    2015-01-01

    Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human

  18. Mosquitoes Associated with Ditch-Plugged and Control Tidal Salt Marshes on the Delmarva Peninsula

    Directory of Open Access Journals (Sweden)

    Paul T. Leisnham

    2011-07-01

    Full Text Available A study was conducted during the summer of 2009 (from July to September to characterize mosquito communities among different habitats in five historically ditched tidal salt marshes and three adjacent wooded areas in the E.A. Vaughn Wetland Management Area on the Maryland Delmarva Peninsula, USA. Study marshes are characteristic of Atlantic coastal salt marshes that had undergone grid ditching from the 1930s to 1950s. In the autumn of 2008 (October and November ditches were plugged near their outlets in two (‘experimental’ marshes with the aim to restore their natural tidal hydrology. The three other marshes were not plugged. Marshes were sampled from July to September in 2009 by using standard dip count method. A total of 2,457 mosquito larvae representing six species were collected on 15.4% (86/557 of all sample occasions and 399 adults representing four mosquito species were collected from landing counts. Aedes sollicitans, Anopheles bradleyi and Culex salinarius were the most common species collected in larval habitats, and Ae. sollicitans was the most common adult collected. Wooded habitats had more total mosquitoes, were also more frequently occupied by mosquitoes and had higher densities of mosquitoes than marsh habitats. Almost all larvae collected from marshes were from one experimental and one control site. The majority of larvae at the control site were Ae. sollicitans in marsh pannes while Cx. salinarius, An. bradleyi, Ae. cantator, and Ae. sollicitans were collected in high numbers from ditches at the experimental site. We found a difference in the proportion of marsh pannes occupied by Ae. sollicitans but not total mosquitoes sampled 4–5 days after spring tide events than on other occasions. Salinity measures of 42 larval habitats showed lower median salinity in mosquito-occupied habitats (11.5 ppt than unoccupied habitats (20.1 ppt, and in habitats in wooded areas followed by ditches and pannes in marsh areas. The results of

  19. Bottom-up and top-down human impacts interact to affect a protected coastal Chilean marsh.

    Science.gov (United States)

    Fariña, José M; He, Qiang; Silliman, Brian R; Bertness, Mark D

    2016-03-01

    Many ecosystems, even in protected areas, experience multiple anthropogenic impacts. While anthropogenic modification of bottom-up (e.g., eutrophication) and top-down (e.g., livestock grazing) forcing often co-occurs, whether these factors counteract or have additive or synergistic effects on ecosystems is poorly understood. In a Chilean bio-reserve, we examined the interactive impacts of eutrophication and illegal livestock grazing on plant growth with a 4-yr fertilization by cattle exclusion experiment. Cattle grazing generally decreased plant biomass, but had synergistic, additive, and antagonistic interactions with fertilization in the low, middle, and high marsh zones, respectively. In the low marsh, fertilization increased plant biomass by 112%, cattle grazing decreased it by 96%, and together they decreased plant biomass by 77%. In the middle marsh, fertilization increased plant biomass by 47%, cattle grazing decreased it by 37%, and together they did not affect plant biomass. In the high marsh, fertilization and cattle grazing decreased plant biomass by 81% and 92%, respectively, but together they increased plant biomass by 42%. These interactions were also found to be species specific. Different responses of plants to fertilization and cattle grazing were likely responsible for these variable interactions. Thus, common bottom-up and top-down human impacts can interact in different ways to affect communities even within a single ecosystem. Incorporating this knowledge into conservation actions will improve ecosystem management in a time when ecosystems are increasingly challenged by multiple interacting human impacts.

  20. Marsh dieback, loss, and recovery mapped with satellite optical, airborne polarimetric radar, and field data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Chi, Zhaohui; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Landsat Thematic Mapper and Satellite Pour l'Observation de la Terre (SPOT) satellite based optical sensors, NASA Uninhabited Aerial Vehicle synthetic aperture radar (UAVSAR) polarimetric SAR (PolSAR), and field data captured the occurrence and the recovery of an undetected dieback that occurred between the summers of 2010, 2011, and 2012 in the Spartina alterniflora marshes of coastal Louisiana. Field measurements recorded the dramatic biomass decrease from 2010 to 2011 and a biomass recovery in 2012 dominated by a decrease of live biomass, and the loss of marsh as part of the dieback event. Based on an established relationship, the near-infrared/red vegetation index (VI) and site-specific measurements delineated a contiguous expanse of marsh dieback encompassing 6649.9 ha of 18,292.3 ha of S. alterniflora marshes within the study region. PolSAR data were transformed to variables used in biophysical mapping, and of this variable suite, the cross-polarization HV (horizontal send and vertical receive) backscatter was the best single indicator of marsh dieback and recovery. HV backscatter exhibited substantial and significant changes over the dieback and recovery period, tracked measured biomass changes, and significantly correlated with the live/dead biomass ratio. Within the context of regional trends, both HV and VI indicators started higher in pre-dieback marshes and exhibited substantially and statistically higher variability from year to year than that exhibited in the non-dieback marshes. That distinct difference allowed the capturing of the S. alterniflora marsh dieback and recovery; however, these changes were incorporated in a regional trend exhibiting similar but more subtle biomass composition changes.

  1. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA

    Science.gov (United States)

    Cooke, John C.; Lefor, Michael W.

    1990-01-01

    Roots of salt marsh plant species Spartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.

  2. Multi-temporal RADARSAT-1 and ERS backscattering signatures of coastal wetlands in southeastern Louisiana

    Science.gov (United States)

    Kwoun, Oh-Ig; Lu, Z.

    2009-01-01

    Using multi-temporal European Remote-sensing Satellites (ERS-1/-2) and Canadian Radar Satellite (RADARSAT-1) synthetic aperture radar (SAR) data over the Louisiana coastal zone, we characterize seasonal variations of radar backscat-tering according to vegetation type. Our main findings are as follows. First, ERS-1/-2 and RADARSAT-1 require careful radiometric calibration to perform multi-temporal backscattering analysis for wetland mapping. We use SAR backscattering signals from cities for the relative calibration. Second, using seasonally averaged backscattering coefficients from ERS-1/-2 and RADARSAT-1, we can differentiate most forests (bottomland and swamp forests) and marshes (freshwater, intermediate, brackish, and saline marshes) in coastal wetlands. The student t-test results support the usefulness of season-averaged backscatter data for classification. Third, combining SAR backscattering coefficients and an optical-sensor-based normalized difference vegetation index can provide further insight into vegetation type and enhance the separation between forests and marshes. Our study demonstrates that SAR can provide necessary information to characterize coastal wetlands and monitor their changes.

  3. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-01-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%–44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had

  4. Evaluating sampling strategy for DNA barcoding study of coastal and inland halo-tolerant Poaceae and Chenopodiaceae: A case study for increased sample size.

    Science.gov (United States)

    Yao, Peng-Cheng; Gao, Hai-Yan; Wei, Ya-Nan; Zhang, Jian-Hang; Chen, Xiao-Yong; Li, Hong-Qing

    2017-01-01

    Environmental conditions in coastal salt marsh habitats have led to the development of specialist genetic adaptations. We evaluated six DNA barcode loci of the 53 species of Poaceae and 15 species of Chenopodiaceae from China's coastal salt marsh area and inland area. Our results indicate that the optimum DNA barcode was ITS for coastal salt-tolerant Poaceae and matK for the Chenopodiaceae. Sampling strategies for ten common species of Poaceae and Chenopodiaceae were analyzed according to optimum barcode. We found that by increasing the number of samples collected from the coastal salt marsh area on the basis of inland samples, the number of haplotypes of Arundinella hirta, Digitaria ciliaris, Eleusine indica, Imperata cylindrica, Setaria viridis, and Chenopodium glaucum increased, with a principal coordinate plot clearly showing increased distribution points. The results of a Mann-Whitney test showed that for Digitaria ciliaris, Eleusine indica, Imperata cylindrica, and Setaria viridis, the distribution of intraspecific genetic distances was significantly different when samples from the coastal salt marsh area were included (P Imperata cylindrica and Chenopodium album, average intraspecific distance tended to reach stability. These results indicate that the sample size for DNA barcode of globally distributed species should be increased to 11-15.

  5. Effects of sediment disturbance regimes on Spartina seedling establishment : Implications for salt marsh creation and restoration

    NARCIS (Netherlands)

    Cao, Haobing; Zhu, Zhenchang; Balke, Thorsten; Zhang, Liquan; Bouma, Tjeerd J.

    Seedling establishment is an important process relevant for the restoration of salt marsh within the framework of sustainable coastal defense schemes. Recent studies have increasingly highlighted how the short-term (i.e., the day-to-day) sediment dynamics can form major bottlenecks for seedling

  6. Foraging site choice and diet selection of Meadow Pipits Anthus pratensis breeding on grazed salt marshes

    NARCIS (Netherlands)

    van Klink, Roel; Mandema, Freek S.; Bakker, Jan P.; Tinbergen, Joost M.

    2014-01-01

    Capsule Breeding Meadow Pipits foraged for caterpillars and large spiders in vegetation that was less heterogeneous than vegetation at random locations.Aims To gain a better understanding of the foraging ecology of breeding Meadow Pipits on grazed coastal salt marshes, we tested three hypotheses:

  7. Modeling Interactions between Backbarrier Marshes, Tidal Inlets, Ebb-deltas, and Adjacent Barriers Exposed to Rising Sea Levels

    Science.gov (United States)

    Hanegan, K.; Georgiou, I. Y.; FitzGerald, D.

    2016-02-01

    Along barrier island chains, tidal exchange between the backbarrier and the coastal ocean supports unique saltwater and brackish ecosystems and is responsible for exporting sediment and nutrients to the surrounding coast. Tidal prism, basement controls, and wave and tidal energy dictate the size and number of tidal inlets and the volume of sand sequestered in ebb-tidal deltas. The inlet tidal prism is a function of bay area, tidal range, and secondary controls, including flow inertia, basinal hypsometry, and frictional factors. Sea- level rise (SLR) is threatening coastal environments, causing mainland flooding, changes in sediment supply, and conversion of wetlands and tidal flats to open water. These factors are impacting basinal hypsometry and increasing open water area, resulting in enlarging tidal prisms, increased dimensions of tidal inlets and ebb-tidal deltas, and erosion along adjacent barrier shorelines. Although the effects of SLR on coastal morphology are difficult to study by field observations alone, physics-based numerical models provide a sophisticated means of analyzing coastal processes over decadal time-scales and linking process causation to long term development. Here, we use a numerical model that includes relevant features in the barrier/tidal basin system, linking back-barrier marsh degradation, inlet expansion, and ebb-delta growth to barrier erosion through long-term hydrodynamic and morphology simulations. Sediment exchange and process interactions are investigated using an idealized domain resembling backbarrier basins of mixed energy coasts so that the sensitivity to varying SLR rates, interior marsh loss, sediment supply, and hydrodynamic controls can be more easily analyzed. Model runs explore these processes over geologic time scales, demonstrating the vulnerability of backbarrier systems to projected SLR and marsh loss. Results demonstrate the links between changing basin morphology and shoreface sedimentation patterns that initiate

  8. Estimates of future inundation of salt marshes in response to sea-level rise in and around Acadia National Park, Maine

    Science.gov (United States)

    Nielsen, Martha G.; Dudley, Robert W.

    2013-01-01

    Salt marshes are ecosystems that provide many important ecological functions in the Gulf of Maine. The U.S. Geological Survey investigated salt marshes in and around Acadia National Park from Penobscot Bay to the Schoodic Peninsula to map the potential for landward migration of marshes using a static inundation model of a sea-level rise scenario of 60 centimeters (cm; 2 feet). The resulting inundation contours can be used by resource managers to proactively adapt to sea-level rise by identifying and targeting low-lying coastal areas adjacent to salt marshes for conservation or further investigation, and to identify risks to infrastructure in the coastal zone. For this study, the mapping of static inundation was based on digital elevation models derived from light detection and ranging (LiDAR) topographic data collected in October 2010. Land-surveyed control points were used to evaluate the accuracy of the LiDAR data in the study area, yielding a root mean square error of 11.3 cm. An independent accuracy assessment of the LiDAR data specific to salt-marsh land surfaces indicated a root mean square error of 13.3 cm and 95-percent confidence interval of ± 26.0 cm. LiDAR-derived digital elevation models and digital color aerial photography, taken during low tide conditions in 2008, with a pixel resolution of 0.5 meters, were used to identify the highest elevation of the land surface at each salt marsh in the study area. Inundation contours for 60-cm of sea-level rise were delineated above the highest marsh elevation for each marsh. Confidence interval contours (95-percent,± 26.0 cm) were delineated above and below the 60-cm inundation contours, and artificial structures, such as roads and bridges, that may present barriers to salt-marsh migration were mapped. This study delineated 114 salt marshes totaling 340 hectares (ha), ranging in size from 0.11 ha (marshes less than 0.2 ha were mapped only if they were on Acadia National Park property) to 52 ha, with a median

  9. Effect of fertilization on Soil Respiration and Belowground Macro-organic Matter in Spartina alternatflora Marsh Soils

    Science.gov (United States)

    Human activities and rising populations increase watershed nutrient loads, which may alter the structure and function of coastal wetlands. In a long-term fertilization experiment in the North Inlet-Winyah Bay Reserve (NI-WB, NERR) (SC) Spartina marsh system, we used a 2 X 2 facto...

  10. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment.

    Science.gov (United States)

    Weaver, Carolyn A; Armitage, Anna R

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010-2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  11. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment

    Science.gov (United States)

    Armitage, Anna R.

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010–2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  12. Annotated Bibliography for Lake Erie. Volume I. Biological,

    Science.gov (United States)

    1974-10-01

    maculosa Le Sueur; calico bass, or Lake Erie bass, Pomoxis sparoides Lacepede. (SM) 52. Reardslee, Clark S. 1944. Bonapart’s gull on the Niagara...of the burbot, Lota lota maculosa (LeSueur), in Lake Erie. Trans. Am. Fish. Soc. 80:163-173. Growth studies were made on 2,329 Lake Erie burbot...almo -- hystus; whitefish, oe onus albus; common shad salmon, Coregonus a upelformis; aobony pike, Lepisosteus bison; spotted burbot, Lota maculosa ; and

  13. Communicating Coastal Risk Analysis in an Age of Climate Change

    Science.gov (United States)

    2011-10-01

    extratropical storm systems); the geometry and geomorphology of the area (regional and local bathymetry and topography, including rivers, marshes, and...at risk from coastal hazards including storm surge inundation, precipitation driven flooding, waves, and coastal erosion. This population segment...will likely be exposed to increased risk as impacts of a changing climate are felt through elevated sea levels and potentially increased storm

  14. Influence of the Houma Navigation Canal on Salinity Patterns and Landscape Configuration in Coastal Louisiana

    Science.gov (United States)

    Steyer, Gregory D.; Sasser, Charles; Evers, Elaine; Swenson, Erick; Suir, Glenn; Sapkota, Sijan

    2008-01-01

    appears that the dredging events opened up a deeper route from the canal to Crozier and into Grand Bayou Caillou, but it also may be a result of the general breakup of the marsh in the adjacent area, which resulted in greater exchange of bay water and subsequently higher salinity levels. Although the available salinity data were insufficient to conduct statistical correlations, there was close agreement between salinity changes and specific dredging events of the HNC. A procedure for analyzing marsh landscapes, which utilizes the FRAGSTATS landscape statistical application and a two-part marsh classification system, was developed as a means of determining the connectivity and configuration of marsh and water patches within the study area. Individual landscape metrics were used to determine the percentage and rate of land change and the shifts in density, shape, and cohesiveness of water within the marsh. Wetland loss rates for coastal Louisiana and Terrebonne basin were compared to the long- and short-term loss rates of the Houma Navigation Canal study area that were quantified by using the FRAGSTATS landscape analysis method. These results suggest that the canal study area was losing land at a significantly faster rate than both the marshes of coastal Louisiana (over all periods) and the other highly degraded neighboring marshes within Terrebonne basin. Overall, 37 percent (17,625 ha) of the project area marsh was lost between 1958 and 1998. As a means of quantifying the distance and degree of influence that the HNC had on marsh degradation, a 3-km interval buffer array and comparable years of vegetation data were used to describe the changes in primary metric values across the three project dates (1958, 1968/69, and 1998). The patterns across landscape metrics varied, and it was difficult to discern direct relationships based on proximity to the canal. Even though the canal may have an influence on marsh degradation, these analyses show that the degree and d

  15. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    Science.gov (United States)

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  16. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    Science.gov (United States)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are

  17. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  18. Ground-Truthing of Airborne LiDAR Using RTK-GPS Surveyed Data in Coastal Louisiana's Wetlands

    Science.gov (United States)

    Lauve, R. M.; Alizad, K.; Hagen, S. C.

    2017-12-01

    Airborne LiDAR (Light Detection and Ranging) data are used by engineers and scientists to create bare earth digital elevation models (DEM), which are essential to modeling complex coastal, ecological, and hydrological systems. However, acquiring accurate bare earth elevations in coastal wetlands is difficult due to the density of marsh grasses that prevent the sensors reflection off the true ground surface. Previous work by Medeiros et al. [2015] developed a technique to assess LiDAR error and adjust elevations according to marsh vegetation density and index. The aim of this study is the collection of ground truth points and the investigation on the range of potential errors found in existing LiDAR datasets within coastal Louisiana's wetlands. Survey grids were mapped out in an area dominated by Spartina alterniflora and a survey-grade Trimble Real Time Kinematic (RTK) GPS device was employed to measure bare earth ground elevations in the marsh system adjacent to Terrebonne Bay, LA. Elevations were obtained for 20 meter-spaced surveyed grid points and were used to generate a DEM. The comparison between LiDAR derived and surveyed data DEMs yield an average difference of 23 cm with a maximum difference of 68 cm. Considering the local tidal range of 45 cm, these differences can introduce substantial error when the DEM is used for ecological modeling [Alizad et al., 2016]. Results from this study will be further analyzed and implemented in order to adjust LiDAR-derived DEMs closer to their true elevation across Louisiana's coastal wetlands. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497, 10.1002/2016EF000385. Medeiros, S., S. Hagen, J. Weishampel, and J. Angelo (2015), Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sensing, 7

  19. How is the chlorophyll count affected by burned and unburned marsh areas?

    Science.gov (United States)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  20. Soil Respiration and Belowground Carbon Stores Among Salt Marshes Subjected to Increasing Watershed Nitrogen Loadings in Southern New England

    Science.gov (United States)

    Coastal salt marshes are ecosystems located between the uplands and sea, and because of their location are subject to increasing watershed nutrient loadings and rising sea levels. Residential development along the coast is intense, and there is a significant relationship between...

  1. Review of the ecosystem service implications of mangrove encroachment into salt marshes.

    Science.gov (United States)

    Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil

    2017-10-01

    Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.

  2. Biofilms' contribution to organic carbon in salt marsh sediments

    Science.gov (United States)

    Valentine, K.; Quirk, T. E.; Mariotti, G.; Hotard, A.

    2017-12-01

    Coastal salt marshes are productive environments with high potential for carbon (C) accumulation. Organic C in salt marsh sediment is typically attributed to plant biomass. Recent field measurements, however, suggest that biofilms - mainly composed of benthic diatoms and their secretion - also contribute to basal C in these environments and can be important contributors to marsh productivity, C cycling, and potentially, C sequestration. The potential for biofilms to soil organic C and the influence of mineral sedimentation of biofilm-based C accumulation is unknown. We conducted controlled laboratory experiments to test (1) whether biofilms add measurable amounts of organic C to the sediment and (2) the effect of mineral sedimentation rate on the amount of biofilm-based C accumulation. Settled beds of pure bentonite mud were created in 10-cm-wide cylinders. Each cylinder was inoculated with biofilms collected from a marsh in Louisiana. A small amount of mud was added weekly for 11 weeks. Control experiments without biofilms were also performed. Biofilms were grown with a 12/12 hours cycle, with a gentle mixing of the water column that did not cause sediment resuspension, with a nutrient-rich medium that was exchanged weekly, and in the absence of metazoan grazing. At the end of the experiment, the sediment columns were analyzed for depth-integrated chl-a, loss on ignition (LOI), and total organic carbon (TOC). Chl-a values ranged from 26-113 mg/cm2, LOI values ranged from 86-456 g/m2/yr, and TOC values ranged from 31-211 g/m2/yr. All three of these metrics (chl-a, LOI, and TOC) increased with the rate of mineral sedimentation. These results show that biofilms, in the absence of erosion and grazing, can significantly contribute to C accumulation in salt marshes, especially with high rates of mineral sedimentation. Given the short time scale of the experiment, the increase in organic C accumulation with the rate of sedimentation is attributed to stimulated biofilm

  3. Automated Detection of Salt Marsh Platforms : a Topographic Method

    Science.gov (United States)

    Goodwin, G.; Mudd, S. M.; Clubb, F. J.

    2017-12-01

    Monitoring the topographic evolution of coastal marshes is a crucial step toward improving the management of these valuable landscapes under the pressure of relative sea level rise and anthropogenic modification. However, determining their geometrically complex boundaries currently relies on spectral vegetation detection methods or requires labour-intensive field surveys and digitisation.We propose a novel method to reproducibly isolate saltmarsh scarps and platforms from a DEM. Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope*relief raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. Non-dimensional search parameters allow batch-processing of data without recalibration. We test our method using lidar-derived DEMs of six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and automatic segregation exceeds 90% for resolutions of 1m, with all but one sites maintaining this performance for resolutions up to 3.5m. For resolutions of 1m, automatically detected platforms are comparable in surface area and elevation distribution to digitised platforms. We also find that our method allows the accurate detection of local bloc failures 3 times larger than the DEM resolution.Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, automatic detection classifies them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would benefit from a combination with existing creek detection algorithms. Fallen blocs and pioneer zones are inconsistently identified, particularly in macro-tidal marshes, leading to differences between digitisation and the automated method

  4. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    Science.gov (United States)

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.

  5. Blue Carbon Sequestration in Florida Coastal Wetlands - Response to Recent Climate Change and Holocene Climate Variability

    Science.gov (United States)

    Vaughn, D.; Bianchi, T. S.; Osborne, T.; Shields, M. R.; Kenney, W.

    2017-12-01

    Intertidal forests and salt marshes represent a major component of Florida's coasts and are essential to the health and integrity of coastal Florida's ecological and economic systems. In addition, coastal wetlands have been recognized as highly efficient carbon sinks with their ability to store carbon on time scales from centuries to millennia. Although losses of salt marshes, mangroves, and seagrass beds through both natural and anthropogenic forces are threatening their ability to act as carbon sinks globally, the poleward encroachment of mangroves into higher latitude salt marshes may lead to regional increases in carbon sequestration as mangroves store more carbon than salt marshes. For Florida, this encroachment of mangroves into salt marshes is prominent along the northern coasts where fewer freeze events have coincided with an increase in mangrove extent over the past several decades. Soil cores collected from a northeastern Florida wetland will allow us to determine whether the recent poleward encroachment of mangroves into northern Florida salt marshes has led to an increase in belowground carbon storage. The soil cores, which are approximately two to three meters in length, will also provide the first known record of carbon storage in a northern Florida wetland during the Holocene. Initial results from the top 40 cm, which represents 100 years based on dating of other northern Florida wetland cores, suggest more carbon is currently being stored within the transition between marsh and mangrove than in areas currently covered by salt marsh vegetation or mangroves. The transitional zone also has a much larger loss of carbon within the top 40 cm compared to the mangrove and marsh cores. Lignin-based degradation indices along with other biomarker data and 210Pb/137Cs ages will be presented to demonstrate how much of this loss of carbon may be related to degradation and how much may be related to changes in carbon sources.

  6. Literature review of organic matter transport from marshes

    Science.gov (United States)

    Dow, D. D.

    1982-01-01

    A conceptual model for estimating a transport coefficient for the movement of nonliving organic matter from wetlands to the adjacent embayments was developed in a manner that makes it compatible with the Earth Resources Laboratory's Productive Capacity Model. The model, which envisages detritus movement from wetland pixels to the nearest land-water boundary followed by movement within the water column from tidal creeks to the adjacent embayment, can be transposed to deal with only the interaction between tidal water and the marsh or to estimate the transport from embayments to the adjacent coastal waters. The outwelling hypothesis postulated wetlands as supporting coastal fisheries either by exporting nutrients, such as inorganic nitrogen, which stimulated the plankton-based grazing food chain in the water column, or through the export of dissolved and particulate organic carbon which provided a benthic, detritus-based food web which provides the food source for the grazing food chain in a more indirect fashion.

  7. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  8. Delineation of marsh types of the Texas coast from Corpus Christi Bay to the Sabine River in 2010

    Science.gov (United States)

    Enwright, Nicholas M.; Hartley, Stephen B.; Brasher, Michael G.; Visser, Jenneke M.; Mitchell, Michael K.; Ballard, Bart M.; Parr, Mark W.; Couvillion, Brady R.; Wilson, Barry C.

    2014-01-01

    Coastal zone managers and researchers often require detailed information regarding emergent marsh vegetation types for modeling habitat capacities and needs of marsh-reliant wildlife (such as waterfowl and alligator). Detailed information on the extent and distribution of marsh vegetation zones throughout the Texas coast has been historically unavailable. In response, the U.S. Geological Survey, in cooperation and collaboration with the U.S. Fish and Wildlife Service via the Gulf Coast Joint Venture, Texas A&M University-Kingsville, the University of Louisiana-Lafayette, and Ducks Unlimited, Inc., has produced a classification of marsh vegetation types along the middle and upper Texas coast from Corpus Christi Bay to the Sabine River. This study incorporates approximately 1,000 ground reference locations collected via helicopter surveys in coastal marsh areas and about 2,000 supplemental locations from fresh marsh, water, and “other” (that is, nonmarsh) areas. About two-thirds of these data were used for training, and about one-third were used for assessing accuracy. Decision-tree analyses using Rulequest See5 were used to classify emergent marsh vegetation types by using these data, multitemporal satellite-based multispectral imagery from 2009 to 2011, a bare-earth digital elevation model (DEM) based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables believed to be important for delineating the extent and distribution of marsh vegetation communities. Image objects were generated from segmentation of high-resolution airborne imagery acquired in 2010 and were used to refine the classification. The classification is dated 2010 because the year is both the midpoint of the multitemporal satellite-based imagery (2009–11) classified and the date of the high-resolution airborne imagery that was used to develop image objects. Overall accuracy corrected for bias (accuracy

  9. Spatial configuration trends in coastal Louisiana from 1985 to 2010

    Science.gov (United States)

    Couvillion, Brady; Fischer, Michelle; Beck, Holly J.; Sleavin, William J.

    2016-01-01

    From 1932 to 2010, coastal Louisiana has experienced a net loss of 4877 km2 of wetlands. As the area of these wetlands has changed, so too has the spatial configuration of the landscape. The resulting landscape is a mosaic of patches of wetlands and open water. This study examined the spatial and temporal variability of trajectories of landscape configuration and the relation of those patterns to the trajectories of land change in wetlands during a 1985–2010 observation period. Spatial configuration was quantified using multi-temporal satellite imagery and an aggregation index (AI). The results of this analysis indicate that coastal Louisiana experienced a reduction in the AI of coastal wetlands of 1.07 %. In general, forested wetland and fresh marsh types displayed the highest aggregation and stability. The remaining marsh types, (intermediate, brackish, and saline) all experienced disaggregation during the time period, with increasing severity of disaggregation along an increasing salinity gradient. Finally, a correlation (r 2 = 0.5562) was found between AI and the land change rate for the subsequent period, indicating that fragmentation can increase the vulnerability of wetlands to further wetland loss. These results can help identify coastal areas which are susceptible to future wetland loss.

  10. Mechanism of removal and retention of heavy metals from the acid mine drainage to coastal wetland in the Patagonian marsh.

    Science.gov (United States)

    Idaszkin, Yanina L; Carol, Eleonora; María Del Pilar, Alvarez

    2017-09-01

    The attenuation of the acid mine drainage is one of the most important environmental challenges facing the mining industry worldwide. Mining waste deposits from an ancient metallurgical extraction of heavy metals were found near to the San Antonio marsh in Patagonia. The aim of this work was to determinate which mechanisms regulate the mobilization and retention of metals by acid drainage. A geological and geomorphological survey was carried out and samples from the mining waste deposits and the marsh were collected to determine soil texture, Eh pH, organic matter, Cu, Pb, Zn and Fe content, and soil mineralogical composition. Metals in marsh plants were determined in above- and below-ground structures. In the mining waste deposits polymetallic sulphides were recognized where the oxidation and formation of oxy-hydroxides and sulphates of Fe, Cu, Pb and Zn occurs. Then, by the alteration of those minerals, the metals enter in solution and are mobilized with the surface drainage towards the marsh where adsorption in the soils fine fraction and organic matter and/or by plants occurs. Locally, in the mining waste deposits, the precipitation/dissolution of Cu, Pb, and Zn sulphates take place in small centripetal drainage basins. In topographically lower portions of the marsh desorption and removal of metals by tidal flow could also be happen. The results allow to concluding that the marsh adjacent to the mining waste deposits is a geochemically active environment that naturally mitigates the contamination caused by acid drainage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Impacts of aquatic nonindigenous invasive species on the Lake Erie ecosystem

    Science.gov (United States)

    Austen, Madeline J.W.; Ciborowski, Jan J.H.; Corkum, Lynda D.; Johnson, Tim B.; MacIsaac, Hugh J.; Metcalfe-Smith, Janice L.; Schloesser, Donald W.; George, Sandra E.

    2002-01-01

    Lake Erie is particularly vulnerable to the introduction and establishment of aquatic nonindigenous invasive species (NIS) populations. A minimum of 144 aquatic NIS have been recorded in the Lake Erie basin including several species [e.g., Eurasian watermilfoil (Myriophyllum spicatum); zebra mussel (Dreissena polymorpha); quagga mussel (Dreissena bugensis); an amphipod (Echinogammarus ischnus); round goby (Neogobius melanostomus); and sea lamprey (Petromyzon marinus)] that have had discernible impacts on the lake's ecology. NIS pose threats to the Lake Erie ecosystem for a variety of reasons including their ability to proliferate quickly, compete with native species, and transfer contaminants (e.g., PCBs) and disease through the food web. Six of the 14 beneficial use impairments listed in Annex 2 of the Great Lakes Water Quality Agreement are impaired in Lake Erie, in part as a result of the introduction of NIS. The Lake Erie Lakewide Management Plan (LaMP) has adopted an ecosystem approach to restore beneficial use impairments in the lake. Furthermore, a research consortium, known as the Lake Erie Millennium Network, is working alongside the LaMP, to address research problems regarding NIS, the loss of habitat, and the role of contaminants in the Lake Erie ecosystem.

  12. Carbon Dioxide and Methane Emissions from Diverse Zones of a California Salt Marsh

    Science.gov (United States)

    Wang, F.; King, J. Y.

    2016-12-01

    fluxes from a coastal salt marsh are highly dependent on the season and on the salt marsh zonation, the latter a likely result of elevation, tidal regime, and biotic influence. The complex nature of these gaseous carbon fluxes suggests the importance of considering wetland zonation in estimation of carbon gas exchange from wetlands at larger spatial scales.

  13. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.

    Science.gov (United States)

    Beckett, Leah H; Baldwin, Andrew H; Kearney, Michael S

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9-15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

  14. Determination of strontium isotopic composition in natural waters: examples of application in subsurface waters of the coastal zone of Bragantina region, Para, BR

    International Nuclear Information System (INIS)

    Bordalo, Adriana Oliveira; Moura, Candido Augusto Veloso; Scheller, Thomas

    2007-01-01

    Analytical procedures used for determining the concentrations and isotope composition of strontium in subsurface waters, by mass spectrometry, are described. Sampling was performed in coastal plateaus, salt marsh and mangrove environments in the coastal region of Para. Coastal plateau waters have δ 87 Sr between 1.51 and 6.26 per mille and Sr concentration bellow 58 ppb. Salt marsh waters show δ 87 Sr between 0.55 and 0.90 per mille and Sr concentration between 93 and 114 ppm, while mangrove waters have δ 87 Sr per mille around zero and Sr concentration above 15 ppm. Differences in the 87 Sr/ 86 Sr ratio in these subsurface waters are detected, as well as seasonal variations in the coastal plateau waters. (author)

  15. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands.

    Science.gov (United States)

    Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol

    2018-03-01

    Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2  at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Monitoring coastal inundation with Synthetic Aperture Radar satellite data

    Science.gov (United States)

    Suzuoki, Yukihiro; Rangoonwala, Amina; Ramsey, Elijah W.

    2011-01-01

    Maps representing the presence and absence of surface inundation in the Louisiana coastal zone were created from available satellite scenes acquired by the Japanese Aerospace Exploration Agency's Advanced Land Observing Satellite and by the European Space Agency's Envisat from late 2006 through summer 2009. Detection of aboveground surface flooding relied on the well-documented and distinct signature of decreased backscatter in Synthetic Aperture Radar (SAR), which is indicative of inundated marsh in the Gulf of Mexico. Even though decreases in backscatter were distinctive, the multiplicity of possible interactions between changing flood depths and canopy height yielded complex SAR-based representations of the marshes.

  17. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    Science.gov (United States)

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  18. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    Science.gov (United States)

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  19. Detection and Modeling of a Meteotsunami in Lake Erie During a High Wind Event on May 27, 2012

    Science.gov (United States)

    Anderson, E. J.; Schwab, D. J.; Lombardy, K. A.; LaPlante, R. E.

    2012-12-01

    On May 27, 2012, a mesoscale convective system moved southeast across the central basin of Lake Erie (the shallowest of the Great Lakes) causing an increase in surface wind speed from 3 to 15 m/s over a few minutes. Although no significant pressure change was observed during this period (+1 mbar), the storm resulted in 3 reported edge waves on the southern shore (5 minutes apart), with wave heights up to 7 feet (2.13 m). Witnesses along the coast reported that the water receded before the waves hit, the only warning of the impending danger. After impact on the southern shore, several individuals were stranded in the water near Cleveland, Ohio. Fortunately, there were no fatalities or serious injury as a result of the edge waves. The storm event yielded two separate but similar squall line events that impacted the southern shore of Lake Erie several hours apart. The first event had little impact on nearshore conditions, however, the second event (moving south-eastward at 21.1 m/s or 41 knots), resulted in 7 ft waves near Cleveland as reported above. The thunderstorms generated three closely packed outflow boundaries that intersected the southern shore of Lake Erie between 1700 and 1730 UTC. The outflow boundaries were followed by a stronger outflow at 1800 UTC. Radial velocities on the WSR-88D in Cleveland, Ohio indicated the winds were stronger in the second outflow boundary. The radar indicated winds between 20.6 and 24.7 m/s (40 and 48 knots) within 240 meters (800 feet) above ground level. In order to better understand the storm event and the cause of the waves that impacted the southern shore, a three-dimensional hydrodynamic model of Lake Erie has been developed using the Finite Volume Coastal Ocean Model (FVCOM). The model is being developed as part of the Great Lakes Coastal Forecasting (GLCFS), a set of experimental real-time pre-operational hydrodynamic models run at the NOAA Great Lakes Research Laboratory that forecast currents, waves, temperature, and

  20. Biosphere 2's Marsh Biome

    Science.gov (United States)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.

  1. A comparison of resident fish assemblages in managed and unmanaged coastal wetlands in North Carolina and South Carolina

    Science.gov (United States)

    Robinson, Kelly F.; Jennings, Cecil A.

    2014-01-01

    The dominant fish species within impounded coastal wetlands in the southeastern US may be different from the species that dominate natural marshes. We tested the hypothesis that resident fish assemblages inhabiting impounded coastal wetlands in South Carolina would differ from resident assemblages in natural marshes of the southeastern United States. We used rarefied species richness, Shannon's H' diversity,J' evenness, Morisita's index of similarity, and the percent similarity index to compare resident fish assemblages from two impoundments to 12 open-marsh resident fish assemblages from previously published studies in North and South Carolina. We used rotenone to sample fish assemblages in impoundments. The assemblages in natural marsh habitat had been sampled with rotenone and seines. We classified comparisons yielding a similarity index ≥0.50 as moderately similar and those with an index ≥0.75 as very similar. Fifty-three percent of the among-impoundment comparisons (Morisita's index) were at least moderately similar, whereas 7% of impoundment—natural marsh comparisons were moderately similar. A difference in tidal influence was the only parameter in the best-fitting model describing the observed Morisita's indices. The index of similarity decreased by 63% when tidal influence differed between compared assemblages. Species richness and diversity were greater in impoundments than natural marshes, but evenness was similar between habitat types. Our results support the hypothesis that resident fish assemblages in impounded wetlands and natural marshes are different, and suggest that a degree of tidal influence is the most important factor behind the difference.

  2. Coastal microbial mats: the physiology of a small-scale ecosystem

    NARCIS (Netherlands)

    Stal, L.J.

    2001-01-01

    Coastal inter-tidal sandy sediments, salt marshes and mangrove forests often support the development of microbial mats. Microbial mats are complex associations of one or several functional groups of microorganisms and their formation usually starts with the growth of a cyanobacterial population on a

  3. Hierarchical multi-scale classification of nearshore aquatic habitats of the Great Lakes: Western Lake Erie

    Science.gov (United States)

    McKenna, J.E.; Castiglione, C.

    2010-01-01

    Classification is a valuable conservation tool for examining natural resource status and problems and is being developed for coastal aquatic habitats. We present an objective, multi-scale hydrospatial framework for nearshore areas of the Great Lakes. The hydrospatial framework consists of spatial units at eight hierarchical scales from the North American Continent to the individual 270-m spatial cell. Characterization of spatial units based on fish abundance and diversity provides a fish-guided classification of aquatic areas at each spatial scale and demonstrates how classifications may be generated from that framework. Those classification units then provide information about habitat, as well as biotic conditions, which can be compared, contrasted, and hierarchically related spatially. Examples within several representative coastal or open water zones of the Western Lake Erie pilot area highlight potential application of this classification system to management problems. This classification system can assist natural resource managers with planning and establishing priorities for aquatic habitat protection, developing rehabilitation strategies, or identifying special management actions.

  4. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina: Chapter 9

    Science.gov (United States)

    Conner, William H.; Krauss, Ken W.; Doyle, Thomas W.

    2007-01-01

    Tidal freshwater swamps in the southeastern United States are subjected to tidal hydroperiods ranging in amplitude from microtidal (forests, scrub-shrub stands, marsh, or open water but are less likely to convert mesotidal swamps. Changes to hydrological patterns tend to be more noticeable in Louisiana than do those in South Carolina.The majority of Louisiana’s coastal wetland forests are found in the Mississippi River deltaic plain region. Coastal wetland forests in the deltaic plain have been shaped by the sediments, water, and energy of the Mississippi River and its major distributaries. Baldcypress (Taxodium distichum [L.] L.C. Rich.) and water tupelo (Nyssa aquatica L.) are the primary tree species in the coastal swamp forests of Louisiana. Sites where these species grow usually hold water for most of the year; however, some of the more seaward sites were historically microtidal, especially where baldcypress currently dominates. In many other locations, baldcypress and water tupelo typically grow in more or less pure stands or as mixtures of the two with common associates such as black willow (Salix nigra Marsh.), red maple (Acer rubrum L.), water locust (Gleditsia aquatic Marsh.), overcup oak (Quercus lyrata Walt.), water hickory (Carya aquatica [Michx. f.] Nutt.), green ash (Fraxinus pennsylvanica Marsh.), pumpkin ash (F. profunda Bush.), and redbay (Persea borbonia [L.] Sprengel) (Brown and Montz 1986).The South Carolina coastal plain occupies about two-thirds of the state and rises gently to 150 m from the Atlantic Ocean up to the Piedmont plateau. Many rivers can be found in the Coastal Plain with swamps near the coast that extend inland along the rivers. Strongly tidal freshwater forests occur along the lower reaches of redwater rivers (Santee, Great Pee Dee, and Savannah) that arise in the mountains and along the numerous blackwater rivers (Ashepoo, Combahee, Cooper, and Waccamaw) that arise in the coastal regions. Most of the tidal freshwater forests

  5. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: Effects of structural marsh management

    Science.gov (United States)

    Bolduc, F.; Afton, A.D.

    2004-01-01

    The hydrology of marsh ponds influences aquatic invertebrate and waterbird communities. Hydrologic variables in marsh ponds of the Gulf Coast Chenier Plain are potentially affected by structural marsh management (SMM: levees, water control structures and impoundments) that has been implemented since the 1950s. Assuming that SMM restricts tidal flows and drainage of rainwater, we predicted that SMM would increase water depth, and concomitantly decrease salinity and transparency in impounded marsh ponds. We also predicted that SMM would increase seasonal variability in water depth in impounded marsh ponds because of the potential incapacity of water control structures to cope with large flooding events. In addition, we predicted that SMM would decrease spatial variability in water depth. Finally, we predicted that ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes would be similar in water depth, temperature, dissolved oxygen (O2), and transparency. Using a priori multivariate analysis of variance (MANOVA) contrast, we tested these predictions by comparing hydrologic variables within ponds of impounded and unimpounded marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. Specifically, we compared hydrologic variables (1) between IM and unimpounded mesohaline marsh ponds (UM); and (2) among IF, IO, and IM marshes ponds. As predicted, water depth was higher and salinity and O2 were lower in IM than in UM marsh ponds. However, temperature and transparency did not differ between IM and UM marsh ponds. Water depth varied more among months in IM marsh ponds than within those of UM marshes, and variances among and within ponds were lower in IM than UM marshes. Finally, all hydrologic variables, except salinity, were similar among IF, IO, and IM marsh ponds. Hydrologic changes within marsh ponds due to SMM should (1) promote benthic invertebrate taxa that tolerate low levels of O2 and

  6. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    Science.gov (United States)

    Larsen, Laurel G.; Moseman, Serena; Santoro, Alyson; Hopfensperger, Kristine; Burgin, Amy

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  7. Preliminary Evaluation of Critical Wave Energy Thresholds at Natural and Created Coastal Wetlands

    National Research Council Canada - National Science Library

    Shafer, Deborah

    2003-01-01

    This technical note presents an evaluation of the wave climate at eight natural and created coastal wetland sites in an effort to identify the existence of critical wave energy thresholds for long-term marsh stability...

  8. Collaborative decision-analytic framework to maximize resilience of tidal marshes to climate change

    Directory of Open Access Journals (Sweden)

    Karen M. Thorne

    2015-03-01

    Full Text Available Decision makers that are responsible for stewardship of natural resources face many challenges, which are complicated by uncertainty about impacts from climate change, expanding human development, and intensifying land uses. A systematic process for evaluating the social and ecological risks, trade-offs, and cobenefits associated with future changes is critical to maximize resilience and conserve ecosystem services. This is particularly true in coastal areas where human populations and landscape conversion are increasing, and where intensifying storms and sea-level rise pose unprecedented threats to coastal ecosystems. We applied collaborative decision analysis with a diverse team of stakeholders who preserve, manage, or restore tidal marshes across the San Francisco Bay estuary, California, USA, as a case study. Specifically, we followed a structured decision-making approach, and we using expert judgment developed alternative management strategies to increase the capacity and adaptability to manage tidal marsh resilience while considering uncertainties through 2050. Because sea-level rise projections are relatively confident to 2050, we focused on uncertainties regarding intensity and frequency of storms and funding. Elicitation methods allowed us to make predictions in the absence of fully compatible models and to assess short- and long-term trade-offs. Specifically we addressed two questions. (1 Can collaborative decision analysis lead to consensus among a diverse set of decision makers responsible for environmental stewardship and faced with uncertainties about climate change, funding, and stakeholder values? (2 What is an optimal strategy for the conservation of tidal marshes, and what strategy is robust to the aforementioned uncertainties? We found that when taking this approach, consensus was reached among the stakeholders about the best management strategies to maintain tidal marsh integrity. A Bayesian decision network revealed that a

  9. Collaborative decision-analytic framework to maximize resilience of tidal marshes to climate change

    Science.gov (United States)

    Thorne, Karen M.; Mattsson, Brady J.; Takekawa, John Y.; Cummings, Jonathan; Crouse, Debby; Block, Giselle; Bloom, Valary; Gerhart, Matt; Goldbeck, Steve; Huning, Beth; Sloop, Christina; Stewart, Mendel; Taylor, Karen; Valoppi, Laura

    2015-01-01

    Decision makers that are responsible for stewardship of natural resources face many challenges, which are complicated by uncertainty about impacts from climate change, expanding human development, and intensifying land uses. A systematic process for evaluating the social and ecological risks, trade-offs, and cobenefits associated with future changes is critical to maximize resilience and conserve ecosystem services. This is particularly true in coastal areas where human populations and landscape conversion are increasing, and where intensifying storms and sea-level rise pose unprecedented threats to coastal ecosystems. We applied collaborative decision analysis with a diverse team of stakeholders who preserve, manage, or restore tidal marshes across the San Francisco Bay estuary, California, USA, as a case study. Specifically, we followed a structured decision-making approach, and we using expert judgment developed alternative management strategies to increase the capacity and adaptability to manage tidal marsh resilience while considering uncertainties through 2050. Because sea-level rise projections are relatively confident to 2050, we focused on uncertainties regarding intensity and frequency of storms and funding. Elicitation methods allowed us to make predictions in the absence of fully compatible models and to assess short- and long-term trade-offs. Specifically we addressed two questions. (1) Can collaborative decision analysis lead to consensus among a diverse set of decision makers responsible for environmental stewardship and faced with uncertainties about climate change, funding, and stakeholder values? (2) What is an optimal strategy for the conservation of tidal marshes, and what strategy is robust to the aforementioned uncertainties? We found that when taking this approach, consensus was reached among the stakeholders about the best management strategies to maintain tidal marsh integrity. A Bayesian decision network revealed that a strategy

  10. Benthic Macroinvertebrate Assemblages in the Near Coastal Zone of Lake Erie

    Science.gov (United States)

    Benthic macroinvertebrate assemblages have been used as indicators of ecological condition because their responses integrate localized environmental conditions of the sediments and overlying water. Assemblages of benthic invertebrates in the near coastal region are of particular...

  11. Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay, France)

    Science.gov (United States)

    Laffaille, P.; Feunteun, E.; Lefeuvre, J.-C.

    2000-10-01

    At least 100 fish species are known to be present in the intertidal areas (estuaries, mudflats and salt marshes) of Mont Saint-Michel Bay. These and other comparable shallow marine coastal waters, such as estuaries and lagoons, play a nursery role for many fish species. However, in Europe little attention has been paid to the value of tidal salt marshes for fishes. Between March 1996 and April 1999, 120 tides were sampled in a tidal creek. A total of 31 species were caught. This community was largely dominated by mullets ( Liza ramada represent 87% of the total biomass) and sand gobies ( Pomatoschistus minutus and P. lozanoi represent 82% of the total numbers). These species and also Gasterosteus aculeatus , Syngnathus rostellatus, Dicentrarchus labrax, Mugil spp., Liza aurata and Sprattus sprattus were the most frequent species (>50% of monthly frequency of occurrence). In Europe, salt marshes and their creeks are flooded only during high spring tides. So, fishes only invade this environment during short immersion periods, and no species can be considered as marsh resident. But, the salt marsh was colonized by fish every time the tide reached the creek, and during the short time of flood, dominant fishes fed actively and exploited the high productivity. Nevertheless, this study shows that there is little interannual variation in the fish community and there are three ' seasons ' in the fish fauna of the marsh. Marine straggler and marine estuarine dependent species colonize marshes between spring (recruitment period in the bay) and autumn before returning into deeper adjacent waters. Estuarine fishes are present all year round with maximum abundances in the end of summer. The presence of fishes confirms that this kind of wetland plays an important trophic and nursery role for these species. Differences in densities and stages distribution of these species into Mont Saint-Michel systems (tidal mudflats, estuaries and tidal salt marshes) can reduce the trophic

  12. 2011 Summary: Coastal wetland restoration research

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.; Carlson Mazur, Martha L.; Czayka, Alex; Dominguez, Andrea; Doty, Susan; Eggleston, Mike; Green, Sean; Sweetman, Amanda

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) projects currently taking place in Great Lakes coastal wetlands provide a unique opportunity to study ecosystem response to management actions as practitioners strive to improve wetland function and increase ecosystem services. Through a partnership between the U.S. Geological Survey – Great Lakes Science Center (GLSC), U.S. Fish and Wildlife Service (USFWS), and Ducks Unlimited, a GLRI-funded project has reestablished the hydrologic connection between an intensively managed impounded wetland (Pool 2B) and Crane Creek, a small Lake Erie tributary, by building a water-control structure that was opened in the spring of 2011. The study site is located within the USFWS Ottawa National Wildlife Refuge (ONWR) and lies within the boundaries of the U.S. Environmental Protection Agency (EPA)-designated Maumee River Area of Concern. The broad objective of the project is to evaluate how hydrologically reconnecting a previously diked wetland impacts fish, mollusks, and other biota and affects nutrient transport, nutrient cycling, water quality, flood storage, and many other abiotic conditions. The results from this project suggest large system-wide benefits from sustainable reestablishment of lake-driven hydrology in this and other similar systems. We comprehensively sampled water chemistry, fish, birds, plants, and invertebrates in Crane Creek coastal wetlands, Pool 2A (a reference diked wetland), and Pool 2B (the reconnected wetland) in 2010 and 2011 to: 1) Characterize spatial and seasonal patterns for these parameters. 2) Examine ecosystem response to the opening of a water-control structure that allows fish passage Our sampling efforts have yielded data that reveal striking changes in water quality, hydrology, and fish assemblages in our experimental unit (2B). Prior to the reconnection, the water chemistry in pools 2A and 2B were very similar. Afterwards, we found that the water chemistry in reconnected Pool 2B was more

  13. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    Science.gov (United States)

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea

  14. BRACKISH MARSH BENTHIC MICROFAUNA AND PALEOENVIRONMENTAL CHANGES DURING THE LAST 6000 YEARS AT THE COASTAL PLAIN OF MARATHON (SE GREECE

    Directory of Open Access Journals (Sweden)

    MARIA V.TRIANTAPHYLLOU

    2003-11-01

    Full Text Available The present study, based mainly on the analysis of foraminifers and ostracodes, provides evidence of paleoenvironmental changes on the coastal plain of Marathon (E. Greece during the last 6.000 yrs. Three sedimentary units -lagoonal formations - were recognized and identified as A, B and C. They range in time between before 5500BP-3500BP, 3500BP-2500BP and 2500BP-recent, respectively. The study of the brackish marsh microfauna of the Marathon plain Holocene sediments reveals the presence, during the last 5500 yrs., of three distinct biofacies in the sedimentary units already established. Alternating mesohaline - oligohaline (MO, oligohaline - fresh water (OFW and mesohaline - oligohaline to oligohaline - fresh water (MO-OFW biofacies in the framework of the sedimentary units indicate a general trend landward along the plain suggesting a slowing of sea-level rise probably correlated with a relevant tectonic uplift. One prominent feature of this study is the clarification of the ecological preference of the species Trichohya1us aguayoi (Bermudez, 1935, which is dominant in oligohaline conditions under an influence of fresh water input (salinity less than 15 ‰. 

  15. Evaluating sampling strategy for DNA barcoding study of coastal and inland halo-tolerant Poaceae and Chenopodiaceae: A case study for increased sample size.

    Directory of Open Access Journals (Sweden)

    Peng-Cheng Yao

    Full Text Available Environmental conditions in coastal salt marsh habitats have led to the development of specialist genetic adaptations. We evaluated six DNA barcode loci of the 53 species of Poaceae and 15 species of Chenopodiaceae from China's coastal salt marsh area and inland area. Our results indicate that the optimum DNA barcode was ITS for coastal salt-tolerant Poaceae and matK for the Chenopodiaceae. Sampling strategies for ten common species of Poaceae and Chenopodiaceae were analyzed according to optimum barcode. We found that by increasing the number of samples collected from the coastal salt marsh area on the basis of inland samples, the number of haplotypes of Arundinella hirta, Digitaria ciliaris, Eleusine indica, Imperata cylindrica, Setaria viridis, and Chenopodium glaucum increased, with a principal coordinate plot clearly showing increased distribution points. The results of a Mann-Whitney test showed that for Digitaria ciliaris, Eleusine indica, Imperata cylindrica, and Setaria viridis, the distribution of intraspecific genetic distances was significantly different when samples from the coastal salt marsh area were included (P < 0.01. These results suggest that increasing the sample size in specialist habitats can improve measurements of intraspecific genetic diversity, and will have a positive effect on the application of the DNA barcodes in widely distributed species. The results of random sampling showed that when sample size reached 11 for Chloris virgata, Chenopodium glaucum, and Dysphania ambrosioides, 13 for Setaria viridis, and 15 for Eleusine indica, Imperata cylindrica and Chenopodium album, average intraspecific distance tended to reach stability. These results indicate that the sample size for DNA barcode of globally distributed species should be increased to 11-15.

  16. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    Science.gov (United States)

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  17. The marshes in Bogota

    International Nuclear Information System (INIS)

    Garcia Romero, Juan F; Moreno Gutierrez, Vanesa; Villalba Malaver, Juan Carlos

    1998-01-01

    A description is made, a diagnosis and some exits, to their preservation for each one of the 10 marshes that they still exist in Bogota. The marshes defines them the convention of Ramsar: As extensions of swamps, swamps or peat-bogs covered with water, be these of natural or artificial, permanent or temporary, stagnated regime or currents, sweet, salubrious or salted, included those of extensions of marine water whose depth in tide lowers don't exceed six meters. The marshes occupy the space that there are between the humid means and the dry means, and that they possess characteristic of both, for what they cannot be classified categorically as aquatic neither terrestrial. The characteristic of a marsh is the presence of water during sufficiently lingering periods as to alter the soils, their microorganisms and the flora and fauna communities

  18. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    Science.gov (United States)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2

  19. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  20. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-23

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  1. Potential effects of sea-level rise on plant productivity: Species-specific responses in northeast Pacific tidal marshes

    Science.gov (United States)

    Janousek, Christopher; Buffington, Kevin J.; Thorne, Karen M.; Guntenspergen, Glenn R.; Takekawa, John Y.; Dugger, Bruce D.

    2016-01-01

    Coastal wetland plants are adapted to varying degrees of inundation. However, functional relationships between inundation and productivity are poorly characterized for most species. Determining species-specific tolerances to inundation is necessary to evaluate sea-level rise (SLR) effects on future marsh plant community composition, quantify organic matter inputs to marsh accretion, and inform predictive modeling of tidal wetland persistence. In 2 macrotidal estuaries in the northeast Pacific we grew 5 common species in experimental mesocosms across a gradient of tidal elevations to assess effects on growth. We also tested whether species abundance distributions along elevation gradients in adjacent marshes matched productivity profiles in the mesocosms. We found parabolic relationships between inundation and total plant biomass and shoot counts in Spartina foliosa and Bolboschoenus maritimus in California, USA, and in Carex lyngbyei in Oregon, USA, with maximum total plant biomass occurring at 38, 28, and 15% time submerged, respectively. However, biomass of Salicornia pacifica and Juncus balticus declined monotonically with increasing inundation. Inundation effects on the ratio of belowground to aboveground biomass varied inconsistently among species. In comparisons of field distributions with mesocosm results, B. maritimus, C. lyngbyei and J. balticus were abundant in marshes at or above elevations corresponding with their maximum productivity; however, S. foliosa and S. pacifica were frequently abundant at lower elevations corresponding with sub-optimal productivity. Our findings show species-level differences in how marsh plant growth may respond to future SLR and highlight the sensitivity of high marsh species such as S. pacifica and J. balticus to increases in flooding.

  2. Impacts to Ecological Services: Buried Oil from the 2010 Deepwater Horizon Spill and Its Effect on Salt Marsh Denitrification

    Science.gov (United States)

    Levine, B. M.; White, J. R.; Delaune, R.

    2016-02-01

    In coastal Louisiana (LA), demands for ecosystem services are increasing while human activities continue to deteriorate coastal systems. On April 20, 2010, the largest offshore oil spill in United States history occurred in the Gulf of Mexico, known as the Deepwater Horizon (DWH) oil spill. Approximately 795 million L of crude oil were released, consequently oiling 1,773 km of Gulf Coast shoreline. Four years later, oil from the spill was found buried in the soil and seeping at the salt marsh surface in Bay Jimmy, LA. Previous studies found that immediately following oil exposure, wetland soils have suppressed microbial activity. This study seeks to understand effects of the long-term presence of oil on soil microbes and associated impacts to wetland soil denitrification. Bulk soil and intact soil cores were collected four years after the DWH spill from a heavily impacted salt marsh and a proximal site deemed unoiled in Barataria Bay, LA. Oil present in the soil subsurface increased dry weight bulk density, and decreased moisture content. Potential denitrification (acetylene block) in the top 10 cm of soil was 38% lower for oiled samples versus unoiled controls. Areal nitrate reduction rates were significantly lower in oiled samples in an intact core flux experiment under environmentally relevant nitrate conditions (2mg/L NO3-N), P-value ecosystem service of water quality improvement. Future studies should investigate impacts of oil being rebroadcasted onto marshes as land erodes in the study area.

  3. Reintroduction of salt marsh vegetation and phosphorus fertilisation improve plant colonisation on seawater-contaminated cutover bogs

    Directory of Open Access Journals (Sweden)

    C. Emond

    2016-07-01

    Full Text Available Coastal bogs that are used for peat extraction are prone to contamination by seawater during storm events. Once contaminated, they remain mostly bare because of the combination of high salinity, low pH, high water table and low nutrient availability. The goal of this research was to investigate how plant colonisation at salt-contaminated bogs can be accelerated, in order to prevent erosion and fluvial export of the peat. At two seawater-contaminated bogs, we tested the application of rock phosphate and dolomitic lime in combination with five plant introduction treatments: transplantation of Carex paleacea; transplantation of Spartina pectinata; transfer of salt marsh diaspores in July; transfer of salt marsh diaspores in August; and no treatment (control. The effects of different doses of lime on the growth of C. paleacea and S. pectinata were also investigated in a greenhouse experiment. In the field, phosphorus fertilisation improved plant growth. Transplantation of C. paleacea resulted in the highest plant colonisation, whereas salt marsh diaspore transfer led to the highest species diversity. Lime applications did not improve plant establishment in either the field or the greenhouse. To promote revegetation of seawater-contaminated cutover bogs, adding P is an asset, Carex paleacea is a good species to transplant, and the transfer of salt marsh diaspores improves plant diversity.

  4. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    Science.gov (United States)

    Vandenbruwaene, W.; Maris, T.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced tide (CRT) into a constructed basin, through a culvert in the embankment. In this way tidal water levels are significantly lowered (ca. 3 m) so that a CRT marsh can develop on formerly embanked land with a ca. 3 m lower elevation than the natural tidal marshes. In this study we compared the long-term change in elevation (ΔE) within a CRT marsh and adjacent natural tidal marsh. Over a period of 4 years, the observed spatio-temporal variations in ΔE rate were related to variations in inundation depth, and this relationship was not significantly different for the CRT marsh and natural tidal marsh. A model was developed to simulate the ΔE over the next century. (1) Under a scenario without mean high water level (MHWL) rise in the estuary, the model shows that the marsh elevation-ΔE feedback that is typical for a natural tidal marsh (i.e. rising marsh elevation results in decreasing inundation depth and therefore a decreasing increase in elevation) is absent in the basin of the CRT marsh. This is because tidal exchange of water volumes between the estuary and CRT marsh are independent from the CRT marsh elevation but dependent on the culvert dimensions. Thus the volume of water entering the CRT remains constant regardless of the marsh elevation. Consequently the CRT MHWL follows the increase in CRT surface elevation, resulting after 75 years in a 2–2.5 times larger elevation gain in the CRT marsh, and a faster reduction of spatial elevation differences. (2) Under a scenario of constant MHWL rise (historical rate of 1.5 cm a-1), the equilibrium elevation (relative to MHWL) is 0.13 m lower in the CRT marsh and is reached almost 2 times faster. (3) Under a scenario of

  5. Monitoring Coastal Marshes for Persistent Flooding and Salinity Stress

    Science.gov (United States)

    Kalcic, Maria

    2010-01-01

    Our objective is to provide NASA remote sensing products that provide inundation and salinity information on an ecosystem level to support habitat switching models. Project born out of need by the Coastal Restoration Monitoring System (CRMS), joint effort by Louisiana Department of Natural Resources and the U.S. Geological Survey, for information on persistence of flooding by storm surge and other flood waters. The results of the this work support the habitat-switching modules in the Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) model, which provides scientific evaluation for restoration management. CLEAR is a collaborative effort between the Louisiana Board of Regents, the Louisiana Department of Natural Resources (LDNR), the U.S. Geological Survey (USGS), and the U.S. Army Corps of Engineers (USACE). Anticipated results will use: a) Resolution enhanced time series data combining spatial resolution of Landsat with temporal resolution of MODIS for inundation estimates. b) Potential salinity products from radar and multispectral modeling. c) Combined inundation and salinity inputs to habitat switching module to produce habitat switching maps (shown at left)

  6. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged Between a Salt Marsh and Its Adjacent Estuary

    Science.gov (United States)

    Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.

    2015-12-01

    Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  7. Peat Archives in the Hudson River Estuary… Marsh Formation, Carbon Storage and Release, and Resilience

    Science.gov (United States)

    Peteet, D. M.; Corbett, E. J.; Nichols, J. E.; Kenna, T. C.; Chang, C.

    2017-12-01

    We target deep peat stores (at least 8 meters) of carbon in the lower Hudson Estuary, which formed as the glacial fjord became an estuary with mid-Holocene sea level rise. These deep marshes play an extremely important role in the estuary health and stability in a changing climate. Never before have we faced the threats to coastal marshes that we are facing today, and the resulting sedimentation rates, inorganic/organic component histories, pollen, macrofossil, isotopic, and XRF data reveal critical information about past vegetation and climate change. Long-term shifts in organic/inorganic storage appear to be linked to drought, as watershed erosion results in more sand, silt and clay in the marshes. Climatic shifts often result in regional watershed shifts in vegetation, both locally and regionally. Understanding how these marshes are linked to human impact (disturbance, invasive species, higher nitrogen, heavy metal pollution, dams) over the last four centuries is critical to providing management of these key ecosystems, and their preservation as sea level rises. Quantification of processes that cause carbon degradation and release from these wetlands to the estuary is also key to this investigation. Peat loss would contribute to heavy metal pollution in the estuary as well as carbon loss. Young investigators from secondary schools in New York City participated in much of the fieldwork as part of the NASA/GISS NYC Research Initiative and the LDEO Secondary School Field Research Carbon Team.

  8. Annotated Bibliography for Lake Erie. Volume IV. Physical,

    Science.gov (United States)

    1974-10-01

    cruise 69-101, February 6-27; cruise 69-103, May 29-June 4; cruise 69-104, July 2-6; cruise 69-105, July 28-August 2, 1969. Canadian Oceano - graphic...ber 13 and covered 64 sampling locations. 98. Canada Centre for Inland Waters. 1969. Lake Erie cruise 66-11, August 8-14, 1966. Canadian Oceano - 59... sol - uble phosphorus is remarkably uniform at any one place in Lake Erie, with occasional variations. Concentrations gen- erally decrease from shore

  9. Biodiversity studies in three Coastal Wetlands in Ghana, West Africa ...

    African Journals Online (AJOL)

    Plant biodiversity studies of three coastal wetlands in Ghana were made. The wetlands are the Sakumo, Muni-Pomadze and Densu Delta Ramsar sites. Each wetland is made up of a flood plain which consists of salt marsh (about 20%), mangrove swamps (between 15 and 30%), fresh water swamp (about 40 - 45%), and in ...

  10. Florida's salt-marsh management issues: 1991-98.

    Science.gov (United States)

    Carlson, D B; O'Bryan, P D; Rey, J R

    1999-06-01

    During the 1990s, Florida has continued to make important strides in managing salt marshes for both mosquito control and natural resource enhancement. The political mechanism for this progress continues to be interagency cooperation through the Florida Coordinating Council on Mosquito Control and its Subcommittee on Managed Marshes (SOMM). Continuing management experience and research has helped refine the most environmentally acceptable source reduction methods, which typically are Rotational Impoundment Management or Open Marsh Water Management. The development of regional marsh management plans for salt marshes within the Indian River Lagoon by the SOMM has helped direct the implementation of the best management practices for these marshes. Controversy occasionally occurs concerning what management technique is most appropriate for individual marshes. The most common disagreement is over the benefits of maintaining an impoundment in an "open" vs. "closed" condition, with the "closed" condition, allowing for summer mosquito control flooding or winter waterfowl management. New federal initiatives influencing salt-marsh management have included the Indian River Lagoon-National Estuary Program and the Pesticide Environmental Stewardship Program. A new Florida initiative is the Florida Department of Environmental Protection's Eco-system Management Program with continuing involvement by the Surface Water Improvement and Management program. A developing mitigation banking program has the potential to benefit marsh management but mosquito control interests may suffer if not handled properly. Larvicides remain as an important salt-marsh integrated pest management tool with the greatest acreage being treated with temephos, followed by Bacillus thuringiensis israelensis and methoprene. However, over the past 14 years, use of biorational larvicides has increased greatly.

  11. Sources of atmospheric methane from coastal marine wetlands

    International Nuclear Information System (INIS)

    Harriss, R.C.; Sebacher, D.I.; Bartlett, K.B.; Bartlett, D.S.

    1982-01-01

    Biological methanogenesis in wetlands is believed to be one of the major sources of global tropospheric methane. The present paper reports measurements of methane distribution in the soils, sediments, water and vegetation of coastal marine wetlands. Measurements, carried out in the salt marshes Bay Tree Creek in Virginia and Panacea in northwest Florida, reveal methane concentrations in soils and sediments to vary with depth below the surface and with soil temperature. The fluxes of methane from marsh soils to the atmosphere at the soil-air interface are estimated to range from -0.00067 g CH 4 /sq m per day (methane sink) to 0.024 g CH 4 /sq m per day, with an average value of 0.0066 g CH 4 /sq m per day. Data also demonstrate the important role of tidal waters percolating through marsh soils in removing methane from the soils and releasing it to the atmosphere. The information obtained, together with previous studies, provides a framework for the design of a program based on in situ and remote sensing measurements to study the global methane cycle

  12. Effects of soil abiotic factors on the plant morphology in an intertidal salt marsh, Yellow River Delta, China

    Science.gov (United States)

    Li, Shanze; Cui, Baoshan; Bai, Junhong; Xie, Tian; Yan, Jiaguo; Wang, Qing; Zhang, Shuyan

    2018-02-01

    Plant morphology plays important role in studying biogeography in many ecosystems. Suadea salsa, as a native plant community of northern China and an important habitat for diversity of waterbirds and macrobenthos, has often been overlooked. Nowadays, S. salsa community is facing great loss due to coastal reclamation activities and natural disturbances. To maintain and restore S. salsa community, it's important to address the plant morphology across marsh zones, as well as its relationships with local soil abiotic conditions. In our studied intertidal salt marsh, we found that less flood disturbance frequency, softer soil conditions, rich soil organic matter, total carbon and total nitrogen, lower water depth and water content, less species competition will benefit S. salsa plant in the morphology of high coverage, above-ground biomass, shoot height and leaf length. Lower soil porewater salinity will benefit the below-ground biomass of S. salsa. Thus, we recommend managers help alleviate soil abiotic stresses in the intertidal salt marshes, making the soil conditions more suitable for S. salsa growth and succession.

  13. Syntaxonomy and zonation patterns in coastal salt marshes of the Uilkraals Estuary, Western Cape (South Africa)

    NARCIS (Netherlands)

    Mucina, L.; Janssen, J.A.M.; O'Callaghan, M.

    2003-01-01

    Vegetation on salt marshes of the Uilkraals Estuary (near Gansbaai, Western Cape, South Africa) is described and classified into 11 associations and/or rank-less plant communities (further subdivided into a number of sub-units). These communities were grouped into 6 high-rank syntaxa (alliances and

  14. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance

    Science.gov (United States)

    Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C

    2016-01-01

    Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

  15. Ecological effects of climate change on salt marsh wildlife: a case study from a highly urbanized estuary

    Science.gov (United States)

    Thorne, Karen M.; Takekawa, John Y.; Elliott-Fisk, Deborah L.

    2012-01-01

    Coastal areas are high-risk zones subject to the impacts of global climate change, with significant increases in the frequencies of extreme weather and storm events, and sea-level rise forecast by 2100. These physical processes are expected to alter estuaries, resulting in loss of intertidal wetlands and their component wildlife species. In particular, impacts to salt marshes and their wildlife will vary both temporally and spatially and may be irreversible and severe. Synergistic effects caused by combining stressors with anthropogenic land-use patterns could create areas of significant biodiversity loss and extinction, especially in urbanized estuaries that are already heavily degraded. In this paper, we discuss current ideas, challenges, and concerns regarding the maintenance of salt marshes and their resident wildlife in light of future climate conditions. We suggest that many salt marsh habitats are already impaired and are located where upslope transgression is restricted, resulting in reduction and loss of these habitats in the future. In addition, we conclude that increased inundation frequency and water depth will have negative impacts on the demography of small or isolated wildlife meta-populations as well as their community interactions. We illustrate our points with a case study on the Pacific Coast of North America at San Pablo Bay National Wildlife Refuge in California, an area that supports endangered wildlife species reliant on salt marshes for all aspects of their life histories.

  16. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds

    Science.gov (United States)

    Erwin, R. Michael; Cahoon, Donald R.; Prosser, Diann J.; Sanders, Geoffrey; Hensel, Philippe

    2006-01-01

    Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetated Spartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4-4.5 yr record with the long-term (> 50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, the Spartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh

  17. Plutonium in Atlantic coastal estuaries in the southeastern United States

    International Nuclear Information System (INIS)

    Hayes, D.W.; LeRoy, J.H.; Cross, F.A.

    1975-01-01

    A survey was made to begin to provide baseline information on the Pu distribution of representative estuarine and coastal areas of the southeastern United States. Sediments and marsh grass (Spartina) were collected and analyzed from three locations within a tidal marsh. In three estuaries (Savannah, Neuse, and Newport), the suspended particulate matter (1 μm and greater) was filtered from waters with different salinities, and the plutonium content of the particulates determined. The Savannah River estuary, in addition to fallout Pu, has received up to 0.3 Ci of Pu from the Savannah River Plant (SRP) of the U. S. Energy Research and Development Administration. The SRP plutonium has a variable isotopic composition that can influence Pu isotopic ratios in the estuarine system. The other estuaries do not have nuclear installations upstream. Data are included on the content of 238 Pu, 239 Pu, and 240 Pu in sediments and marsh grass of the Savannah River estuary

  18. The role of nature-based infrastructure (NBI) in coastal resiliency planning: A literature review.

    Science.gov (United States)

    Saleh, Firas; Weinstein, Michael P

    2016-12-01

    The use of nature-based infrastructure (NBI) has attracted increasing attention in the context of protection against coastal flooding. This review is focused on NBI approaches to improve coastal resilience in the face of extreme storm events, including hurricanes. We not only consider the role of NBI as a measure to protect people and property but also in the context of other ecological goods and services provided by tidal wetlands including production of fish and shellfish. Although the results of many studies suggest that populated areas protected by coastal marshes were less likely to experience damage when exposed to the full force of storm surge, it was absolutely critical to place the role of coastal wetlands into perspective by noting that while tidal marshes can reduce wave energy from low-to-moderate-energy storms, their capacity to substantially reduce storm surge remains poorly quantified. Moreover, although tidal marshes can reduce storm surge from fast moving storms, very large expanses of habitat are needed to be most effective, and for most urban settings, there is insufficient space to rely on nature-based risk reduction strategies alone. The success of a given NBI method is also context dependent on local conditions, with potentially confounding influences from substrate characteristics, topography, near shore bathymetry, distance from the shore and other physical factors and human drivers such as development patterns. Furthermore, it is important to better understand the strengths and weaknesses of newly developed NBI projects through rigorous evaluations and characterize the local specificities of the particular built and natural environments surrounding these coastal areas. In order for the relevant science to better inform policy, and assist in land-use challenges, scientists must clearly state the likelihood of success in a particular circumstance and set of conditions. We conclude that "caution is advised" before selecting a particular NBI

  19. Managing inherent complexity for sustainable walleye fisheries in Lake Erie

    Science.gov (United States)

    Roseman, Edward F.; Drouin, Richard; Gaden, Marc; Knight, Roger; Tyson, Jeff; Zhao, Yingming; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    In Lake Erie, Walleye (Sander vitreus vitreus) is king. The naturally occurring species is the foundation of commercial fishing operations on the Canadian side of the lake and is a much-prized sport fish on the American side. Management of Lake Erie walleye fisheries is complex and takes place in an inter-jurisdictional setting composed of resource agencies from the states of Michigan (MDNR), Ohio (ODNR), Pennsylvania (PFBC), and New York (NYDEC) and the province of Ontario (OMNR). The complexity of walleye management is exacerbated by interactions among environmental and ecological changes in Lake Erie, complex life-history characteristics of the species, public demand for walleye, and cultural/governance differences among managing groups and their respective constituents. Success of future management strategies will largely hinge upon our ability to understand these inherent complexities and to employ tactics that successfully accommodate stock productivity and human demand in a highly dynamic environment. In this report, we review the history of Lake Erie walleye management, outline the multi-jurisdictional process for international management of walleye, and discuss strategies to address challenges facing managers.

  20. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    Science.gov (United States)

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  1. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    Science.gov (United States)

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  2. Coordinating across scales: Building a regional marsh bird monitoring program from national and state Initiatives

    Science.gov (United States)

    Shriver, G.W.; Sauer, J.R.

    2008-01-01

    Salt marsh breeding bird populations (rails, bitterns, sparrows, etc.) in eastern North America are high conservation priorities in need of site specific and regional monitoring designed to detect population changes over time. The present status and trends of these species are unknown but anecdotal evidence of declines in many of the species has raised conservation concerns. Most of these species are listed as conservation priorities on comprehensive wildlife plans throughout the eastern U.S. National Wildlife Refuges, National Park Service units, and other wildlife conservation areas provide important salt marsh habitat. To meet management needs for these areas, and to assist regional conservation planning, survey designs are being developed to estimate abundance and population trends for these breeding bird species. The primary purpose of this project is to develop a hierarchical sampling frame for salt marsh birds in Bird Conservation Region (BCR) 30 that will provide the ability to estimate species population abundances on 1) specific sites (i.e. National Parks and National Wildlife Refuges), 2) within states or regions, and 3) within BCR 30. The entire breeding range of Saltmarsh Sharp-tailed and Coastal Plain Swamp sparrows are within BCR 30, providing an opportunity to detect population trends within the entire breeding ranges of two priority species.

  3. An integrated approach to prevent the erosion of salt marshes in the lagoon of Venice

    Directory of Open Access Journals (Sweden)

    Alberto Barausse

    2015-12-01

    Full Text Available The loss of coastal habitats is a widespread problem in Europe. To protect the intertidal salt marshes of the lagoon of Venice from the erosion due to natural and human causes which is diffusely and intensely impacting them, the European Commission has funded the demonstrative project LIFE VIMINE. LIFE VIMINE aims to protect the most interior, hard-to-access salt marshes in the northern lagoon of Venice through an integrated approach, whose core is the prevention of erosion through numerous, small but spatially-diffuse soil-bioengineering protections works, mainly placed through semi-manual labour and with low impact on the environment and the landscape. The effectiveness of protection works in the long term is ensured through routine, temporally-continuous and spatially-diffuse actions of monitoring and maintenance. This method contrasts the common approach to managing hydraulic risk and erosion in Italy which is based on large, one-off and irreversible protection actions. The sustainability of the LIFE VIMINE approach is ensured by the participatory involvement of stakeholders and the recognition that protecting salt marshes means defending the benefits they provide to society through their ecological functions, as well as protecting the jobs linked to the existence or conservation of this habitat.

  4. 77 FR 38490 - Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH

    Science.gov (United States)

    2012-06-28

    ...-AA00 Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH AGENCY: Coast Guard, DHS... Erie, Mentor, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Mentor Harbor Yachting Club fireworks display. This temporary safety zone is necessary to protect...

  5. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    Science.gov (United States)

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  6. 78 FR 34575 - Safety Zone; Bay Swim VI, Presque Isle Bay, Erie, PA

    Science.gov (United States)

    2013-06-10

    ... June 22, 2013, a large scale swimming event will be held on Presque Isle Bay near the Erie Yacht Club...'48.82'' W and extend in a straight line 1,000 feet wide to the Erie Yacht Club at position 42[deg]07... wide to the Erie Yacht Club at position 42[deg]07'21.74'' N, 80[deg]07'58.30'' W. (NAD 83) (b...

  7. Ohio Lake Erie Commission Homepage

    Science.gov (United States)

    management of Lake Erie: including, water quality protection, fisheries management, wetlands restoration over 365 projects since 1993. Projects have focused on an array of issues critical to the effective quality of its waters and ecosystem, and to promote economic development of the region by ensuring the

  8. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

    Science.gov (United States)

    Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.

    2018-01-01

    Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage

  9. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour

    Energy Technology Data Exchange (ETDEWEB)

    Solla, Shane R. de; Fernie, Kimberly J

    2004-11-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites.

  10. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour

    Energy Technology Data Exchange (ETDEWEB)

    Solla, Shane R. de; Fernie, Kimberly J

    2004-11-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites.

  11. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour.

    Science.gov (United States)

    de Solla, Shane R; Fernie, Kimberly J

    2004-11-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites.

  12. Characterization of contaminants in snapping turtles (Chelydra serpentina) from Canadian Lake Erie Areas of Concern: St. Clair River, Detroit River, and Wheatley Harbour

    International Nuclear Information System (INIS)

    Solla, Shane R. de; Fernie, Kimberly J.

    2004-01-01

    PCBs, organochlorine pesticides and dioxins/furans in snapping turtle eggs and plasma (Chelydra serpentina) were evaluated at three Areas of Concern (AOCs) on Lake Erie and its connecting channels (St. Clair River, Detroit River, and Wheatley Harbour), as well as two inland reference sites (Algonquin Provincial Park and Tiny Marsh) in 2001-2002. Eggs from the Detroit River and Wheatley Harbour AOCs had the highest levels of p,p'-DDE (24.4 and 57.9 ng/g) and sum PCBs (928.6 and 491.0 ng/g) wet weight, respectively. Contaminant levels in eggs from St. Clair River AOC were generally higher than those from Algonquin Park, but similar to those from Tiny Marsh. Dioxins appeared highest from the Detroit River. The PCB congener pattern in eggs suggested that turtles from the Detroit River and Wheatley Harbour AOCs were exposed to Aroclor 1260. TEQs of sum PCBs in eggs from all AOCs and p,p'-DDE levels in eggs from the Wheatley Harbour and the Detroit River AOCs exceeded the Canadian Environmental Quality Guidelines. Furthermore, sum PCBs in eggs from Detroit River and Wheatley Harbour exceeded partial restriction guidelines for consumption. Although estimated PCB body burdens in muscle tissue of females were well below consumption guidelines, estimated residues in liver and adipose were above guidelines for most sites

  13. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover.

    Science.gov (United States)

    Guo, Hongyu; Weaver, Carolyn; Charles, Sean P; Whitt, Ashley; Dastidar, Sayantani; D'Odorico, Paolo; Fuentes, Jose D; Kominoski, John S; Armitage, Anna R; Pennings, Steven C

    2017-03-01

    Global changes are causing broad-scale shifts in vegetation communities worldwide, including coastal habitats where the borders between mangroves and salt marsh are in flux. Coastal habitats provide numerous ecosystem services of high economic value, but the consequences of variation in mangrove cover are poorly known. We experimentally manipulated mangrove cover in large plots to test a set of linked hypotheses regarding the effects of changes in mangrove cover. We found that changes in mangrove cover had strong effects on microclimate, plant community, sediment accretion, soil organic content, and bird abundance within 2 yr. At higher mangrove cover, wind speed declined and light interception by vegetation increased. Air and soil temperatures had hump-shaped relationships with mangrove cover. The cover of salt marsh plants decreased at higher mangrove cover. Wrack cover, the distance that wrack was distributed from the water's edge, and sediment accretion decreased at higher mangrove cover. Soil organic content increased with mangrove cover. Wading bird abundance decreased at higher mangrove cover. Many of these relationships were non-linear, with the greatest effects when mangrove cover varied from zero to intermediate values, and lesser effects when mangrove cover varied from intermediate to high values. Temporal and spatial variation in measured variables often peaked at intermediate mangrove cover, with ecological consequences that are largely unexplored. Because different processes varied in different ways with mangrove cover, the "optimum" cover of mangroves from a societal point of view will depend on which ecosystem services are most desired. © 2016 by the Ecological Society of America.

  14. Flow paths of water and sediment in a tidal marsh: relations with marsh developmental stage and tidal inundation height

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; Govers, G.; Lauwaet, D.

    2005-01-01

    This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export

  15. A conceptual approach to integrate management of ecosystem service and disservice in coastal wetlands

    Directory of Open Access Journals (Sweden)

    Jon Knight

    2017-04-01

    Full Text Available Management of coastal wetlands is increasingly difficult because of increasing pressure arising from anthropogenic causes. These include sea level and climate change as well as coastline development caused by population growth and demographic shifts, for example, amenity migration where people move to coastal communities for lifestyle reasons. Management of mangroves and salt marshes is especially difficult because maintaining ecosystem values, including the goods and services provided, is countered by the potential of enhancing or even creating ecosystem disservices, such as unpleasant odour and mosquito hazards. Here we present, explain and apply a conceptual model aimed at improving understanding of management choices that primarily focus on mitigation of disservice while enabling improvement in ecosystem services. The model was developed after more than 30 years of habitat management following modification of a salt marsh to control mosquito production. We discuss the application of the model in a mangrove forest known to produce mosquitoes and outline the benefits arising from using the model.

  16. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252)

    KAUST Repository

    Koo, Hyunmin; Mojib, Nazia; Huang, Jonathan P.; Donahoe, Rona J.; Bej, Asim K.

    2014-01-01

    In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.

  17. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252)

    KAUST Repository

    Koo, Hyunmin

    2014-07-10

    In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.

  18. 78 FR 59649 - Approval of Subzone Status, Hardinger Transfer Co., Erie and Grove City, Pennsylvania

    Science.gov (United States)

    2013-09-27

    ..., Hardinger Transfer Co., Erie and Grove City, Pennsylvania On July 24, 2013, the Executive Secretary of the Foreign-Trade Zones (FTZ) Board docketed an application submitted by the Erie Western Pennsylvania Port..., on behalf of Hardinger Transfer Co., in Erie and Grove City, Pennsylvania. The application was...

  19. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  20. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  1. Effects of the North Atlantic Oscillation and wind waves on salt marsh dynamics in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Kim, Daehyun; Grant, William E.; Cairns, David M.

    2013-01-01

    Long-term eustatic sea-level variation has been recognized as a primary factor affecting the hydrological and geomorphic dynamics of salt marshes. However, recent studies suggest that wind waves influenced by atmospheric oscillations also may play an important role in many coastal areas. Although...... this notion has been conceptually introduced for the Wadden Sea, no modeling attempts have been made yet. As a proof of concept, this study developed a simulation model using the commercially available STELLAA (R) software, based on long-term data on water level and sedimentation collected at a back......-barrier marsh on the Skallingen peninsula in Denmark. In the model, the frequency (number year(-1)) of wind-driven extreme high water level (HWL) events (> 130 cm Danish Ordnance Zero) was simulated in terms of the North Atlantic Oscillation (NAO) index. Then, surface accretion (cm year(-1)) and submergence...

  2. Evaluation of different strains of eri silkworms ( Samia cynthia ricini B ...

    African Journals Online (AJOL)

    Eri silkworms, Samia cynthia ricini B., is one of the silkworm races under utilization in Ethiopia. However, it has several strains with wide variation in their commercial traits and selection and utilization of best suited strains of this eri silkworm race that adapt to different agro-ecologies will help to increase silk productivity and ...

  3. Interactive effects of vegetation and sediment properties on erosion of salt marshes in the Northern Adriatic Sea.

    Science.gov (United States)

    Lo, V B; Bouma, T J; van Belzen, J; Van Colen, C; Airoldi, L

    2017-10-01

    We investigated how lateral erosion control, measured by novel photogrammetry techniques, is modified by the presence of Spartina spp. vegetation, sediment grain size, and the nutrient status of salt marshes across 230 km of the Italian Northern Adriatic coastline. Spartina spp. vegetation reduced erosion across our study sites. The effect was more pronounced in sandy soils, where erosion was reduced by 80% compared to 17% in silty soils. Erosion resistance was also enhanced by Spartina spp. root biomass. In the absence of vegetation, erosion resistance was enhanced by silt content, with mean erosion 72% lower in silty vs. sandy soils. We found no relevant relationships with nutrient status, likely due to overall high nutrient concentrations and low C:N ratios across all sites. Our results contribute to quantifying coastal protection ecosystem services provided by salt marshes in both sandy and silty sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dissolved Organic Matter (DOM) Export from Watersheds to Coastal Oceans

    Science.gov (United States)

    Chen, R. F.; Gardner, G. B.; Peri, F.

    2016-02-01

    Dissolved organic matter (DOM) from terrestrial plants and soils is transported by surface waters and groundwaters to coastal ocean waters. Along the way, photochemical and biological degradation can remove DOM, and in situ processes such as phytoplankton leaching and sediment sources can add to the DOM in the river water. Wetlands, especially coastal wetlands can add significant amounts of DOM that is carried by rivers and is exported through estuaries to coastal systems. We will present observational data from a variety of coastal systems (San Francisco Bay, Boston Harbor, Chesapeake Bay, Hudson River, the Mississippi River, and a small salt marsh in the Gulf of Mexico). High resolution measurements of chromophoric dissolved organic matter (CDOM) can be correlated with dissolved organic carbon (DOC) so can be used to estimate DOC in specific systems and seasons. Gradients in CDOM/DOC combined with water fluxes can be used to estimate DOC fluxes from a variety of coastal watersheds to coastal systems. Influences of land use, system size, residence time, DOM quality, and photochemical and biological degradation will be discussed. The significance of coastal wetlands in the land-to-ocean export of DOC will be emphasized.

  5. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Adame

    Full Text Available Coastal wetlands can have exceptionally large carbon (C stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes, and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N and phosphorus (P from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1 followed by medium mangroves (623±41 Mg ha(-1, dwarf mangroves (381±52 Mg ha(-1 and marshes (177±73 Mg ha(-1. At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%. Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  6. Carbon burial and storage in tropical salt marshes under the influence of sea level rise.

    Science.gov (United States)

    Ruiz-Fernández, A C; Carnero-Bravo, V; Sanchez-Cabeza, J A; Pérez-Bernal, L H; Amaya-Monterrosa, O A; Bojórquez-Sánchez, S; López-Mendoza, P G; Cardoso-Mohedano, J G; Dunbar, R B; Mucciarone, D A; Marmolejo-Rodríguez, A J

    2018-07-15

    Coastal vegetated habitats can be important sinks of organic carbon (C org ) and mitigate global warming by sequestering significant quantities of atmospheric CO 2 and storing sedimentary C org for long periods, although their C org burial and storage capacity may be affected by on-going sea level rise and human intervention. Geochemical data from published 210 Pb-dated sediment cores, collected from low-energy microtidal coastal wetlands in El Salvador (Jiquilisco Bay) and in Mexico (Salada Lagoon; Estero de Urias Lagoon; Sian Ka'an Biosphere Reserve) were revisited to assess temporal changes (within the last 100years) of C org concentrations, storage and burial rates in tropical salt marshes under the influence of sea level rise and contrasting anthropization degree. Grain size distribution was used to identify hydrodynamic changes, and δ 13 C to distinguish terrigenous sediments from those accumulated under the influence of marine transgression. Although the accretion rate ranges in all sediment records were comparable, C org concentrations (0.2-30%), stocks (30-465Mgha -1 , by extrapolation to 1m depth), and burial rates (3-378gm -2 year -1 ) varied widely within and among the study areas. However, in most sites sea level rise decreased C org concentrations and stocks in sediments, but increased C org burial rates. Lower C org concentrations were attributed to the input of reworked marine particles, which contribute with a lower amount of C org than terrigenous sediments; whereas higher C org burial rates were driven by higher mass accumulation rates, influenced by increased flooding and human interventions in the surroundings. C org accumulation and long-term preservation in tropical salt marshes can be as high as in mangrove or temperate salt marsh areas and, besides the reduction of C org stocks by ongoing sea level rise, the disturbance of the long-term buried C org inventories might cause high CO 2 releases, for which they must be protected as a part of

  7. Varying Inundation Regimes Differentially Affect Natural and Sand-Amended Marsh Sediments.

    Directory of Open Access Journals (Sweden)

    C Wigand

    Full Text Available Climate change is altering sea level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin layer sand or sediment application to drowning and eroding marshes is one approach to build elevation and resilience. The above- and below-ground structure, soil carbon dioxide emissions, and pore water constituents in vegetated natural marsh sediments and sand-amended sediments were examined at varying inundation regimes between mean sea level and mean high water (0.82 m NAVD88 to 1.49 m NAVD88 in a field experiment at Laws Point, part of the Plum Island Sound Estuary (MA. Significantly lower salinities, pH, sulfides, phosphates, and ammonium were measured in the sand-amended sediments than in the natural sediments. In natural sediments there was a pattern of increasing salinity with increasing elevation while in the sand-amended sediments the trend was reversed, showing decreasing salinity with increasing elevation. Sulfide concentrations generally increased from low to high inundation with highest concentrations at the highest inundation (i.e., at the lowest elevations. High pore water phosphate concentrations were measured at low elevations in the natural sediments, but the sand-amended treatments had mostly low concentrations of phosphate and no consistent pattern with elevation. At the end of the experiment the lowest elevations generally had the highest measures of pore water ammonium. Soil carbon dioxide emissions were greatest in the sand-amended mesocosms and at higher elevations. Differences in coarse root and rhizome abundances and volumes among the sediment treatments were detected with CT imaging, but by 20 weeks the natural and sand-amended treatments showed similar total belowground biomass at the intermediate and high elevations. Although differences in

  8. Satellite Images and Aerial Photographs of the Effects of Hurricanes Katrina and Rita on Coastal Louisiana

    Science.gov (United States)

    Barras, John A.

    2007-01-01

    Introduction Hurricane Katrina made landfall on the eastern coastline of Louisiana on August 29, 2005; Hurricane Rita made landfall on the western coastline of Louisiana on September 24, 2005. Comparison of Landsat Thematic Mapper (TM) satellite imagery acquired before and after the landfalls of Katrina and Rita and classified to identify land and water demonstrated that water area increased by 217 mi2 (562 km2) in coastal Louisiana as a result of the storms. Approximately 82 mi2 (212 km2) of new water areas were in areas primarily impacted by Hurricane Katrina (Mississippi River Delta basin, Breton Sound basin, Pontchartrain basin, and Pearl River basin), whereas 99 mi2 (256 km2) were in areas primarily impacted by Hurricane Rita (Calcasieu/Sabine basin, Mermentau basin, Teche/Vermilion basin, Atchafalaya basin, and Terrebonne basin). Barataria basin contained new water areas caused by both hurricanes, resulting in some 18 mi2 (46.6 km2) of new water areas. The fresh marsh and intermediate marsh communities' land areas decreased by 122 mi2 (316 km2) and 90 mi2 (233.1 km2), respectively, and the brackish marsh and saline marsh communities' land areas decreased by 33 mi2 (85.5 km2) and 28 mi2 (72.5 km2), respectively. These new water areas represent land losses caused by direct removal of wetlands. They also indicate transitory changes in water area caused by remnant flooding, removal of aquatic vegetation, scouring of marsh vegetation, and water-level variation attributed to normal tidal and meteorological variation between satellite images. Permanent losses cannot be estimated until several growing seasons have passed and the transitory impacts of the hurricanes are minimized. The purpose of this study was to provide preliminary information on water area changes in coastal Louisiana acquired shortly after the landfalls of both hurricanes (detectable with Landsat TM imagery) and to serve as a regional baseline for monitoring posthurricane wetland recovery. The land

  9. Understanding Coastal Carbon Cycling by Linking Top-Down and Bottom-Up Approaches

    Science.gov (United States)

    Barr, Jordan G.; Troxler, Tiffany G.; Najjar, Raymond G.

    2014-09-01

    The coastal zone, despite occupying a small fraction of the Earth's surface area, is an important component of the global carbon (C) cycle. Coastal wetlands, including mangrove forests, tidal marshes, and seagrass meadows, compose a domain of large reservoirs of biomass and soil C [Fourqurean et al., 2012; Donato et al., 2011; Pendleton et al., 2012; Regnier et al., 2013; Bauer et al., 2013]. These wetlands and their associated C reservoirs (2 to 25 petagrams C; best estimate of 7 petagrams C [Pendleton et al., 2012]) provide numerous ecosystem services and serve as key links between land and ocean.

  10. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O

    Science.gov (United States)

    Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John F.; Green, Adrian; Shelton, James

    2011-01-01

    Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m−2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged −33 μmol N2O m−2 day−1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N2O m−2 day−1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half

  11. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary.

    Science.gov (United States)

    Van de Broek, Marijn; Vandendriessche, Caroline; Poppelmonde, Dries; Merckx, Roel; Temmerman, Stijn; Govers, Gerard

    2018-02-12

    Tidal marshes are vegetated coastal ecosystems that are often considered as hotspots of atmospheric CO 2 sequestration. Although large amounts of organic carbon (OC) are indeed being deposited on tidal marshes, there is no direct link between high OC deposition rates and high OC sequestration rates due to two main reasons. First, the deposited OC may become rapidly decomposed once it is buried and, second, a significant part of preserved OC may be allochthonous OC that has been sequestered elsewhere. In this study we aimed to identify the mechanisms controlling long-term OC sequestration in tidal marsh sediments along an estuarine salinity gradient (Scheldt estuary, Belgium and the Netherlands). Analyses of deposited sediments have shown that OC deposited during tidal inundations is up to millennia old. This allochthonous OC is the main component of OC that is effectively preserved in these sediments, as indicated by the low radiocarbon content of buried OC. Furthermore, OC fractionation showed that autochthonous OC is decomposed on a decadal timescale in saltmarsh sediments, while in freshwater marsh sediments locally produced biomass is more efficiently preserved after burial. Our results show that long-term OC sequestration is decoupled from local biomass production in the studied tidal marsh sediments. This implies that OC sequestration rates are greatly overestimated when they are calculated based on short-term OC deposition rates, which are controlled by labile autochthonous OC inputs. Moreover, as allochthonous OC is not sequestered in-situ, it does not contribute to active atmospheric CO 2 sequestration in these ecosystems. A correct assessment of the contribution of allochthonous OC to the total sedimentary OC stock in tidal marsh sediments as well as a correct understanding of the long-term fate of locally produced OC are both necessary to avoid overestimations of the rate of in-situ atmospheric CO 2 sequestration in tidal marsh sediments. © 2018 John

  12. Assessing the Potential for Inland Migration of a Northeastern Salt Marsh

    Science.gov (United States)

    Farron, S.; FitzGerald, D.; Hughes, Z. J.

    2017-12-01

    It is often assumed that as sea level rises, salt marshes will expand inland. If the slope of the upland is relatively flat and sufficient sediment is available, marshes should be able to spread horizontally and grow vertically in order to maintain their areal extent. However, in cases where marshes are backed by steeper slopes, or sediment supply is limited, rising sea level will produce minimal gains along the landward edge insufficient to offset potential losses along the seaward edge. This study uses future sea level rise scenarios to project areal losses for the Great Marsh in Massachusetts, the largest continuous salt marsh in New England. Land area covered by salt marsh is defined by surface elevation. Annual sediment input to the system is estimated based on the areal extent of high and low marsh, historical accretion rates for each, and known organic/inorganic ratios. Unlike other studies, sediment availability is considered to be finite, and future accretion rates are limited based on the assumption that the system is presently receiving the maximum sediment input available. The Great Marsh is dominated by high marsh; as sea level rises, it will convert to low marsh, vastly altering the ecological and sedimentological dynamics of the system. If it is assumed that former high marsh areas will build vertically at the increased rate associated with low marsh, then much of the total marsh area will be maintained. However, this may be an unrealistic assumption due to the low levels of suspended sediment within the Great Marsh system. Modeling the evolution of the Great Marsh by assuming that the current accretion rate is the maximum possible for this system reveals much greater losses than models assuming an unlimited sediment supply would predict (17% less marsh by 2115). In addition, uplands surrounding the Great Marsh have been shaped by glaciation, leaving numerous drumlins and other glacial landforms. Compared to the flat backbarrier, the surrounding

  13. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  14. Salt Marshes as Sources and Sinks of Silica

    Science.gov (United States)

    Carey, J.; Fulweiler, R. W.

    2014-12-01

    The role of salt marshes in controlling silica exchange between terrestrial and marine environments is unclear. In some studies, large quantities of dissolved silica (DSi) appear to be exported from marshes via tidal exchange, potentially fueling future diatom production in adjacent waters. In contrast, other studies report insignificant DSi export and found instead that salt marshes appeared to be Si sinks. Further, few studies examine salt marsh Si export in relation to inorganic nitrogen (DIN) and phosphorus (DIP). We address these uncertainties by quantifying net fluxes of DSi and biogenic Si (BSi), as well as DIN and DIP during the spring and summer in a relatively undisturbed southern New England salt marsh (Narragansett Bay, USA). Our data demonstrates that during the spring, when estuarine waters are deplete in DSi, the marsh serves as a net sink of BSi (132 mol h-1) and a source of DSi (31 mol h-1) to the estuary. The spring DIN:DSi ratios of ebbing water were more than five times lower than flood waters. Most importantly, the DSi export rates (6.5 x103 mol d-1 km-2) are an order of magnitude larger than the export by rivers in the region (115 mol d-1 km-2), indicating the marsh tidal exchange is vital in supplying the Si necessary for spring diatom blooms in the estuary. Conversely, during the summer the marsh served as a net Si sink, importing on average 59 mol DSi h-1 and 39 mol BSi h-1. These data highlight that the role of salt marshes in silica cycling appears to have a strong seasonality. We hypothesize that net import of Si increases the residence time of Si in estuarine systems, providing an important and previously over-looked ecosystem service. In the absence of salt marshes, ~5.1 x 104 kmol of Si would be exported from this system during the growing season, possibly decreasing Si availability and altering phytoplankton species composition in the estuary.

  15. Population models of burrowing mayfly recolonization in Western Lake Erie

    Science.gov (United States)

    Madenjian, C.P.; Schloesser, D.W.; Krieger, K.A.

    1998-01-01

    Burrowing mayflies, Hexagenia spp. (H. limbata and H. rigida), began recolonizing western Lake Erie during the 1990s. Survey data for mayfly nymph densities indicated that the population experienced exponential growth between 1991 and 1997. To predict the time to full recovery of the mayfly population, we fitted logistic models, ranging in carrying capacity from 600 to 2000 nymphs/m2, to these survey data. Based on the fitted logistic curves, we forecast that the mayfly population in western Lake Erie would achieve full recovery between years 1998 and 2000, depending on the carrying capacity of the western basin. Additionally, we estimated the mortality rate of nymphs in western Lake Erie during 1994 and then applied an age-based matrix model to the mayfly population. The results of the matrix population modeling corroborated the exponential growth model application in that both methods yielded an estimate of the population growth rate, r, in excess of 0.8 yr-1. This was the first evidence that mayfly populations are capable of recolonizing large aquatic ecosystems at rates comparable with those observed in much smaller lentic ecosystems. Our model predictions should prove valuable to managers of power plant facilities along the western basin in planning for mayfly emergences and to managers of the yellow perch (Perca flavescens) fishery in western Lake Erie.

  16. The east-west-north colonization history of the Mediterranean and Europe by the coastal plant Carex extensa (Cyperaceae)

    NARCIS (Netherlands)

    Escudero, M.; Vargas, P.; Arens, P.; Ouborg, N.J.; Luceno, M.

    2010-01-01

    Coastal plants are ideal models for studying the colonization routes of species because of the simple linear distributions of these species. Carex extensa occurs mainly in salt marshes along the Mediterranean and European coasts. Variation in cpDNA sequences, amplified fragment length polymorphisms

  17. Modelling Watershed and Estuarine Controls on Salt Marsh Distributions

    Science.gov (United States)

    Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.

    2017-12-01

    The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.

  18. Tidal Marshes: The Boundary between Land and Ocean.

    Science.gov (United States)

    Gosselink, James

    An overview of the ecology of the tidal marshes along the gulf coast of the United States is presented. The following topics are included: (1) the human impact on tidal marshes; (2) the geologic origins of tidal marshes; (3) a description of the physical characteristics and ecosystem of the marshlands; (4) a description of the marshland food chain…

  19. Ichthyoplankton assemblages of coastal west-central Lake Erie and associated habitat characteristics

    Science.gov (United States)

    McKenna, J.E.; Hunter, R. Douglas; Fabrizio, M.C.; Savino, J.F.; Todd, T.N.; Bur, M.

    2008-01-01

    Early life stage survival often determines fish cohort strength and that survival is affected by habitat conditions. The structure and dynamics of ichthyoplankton assemblages can tell us much about biodiversity and fish population dynamics, but are poorly understood in nearshore areas of the Great Lakes, where most spawning and nursery habitats exist. Ichthyoplankton samples were collected with a neuston net in waters 2-13 m deep weekly or biweekly from mid-April through August, during 3 years (2000-2002) as part of a study of fish assemblages in west-central Lake Erie. A suite of abiotic variables was simultaneously measured to characterize habitat. Cluster and ordination analyses revealed several distinct ichthyoplankton assemblages that changed seasonally. A lake whitefish (Coregonus clupeaformis) dominated assemblage appeared first in April. In May, assemblages were dominated by several percid species. Summer assemblages were overwhelmingly dominated by emerald shiner (Notropis atherinoides), with large gizzard shad (Dorosoma cepedianum) and alewife (Alosa pseudoharengus) components. This seasonal trend in species assemblages was also associated with increasing temperature and water clarity. Water depth and drift processes may also play a role in structuring these assemblages. The most common and widely distributed assemblages were not associated with substratum type, which we characterized as either hard or soft. The timing of hatch and larval growth separated the major groups in time and may have adaptive significance for the members of each major assemblage. The quality and locations (with reference to lake circulation) of spawning and nursery grounds may determine larval success and affect year class strength.

  20. 27 CFR 9.83 - Lake Erie.

    Science.gov (United States)

    2010-04-01

    ... on the islands of Lake Erie across the States of New York, Pennsylvania, and Ohio. The beginning... approximately one mile north of Rock Creek, Ohio. (7) The boundary proceeds southwestward, then westward, then... is reached which is due north of the easternmost point of Kelleys Island. (9) The boundary then...

  1. Biota - 2011 Vegetation Inventory - Marsh Lake, MN

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — 2011 Vegetation Classification for Marsh Lake, MN Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory. Marsh Lake is located on the...

  2. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    International Nuclear Information System (INIS)

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-01-01

    Soil properties and soil–atmosphere fluxes of CO 2 , CH 4 and N 2 O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO 2 -equivalent flux of 137.27 mg CO 2 m −2 h −1 , which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH 4 and N 2 O fluxes from Spartina soil were 13.77 and 1.14 μmol m −2 h −1 , respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation

  3. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yaping [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China); Chen, Guangcheng [Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian (China); Ye, Yong, E-mail: yeyong.xmu@gmail.com [Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian (China)

    2015-09-01

    Soil properties and soil–atmosphere fluxes of CO{sub 2}, CH{sub 4} and N{sub 2}O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil–atmosphere CO{sub 2}-equivalent flux of 137.27 mg CO{sub 2} m{sup −2} h{sup −1}, which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH{sub 4} and N{sub 2}O fluxes from Spartina soil were 13.77 and 1.14 μmol m{sup −2} h{sup −1}, respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil–atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the

  4. Carbon sequestration by Australian tidal marshes

    KAUST Repository

    Macreadie, Peter I.

    2017-03-10

    Australia\\'s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia\\'s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia\\'s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  5. Historical Sediment Budget (1860s to Present) for the United States Shoreline of Lake Erie

    Science.gov (United States)

    2016-08-01

    Soil Classification polygons with 1 km reaches. Each polygon has a 2- to 4-digit classification code indicating the dominant soil type...1988). Photograph shows high quantity of shale plates in soil column (USACE 2004). ................ 125 Figure A-1. New York shore stratigraphy... USLS 1935, NGVD29, USLS 1903, Mean Level of Lake Erie (1860–1875) (Toledo-Conneaut), Mean Lake Level of Lake Erie (1860–1875) (Erie-Buffalo), and Mean

  6. Evaluating the role of coastal habitats and sea-level rise in hurricane risk mitigation: An ecological economic assessment method and application to a business decision.

    Science.gov (United States)

    Reddy, Sheila M W; Guannel, Gregory; Griffin, Robert; Faries, Joe; Boucher, Timothy; Thompson, Michael; Brenner, Jorge; Bernhardt, Joey; Verutes, Gregory; Wood, Spencer A; Silver, Jessica A; Toft, Jodie; Rogers, Anthony; Maas, Alexander; Guerry, Anne; Molnar, Jennifer; DiMuro, Johnathan L

    2016-04-01

    Businesses may be missing opportunities to account for ecosystem services in their decisions, because they do not have methods to quantify and value ecosystem services. We developed a method to quantify and value coastal protection and other ecosystem services in the context of a cost-benefit analysis of hurricane risk mitigation options for a business. We first analyze linked biophysical and economic models to examine the potential protection provided by marshes. We then applied this method to The Dow Chemical Company's Freeport, Texas facility to evaluate natural (marshes), built (levee), and hybrid (marshes and a levee designed for marshes) defenses against a 100-y hurricane. Model analysis shows that future sea-level rise decreases marsh area, increases flood heights, and increases the required levee height (12%) and cost (8%). In this context, marshes do not provide sufficient protection to the facility, located 12 km inland, to warrant a change in levee design for a 100-y hurricane. Marshes do provide some protection near shore and under smaller storm conditions, which may help maintain the coastline and levee performance in the face of sea-level rise. In sum, the net present value to the business of built defenses ($217 million [2010 US$]) is greater than natural defenses ($15 million [2010 US$]) and similar to the hybrid defense scenario ($229 million [2010 US$]). Examination of a sample of public benefits from the marshes shows they provide at least $117 million (2010 US$) in coastal protection, recreational value, and C sequestration to the public, while supporting 12 fisheries and more than 300 wildlife species. This study provides information on where natural defenses may be effective and a replicable approach that businesses can use to incorporate private, as well as public, ecosystem service values into hurricane risk management at other sites. © 2015 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc

  7. Estuaries and Tidal Marshes. Habitat Pac.

    Science.gov (United States)

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  8. The landscape pattern characteristics of coastal wetlands in Jiaozhou Bay under the impact of human activities.

    Science.gov (United States)

    Gu, Dongqi; Zhang, Yuanzhi; Fu, Jun; Zhang, Xuliang

    2007-01-01

    In this study, we interpreted coastal wetland types from an ASTER satellite image in 2002, and then compared the results with the land-use status of coastal wetlands in 1952 to determine the wetland loss and degradation around Jiaozhou Bay. Seven types of wetland landscape were classified, namely: shallow open water, inter-tidal flats, estuarine water, brackish marshes, salt ponds, fishery ponds and ports. Several landscape pattern indices were analysed: the results indicate that the coastal wetlands have been seriously degraded. More and more natural wetlands have been transformed into artificial wetlands, which covered about 33.7% of the total wetlands in 2002. In addition, we used a defined model to assess the impacts of human activities on coastal wetlands. The results obtained show that the coastal wetlands of Jiaozhou Bay have suffered severe human disturbance. Effective coastal management and control is therefore needed to solve the issues of the coastal wetland loss and degradation existing in this area.

  9. Multiple mechanisms sustain a plant-animal facilitation on a coastal ecotone

    OpenAIRE

    He, Qiang; Cui, Baoshan

    2015-01-01

    Theory suggests that species distributions are expanded by positive species interactions, but the importance of facilitation in expanding species distributions at physiological range limits has not been widely recognized. We investigated the effects of the nurse shrub Tamarix chinensis on the crab Helice tientsinensis on the terrestrial borders of salt marshes, a typical coastal ecotone, where Tamarix and Helice were on their lower and upper elevational distribution edges, respectively. Crab ...

  10. Spatial Patterns in Biogeochemical Processes During Peak Growing Season in Oiled and Unoiled Louisiana Salt Marshes: A Multi-Year Analysis

    Science.gov (United States)

    Chelsky, A.; Marton, J. M.; Bernhard, A. E.; Giblin, A. E.; Setta, S. P.; Hill, T. D.; Roberts, B. J.

    2016-02-01

    Louisiana salt marshes are important sites for carbon and nitrogen cycling because they can mitigate fluxes of nutrients and carbon to the Gulf of Mexico where a large hypoxic zone develops annually. The aim of this study was to investigate spatial and temporal patterns of biogeochemical processes in Louisiana coastal wetlands during peak growing season, and to investigate whether the Deepwater Horizon oil spill resulted in persistent changes to these rates. We measured nitrification potential and sediment characteristics at two pairs of oiled/unoiled marshes in three regions across the Louisiana coast (Terrebonne and east and west Barataria Bay) in July from 2012 to 2015, with plots along a gradient from the salt marsh edge to the interior. Rates of nitrification potential across the coast (overall mean of 901 ± 115 nmol gdw-1 d-1 from 2012-2014) were high compared to other published rates for salt marshes but displayed high variability at the plot level (4 orders of magnitude). Within each region interannual means varied by factors of 2-5. Nitrification potential did not differ with oiling history, but did display consistent spatial patterns within each region that corresponded to changes in relative elevation and inundation, which influence patterns of soil properties and microbial communities. In 2015, we also measured greenhouse gas (CO2, N2O and CH4) production and denitrification enzyme activity rates in addition to nitrification potential across the region to investigate spatial relationships between these processes.

  11. Stimulating a Great Lakes coastal wetland seed bank using portable cofferdams: implications for habitat rehabilitation

    Science.gov (United States)

    Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.

    2009-01-01

    Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.

  12. Targets set to reduce Lake Erie algae

    Science.gov (United States)

    Evans, Mary

    2016-01-01

    In February 2016, the Great Lakes Executive Committee, which oversees the implementation of the Great Lakes Water Quality Agreement (GLWQA) between the U.S. and Canada, approved phosphorus loading targets for Lake Erie to reduce the size of harmful algal blooms (HABs), reduce the presence of the low oxygen zone in the central basin, and protect nearshore water quality. The targets are set with respect to the nutrient loads calculated for 2008. To reduce the impacts of HABs on Lake Erie a target was set of a 40 percent reduction in total and soluble reactive phosphorus loads in the spring from two Canadian rivers and several Michigan and Ohio rivers, especially the Maumee River (https://binational.net/2016/02/22/ finalptargets-ciblesfinalesdep/). States and the province of Ontario are already developing Domestic Action Plans to accomplish the reductions and scientists are developing research and monitoring plans to assess progress.

  13. Discobiol program : investigation of dispersant use in coastal and estuarine waters

    Energy Technology Data Exchange (ETDEWEB)

    Merlin, F.X.; Le Floch, S.; Dussauze, M. [Cedre, Brest Cedex (France); Theron, M. [Brest Univ., European University of Britanny, Rennes (France); Quentel, C. [AFSSA, French Food Safety Agency, Paris (France); Thomas, H. [LIENS, CNRS-Univ. of La Rochelle, La Rochelle Cedex (France)

    2009-07-01

    This paper reported on the Discobiol work program designed to acquire comparable information on the impact of mechanically and chemically dispersed oil on different habitats and resources, particularly in estuaries or close to bays. The study involved 3 phases for the analysis of lethal and sub-lethal effects in pelagic and benthic communities, notably organisms in the water column, mudflats and salt marshes. The ultimate objective was to use the information to make recommendations regarding the use of dispersants in these 3 areas. Dispersants are known to be effective for offshore oil spill response when dilution conditions are high and dispersed oil concentrations decrease rapidly below levels that could harm the environment. However, dilution can be restricted in coastal areas, thus limiting the use of dispersant. All the tests conducted in this study were conducted using brut Arabian light oil that was pre-evaporated to simulate realistic conditions. The study examined whether the presence of oil leads to different effects than the control and whether the chemically dispersed oil gave different effects than the mechanical dispersion. The comparison with chemical dispersion in clear sea water examined whether the presence of suspended materials change the effect of the chemical dispersion. Results for the different phases of the project were presented. The preliminary results tend to open the use of chemical dispersion of oil slicks in coastal areas. The mixture of dispersant plus oil seems to be less detrimental than oil alone, particularly for turbot. The final conclusion regarding chemical dispersion of oil slicks in coastal areas will have to be formulated at the end of the project because coastal ecosystems depend on biotic and abiotic factors. The final phase will take place in a realistic environment in a salt marsh ecosystem at La Rochelle, France. 6 refs., 6 tabs., 6 figs.

  14. Discobiol program : investigation of dispersant use in coastal and estuarine waters

    International Nuclear Information System (INIS)

    Merlin, F.X.; Le Floch, S.; Dussauze, M.; Theron, M.; Quentel, C.; Thomas, H.

    2009-01-01

    This paper reported on the Discobiol work program designed to acquire comparable information on the impact of mechanically and chemically dispersed oil on different habitats and resources, particularly in estuaries or close to bays. The study involved 3 phases for the analysis of lethal and sub-lethal effects in pelagic and benthic communities, notably organisms in the water column, mudflats and salt marshes. The ultimate objective was to use the information to make recommendations regarding the use of dispersants in these 3 areas. Dispersants are known to be effective for offshore oil spill response when dilution conditions are high and dispersed oil concentrations decrease rapidly below levels that could harm the environment. However, dilution can be restricted in coastal areas, thus limiting the use of dispersant. All the tests conducted in this study were conducted using brut Arabian light oil that was pre-evaporated to simulate realistic conditions. The study examined whether the presence of oil leads to different effects than the control and whether the chemically dispersed oil gave different effects than the mechanical dispersion. The comparison with chemical dispersion in clear sea water examined whether the presence of suspended materials change the effect of the chemical dispersion. Results for the different phases of the project were presented. The preliminary results tend to open the use of chemical dispersion of oil slicks in coastal areas. The mixture of dispersant plus oil seems to be less detrimental than oil alone, particularly for turbot. The final conclusion regarding chemical dispersion of oil slicks in coastal areas will have to be formulated at the end of the project because coastal ecosystems depend on biotic and abiotic factors. The final phase will take place in a realistic environment in a salt marsh ecosystem at La Rochelle, France. 6 refs., 6 tabs., 6 figs.

  15. Can salt marshes survive sea level rise ?

    Science.gov (United States)

    Tambroni, N.; Seminara, G.

    2008-12-01

    Stability of salt marshes is a very delicate issue depending on the subtle interplay among hydrodynamics, morphodynamics and ecology. In fact, the elevation of the marsh platform depends essentially on three effects: i) the production of soil associated with sediments resuspended by tidal currents and wind waves in the adjacent tidal flats, advected to the marsh and settling therein; ii) production of organic sediments by the salt marsh vegetation; iii) soil 'loss' driven by sea level rise and subsidence. In order to gain insight into the mechanics of the process, we consider a schematic configuration consisting of a salt marsh located at the landward end of a tidal channel connected at the upstream end with a tidal sea, under different scenarios of sea level rise. We extend the simple 1D model for the morphodynamic evolution of a tidal channel formulated by Lanzoni and Seminara (2002, Journal of Geophysical Research-Oceans, 107, C1) allowing for sediment resuspension in the channel and vegetation growth in the marsh using the depth dependent model of biomass productivity of Spartina proposed by Morris et al. (2002, Ecology, 83, pp. 2869 - 2877). We first focus on the case of a tide dominated salt marsh neglecting wind driven sediment resuspension in the shoal. Results show that the production of biomass plays a crucial role on salt marsh stability and, provided productivity is high enough, it may turn out to be sufficient to counteract the effects of sea level rise even in the absence of significant supply of mineral sediments. The additional effect of wind resuspension is then introduced. Note that the wind action is twofold: on one hand, it generates wind waves the amplitude of which is strongly dependent on shoal depth and wind fetch; on the other hand, it generates currents driven by the surface setup induced by the shear stress acting on the free surface. Here, each contribution is analysed separately. Results show that the values of bottom stress induced by

  16. Assessing Salt Marsh Recovery Utilizing Improved Computer-Aided Tomography Technology (CTT)

    Science.gov (United States)

    In 2001 the Padanarum marsh, a small 7.2-acre marsh in Dartmouth, MA, was chosen as a Tidal Hydrology Restoration site. The site was initially characterized as a brackish mostly freshwater deteriorating marsh. In May 2003 the seawater input to this marsh was increased by replacin...

  17. Meetings and Events about Western Lake Erie Basin

    Science.gov (United States)

    Western Lake Erie Basin, near Toledo (Ohio), Louisiana of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts

  18. Classifications for Coastal Wetlands Planning, Protection and Restoration Act site-specific projects: 2008 and 2009

    Science.gov (United States)

    Jones, William R.; Garber, Adrienne

    2012-01-01

    The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) funds over 100 wetland restoration projects across Louisiana. Integral to the success of CWPPRA is its long-term monitoring program, which enables State and Federal agencies to determine the effectiveness of each restoration effort. One component of this monitoring program is the analysis of high-resolution, color-infrared aerial photography at the U.S. Geological Survey's National Wetlands Research Center in Lafayette, Louisiana. Color-infrared aerial photography (9- by 9-inch) is obtained before project construction and several times after construction. Each frame is scanned on a photogrametric scanner that produces a high-resolution image in Tagged Image File Format (TIFF). By using image-processing software, these TIFF files are then orthorectified and mosaicked to produce a seamless image of a project area and its associated reference area (a control site near the project that has common environmental features, such as marsh type, soil types, and water salinities.) The project and reference areas are then classified according to pixel value into two distinct classes, land and water. After initial land and water ratios have been established by using photography obtained before and after project construction, subsequent comparisons can be made over time to determine land-water change. Several challenges are associated with the land-water interpretation process. Primarily, land-water classifications are often complicated by the presence of floating aquatic vegetation that occurs throughout the freshwater systems of coastal Louisiana and that is sometimes difficult to differentiate from emergent marsh. Other challenges include tidal fluctuations and water movement from strong winds, which may result in flooding and inundation of emergent marsh during certain conditions. Compensating for these events is difficult but possible by using other sources of imagery to verify marsh conditions for other

  19. Utilization of invasive tamarisk by salt marsh consumers.

    Science.gov (United States)

    Whitcraft, Christine R; Levin, Lisa A; Talley, Drew; Crooks, Jeffrey A

    2008-11-01

    Plant invasions of coastal wetlands are rapidly changing the structure and function of these systems globally. Alteration of litter dynamics represents one of the fundamental impacts of an invasive plant on salt marsh ecosystems. Tamarisk species (Tamarix spp.), which extensively invade terrestrial and riparian habitats, have been demonstrated to enter food webs in these ecosystems. However, the trophic impacts of the relatively new invasion of tamarisk into marine ecosystem have not been assessed. We evaluated the trophic consequences of invasion by tamarisk for detrital food chains in the Tijuana River National Estuarine Research Reserve salt marsh using litter dynamics techniques and stable isotope enrichment experiments. The observations of a short residence time for tamarisk combined with relatively low C:N values indicate that tamarisk is a relatively available and labile food source. With an isotopic (15N) enrichment of tamarisk, we demonstrated that numerous macroinvertebrate taxonomic and trophic groups, both within and on the sediment, utilized 15N derived from labeled tamarisk detritus. Infaunal invertebrate species that took up no or limited 15N from labeled tamarisk (A. californica, enchytraeid oligochaetes, coleoptera larvae) occurred in lower abundance in the tamarisk-invaded environment. In contrast, species that utilized significant 15N from the labeled tamarisk, such as psychodid insects, an exotic amphipod, and an oniscid isopod, either did not change or occurred in higher abundance. Our research supports the hypothesis that invasive species can alter the trophic structure of an environment through addition of detritus and can also potentially impact higher trophic levels by shifting dominance within the invertebrate community to species not widely consumed.

  20. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?

    Science.gov (United States)

    McKee, Karen L; Vervaeke, William C

    2018-03-01

    To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table-marker horizon system. Comparison of land movement with relative sea-level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub-root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small-scale disturbance of the plant canopy also had no effect on elevation trajectories-contrary to work in peat-forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion

  1. A potent Brucella abortus 2308 Δery live vaccine allows for the differentiation between natural and vaccinated infection.

    Science.gov (United States)

    Zhang, Junbo; Yin, Shuanghong; Guo, Fei; Meng, Ren; Chen, Chuangfu; Zhang, Hui; Li, Zhiqiang; Fu, Qiang; Shi, Huijun; Hu, Shengwei; Ni, Wei; Li, Tiansen; Zhang, Ke

    2014-08-01

    Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. However, the current Brucella abortus vaccines (S19 and RB51) are deficient; they can cause abortion in pregnant animals. Moreover, when the vaccine S19 is used, tests cannot differentiate natural from vaccinated infection. Therefore, a safer and more potent vaccine is needed. A Brucella abortus 2308 ery promoter mutant (Δery) was constructed to overcome these drawbacks. The growth of the Δery mutant was significantly attenuated in macrophages and mice and induced high protective immunity in mice. Moreover, Δery induced an anti-Brucella-specific IgG (immunoglobulin G) response and stimulated the expression of interferon-gamma (INF-γ) and interleukin-4 (IL-4). Furthermore, the expression of EryA antigen allowed for the serological differentiation between natural and vaccinated infection in mice. These results indicate that the Δery mutant is a potential attenuated live vaccine candidate against virulent Brucella abortus 2308 (S2308) infection.

  2. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China.

    Science.gov (United States)

    Sun, Zhigao; Mou, Xiaojie

    2016-03-01

    From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year(-1), S0), current sediment burial (100 mm year(-1), S10), and strong sediment burial (200 mm year(-1), S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day(-1)) ≈ S20 (0.001710 day(-1)) > S0 (0.000768 day(-1)) (p macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p > 0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future

  3. Hydrodynamic Modeling of Santa Marta's Big Marsh

    International Nuclear Information System (INIS)

    Saldarriaga, Juan

    1991-01-01

    The ecological degradation of Santa Marta's Big Marsh and their next areas it has motivated the realization of diagnosis studies and design by several state and private entities. One of the recommended efforts for international advisory it was to develop an ecological model that allowed the handling of the water body and the economic test of alternative of solution to those ecological problems. The first part of a model of this type is in turn a model that simulates the movement of the water inside the marsh, that is to say, a hydrodynamic model. The realization of this was taken charge to the civil engineering department, on the part of Colciencias. This article contains a general explanation of the hydrodynamic pattern that this being developed by a professors group. The ecological causes are described and antecedent, the parts that conform the complex of the Santa Marta big Marsh The marsh modeling is made and it is explained in qualitative form the model type Hydrodynamic used

  4. Determination of strontium isotopic composition in natural waters: examples of application in subsurface waters of the coastal zone of Bragantina region, Para, BR; Determinacao da composicao isotopica de estroncio em aguas naturais: exemplos de sua aplicacao em aguas subsuperficiais da zona costeira na regiao Bragantina-PA

    Energy Technology Data Exchange (ETDEWEB)

    Bordalo, Adriana Oliveira; Moura, Candido Augusto Veloso; Scheller, Thomas [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Centro de Geociencias]. E-mail: adriana@ufpa.br

    2007-07-15

    Analytical procedures used for determining the concentrations and isotope composition of strontium in subsurface waters, by mass spectrometry, are described. Sampling was performed in coastal plateaus, salt marsh and mangrove environments in the coastal region of Para. Coastal plateau waters have {delta}{sup 87}Sr between 1.51 and 6.26 per mille and Sr concentration bellow 58 ppb. Salt marsh waters show {delta}{sup 87}Sr between 0.55 and 0.90 per mille and Sr concentration between 93 and 114 ppm, while mangrove waters have {delta}{sup 87}Sr per mille around zero and Sr concentration above 15 ppm. Differences in the {sup 87}Sr/{sup 86}Sr ratio in these subsurface waters are detected, as well as seasonal variations in the coastal plateau waters. (author)

  5. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; communications rules. 162.132 Section 162.132 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.132 Connecting waters from Lake Huron to Lake Erie; communications rules. (a...

  6. 33 CFR 162.140 - Connecting waters from Lake Huron to Lake Erie; miscellaneous rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. 162.140 Section 162.140 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.140 Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. (a...

  7. Unsupervised detection of salt marsh platforms: a topographic method

    Science.gov (United States)

    Goodwin, Guillaume C. H.; Mudd, Simon M.; Clubb, Fiona J.

    2018-03-01

    Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform

  8. Unsupervised detection of salt marsh platforms: a topographic method

    Directory of Open Access Journals (Sweden)

    G. C. H. Goodwin

    2018-03-01

    Full Text Available Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM, referred to as Topographic Identification of Platforms (TIP. Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives

  9. FERC approves process for Lake Erie link: Project meets significant regulatory milestone

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    The Federal Electric Regulatory Commission (FERC) of the United States has issued an order to TransEnergie US Ltd., and Hydro One Inc., authorizing the sale of transmission rights for the proposed Lake Erie link. This project will consists of bi-directional high voltage direct current facilities connecting the transmission grids of Ontario, Canada and the United States. The sale is authorized to proceed via a non-discriminatory 'open season' process. The project will consist of buried underwater cables under Lake Erie connecting the transmission systems near Simcoe, Ontario with those in the US at either, or both, of Springfield, Pennsylvania, and Ashtabula, Ohio. The project will provide an increase in transmission capability of up to 975 MW between the electric control areas of the Ontario Independent Electricity Market Operator, the East Central Area Reliability Coordination Agreement in Ohio and the Pennsylvania-New Jersey-Maryland Interconnection. The Lake Erie Link will be financially supported by those consumers who see value in the associated transmission rights, rather than through the regulated rates paid by transmission customers in general. The article provides an overview of the background of the Lake Erie Link, the cable system, the converter station, and the potential economic benefits

  10. Occurrence of zebra mussels in near-shore areas of western Lake Erie

    Science.gov (United States)

    Custer, Christine M.; Custer, T.W.

    1997-01-01

    Zebra mussels (Dreissena polymorpha) invaded the Great Lakes in the mid-1980s and quickly reached high densities. The objective of this study was to determine current consumption of zebra mussels by waterfowl in the Great Lakes region. Feeding Lesser Scaups (Aythya affinis), Greater Scaups (A. marila), Canvasbacks (A. valisineria), Redheads (A. americana), Buffleheads (Bucephala albeola) and Common Goldeneyes (B. clangula) were collected in western Lake Erie and in Lake St. Clair between fall and spring, 1992-1993 to determine food habits. All 10 Redheads, 97% of Lesser Scaups, 83% of Goldeneyes, 60% of Buffleheads and 9% of Canvasbacks contained one or more zebra mussels in their upper gastrointestinal tracts. The aggregate percent of zebra mussels in the diet of Lesser Scaups was higher in Lake Erie (98.6%) than in Lake St. Clair (54.4%). Zebra mussels, (aggregate percent) dominated the diet of Common Goldeneyes (79.2%) but not in Buffleheads (23.5%), Redheads (21%) or Canvasbacks (9%). Lesser Scaups from Lake Erie fed on larger zebra mussels ( = 10.7 i?? 0.66 mm SE) than did Lesser Scaups from Lake St. Clair ( = 4.4 i?? 0.22 mm). Lesser Scaups, Buffleheads and Common Goldeneyes from Lake Erie consumed zebra mussels of similar size.

  11. Modelling the long-term vertical dynamics of salt marshes

    Science.gov (United States)

    Zoccarato, Claudia; Teatini, Pietro

    2017-04-01

    Salt marshes are vulnerable environments hosting complex interactions between physical and biological processes with a strong influence on the dynamics of the marsh evolution. The estimation and prediction of the elevation of a salt-marsh platform is crucial to forecast the marsh growth or regression under different scenarios considering, for example, the potential climate changes. The long-term vertical dynamics of a salt marsh is predicted with the aid of an original finite-element (FE) numerical model accounting for the marsh accretion and compaction and for the variation rates of the relative sea level rise, i.e., land subsidence of the marsh basement and eustatic rise of the sea level. The accretion term considers the vertical sedimentation of organic and inorganic material over the marsh surface, whereas the compaction reflects the progressive consolidation of the porous medium under the increasing load of the overlying younger deposits. The modelling approach is based on a 2D groundwater flow simulator, which provides the pressure evolution within a compacting/accreting vertical cross-section of the marsh assuming that the groundwater flow obeys the relative Darcy's law, coupled to a 1D vertical geomechanical module following Terzaghi's principle of effective intergranular stress. Soil porosity, permeability, and compressibility may vary with the effective intergranular stress according to empirically based relationships. The model also takes into account the geometric non-linearity arising from the consideration of large solid grain movements by using a Lagrangian approach with an adaptive FE mesh. The element geometry changes in time to follow the deposit consolidation and the element number increases in time to follow the sedimentation of new material. The numerical model is tested on different realistic configurations considering the influence of (i) the spatial distribution of the sedimentation rate in relation to the distance from the marsh margin, (ii

  12. Policies for Reducing Coastal Risk on the East and Gulf Coasts

    Science.gov (United States)

    Glickson, D.; Johnson, S.

    2014-12-01

    Hurricane- and coastal storm-related economic losses have increased substantially over the past century, largely due to expanding population and development in susceptible coastal areas. Concurrent with this growth, the federal government has assumed an increasing proportion of the financial responsibility associated with U.S. coastal storms, which may discourage state and local governments from taking appropriate actions to reduce risk and enhance resilience. Strategies to manage coastal storm risks fall into two categories: reducing the probability of flooding or wave impact (such as seawalls, storm surge barriers, beach nourishment, dune building, restoration/expansion of oyster reefs, salt marshes, and mangroves) and reducing the number or vulnerability of people or structures (such as relocation, land-use planning, and elevating or floodproofing buildings). Over the past century, most coastal risk management programs have emphasized coastal armoring, while doing little to decrease development in harm's way. This National Research Council report calls for the development of a national vision for managing coastal risks that includes a long-term view, regional solutions, and recognition of all benefits. A national coastal risk assessment is needed to identify high priority areas. Benefit-cost analysis provides a reasonable framework to evaluate national investments in coastal risk reduction, if constrained by other important environmental, social, and life-safety factors. Extensive collaboration and additional policy changes will be necessary to move from a nation that is primarily reactive to coastal disasters to one that invests wisely in coastal risk reduction and builds resilience among coastal communities.

  13. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  14. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; general rules. 162.130 Section 162.130 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.130 Connecting waters from Lake Huron to Lake Erie; general rules. (a) Purpose. The...

  15. Estuaries as filters: the role of tidal marshes in trace metal removal.

    Directory of Open Access Journals (Sweden)

    Johannes Teuchies

    Full Text Available Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.

  16. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal

    Science.gov (United States)

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927

  17. Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China

    DEFF Research Database (Denmark)

    Olsson, L.; Ye, S.; Wei, M.

    2015-01-01

    temperature and vegetation on CH4 emissions and ecosystem respiration (Reco) from five coastal wetlands in the Liaohe Delta, northeast China: two Phragmites australis (common reed) wetlands, two Suaeda salsa (sea blite) marshes and a rice (Oryza sativa) paddy. Throughout the growing season, the Suaeda...

  18. A preliminary study of the Hg flux from selected Ohio watersheds to Lake Erie

    International Nuclear Information System (INIS)

    Fitzgibbon, T.O.; Berry Lyons, W.; Gardner, Christopher B.; Carey, Anne E.

    2008-01-01

    New measurements of riverine dissolved and particulate Hg fluxes into Lake Erie from 12 northern Ohio watersheds have been determined from samples collected in April 2002 and analyzed using ultra-clean techniques with cold-vapor atomic fluorescence spectrometry. Total Hg concentrations ranged through 2.5-18.5 ng L -1 , with a mean of 10.4 ng L -1 with most Hg in particulate form. Dissolved Hg concentrations ranged through 0.8-4.3 ng L -1 , with a mean of 2.5 ng L -1 . Highest total Hg concentrations were observed in western rivers with primarily agricultural land use and eastern rivers with mixed land use in their watersheds. Total suspended solid concentrations ranged through 10-180 mg L -1 with particulate Hg concentrations ranging through 47-170 ng g -1 , with a mean of 99 ng g -1 . Particulate Hg was similar to published data for central Lake Erie bottom sediments but much lower than for bottom sediments in western Lake Erie. Total Hg concentrations were positively correlated with suspended sediment concentrations and negatively with dissolved NO 3 - concentrations. The total estimated annual Hg fluxes from these rivers into Lake Erie is estimated to be 85 kg, but because only one event was sampled during high flow conditions, this may be an overestimate. This is much lower than previous published estimates of riverine Hg input into Lake Erie

  19. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise

    Science.gov (United States)

    Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob

    2013-01-01

    Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.

  20. 33 CFR 162.134 - Connecting waters from Lake Huron to Lake Erie; traffic rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; traffic rules. 162.134 Section 162.134 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.134 Connecting waters from Lake Huron to Lake Erie; traffic rules. (a) Detroit River. The...

  1. 33 CFR 162.138 - Connecting waters from Lake Huron to Lake Erie; speed rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; speed rules. 162.138 Section 162.138 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.138 Connecting waters from Lake Huron to Lake Erie; speed rules. (a) Maximum speed limit for...

  2. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...

  3. Balanced Sediment Fluxes in Southern California's Mediterranean-climate Zone Salt Marshes

    Science.gov (United States)

    Rosencranz, J. A.; Dickhudt, P.; Ganju, N. K.; Thorne, K.; Takekawa, J.; Ambrose, R. F.; Guntenspergen, G. R.; Brosnahan, S.; MacDonald, G. M.

    2015-12-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many southern California, USA salt marshes import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are also potentially important for marsh stability. We calculated tidal creek sediment fluxes within a sediment starved 1.5 km2 salt marsh (Seal Beach) and a less modified 1 km2 marsh (Mugu) with a watershed sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12000 and 8800 kg in a western channel. This offset 8700 kg export during two months of dry weather, while landward net fluxes in the eastern channel accounted for 33% of the import. During the storm, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1-2 mm near creek levees. An exceptionally high tide sequence at Mugu yielded 4.4 g/s mean sediment flux, importing 1700 kg, accounting for 20% of dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are currently geomorphically stable. Our results suggest that storms and exceptionally high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea-level rise scenarios, results suggest that balanced sediment fluxes may lead to marsh elevational instability, based on estimated mineral sediment deficits.

  4. Modeling Coastal Vulnerability through Space and Time.

    Science.gov (United States)

    Hopper, Thomas; Meixler, Marcia S

    2016-01-01

    Coastal ecosystems experience a wide range of stressors including wave forces, storm surge, sea-level rise, and anthropogenic modification and are thus vulnerable to erosion. Urban coastal ecosystems are especially important due to the large populations these limited ecosystems serve. However, few studies have addressed the issue of urban coastal vulnerability at the landscape scale with spatial data that are finely resolved. The purpose of this study was to model and map coastal vulnerability and the role of natural habitats in reducing vulnerability in Jamaica Bay, New York, in terms of nine coastal vulnerability metrics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with no habitat, habitat role, erodible shoreline, and surge) under past (1609), current (2015), and future (2080) scenarios using InVEST 3.2.0. We analyzed vulnerability results both spatially and across all time periods, by stakeholder (ownership) and by distance to damage from Hurricane Sandy. We found significant differences in vulnerability metrics between past, current and future scenarios for all nine metrics except relief and wave exposure. The marsh islands in the center of the bay are currently vulnerable. In the future, these islands will likely be inundated, placing additional areas of the shoreline increasingly at risk. Significant differences in vulnerability exist between stakeholders; the Breezy Point Cooperative and Gateway National Recreation Area had the largest erodible shoreline segments. Significant correlations exist for all vulnerability (exposure/surge) and storm damage combinations except for exposure and distance to artificial debris. Coastal protective features, ranging from storm surge barriers and levees to natural features (e.g. wetlands), have been promoted to decrease future flood risk to communities in coastal areas around the world. Our methods of combining coastal vulnerability results with additional data and across multiple time

  5. Eri silkworm: a source of edible oil with a high content of α-linolenic acid and of significant nutritional value.

    Science.gov (United States)

    Longvah, Thingnganing; Manghtya, Korra; Qadri, Syed S Y H

    2012-07-01

    The study was undertaken to provide value addition to spent eri silkworm as an alternative source of edible oil for the food and feed industry by carrying out a short-term nutritional and toxicological evaluation of eri silkworm pupae oil using Wistar NIN rats. Growth performance of rats fed either sunflower oil (Control) or eri silkworm pupae oil (Experimental) was comparable. Histopathological examination of the various tissues showed no signs of toxicity even after feeding the eri silkworm oil for 18 weeks. Serum cholesterol and triglyceride was significantly reduced (P oil. The study showed that eri silkworm pupae oil is safe and nutritionally equivalent to commonly used vegetable oils. Eri silkworm pupae can be harvested to provide a cost effective alternative edible oil that can be used to nutritional advantage in the food and feed industry. Therefore eri silkworm and its host plants offer an excellent example of multiple product crops and of sustainable agricultural practice with excellent opportunity for economic and nutritional benefits. Copyright © 2012 Society of Chemical Industry.

  6. Concentrations and sources of polycyclic aromatic hydrocarbons in surface coastal sediments of the northern Gulf of Mexico

    Science.gov (United States)

    2014-01-01

    Background Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels. PMID:24641695

  7. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we

  8. Native-invasive plants vs. halophytes in Mediterranean salt marshes: Stress tolerance mechanisms in two related species

    Directory of Open Access Journals (Sweden)

    Mohamad eAl Hassan

    2016-04-01

    Full Text Available Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in ‘La Albufera’ Natural Park, near the city of Valencia (East Spain. The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves – where they are presumably compartmentalized in vacuoles – and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na+ and Cl- contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose accumulated at higher levels in the former species. This explains the (slightly higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K+ transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level – estimated from malondialdehyde accumulation – was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides

  9. Tidal Marshes as Pulsing Systems: New Estimates of Marsh-Carbon Export and Fate

    Science.gov (United States)

    Logozzo, L. A.; Neale, P.; Tzortziou, M.; Nelson, N.; Megonigal, P.

    2016-02-01

    We investigated wetland-estuarine exchanges of dissolved organic carbon (DOC), chromophoric dissolved organic matter (CDOM), dissolved inorganic carbon (DIC), and chlorophyll a (chl a) in the Chesapeake Bay Kirkpatrick wetlands, an ecosystem that is representative of brackish marshes with organic-rich soils in North America. 1 L water samples were collected every hour over multiple semidiurnal tidal cycles (24 h deployments) and the flow was continuously measured every minute over the course of the study. DIC samples were collected and filtered on site. Fluxes were estimated using the measured flow and concentrations of biogeochemical variables (DOC, DIC, and chl a as a measure of algal biomass). aCDOM(300) was used as a proxy for CDOM amount to observe variations over two semidiurnal tidal cycles. Relative to high tide water, low tide water was consistently enriched in DOC, DIC, and CDOM, whereas it was consistently depleted in chl a. Initial estimates of fluxes over the tidal cycle showed net export of DIC and DOC from the marsh, and net import of chl a into the marsh. These results are consistent with DOC flux estimates from previous studies, but our method utilizes high temporal resolution flow measurements, improving flux estimate accuracy. Transect sampling from the marsh into the sub-estuary during ebbing tide indicated a strong negative gradient in a­CDOM­(300) and non-conservative mixing with salinity. The observed gradients in CDOM absorption spectral shape (slope and slope ratios) and the relative changes in the major fluorescence components identified in 3D fluorescence excitation-emission-matrices, indicated strong photochemical degradation in the estuary and a shift from higher to lower molecular-weight organic compounds. The weaker gradients observed for DOC and DIC compared to aCDOM(300) indicate that while microbial degradation does occur, photobleaching is the dominant degradation mechanism for CDOM in the estuary.

  10. Salt Marsh Ecosystem Responses to Restored Tidal Connectivity across a 14y Chronosequence

    Science.gov (United States)

    Capooci, M.; Spivak, A. C.; Gosselin, K.

    2016-02-01

    Salt marshes support valuable ecosystem services. Yet, human activities negatively impact salt marsh function and contribute to their loss at a global scale. On Cape Cod, MA, culverts and impoundments under roads and railways restricted tidal exchange and resulted in salt marsh conversion to freshwater wetlands. Over the past 14 y, these structures have been removed or replaced, restoring tidal connectivity between marshes and a saltwater bay. We evaluated differences in plant community composition, sediment properties, and pore water chemistry in marshes where tidal connectivity was restored using a space-for-time, or chronosequence approach. Each restored marsh was paired with a nearby, natural salt marsh to control for variability between marshes. In each restored and natural salt marsh we evaluated the plant community by measuring species-specific percent cover and biomass and collected sediment cores for bulk density and pore water analyses. Plant communities responded rapidly: salt-tolerant species, such as Spartina alterniflora, became established while freshwater species, including Phragmites australis, were less abundant within 3 y of restoration. The number of plant species was generally greater in marshes restored within 10 y, compared to older and natural marshes. Sediment bulk density varied with depth and across sites. This likely reflects differences in site history and local conditions. Deeper horizons (24-30cm) generally had higher values in restored sites while surface values (0-3cm) were similar in restored and natural marshes. Porewater pH and sulfide were similar in restored and natural marshes, suggesting rapid microbial responses to seawater reintroduction. Overall, marsh properties and processes reflecting biological communities responded rapidly to tidal restoration. However, variability between study locations underscores the potential importance of site history, local hydrology, and geomorphology in shaping marsh biogeochemistry.

  11. Climate change and sustainability of the carbon sink in Maritime salt marshes

    International Nuclear Information System (INIS)

    Chmura, G.L.

    2008-01-01

    Ideal carbon sinks do not emit greenhouse gases (GHGs) and are sustainable with future trends in global warming. This presentation discussed the potential for using Maritime salt marshes as carbon sinks. The marshes are covered with grasses adapted to saline soils. Photosynthesis by the marsh plants and algae fix the carbon dioxide (CO 2 ) directly from the atmosphere. The carbon is then buried by mineral sediment. Wetlands without saline water are known to produce methane. The carbon in salt marsh soils does not significantly decline with depth or time. Salt marshes and mangroves store an average of 210 g of CO 2 per m 2 per year. The tidal floodwaters keep the soils wet, which allows for slow decomposition. Canadian salt marsh soils have increased in thickness at a rate of between 2 to 4 mm per year. Measurement programs have demonstrated the sustainability of inner Bay of Fundy marshes in relation to rising sea levels. Opportunities for carbon sinks also exist in dyked marshes in the region. It was concluded that the salt marshes can account for between 4 to 6 per cent of Canada's targeted reductions under the Kyoto Protocol. tabs., figs.

  12. 76 FR 50680 - Endangered and Threatened Wildlife and Plants; Removal of the Lake Erie Watersnake (Nerodia...

    Science.gov (United States)

    2011-08-16

    ... as a home range. In the winter, Lake Erie watersnakes hibernate below the frost level, in cracks or... undertaken on each island property to avoid injury and harm to the Lake Erie watersnake during typical land...

  13. Consequences for ducks of a chronic exposure to petroleum residues in their breeding marshes: The case of the Czantoria

    International Nuclear Information System (INIS)

    Rodrigue, J.; DesGranges, J.-L.

    1990-01-01

    On May 8, 1988, the tanker Czantoria collided with the dock at Levis, Quebec, spilling about 400 tonnes of light oil into the St. Lawrence River. The spill affected a number of important wildlife habitats. Following the spill and the subsequent river cleanup, domestic ducks were placed for a two-month period in marshes previously contaminated with oil. Wild ducklings were also collected in the area. Despite the small sample (a number of domestic ducks disappeared during the field experiment), it is believed that the cleanup effort was a success. The domestic ducks and wild ducklings collected on affected coastal marshes showed few of the symptoms characteristic of oil contamination. With respect to physiological effects, ducks raised in the previously contaminated area nonetheless encountered famine, as indicated by their steady weight loss and the drop in plasma proteins and blood cell counts accompanied by active rejuvenation of red blood cells. These symptoms can probably be attributed to a lack of food suitable at least for this species in the intertidal marshes of the sites under study. With respect to organochlorine contamination, polychlorinated biphenyls do not pose a problem and the few contaminants detected in trace concentrations, although found at slightly higher levels in the affected area, cannot be directly associated with the oil spill. 10 refs., 1 fig., 11 tabs

  14. An examination of historic inorganic sedimentation and organic matter accumulation in several marsh types within the Mobile Bay and and Mobile-Tensaw River Delta region

    Science.gov (United States)

    Smith, Christopher G.; Osterman, Lisa E.; Poore, Richard Z.

    2013-01-01

    Mass accumulation rates (MAR; g cm-2 y-1), linear sedimentation rates (LSR; cm y-1), and core geochronology derived from excess lead-210 (210Pb) profiles and inventories measured in six sediment cores collected from marsh sites from the MobileTensaw River Delta and Mobile Bay region record the importance of both continuous and event-driven inorganic sedimentation over the last 120 years. MAR in freshwater marshes varied considerably between sites and through time (0.24 and 1.31 g cm-2 y-1). The highest MARs occurred in the 1950s and 1960s and correspond to record discharge events along the Mobile and Tensaw Rivers. In comparison, MAR at salt marsh sites increased almost threefold over the last 120 years (0.05 to 0.18 g cm-2 y-1 or 0.23 to 0.48 cm y-1). From 1880 to 1960, organic accumulation remained fairly constant (20%), while intermittent pulses of high inorganic sedimentation were observed following 1960. The pulses in inorganic sedimentation coincide with several major hurricanes (e.g., Hurricanes Camille, Fredric, Georges, and Ivan). The nearly threefold increase in MAR in salt marshes during the last 120 years would thus appear to be partially dependent on inorganic sedimentation from storm events. This study shows that while hurricanes, floods, and other natural hazards are well-known threats to human infrastructure and coastal ecosystems, these events also transport sediment to marshes that help abate other pressures such as sea-level rise (SLR) and subsidence.

  15. Herbivory drives the spread of salt marsh die-off.

    Directory of Open Access Journals (Sweden)

    Mark D Bertness

    Full Text Available Salt marsh die-off is a Western Atlantic conservation problem that has recently spread into Narragansett Bay, Rhode Island, USA. It has been hypothesized to be driven by: 1 eutrophication decreasing plant investment into belowground biomass causing plant collapse, 2 boat wakes eroding creek banks, 3 pollution or disease affecting plant health, 4 substrate hardness controlling herbivorous crab distributions and 5 trophic dysfunction releasing herbivorous crabs from predator control. To distinguish between these hypotheses we quantified these variables at 14 Narragansett Bay salt marshes where die-off intensity ranged from <5% to nearly 98%. Nitrogen availability, wave intensity and plant growth did not explain any variation in die-off. Herbivory explained 73% of inter-site variation in die-off and predator control of herbivores and substrate hardness also varied significantly with die-off. This suggests that salt marsh die-off is being largely driven by intense herbivory via the release of herbivorous crabs from predator control. Our results and those from other marsh systems suggest that consumer control may not simply be a factor to consider in marsh conservation, but with widespread predator depletion impacting near shore habitats globally, trophic dysfunction and runaway consumption may be the largest and most urgent management challenge for salt marsh conservation.

  16. Carbon Sequestration in Tidal Salt Marshes of the Northeast United States.

    Science.gov (United States)

    Drake, Katherine; Halifax, Holly; Adamowicz, Susan C; Craft, Christopher

    2015-10-01

    Tidal salt marshes provide important ecological services, habitat, disturbance regulation, water quality improvement, and biodiversity, as well as accumulation and sequestration of carbon dioxide (CO2) in vegetation and soil organic matter. Different management practices may alter their capacity to provide these ecosystem services. We examined soil properties (bulk density, percent organic C, percent N), C and N pools, C sequestration and N accumulation at four marshes managed with open marsh water management (OMWM) and four marshes that were not at U.S. Fish and Wildlife National Wildlife Refuges (NWRs) on the East Coast of the United States. Soil properties (bulk density, percent organic C, percent N) exhibited no consistent differences among managed and non-OMWM marshes. Soil organic carbon pools (0-60-cm depth) also did not differ. Managed marshes contained 15.9 kg C/m(2) compared to 16.2 kg C/m(2) in non-OMWM marshes. Proportionately, more C (per unit volume) was stored in surface than in subsurface soils. The rate of C sequestration, based on (137)Cs and (210)Pb dating of soil cores, ranged from 41 to 152 g/m(2)/year. Because of the low emissions of CH4 from salt marshes relative to freshwater wetlands and the ability to sequester C in soil, protection and restoration of salt marshes can be a vital tool for delivering key ecosystem services, while at the same time, reducing the C footprint associated with managing these wetlands.

  17. Salt marsh persistence is threatened by predicted sea-level rise

    Science.gov (United States)

    Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.

    2016-11-01

    Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.

  18. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  19. Adaptation to Sea Level Rise in Coastal Units of the National Park Service (Invited)

    Science.gov (United States)

    Beavers, R. L.

    2010-12-01

    83 National Park Service (NPS) units contain nearly 12,000 miles of coastal, estuarine and Great Lakes shoreline and their associated resources. Iconic natural features exist along active shorelines in NPS units, including, e.g., Cape Cod, Padre Island, Hawaii Volcanoes, and the Everglades. Iconic cultural resources managed by NPS include the Cape Hatteras Lighthouse, Fort Sumter, the Golden Gate, and heiaus and fish traps along the coast of Hawaii. Impacts anticipated from sea level rise include inundation and flooding of beaches and low lying marshes, shoreline erosion of coastal areas, and saltwater intrusion into the water table. These impacts and other coastal hazards will threaten park beaches, marshes, and other resources and values; alter the viability of coastal roads; and require the NPS to re-evaluate the financial, safety, and environmental implications of maintaining current projects and implementing future projects in ocean and coastal parks in the context of sea level rise. Coastal erosion will increase as sea levels rise. Barrier islands along the coast of Louisiana and North Carolina may have already passed the threshold for maintaining island integrity in any scenario of sea level rise (U.S. Climate Change Science Program Synthesis and Assessment Program Report 4.1). Consequently, sea level rise is expected to hasten the disappearance of historic coastal villages, coastal wetlands, forests, and beaches, and threaten coastal roads, homes, and businesses. While sea level is rising in most coastal parks, some parks are experiencing lower water levels due to isostatic rebound and lower lake levels. NPS funded a Coastal Vulnerability Project to evaluate the physical and geologic factors affecting 25 coastal parks. The USGS Open File Reports for each park are available at http://woodshole.er.usgs.gov/project-pages/. These reports were designed to inform park planning efforts. NPS conducted a Storm Vulnerability Project to provide ocean and coastal

  20. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    Directory of Open Access Journals (Sweden)

    Kimberly L Dibble

    Full Text Available Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water, recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1 while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological

  1. Signatures of Biogeomorphic Feedbacks in Salt-Marsh Systems

    Science.gov (United States)

    D'Alpaos, Andrea; Marani, Marco

    2015-04-01

    Salt-marsh ecosystems which play a large role in the bio-geomorphological evolution of intertidal areas. Dense stands of halophytic vegetations which populate salt marshes largely control the dynamics of these ecosystems influencing marsh hydrodynamics and sediment transport through enhanced flow resistance and settling, and direct particle capture by plant stems. Moreover, plants are also known to increase vertical accretion through direct organic accretion. Field evidence and the results of biomorphodynamic models indeed show that the interplay between physical and biological processes generates some striking biological and morphological patterns at different scales. One such pattern, vegetation zonation, consists in a mosaic of vegetation patches, of approximately uniform composition, displaying sharp transitions in the presence of extremely small topographic gradients. Here we develop a two-dimensional model which describes the mutual interaction and adjustment between tidal flows, sediment transport and morphology mediated by vegetation influence. The model allows us describe the coupled evolution of marsh platforms and channel networks cutting through them. A number of different scenarios were modelled to analyze the changes induced in bio-geomorphic patterns by plants with different characteristics, within marshes characterized by different drainage densities, or subjected to changing environmental forcing such as rates of relative sea level rise and sediment supply. Model results emphasize that zonation patterns are a signature of bio-geomorphic feedbacks with vegetation acting as a landscape constructor which feeds back on, directly alters, and contributes to shape tidal environments. In addition, model results show that biogeomorphic feedbacks critically affect the response and the resilience of salt-marsh landscapes to changes in the environmental forcing.

  2. Macroclimatic change expected to transform coastal wetland ecosystems this century

    Science.gov (United States)

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew S.; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  3. Assessing Vulnerability of Lake Erie Landscapes to Soil Erosion: Modelled and Measured Approaches

    Science.gov (United States)

    Joosse, P.; Laamrani, A.; Feisthauer, N.; Li, S.

    2017-12-01

    Loss of soil from agricultural landscapes to Lake Erie via water erosion is a key transport mechanism for phosphorus bound to soil particles. Agriculture is the dominant land use in the Canadian side of the Lake Erie basin with approximately 75% of the 2.3 million hectares under crop or livestock production. The variable geography and diversity of agricultural production systems and management practices makes estimating risk of soil erosion from agricultural landscapes in the Canadian Lake Erie basin challenging. Risk of soil erosion depends on a combination of factors including the extent to which soil remains bare, which differs with crop type and management. Two different approaches of estimating the vulnerability of landscapes to soil erosion will be compared among Soil Landscapes of Canada in the Lake Erie basin: a modelling approach incorporating farm census and soil survey data, represented by the 2011 Agriculture and Agri-Food Canada Agri-Environmental Indicator for Soil Erosion Risk; and, a measured approach using remotely sensed data that quantifies the magnitude of bare and covered soil across the basin. Results from both approaches will be compared by scaling the national level (1:1 million) Soil Erosion Risk Indicator and the remotely sensed data (30x30 m resolution) to the quaternary watershed level.

  4. Sensitivity of Estuaries to Coastal Morphological Change Induced by Sea Level Rise

    Science.gov (United States)

    Alizad, K.; Hagen, S. C.; Bilskie, M. V.; Mariotti, G.

    2017-12-01

    Coastal wetlands play a critical role by providing food and habitat for a variety of species and by dissipating wave and storm surge. These regions are also vulnerable to climate change and specifically rising sea levels. Projections show that coastal marshes across the Northern Gulf of Mexico are threatened by a higher risk of losing their productivity through increased inundation depth and time [Alizad et al., 2016a]. Individual estuaries will respond differently to stressors based on local conditions such as tidal range, creek geometry, and sediment sources, among others. In addition, morphological changes in estuaries are functions of both physical processes such as hydrodynamics and wind waves as well as biological mechanisms. To investigate the sensitivity of storm surge to bio-geomorphological changes associated with climate change within an estuary, the Hydro-MEM model [Alizad et al., 2016b] and first-order bathymetric changes were applied for a set of sea level rise (SLR) scenarios. Morphologic change in the form of marsh platform accretion and enhanced bay bathymetry through time was employed in an ADvanced CIRCulation (ADCIRC) shallow-water equation model. The model was used to run synthetic storm simulations for an intermediate-low (0.5 m), intermediate-high (1.2 m), and high (2.0 m) SLR scenarios in Grand Bay, MS (marine dominated) and Weeks Bay, AL (mixed) estuaries. Results including with and without morphologic changes applied will be discussed. Future steps for incorporating morphological effects including channel widening and wave erosion processes into the Hydro-MEM model is to couple morphologic and hydrodynamic models [Mariotti and Canestrelli, 2017] in the Hydro-MEM time step framework. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016a), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497. Alizad, K., S. C. Hagen, J. T. Morris, P

  5. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise

    Science.gov (United States)

    Thorne, Karen M.; MacDonald, Glen M.; Guntenspergen, Glenn R.; Ambrose, Richard F.; Buffington, Kevin J.; Dugger, Bruce D.; Freeman, Chase; Janousek, Christopher; Brown, Lauren N.; Rosencranz, Jordan A.; Homquist, James; Smol, John P.; Hargan, Kathryn; Takekawa, John Y.

    2018-01-01

    We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the century. The only wetland habitat remaining at the end of the century was low marsh under higher-range SLR rates. Tidal wetland loss was also likely under more conservative SLR scenarios, including loss of 95% of high marsh and 60% of middle marsh habitats by the end of the century. Horizontal migration of most wetlands was constrained by coastal development or steep topography, with just two wetland sites having sufficient upland space for migration and the possibility for nearly 1:1 replacement, making SLR threats particularly high in this region and generally undocumented. With low vertical accretion rates and little upland migration space, Pacific coast tidal wetlands are at imminent risk of submergence with projected rates of rapid SLR.

  6. 76 FR 55564 - Safety Zone; Revolution 3 Triathlon, Sandusky Bay, Lake Erie, Cedar Point, OH

    Science.gov (United States)

    2011-09-08

    ...-AA00 Safety Zone; Revolution 3 Triathlon, Sandusky Bay, Lake Erie, Cedar Point, OH AGENCY: Coast Guard... Erie during the Revolution 3 Triathlon. This temporary safety zone is necessary to protect participants..., between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. FOR FURTHER INFORMATION CONTACT...

  7. 75 FR 55477 - Safety Zone; Revolution 3 Triathlon, Lake Erie & Sandusky Bay, Cedar Point, OH

    Science.gov (United States)

    2010-09-13

    ...-AA00 Safety Zone; Revolution 3 Triathlon, Lake Erie & Sandusky Bay, Cedar Point, OH AGENCY: Coast Guard... portions of the Lake Erie during the Revolution 3 Cedar Point Triathlon. The temporary safety zone is... 5 p.m., Monday through Friday, except Federal holidays. FOR FURTHER INFORMATION CONTACT: If you have...

  8. Determinação da composição isotópica de estrôncio em águas naturais: exemplos de sua aplicação em águas subsuperficiais da zona costeira na região Bragantina-PA Determination of strontium isotopic composition in natural waters: examples of application in subsurface waters of the coastal zone of Bragantina region, Pará

    Directory of Open Access Journals (Sweden)

    Adriana Oliveira Bordalo

    2007-08-01

    Full Text Available Analytical procedures used for determining the concentrations and isotope composition of strontium in subsurface waters, by mass spectrometry, are described. Sampling was performed in coastal plateaus, salt marsh and mangrove environments in the coastal region of Pará. Coastal plateau waters have delta87Sr between 1.51 and 6.26‰ and Sr concentration bellow 58 ppb. Salt marsh waters show delta87Sr between 0.55 and 0.90‰ and Sr concentration between 93 and 114 ppm, while mangrove waters have delta87Sr‰ around zero and Sr concentration above 15 ppm. Differences in the 87Sr/86Sr ratio in these subsurface waters are detected, as well as seasonal variations in the coastal pleteau waters.

  9. Controls for multi-scale temporal variation in methane flux of a subtropical tidal salt marsh

    Science.gov (United States)

    Li, H.

    2016-12-01

    Coastal wetlands provide critical carbon sequestration benefits, yet the production of methane (CH4) from these ecosystems can vary by an order of magnitude based on environmental and biological factors. Eddy covariance (EC) measurements for methane flux (FCH4) were performed in a subtropical tidal salt marsh of eastern China over 20 months. Spectral analysis techniques including the continuous wavelet transform, the wavelet coherence, the partial wavelet coherence and the multiple wavelet coherence were employed to analyze the periodicities and the main regulating factors of FCH4 in the tidal salt marsh. The annual budget of methane was 17.8 g C-CH4 m-2 yr-1, which was relatively high compared to those of most reported from inland wetland sites. In non-growing season, release of ebullition was the dominant driving mechanism for variability of FCH4 from hourly to monthly scales. There was no single dominant factor at short-term scale (half-day to 1-day) in growing season. It is worthwhile to note that tide was one of the most important factors regulating FCH4 at short time scale (half-day to 1-day). In comparison, the contribution of temperature to FCH4 at a short time scale (half-day to 1-day) was small due to its narrow range. In addition, plant-modulated transport and gross primary production also contributed to FCH4 at multiple temporal scales in this densely vegetated marsh, especially at weekly to monthly scales. Due to the complex interactive influences of tidal dynamics, temperature fluctuation, plant productivity, plant-mediated transport and release of ebullition on FCH4 exhibited no clear pattern of diurnal variation, but instead was highly variable.

  10. Meteotsunamis in the Great Lakes and Investigation into the May 27, 2012 Event on Lake Erie

    Science.gov (United States)

    Anderson, E. J.; Bechle, A.; Wu, C. H.; Schwab, D. J.; Mann, G.

    2016-02-01

    Meteotsunami events have been documented in several countries around the world in the coastal ocean, semi-enclosed basins, and in the Great Lakes. In particular, investigations in the Great Lakes have raised the issue of dangers posed by enclosed basins due to the reflection and interaction of meteotsunami waves, in which the destructive waves can arrive several hours after the atmospheric disturbance has passed. This disassociation in time and space between the atmospheric disturbance and resultant meteotsunami wave can pose a significant threat to the public. In a recent event on May 27, 2012, atmospheric conditions gave rise to two convective systems that generated a series of waves in the meteotsunami band on Lake Erie. The resulting waves swept three swimmers a half-mile offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline. Examination of the observed conditions shows that these events occurred at a time between the arrivals of these two storm systems when atmospheric conditions were relatively calm but water level displacements were at their greatest. In this work, we attempt to explain the processes that led to these conditions through a combination of atmospheric and hydrodynamic modeling and an analysis of the observed radial velocities associated with the meteotsunami-inducing front. Results from a high-resolution atmospheric model and hydrodynamic model reveal that the formation of these destructive waves resulted from a combination of wave reflection, focusing, and edge waves that impacted the southern shore of Lake Erie. This event illustrates the unique danger posed by temporal lags between the inducing atmospheric conditions and resulting dangerous nearshore wave conditions.

  11. A coupled geomorphic and ecological model of tidal marsh evolution.

    Science.gov (United States)

    Kirwan, Matthew L; Murray, A Brad

    2007-04-10

    The evolution of tidal marsh platforms and interwoven channel networks cannot be addressed without treating the two-way interactions that link biological and physical processes. We have developed a 3D model of tidal marsh accretion and channel network development that couples physical sediment transport processes with vegetation biomass productivity. Tidal flow tends to cause erosion, whereas vegetation biomass, a function of bed surface depth below high tide, influences the rate of sediment deposition and slope-driven transport processes such as creek bank slumping. With a steady, moderate rise in sea level, the model builds a marsh platform and channel network with accretion rates everywhere equal to the rate of sea-level rise, meaning water depths and biological productivity remain temporally constant. An increase in the rate of sea-level rise, or a reduction in sediment supply, causes marsh-surface depths, biomass productivity, and deposition rates to increase while simultaneously causing the channel network to expand. Vegetation on the marsh platform can promote a metastable equilibrium where the platform maintains elevation relative to a rapidly rising sea level, although disturbance to vegetation could cause irreversible loss of marsh habitat.

  12. Lessons Learned from Stakeholder-Driven Modeling in the Western Lake Erie Basin

    Science.gov (United States)

    Muenich, R. L.; Read, J.; Vaccaro, L.; Kalcic, M. M.; Scavia, D.

    2017-12-01

    Lake Erie's history includes a great environmental success story. Recognizing the impact of high phosphorus loads from point sources, the United States and Canada 1972 Great Lakes Water Quality Agreement set load reduction targets to reduce algae blooms and hypoxia. The Lake responded quickly to those reductions and it was declared a success. However, since the mid-1990s, Lake Erie's algal blooms and hypoxia have returned, and this time with a dominant algae species that produces toxins. Return of the algal blooms and hypoxia is again driven by phosphorus loads, but this time a major source is the agriculturally-dominated Maumee River watershed that covers NW Ohio, NE Indiana, and SE Michigan, and the hypoxic extent has been shown to be driven by Maumee River loads plus those from the bi-national and multiple land-use St. Clair - Detroit River system. Stakeholders in the Lake Erie watershed have a long history of engagement with environmental policy, including modeling and monitoring efforts. This talk will focus on the application of interdisciplinary, stakeholder-driven modeling efforts aimed at understanding the primary phosphorus sources and potential pathways to reduce these sources and the resulting algal blooms and hypoxia in Lake Erie. We will discuss the challenges, such as engaging users with different goals, benefits to modeling, such as improvements in modeling data, and new research questions emerging from these modeling efforts that are driven by end-user needs.

  13. 76 FR 66710 - Erie Boulevard Hydropower, L.P.; Notice of Application Accepted for Filing, Soliciting Comments...

    Science.gov (United States)

    2011-10-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 5984-063] Erie Boulevard Hydropower, L.P.; Notice of Application Accepted for Filing, Soliciting Comments, Motions To Intervene, and....: 5984-063. c. Date Filed: May 10, 2011. d. Applicant: Erie Boulevard Hydropower, L.P. (dba Brookfield...

  14. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  15. Nutrient cycling in salt marshes: An ecosystem service to reduce eutrophication

    DEFF Research Database (Denmark)

    Lillebø, A. I.; Sousa, A. I.; Flindt, M. R.

    2013-01-01

    and sequestration in salt marshes. This chapter will thus emphasise that salt marsh halophytes have a crucial role on nutrient cycling and sequestration, providing ecological services that contribute to maintain the ecosystem health. © 2012 Nova Science Publishers, Inc. All rights reserved.......Salt marshes are classified as sensitive habitat under the Habitats Directive (92/43/EEC), which aims to promote the maintenance of biodiversity. Worldwide, the reduction of salt marsh areas, as a result of anthropogenic disturbance is of major concern, and several studies on the ecology...

  16. Lucifer's Planet: Photolytic Hazes in the Atmosphere of 51 Eri b

    Science.gov (United States)

    Zahnle, Kevin

    2016-01-01

    We use a 1D model to address photochemistry and possible haze formation in the irradiated atmosphere of 51 Eri b (2016arXiv160407388Z). The intended focus was to have been on carbon and organic hazes, but sulfur photochemistry turns out to be interesting and possibly more important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form abundantly, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically significant clouds of solid sulfur particles, whilst in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we discuss is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.

  17. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    Science.gov (United States)

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  18. Accretion rates in salt marshes in the Eastern Scheldt, South-west Netherlands

    International Nuclear Information System (INIS)

    Oenema, O.; DeLaune, R.D.

    1988-01-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of 137 Cs in sediment cores, from historic documents, and from artificial white-coloured tracer layers in salt marshes in the Eastern Scheldt. Salt marsh accretion is related to the steady rise of the mean high tide in the Eastern Scheldt during the last few decades. Mean accretion rates vary from 0.4-0.9 cm year -1 in the St Annaland marsh to 1.0-1.5 cm year -1 in the Rattekaai marsh. Sediment accumulation in accreting marshes exceed the loss of sediment, by retreat of the marsh cliffs, by a factor of 10-20. Short-term spatial and temporal variations in accretion rates are large. Spatial variations are associated with levee and backmarsh sites and the density of marsh vegetation. Temporal variations are mainly related to fluctuations in hydrodynamic conditions. The net vertical accretion rate of organic carbon is 0.4 ± 0.1 kg m -2 year -1 , approximately half this rate is associated with the current deposit, and the other half with net additions from the belowground root biomass. A simple model for the root biomass distribution of Spartina anglica with depth and the depth-dependent fossilization of root biomass in sediments of the Rattekaai marsh is presented. (author)

  19. Halophyte vegetation influences in salt marsh retention capacity for heavy metals

    International Nuclear Information System (INIS)

    Reboreda, Rosa; Cacador, Isabel

    2007-01-01

    We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system. - The type of vegetal cover can affect the overall retention capacity of a salt marsh as well as the functioning of the salt marsh as a sink or source of metals to the estuarine system

  20. Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium)

    NARCIS (Netherlands)

    Struyf, E.; van Damme, S.; Gribsholt, B.; Middelburg, J.J.; Meire, P.

    2005-01-01

    To date, estuarine ecosystem research has mostly neglected silica cycling in freshwater intertidal marshes. However, tidal marshes can store large amounts of biogenic silica (BSi) in vegetation and sediment. BSi content of the typical freshwater marsh plants Phragmites australis, Impatiens

  1. A Global Synthesis Reveals Gaps in Coastal Habitat Restoration Research

    Directory of Open Access Journals (Sweden)

    Y. Stacy Zhang

    2018-04-01

    Full Text Available Coastal ecosystems have drastically declined in coverage and condition across the globe. To combat these losses, marine conservation has recently employed habitat restoration as a strategy to enhance depleted coastal ecosystems. For restoration to be a successful enterprise, however, it is necessary to identify and address potential knowledge gaps and review whether the field has tracked scientific advances regarding best practices. This enables managers, researchers, and practitioners alike to more readily establish restoration priorities and goals. We synthesized the peer-reviewed, published literature on habitat restoration research in salt marshes, oyster reefs, and seagrasses to address three questions related to restoration efforts: (i How frequent is cross-sector authorship in coastal restoration research? (ii What is the geographic distribution of coastal restoration research? and (iii Are abiotic and biotic factors equally emphasized in the literature, and how does this vary with time? Our vote-count survey indicated that one-third of the journal-published studies listed authors from at least two sectors, and 6% listed authors from all three sectors. Across all habitat types, there was a dearth of studies from Africa, Asia, and South America. Finally, despite many experimental studies demonstrating that species interactions can greatly affect the recovery and persistence of coastal foundation species, only one-fourth of the studies we examined discussed their effects on restoration. Combined, our results reveal gaps and discrepancies in restoration research that should be addressed in order to further propel coastal restoration science.

  2. Influence of call broadcast timing within point counts and survey duration on detection probability of marsh breeding birds

    Directory of Open Access Journals (Sweden)

    Douglas C. Tozer

    2017-12-01

    Full Text Available The Standardized North American Marsh Bird Monitoring Protocol recommends point counts consisting of a 5-min passive observation period, meant to be free of broadcast bias, followed by call broadcasts to entice elusive species to reveal their presence. Prior to this protocol, some monitoring programs used point counts with broadcasts during the first 5 min of 10-min counts, and have since used 15-min counts with an initial 5-min passive period (P1 followed by 5 min of broadcasts (B and a second 5-min passive period (P2 to ensure consistency across years and programs. Influence of timing of broadcasts within point counts and point count duration, however, have rarely been assessed. Using data from 23,973 broadcast-assisted 15-min point counts conducted throughout the Great Lakes-St. Lawrence region between 2008 and 2016 by Bird Studies Canada's Marsh Monitoring Program and Central Michigan University's Great Lakes Coastal Wetland Monitoring Program, we estimated detection probabilities of individuals for 14 marsh breeding bird species during P1B compared to BP2, P1 compared to P2, and P1B compared to P1BP2. For six broadcast species and American Bittern (Botaurus lentiginosus, we found no significant difference in detection during P1B compared to BP2, and no significant difference in four of the same seven species during P1 compared to P2. We observed small but significant differences in detection for 7 of 14 species during P1B compared to P1BP2. We conclude that differences in timing of broadcasts causes no bias based on counts from entire 10-minute surveys, although P1B should be favored over BP2 because the same amount of effort in P1B avoids broadcast bias in all broadcast species, and 10-min surveys are superior to 15-min surveys because modest gains in detection of some species does not warrant the additional effort. We recommend point counts consisting of 5 min of passive observation followed by broadcasts, consistent with the standardized

  3. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise

    Science.gov (United States)

    Cherry, J.A.; McKee, K.L.; Grace, J.B.

    2009-01-01

    1. Sea-level rise, one indirect consequence of increasing atmospheric CO2, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO 2 on the capacity of marsh plants to accrete organic material and to maintain surface elevations outweigh indirect negative effects of stressors associated with sea-level rise (salinity and flooding). 2. In this study, we used a mesocosm approach to examine potential direct and indirect effects of atmospheric CO2 concentration, salinity and flooding on elevation change in a brackish marsh community dominated by a C3 species, Schoenoplectus americanus, and a C4 grass, Spartina patens. This experimental design permitted identification of mechanisms and their role in controlling elevation change, and the development of models that can be tested in the field. 3. To test hypotheses related to CO2 and sea-level rise, we used conventional anova procedures in conjunction with structural equation modelling (SEM). SEM explained 78% of the variability in elevation change and showed the direct, positive effect of S. americanus production on elevation. The SEM indicated that C3 plant response was influenced by interactive effects between CO2 and salinity on plant growth, not a direct CO2 fertilization effect. Elevated CO2 ameliorated negative effects of salinity on S. americanus and enhanced biomass contribution to elevation. 4. The positive relationship between S. americanus production and elevation change can be explained by shoot-base expansion under elevated CO 2 conditions, which led to vertical soil displacement. While the response of this species may differ under other environmental conditions, shoot-base expansion and the general contribution of C3 plant production to elevation change may be an important mechanism contributing to soil expansion and elevation gain in other coastal wetlands. 5. Synthesis. Our results revealed previously unrecognized interactions and

  4. Ecological Effects of Sea Level Rise: Advancing coastal management through integrated research and engagement

    Science.gov (United States)

    Kidwell, D. M.

    2012-12-01

    Rising sea level represents a significant threat to coastal communities and ecosystems through land loss, altered habitats, and increased vulnerability to coastal storms and inundation. This threat is exemplified in the northern Gulf of Mexico where low topography, expansive marshes, and a prevalence of tropical storms have already resulted in extensive coastal impacts. The development of robust predictive capabilities that incorporate complex biological processes with physical dynamics are critical for informed planning and restoration efforts for coastal ecosystems. Looking to build upon existing predictive modeling capabilities and allow for use of multiple model (i.e., ensemble) approaches, NOAA initiated the Ecological Effects of Sea Level Rise program in 2010 to advance physical/biological integrative modeling capabilities in the region with a goal to provide user friendly predictive tools for coastal ecosystem management. Focused on the northern Gulf of Mexico, this multi-disciplinary project led by the University of Central Florida will use in situ field studies to parameterize physical and biological models. These field studies will also result in a predictive capability for overland sediment delivery and transport that will further enhance marsh, oyster, and submerged aquatic vegetation models. Results from this integrated modeling effort are envisioned to inform management strategies for reducing risk, restoration and breakwater guidelines, and resource sustainability for project planning, among other uses. In addition to the science components, this project incorporates significant engagement of the management community through a management applications principle investigator and an advisory management committee. Routine engagement between the science team and the management committee, including annual workshops, are focused on ensuring the development of applicable, relevant, and useable products and tools at the conclusion of this project. Particular

  5. Environmental review of natural gas production in Lake Erie

    International Nuclear Information System (INIS)

    O'Shea, K.

    2002-01-01

    The water of Lake Erie is used as a source of drinking water for Ontario, New York, Pennsylvania, Ohio and Michigan. An environmental review has been conducted to determine the impact of drilling operations on the overall ecology of the lake. Since 1913, 2000 natural gas wells have been drilled in Lake Erie, of which 550 currently produce gas and account for 75 per cent of Ontario's total gas production. 180 wells are shut-in or suspended and the remaining wells have been abandoned. The gas wells are connected to onshore production facilities by approximately 1,600 km of small diameter pipelines that lie buried near shore or on top of the lake bed. Nearly 90 per cent of the in-lake infrastructure is in water depths of more than 20 metres. Talisman Energy is actively involved with the Canadian Coast Guard, the Department of Fisheries and Oceans, and the Ministry of Natural Resources to ensure cooperation between regulators and off-shore personnel. The environmental assessment of natural gas production in Lake Erie included a review of regulatory and best management practices, a biophysical overview of the lake, and a review of drilling practices, well completions, handling of waste streams, materials management, operations inspections, wastewater discharge, air emissions, and oil spills. It was revealed that for most drilling programs, cuttings are washed and discharged to the Lake. Ongoing testing will determine the impact that this practice has on benthic populations. The drill muds used for drilling operations are water based, environmentally friendly, and re-used between well locations. For completion programs, all well activities are closed circuit operations. Wells are abandoned through plugging with cement, removing wellheads and casing below the lake bottom. There has been a reported volume of about 23,000 litres of spilled product from 1990 to 2001, of which 68 per cent has come from 3 industrial companies that operate near Lake Erie. The offshore gas

  6. Spatial patterns in accretion on barrier-island salt marshes

    NARCIS (Netherlands)

    Groot, de A.V.; Veeneklaas, R.M.; Kuijper, D.P.J.; Bakker, J.P.

    2011-01-01

    On minerogenic barrier-island salt marshes, sedimentation is spatially heterogeneous. Although the main forcing factors for sedimentation are known, much less is known about the characteristic sizes of this spatial patterning. Such patterning gives information on the spatial component of salt-marsh

  7. Accretion rates in salt marshes in the Eastern Scheldt, South-West Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O.; DeLaune, R.D.

    1988-04-01

    Vertical accretion and sediment accumulation rates were determined from the distribution of /sup 137/Cs in sediment cores, from historic documents, and from artificial white-coloured tracer layers in salt marshes in the Eastern Scheldt. Salt marsh accretion is related to the steady rise of the mean high tide in the Eastern Scheldt during the last few decades. Mean accretion rates vary from 0.4-0.9 cm year/sup -1/ in the St Annaland marsh to 1.0-1.5 cm year/sup -1/ in the Rattekaai marsh. Sediment accumulation in accreting marshes exceed the loss of sediment, by retreat of the marsh cliffs, by a factor of 10-20. Short-term spatial and temporal variations in accretion rates are large. Spatial variations are associated with levee and backmarsh sites and the density of marsh vegetation. Temporal variations are mainly related to fluctuations in hydrodynamic conditions. The net vertical accretion rate of organic carbon is 0.4 +- 0.1 kg m/sup -2/ year/sup -1/, approximately half this rate is associated with the current deposit, and the other half with net additions from the belowground root biomass. A simple model for the root biomass distribution of Spartina anglica with depth and the depth-dependent fossilization of root biomass in sediments of the Rattekaai marsh is presented.

  8. Long-term nutrient addition differentially alters community composition and diversity of genes that control nitrous oxide flux from salt marsh sediments

    Science.gov (United States)

    Kearns, Patrick J.; Angell, John H.; Feinman, Sarah G.; Bowen, Jennifer L.

    2015-03-01

    Enrichment of natural waters, soils, and sediments by inorganic nutrients, including nitrogen, is occurring at an increasing rate and has fundamentally altered global biogeochemical cycles. Salt marshes are critical for the removal of land-derived nitrogen before it enters coastal waters. This is accomplished via multiple microbially mediated pathways, including denitrification. Many of these pathways, however, are also a source of the greenhouse gas nitrous oxide (N2O). We used clone libraries and quantative PCR (qPCR) to examine the effect of fertilization on the diversity and abundance of two functional genes associated with denitrification and N2O production (norB and nosZ) in experimental plots at the Great Sippewissett Salt Marsh (Falmouth, MA, USA) that have been enriched with nutrients for over 40 years. Our data showed distinct nosZ and norB community structures at different nitrogen loads, especially at the highest level of fertilization. Furthermore, calculations of the Shannon Diversity Index and Chao1 Richness Estimator indicated that nosZ gene diversity and richness increased with increased nitrogen supply, however no such relationship existed with regard to richness and diversity of the norB gene. Results from qPCR demonstrated that nosZ gene abundance was an order of magnitude lower in the extra-highly fertilized plots compared to the other plots, but the abundance of norB was not affected by fertilization. The majority of sequences obtained from the marsh plots had no close cultured relatives and they were divergent from previously sequenced norB and nosZ fragments. Despite their divergence from any cultured representatives, most of the norB and nosZ sequences appeared to be from members of the Alpha- and Betaproteobacteria, suggesting that these classes are particularly important in salt marsh nitrogen cycling. Our results suggest that both norB and nosZ containing microbes are affected by fertilization and that the Great Sippewissett Marsh may

  9. PHOTOLYTIC HAZES IN THE ATMOSPHERE OF 51 ERI B

    Energy Technology Data Exchange (ETDEWEB)

    Zahnle, K.; Marley, M. S. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Morley, C. V. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Moses, J. I., E-mail: Kevin.J.Zahnle@NASA.gov, E-mail: kzahnle@mail.arc.NASA.gov, E-mail: Mark.S.Marley@NASA.gov, E-mail: cmorley@ucolick.org, E-mail: jmoses@spacescience.org [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States)

    2016-06-20

    We use a 1D model to address photochemistry and possible haze formation in the irradiated warm Jupiter, 51 Eridani b. The intended focus was to be carbon, but sulfur photochemistry turns out to be important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H{sub 2}S into elemental sulfur, here treated as S{sub 8}. In the cooler models, S{sub 8} is predicted to condense in optically thick clouds of solid sulfur particles, while in the warmer models S{sub 8} remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we have discussed is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650–750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.

  10. 78 FR 68044 - Erie Boulevard Hydropower, L.P.; Notice of Scoping Meetings and Environmental Site Review and...

    Science.gov (United States)

    2013-11-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 7320-042] Erie Boulevard Hydropower, L.P.; Notice of Scoping Meetings and Environmental Site Review and Soliciting Scoping Comments.... Date filed: July 1, 2013. d. Applicant: Erie Boulevard Hydropower, L.P. e. Name of Project: Chasm...

  11. Zebra mussels invade Lake Erie muds

    Science.gov (United States)

    Berkman, Paul Arthur; Haltuch, Melissa A.; Tichich, Emily; Garton, David W.; Kennedy, Gregory W.; Gannon, John E.; Mackey, Scudder D.; Fuller, Jonathan A.; Liebenthal, Dale L.

    1998-01-01

    Zebra mussels (Dreissena polymorpha) originated in western Russia but have now become widespread in Europe and North America. They are widely known for their conspicuous invasion of rocks and other hard substrates in North American and European watersheds. We have found beds of zebra mussels directly colonizing sand and mud sediments each year across hundreds of square kilometres of North America's Lake Erie. This transformation of sedimentary habitats into mussel beds represents an unforeseen change in the invasive capacity of this species.

  12. Thermodynamic assessments of the Ag-Er and Er-Y systems

    International Nuclear Information System (INIS)

    Wang, S.L.; Wang, C.P.; Liu, X.J.; Tang, A.T.; Pan, F.S.; Ishida, K.

    2010-01-01

    The phase diagrams and thermodynamic properties in the Ag-Er and Er-Y binary systems have been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, fcc, and hcp phases were described by the subregular solution model with the Redlich-Kister equation, and those of intermetallic compounds (Ag 2 Er and AgEr phases) were treated as stoichiometric compounds, and Ag 51 Er 14 phase was modeled by the sublattice model in the Ag-Er binary system. The thermodynamic parameters of the Ag-Er and Er-Y binary systems were obtained, and an agreement between the calculated results and experimental data was obtained for each binary system.

  13. Flood regime as a driver of the distribution of mangrove and salt marsh species in a subtropical estuary

    Science.gov (United States)

    Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.

    2016-09-01

    Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.

  14. Comparison of trace metals in South Carolina floodplain and marsh sediments

    International Nuclear Information System (INIS)

    Gardner, L.R.; Chen, H.S.; Settlemyre, J.L.

    1978-01-01

    A comparative study of trace metals (copper, zinc, lead, and molybdenum) in sediment cores from a pristine marsh near North Inlet, S.C., a polluted marsh near Charleston Harbor, S.C., and South Carolina river floodplains indicates that the Charleston Harbor marsh samples have significantly higher concentrations of copper, zinc, and lead than either North Inlet samples or river floodplain samples. It is not clear, however, whether this result can be attributed to industrial contamination because the peak concentrations of copper and zinc in cores from the Charleston Harbor marsh occur at depths between 10 and 60 cm rather than at or near the sediment surface, as is the case for well-documented occurrences of contaminated marine sediments. Also, both marsh areas show similar linear relationships for copper vs. zinc, which suggest that both areas received the same relative inputs of copper and zinc from similar or identical sources and that the differences in concentrations between the two areas are due to differences in the rates of accumulation. Natural mechanisms are suggested to explain the higher content of copper and zinc in Charleston Harbor vs. North Inlet marsh sediments and the variable depth of peak copper and zinc concentrations

  15. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils

    International Nuclear Information System (INIS)

    Dodla, Syam K.; Wang, Jim J.; DeLaune, Ron D.; Cook, Robert L.

    2008-01-01

    Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by 13 C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N 2 O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO 3 - at FM and potential for emission of N 2 O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO 3 - -N L -1 increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted Mississippi River water used for coastal

  16. 78 FR 62348 - Erie Boulevard Hydropower, L.P.; Notice of Application Accepted for Filing and Soliciting Motions...

    Science.gov (United States)

    2013-10-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 7320-042] Erie Boulevard Hydropower, L.P.; Notice of Application Accepted for Filing and Soliciting Motions To Intervene and Protests.... Date filed: July 1, 2013. d. Applicant: Erie Boulevard Hydropower, L.P. e. Name of Project: Chasm...

  17. Impacts of Intensified Agriculture Developments on Marsh Wetlands

    Directory of Open Access Journals (Sweden)

    Zhaoqing Luan

    2013-01-01

    Full Text Available A spatiotemporal analysis on the changes in the marsh landscape in the Honghe National Nature Reserve, a Ramsar reserve, and the surrounding farms in the core area of the Sanjiang Plain during the past 30 years was conducted by integrating field survey work with remote sensing techniques. The results indicated that intensified agricultural development had transformed a unique natural marsh landscape into an agricultural landscape during the past 30 years. Ninety percent of the natural marsh wetlands have been lost, and the areas of the other natural landscapes have decreased very rapidly. Most dry farmland had been replaced by paddy fields during the progressive change of the natural landscape to a farm landscape. Attempts of current Chinese institutions in preserving natural wetlands have achieved limited success. Few marsh wetlands have remained healthy, even after the establishment of the nature reserve. Their ecological qualities have been declining in response to the increasing threats to the remaining wetland habitats. Irrigation projects play a key role in such threats. Therefore, the sustainability of the natural wetland ecosystems is being threatened by increased regional agricultural development which reduced the number of wetland ecotypes and damaged the ecological quality.

  18. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    Science.gov (United States)

    Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.

    2016-01-01

    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.

  19. Elders Point East Marsh Island Restoration Monitoring Data Analysis

    Science.gov (United States)

    2017-09-21

    accounting for more than 90% of the measured biomass on average, indicative of a well-established marsh (Figure 12). For Elders East the data indicated...61 3.3 Other Biological and Physical Measures ...Figure 9. Growth measurements at Elders East and JoCo Marsh. ....................................................... 20 Figure 10. Stem survival at

  20. High Spatial resolution remote sensing for salt marsh change detection on Fire Island National Seashore

    Science.gov (United States)

    Campbell, A.; Wang, Y.

    2017-12-01

    Salt marshes are under increasing pressure due to anthropogenic stressors including sea level rise, nutrient enrichment, herbivory and disturbances. Salt marsh losses risk the important ecosystem services they provide including biodiversity, water filtration, wave attenuation, and carbon sequestration. This study determines salt marsh change on Fire Island National Seashore, a barrier island along the south shore of Long Island, New York. Object-based image analysis was used to classifying Worldview-2, high resolution satellite, and topobathymetric LiDAR. The site was impacted by Hurricane Sandy in October of 2012 causing a breach in the Barrier Island and extensive overwash. In situ training data from vegetation plots were used to train the Random Forest classifier. The object-based Worldview-2 classification achieved an overall classification accuracy of 92.75. Salt marsh change for the study site was determined by comparing the 2015 classification with a 1997 classification. The study found a shift from high marsh to low marsh and a reduction in Phragmites on Fire Island. Vegetation losses were observed along the edge of the marsh and in the marsh interior. The analysis agreed with many of the trends found throughout the region including the reduction of high marsh and decline of salt marsh. The reduction in Phragmites could be due to the species shrinking niche between rising seas and dune vegetation on barrier islands. The complex management issues facing salt marsh across the United States including sea level rise and eutrophication necessitate very high resolution classification and change detection of salt marsh to inform management decisions such as restoration, salt marsh migration, and nutrient inputs.

  1. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie

    Science.gov (United States)

    Arend, Kristin K.; Beletsky, Dmitry; DePinto, Joseph; Ludsin, Stuart A.; Roberts, James J.; Rucinski, Daniel K.; Scavia, Donald; Schwab, David J.; Höök, Tomas O.

    2011-01-01

    1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L-1. 2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young-of-year, YOY, and adult), a cold-water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm-water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool-water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin. 3. Hypoxia occurred annually, typically from mid-July to mid-October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm-water temperatures. 4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: -35%), followed by adult emerald shiner (mean: -12%), YOY rainbow smelt (mean: -10%) and YOY and adult yellow perch (mean: -8.5%). 5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics

  2. Environmental assessment of Al-Hammar Marsh, Southern Iraq

    Directory of Open Access Journals (Sweden)

    Hind Fadhil Abdullah Al-Gburi

    2017-02-01

    Discussion and conclusions: Decreasing of Tigris and Euphrates discharges during the past decades due to drought conditions and upstream damming, as well as the increasing stress of wastewater effluents from anthropogenic activities, led to degradation of the downstream Al-Hammar Marsh water quality in terms of physical, chemical, and biological properties. As such properties were found to consistently exceed the historical and global quality objectives. However, element concentration decreasing trend at the marsh outlet station compared to other stations indicate that the marsh plays an important role as a natural filtration and bioremediation system. Higher element concentrations in winter were due to runoff from the washing of the surrounding Sabkha during flooding by winter rainstorms. Finally, the high concentrations of heavy metals in fish samples can be attributed to bioaccumulation and biomagnification processes.

  3. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions

    Science.gov (United States)

    Jones, Joshua A; Cherry, Julia A; Mckee, Karen L.

    2016-01-01

    Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2 %). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise

  4. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    Science.gov (United States)

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  5. Ammonium transformation in a nitrogen-rich tidal freshwater marsh

    DEFF Research Database (Denmark)

    Gribsholt, B.; Andersson, M.; Boschker, H.T.S.

    2006-01-01

    The fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrient rich Scheldt River, Belgium, was quantified in a whole ecosystem 15N labeling experiment. In late summer (September) we added 15N-NH4+ to the flood water entering a 3477 m2 tidal freshwater marsh...

  6. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2014

    Science.gov (United States)

    Bodamer Scarbro, Betsy L.; Edwards, William; Gawne, Carrie; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, Mark W.; Stewart, Taylor

    2015-01-01

    In 2014, the USGS LEBS successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Forage Fish Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and LTLA (see FTG, CWTG, and FTG reports, respectively). Results from the surveys contribute to Lake Erie Committee Task Group data needs and analyses of trends in Lake Erie’s fish communities. The cruise survey schedule in 2014 was greatly increased by LEBS’s participation in the Lake Erie CSMI, which consisted of up-to two weeks of additional sampling per month from April to October. CSMI is a bi-national effort that occurs at Lake Erie every five years with the purpose of addressing data and knowledge gaps necessary to management agencies and the Lake Erie LaMP. LEBS deepwater science capabilities also provided a platform for data collection by Lake Erie investigators from multiple agencies and universities including: the USGS GLSC, ODW, KSU, OSU, UM, PU, UT, and the USNRL. Samples from this survey are being processed and a separate report of the findings will be made available in a separate document. Our 2014 vessel operations were initiated in mid-April, as soon after ice-out as possible, and continued into early December. During this time, crews of the R/V Muskie and R/V Bowfin deployed 196 bottom trawls covering 48.5 km of lake-bottom, nearly 6 km of gillnet, collected data from 60 hydroacoustics transects, 285 lower trophic (i.e., zooplankton and benthos) samples, and 330 water quality measures (e.g., temperature profiles, water samples). Thus, 2014 was an intensive year of field activity. Our June and September bottom trawl surveys in the Western Basin were numerically dominated by Emerald Shiner, White Perch, and Yellow Perch; however, Freshwater Drum were

  7. Louisiana Marsh Management Plan 1995

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We sampled experimental research areas in the Barataria Basin of Louisiana during March and May, 1995, to examine the effects of structural marsh management on...

  8. Plathelminth abundance in North Sea salt marshes: environmental instability causes high diversity

    Science.gov (United States)

    Armonies, Werner

    1986-09-01

    Although supralittoral salt marshes are habitats of high environmental instability, the meiofauna is rich in species and abundance is high. The community structure of free-living Plathelminthes (Turbellaria) in these salt marshes is described. On an average, 104 individuals are found below an area of 10 cm2. The average species density in ungrazed salt marshes is 11.3 below 10 cm2 and 45.2 below 100 cm2, indicating strong small-scale heterogenity. The faunal similarity between sediment and the corresponding above-ground vegetation is higher than between adjacent sample sites. Species prefer distinct ranges of salinity. In the lower part of the supralittoral salt marshes, the annual fluctuations of salinity are strongest and highly unpredictable. This region is richest in plathelminth species and abundance; diversity is highest, and the faunal composition of parallel samples is quite similar. In the upper part of the supralittoral salt marshes, the annual variability of salinity is lower, plathelminths are poor in species diversity and abundance. Parallel samples often have no species in common. Thus, those salt marsh regions with the most unstable environment are inhabited by the most diverse species assemblage. Compared to other littoral zones of the North Sea, however, plathelminth diversity in salt marshes is low. The observed plathelminth diversity pattern can apparently be explained by the “dynamic equilibrium model” (Huston, 1979).

  9. Stratigraphic response of salt marshes to slow rates of sea-level change

    Science.gov (United States)

    Daly, J.; Bell, T.

    2006-12-01

    Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.

  10. The Life Cycle of Entzia, an Agglutinated Foraminifer from the Salt Marshes in Transylvania

    Science.gov (United States)

    Kaminski, Michael; Telespan, Andreea; Balc, Ramona; Filipescu, Sorin; Varga, Ildiko; Görög, Agnes

    2013-04-01

    The small salt marshes associated with Miocene salt domes in Transylvania are host to a variety of marine organisms, including communities of halophytic plants as well as an agglutinated foraminifer that is normally found in coastal salt marshes worldwide. Originally described as the species Entzia tetrastoma by Daday (1884), the foraminifer is more widely known by the name Jadammina macrescens (Brady, 1870). Because the genus name Entzia has priority over Jadammina, the valid name of this taxon is Entzia macrescens (Brady, 1870). In 2007, we discovered a living population of Entzia inhabiting a small salt marsh just outside the town of Turda in central Transylvania, only a kilometer from the famous Maria Theresa Salt Mine. This is the first discovery of a living population of Entzia in Transylvania since the species was originally described in 1884. To determine whether or not the specimens we found represent a breeding population, samples were collected from the marsh on a monthly basis over the span of a year. This species can be found among the roots of the halophytic plants, in the uppermost one or two centimeters of the mud. Sediment samples were preserved in Vodka with Rose Bengal to distinguish living and dead specimens, and examined quantitatively. To document the life cycle of the species the following metrics were carried out: test size, abundance, number of chambers, ratio between live and dead specimens, and the diameter of the proloculus. An increase in the mean diameter of specimens was found from October to December. However the mean diameter decreased again in January, which suggests that asexual reproduction had apparently taken place. Small specimens again appeared in March, when sexual reproduction is presumed to have taken place. The median proloculus diameter was smallest in April and May, but the monthly changes in mean proloculus size within the population over the span of a year are not significant. However, specimens with largest

  11. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region (Version 2.0)

    Science.gov (United States)

    2010-11-01

    35 Figure 4. At the toe of a hill slope, the gradient is only slightly inclined or nearly level. ..................... 35...marshes, beach/ dune systems, and wet flats are typical of the outer coastal plain on recent or Holocene sediments, while mixed evergreen/hardwood...mangrove shrublands are also found along the Texas and Louisiana coasts (NatureServe 2006). Beach/ dune systems are typically associated with barrier

  12. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities.

    Science.gov (United States)

    Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão

    2016-08-01

    Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem.

  13. Greenhouse gas emissions from a created brackish marsh in eastern North Carolina

    Science.gov (United States)

    Shiau, Yo-Jin; Burchell, Michael R.; Krauss, Ken W.; Birgand, François; Broome, Stephen W.

    2016-01-01

    Tidal marsh creation helps remediate global warming because tidal wetlands are especially proficient at sequestering carbon (C) in soils. However, greenhouse gas (GHG) losses can offset the climatic benefits gained from C storage depending on how these tidal marshes are constructed and managed. This study attempts to determine the GHG emissions from a 4–6 year old created brackish marsh, what environmental factors governed these emissions, and how the magnitude of the fluxes relates to other wetland ecosystems. The static flux chamber method was used to measure GHG fluxes across three distinct plant zones segregated by elevation. The major of soil GHG fluxes from the marsh were from CO2 (−48–192 mg C m-2 h-1), although it was near the lower end of values reported from other wetland types having lower salinities, and would mostly be offset by photosynthetic uptake in this created brackish marsh. Methane flux was also low (−0.33–0.86 mg C m-2 h-1), likely inhibited by the high soil SO42−and soil redox potentials poised above −150 mV in this in this created brackish marsh environment. Low N2O flux (−0.11–0.10 mg N m-2 h-1) was due to low soil NO3− and soil redox conditions favoring complete denitrification. GHG fluxes from this created brackish marsh were generally lower than those recorded from natural marshes, suggesting that C sequestration may not be offset by the radiative forcing from soil GHG emissions if projects are designed properly.

  14. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone

    Science.gov (United States)

    Howard, Rebecca J.; Day, Richard H.; Krauss, Ken W.; From, Andrew S.; Allain, Larry K.; Cormier, Nicole

    2017-01-01

    Extensive hydrologic modifications in coastal regions across the world have occurred to support infrastructure development, altering the function of many coastal wetlands. Wetland restoration success is dependent on the existence of hydrologic regimes that support development of appropriate soils and the growth and persistence of wetland vegetation. In Florida, United States, the Comprehensive Everglades Restoration Program (CERP) seeks to restore, protect, and preserve water resources of the greater Everglades region. Herein we describe vegetation dynamics in a mangrove-to-marsh ecotone within the impact area of a CERP hydrologic restoration project currently under development. Vegetation communities are also described for a similar area outside the project area. We found that vegetation shifts within the impact area occurred over a 7-year period; cover of herbaceous species varied by location, and an 88% increase in the total number of mangrove seedlings was documented. We attribute these shifts to the existing modified hydrologic regime, which is characterized by a low volume of freshwater sheet flow compared with historical conditions (i.e. before modification), as well as increased tidal influence. We also identified a significant trend of decreasing soil surface elevation at the impact area. The CERP restoration project is designed to increase freshwater sheet flow to the impact area. Information from our study characterizing existing vegetation dynamics prior to implementation of the restoration project is required to allow documentation of long-term project effects on plant community composition and structure within a framework of background variation, thereby allowing assessment of the project's success in restoring critical ecosystem functions.

  15. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    Science.gov (United States)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  16. Thinking outside of the Lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed?

    Science.gov (United States)

    Investment in agricultural conservation practices (CPs) to address Lake Erie's re-eutrophication may offer benefits that extend beyond the lake, such as improved habitat conditions for fish communities throughout the watershed. If such conditions are not explicitly considered in Lake Erie nutrient ...

  17. Greenhouse gas emissions in salt marshes and their response to nitrogen loading

    Science.gov (United States)

    Tang, J.; Moseman-Valtierra, S.; Kroeger, K. D.; Morkeski, K.; Carey, J.

    2015-12-01

    Salt marshes play an important role in global and regional carbon and nitrogen cycling. Anthropogenic nitrogen loading may alter greenhouse gas (GHG, including CO2, CH4, and N2O) emissions and carbon sequestration in salt marshes. We measured GHG emissions biweekly for two growing seasons across a nitrogen-loading gradient of four Spartina salt marshes in Waquoit Bay, Massachusetts. In addition, we conducted nitrogen addition experiments in a pristine marsh by adding low and high nitrate bi-weekly during the summer. The GHG flux measurements were made in situ with a state-of-the-art mobile gas measurement system using the cavity ring down technology that consists of a CO2/CH4 analyzer (Picarro) and an N2O/CO analyzer (Los Gatos). We observed strong seasonal variations in greenhouse gas emissions. The differences in gas emissions across the nitrogen gradient (between 1 and 10 gN m-2y-1) were not significant, but strong pulse emissions of N2O were observed after nitrogen was artificially added to the marsh. We found that the studied salt marsh was a significant carbon sink (NEP ~ 380 gC m-2y-1). CH4 fluxes are 3 orders of magnitude less than CO2 fluxes in the salt marsh. Carbon fluxes are driven by light, salinity, tide, and temperature. We conclude that restoration or conservation of this carbon sink has a significant social benefit for carbon credit.

  18. Controls of Carbon Preservation in Coastal Wetlands of Texas: Mangrove vs. Saltmarsh Ecosystems

    Science.gov (United States)

    Sterne, A. M. E.; Louchouarn, P.; Norwood, M. J.; Kaiser, K.

    2014-12-01

    The estimated magnitude of the carbon (C) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire C stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of C under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze total hydrolysable carbohydrates, amino acids, phenols and stable isotopic data (δ13C) at two study sites located on the Texas coastline to investigate chemical compositions and the stage of decomposition in mangrove and marsh grass dominated wetlands. Carbohydrates are used as specific decomposition indicators of the polysaccharide component of wetland plants, whereas amino acids are used to identify the contribution of microbial biomass, and acid/aldehyde ratios of syringyl (S) and vanillyl (V) phenols (Ac/AlS,V) follow the decomposition of lignin. Preliminary results show carbohydrates account for 30-50 % of organic carbon in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Ecological differences (between marsh grass and mangrove dominated wetlands) are discussed to better constrain the role of litter biochemistry and ecological shifts on C preservation in these anoxic environments.

  19. Response of salt-marsh carbon accumulation to climate change.

    Science.gov (United States)

    Kirwan, Matthew L; Mudd, Simon M

    2012-09-27

    About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands. We find that the direct impact of warming on soil carbon accumulation rates is more subtle than the impact of warming-driven sea level rise, although the impact of warming increases with increasing rates of sea level rise. Our simulations suggest that the net impact of climate change will be to increase carbon burial rates in the first half of the twenty-first century, but that carbon-climate feedbacks are likely to diminish over time.

  20. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    Science.gov (United States)

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  1. Physical and Biological Regulation of Carbon Sequestration in Tidal Marshes

    Science.gov (United States)

    Morris, J. T.; Callaway, J.

    2017-12-01

    The rate of carbon sequestration in tidal marshes is regulated by complex feedbacks among biological and physical factors including the rate of sea-level rise (SLR), biomass production, tidal amplitude, and the concentration of suspended sediment. We used the Marsh Equilibrium Model (MEM) to explore the effects on C-sequestration across a wide range of permutations of these variables. C-sequestration increased with the rate of SLR to a maximum, then down to a vanishing point at higher SLR when marshes convert to mudflats. An acceleration in SLR will increase C-sequestration in marshes that can keep pace, but at high rates of SLR this is only possible with high biomass and suspended sediment concentrations. We found that there were no feasible solutions at SLR >13 mm/yr for permutations of variables that characterize the great majority of tidal marshes, i.e., the equilibrium elevation exists below the lower vertical limit for survival of marsh vegetation. The rate of SLR resulting in maximum C-sequestration varies with biomass production. C-sequestration rates at SLR=1 mm/yr averaged only 36 g C m-2 yr-1, but at the highest maximum biomass tested (5000 g/m2) the mean C-sequestration reached 399 g C m-2 yr-1 at SLR = 14 mm/yr. The empirical estimate of C-sequestration in a core dated 50-years overestimates the theoretical long-term rate by 34% for realistic values of decomposition rate and belowground production. The overestimate of the empirical method arises from the live and decaying biomass contained within the carbon inventory above the marker horizon, and overestimates were even greater for shorter surface cores.

  2. Vegetation - Suisun Marsh 2000 [ds161

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  3. Vegetation - Suisun Marsh 1999 [ds160

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  4. Vegetation - Suisun Marsh 2003 [ds162

    Data.gov (United States)

    California Natural Resource Agency — This vegetation mapping project of Suisun Marsh blends ground-based classification, aerial photo interpretation, and GIS editing and processing. The method is based...

  5. Coupled Wave Energy and Erosion Dynamics along a Salt Marsh Boundary, Hog Island Bay, Virginia, USA

    Directory of Open Access Journals (Sweden)

    Anthony M. Priestas

    2015-09-01

    Full Text Available The relationship between lateral erosion of salt marshes and wind waves is studied in Hog Island Bay, Virginia USA, with high-resolution field measurements and aerial photographs. Marsh retreat is compared to wave climate calculated in the bay using the spectral wave-model Simulating Waves Nearshore (SWAN. We confirm the existence of a linear relationship between long-term salt marsh erosion and wave energy, and show that wave power can serve as a good proxy for average salt-marsh erosion rates. At each site, erosion rates are consistent across several temporal scales, ranging from months to decades, and are strongly related to wave power. On the contrary, erosion rates vary in space and weakly depend on the spatial distribution of wave energy. We ascribe this variability to spatial variations in geotechnical, biological, and morphological marsh attributes. Our detailed field measurements indicate that at a small spatial scale (tens of meters, a positive feedback between salt marsh geometry and wave action causes erosion rates to increase with boundary sinuosity. However, at the scale of the entire marsh boundary (hundreds of meters, this relationship is reversed: those sites that are more rapidly eroding have a marsh boundary which is significantly smoother than the marsh boundary of sheltered and slowly eroding marshes.

  6. 2008 Federal Emergency Management Agency (FEMA) New York Lidar: Erie County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Using Leica Geosystems ALS50 Laser Systems, 89 flight lines with a nominal point spacing = 1.4 meters (4.59 feet) were collected over Erie County, NY (approximately...

  7. Predation of the zebra mussel (Dreissena polymorpha) by freshwater drum in western Lake Erie

    Science.gov (United States)

    French, John R. P.; Bur, Michael T.; Nalepa, Thomas F.; Schloesser, Donald W.

    1992-01-01

    Environmental and economic problems associated with the colonization of zebra mussels (Dreissena polymorpha) in western Lake Erie created a need to investigate control mechanisms. Predation by fishes is one potential means of control, but predation on zebra mussels by native fishes in Lake Erie is unknown. The freshwater drum (Aplodinotus grunniens) is the most likely fish predator since it is the only fish with pharyngeal teeth capable of crushing mollusk shells. In 1990, freshwater drum were collected in western Lake Erie from 9 sites near rocky reefs and 13 sites with silt or sand bottoms, and gut contents were examined. Predation on zebra mussels increased as drum size increased. Small drum (200-249 mm in length) fed mainly on dipterans, amphipods, and small fish; small zebra mussels (375 mm in length) fed almost exclusively on zebra mussels (seasons and locations combined). The smallest drum capable of crushing zebra mussel shells was 265 mm. Since freshwater drum over 375 mm feed heavily on zebra mussels, they may become a possible biological control mechanism for mussels in portions of North America.

  8. Evaluation of nekton use and habitat characteristics of restored Louisiana marsh

    Science.gov (United States)

    Thom, C.S.B.; Peyre, M.K.G.L.; Nyman, J.A.

    2004-01-01

    Marsh terracing and coconut fiber mats are two wetland restoration techniques implemented at Sabine National Wildlife Refuge, Louisiana, USA. Using nekton as an indicator of habitat quality, nekton community assemblages were compared between terraced, coconut-matted, unmanaged marsh (restoration goal), and open water (pre-restoration) habitats. Using a throw trap and a 3 m ?? 2 m straight seine, 192 nekton samples were collected over four dates in 2001 and 2002 at all habitats. Nekton abundance was similar at unmanaged marsh (restoration goal), coconut mat, and terrace edge, and significantly higher than at open water (pre-restoration) sites (P Coconut-matted habitat and unmanaged marsh edges had significantly higher numbers of benthic dependent species than terrace edges (P coconut-matted sites. Future restoration projects may evaluate the combined use of coconut mats with terracing projects in order to enhance habitat for benthic dependent nekton.

  9. 75 FR 51451 - Erie Boulevard Hydropower, L.P.; Notice of Intent To File License Application, Filing of Pre...

    Science.gov (United States)

    2010-08-20

    ... Hydropower, L.P.; Notice of Intent To File License Application, Filing of Pre-Application Document, and.... Project No.: 7320-040. c. Dated Filed: June 29, 2010. d. Submitted By: Erie Boulevard Hydropower, L.P. e...: John Mudre at (202) 502-8902; or e-mail at [email protected] . j. Erie Boulevard Hydropower, L.P...

  10. Causal mechanisms of soil organic matter decomposition: Deconstructing salinity and flooding impacts in coastal wetlands

    Science.gov (United States)

    Stagg, Camille L.; Schoolmaster, Donald; Krauss, Ken W.; Cormier, Nicole; Conner, William H.

    2017-01-01

    Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal

  11. BOTULISM E IN LAKE ERIE: ECOLOGY AND LOWER FOOD WEB TRANSFER

    Science.gov (United States)

    This project will determine the environmental conditions that favor botulism Type E bacteria in Lake Erie and explore whether quagga mussels are altering bottom sediment conditions to favor C. botulinum growth. Analysis of environmental parameters, including water chemistry, alg...

  12. The Gutenberg Health Study: measuring psychosocial factors at work and predicting health and work-related outcomes with the ERI and the COPSOQ questionnaire.

    Science.gov (United States)

    Nuebling, Matthias; Seidler, Andreas; Garthus-Niegel, Susan; Latza, Ute; Wagner, Mandy; Hegewald, Janice; Liebers, Falk; Jankowiak, Sylvia; Zwiener, Isabella; Wild, Philipp S; Letzel, Stephan

    2013-06-04

    Several instruments have been developed to assess psychosocial workload. We compared two of these instruments, the Effort-Reward Imbalance (ERI) model and the Copenhagen Psychosocial Questionnaire (COPSOQ) with regard to congruent validity and internal validity. This analysis is based on a population-based sample of the baseline examination of 2,783 employees from the Gutenberg Health Study (GHS). About half of the participants completed the ERI questionnaire (n = 1,342), the other half completed the COPSOQ (n = 1,441). First, the two samples were compared and descriptive analyses were carried out calculating mean values for both instruments in general, then separately for age, gender and main occupational groups. Second, we analyzed the relationship between ERI and COPSOQ scales on the workplace situation and on the workplace outcomes: job satisfaction, general health, burnout, satisfaction with life, by applying stepwise logistic regression analysis. For the majority of occupations, high effort as reflected by the ERI corresponded with high demands as reflected by the COPSOQ. Comparably, high reward (according to ERI) yielded a good agreement with high "influence and development" (according to COPSOQ). However, we could also find differences between ERI and COPSOQ concerning the intensity of psychosocial workload in some occupations (e.g., physicians/pharmacists or warehouse managers/warehousemen/transport workers). These differences point to differing theoretical concepts of ERI and COPSOQ. When the ability of ERI and COPSOQ was examined to determine the associations with health and work outcomes, burnout could be better predicted by the COPSOQ; this might be due to the fact that COPSOQ comprises the constructs "work-privacy conflict" and "emotional demand", which are closely related to burnout. However, methodological differences between these instruments limit their direct comparability. The ERI and COPSOQ instrument yielded similar results for most

  13. Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada

    International Nuclear Information System (INIS)

    Mayer, T.; Bennie, D.; Rosa, F.; Rekas, G.; Palabrica, V.; Schachtschneider, J.

    2007-01-01

    Occurrence and fate of alkylphenols (APs), known endocrine disruptors, were investigated in a Great Lakes coastal wetland, Cootes Paradise, ON. The wetland, which receives discharges from a Wastewater Treatment Plant (WTP) and several Combined Sewer Overflows (CSOs), is an important spawning ground for fish and crucial habitat for other fauna. Elevated concentrations of nonylphenol ethoxylates (NPEs) and their degradation product nonylphenol (NP) were found in water and sediment samples near the sources. Since transfer of APs through the food chain is of concern, we compared their concentrations in invertebrates from clean and contaminated sites. The results reveal transfer of alkylphenolics from sediments to biota and their accumulation in the invertebrate tissue, particularly the highly hydrophobic 4-NP, whose concentrations ranged from 1.9 to 6.3 μg g -1 . To our knowledge, this is the first study to evaluate AP concentrations in tissue of benthic invertebrates under real environmental conditions. - Concentrations of alkylphenolic compounds in water, sediments and benthic invertebrates in a large coastal wetland and implications for trophic transfer

  14. Greenhouse gas fluxes from salt marshes exposed to chronic nutrient enrichment

    Science.gov (United States)

    Chmura, Gail L.; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R.

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m-2 hr-1, respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m-2 hr-1, respectively, with a flux under the additional high N/low P treatment of 21 mmoles m-2 hr-1). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m-2 hr-1 with control, N, and NPK treatments, respectively and 1.21 μmol m-2 hr-1 under high N/low P treatment. At the microtidal marsh CH4fluxes were 0.23, 0.16, and -0.24 μmol CH4 m-2 hr-1 in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m-2 hr-1 in control, N, NPK and treatments, respectively and 0.35 μmol m-2 hr-1 under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m-2 hr-1, respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes.

  15. Esteetilis-praktiline töö kui eriõppe alternatiiv / Uffe Bjerre

    Index Scriptorium Estoniae

    Bjerre, Uffe

    2005-01-01

    Milleks tuupida lapsele pähe seda, millega ta hakkama ei saa, selle asemel et arendada õpilase tugevaid külgi? Samas ka koolipsühholoogide, eripedagoogide Tove Hvidi ja Howard Gardneri väited eriõpet vajavate laste kohta

  16. Erie Nuclear Plant, Units 1 and 2. License application, preliminary safety analysis report, volume 1: chapter 1

    International Nuclear Information System (INIS)

    1977-01-01

    Erie 1 and 2 reactors will be located on a site consisting of 1,740 acres in Berlin Township about 2.4 miles south of Lake Erie and 8.9 miles southeast of Sandusky, Ohio. Lake Erie will provide makeup water. The ultimate heat sink will be a 40 acre cooling reservoir shared by both units. Each unit has a proposed core thermal power level of 3,760 MW(t) and a nominal net capacity of about 1282 MW(e). Unit 1 is scheduled for commercial operation by 4/1/84 and Unit 2 by 4/1/86. Fuel will be Zircaloy-4 clad tubes containing cylindrical fuel pellets of UO 2 . B and W pressurized water reactor units to be employed are described in DOCKET-STN-50561

  17. Reconstructing the Genetic Potential of the Microbially-Mediated Nitrogen Cycle in a Salt Marsh Ecosystem.

    Science.gov (United States)

    Dini-Andreote, Francisco; Brossi, Maria Julia de L; van Elsas, Jan Dirk; Salles, Joana F

    2016-01-01

    Coastal ecosystems are considered buffer zones for the discharge of land-derived nutrients without accounting for potential negative side effects. Hence, there is an urgent need to better understand the ecological assembly and dynamics of the microorganisms that are involved in nitrogen (N) cycling in such systems. Here, we employed two complementary methodological approaches (i.e., shotgun metagenomics and quantitative PCR) to examine the distribution and abundance of selected microbial genes involved in N transformations. We used soil samples collected along a well-established pristine salt marsh soil chronosequence that spans over a century of ecosystem development at the island of Schiermonnikoog, The Netherlands. Across the examined soil successional stages, the structure of the populations of genes involved in N cycling processes was strongly related to (shifts in the) soil nitrogen levels (i.e., [Formula: see text], [Formula: see text]), salinity and pH (explaining 73.8% of the total variation, R (2) = 0.71). Quantification of the genes used as proxies for N fixation, nitrification and denitrification revealed clear successional signatures that corroborated the taxonomic assignments obtained by metagenomics. Notably, we found strong evidence for niche partitioning, as revealed by the abundance and distribution of marker genes for nitrification (ammonia-oxidizing bacteria and archaea) and denitrification (nitrite reductase nirK, nirS and nitrous oxide reductase nosZ clades I and II). This was supported by a distinct correlation between these genes and soil physico-chemical properties, such as soil physical structure, pH, salinity, organic matter, total N, [Formula: see text], [Formula: see text] and [Formula: see text], across four seasonal samplings. Overall, this study sheds light on the successional trajectories of microbial N cycle genes along a naturally developing salt marsh ecosystem. The data obtained serve as a foundation to guide the formulation of

  18. Minimum size limits for yellow perch (Perca flavescens) in western Lake Erie

    Science.gov (United States)

    Hartman, Wilbur L.; Nepszy, Stephen J.; Scholl, Russell L.

    1980-01-01

    During the 1960's yellow perch (Perca flavescens) of Lake Erie supported a commercial fishery that produced an average annual catch of 23 million pounds, as well as a modest sport fishery. Since 1969, the resource has seriously deteriorated. Commercial landings amounted to only 6 million pounds in 1976, and included proportionally more immature perch than in the 1960's. Moreover, no strong year classes were produced between 1965 and 1975. An interagency technical committee was appointed in 1975 by the Lake Erie Committee of the Great Lakes Fishery Commission to develop an interim management strategy that would provide for greater protection of perch in western Lake Erie, where declines have been the most severe. The committee first determined the age structure, growth and mortality rates, maturation schedule, and length-fecundity relationship for the population, and then applied Ricker-type equilibrium yield models to determine the effects of various minimum length limits on yield, production, average stock weight, potential egg deposition, and the Abrosov spawning frequency indicator (average number of spawning opportunities per female). The committee recommended increasing the minimum length limit of 5.0 inches to at least 8.5 inches. Theoretically, this change would increase the average stock weight by 36% and potential egg deposition by 44%, without significantly decreasing yield. Abrosov's spawning frequency indicator would rise from the existing 0.6 to about 1.2.

  19. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    Science.gov (United States)

    Armitage, Anna R; Highfield, Wesley E; Brody, Samuel D; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2), a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2), a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  20. Diversity and composition of sediment bacteria in subtropical coastal wetlands of North Stradbroke Island, Queensland, Australia

    Science.gov (United States)

    Chuvochina, Maria; Sampayo, Eugenia; Welti, Nina; Hayes, Matthew; Lu, Yang; Lovelock, Catherine; Lockington, David

    2013-04-01

    Coastal wetlands provide a wide variety of important ecosystem services but continue to suffer disturbance, degradation and deforestation. Sediment bacteria are responsible for major nutrient transformation and recycling in these ecosystems. Insight into microbial community composition and the factors that determine them may improve our understanding of biogeochemical processes, food web dynamics, biodegradation processes and, thus, help to develop the management strategies for preserving the ecosystem health and services. Characterizing shifts in community taxa along environmental gradients has been shown to provide a useful tool for determining the major drivers affecting community structure and function. North Stradbroke Island (NSI) in Southern Queensland presents considerable habitat diversity including variety of groundwater dependent ecosystems such as lakes, swamps, sedge-like salt marshes and mangroves. Ecological responses of continuous groundwater extraction for municipal purposes and sand mining operations on NSI are still need to be assessed in order to protect its unique environment. Changes in coastal hydrology due to either climate change or human activity may directly affect microbial populations and, thus, biogeochemical cycles of nutrients. These may result in altering/losing some ecosystem services provided by coastal wetlands. In this study we examine microbial diversity and determine environmental controls on bacterial community structure along a natural transition from freshwater forested wetland (melaleuca woodland), sedge-like salt marsh and into mangroves located at NSI. The study area is characterized by significant groundwater flow, nutrient limitation and sharp transition from one ecosystem type to another. Sediment cores (0-5 cm and 20-25 cm depth) were collected from three representative sites of each zone (mangroves - salt marsh - freshwater wetland) along the salinity gradient in August 2012. Subsamples were set aside for use in

  1. Tracing the anthropogenic lead sources in coastal sediments of SE-Pacific (36 deg. Lat. S) using stable lead isotopes

    International Nuclear Information System (INIS)

    Munoz, Praxedes N.V.; Garbe-Schoenberg, Carl-Dieter; Salamanca, Marco A.

    2004-01-01

    This study evaluates the main sources of antropogenic Pb in one of the most industrialized centers of the southern Chilean coast (36 deg. S). Stable lead isotopes ( 206 Pb/ 207 Pb, 208 Pb/ 207 Pb) were used to trace main Pb sources to coastal sediments, considering the suspended particulate matter (SPM) from marine (traps), continental (rivers) and industrial effluents, sediments and leaded gasoline samples. The atmospheric input was evaluated through natural collectors; i.e. Raqui-Tubul salt marsh. Results show that marine samples lie on a trend between industrial effluents (∼1.16, 2.44) and natural sources (1.20, 2.50), not related to gasoline consumption. Salt marsh sediments show comparable isotopic composition to marine samples, suggesting the importance of the atmospheric input in the coastal sediments, not related to the leaded gasoline composition either. The continental input (1.18, 2.48) is highly influenced by precipitation, being difficult to separate both sources (atmosphere and continental runoff), showing also similar isotopic ratio to marine sediments. The signal of industrial emissions is masked with the introduction of Pb with higher isotopic ratios, compared to the values observed in the material collected from traps (SPM ∼1.19, 2.48). The contribution of more radiogenic Pb by the upwelling is suggested

  2. Summary of intrinsic and extrinsic factors affecting detection probability of marsh birds

    Science.gov (United States)

    Conway, C.J.; Gibbs, J.P.

    2011-01-01

    Many species of marsh birds (rails, bitterns, grebes, etc.) rely exclusively on emergent marsh vegetation for all phases of their life cycle, and many organizations have become concerned about the status and persistence of this group of birds. Yet, marsh birds are notoriously difficult to monitor due to their secretive habits. We synthesized the published and unpublished literature and summarized the factors that influence detection probability of secretive marsh birds in North America. Marsh birds are more likely to respond to conspecific than heterospecific calls, and seasonal peak in vocalization probability varies among co-existing species. The effectiveness of morning versus evening surveys varies among species and locations. Vocalization probability appears to be positively correlated with density in breeding Virginia Rails (Rallus limicola), Soras (Porzana carolina), and Clapper Rails (Rallus longirostris). Movement of birds toward the broadcast source creates biases when using count data from callbroadcast surveys to estimate population density. Ambient temperature, wind speed, cloud cover, and moon phase affected detection probability in some, but not all, studies. Better estimates of detection probability are needed. We provide recommendations that would help improve future marsh bird survey efforts and a list of 14 priority information and research needs that represent gaps in our current knowledge where future resources are best directed. ?? Society of Wetland Scientists 2011.

  3. First records of a European cladoceran, Bythotrephes cederstroemi, in Lakes Erie and Huron

    Science.gov (United States)

    Bur, Michael T.; Klarer, David M.; Krieger, Kenneth A.

    1986-01-01

    Adult forms of the cladoceran Bythotrephes cederstroemi Schoedler (Cercopagidae), a widespread European freshwater zooplankter, occurred in the stomachs of four common species of Lake Erie fish (yellow perch, Perca flavescens; white perch, Morone americana; white bass, M. chrysops; and walleye, Stizostedion vitreum vitreum) collected in early October 1985. The fish were collected at several stations in the nearshore open waters of the central basin between Ashtabula and Huron, Ohio. Other investigators have seen this species in other locations in Lake Erie and also in Lake Huron. The report of B. cederstroemi in Lake Huron in December 1984 appears to be the first record of this species in North America.

  4. Environmental significance of atmospheric emission resulting from in situ burning of oiled salt marsh

    International Nuclear Information System (INIS)

    Devai, I.; DeLaune, R.D.; Henry, C.B. Jr.; Roberts, P.O.; Lindau, C.W.

    1998-01-01

    The environmental significance of atmospheric emissions resulting from in-situ burning used as remediation technique for removal of petroleum hydrocarbons entering Louisiana coastal salt marshes was quantified. Research conducted documented atmospheric pollutants produced and emitted to the atmosphere as the result of burning of oil contaminated wetlands. Samples collected from the smoke plume contained a variety of gaseous sulfur and carbon compounds. Carbonyl sulfide and carbon disulfide were the main volatile sulfur compounds. In contrast, concentrations of sulfur dioxide were almost negligible. Concentrations of methane and carbon dioxide in the smoke plume increased compared to ambient levels. Air samples collected for aromatic hydrocarbons in the smoke plume were dominated by pyrogenic or combustion derived aromatic hydrocarbons. The particulate fraction was dominated by phenanthrene and the C-1 and C-2 alkylated phenanthrene homologues. The vapor fraction was dominated by naphthalene and the C-1 to C-3 naphthalene homologues. (author)

  5. El idealismo en la filosofía medieval: el caso de Juan Escoto Eriúgena

    OpenAIRE

    Moran, Dermont

    2012-01-01

    Quiero sostener en este artículo (en contra de la posición de Myles Burnyeat) que el idealismo es una posibilidad filosófica genuina previa a Descartes. En efecto, podemos encontrar una versión del idealismo que supone un concepto desarrollado de subjetividad en una sofisticada versión del  Periphyseon de Escoto Eriúgena. El inmaterialismo intelectualista extremo de Eriúgena difiere del idealismo moderno en la medida en que aquél no está motivado tanto por una consideración epistemológica de ...

  6. The structure of salt marsh soil mesofauna food webs - The prevalence of disturbance.

    Science.gov (United States)

    Haynert, Kristin; Kiggen, Mirijam; Klarner, Bernhard; Maraun, Mark; Scheu, Stefan

    2017-01-01

    Mesofauna taxa fill key trophic positions in soil food webs, even in terrestrial-marine boundary habitats characterized by frequent natural disturbances. Salt marshes represent such boundary habitats, characterized by frequent inundations increasing from the terrestrial upper to the marine pioneer zone. Despite the high abundance of soil mesofauna in salt marshes and their important function by facilitating energy and carbon flows, the structure, trophic ecology and habitat-related diet shifts of mesofauna species in natural salt marsh habitats is virtually unknown. Therefore, we investigated the effects of natural disturbance (inundation frequency) on community structure, food web complexity and resource use of soil mesofauna using stable isotope analysis (15N, 13C) in three salt marsh zones. In this intertidal habitat, the pioneer zone is exposed to inundations twice a day, but lower and upper salt marshes are less frequently inundated based on shore height. The mesofauna comprised 86 species / taxa dominated by Collembola, Oribatida and Mesostigmata. Shifts in environmental disturbances influenced the structure of food webs, diversity and density declined strongly from the land to the sea pointing to the importance of increasing levels of inundation frequency. Accordingly, the reduced diversity and density was associated by a simplification of the food web in the pioneer zone as compared to the less inundated lower and upper salt marsh with a higher number of trophic levels. Strong variations in δ15N signatures demonstrated that mesofauna species are feeding at multiple trophic levels. Primary decomposers were low and most mesofauna species functioned as secondary decomposers or predators including second order predators or scavengers. The results document that major decomposer taxa, such as Collembola and Oribatida, are more diverse than previously assumed and predominantly dwell on autochthonous resources of the respective salt marsh zone. The results further

  7. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils

    Energy Technology Data Exchange (ETDEWEB)

    Dodla, Syam K. [School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803 (United States); Wang, Jim J. [School of Plant, Environmental and Soil Sciences, Louisiana State Univ. Agricultural Center, Baton Rouge, LA 70803 (United States)], E-mail: jjwang@agctr.lsu.edu; DeLaune, Ron D. [Wetland Biogeochemistry Institute, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803 (United States); Cook, Robert L. [Chemistry Department, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2008-12-15

    Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by {sup 13}C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N{sub 2}O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO{sub 3}{sup -} at FM and potential for emission of N{sub 2}O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO{sub 3}{sup -}-N L{sup -1} increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted

  8. Spatio-temporal structure and influence of environmental parameters on the Tipuloidea (Insecta: Diptera) assemblage of Neotropical salt marshes

    Science.gov (United States)

    Rodrigues, Lucas; Carrasco, Daiane; Proietti, Maíra

    2017-10-01

    Estuaries and salt marshes are important coastal ecosystems that present unique characteristics in terms of nutrient cycling, salinity, habitats, flora and fauna. Despite their ecological importance, there is scarce knowledge on the occupation, distribution and ecology of insects, including Tipuloidea, in these environments. This study aimed to evaluate the composition, seasonality and effect of abiotic factors on the abundance, diversity and structure of a Tipuloidea assemblage at the Patos Lagoon salt marshes, located at the south of the Neotropical region. We sampled crane-flies from three zones along the estuary by installing two Malaise traps at the low and high vegetation strata of each zone. Sampling was conducted uninterruptedly every fifteen days between August/2015 and July/2016, and collected insects were identified morphologically based on specific literature. 5248 crane-flies were identified covering six species and twenty-five morphospecies. Abundance and frenquency of occurrence of species revealed a gap in the presence of constant species at the middle estuary. Dicranomyia, Gonomyia, Teucholabis and Zelandotipula species were additional (accessory) species only in the upper estuary, while Symplecta cana only in the lower estuary. This shows that different species prefer distinct points along the estuary. Higher abundance of crane-flies was correlated with elevated temperature and humidity. Symplecta pilipes was an exception, presenting increase in abundance under lower temperatures. Seasonal change in Tipuloidea species composition was observed, with higher evenness of Dicranomyia, Geranomyia, Rhipidia domestica and Symplecta cana (15-20%) during summer, and dominance of Symplecta pilipes in winter (80%). The gap at the middle estuary can possibly be due to stress caused by large fluctuations in salinity in the zone. In addition, the seasonal differences can have significant ecological consequences such as the modification of the Tipuloid species

  9. Nitrogen processing in a tidal freshwater marsh: a whole ecosystem 15N labeling study

    NARCIS (Netherlands)

    Gribsholt, B.; Boschker, H.T.S.; Struyf, E.; Andersson, M.G.I.; Tramper, A.; de Brabandere, L.; van Damme, S.; Brion, N.; Meire, P.; Dehairs, F.; Middelburg, J.J.; Heip, C.H.R.

    2005-01-01

    We quantified the fate and transport of watershed-derived ammonium in a tidal freshwater marsh fringing the nutrientrich Scheldt River in a whole-ecosystem 15N labeling experiment. 15N-NH4+ was added to the floodwater entering a 3,477 14 m2 tidal marsh area, and marsh ammonium processing and

  10. Trends and causes of historical wetland loss in coastal Louisiana

    Science.gov (United States)

    Bernier, Julie

    2013-01-01

    Wetland losses in the northern Gulf Coast region of the United States are so extensive that they represent critical concerns to government environmental agencies and natural resource managers. In Louisiana, almost 3,000 square kilometers (km2) of low-lying wetlands converted to open water between 1956 and 2004, and billions of dollars in State and Federal funding have been allocated for coastal restoration projects intended to compensate for some of those wetland losses. Recent research at the St. Petersburg Coastal and Marine Science Center (SPCMSC) focused on understanding the physical processes and human activities that contributed to historical wetland loss in coastal Louisiana and the spatial and temporal trends of that loss. The physical processes (land-surface subsidence and sediment erosion) responsible for historical wetland loss were quantified by comparing marsh-surface elevations, water depths, and vertical displacements of stratigraphic contacts at 10 study areas in the Mississippi River delta plain and 6 sites at Sabine National Wildlife Refuge (SNWR) in the western chenier plain. The timing and extent of land loss at the study areas was determined by comparing historical maps, aerial photographs, and satellite imagery; the temporal and spatial trends of those losses were compared with historical subsidence rates and hydrocarbon production trends.

  11. Salt marsh stability and patterns of sedimentation across a backbarrier platform

    DEFF Research Database (Denmark)

    Bartholdy, Anders; Bartholdy, Jesper; Kroon, Aart

    2010-01-01

    Long term observations of clay thicknesses from 1949 to 2007 and measurements of the bulk dry density of salt marsh on the backbarrier of Skallingen (west Denmark) formed the basis of constructing a space distributed model of salt marsh deposition. The deposition potential (an empirical constant, ß...

  12. Alternative nitrate reduction pathways in experimentally fertilized New England salt marshes

    DEFF Research Database (Denmark)

    Uldahl, Anne; Banta, Gary Thomas; Boegh, Eva

    the ecosystem in the form of gaseous N2, while the last process transforms of NO3- to another biologically available form, NH4+, and thus merely recycles N. Salt marshes are important ecosystems for the cycling, retention and removal of biologically available N transported from land to the oceans. We used...... ongoing ecosystem level nutrient additions experiments in two New England salt marshes, Plum Island Sound (NO3- additions since 2003) and Great Sippewissett Marsh (fertilizer additions since the 1970's) to examine the relative importance of these NO3- reduction pathways in salt marshes. Sediments from...... several experimental (and unmanipulated) sites were collected during the late summer/fall of 2009 and summer 2010 to measure the potential rates of NO3- reduction in sediment slurries enriched with NO3- and 15NO3- added as a tracer. The resulting 15N-labeled products (30N2, 29N2 and 15NH4+) were analyzed...

  13. Lake trout rehabilitation in Lake Erie: a case history

    Science.gov (United States)

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  14. A seasonal and spatial comparison of metals, and stable carbon and nitrogen isotopes, in Chincoteague Bay and the marsh deposits of Assateague Island and the adjacent vicinity, Maryland and Virginia

    Science.gov (United States)

    Ellis, Alisha M.; Smith, Christopher G.

    2017-11-28

    After Hurricane Sandy, scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a seasonal collection of estuarine, marsh, and sandy overwash surface sediments from Chincoteague Bay, Tom’s Cove, and the surrounding Assateague Island and Delmarva Peninsula in March–April and October 2014. Surplus surface sediment was analyzed for metals, percent carbon and nitrogen, δ13C, and δ15N as part of a complementary U.S. Geological Survey Coastal and Marine Geology Program Sea-level and Storm Impacts on Estuarine Environments and Shorelines project study. The geochemical subsample analyzed for metals and stable isotopes at each site may be used for comparison with past data sets, to create a modern baseline of the natural distribution of the area, to understand seasonal variability as it relates to the health of the local environment, and to assess marsh-to-bay interactions. The use of metals, stable carbon, and stable nitrogen isotopes allows for a more cohesive snapshot of factors influencing the environment and could aid in tracking environmental change.This report serves as an archive for chemical data derived from the surface sediment. Data are available for a seasonal comparison between the March–April 2014 and October 2014 sampling trips. Downloadable data are available as Microsoft Excel spreadsheets. These additional files include formal Federal Geographic Data Committee metadata (data downloads).

  15. Quantifying Trophic Interactions and Carbon Flow in Louisiana Salt Marshes Using Multiple Biomarkers

    Science.gov (United States)

    Polito, M. J.; Lopez-Duarte, P. C.; Olin, J.; Johnson, J. J.; Able, K.; Martin, C. W.; Fodrie, J.; Hooper-Bui, L. M.; Taylor, S.; Stouffer, P.; Roberts, B. J.; Rabalais, N. N.; Jensen, O.

    2017-12-01

    Salt marshes are critical habitats for many species in the northern Gulf of Mexico. However, given their complex nature, quantifying trophic linkages and the flow of carbon through salt marsh food webs is challenging. This gap in our understanding of food web structure and function limits our ability to evaluate the impacts of natural and anthropogenic stressors on salt marsh ecosystems. For example, 2010 Deepwater Horizon (DWH) oil spill had the potential to alter trophic and energy pathways. Even so, our ability to evaluate its effects on Louisiana salt marsh food webs was limited by a poor basis for comparison of the pre-spill baseline food web. To be better equipped to measure significant alterations in salt marsh ecosystems in the future, we quantified trophic interactions at two marsh sites in Barataria Bay, LA in May and October of 2015. Trophic structure and carbon flow across 52 species of saltmarsh primary producers and consumers were examined through a combination of three approaches: bulk tissue stable isotope analysis (δ13C, δ15N, δ34S), dietary fatty acid analysis (FAA), and compound-specific stable isotope analysis of essential amino acids (δ13C EAA). Bulk stable isotope analysis indicated similar trophic diversity between sites and seasons with the use of aquatic resources increasing concomitantly with trophic level. FAA and δ13C EAA biomarkers revealed that marsh organisms were largely divided into two groups: those that primarily derive carbon from terrestrial C4 grasses, and those that predominately derive carbon from a combination of phytoplankton and benthic microalgal sources. Differences in trophic structure and carbon flow were minimal between seasons and sites that were variably impacted by the DWH spill. These data on salt marsh ecosystem structure will be useful to inform future injury assessments and restoration initiatives.

  16. Salt marsh recovery from a crude oil spill: Vegetation, oil weathering, and response

    International Nuclear Information System (INIS)

    Hoff, R.Z.; Shigenaka, G.; Henry, C.B. Jr.

    1993-01-01

    When a spill of Prudhoe Bay crude oil covered a fringing Salicornia virginica marsh in Fidalgo Bay, Washington (northern Puget Sound) in February 1991, response personnel used several low-impact techniques to remove oil from the marsh, and minimized access by cleanup workers. Following the response, a monitoring program was established to track marsh recovery, and to document the effectiveness of the response techniques used and their impacts on the marsh. Through monthly sampling over a 16-month period, vegetative growth was monitored and chemical degradation of remaining oil was tracked. Sampling was conducted along transects located in four areas affected in different ways by the spill, including an oiled, trampled section; an oiled, vacuumed section; and an oiled, washed, and vacuumed section. In addition, a control transect was established in an unoiled adjacent marsh. The study included both biological and chemical components. Biological measurements included percent cover of live vegetation (sampled monthly) and below-ground plant biomass (sampled at the beginning of each growing season in April 1991 and April 1992). Sediment samples included surface sediment (monthly) and core samples collected at the beginning and end of the growing seasons. Sediment samples were analyzed using gas chromatography/mass spectroscopy, and indicator compounds were tracked to determine rates of oil degradation. Results from 16 months of post-spill monitoring show that foot trampling was most detrimental to marsh plants, while washing with vacuuming removed the most oil and minimized adverse impacts to vegetation. Dense clay substrate helped prevent oil from penetrating the sediment, thus minimizing acute toxic effects from oil exposure to marsh plant rootstock. By the second growing season post-spill, Salicornia and other marsh plants were growing in all areas except one heavily oiled patch

  17. Patterns and sources of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in surficial sediments of Lakes Erie and Ontario

    International Nuclear Information System (INIS)

    Shen Li; Gewurtz, Sarah B.; Reiner, Eric J.; MacPherson, Karen A.; Kolic, Terry M.; Helm, Paul A.; Brindle, Ian D.; Marvin, Chris H.

    2008-01-01

    This study determines spatial trends and congener patterns of 2378-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in surficial sediments of Lakes Erie and Ontario. Sediments are enriched in 2378-PCDFs in Lake Ontario, and the PCDD/F concentrations increased from shallow near-shore sediments towards deep-water depositional zone sediments. In Lake Erie, sediments were dominated by octachlorodibenzo-p-dioxin, and the highest PCDD/F concentrations were observed in the western basin and the southern shoreline of the central basin with a decrease towards the eastern basin and the northern shoreline of the central basin. Principal components analysis revealed that chemical manufacture and disposal of chemical waste along the Niagara River has been a major PCDD/F source to Lake Ontario; while PCDD/Fs in Lake Erie are from multiple sources including industrial sources along the Detroit River, major tributaries along the southern shoreline of the lake, and atmospherically-derived material from the upper lakes and connecting channels. - Lake-wide 2378-PCDD/F congener patterns are first reported in L. Erie and L. Ontario sediments

  18. Contribution of Cultural Eutrophication to Marsh Loss in Jamaica Bay (NY)

    Science.gov (United States)

    Loss of salt marsh area in the Jamaica Bay Estuary (NY) has accelerated in recent years, with loss rates as high as 45 acres per year. A contributing factor to this acceleration is likely cultural eutrophication due to over 6 decades of sewage effluent inputs. We examined marsh...

  19. Specificity of salt marsh diazotrophs for vegetation zones and plant hosts

    Directory of Open Access Journals (Sweden)

    Debra Aline Davis

    2012-03-01

    Full Text Available Salt marshes located on the east coast of temperate North America are highly productive, typically nitrogen-limited, and support diverse assemblages of nitrogen fixing (diazotrophic bacteria. The distributions of these diazotrophs are strongly influenced by plant host and abiotic environmental parameters. Crab Haul Creek Basin, North Inlet, SC, USA is a tidally dominated marsh that displays discrete plant zones distributed along an elevation gradient from the tidal creek bank to the terrestrial forest. These zones are defined by gradients of abiotic environmental variables, particularly salinity and sulfide. DGGE fingerprinting and phylogenetic analyses of recovered sequences demonstrated that the distributions of some diazotrophs indicate plant host specificity and that diazotroph assemblages across the marsh gradient are heavily influenced by edaphic conditions. Broadly distributed diazotrophs capable of maintaining populations in all environmental conditions across the gradient are also present in these assemblages. Parsimony test results confirm that diazotroph assemblages in different plant zones are significantly (p<0.01 different across the marsh landscape. Results also indicated that diazotroph assemblages associated with different plant hosts growing in the same area of the marsh were structurally similar confirming the influence of edaphic parameters on these assemblages. Principal Component Analysis of DGGE gel banding patterns confirmed these results. This article reviews and analyzes data from North Inlet Estuary, addressing diazotroph assemblage structure and the influence of plant host and environmental conditions. New data demonstrate the heterogeneity of salt marsh rhizosphere microenvironments, and corroborate previous findings from different plant hosts growing at several locations within this estuary. These data support the hypothesis that the biogeography of microorganisms is non-random and is partially driven by

  20. CZMIL (coastal zone mapping and imaging lidar): from first flights to first mission through system validation

    Science.gov (United States)

    Feygels, Viktor I.; Park, Joong Yong; Wozencraft, Jennifer; Aitken, Jennifer; Macon, Christopher; Mathur, Abhinav; Payment, Andy; Ramnath, Vinod

    2013-06-01

    CZMIL is an integrated lidar-imagery system and software suite designed for highly automated generation of physical and environmental information products for coastal zone mapping in the framework of the US Army Corps of Engineers (USACE) National Coastal Mapping Program (NCMP). This paper presents the results of CZMIL system validation in turbid water conditions along the Gulf Coast of Mississippi and in relatively clear water conditions in Florida in late spring 2012. Results of the USACE May-October 2012 mission in Green Bay, WI and Lake Erie are presented. The system performance tests show that CZMIL successfully achieved 7-8m depth in Mississippi with Kd =0.46m-1 (Kd is the diffuse attenuation coefficient) and up to 41m in Florida when Kd=0.11m-1. Bathymetric accuracy of CZMIL was measured by comparing CZMIL depths with multi-beam sonar data from Cat Island, MS and from off the coast of Fort. Lauderdale, FL. Validation demonstrated that CZMIL meets USACE specifications (two standard deviation, 2σ, ~30 cm). To measure topographic accuracy we made direct comparisons of CZMIL elevations to GPS-surveyed ground control points and vehicle-based lidar scans of topographic surfaces. Results confirmed that CZMIL meets the USACE topographic requirements (2σ, ~15 cm). Upon completion of the Green Bay and Lake Erie mission there were 89 flights with 2231 flightlines. The general hours of aircraft engine time (which doesn't include all transit/ferry flights) was 441 hours with 173 hours of time on survey flightlines. The 4.8 billion (!) laser shots and 38.6 billion digitized waveforms covered over 1025 miles of shoreline.

  1. Coastal flood inundation monitoring with Satellite C-band and L-band Synthetic Aperture Radar data

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri

    2013-01-01

    Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm- and tidal-related flooding of spatially extensive coastal marshes within the north-central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L-Band SAR (PALSAR) (L-band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C-band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006-2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR- and ASAR-based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference-scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR-based inundation accuracies averaged 84% (n = 160), while ASAR-based mapping accuracies averaged 62% (n = 245).

  2. Trophic shift in young-of-the-year Mugilidae during salt-marsh colonization.

    Science.gov (United States)

    Lebreton, B; Richard, P; Guillou, G; Blanchard, G F

    2013-04-01

    This study investigated the trophic shift of young-of-the-year (YOY) thinlip grey mullet Liza ramada and golden grey mullet Liza aurata during their recruitment in a salt marsh located on the European Atlantic Ocean coast. Stable-isotope signatures (δ(13) C and δ(15) N) of the fishes followed a pattern, having enrichments in (13) C and (15) N with increasing fork length (LF ): δ(13) C in fishes  30 mm δ(13) C ranged from -15.8 to -12.7‰, closer to the level in salt-marsh food resources. Large differences between the δ(15) N values of mugilids and those of food sources (6·0‰ on average) showed that YOY are secondary consumers, similar to older individuals, when feeding in the salt marsh. YOY mugilids shift from browsing on pelagic prey to grazing on benthic resources from the salt marsh before reaching 30 mm LF. The results highlight the role of European salt marshes as nurseries for juvenile mugilids. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  3. Monitoring for bioremediation efficacy: The marrow marsh experience

    International Nuclear Information System (INIS)

    Nadeau, R.; Singhvi, R.; Ryabik, J.; Lin, Yihua; Syslo, J.

    1993-01-01

    The US Environmental Protection Agency's Environmental Response Team analyzed samples taken from Marrow Marsh, Galveston Bay, Texas, to assess the efficacy of a bioremediation effort in the marsh following the Apex barges spill on July 28, 1990. Samples from the marsh had been collected over a 96-hour period following the first application of the bioremediation agent and then 25 days after the second application, which occurred 8 days after the first. Results of sample analyses to evaluate changes in the chemical characteristics of spilled oil failed to show evidence of oil degradation during the 96 hours after the initial treatment, but did show evidence of degradation 25 days after the second treatment-although differences between samples from treated and untreated sites were not evident. Because control areas had not been maintained after the second application, contamination by the bioremediation agent of previously untreated (control) areas may have occurred, perhaps negating the possibility of detecting differences between treated and control areas. Better preparedness to implement bioremediation and conduct monitoring might have increased the effectiveness of the monitoring effort

  4. Effects of bryophytes on succession from alkaline marsh to Sphagnum bog

    Energy Technology Data Exchange (ETDEWEB)

    Glime, J.M.; Wetzel, R.G.; Kennedy, B.J.

    1982-10-01

    The alkaline eastern marsh of Lawrence Lake, a marl lake in southwestern Michigan, was sampled by randomly placed line transects to determine the bryophyte cover and corresponding vascular plant zones. Cluster analysis indicated three distinct bryophyte zones which correspond with the recognized vascular plant zones. Mosses occupied over 50% of the surface in some areas. Invasion of Sphagnum, vertical zonation of the mosses on hummocks, zonation with distance from the lake, the abundance of non-Sphagnum moss hummocks, and the ability of the non-Sphagnum species to lower the pH of marsh water during laboratory incubations are evidence that non-Sphagnum mosses facilitate succession from alkaline marsh to Sphagnum bog.

  5. Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain)

    Science.gov (United States)

    Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A.

    2006-06-01

    Mapping of coastal inundation hazard related to storms requires the combination of multiple sources of information regarding meteorological, morphological and dynamic characteristics of both the area at risk and the studied phenomena. Variables such as beach slope, storm wave height or wind speed have traditionally been used, but detailed geomorphological features of the area as well as long-term shoreline evolution trends must also be taken into account in order to achieve more realistic results. This work presents an evaluation of storm flooding hazard in Valdelagrana spit and marshes (SW Spain), considering two types of storm that are characteristic of the area: a modal storm with 1 year of recurrence interval (maximum wave height of 3.3 m), and an extreme storm with 6-10 years of recurrence interval (maximum wave height of 10.6 m), both approaching the coast perpendicularly. After calculating theoretical storm surge elevation, a digital terrain model was made by adjusting topographic data to field work and detailed geomorphological analysis. A model of flooding extent was subsequently developed for each storm type, and then corrected according to the rates of shoreline change in the last decades, which were assessed by means of aerial photographs taking the dune toe as shoreline indicator. Results show that long-term coastline trend represents an important factor in the prediction of flooding extent, since shoreline retreat causes the deterioration of natural coastal defences as dune ridges, thus increasing coastal exposure to high-energy waves. This way, it has been stated that the lack of sedimentary supply plays an important role in spatial variability of inundation extent in Valdelagrana spit. Finally, a hazard map is presented, where calculated coastal retreat rates are employed in order to predict the areas that could be affected by future inundation events.

  6. Associations between cyanobacteria and indices of secondary production in the western basin of Lake Erie

    Science.gov (United States)

    Larson, James H.; Evans, Mary Anne; Kennedy, Robert J.; Bailey, Sean; Loftin, Keith A.; Laughrey, Zachary; Femmer, Robin; Schaeffer, Jeff; Richardson, William B.; Wynne, Timothy; Nelson, J. C.; Duris, Joseph W.

    2018-01-01

    Large lakes provide a variety of ecological services to surrounding cities and communities. Many of these services are supported by ecological processes that are threatened by the increasing prevalence of cyanobacterial blooms which occur as aquatic ecosystems experience cultural eutrophication. Over the past 10 yr, Lake Erie experienced cyanobacterial blooms of increasing severity and frequency, which have resulted in impaired drinking water for the surrounding communities. Cyanobacterial blooms may impact ecological processes that support other services, but many of these impacts have not been documented. Secondary production (production of primary consumers) is an important process that supports economically important higher trophic levels. Cyanobacterial blooms may influence secondary production because cyanobacteria are a poor‐quality food resource and cyanotoxins may be harmful to consumers. Over 3 yr at 34 sites across the western basin of Lake Erie, we measured three indices of secondary production that focus on the dominant bivalve taxa: (1) growth of a native unionid mussel, (2) the size of young‐of‐year dreissenid mussels, and (3) the mass of colonizing animals on a Hester‐Dendy sampler. Associations between these indices and cyanobacterial data were estimated to assess whether cyanobacteria are associated with variation in secondary production in the western basin of Lake Erie. The results suggest cyanobacterial abundance alone is only weakly associated with secondary production, but that cyanotoxins have a larger effect on secondary production. Given recurring late‐summer cyanobacterial blooms, this impact on secondary production has the potential to undermine Lake Erie's ability to sustain important ecosystem services.

  7. Invertebrate communities associated with Bangia atropurpurea and Cladophora glomerata in western Lake Erie

    Science.gov (United States)

    Chilton, E.W.; Lowe, R.L.; Schurr, K.M.

    1986-01-01

    The appearance of the marine alga Bangia atropurpurea (Rhodophyta) in Lake Erie has been followed by its rapid dispersal throughout the eulittoral zone of the lake. Bangia was extensively sampled to determine its suitability as a habitat for littoral organisms. Present data indicate that the only organisms capable of maintaining populations on Bangia filaments are larval Chironomidae. Cladophora supports a larger and more diverse community. It is concluded that the mucilaginous cell wall of Bangia provides a less stable substrate for attached or clinging organisms than does the cellulose cell wall of Cladophora. The presence of Bangia in the littoral zone of Lake Erie results in a reduction of the quantity and diversity of algal epiphytes and may negatively impact the littoral food web.

  8. Effects of Extreme Events on Arsenic Cycling in Salt Marshes

    Science.gov (United States)

    Northrup, Kristy; Capooci, Margaret; Seyfferth, Angelia L.

    2018-03-01

    Extreme events such as storm surges, intense precipitation, and supermoons cause anomalous and large fluctuations in water level in tidal salt marshes, which impacts the sediment biogeochemistry that dictates arsenic (As) cycling. In addition to changes in water level, which impacts soil redox potential, these extreme events may also change salinity due to freshwater inputs from precipitation or saltwater inputs due to surge. It is currently unknown how As mobility in tidal salt marshes will be impacted by extreme events, as fluctuations in salinity and redox potential may act synergistically to mobilize As. To investigate impacts of extreme events on As cycling in tidal salt marshes, we conducted a combined laboratory and field investigation. We monitored pore water and soil samples before, during, and after two extreme events: a supermoon lunar eclipse followed by a storm surge and precipitation induced by Hurricane Joaquin in fall 2015 at the St. Jones Reserve in Dover, Delaware, a representative tidal salt marsh in the Mid-Atlantic United States. We also conducted soil incubations of marsh sediments in batch and in flow-through experiments in which redox potential and/or salinity were manipulated. Field investigations showed that pore water As was inversely proportional to redox potential. During the extreme events, a distinct pulse of As was observed in the pore water with maximum salinity. Combined field and laboratory investigations revealed that this As pulse is likely due to rapid changes in salinity. These results have implications for As mobility in the face of extreme weather variability.

  9. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida.

    Science.gov (United States)

    Yao, Qiang; Liu, Kam-Biu

    2017-01-01

    Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries.

  10. Are Predators Limiting Zebra Mussel Colonization of Unionid Mussels in Great Lake Coastal Wetlands?

    Science.gov (United States)

    de Szalay, F. A.; Bowers, R.

    2005-05-01

    Although many native mollusc populations have been eliminated in the Laurentian Great Lakes by the exotic zebra mussel, recent surveys have found abundant unionid (Bivalvia: Unionidae) populations in some coastal wetlands. Unionid burrowing in soft sediments and predation by fish have been shown to reduce numbers of attached zebra mussels, and we tested these factors in a Lake Erie coastal wetland. In 2002, we held live unionids (Leptodea fragilis, Quadrula quadrula) and Pyganodon grandis shells in exclosures with wire mesh bottoms that were buried to sediment depths of either 5, 10, or 20 cm. After 2 months, numbers of attached dreissenids on unionids were significantly higher inside all exclosure treatments than outside exclosures. This indicated that either unionid burrowing was prevented in all sediment depth treatments or molluscivores were excluded by exclosures. In 2004, we measured dreissenid colonization on Q. quadrula and PVC plates in bottomless exclosures with different mesh sizes. After 6 months, dreissenid numbers on PVC plates and on Q. quadrula in 2.5 cm X 2.5 cm and 5 cm X 10 cm mesh exclosures were significantly higher than in open exclosures. These data suggest that molluscivores are important in limiting dreissenids in Great Lake coastal wetlands.

  11. Seiche-induced unsteady flows in the Huron-Erie Corridor: Spectral analysis of oscillations in stage and discharge in the St. Clair and Detroit Rivers

    Science.gov (United States)

    Jackson, P. Ryan; Contantinescu, G.; Garcia, M.; Hanes, D.

    2016-01-01

    Animations of highly dynamic water-surface profiles through the St. Clair and Detroit Rivers have identified transient disturbances propagating from Lakes Huron and Erie into the St. Clair and Detroit Rivers, respectively. To determine any relation to seiche and tidal oscillations on Lakes Huron and Erie, a spectral analysis was performed on stage and discharge data from the Huron-Erie Corridor. There is excellent agreement between the observed oscillations in stage and discharge in the St. Clair and Detroit Rivers and the documented frequencies of oscillations in Lakes Huron and Erie. The fundamental seiche, some higher-order seiche modes, and the semidiurnal tide from Lakes Huron and Erie are evident in the stage and discharge records at gages along the St. Clair and Detroit Rivers, respectively. Lake St. Clair appears to act as a damper in the system. If not accounted for, these oscillations may complicate monitoring, modeling, and restoration of this system.

  12. Modified Marsh Classification of the Duodenal Biopsies of a Large Database Covering 10 Years

    Directory of Open Access Journals (Sweden)

    Cansu Abayli

    2014-02-01

    Full Text Available Purpose: Celiac is an autoimmune disease caused by of gluten proteins which can be found in multi-grain food like wheat, barley and oat. The disease affects more than 1% of population and characterized by intestinal inflammation. In celiac disease, mucosal damage is a dynamic process. It is shown that it has autoimmune components. It is also T-Cell mediated and can be categorised as a chronic inflammatory disease. The purpose of this study is to make modified Marsh classification of the duodenal biopsies that came to our department in the 10 years. The study deals with reassessment of all events and uncovering the low graded events that were not diagnosed. Material and Methods: 467 biopsies (diagnosed between 2001 and 2011 at the Cukurova University, Faculty of Medicine, Department of Pathology were taken and analyzed by two pathologists. Each sample was reevaluated without taking the previous reports into consideration and scored by using modified Marsh classification. Results: According to Modified Marsh Classification total of 48 cases were diagnosed as Type 1. Total of 6 cases according to Modified Marsh Classification was diagnosed as Type 2. Total of 11 cases according to Modified Marsh Classification was diagnosed as Type 3a. Total of 5 cases, according to Modified Marsh Classification, was diagnosed as Type 3b. Total of 6 cases according to Modified Marsh Classification was diagnosed as Type 3c. Conclusion: As a result of this study, it has been found that Modified Marsh Classification is a very important standardization tool for detection of suspicious duodenal biopsies and for early case examinations.

  13. The Role of Tidal Marsh Restoration in Fish Management in the San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Bruce Herbold

    2014-03-01

    Full Text Available   Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary. Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011. Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha and the Bay Delta Conservation Plan (26,305 ha. In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012. In the Sacramento–San Joaquin Delta (Delta, one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013. The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010. This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium. 

  14. Import and export fluxes of macrozooplankton are taxa- and season-dependent at Jiuduansha marsh, Yangtze River estuary

    Science.gov (United States)

    Qin, Haiming; Sheng, Qiang; Chu, Tianjiang; Wang, Sikai; Wu, Jihua

    2015-09-01

    Macrozooplankton may play important roles in influencing nutrient exchange between salt marsh and nearby estuarine ecosystems through predator-prey interactions and their transport by tidal flows. In this study, macrozooplankton transport through year-round monthly sampling was investigated in a salt marsh creek of the Yangtze River estuary. Twenty-one orders of macrozooplankton were captured. Calanoida and Decapoda were dominant and numerically comprised 59.59% and 37.59% respectively of the total captured macrozooplankton throughout the year. Decapoda mainly occurred in April, May and June. In other months, the Calanoida contributed over 90% of the total individuals. The annual Ferrari index (I) for total individual number of macrozooplankton was 0.27, which generally supports the viewpoint that salt marshes are sources of zooplankton. The salt marsh was mainly a source for decapods and mysids, possibly because of larval release in their breeding seasons. The marsh was also a source for amphipods, probably because some benthic forms became transient planktonic forms during tidal water flushing. Copepods and fish larvae exhibited net import into the salt marsh, which may result from predation from salt marsh settlers or retention in the salt marsh. Monthly Ferrari index (I) estimations revealed that the role of the salt marsh as a sink or source of macrozooplankton was time-dependent, which is related to the life history of animals. This study showed that whether the salt marsh zooplankton act as energy importers or exporters is group/taxa-dependent and time-dependent.

  15. Lake Erie, phosphorus and microcystin: Is it really the farmer's fault?

    Science.gov (United States)

    Agricultural loss of phosphorus (P) have been identified as a primary contributor to eutrophication and the associated release of toxins (i.e., mycrocystin) in Lake Erie. These losses are commonly deemed excessive by the media and the public, singling out agriculture as the culprit in spite of redu...

  16. Biogeochemical and hydrological controls on fate and distribution of trace metals in oiled Gulf salt marshes

    Science.gov (United States)

    Keevan, J.; Natter, M.; Lee, M.; Keimowitz, A.; Okeke, B.; Savrda, C.; Saunders, J.

    2011-12-01

    On April 20, 2010, the drilling rig Deepwater Horizon exploded in the Gulf of Mexico, resulting in the release of approximately 5 million barrels of crude oil into the environment. Oil and its associated trace metals have been demonstrated to have a detrimental effect on coastal wetland ecosystems. Wetlands are particularly susceptible to oil contamination because they are composed largely of fine-grained sediments, which have a high capacity to adsorb organic matter and metals. The biogeochemical cycling of trace metals can be strongly influenced by microbial activity, specifically those of sulfate- and iron-reducing bacteria. Microbial activity may be enhanced by an increase in amounts of organic matter such as oil. This research incorporates an assessment of levels of trace metals and associated biogeochemical changes from ten coastal marshes in Alabama, Mississippi, and Louisiana. These sampling sites range in their pollution levels from pristine to highly contaminated. A total digestion analysis of wetland sediments shows higher concentrations of certain trace metals (e.g., Ni, Cu, Pb, Zn, Sr, Co, V, Ba, Hg, As) in heavily-oiled areas compared to less-affected and pristine sites. Due to chemical complexation among organic compounds and metals, crude oils often contain elevated levels (up to hundreds of mg/kg) of trace metals At the heavily-oiled Louisiana sites (e.g., Bay Jimmy, Bayou Dulac, Bay Batiste), elevated levels of metals and total organic carbon have been found in sediments down to depths of 30 cm. Clearly the contamination is not limited to shallow sediments and oil, along with various associated metals, may be invading into deeper (pre-industrial) portions of the marsh sediments. Pore-waters extracted from contaminated sediments are characterized by very high levels of reduced sulfur (up to 80 mg/kg), in contrast to fairly low ferrous iron concentrations (<0.02 mg/kg). The influx of oil into the wetlands might provide the initial substrate and

  17. Origins of mineral matter in peat marsh and peat bog deposits, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Buendia, A.M. [Unidad Tecnica del Marmol, AIDICO, Cami de Castella, 4, 03660 Novelda, Alicante (Spain); Whateley, M.K.G. [Rio Tinto Technical Services, Castlemead, Lower Castlemead, BS99 7YR Bristol (United Kingdom); Bastida, J.; Urquiola, M.M. [Dpto. Geologia, Univ. Valencia, Dr. Moliner 50. 46100 Burjasot, Valencia (Spain)

    2007-07-02

    The mineralogy of three back-barrier peat marshes (Torreblanca, Benicasim and Moncofar marshes) from Eastern Spain and one peat bog (Orihuela del Tremedal bog) from central east Spain have been investigated, using X-ray diffraction (XRD) and scanning electronic microscope (SEM) techniques. A combination of XRD methods was used to quantify the mineralogy of dried bulk peat samples. The water source in the peat marshes is both continental and marine. Water is highly mineralised. Water flow is both low and slow (accumulative system). The water source in the peat bog is continental, draining from the hill. The higher concentration of ions in the water of the back-barrier peat marshes leads to a higher concentration of authigenic minerals in the peat marshes compared to the peat bog. Three main mineral origins have been recognized, namely: detrital, syngenetic-epigenetic and biogenic. The more important contribution comes from the detrital system. Biogenic and bio-influenced minerals are the main non-detrital minerals in the peatlands. This paper discusses the biogenic origin of halite (and other minor halides and sulphates, such as, sylvite, carnalite, epsomite, glauberite, mirabilite and anhydrite?) from halophytic plants, as well as amorphous silica (opal-A) from sponge spicules and phytoliths of several plants. Pyrite in the peat bog has both syngenetic and epigenetic origins from plant decomposition and sulphur release. In the peat marsh the pyrite has a syngenetic origin from sulphate reduction (S{sub sulphate} {yields} S{sub pyritic}), and an epigenetic origin in the older peat, from plant decomposition (S{sub organic} {yields} S{sub pyritic}). (author)

  18. Where temperate meets tropical: Multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community

    Science.gov (United States)

    McKee, K.L.; Rooth, J.E.

    2008-01-01

    Our understanding of how elevated CO2 and interactions with other factors will affect coastal plant communities is limited. Such information is particularly needed for transitional communities where major vegetation types converge. Tropical mangroves (Avicennia germinans) intergrade with temperate salt marshes (Spartina alterniflora) in the northern Gulf of Mexico, and this transitional community represents an important experimental system to test hypotheses about global change impacts on critical ecosystems. We examined the responses of A. germinans (C3) and S. alterniflora (C4), grown in monoculture and mixture in mesocosms for 18 months, to interactive effects of atmospheric CO2 and pore water nitrogen (N) concentrations typical of these marshes. A. germinans, grown without competition from S. alterniflora, increased final biomass (35%) under elevated CO2 treatment and higher N availability. Growth of A. germinans was severely curtailed, however, when grown in mixture with S. alterniflora, and enrichment with CO2 and N could not reverse this growth suppression. A field experiment using mangrove seedlings produced by CO2- and N-enriched trees confirmed that competition from S. alterniflora suppressed growth under natural conditions and further showed that herbivory greatly reduced survival of all seedlings. Thus, mangroves will not supplant marsh vegetation due to elevated CO2 alone, but instead will require changes in climate, environmental stress, or disturbance to alter the competitive balance between these species. However, where competition and herbivory are low, elevated CO2 may accelerate mangrove transition from the seedling to sapling stage and also increase above- and belowground production of existing mangrove stands, particularly in combination with higher soil N. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.

  19. Historical Documentation of Warm-Season Grasses Management at Erie National Wildlife Refuge 1989

    Data.gov (United States)

    Department of the Interior — The early accounts of an active grassland management program at Erie National Wildlife Refuge dates back to 1977. This report is an attempt to document the refuge’s...

  20. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  1. A computer model to forecast wetland vegetation changes resulting from restoration and protection in coastal Louisiana

    Science.gov (United States)

    Visser, Jenneke M.; Duke-Sylvester, Scott M.; Carter, Jacoby; Broussard, Whitney P.

    2013-01-01

    The coastal wetlands of Louisiana are a unique ecosystem that supports a diversity of wildlife as well as a diverse community of commercial interests of both local and national importance. The state of Louisiana has established a 5-year cycle of scientific investigation to provide up-to-date information to guide future legislation and regulation aimed at preserving this critical ecosystem. Here we report on a model that projects changes in plant community distribution and composition in response to environmental conditions. This model is linked to a suite of other models and requires input from those that simulate the hydrology and morphology of coastal Louisiana. Collectively, these models are used to assess how alternative management plans may affect the wetland ecosystem through explicit spatial modeling of the physical and biological processes affected by proposed modifications to the ecosystem. We have also taken the opportunity to advance the state-of-the-art in wetland plant community modeling by using a model that is more species-based in its description of plant communities instead of one based on aggregated community types such as brackish marsh and saline marsh. The resulting model provides an increased level of ecological detail about how wetland communities are expected to respond. In addition, the output from this model provides critical inputs for estimating the effects of management on higher trophic level species though a more complete description of the shifts in habitat.

  2. The Effect of Source Suspended Sediment Concentration on the Sediment Dynamics of a Macrotidal Creek and Salt Marsh

    Science.gov (United States)

    Poirier, E.; van Proosdij, D.; Milligan, T. G.

    2017-12-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g·m-2 at the creek thalweg to 15.3 g·m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g·m-2 to 97.7 g·m-2 and from 12.2 g·m-2 to 19.6 g·m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  3. Isolation, Identification and Phenotypic Characterization of Microcystin-Degrading Bacteria from Lake Erie

    Science.gov (United States)

    Krishnan, A.; Mou, X. J.

    2015-12-01

    Lake Erie, the smallest and warmest lake among the Laurentian Great Lakes, is known for its problem of eutrophication and frequent occurrence of harmful cyanobacterial blooms (CyanoHABs). One major harmful effect of CyanoHABs is the production of cyanotoxins, especially microcystins. Microcystins (MC) are a group of hepatotoxins and the predominant variant of them is MC-LR. Field measurements and lab experiments indicate that MC degradation in Lake Erie is mainly carried out by indigenous bacteria. However, our knowledge on taxa involved in this process is very limited. This study aimed to fill this knowledge gap using a culture-dependent approach. Water and surface sediment samples were collected from Lake Erie in 2014 and 2015 and enriched with MC-LR. Cells were plated on a number of culturing media. The obtained pure bacterial cultures were screened for MC degrading abilities by MT2 BIO-LOG assays and by growing cells in liquid media containing MC-LR as the sole carbon source. In the latter experiment, MC concentrations were measured using HPLC. Isolates showing positive MC degradation activities in the screening steps were designated MC+ bacteria and characterized based on their phenotypic properties, including colony pigmentation, elevation, opacity, margin, gram nature and motility. The taxonomic identity of MC+ bacteria was determined by 16S rRNA gene full-length DNA sequencing. The presence of mlrA, a gene encoding MC cleavage pathway, was detected by PCR. Our culturing efforts obtained 520 pure cultures; 44 of them were identified as MC+. These MC+ isolates showed diversity in taxonomic identities and differed in their morphology, gram nature, colony characteristics and motility. PCR amplification of mlrA gene yield negative results for all MC+ isolates, indicating that the primers that were used may not be ubiquitous enough to cover the heterogeneity of mlrA genes or, more likely, alternative degradative genes/pathways were employed by Lake Erie bacteria

  4. Reconstructing Heat Fluxes Over Lake Erie During the Lake Effect Snow Event of November 2014

    Science.gov (United States)

    Fitzpatrick, L.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Spence, C.; Chen, J.; Shao, C.; Posselt, D. J.; Wright, D. M.; Lofgren, B. M.; Schwab, D. J.

    2017-12-01

    The extreme North American winter storm of November 2014 triggered a record lake effect snowfall (LES) event in southwest New York. This study examined the evaporation from Lake Erie during the record lake effect snowfall event, November 17th-20th, 2014, by reconstructing heat fluxes and evaporation rates over Lake Erie using the unstructured grid, Finite-Volume Community Ocean Model (FVCOM). Nine different model runs were conducted using combinations of three different flux algorithms: the Met Flux Algorithm (COARE), a method routinely used at NOAA's Great Lakes Environmental Research Laboratory (SOLAR), and the Los Alamos Sea Ice Model (CICE); and three different meteorological forcings: the Climate Forecast System version 2 Operational Analysis (CFSv2), Interpolated observations (Interp), and the High Resolution Rapid Refresh (HRRR). A few non-FVCOM model outputs were also included in the evaporation analysis from an atmospheric reanalysis (CFSv2) and the large lake thermodynamic model (LLTM). Model-simulated water temperature and meteorological forcing data (wind direction and air temperature) were validated with buoy data at three locations in Lake Erie. The simulated sensible and latent heat fluxes were validated with the eddy covariance measurements at two offshore sites; Long Point Lighthouse in north central Lake Erie and Toledo water crib intake in western Lake Erie. The evaluation showed a significant increase in heat fluxes over three days, with the peak on the 18th of November. Snow water equivalent data from the National Snow Analyses at the National Operational Hydrologic Remote Sensing Center showed a spike in water content on the 20th of November, two days after the peak heat fluxes. The ensemble runs presented a variation in spatial pattern of evaporation, lake-wide average evaporation, and resulting cooling of the lake. Overall, the evaporation tended to be larger in deep water than shallow water near the shore. The lake-wide average evaporations

  5. Plutonium in Atlantic coastal estuaries in the southeastern United States of America

    International Nuclear Information System (INIS)

    Hayes, D.W.; LeRoy, J.H.; Cross, F.A.

    1976-01-01

    A survey was made to begin to provide baseline information on the plutonium distribution of representative estuarine and coastal areas of the southeastern United States of America. Sediments and marsh grass (Spartina) were collected and analysed from three locations within a tidal marsh. In the three estuaries (Savannah, Neuse and Newport) the suspended particulate matter (1μm and greater) was filtered from waters with different salinities and the plutonium content of the particulates determined. The Savannah river estuary, in addition to fall-out plutonium, has received up to 0.3Ci of plutonium from the Savannah River Plant (SRP) of the US Energy Research and Development Administration. The SRP plutonium has a variable isotopic composition that can influence plutonium isotopic ratios in the estuarine system. The other estuaries do not have nuclear installations upstream. Plutonium contents in surface marsh sediment from the Savannah River estuary are lower than those found in nearby bay sediments. In fact, total plutonium concentrations of sediments showed increases from the upper to lower portions of the estuary; however, higher contributions of 238 Pu in the upper portions indicate that releases from the Savannah River Plant do contribute plutonium to the Savannah river estuary. Plutonium concentrations in Spartina were less than 10fCi/g dry weight but are higher than plutonium contents of terrestrial plants ( 238 Pu to the total plutonium activities in the sediment and the Spartina. Plutonium concentrations were about three times higher in the Newport river estuary than in the Neuse and Savannah river estuaries. (author)

  6. Recolonization and possible recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia spp.) in Lake Erie of the Laurentian Great Lakes

    Science.gov (United States)

    Schloesser, Don W.; Krieger, Kenneth A.; Ciborowski, Jan J.H.; Corkum, Lynda D.

    2000-01-01

    Burrowing mayflies of the genus Hexagenia spp. were widely distributed (ca. 80% of sites) and abundant (ca. 160 nymphs/m2) in the western basin of Lake Erie of the Laurentian Great Lakes in 1929–1930, prior to a period of anoxia in the mid 1950s. Nymphs were absent or rare in the basin between 1961 and 1973–1975. In 1979–1991, nymphs were infrequently found (13–46% of sites) in low abundance (3–40 nymphs/m2) near shore (recolonized sediments of western Lake Erie and that their abundance may be similar to levels observed before their disappearance in the mid 1950s. However, prior to the mid 1950s, densities were greater in offshore than nearshore waters, but between 1979 and 1998 greater densities occurred near shore than offshore. In addition, there were two areas in the 1990s where low densities consistently occurred. Therefore, recovery of nymphs in western Lake Erie may not have been complete in 1998. At present we do not know the cause for the sudden recolonization of nymphs in large portions of western Lake Erie. Undoubtedly, pollution-abatement programs contributed to improved conditions that would have ultimately led to mayfly recovery in the future. However, the explosive growth of the exotic zebra mussel, Dreissena polymorpha, undoubtedly diverted plankton foods to bottom substrates which could have increased the speed at which Hexagenia spp. nymphs recolonized sediments in western Lake Erie in the 1990s.

  7. Turbidity as a factor in the decline of Great Lakes fishes with special reference to Lake Erie

    Science.gov (United States)

    Van Oosten, John

    1948-01-01

    Fish live and thrive in water with turbidities that range above 400 p.p.m. and average 200 p.p.m. The waters of the Great Lakes usually are clear except in Lake Erie where the turbidities of the inshore areas averaged 37 p.p.m.; the turbidities of the offshore waters averaged less. Lake Erie waters were no clearer 50 years ago than they are now. In fact, the turbidity values are less now than they were in the earlier years; the annual average of the inshore waters dropped from 44 p.p.m. before 1930 to 32 p.p.m. in 1930 and later, and the April-May values decreased from 72 p.p.m. to 46 p.p.m. Any general decline in the Lake Erie fishes cannot be attributed to increased turbidities. Furthermore, these turbidities averaged well below 100 p.p.m. and, therefore, were too low to affect fishes adversely.

  8. Coastal Staphylinidae (Coleoptera: A worldwide checklist, biogeography and natural history

    Directory of Open Access Journals (Sweden)

    Kee-Jeong Ahn

    2011-06-01

    Full Text Available We provide a list of the 392 described species of Staphylinidae confined to coastal habitats worldwide. The list is in taxonomic sequence by subfamily, tribe, and genus and includes 91 genera. We provide the page reference of the original description of every species and genus listed and of many synonyms. We note the existence of recent reviews, phylogenies and keys of each of the tribes and genera included. Coastal Staphylinidae contain eight subfamilies: Microsilphinae, Omaliinae, Pselaphinae, Aleocharinae, Oxytelinae, Scydmaeninae, Paederinae, and Staphylininae. By ‘coastal habitats’ we mean habitats existing on the sea coast and subject to inundation or at least splashing by the very highest tides. This includes rocky, boulder, coral, sandy, and muddy seashores, and at least portions of salt-marshes, estuaries, and mangrove swamps. We exclude the sand dune habitat and higher parts of sea-cliffs. The list notes distribution of all the species, first according to the ocean or sea on whose shores it has been recorded, and second by country (and for the larger countries by province or state. Although this distribution is undoubtedly incomplete, it provides a basis for future development of a dedicated database. The ‘Habitats, Habits, and Classificatory Notes’ section is designed to provide ecologists with further taxonomic and ecological information. It includes references to descriptions of the immature stages, behavior of adults and immatures, their food, natural enemies, and habitat. We would have preferred to separate these entities, but current knowledge of ecology is developed in few instances beyond natural history. The Pacific Ocean basin was the origin and contributed to the dispersal of the majority of specialist coastal Staphylinidae at the level of genus. However, at the level of species, species belonging to non-coastal-specialist genera are about as likely to occur on the shores of other oceans as on the shores of the

  9. A Climate Change Adaptation Strategy for Management of ...

    Science.gov (United States)

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coa

  10. 78 FR 26416 - Environmental Impact Statement: City of Buffalo, Erie County, New York

    Science.gov (United States)

    2013-05-06

    ... from the US Border Port of Entry/Peace Bridge Plaza (Plaza), in the City of Buffalo, Erie County, New... Drive, and to provide alternate access from Porter Avenue to the Plaza. Letters describing the proposed...

  11. Effects of oil on the rate and trajectory of Louisiana marsh shoreline erosion

    International Nuclear Information System (INIS)

    McClenachan, Giovanna; Eugene Turner, R; Tweel, Andrew W

    2013-01-01

    Oil can have long-term detrimental effects on marsh plant health, both above- and belowground. However, there are few data available that quantify the accelerated rate of erosion that oil may cause to marshes and the trajectory of change. Between November 2010 and August 2012, we collected data on shoreline erosion, soil strength, per cent cover of Spartina alterniflora, and marsh edge overhang at 30 closely spaced low oil and high oil sites in Bay Batiste, Louisiana. Surface oil samples were taken one meter into the marsh in February 2011. All high oiled sites in Bay Batiste were contaminated with Macondo 252 oil (oil from the Deepwater Horizon oil spill, 20 April–15 July 2010). The results suggest that there is a threshold where soil parameters change dramatically with a relatively small increase in oil concentration in the soil. Heavy oiling weakens the soil, creating a deeper undercut of the upper 50 cm of the marsh edge, and causing an accelerated rate of erosion that cascades along the shoreline. Our results demonstrate that it could take at least 2 yr to document the effects heavy oiling has had on the marsh shoreline. The presence of aboveground vegetation alone may not be an appropriate indicator of recovery. (letter)

  12. Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

    Science.gov (United States)

    Sheremet, Vitalii A.; Mora, Jordan W.

    2016-04-01

    Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

  13. Eri aistijärjestelmiä aktivoivat tasapainoharjoitteluvälineet

    OpenAIRE

    Kytölinna, Pauliina

    2017-01-01

    Opinnäytetyön tarkoituksena oli selvittää tämänhetkiset näyttöön perustuvat tasapainoharjoittelukeinot sekä – välineet, jonka perusteella Satakunnan ammattikorkeakoulun fysioterapian koulutusohjelmille laaditaan tasapainovälineiden hankintasuunnitelma. Tasapainovälineiden hankintasuunnitelman näkökulmaksi valittiin tasapainoharjoittelun pienvälineet, jotka monipuolisesti aktivoivat eri aistijärjestelmiä. Kuvailevan kirjallisuuskatsauksen keinoin opinnäytetyössä selvitettiin aistijärjeste...

  14. Guide to Common Tidal Marsh Invertebrates of the Northeastern Gulf of Mexico.

    Science.gov (United States)

    Heard, Richard W.

    The major groups of marine and estuarine macroinvertebrates of the tidal marshes of the northern Gulf of Mexico are described in this guide for students, taxonomists and generalists. Information on the recognition characteristics, distribution, habitat, and biology of salt marsh species from the coelenterate, annelid, mollusk and arthropod phyla…

  15. Salt marsh construction costs and shrimp production

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Continuing wetland loss in Galveston Bay, Texas (USA) has led to the development of various salt marsh restoration projects. These constructed wetlands often attempt...

  16. 78 FR 60009 - Environmental Impact Statement: Erie and Genesee Counties, New York

    Science.gov (United States)

    2013-09-30

    ... and Genesee Counties, New York AGENCY: Federal Highway Administration (FHWA), DOT; New York State... counties of Erie and Genesee, New York (NYSDOT Project Identification Number: 5528.28). A Notice of Intent... CONTACT: Jonathan McDade, Division Administrator, Federal Highway Administration, New York Division, Leo W...

  17. Canadian coastal environments, shoreline processes, and oil spill cleanup

    International Nuclear Information System (INIS)

    Owens, E.H.

    1994-03-01

    The coastal zone is a dynamic environment, so that in developing practical and effective oil spill response strategies it is necessary to understand the forces that contribute to shore-zone processs. The coasts of Canada encompass a wide range of environments and are characterized by a variety of shoreline types that include the exposed, resistant cliffs of eastern Newfoundland and the sheltered marshes of the Beaufort Sea. A report is presented to provide an understanding of the dynamics and physical processes as they vary on the different coasts of Canada, including the Great Lakes. An outline of the general character and processes on a regional basis describes the coastal environments and introduces the literature that can be consulted for more specific information. The likely fate and persistence of oil that reaches the shoreline is discussed to provide the framework for development of spill response strategies and for the selection of appropriate shoreline cleanup or treatment countermeasures. Lessons learned from recent experience with major oil spills and field experiments are integrated into the discussion. Separate abstracts have been prepared for each of the four sections of this report. 502 refs., 5 figs

  18. Influence of Using Rice Husk Ash in Soil Stabilization Method with Lime

    DEFF Research Database (Denmark)

    Choobbasti, A. J.; Ghodrat, H.; Vahdatirad, Mohammadjavad

    2010-01-01

    Situated at the junction of land and sea, coastal salt marshes are very sensitive to global environmental changes. Existing numerical models simulating the vertical growth of coastal salt marshes are under the conditions of low suspended sediment concentration (SSC), but under high SSC, such as i...

  19. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone.

    Science.gov (United States)

    Peterson, Jennifer M; Bell, Susan S

    2012-07-01

    Field experiments were conducted at a black mangrove-salt-marsh ecotone in southwest Florida (U.S.A.) to investigate retention of propagules of the black mangrove, Avicennia germinans, by salt-marsh plants as a mechanism of facilitation operating on recruitment success at landward boundaries. Buoyant A. germinans propagules are dispersed by tides, and stranding is required for establishment; therefore, processes that enable stranding should facilitate mangrove recruitment. We expected the physical structure of salt-marsh vegetation to define propagule retention capacity, and we predicted that salt-marsh plants with distinct growth forms would differentially retain propagules. Experimental monoculture plots (1 m2) of salt-marsh plants with different growth forms (Sporobolus virginicus [grass], Sesuvium portulacastrum [succulent forb], and Batis maritima [succulent scrub]) were created, and A. germinans propagules were emplaced into these plots and monitored over time. For comparison, propagules were also placed into natural polyculture plots (1 m2). Polyculture plots contained at least two of the salt-marsh plant taxa selected for monoculture treatments, and S. virginicus was always present within these polyculture plots. Natural polyculture plots retained 59.3% +/- 11.0% (mean +/- SE) of emplaced propagules. Monocultures varied in their propagule retention capacities with plots of S. virginicus retaining on average 65.7% +/- 11.5% of transplanted propagules compared to 7.2% +/- 1.8% by B. maritima and 5.0% +/- 1.9% by S. portulacastrum. Plots containing S. virginicus retained a significantly greater percentage of emplaced propagules relative to the two succulent salt-marsh taxa. Furthermore, propagule entrapment, across all treatments, was strongly correlated with salt-marsh structure (r2 = 0.6253, P = 0.00001), which was estimated using an indirect quantitative metric (lateral obstruction) calculated from digital images of plots. Overall, our findings imply that

  20. Leveraging Carbon Cycling in Coastal Wetlands for Habitat Conservation: Blue Carbon Policy Opportunities (Invited)

    Science.gov (United States)

    Sutton-Grier, A.

    2013-12-01

    Recent scientific studies suggest that the carbon sequestered and stored in coastal wetlands (specifically mangroves, salt marshes, and seagrass meadows) is an important, previously not well-recognized service provided by these ecosystems. Coastal wetlands have unique characteristics that make them incredibly efficient, natural carbon sinks with most carbon stored belowground in soils. Based on this new scientific evidence, there is growing interest in leveraging the carbon services of these habitats (termed 'blue carbon') to develop new policy opportunities to protect and restore coastal wetlands around the globe. The overall goal is to take full advantage of the carbon services of these habitats in order to ensure and maintain the many benefits provided to society by these habitats - including natural climate, food security, and storm protection benefits - and to enhance the resiliency of coastal communities and economies around the world. This presentation will give an update on some of the policy opportunities including: (1) examining how the implementation of U.S. federal policies can be expanded to include carbon services of ecosystems in order to improve management and decision making; (2) developing an international blue carbon community of science and practice to provide best practice guidance for protection and restoration of blue carbon habitats; and (3) developing innovative financing mechanisms for coastal conservation including carbon market credits for wetlands. Finally, the presentation will conclude by highlighting some of the most pressing blue carbon scientific gaps that need to be filled in order to support these developing policies.