WorldWideScience

Sample records for erbium-doped fiber amplifier

  1. Detailed design analysis of erbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Bo; Bjarklev, Anders Overgaard; Lumholt, Ole

    1991-01-01

    When pumping the erbium-doped fiber amplifier at 0.98 and 1.48 mu m, the optimum cutoff wavelength for step profiles with arbitrary numerical aperture is shown to be 0.80 and 0.90 mu m, respectively. The use of a confined erbium profile can improve the gain coefficient up to 45%. The index raising...

  2. Few-mode erbium-doped fiber amplifier with photonic lantern for pump spatial mode control

    NARCIS (Netherlands)

    Lopez-Galmiche, G.; Eznaveh, Z. Sanjabi; Antonio-Lopez, J.E.; Benitez, A. M. Velazquez; Rodriguez-Asomoza, Jorge; Mondragon, J. J. Sanchez; Gonnet, C.; Sillard, P.; Li, G.; Schülzgen, A.; Okonkwo, C.M.; Amezcua Correa, R.

    2016-01-01

    We demonstrate a few-mode erbium-doped fiber amplifier employing a mode-selective photonic lantern for controlling the modal content of the pump light. Amplification of six spatial modes in a 5 m long erbium-doped fiber to x223C;6.2x2009;x2009;dBm average power is obtained while maintaining high

  3. Characterization of an erbium doped fiber amplifier starting from its experimental parameters

    International Nuclear Information System (INIS)

    Bello J, M.; Kuzin, E.A.; Ibarra E, B.; Tellez G, R.

    2007-01-01

    In this paper we describe a method to characterize the gain of an erbium-doped fiber amplifier (EDFA) through the numerical simulation of the signal beam along the amplifier. The simulation is based on a model constituted by the propagation and rate equations for an erbium-doped fiber. The manipulation of these equations allows us to regroup the parameters present in an EDFA, which we have named the A, B, C, D parameters, and they can be obtained experimentally from an erbium-doped fiber. Experimental results show that the measurement of these parameters allow us to estimate with very good correspondence the amplifier gain. (Author)

  4. Stability of a 500 km erbium-doped fiber amplifier cascade

    DEFF Research Database (Denmark)

    Lumholt, Ole; Bjarklev, Anders Overgaard; Povlsen, Jørn Hedegaard

    1992-01-01

    The stability of a cascade system of erbium-doped fiber amplifiers, due to pump and signal power variations, has been examined by use of a very accurate model. Even with an automatic gain control loop included, a fallout of a pump laser in the first inline amplifier is shown to produce a more than...

  5. Optimization of E r-density profile for efficient pumping and high signal gain in Erbium-doped fiber amplifiers

    International Nuclear Information System (INIS)

    Arzi, E.; Hassani, A.; Esmaili Seraji, F.

    2000-01-01

    Recently, the Erbium-Doped Fiber Amplifier has been shown to have a great potentiality in Fiber-Optics Communication. A model is suggested for calculating the E r-density profile, using the propagation and rate equations of a homogeneous two-level laser medium in Erbium-Doped Fiber Amplifier, such that efficient pumping and high signal gain is achieved for different fiber waveguide structure. The result of this numerical calculation shows that the gain, compared with the gain of the existing Erbium-Doped Fiber Amplifier, is higher by a factor of 3.5. This model is applicable in all active waveguides and any other dopant as well

  6. 2-LP mode few-mode fiber amplifier employing ring-core erbium-doped fiber.

    Science.gov (United States)

    Ono, Hirotaka; Hosokawa, Tsukasa; Ichii, Kentaro; Matsuo, Shoichiro; Nasu, Hitoshi; Yamada, Makoto

    2015-10-19

    A fiber amplifier supporting 2 LP modes that employs a ring-core erbium-doped fiber (RC-EDF) is investigated to reduce differential modal gain (DMG). The inner and outer radii of the ring-core of the RC-EDF are clarified for 2-LP mode operation of the amplifier, and are optimized to reduce the DMG. It is shown that using the overlap integral between the erbium-doped core area and the signal power mode distribution is a good way to optimize the inner and outer radii of the ring-core of the RC-EDF and thus minimize the DMG. A fabricated RC-EDF and a constructed 2-LP mode EDFA are described and a small DMG of around 1 dB is realized for LP01, LP11 and LP21 pumping.

  7. Empirical multichannel power consumption model for erbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Saldaña Cercos, Silvia; de Paiva, Getulio E. R.; Argentato, Marcio Colazza

    2015-01-01

    In this paper we report on the first experimental power consumption analysis and model of single and multi-stage booster erbium-doped fiber amplifiers (EDFAs) with automatic gain control (AGC), accounting for channel number dependency. Results show that the amount of channels being amplified simu......-users, it is relevant to study channel number dependent power consumption for devising EDFA power efficient control and design.......In this paper we report on the first experimental power consumption analysis and model of single and multi-stage booster erbium-doped fiber amplifiers (EDFAs) with automatic gain control (AGC), accounting for channel number dependency. Results show that the amount of channels being amplified...... simultaneously contributes significantly, up to 48%, to the total power consumption due to the circuitry used for controlling the EDFA. As the number of simultaneous amplified WDM channels in high capacity long and medium reach transmission links reflects closely traffic patterns generated by end...

  8. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    Science.gov (United States)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  9. Giant Pulse Phenomena in a High Gain Erbium Doped Fiber Amplifier

    Science.gov (United States)

    Li, Stephen X.; Merritt, Scott; Krainak, Michael A.; Yu, Anthony

    2018-01-01

    High gain Erbium Doped Fiber Amplifiers (EDFAs) are vulnerable to optical damage when unseeded, e.g. due to nonlinear effects that produce random, spontaneous Q-switched (SQS) pulses with high peak power, i.e. giant pulses. Giant pulses can damage either the components within a high gain EDFA or external components and systems coupled to the EDFA. We explore the conditions under which a reflective, polarization-maintaining (PM), core-pumped high gain EDFA generates giant pulses, provide details on the evolution of normal pulses into giant pulses, and provide results on the transient effects of giant pulses on an amplifier's fused-fiber couplers, an effect which we call Fiber Overload Induced Leakage (FOIL). While FOIL's effect on fused-fiber couplers is temporary, its damage to forward pump lasers in a high gain EDFA can be permanent.

  10. Recent progress of erbium-doped fiber amplifiers and their components

    Science.gov (United States)

    Fukushima, Masaru; Miura, Jutaro

    2007-09-01

    The Erbium-doped fiber amplifiers (EDFA) are widely available in a today's commercial market, and are deployed in various optical transmission applications from terrestrial system to undersea system. Broad gain spectrum over 9 THz enabled huge growth of bandwidth usage in 1550nm region aimed at broadband Internet, and its broad gain characteristics triggered bandwidth competition on dense wavelength division multiplex (DWDM) network these ten years. At first, we briefly review the evolutional history of EDFA with previous achievements. And we will explain the primary and important key devices which compose EDFA. We will discuss design parameters, and recent trend and achievements of the devices, which cover Erbium-doped fibers (EDF), 980-nm laser diodes (LD), and gain flattening filters (GFFs). The chip structure of 980-nm LD is explained to achieve high power and to realize high reliability. These key devices enabled EDFA to prevail in commercial area. After the discussion of key components, we will introduce recent achievements of gain controlled EDFAs which are applied in conjunction with Re-configurable Optical Add/Drop Multiplexer (ROADM). We will report the transient gain dynamics of the cascaded EDFAs with a recirculating loop experiment.

  11. Characterization of an erbium doped fiber amplifier starting from its experimental parameters; Caracterizacion de un amplificador de fibra dopada con erbio a partir de sus parametros experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Bello J, M.; Kuzin, E.A.; Ibarra E, B. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Luis Enrique Erro No. 1, TonantzintIa, 72000 Puebla (Mexico); Tellez G, R. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No 152, Delegacion Gustavo A. Madero, 07730 Mexico D.F. (Mexico)]. e-mail: mabello@inaoep.mx

    2007-07-01

    In this paper we describe a method to characterize the gain of an erbium-doped fiber amplifier (EDFA) through the numerical simulation of the signal beam along the amplifier. The simulation is based on a model constituted by the propagation and rate equations for an erbium-doped fiber. The manipulation of these equations allows us to regroup the parameters present in an EDFA, which we have named the A, B, C, D parameters, and they can be obtained experimentally from an erbium-doped fiber. Experimental results show that the measurement of these parameters allow us to estimate with very good correspondence the amplifier gain. (Author)

  12. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions

    Science.gov (United States)

    Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A.

    2017-04-01

    In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ˜300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (vulnerability in terms of gain. The presented approach is a complementary and effective tool for hardening by device techniques and opens new perspectives for the applications of REDFAs and lasers in harsh environments.

  13. Adaptive Neuro-Fuzzy Based Gain Controller for Erbium-Doped Fiber Amplifiers

    Directory of Open Access Journals (Sweden)

    YUCEL, M.

    2017-02-01

    Full Text Available Erbium-doped fiber amplifiers (EDFA must have a flat gain profile which is a very important parameter such as wavelength division multiplexing (WDM and dense WDM (DWDM applications for long-haul optical communication systems and networks. For this reason, it is crucial to hold a stable signal power per optical channel. For the purpose of overcoming performance decline of optical networks and long-haul optical systems, the gain of the EDFA must be controlled for it to be fixed at a high speed. In this study, due to the signal power attenuation in long-haul fiber optic communication systems and non-equal signal amplification in each channel, an automatic gain controller (AGC is designed based on the adaptive neuro-fuzzy inference system (ANFIS for EDFAs. The intelligent gain controller is implemented and the performance of this new electronic control method is demonstrated. The proposed ANFIS-based AGC-EDFA uses the experimental dataset to produce the ANFIS-based sets and the rule base. Laser diode currents are predicted within the accuracy rating over 98 percent with the proposed ANFIS-based system. Upon comparing ANFIS-based AGC-EDFA and experimental results, they were found to be very close and compatible.

  14. Gain claming in single-pass and double-pass L-band erbium-doped fiber amplifiers

    International Nuclear Information System (INIS)

    Harun, S.W.; Ahmad, H.

    2004-01-01

    Gain clamping is demonstrated in single-pass and double-pass long wavelength band erbium-doped fiber amplifiers. A C/L-band wavelength division multiplexing coupler is used in single-pass system to generate a laser at 1566 nm. The gain for the amplifier is clamped at 15.5 dB with gain variation of less than 0.2 dB from input signal power of -40 to -14 dBm with almost negligible noise figure penalty. However, the flatness of gain spectrum is slightly degraded due to the un-optimisation of erbium-doped fiber length. The advantage of this configuration is that the oscillating light does not appear at the output of the amplifier. A highly efficient gain-clamped long wavelength band erbium-doped fiber amplifiers with improved noise figure characteristic is demonstrated by simply adding a broadband conventional band fiber Bragg grating in double pass system. The combination of the fiber Bragg grating and optical circulator has created laser in the cavity for gain clamping. By adjusting the power combination of pumps 1 and 2, the clamped gain level can be controlled. The amplifier gain is clamped at 28.1 dB from -40 to -25 dBm with gain variation of less than 0.5 dB by setting the pumps 1 and 2 at 59.5 and 50.6 mW, respectively. The gain is also flat from 1574 nm to 1604 nm with gain variation of less than 3 dB. The corresponding noise figure varies from 5.6 to 7.6 dB, which is 0.8 to 2.6 dB reduced compared to those of unclamped amplifier (Authors)

  15. High gain L-band erbium-doped fiber amplifier with two-stage ...

    Indian Academy of Sciences (India)

    stage erbium-doped fiber amplifier; amplified spontaneous emission. Abstract. An experiment on gain enhancement in the long wavelength band erbium-doped fiber amplifier (L-band EDFA) is demonstrated using dual forward pumping scheme ...

  16. Erbium-doped integrated waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Bradley, J.; Pollnau, Markus

    Erbium-doped fiber devices have been extraordinarily successful due to their broad optical gain around 1.5–1.6 μm. Er-doped fiber amplifiers enable efficient, stable amplification of high-speed, wavelength-division-multiplexed signals, thus continue to dominate as part of the backbone of longhaul

  17. Progress on erbium-doped waveguide components

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Berendt, Martin Ole; Broeng, Jes

    1997-01-01

    The recent development in erbium-doped fiber amplifiers, and fiber lasers is reviewed. Also the latest results on planar erbium-doped waveguide amplifiers and high erbium concentration characterisation methods are presented...

  18. Noise in distributed erbium-doped fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Povlsen, Jørn Hedegaard; Bjarklev, Anders Overgaard

    1993-01-01

    Theoretical limits in noise figure for a long-haul transmission line based on lumped amplification are contrasted with distributed amplification. The latter results in a reduction of approximately 60% of the required number of pump power stations. The distributed optical amplification is provided...... by an erbium-doped fiber and comparisons of aluminum and germanium as codopant materials are shown. The pump power consumption and noise figure are analyzed with respect to the background loss...

  19. Serial topology of wide-band erbium-doped fiber amplifier for WDM applications

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Menif, M.

    2001-01-01

    Roč. 13, č. 9 (2001), s. 939-941 ISSN 1041-1135 R&D Projects: GA ČR GA102/99/0393 Institutional research plan: CEZ:AV0Z2067918 Keywords : erbium * wavelength division multiplexing * optical fibre amplifiers * optical fibre communication Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.004, year: 2001

  20. Suppression of dynamic cross saturation in cascades of overpumped erbium-doped fiber amplifiers

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Willems, F. W.

    1998-01-01

    Roč. 10, č. 7 (1998), s. 1036-1038 ISSN 0162-8828 Grant - others:EU COST(XE) OC 241.10 Keywords : optical communication * amplifiers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.417, year: 1998

  1. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers

    International Nuclear Information System (INIS)

    Seneschal, Karine; Smektala, Frederic; Bureau, Bruno; Floch, Marie Le; Jiang Shibin; Luo, Tao; Lucas, Jacques; Peyghambarian, Nasser

    2005-01-01

    New phosphate glasses have been developed in order to incorporate high rare-earth ions concentrations. These glasses present a great chemical stability and a high optical quality. The phosphate glass network is open, very flexible, with a linkage of the tetrahedrons very disordered and contains a larger number of non-bridging oxygens (66%). The great stability and resistance against crystallization associated with the possibility to incorporate high doping concentration of rare-earth ions in these phosphate glasses make them very good candidates for the realization of ultra short single mode amplifiers with a high gain at 1.55 μm

  2. Optimum position of isolators within erbium-doped fibers

    DEFF Research Database (Denmark)

    Lumholt, Ole; Schüsler, Kim; Bjarklev, Anders Overgaard

    1992-01-01

    An isolator is used as an amplified spontaneous emission suppressing component within an erbium-doped fiber. The optimum isolator placement is both experimentally and theoretically determined and found to be slightly dependent upon pump power. Improvements of 4 dB in gain and 2 dB in noise figure...... are measured for the optimum isolator location at 25% of the fiber length when the fiber is pumped with 60 mW of pump power at 1.48 μm...

  3. Fast and slow light property improvement in erbium-doped amplifier

    Science.gov (United States)

    Peng, P. C.; Wu, F. K.; Kao, W. C.; Chen, J.; Lin, C. T.; Chi, S.

    2013-01-01

    This work experimentally demonstrates improvement of the fast light property in erbium-doped amplifiers at room temperature. The difference between the signal power and the pump power associated with bending loss is used to control the signal power at the different positions of the erbium-doped fiber (EDF) to improve the fast light property. Periodic bending of the EDF increases the time advance of the probe signal by over 288%. Additionally, this concept also could improve the fast light property using coherent population oscillations in semiconductor optical amplifiers.

  4. Erbium Doped Fiber Optic Gravimeter

    International Nuclear Information System (INIS)

    Pérez-Sánchez, G G; Pérez-Torres, J R; Flores-Bravo, J A; Álvarez-Chávez, J A; Martínez-Piñón, F

    2017-01-01

    Gravimeters are devices that can be used in a wide range of applications, such as mining, seismology, geodesy, archeology, geophysics and many others. These devices have great sensibility, which makes them susceptible to external vibrations like electromagnetic waves. There are several technologies regarding gravimeters that are of use in industrial metrology. Optical fiber is immune to electromagnetic interference, and together with long period gratings can form high sensibility sensors of small size, offering advantages over other systems with different technologies. This paper shows the development of an optical fiber gravimeter doped with Erbium that was characterized optically for loads going from 1 to 10 kg in a bandwidth between 1590nm to 1960nm, displaying a weight linear response against power. Later on this paper, the experimental results show that the previous described behavior can be modeled as characteristic function of the sensor. (paper)

  5. Long distance transmission through distributed erbium-doped fibers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Povlsen, Jørn Hedegaard; Bjarklev, Anders Overgaard

    1993-01-01

    High bit rate, all-optical long-distance transmission could be created through the combined use of loss-compensating gain in erbium-doped fibers and solitons. A detailed analysis of the distributed erbium-doped fiber, including the spectral-gain dependency, is combined with an optimum design...... of the transmission fiber and general bit-error-rate calculations. Changes in wavenumber, group velocity, and fiber dispersion due to erbium doping in a single-mode fiber are evaluated, and a reduction in bit-error rates due to the erbium spectral-gain profile is shown. Transmission through distributed erbium......-doped fiber with 100-km separation between each pump-power station is shown, with a total bit-rate distance product of 55 Gb/s · Mm...

  6. Radiation effects on erbium doped optical fibers: on the influence of the fiber composition

    International Nuclear Information System (INIS)

    Tortech, B.

    2008-01-01

    We have studied the erbium-doped fibers (EDF) sensitivity under irradiation and the induced defects. The first chapter presents the state of the art for the EDF under irradiation as well as some radiation generated silica defects. The second chapter details the radiations used in this thesis and the experimental set-ups implemented for the characterization of the fiber responses under irradiation and the radiation induced defects. In the third chapter, we present the response of several erbium-doped fibers irradiated with γ-rays, protons and pulsed X-rays. The erbium doped fibers have higher radiation induced sensitivity than the Telecom fibers (SMF28) or than erbium-doped fibers containing little aluminum. The aluminum presence in the EDF core composition is mainly responsible for the fiber performance degradation. Whatever the irradiation types, the radiation generated defects are related to the host matrix. Our studies also display that the erbium ions are only affected by the interaction with the created defects. The fourth chapter deals with the EDF under UV exposure and shows that the UV rays lead to the same effects than the gamma rays. The last chapter of this thesis presents the study of optical fiber amplifiers under γ irradiation. (author)

  7. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    Science.gov (United States)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  8. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    International Nuclear Information System (INIS)

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Lipatov, D S; Vechkanov, N N; Guryanov, Aleksei N

    2012-01-01

    We report cladding-pumped erbium-doped fibre laser and amplifier configurations. Through fibre design optimisation, we have achieved a record-high laser slope efficiency, 40 % with respect to absorbed pump power (λ = 976 nm), and an output power of 7.5 W. The erbium-doped fibre amplifier efficiency reaches 32 %.

  9. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  10. Analysis of dynamic pump-loss controlled gain-locking system for erbium-doped fiber amplifiers

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Plaats van der, J.C.

    1998-01-01

    Roč. 10, č. 8 (1998), s. 1171-1173 ISSN 1041-1135 Grant - others:EU COST(XE) OC 241.10 Keywords : optical communication * amplifiers * fibre lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.791, year: 1998

  11. Effects of ion pairs on the dynamics of erbium doped fiber laser in the inhomogeneous model

    International Nuclear Information System (INIS)

    Keyvaninia, Sh.; Karvar, M.; Bahrampour, A.

    2006-01-01

    In a high concentration erbium doped fiber, the erbium ions are so closed together that the ion pairs and clusters are formed. In such fiber amplifiers, the ion pairs and clusters acting as a saturable absorber are distributed along the fiber laser. The inhomogeneous rate equations for the laser modes in a high-concentration EDFA are written. The governing equations are an uncountable system of partial differential equations. For the first time we introduced an approximation method that the system of partial differential equations is converted to a finite system of ordinary differential equations. The effects of ion pairs concentration on erbium doped fiber are analyzed that is in good agreement whit the experimental result.

  12. Erbium-doped fiber lasers as deep-sea hydrophones

    International Nuclear Information System (INIS)

    Bagnoli, P.E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-01-01

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos

  13. Design of a robust thin-film interference filter for erbium-doped fiber amplifier gain equalization

    Science.gov (United States)

    Verly, Pierre G.

    2002-06-01

    Gain-flattening filters (GFFs) are key wavelength division multiplexing components in fiber-optics telecommunications. Challenging issues in the design of thin-film GFFs were recently the subject of a contest organized at the 2001 Conference on Optical Interference Coatings. The interest and main difficulty of the proposed problem was to minimize the sensitivity of a GFF to simulated fabrication errors. A high-yield solution and its design philosophy are described. The approach used to control the filter robustness is explained and illustrated by numerical results.

  14. Harmonic Dark Pulse Emission in Erbium-Doped Fiber Laser

    International Nuclear Information System (INIS)

    Zian, Cheak Tiu; Arman, Zarei; Sin, Jin Tan; Harith, Ahmad; Sulaiman, Wadi Harun

    2015-01-01

    A harmonic dark pulse generation in an erbium-doped fiber laser is demonstrated based on a figure-of-eight configuration. It is found that the harmonic dark pulse can be shifted from the fundamental to the 5"t"h order harmonic by increasing the pump power with an appropriate polarization controller orientation. The fundamental repetition rate of 20 kHz is obtained at the pump power of 29 mW. The highest pulse energy of 42.6 nJ is obtained at the fundamental repetition rate. The operating frequency of the dark pulse trains shifts to 2"n"d, 3"r"d, 4"t"h and 5"t"h harmonic as the pump powers are increased to 34 mW, 50 mW, 59 mW and 137 mW, respectively. (paper)

  15. All fiber passively mode locked zirconium-based erbium-doped fiber laser

    Science.gov (United States)

    Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.

    2012-04-01

    All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.

  16. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    Science.gov (United States)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  17. Radiation hardening commercial off-the-shelf erbium doped fibers by optimal photo-annealing source

    Science.gov (United States)

    Peng, Tz-Shiuan; Liu, Ren-Young; Lin, Yen-Chih; Mao, Ming-Hua; Wang, Lon A.

    2017-09-01

    Erbium doped fibers (EDFs) based devices are widely employed in space for optical communication [1], remote sensing [2], and navigation applications, e.g. interferometric fiber optic gyroscope (IFOG). However, the EDF suffers severely radiation induced attenuation (RIA) in radiation environments, e.g. space applications and nuclear reactors [3].

  18. Temperature Sensor Using a Multiwavelength Erbium-Doped Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Silvia Diaz

    2017-01-01

    Full Text Available A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser. The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this system for remote temperature measurements.

  19. Saturation of the 2.71 µm laser output in erbium doped ZBLAN fibers

    NARCIS (Netherlands)

    Bedö, S.; Pollnau, Markus; Lüthy, W.; Weber, H.P.

    1995-01-01

    The saturation of the 2.71 μm laser output power has been investigated in an erbium doped ZBLAN single-mode fiber with an Er3+ concentration of 5000 ppm mol. The bleaching of the ground state, the absorption coefficient at the pump wavelength and the fluorescence intensities over a wide wavelength

  20. Implementation of Lean System on Erbium Doped Fibre Amplifier Manufacturing Process to Reduce Production Time

    Science.gov (United States)

    Maneechote, T.; Luangpaiboon, P.

    2010-10-01

    A manufacturing process of erbium doped fibre amplifiers is complicated. It needs to meet the customers' requirements under a present economic status that products need to be shipped to customers as soon as possible after purchasing orders. This research aims to study and improve processes and production lines of erbium doped fibre amplifiers using lean manufacturing systems via an application of computer simulation. Three scenarios of lean tooled box systems are selected via the expert system. Firstly, the production schedule based on shipment date is combined with a first in first out control system. The second scenario focuses on a designed flow process plant layout. Finally, the previous flow process plant layout combines with production schedule based on shipment date including the first in first out control systems. The computer simulation with the limited data via an expected value is used to observe the performance of all scenarios. The most preferable resulted lean tooled box systems from a computer simulation are selected to implement in the real process of a production of erbium doped fibre amplifiers. A comparison is carried out to determine the actual performance measures via an analysis of variance of the response or the production time per unit achieved in each scenario. The goodness of an adequacy of the linear statistical model via experimental errors or residuals is also performed to check the normality, constant variance and independence of the residuals. The results show that a hybrid scenario of lean manufacturing system with the first in first out control and flow process plant lay out statistically leads to better performance in terms of the mean and variance of production times.

  1. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

    International Nuclear Information System (INIS)

    Wang, Q; Yu, Q X

    2009-01-01

    This paper presents an ultra wideband tunable silica-based erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications

  2. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  3. Linear all-fiber temperature sensor based on macro-bent erbium doped fiber

    International Nuclear Information System (INIS)

    Hajireza, P; Cham, C L; Kumar, D; Abdul-Rashid, H A; Emami, S D; Harun, S W

    2010-01-01

    A new all fiber temperature sensor is proposed and demonstrated based on a pair of 1 meter erbium-doped fiber (EDF), which are respectively macro-bent and straight. The sensor has a linear normalized loss (dB) response to temperature at 6.5 mm bending radius and 1580 nm input wavelength. The main advantage of this sensor is high temperature resolution (less than 1°C) and sensitivity (0.03 dB/°C) due to combination of temperature dependence of EDF and bending loss. The proposed silica based sensor, has the potential for wide range and high temperature applications in harsh environments

  4. Multi-wavelength Brillouin Raman erbium-doped fiber laser generation in a linear cavity

    International Nuclear Information System (INIS)

    Shirazi, M R; Harun, S W; Ahmad, H

    2014-01-01

    A multi-wavelength Brillouin Raman erbium-doped fiber laser is proposed and demonstrated. The setup uses a 7.7 km dispersion compensating fiber simultaneously as the Brillouin and Raman nonlinear gain media and operates in conjunction with a 3 m erbium-doped fiber as the linear gain medium. At a Brillouin pump (BP) wavelength of 1530 nm, where Raman and erbium gains overlap each other, 34 Brillouin Stokes lines having line spacing of 0.075 nm are created by using a Raman pump power of only 24.1 dBm, an erbium pump power of about 22.1 dBm, and a BP power of 6.5 dBm in the proposed linear cavity. The system is highly efficient and is able to generate many comparable peak-power lines at a low pump power. (paper)

  5. Amplification of 12 OAM Modes in an air-core erbium doped fiber.

    Science.gov (United States)

    Kang, Qiongyue; Gregg, Patrick; Jung, Yongmin; Lim, Ee Leong; Alam, Shaif-ul; Ramachandran, Siddharth; Richardson, David J

    2015-11-02

    We theoretically propose an air-core erbium doped fiber amplifier capable of providing relatively uniform gain for 12 orbital angular momentum (OAM) modes (|L| = 5, 6 and 7, where |L| is the OAM mode order) over the C-band. Amplifier performance under core pumping conditions for a uniformly doped core for each of the supported pump modes (110 in total) was separately assessed. The differential modal gain (DMG) was found to vary significantly depending on the pump mode used, and the minimum DMG was found to be 0.25 dB at 1550 nm provided by the OAM (8,1) pump mode. A tailored confined doping profile can help to reduce the pump mode dependency for core pumped operation and help to increase the number of pump modes that can support a DMG below 1 dB. For the more practical case of cladding-pumped operation, where the pump mode dependency is almost removed, a DMG of 0.25 dB and a small signal gain of >20 dB can be achieved for the 12 OAM modes across the full C-band.

  6. Temperature-Insensitive Bend Sensor Using Entirely Centered Erbium Doping in the Fiber Core

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2013-07-01

    Full Text Available A fiber based bend sensor using a uniquely designed Bend-Sensitive Erbium Doped Fiber (BSEDF is proposed and demonstrated. The BSEDF has two core regions, namely an undoped outer region with a diameter of about 9.38 μm encompassing a doped, inner core region with a diameter of 4.00 μm. The doped core region has about 400 ppm of an Er2O3 dopant. Pumping the BSEDF with a conventional 980 nm laser diode gives an Amplified Spontaneous Emission (ASE spectrum spanning from 1,510 nm to over 1,560 nm at the output power level of about −58 dBm. The ASE spectrum has a peak power of −52 dBm at a central wavelength of 1,533 nm when not spooled. Spooling the BSEDF with diameters of 10 cm to 2 cm yields decreasing peak powers from −57.0 dBm to −61.8 dBm, while the central wavelength remains unchanged. The output is highly stable over time, with a low temperature sensitivity of around ~0.005 dBm/°C, thus allowing for the development of a highly stable sensor system based in the change of the peak power alone.

  7. Wavelength-selectable and steady single-mode erbium-doped fiber multiple ring laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2017-11-01

    To achieve a stable and selectable C-band erbium-doped fiber (EDF) laser with single-longitudinal-mode output, a multiple ring architecture is proposed and demonstrated experimentally. In this work, we design a passively quadruple-ring structure in the cavity of an EDF laser to produce a Vernier effect with a mode filter for suppressing the multimode spikes significantly. In addition, the output performance and stability of the proposed EDF ring laser are discussed.

  8. Graphene Oxide-Based Q-Switched Erbium-Doped Fiber Laser

    International Nuclear Information System (INIS)

    Yap, Y. K.; Harun, S. W.; Ahmad, H.; Huang, N. M.

    2013-01-01

    We demonstrate a pulsed ring erbium-doped fiber laser based on graphene oxide (GO), employing a simplified Hummer's method to synthesize the GO via chemical oxidation of graphite flakes at room temperature. By dipping a fiber ferrule end face onto the GO suspension, GO is successfully coated onto the end face, making it a simple saturable absorption device. A stable Q-switched pulsed fiber laser is achieved with a low pump threshold of 9.5 mW at 980 nm. The pulse repetition rate ranges from 16.0 to 57.0 kHz. The pulse width and the pulse energy are studied and discussed

  9. Improvement of a triple-wavelength erbium-doped fiber laser using a Fabry–Perot laser diode

    International Nuclear Information System (INIS)

    Peng, P C; Hu, H L; Wang, J B

    2013-01-01

    This work demonstrates the feasibility of a simple construct of a tunable triple-wavelength fiber ring laser using a Fabry–Perot laser diode (FP-LD) and an optical tunable bandpass filter. An optical tunable bandpass filter is used within the cavity of an erbium-doped fiber laser to select the lasing wavelength. Because the Fabry–Perot laser diode is in combination with the tunable bandpass filter, the erbium-doped fiber laser can stably lase three wavelengths simultaneously. Moreover, this laser is easily tuned dynamically. This triple-wavelength output performs satisfactorily, with its optical side-mode-suppression-ratio (SMSR) exceeding 40 dB. Furthermore, the wavelength tuning range of this triple-wavelength erbium-doped fiber laser is greater than 27 nm. (paper)

  10. Poor fluorinated graphene sheets carboxymethylcellulose polymer composite mode locker for erbium doped fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Chengbo, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk; Turitsyn, Sergei; Rozhin, Aleksey, E-mail: mouc1@aston.ac.uk, E-mail: a.rozhin@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Arif, Raz [Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham B4 7ET (United Kingdom); Physics Department, Faculty of Science, University of Sulaimani, Sulaimani, Kurdistan Region (Iraq); Lobach, Anatoly S.; Spitsina, Nataliya G. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Khudyakov, Dmitry V. [Institute of Problems of Chemical Physics RAS, Ac. Semenov Av. 1, Chernogolovka, Moscow Region 142432 (Russian Federation); Physics Instrumentation Center of the Institute of General Physics A.M. Prokhorov Russian Academy of Sciences, Troitsk, Moscow Region 142190 (Russian Federation); Kazakov, Valery A. [Keldysh Center, Onezhskaya 8, Moscow 125438 (Russian Federation)

    2015-02-09

    We report poor fluorinated graphene sheets produced by thermal exfoliation embedding in carboxymethylcellulose polymer composite (GCMC) as an efficient mode locker for erbium doped fiber laser. Two GCMC mode lockers with different concentration have been fabricated. The GCMC based mode locked fiber laser shows stable soliton output pulse shaping with repetition rate of 28.5 MHz and output power of 5.5 mW was achieved with the high concentration GCMC, while a slightly higher output power of 6.9 mW was obtained using the low concentration GCMC mode locker.

  11. A nonuniform-polarization high-energy ultra-broadband laser with a long erbium-doped fiber

    International Nuclear Information System (INIS)

    Mao, Dong

    2013-01-01

    We have experimentally investigated nonuniformly polarized broadband high-energy pulses delivered from a mode-locked laser with an ultra-long erbium-doped fiber (EDF). The pulses exhibit a broadband spectrum of ∼73 nm and can avoid optical wave breaking at high-pump regimes. The polarization states of the pulses evolve from uniform to nonuniform at each round trip in the oscillator, which is distinct from other pulses. Remarkably, the output pulses broaden in anomalous- or normal-dispersion regimes while they can be shortened with an EDF amplifier external to the cavity. Our results suggest that the long EDF results in a nonuniform-polarization state and plays a decisive role in the formation of high-energy pulses. (paper)

  12. Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers

    International Nuclear Information System (INIS)

    Liu, X M; Lin, A; Zhao, W; Lu, K Q; Wang, Y S; Zhang, T Y; Chung, Y

    2008-01-01

    We have proposed a novel multi-wavelength erbium-doped fiber laser by using two polarization controllers and a sampled chirped fiber Bragg grating(SC-FBG). On the assistance of SC-FBG, the proposed fiber lasers with excellent stability and uniformity are tunable and switchable by adjusting the polarization controllers. Our laser can stably lase two waves and up to eight waves simultaneously at room temperature

  13. Propagation of dispersion-nonlinearity-managed solitons in an inhomogeneous erbium-doped fiber system

    International Nuclear Information System (INIS)

    Mahalingam, A; Porsezian, K; Mani Rajan, M S; Uthayakumar, A

    2009-01-01

    In this paper, a generalized nonlinear Schroedinger-Maxwell-Bloch model with variable dispersion and nonlinearity management functions, which describes the propagation of optical pulses in an inhomogeneous erbium-doped fiber system under certain restrictive conditions, is under investigation. We derive the Lax pair with a variable spectral parameter and the exact soliton solution is generated from the Baecklund transformation. It is observed that stable solitons are possible only under a very restrictive condition for the spectral parameter and other inhomogeneous functions. For various forms of the inhomogeneous dispersion, nonlinearity and gain/loss functions, construction of different types of solitary waves like classical solitons, breathers, etc is discussed

  14. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    Science.gov (United States)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  15. Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration

    International Nuclear Information System (INIS)

    Hamida, B A; Cheng, X S; Harun, S W; Naji, A W; Arof, H; Al-Khateeb, W; Khan, S; Ahmad, H

    2012-01-01

    A wideband and flat gain erbium-doped fibre amplifier (EDFA) is demonstrated using a hybrid gain medium of a zirconiabased erbium-doped fibre (Zr-EDF) and a high concentration erbium-doped fibre (EDF). The amplifier has two stages comprising a 2-m-long ZEDF and 9-m-long EDF optimised for C- and L-band operations, respectively, in a double-pass parallel configuration. A chirp fibre Bragg grating (CFBG) is used in both stages to ensure double propagation of the signal and thus to increase the attainable gain in both C- and L-band regions. At an input signal power of 0 dBm, a flat gain of 15 dB is achieved with a gain variation of less than 0.5 dB within a wide wavelength range from 1530 to 1605 nm. The corresponding noise figure varies from 6.2 to 10.8 dB within this wavelength region.

  16. Practical Method for engineering Erbium-doped fiber lasers from step-like pulse excitations

    International Nuclear Information System (INIS)

    Causado-Buelvas, J D; Gomez-Cardona, N D; Torres, P

    2011-01-01

    A simple method, known as 'easy points', has been applied to the characterization of Erbium-doped fibers, aiming for the engineering of fiber lasers. Using low- optical-power flattop pulse excitations it has been possible to determine both the attenuation coefficients and the intrinsic saturation powers of doped single-mode fibers at 980 and 1550 nm. Laser systems have been projected for which the optimal fiber length and output power have been determined as a function of the input power. Ring and linear laser cavities have been set up, and the characteristics of the output laser have been obtained and compared with the theoretical predictions based on the 'easy points' parameters.

  17. Broadband features of passively harmonic mode locking in dispersion-managed erbium-doped all-fiber lasers

    Science.gov (United States)

    Geng, Y.; Li, L.; Shu, C. J.; Wang, Y. F.; Tang, D. Y.; Zhao, L. M.

    2018-06-01

    Broadband features of passively harmonic mode locking (HML) in dispersion-managed erbium-doped all-fiber lasers are explored. The bandwidth of HML state is generally narrower than that of fundamental mode locking before pulse breaking occurs. There exists a broadest bandwidth versus the order of HML. HML state with bandwidth up to 61.5 nm is obtained.

  18. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration

    Science.gov (United States)

    Liu, Wenjun; Liu, Mengli; OuYang, Yuyi; Hou, Huanran; Ma, Guoli; Lei, Ming; Wei, Zhiyi

    2018-04-01

    In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.

  19. Q-switched Erbium-doped fiber laser at 1600 nm for photoacoustic imaging application

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Zhonglie [Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612 (United States); Zeng, Lvming; Chen, Zhongping, E-mail: z2chen@uci.edu, E-mail: ckim@pusan.ac.kr [Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, California 92612 (United States); Kim, Chang-Seok, E-mail: z2chen@uci.edu, E-mail: ckim@pusan.ac.kr [Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2016-04-04

    We present a nanosecond Q-switched Erbium-doped fiber (EDF) laser system operating at 1600 nm with a tunable repetition rate from 100 kHz to 1 MHz. A compact fiber coupled, acousto-optic modulator-based EDF ring cavity was used to generate a nanosecond seed laser at 1600 nm, and a double-cladding EDF based power amplifier was applied to achieve the maximum average power of 250 mW. In addition, 12 ns laser pulses with the maximum pulse energy of 2.4 μJ were obtained at 100 kHz. Furthermore, the Stokes shift by Raman scattering over a 25 km long fiber was measured, indicating that the laser can be potentially used to generate the high repetition rate pulses at the 1.7 μm region. Finally, we detected the photoacoustic signal from a human hair at 200 kHz repetition rate with a pulse energy of 1.2 μJ, which demonstrates that a Q-switched Er-doped fiber laser can be a promising light source for the high speed functional photoacoustic imaging.

  20. Accelerated two-wave mixing response in erbium-doped fibers with saturable optical absorption

    Science.gov (United States)

    Hernandez, Eliseo; Stepanov, Serguei; Plata Sanchez, Marcos

    2016-08-01

    The contribution of the spatially uniform variation of average optical absorption to the dynamics of the transient two-wave mixing (TWM) response is considered. It is shown theoretically and confirmed experimentally that this transient effect, via dynamic population gratings in erbium-doped fibers (EDFs) can ensure a response nearly two times faster in such gratings as compared to the growth rate of fluorescence uniformly excited under similar conditions, and can also result in an additional overshot in the tail of the TWM response. This additional ‘accelerating’ contribution is of even type, and does not influence the odd transient TWM response for the refractive index component of such gratings in the EDFs reported earlier. It is also shown that this effect can be utilized to monitor the formation of the dynamic grating with an auxiliary probe wave of the essentially different non-Bragg wavelength.

  1. A Q-Switched Erbium-Doped Fiber Laser with a Carbon Nanotube Based Saturable Absorber

    International Nuclear Information System (INIS)

    Harun, S. W.; Ismail, M. A.; Ahmad, F.; Ismail, M. F.; Nor, R. M.; Zulkepely, N. R.; Ahmad, H.

    2012-01-01

    We demonstrate a simple, compact and low cost Q-switched erbium-doped fiber laser (EDFL) using single-wall carbon nanotubes (CNTs) as a saturable absorber for possible applications in metrology, sensing, and medical diagnostics. The EDFL operates at around 1560 nm with repetition rates of 16.1 kHz and 6.4 kHz with saturable absorbers SA1 and SA2 at a pump power of 120 mW. The absorbers are constructed by optically driven deposition and normal deposition techniques. It is observed that the optical deposition method produces a Q-switched EDFL with a lower threshold of 70 mW and better Q-switching performance compared to that of the normal deposition method. The EDFL also has pulse energy of 90.3 nJ and pulse width of 11.6 μs at 120 mW pump power

  2. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications

    Science.gov (United States)

    Chen, H.; Jin, C.; Huang, B.; Fontaine, N. K.; Ryf, R.; Shang, K.; Grégoire, N.; Morency, S.; Essiambre, R.-J.; Li, G.; Messaddeq, Y.; Larochelle, S.

    2016-08-01

    Space-division multiplexing (SDM), whereby multiple spatial channels in multimode and multicore optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.

  3. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches

    International Nuclear Information System (INIS)

    Ismail, M. A.; Tan, S. J.; Shahabuddin, N. S.; Harun, S. W.; Arof, H.; Ahmad, H.

    2012-01-01

    A mode-locked erbium-doped fiber laser (EDFL) is demonstrated using a highly concentrated erbium-doped fiber (EDF) as the gain medium in a ring configuration with and without a saturable absorber (SA). Without the SA, the proposed laser generates soliton pulses with a repetition rate of 12 MHz, pulse width of 1.11 ps and energy pulse of 1.6 pJ. By incorporating SA in the ring cavity, the optical output of the laser changes from soliton to stretched pulses due to the slight change in the group velocity dispersion. With the SA, a cleaner pulse is obtained with a repetition rate of 11.3 MHz, a pulse width of 0.58 ps and a pulse energy of 2.3 pJ. (fundamental areas of phenomenology(including applications))

  4. Self-Q-switching behavior of erbium-doped tellurite microstructured fiber lasers

    International Nuclear Information System (INIS)

    Jia, Zhi-Xu; Yao, Chuan-Fei; Kang, Zhe; Qin, Guan-Shi; Qin, Wei-Ping; Ohishi, Yasutake

    2014-01-01

    We reported self-Q-switching behavior of erbium-doped tellurite microstructured fiber (EDTMF) lasers and further demonstrated a self-Q-switched EDTMF laser with a high repetition rate of more than 1 MHz. A 14 cm EDTMF was used as the gain medium. Upon a pump power of ∼705 mW at 1480 nm, output pulses with a lasing wavelength of ∼1558 nm, a repetition rate of ∼1.14 MHz, and a pulse width of ∼282 ns were generated from the fiber by employing a linear cavity. The maximum output power was ∼316 mW and the slope efficiency was about 72.6% before the saturation of the laser power. Moreover, the influence of the fiber length on laser performances was investigated. The results showed that self-Q-switching behavior in our experiments was caused by the re-absorption originated from the ineffectively pumped part of the active fiber.

  5. Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser

    Science.gov (United States)

    Rahman, M. F. A.; Zhalilah, M. Z.; Latiff, A. A.; Rosol, A. H. A.; Lokman, M. Q.; Bushroa, A. R.; Dimyati, K.; Harun, S. W.

    2018-04-01

    This paper reports on the use of Antimony (Sb) polymer film to generate stable Q-switching pulses in Erbium-doped fiber laser (EDFL) cavity. The SA is fabricated by coating a thin layer of Sb on a polyvinyl alcohol (PVA) film through physical vapour deposition (PVD) process. A 1 × 1 mm area of the film SA is cut and integrated into between two fiber ferrules inside the laser cavity for intra-cavity loss modulation. Self-starting and stable Q-switched pulses are obtained within a pump power range from 60 to 142 mW. Within this range, the repetition rate increases from 70.82 to 98.04 kHz, while pulse width decreases from 7.42 to 5.36 μs. The fundamental frequency signal-to-noise ratio of the pulse signal is 74 dB, which indicates the excellent stability of the pulses. The maximum output power and pulse energy are 8.45 mW and 86.19 nJ, respectively. Our demonstration shows that Sb film SA capable of generating stable pulses train operating at 1.55-micron region.

  6. Treatment of dilated pores with 1410-nm fractional erbium-doped fiber laser.

    Science.gov (United States)

    Suh, Dong-Hye; Chang, Ka-Yeun; Lee, Sang-Jun; Song, Kye-Yong; Choi, Jeong Hwee; Shin, Min Kyung; Jeong, Ki-Heon

    2015-04-01

    Dilated pores can be an early sign of skin aging and are a significant cosmetic concern. The 1410-nm wavelength is optimal for superficial dermal treatments up to 650 μm deep. The aim of the present study was to evaluate the clinical effectiveness and safety of the fractional erbium-doped fiber 1410-nm laser in the treatment of dilated pores. Fifteen patients with dilated facial pores underwent three laser treatments at 3-week intervals. Posttreatment skin responses and side effects were assessed at treatment and follow-up visits by study physicians. Clinical effectiveness of treatment was assessed by both study physicians and patients 3 months after the final laser treatment using a quartile grading scale. Histological examination was performed using biopsy samples taken at baseline (pretreatment) and 3 months after the last treatment. This study showed that greater than 51 % improvement in dilated pores was demonstrated in 14 of 15 patients after three sessions of laser treatments. Improvements in skin texture, tone, and smoothness were reported in all patients. Treatment was well tolerated in all patients, with no unanticipated side effects. This study demonstrates that the 1410-nm fractional erbium fiber laser is effective and safe for treatment of dilated facial pores in Fitzpatrick skin types III-IV.

  7. Dark solitons in erbium-doped fiber lasers based on indium tin oxide as saturable absorbers

    Science.gov (United States)

    Guo, Jia; Zhang, Huanian; Li, Zhen; Sheng, Yingqiang; Guo, Quanxin; Han, Xile; Liu, Yanjun; Man, Baoyuan; Ning, Tingyin; Jiang, Shouzhen

    2018-04-01

    Dark solitons, which have good stability, long transmission distance and strong anti-interference ability. By using a coprecipitation method, the high quality indium tin oxide (ITO) were prepared with an average diameter of 34.1 nm. We used a typical Z-scan scheme involving a balanced twin-detector measurement system to investigated nonlinear optical properties of the ITO nanoparticles. The saturation intensity and modulation depths are 13.21 MW/cm2 and 0.48%, respectively. In an erbium-doped fiber (EDF) lasers, we using the ITO nanoparticles as saturable absorber (SA), and the formation of dark soliton is experimentally demonstrated. The generated dark solitons are centered at the wavelength of 1561.1 nm with a repetition rate of 22.06 MHz. Besides, the pulse width and pulse-to-pulse interval of the dark solitons is ∼1.33ns and 45.11 ns, respectively. These results indicate that the ITO nanoparticles is a promising nanomaterial for ultrafast photonics.

  8. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong

    2013-01-01

    We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. A stable wavelength-tunable single frequency and single polarization linear cavity erbium-doped fiber laser

    International Nuclear Information System (INIS)

    Feng, T; Yan, F P; Li, Q; Peng, W J; Tan, S Y; Feng, S C; Wen, X D; Liu, P

    2013-01-01

    We report the configuration and operation of a wavelength-tunable single frequency and single polarization erbium-doped fiber laser (EDFL) with a stable and high optical signal to noise ratio (OSNR) laser output. A narrow-band fiber Bragg grating (NBFBG), a FBG-based Fabry–Perot (FP) filter, a polarization controller (PC) and an unpumped erbium-doped fiber (EDF) as a saturable absorber (SA) are employed to realize stable single frequency lasing operation. An all-fiber polarizer (AFP) is introduced to suppress mode hopping and ensure the single polarization mode operation. By adjusting the length of the NBFBG using a stress adjustment module (SAM), four stable single frequency and single polarization laser outputs at wavelengths of 1544.946, 1545.038, 1545.118 and 1545.182 nm are obtained. At room temperature, performance with an OSNR of larger than 60 dB, power fluctuation of less than 0.04 dB, wavelength variation of less than 0.01 nm for about 5 h measurement, and degree of polarization (DOP) of close to 100% has been experimentally demonstrated for the fiber laser operating at these four wavelengths. (paper)

  10. Modeling of Mid-IR Amplifier Based on an Erbium-Doped Chalcogenide Microsphere

    Directory of Open Access Journals (Sweden)

    P. Bia

    2012-01-01

    Full Text Available An optical amplifier based on a tapered fiber and an Er3+-doped chalcogenide microsphere is designed and optimized. A dedicated 3D numerical model, which exploits the coupled mode theory and the rate equations, is used. The main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion interactions have been considered. Both the pump and signal beams are efficiently injected and obtained by a suitable design of the taper angle and the fiber-microsphere gap. Moreover, a good overlapping between the optical signals and the rare-earth-doped region is also obtained. In order to evaluate the amplifier performance in reduced computational time, the doped area is partitioned in sectors. The obtained simulation results highlight that a high-efficiency midinfrared amplification can be obtained by using a quite small microsphere.

  11. Tunable erbium-doped fiber laser based on optical fiber Sagnac interference loop with angle shift spliced polarization maintaining fibers

    Science.gov (United States)

    Ding, Zhenming; Wang, Zhaokun; Zhao, Chunliu; Wang, Dongning

    2018-05-01

    In this paper, we propose and experimentally demonstrate a tunable erbium-doped fiber laser (EDFL) with Sagnac interference loop with 45° angle shift spliced polarization maintaining fibers (PMFs). In the Sagnac loop, two PMFs with similar lengths. The Sagnac loop outputs a relatively complex interference spectrum since two beams transmitted in clockwise and counterclockwise encounter at the 3 dB coupler, interfere, and form two interference combs when the light transmitted in the Sagnac loop. The laser will excite and be stable when two interference lines in these two interference combs overlap together. Then by adjusting the polarization controller, the wide wavelength tuning is realized. Experimental results show that stable single wavelength laser can be realized in the wavelength range of 1585 nm-1604 nm under the pump power 157.1 mW. The side-mode suppression ratio is not less than 53.9 dB. The peak power fluctuation is less than 0.29 dB within 30 min monitor time and the side-mode suppression ratio is great than 57.49 dB when the pump power is to 222.7 mW.

  12. A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser

    Directory of Open Access Journals (Sweden)

    Tianxian Feng

    2016-11-01

    Full Text Available We demonstrate an erbium-doped fiber laser passively Q-switched by a black-phosphorus polyimide film. The multi-layer black-phosphorus (BP nanosheets were prepared via a liquid exfoliation approach exploiting N-methylpyrrolidone as the dispersion liquid. By mixing the BP nanosheets with polyimide (PI, a piece of BP–PI film was obtained after evaporating the mixture in a petri dish. The BP–PI saturable absorber had a modulation depth of 0.47% and was inserted into an erbium-doped fiber laser to realize passive Q-switched operations. The repetition rate of the Q-switched laser increased from 5.73 kHz to 31.07 kHz when the laser pump was enhanced from 31.78 mW to 231.46 mW. Our results show that PI is an excellent host material to protect BP from oxidation, and the BP–PI film can act as a promising nonlinear optical device for laser applications.

  13. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber

    Science.gov (United States)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Feng, Ting; Jian, Shuisheng

    2013-04-01

    A tunable single-polarization single-longitudinal-mode (SLM) erbium-doped fiber ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a uniform fiber Bragg grating (UFBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped erbium-doped fiber acting as a saturable absorber. The single polarization operation of the fiber laser is obtained by using an inline broadband polarizer. A tuning range of about 0.7 nm with about 0.1 nm step is achieved by stretching the uniform FBG.

  14. Short-wavelength multiline erbium-doped fiber ring laser by a broadband long-period fiber grating inscribed in a taper transition

    International Nuclear Information System (INIS)

    Anzueto-Sánchez, G; Martínez-Rios, A

    2014-01-01

    A stable multiwavelength all-fiber erbium-doped fiber ring laser (EDFRL) based on a broadband long-period fiber grating (LPFG) inscribed in a fiber taper transition is presented. The LPFG’s characteristics were engineered to provide a higher loss at the natural lasing wavelength of the laser cavity. The LPFG inscribed on a taper transition provided a depth greater than 25 dB, and posterior chemical etching provided a broad notch band to inhibit laser generation on the long-wavelength side of the EDF gain. Up to four simultaneous laser wavelengths are generated in the range of 1530–1535 nm. (paper)

  15. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  16. Transverse UV-laser irradiation-induced defects and absorption in a single-mode erbium-doped optical fiber

    International Nuclear Information System (INIS)

    Tortech, B.; Ouerdane, Y.; Boukenter, A.; Meunier, J. P.; Girard, S.; Van Uffelen, M.; Berghmans, F.; Regnier, E.; Berghmans, F.; Thienpont, H.

    2009-01-01

    Near UV-visible absorption coefficients of an erbium-doped optical fiber were investigated through an original technique based on a transverse cw UV-laser irradiation operating at 244 nm. Such irradiation leads to the generation of a quite intense guided luminescence signal in near UV spectral range. This photoluminescence probe source combined with a longitudinal translation of the fiber sample (at a constant velocity) along the UV-laser irradiation, presents several major advantages: (i) we bypass and avoid the procedures classically used to study the radiation induced attenuation which are not adapted to our case mainly because the samples present a very strong absorption with significant difficulties due to the injection of adequate UV-light levels in a small fiber diameter: (ii) the influence of the laser irradiation on the host matrix of the optical fiber is directly correlated to the evolution of the generated photoluminescence signal and (iii) in our experimental conditions, short fiber sample lengths (typically 20-30 cm) suffice to determine the associated absorption coefficients over the entire studied spectral domain. The generated photoluminescence signal is also used to characterize the absorption of the erbium ions in the same wavelength range with no cut-back method needed. (authors)

  17. Nonlinear Polarization Rotation-Based Mode-Locked Erbium-Doped Fiber Laser with Three Switchable Operation States

    International Nuclear Information System (INIS)

    Tiu Zian Cheak; Tan Sin Jin; Zarei Arman; Ahmad Harith; Harun Sulaiman Wadi

    2014-01-01

    A simple mode-locked erbium-doped fiber laser (EDFL) with three switchable operation states is proposed and demonstrated based on nonlinear polarization rotation. The EDFL generates a stable square pulse at a third harmonic pulse repetition rate of 87 kHz as the 1480 nm pump power increases from the threshold of 17.5 mW to 34.3 mW. The square pulse duration increases from 105 ns to 245 ns as the pump power increases within this region. The pulse operation switches to the second operation state as the pump power is varied from 48.2 mW to 116.7 mW. The laser operates at a fundamental repetition rate of 29 kHz with a fixed pulse width of 8.5 μs within the pump power region. At a pump power of 116.7 mW, the average output power is 3.84 mW, which corresponds to the pulse energy of 131.5 nJ. When the pump power continues to increase, the pulse train experiences unstable oscillation before it reaches the third stable operation state within a pump power region of 138.9 mW to 145.0 mW. Within this region, the EDFL produces a fixed pulse width of 2.8 μs and a harmonic pulse repetition rate of 58 kHz. (fundamental areas of phenomenology(including applications))

  18. Femtosecond mode-locked erbium-doped fiber laser based on MoS2-PVA saturable absorber

    Science.gov (United States)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Ahmad, H.; Harun, S. W.

    2016-08-01

    We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a soliton mode-locked Erbium-doped fiber laser (EDFL). A stable self-started mode-locked soliton pulse is generated by fine-tuning the rotation of the polarization controller at a low threshold pump power of 25 mW. Its solitonic behavior is verified by the presence of Kelly sidebands in the output spectrum. The central wavelength, pulse width, and repetition rate of the laser are 1573.7 nm, 630 fs, and 27.1 MHz, respectively. The maximum pulse energy is 0.141 nJ with peak power of 210 W at pump power of 170 mW. This result contributes to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.

  19. Generation of Q-Switched Mode-Locked Erbium-Doped Fiber Laser Operating in Dark Regime

    International Nuclear Information System (INIS)

    Tiu, Zian Cheak; Zarei, Arman; Ahmad, Harith; Harun, Sulaiman Wadi

    2016-01-01

    We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96 kHz to 3.26 kHz, whereas the pulse width reduces from 211 μs to 86 μs. The highest pulse of 479 nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5 μs when the pump power is fixed at 145 mW. The repetition rate of trailing dark pulses can be increased from 27.62 kHz to 50 kHz as the pump power increases from 55 mW to 145 mW. (paper)

  20. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field

    International Nuclear Information System (INIS)

    Luo, Z Q; Wang, J Z; Zhou, M; Xu, H Y; Cai, Z P; Ye, C C

    2012-01-01

    We report on the generation of multiwavelength passively mode-locked pulses in an erbium-doped fiber laser (EDFL) based on the interaction of graphene and fiber-taper evanescent field. Graphene-polymer nanocomposites in aqueous suspension are trapped by the optical evanescent light and deposited on taper region. The graphene-deposited fiber-taper device not only acts as an excellent saturable absorber for mode-locking, but also induces a polarizing effect to form an artificial birefringent filter for multiwavelength selection. By simultaneously exploiting both functions of this device, four-wavelength continuous-wave mode-locking operation of an EDFL is stably initiated with a pulse width of 8.8 ps and a fundamental repetition rate of 8.034 MHz. This is the first time, to our knowledge, the mode-locked EDFL using such a new geometry of graphene-based tapered-fiber saturable absorber has been demonstrated

  1. Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking

    International Nuclear Information System (INIS)

    Rosa, Henrique Guimaraes; De Souza, Eunézio A Thoroh; Gomes, José Carlos Viana

    2015-01-01

    This paper presents, for the first time, the successful transfer of exfoliated monolayer graphene flake to the optical fiber end face and alignment to its core. By fabricating and optimizing a polymeric poly(methyl methacrylate) (PMMA) and polyvinyl alcohol (PVA) substrate, it is possible to obtain a contrast of up to 11% for green light illumination, allowing the identification of monolayer graphene flakes that were transferred to optical fiber samples and aligned to its core. With Raman spectroscopy, it is demonstrated that graphene flake completely covers the optical fiber core, and its quality remains unaltered after the transfer. The generation of mode-locked erbium-doped fiber laser pulses, with a duration of 672 fs, with a single-monolayer graphene flake as a saturable absorber, is demonstrated for the first time. This transfer technique is of general applicability and can be used for other two-dimensional (2D) exfoliated materials. (letter)

  2. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  3. Topological insulator: Bi{sub 2}Se{sub 3}/polyvinyl alcohol film-assisted multi-wavelength ultrafast erbium-doped fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bo; Yao, Yong, E-mail: yaoyong@hit.edu.cn; Yang, Yan-Fu; Yuan, Yi-Jun; Wang, Rui-Lai [Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Wang, Shu-Guang; Ren, Zhong-Hua [Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Yan, Bo [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-02-14

    We experimentally demonstrate a multi-wavelength ultrafast erbium-doped fiber laser incorporating a μm-scale topological insulator: Bi{sub 2}Se{sub 3}/Polyvinyl Alcohol film as both an excellent saturable absorber for mode-locking and a high-nonlinear medium to induce a giant third order optical nonlinear effect for mitigating the mode competition of erbium-doped fiber laser and stabilizing the multi-wavelength oscillation. By properly adjusting the pump power and the polarization state, the single-, dual-, triple-, four-wavelength mode-locking pulse could be stably initiated. For the four-wavelength operation, we obtain its pulse width of ∼22 ps and a fundamental repetition rate of 8.83 MHz. The fiber laser exhibits the maximum output power of 9.7 mW with the pulse energy of 1.1 nJ and peak power of 50 W at the pump power of 155 mW. Our study shows that the simple, stable, low-cost multi-wavelength ultrafast fiber laser could be applied in various potential fields, such as optical communication, biomedical research, and radar system.

  4. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection.

    Science.gov (United States)

    Jeong, Y; Baek, S; Dupriez, P; Maran, J-N; Sahu, J K; Nilsson, J; Lee, B

    2008-11-24

    We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at approximately 975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached approximately 236 degrees C.

  5. Dispersion and Nonlinearity Characterization of a Mode-Locked Erbium-Doped Fiber Laser

    National Research Council Canada - National Science Library

    Louthain, James

    2001-01-01

    .... These chirped Bragg gratings served as one of the mirrors in the linear fiber laser cavity. Finally, we measured the nonlinearity of five different muhiple quantum well saturable absorbers using a z-scan technique...

  6. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng

    2012-01-01

    We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser

  7. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    Science.gov (United States)

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  8. Three mode Er3+ ring-doped fiber amplifier for mode-division multiplexed transmission

    NARCIS (Netherlands)

    Jung, Y.; Kang, Q.; Sleiffer, V.A.J.M.; Inan, B.; Kuschnerov, M.; Veljanovski, V.; Corbett, B.; Winfield, R.; Li, Z.; Teh, P.S.; Dhar, A.; Sahu, J.K.; Poletti, F.; Alam, S.U.; Richardson, D.J.

    2013-01-01

    We successfully fabricate three-mode erbium doped fiber with a confined Er3+ doped ring structure and experimentally characterize the amplifier performance with a view to mode-division multiplexed (MDM) transmission. The differential modal gain was effectively mitigated by controlling the relative

  9. Repetition rate stabilization of an erbium-doped all-fiber laser via opto-mechanical control of the intracavity group velocity

    International Nuclear Information System (INIS)

    Shen, Xuling; He, Boqu; Zhao, Jian; Liu, Yang; Bai, Dongbi; Wang, Chao; Liu, Geping; Luo, Daping; Liu, Fengjiang; Li, Wenxue; Zeng, Heping; Yang, Kangwen; Hao, Qiang

    2015-01-01

    We present a method for stabilizing the repetition rate of an erbium-doped all-fiber laser by inserting an electronic polarization controller (EPC) in the fiber laser cavity. The device exhibited good integration, low cost, and convenient operation. Such a repetition rate stabilization may facilitate an all-fiber laser comb system with high integration. The repetition rate was phase-locked to a Rb reference more than 72 h with a low feedback voltage applied to one channel of the EPC. The repetition rate was 74.6 MHz. The standard deviation and the repetition rate linewidth were 1.4 and 1.7 mHz, respectively

  10. Tunable Q-switched erbium doped fiber laser based on metal transition oxide saturable absorber and refractive index characteristic of multimode interference effects

    Science.gov (United States)

    Mohammed, D. Z.; Khaleel, Wurood Abdulkhaleq; Al-Janabi, A. H.

    2017-12-01

    Ferro-oxide (Fe3O4) nanoparticles were used as a saturable absorber (SA) for a passively Q-switched erbium doped fiber laser (EDFL) with ring cavity. The Q-switching operation was achieved at a pump threshold of 80 mW. The proposed fiber laser produces stable pulses train of repetition rate ranging from 25 kHz to 80 kHz as the pump power increases from threshold to 342 mW. The minimum recorded pulse width was 2.7 μs at 342 mW. The C-band tunability operation was performed using single mode-multimode-single mode fiber (SM-MM-SM) structure. The laser exhibited a total tuning range of 7 nm, maximum sensitivity of 106.9 nm, optical signal to noise ratio (OSNR) of 38 dB and 3-dB linewidth of 0.06 nm.

  11. 75 W 40% efficiency single-mode all-fiber erbium-doped laser cladding pumped at 976 nm.

    Science.gov (United States)

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Yashkov, M V; Guryanov, A N; Lhermite, J; Février, S; Cormier, E

    2013-07-01

    Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 μm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.

  12. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  13. Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter.

    Science.gov (United States)

    Yin, Bin; Feng, Suchun; Liu, Zhibo; Bai, Yunlong; Jian, Shuisheng

    2014-09-22

    A tunable and switchable dual-wavelength single polarization narrow linewidth single-longitudinal-mode (SLM) erbium-doped fiber (EDF) ring laser based on polarization-maintaining chirped moiré fiber Bragg grating (PM-CMFBG) filter is proposed and demonstrated. For the first time as we know, the CMFBG inscribed on the PM fiber is applied for the wavelength-tunable and-switchable dual-wavelength laser. The PM-CMFBG filter with ultra-narrow transmission band (0.1 pm) and a uniform polarization-maintaining fiber Bragg grating (PM-FBG) are used to select the laser longitudinal mode. The stable single polarization SLM operation is guaranteed by the PM-CMFBG filter and polarization controller. A tuning range of about 0.25 nm with about 0.075 nm step is achieved by stretching the uniform PM-FBG. Meanwhile, the linewidth of the fiber laser for each wavelength is approximate 6.5 and 7.1 kHz with a 20 dB linewidth, which indicates the laser linewidth is approximate 325 Hz and 355 Hz FWHM.

  14. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    Science.gov (United States)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  15. A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure

    International Nuclear Information System (INIS)

    Feng, Ting; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Tan, Siyu; Liang, Xiao; Wen, Xiaodong

    2014-01-01

    A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure is proposed and demonstrated experimentally. The compound-cavity is composed of a main-linear-cavity and a subring-cavity. Using a pump power of 150 mW, the optical signal to noise ratio of the laser output is as high as ∼67 dB; the wavelength and output power fluctuation are 0.7 pm and 0.07 dBm respectively in an experimental period of 1 h; the linewidth of the laser output is as narrow as 650 Hz; the degree of polarization of the laser output is stable at a value of 100.8% in 15 min and the polarization extinction ratio is as high as 30.57 dB; the wavelength-tunable range is as wide as ∼8.1 nm. The proposed fiber laser can be used in areas where high stability, narrow-linewidth, single-polarization and wide wavelength-tunable range are needed. (letter)

  16. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser

    International Nuclear Information System (INIS)

    Lin, Yung-Hsiang; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    Triturated charcoal nano-powder directly brushed on a fiber connector end-face is used for the first time as a fast saturable absorber for a passively mode-locked erbium-doped fiber-ring laser (EDFL). These dispersant-free charcoal nano-powders with a small amount of crystalline graphene phase and highly disordered carbon structure exhibit a broadened x-ray diffraction peak and their Raman spectrum shows the existence of a carbon related D-band at 1350 cm −1 and the disappearance of the 2D-band peak at 2700 cm −1 . The charcoal nano-powder exhibits a featureless linear absorbance in the infrared region with its linear transmittance of 0.66 nonlinearly saturated at 0.73 to give a ΔT/T of 10%. Picosecond mode-locking at a transform-limited condition of a low-gain EDFL is obtained by using the charcoal nano-powder. By using a commercial EDFA with a linear gain of only 17 dB at the saturated output power of 17.5 dB m required to initiate the saturable absorption of the charcoal nano-powder, the EDFL provides a pulsewidth narrowing from 3.3 to 1.36 ps associated with its spectral linewidth broadening from 0.8 to 1.83 nm on increasing the feedback ratio from 30 to 90%. This investigation indicates that all the carbon-based materials containing a crystalline graphene phase can be employed to passively mode-lock the EDFL, however, the disordered carbon structure inevitably induces a small modulation depth and a large mode-locking threshold, thus limiting the pulsewidth shortening. Nevertheless, the nanoscale charcoal passively mode-locked EDFL still shows the potential to generate picosecond pulses under a relatively low cavity gain. An appropriate cavity design can be used to compensate this defect-induced pulsewidth limitation and obtain a short pulsewidth. (letter)

  17. Multi-soliton and rogue-wave solutions of the higher-order Hirota system for an erbium-doped nonlinear fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Da-Wei [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics; Shijiazhuang Tiedao University (China). Dept. of Mathematics and Physics; Gao, Yi-Tian; Sun, Yu-Hao; Feng, Yu-Jie; Xue, Long [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics

    2014-10-15

    The nonlinear Schroedinger (NLS) equation appears in fluid mechanics, plasma physics, etc., while the Hirota equation, a higher-order NLS equation, has been introduced. In this paper, a higher-order Hirota system is investigated, which describes the wave propagation in an erbium-doped nonlinear fiber with higher-order dispersion. By virtue of the Darboux transformation and generalized Darboux transformation, multi-soliton solutions and higher-order rogue-wave solutions are derived, beyond the published first-order consideration. Wave propagation and interaction are analyzed: (i) Bell-shape solitons, bright- and dark-rogue waves are found; (ii) the two-soliton interaction is elastic, i.e., the amplitude and velocity of each soliton remain unchanged after the interaction; (iii) the coefficient in the system affects the direction of the soliton propagation, patterns of the soliton interaction, distance, and direction of the first-order rogue-wave propagation, as well as the range and direction of the second-order rogue-wave interaction.

  18. Solitons and rogue waves for a higher-order nonlinear Schroedinger-Maxwell-Bloch system in an erbium-doped fiber

    International Nuclear Information System (INIS)

    Su, Chuan-Qi; Gao, Yi-Tian; Yu, Xin; Xue, Long; Aviation Univ. of Air Force, Liaoning

    2015-01-01

    Under investigation in this article is a higher-order nonlinear Schroedinger-Maxwell-Bloch (HNLS-MB) system for the optical pulse propagation in an erbium-doped fiber. Lax pair, Darboux transformation (DT), and generalised DT for the HNLS-MB system are constructed. Soliton solutions and rogue wave solutions are derived based on the DT and generalised DT, respectively. Properties of the solitons and rogue waves are graphically presented. The third-order dispersion parameter, fourth-order dispersion parameter, and frequency detuning all influence the characteristic lines and velocities of the solitons. The frequency detuning also affects the amplitudes of solitons. The separating function has no effect on the properties of the first-order rogue waves, except for the locations where the first-order rogue waves appear. The third-order dispersion parameter affects the propagation directions and shapes of the rogue waves. The frequency detuning influences the rogue-wave types of the module for the measure of polarization of resonant medium and the extant population inversion. The fourth-order dispersion parameter impacts the rogue-wave interaction range and also has an effect on the rogue-wave type of the extant population inversion. The value of separating function affects the spatial-temporal separation of constituting elementary rogue waves for the second-order and third-order rogue waves. The second-order and third-order rogue waves can exhibit the triangular and pentagon patterns under different choices of separating functions.

  19. The study of 80 MHz self starting passively mode-locked Erbium-Doped Fiber Laser via nonlinear polarization rotation with SESAM

    International Nuclear Information System (INIS)

    Qamar, F.

    2013-01-01

    Erbium-Doped Fiber Laser, EDF L, passively mode-locked via only Nonlinear Polarization Rotation, NPR, and via NPR with Semiconductor Saturable Absorber Mirror, SESAM, is studied. Self start single pulse train with pulse width of 114 fs and repetition rate (PRR) of 80 MHz has been obtained when 55 cm EDFL, passively mode-locked via NPR only. Inserting SESAM in EDFL cavity leads to shorten the pulse width up to 88 fs, increases the amplitude stability up to 96% and lower the phase noise jittering to around 26 fsec. Stable second harmonic self starting passively mode-locked EDFL with pulse width of 284 fs has also been observed only when SESAM was used in the cavity. Multi-pulsed system passively mode-locked via NPR for EDFL length of 80 cm with time difference between the successive multi-pulses ranged from few picoseconds to nanoseconds, has been observed. The time difference can be controlled by the polarizer controller and the half wave plate. Further controlling of the cavity polarization leads to developing the multiple mode locking pulses train to second harmonic mode-locking pulse train with PRR of 160MHz and pulse width of 156 fs. Three harmonic superposed trains of mode locked pulse have been achieved only when SESAM added to the cavity. (author)

  20. Dual-wavelength erbium-doped fiber laser with asymmetric fiber Bragg grating Fabry-Perot cavity

    Science.gov (United States)

    Chen, Cong; Xu, Zhi-wei; Wang, Meng; Chen, Hai-yan

    2014-11-01

    A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating (FBG) Fabry-Perot (FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.

  1. Stabilization in laser wavelength semiconductor with fiber optical amplifier application doped with erbium

    International Nuclear Information System (INIS)

    Camas, J.; Anzueto, G.; Mendoza, S.; Hernandez, H.; Garcia, C.; Vazquez, R.

    2009-01-01

    In this work, we present a novel electronic design of a DC source, which automatically controls the temperature of a tunable laser. The temperature change in the laser is carried out by the control of DC that circulates through a cooling stage where the laser is set. The laser can be tuned in a wavelength around 1550 nm. Its application is in Erbium Doped Fiber Amplifier (EDFA) in reflective configuration. (Author)

  2. Effect of temperature on the active properties of erbium-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, L V [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Ignat' ev, A D [FORC - Photonics group, Moscow (Russian Federation); Bubnov, M M; Likhachev, M E [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    We have studied the effect of heating on the performance of erbium-doped fibre based devices and determined temperaturedependent absorption and emission cross sections of the erbium ion in silica glass. The results demonstrate that heating of fibres in claddingpumped high-power (∼100 W) erbium-doped fibre lasers causes no significant decrease in their efficiency. In contrast, superluminescent sources operating in the long-wavelength region (1565 – 1610 nm) are extremely sensitive to temperature changes. (fiber optics)

  3. Numerical analysis of multifrequency erbium-doped fiber ring laser employing a periodic filter and frequency shifter

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Bellemare, A.

    2000-01-01

    Roč. 147, č. 2 (2000), s. 115-119 ISSN 1350-2433 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre amplifiers * fibre lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.792, year: 2000

  4. High gain L-band erbium-doped fiber amplifier with two-stage ...

    Indian Academy of Sciences (India)

    One of the key technologies to increase the bandwidth of optical communication systems is to expand ... plexing (WDM) transmission system is very attractive because the system capacity can be doubled by placing .... an important role in the development of practical L-band EDFA from the perspective of economical usage ...

  5. Fundamental design of a distributed erbium-doped fiber amplifier for long-distance transmission

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Bjarklev, Anders Overgaard; Povlsen, Jørn Hedegaard

    1992-01-01

    . Designs based on a bidirectional pumping scheme are evaluated, taking nonlinearities into account. The optimum value of the numerical aperture will be evaluated for cutoff wavelengths where the propagating pump power is single moded. For distances between each pumping station in the region between 10...

  6. Effect of beam expansion loss in a carbon nanotube-doped PVA film on passively mode-locked erbium-doped fiber lasers with different feedback ratios

    International Nuclear Information System (INIS)

    Cheng, Kuang-Nan; Chi, Yu-Chieh; Cheng, Chih-Hsien; Lin, Yung-Hsiang; Lo, Jui-Yung; Lin, Gong-Ru

    2014-01-01

    The effect of beam expansion induced divergent loss in a single-wall carbon nanotube (SWCNT) doped polyvinyl alcohol (PVA) based ultrafast saturable absorber (SA) film thickness on the passive mode-locking (PML) performances of erbium-doped fiber lasers are demonstrated. The variation on the PML pulsewidth of the EDFL is discussed by changing the SWCNT-PVA SA film thicknesses, together with adjusting the pumping power and the intra-cavity feedback ratio. An almost 6 dB increment of divergent loss when enlarging the SWCNT-PVA based SA film thickness from 30–130 µm is observed. When shrinking the SA thickness to 30 µm at the largest pumping power of 52.5 mW, the optical spectrum red-shifts to 1558.8 nm with its 3 dB spectral linewidth broadening up to 2.7 nm, while the pulse has already entered the soliton regime with multi-order Kelly sidebands aside the spectral shoulder. The soliton pulsewidth is as short as 790 fs, which is much shorter than those obtained with other thicker SWCNT doped PVA polymer film based SAs; therefore, the peak power from the output of the PML-EDFL is significantly enlarged accompanied by a completely suppressed residual continuous-wave level to achieve the largest on/off extinction ratio. The main mechanism of pulse shortening with reducing thickness of SWCNT doped PVA polymer film based SA is attributed to the limited beam expansion as well as the enlarged modulation depth, which results in shortened soliton pulsewidth with a clean dc background, and broadened spectrum with enriched Kelly sidebands. The increase of total SWCNT amount in the thicker SA inevitably causes a higher linear absorption; hence, the mode-locking threshold also rises accordingly. By enlarging pumping power from 38.5–52.5 mW, the highest ascent on pulse extinction of up to 32 dB is observed among all kinds of feedback conditions. Nevertheless, the enlargement on the extinction slightly decays with increasing the feedback ratio from 30–90

  7. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  8. Cladding-pumped 70-kW-peak-power 2-ns-pulse Er-doped fiber amplifier

    Science.gov (United States)

    Khudyakov, M. M.; Bubnov, M. M.; Senatorov, A. K.; Lipatov, D. S.; Guryanov, A. N.; Rybaltovsky, A. A.; Butov, O. V.; Kotov, L. V.; Likhachev, M. E.

    2018-02-01

    An all-fiber pulsed erbium laser with pulse width of 2.4 ns working in a MOPA configuration has been created. Cladding pumped double clad erbium doped large mode area fiber was used in the final stage amplifier. Peculiarity of the current work is utilization of custom-made multimode diode wavelength stabilized at 981+/-0.5 nm - wavelength of maximum absorption by Er ions. It allowed us to shorten Er-doped fiber down to 1.7 m and keep a reasonably high pump-to signal conversion efficiency of 8.4%. The record output peak power for all-fiber amplifiers of 84 kW was achieved within 1555.9+/-0.15 nm spectral range.

  9. Erbium doped stain etched porous silicon

    International Nuclear Information System (INIS)

    Gonzalez-Diaz, B.; Diaz-Herrera, B.; Guerrero-Lemus, R.; Mendez-Ramos, J.; Rodriguez, V.D.; Hernandez-Rodriguez, C.; Martinez-Duart, J.M.

    2008-01-01

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO 3 solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er 3+ ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy

  10. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    Science.gov (United States)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration 59 dB) and relative intensity noise <-101 dBc / Hz.

  11. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Jagiello, J.; Lipinska, L. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2015-04-07

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  12. A comprehensive study on gain stabilization of Er-doped fiber amplifier in C-band with uniform fiber Bragg grating-pair

    Science.gov (United States)

    Yang, Jiuru; Ma, Yu; OuYang, Yunlun; Liu, Chunyu; Zhang, Jiaxiao

    2014-07-01

    Fiber grating-pair is one of the efficient methods for gain stabilization of erbium doped fiber amplifier (EDFA) but with a gain-reduction of signals, especially in C-band. In order to overcome it, in this article, we establish a configuration of EDFA based uniform fiber grating-pair and conduct a comprehensive study on gain stabilization by varying the reflectivity, center wavelength and 3dB bandwidth of grating, and by varying the channel number and pump power. The numerical results show that under the optimal parameters of grating the gain stabilization at 1550nm is +/-0.044dB with high gain and large dynamic range.

  13. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    Science.gov (United States)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced

  14. Thermal tuning On narrow linewidth fiber laser

    Science.gov (United States)

    Han, Peiqi; Liu, Tianshan; Gao, Xincun; Ren, Shiwei

    2010-10-01

    At present, people have been dedicated to high-speed and large-capacity optical fiber communication system. Studies have been shown that optical wavelength division multiplexing (WDM) technology is an effective means of communication to increase the channel capacity. Tunable lasers have very important applications in high-speed, largecapacity optical communications, and distributed sensing, it can provide narrow linewidth and tunable laser for highspeed optical communication. As the erbium-doped fiber amplifier has a large gain bandwidth, the erbium-doped fiber laser can be achieved lasing wavelength tunable by adding a tunable filter components, so tunable filter device is the key components in tunable fiber laser.At present, fiber laser wavelength is tuned by PZT, if thermal wavelength tuning is combined with PZT, a broader range of wavelength tuning is appearance . Erbium-doped fiber laser is used in the experiments,the main research is the physical characteristics of fiber grating temperature-dependent relationship and the fiber grating laser wavelength effects. It is found that the fiber laser wavelength changes continuously with temperature, tracking several temperature points observed the self-heterodyne spectrum and found that the changes in spectra of the 3dB bandwidth of less than 1kHz, and therefore the fiber laser with election-mode fiber Bragg grating shows excellent spectral properties and wavelength stability.

  15. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  16. Planar waveguide amplifiers and laser in erbium doped silica

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Kristensen, Martin

    1999-01-01

    with UV-light and that permanent Bragg-gratings can be induced. Planar waveguide lasers with integrated Bragg-gratings are manufactured and characterised. It is shown that linewidths below 125 kHz and output powers around 0.5 mW can be obtained, and that the manufactured lasers are resistant to mechanical...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index o fthe films can be controlled by germanium co...... as well as thermal influence. A simple method for producing an array of planar waveguide lasers is presented and it is shown that the difference in output wavelength of the individual lasers can be controlled with great accuracy....

  17. Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH3 and H2S

    Directory of Open Access Journals (Sweden)

    Hongpeng Wu

    2015-10-01

    Full Text Available A selective and sensitive quartz enhanced photoacoustic spectroscopy (QEPAS sensor, employing an erbium-doped fiber amplifier (EDFA, and a distributed feedback (DFB laser operating at 1582 nm was demonstrated for simultaneous detection of ammonia (NH3 and hydrogen sulfide (H2S. Two interference-free absorption lines located at 6322.45 cm−1 and 6328.88 cm−1 for NH3 and H2S detection, respectively, were identified. The sensor was optimized in terms of current modulation depth for both of the two target gases. An electrical modulation cancellation unit was equipped to suppress the background noise caused by the stray light. An Allan-Werle variance analysis was performed to investigate the long-term performance of the fiber-amplifier-enhanced QEPAS sensor. Benefitting from the high power boosted by the EDFA, a detection sensitivity (1σ of 52 parts per billion by volume (ppbv and 17 ppbv for NH3 and H2S, respectively, were achieved with a 132 s data acquisition time at atmospheric pressure and room temperature.

  18. Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH3 and H2S

    Science.gov (United States)

    Wu, Hongpeng; Dong, Lei; Liu, Xiaoli; Zheng, Huadan; Yin, Xukun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2015-01-01

    A selective and sensitive quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplifier (EDFA), and a distributed feedback (DFB) laser operating at 1582 nm was demonstrated for simultaneous detection of ammonia (NH3) and hydrogen sulfide (H2S). Two interference-free absorption lines located at 6322.45 cm−1 and 6328.88 cm−1 for NH3 and H2S detection, respectively, were identified. The sensor was optimized in terms of current modulation depth for both of the two target gases. An electrical modulation cancellation unit was equipped to suppress the background noise caused by the stray light. An Allan-Werle variance analysis was performed to investigate the long-term performance of the fiber-amplifier-enhanced QEPAS sensor. Benefitting from the high power boosted by the EDFA, a detection sensitivity (1σ) of 52 parts per billion by volume (ppbv) and 17 ppbv for NH3 and H2S, respectively, were achieved with a 132 s data acquisition time at atmospheric pressure and room temperature. PMID:26506351

  19. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Science.gov (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  20. High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses

    International Nuclear Information System (INIS)

    Le Ngoc Chung; Chu Thi Thu Ha; Nguyen Thu Trang; Pham Thu Nga; Pham Van Hoi; Bui Van Thien

    2006-01-01

    High-power whispering-gallery-mode (WGM) lasing from highly erbium-doped sol-gel aluminosilicate microsphere cavity coupled to a half-tapered optical fiber is presented. The lasing output power as high as 0.45 mW (-3.5 dBm) was obtained from sol-gel glass microsphere cavity with diameters in the range of 40-150 μm. The sol-gel method for making highly concentration Er-doped aluminosilicate glasses with Er-ion concentrations from 0.125 to 0.65 mol% of Er 3+ is described. Controlling collected lasing wavelength at each WGM is possible by adjusting the distance between the half-taper fiber and the microcavity and by diameter of the waist of half-taper fiber. Using the analytic formulas we calculated the TE and TM lasing modes and it is shown that the experimental results are in good agreement with the calculation prediction

  1. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  2. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  3. Bandwidth-Tunable Fiber Bragg Gratings Based on UV Glue Technique

    Science.gov (United States)

    Fu, Ming-Yue; Liu, Wen-Feng; Chen, Hsin-Tsang; Chuang, Chia-Wei; Bor, Sheau-Shong; Tien, Chuen-Lin

    2007-07-01

    In this study, we have demonstrated that a uniform fiber Bragg grating (FBG) can be transformed into a chirped fiber grating by a simple UV glue adhesive technique without shifting the reflection band with respect to the center wavelength of the FBG. The technique is based on the induced strain of an FBG due to the UV glue adhesive force on the fiber surface that causes a grating period variation and an effective index change. This technique can provide a fast and simple method of obtaining the required chirp value of a grating for applications in the dispersion compensators, gain flattening in erbium-doped fiber amplifiers (EDFAs) or optical filters.

  4. 1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission.

    Science.gov (United States)

    Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin

    2017-12-10

    A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.

  5. Quartz enhanced photoacoustic H{sub 2}S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hongpeng; Liu, Xiaoli; Zheng, Huadan; Yin, Xukun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Jia, Suotang [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China); Sampaolo, Angelo [Dipartimento Interateneo di Fisica, Università degli Studi di Bari and Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, Bari 70126 (Italy); Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Dong, Lei, E-mail: donglei@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China); Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Patimisco, Pietro; Spagnolo, Vincenzo [Dipartimento Interateneo di Fisica, Università degli Studi di Bari and Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, Bari 70126 (Italy); Tittel, Frank K. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States)

    2015-09-14

    A quartz enhanced photoacoustic spectroscopy (QEPAS) sensor, employing an erbium-doped fiber amplified laser source and a custom quartz tuning fork (QTF) with its two prongs spaced ∼800 μm apart, is reported. The sensor employs an acoustic micro-resonator (AmR) which is assembled in an “on-beam” QEPAS configuration. Both length and vertical position of the AmR are optimized in terms of signal-to-noise ratio, significantly improving the QEPAS detection sensitivity by a factor of ∼40, compared to the case of a sensor using a bare custom QTF. The fiber-amplifier-enhanced QEPAS sensor is applied to H{sub 2}S trace gas detection, reaching a sensitivity of ∼890 ppb at 1 s integration time, similar to those obtained with a power-enhanced QEPAS sensor equipped with a standard QTF, but with the advantages of easy optical alignment, simple installation, and long-term stability.

  6. Stimulated Brillouin scattering threshold in fiber amplifiers

    International Nuclear Information System (INIS)

    Liang Liping; Chang Liping

    2011-01-01

    Based on the wave coupling theory and the evolution model of the critical pump power (or Brillouin threshold) for stimulated Brillouin scattering (SBS) in double-clad fiber amplifiers, the influence of signal bandwidth, fiber-core diameter and amplifier gain on SBS threshold is simulated theoretically. And experimental measurements of SBS are presented in ytterbium-doped double-clad fiber amplifiers with single-frequency hundred nanosecond pulse amplification. Under different input signal pulses, the forward amplified pulse distortion is observed when the pulse energy is up to 660 nJ and the peak power is up to 3.3 W in the pulse amplification with pulse duration of 200 ns and repetition rate of 1 Hz. And the backward SBS narrow pulse appears. The pulse peak power equals to SBS threshold. Good agreement is shown between the modeled and experimental data. (authors)

  7. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  8. Efficient and Compact Optical Amplifier Using EYDF

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2010-09-01

    Full Text Available An efficient Erbium/Ytterbium doped fiber amplifier (EYDFA is demonstrated using a 1058nm pumping wavelength, where the amplification is assisted by energy transfer between Yb and Er ions. The energy transfer increases the limit of erbium doping concentration that is imposed by concentration quenching in Erbium-doped fiber (EDF. Therefore, the gain and noise figure are severely degraded with 1480 nm pumping, where the energy transfer cannot be achieved. The use of optical isolator improves the small signal gain and noise figure by about 4.8 dB and 1.6 dB, respectively. By employing a double-pass configuration, a higher gain can be obtained with an expense of a noise figure penalty. The gain improvement of 17.0 dB is obtained at 20 mW and -50 dBm of pump and input signal powers. This shows that the double-pass configuration is an important aspect to consider when designing an efficient EYDFA.

  9. Linear and nonlinear resonance features of an erbium-doped fibre ...

    Indian Academy of Sciences (India)

    2014-07-01

    Jul 1, 2014 ... Abstract. The continuous-wave output of a single-mode erbium-doped fibre ring laser when sub- jected to cavity-loss modulation is found to exhibit linear as well as nonlinear resonances. At sufficiently low driving amplitude, the system resembles a linear damped oscillator. At higher amplitudes, the ...

  10. Optimization of Pr3+:ZBLAN fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, B.; Miniscalco, J. W.; Quimby, R. S.

    1992-01-01

    Experimental parameters have been measured and used in a quantitative model of Pr3+-doped fluorozirconate fiber amplifiers. The optimum cutoff wavelength was determined to be 800 nm and the gain for 400 mW of pump was found to increase from 12 to 34 dB if the NA was increased from 0.15 to 0...

  11. A net normal dispersion all-fiber laser using a hybrid mode-locking mechanism

    International Nuclear Information System (INIS)

    Xu, Bo; Martinez, Amos; Yamashita, Shinji; Set, Sze Yun; Goh, Chee Seong

    2014-01-01

    We propose and demonstrate an all-fiber, dispersion-mapped, erbium-doped fiber laser with net normal dispersion generating dissipative solitons. The laser is mode-locked by a hybrid mode-locking mechanism consisting of a nonlinear amplifying loop mirror and a carbon nanotube saturable absorber. We achieve self-starting, mode-locked operation generating 2.75 nJ pulses at a fundamental repetition rate of 10.22 MHz with remarkable long term stability. (letter)

  12. Gain transient control for wavelength division multiplexed access networks using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Osadchiy, Alexey Vladimirovich; Kjær, Rasmus

    2009-01-01

    Gain transients can severely hamper the upstream network performance in wavelength division multiplexed (WDM) access networks featuring erbium doped fiber amplifiers (EDFAs) or Raman amplification. We experimentally demonstrate for the first time using 10 Gb/s fiber transmission bit error rate...... measurements how a near-saturated semiconductor optical amplifier (SOA) can be used to control these gain transients. An SOA is shown to reduce the penalty of transients originating in an EDFA from 2.3 dB to 0.2 dB for 10 Gb/s transmission over standard single mode fiber using a 231-1 PRBS pattern. The results...... suggest that a single SOA integrated within a WDM receiver at the metro node could offer a convenient all-optical solution for upstream transient controlin WDM access networks....

  13. Stochastic phenomena in a fiber Raman amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnikov, Vladimir [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Institute of Photonics, Vienna University of Technology (Austria); Sergeyev, Sergey V. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Ania-Castanon, Juan Diego [Instituto de Optica CSIC, Madrid (Spain); Jacobsen, Gunnar [Acreo, Kista (Sweden); Popov, Sergei [Royal Institute of Technology (KTH), Stockholm (Sweden)

    2017-01-15

    The interplay of such cornerstones of modern nonlinear fiber optics as a nonlinearity, stochasticity and polarization leads to variety of the noise induced instabilities including polarization attraction and escape phenomena harnessing of which is a key to unlocking the fiber optic systems specifications required in high resolution spectroscopy, metrology, biomedicine and telecommunications. Here, by using direct stochastic modeling, the mapping of interplay of the Raman scattering-based nonlinearity, the random birefringence of a fiber, and the pump-to-signal intensity noise transfer has been done in terms of the fiber Raman amplifier parameters, namely polarization mode dispersion, the relative intensity noise of the pump laser, fiber length, and the signal power. The obtained results reveal conditions for emergence of the random birefringence-induced resonance-like enhancement of the gain fluctuations (stochastic anti-resonance) accompanied by pulse broadening and rare events in the form of low power output signals having probability heavily deviated from the Gaussian distribution. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Coherent combination of ultrafast fiber amplifiers

    International Nuclear Information System (INIS)

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N

    2016-01-01

    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  15. Spaceflight 2 um Tm Fiber MOPA Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to design, develop, and test a spaceflight prototype 2051 nm thulium (Tm)-doped fiber amplifier (TDFA) optical master oscillator power amplifier...

  16. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  17. Programmable gain equalizer for multi-core fiber amplifiers

    NARCIS (Netherlands)

    Fontaine, N.K.; Guan, B.; Ryf, R.; Chen, H.; Koonen, A.M.J.; Ben Yoo, S.J.; Abedin, K.; Fini, J.; Taunay, T.F.; Neilson, D.T.

    2014-01-01

    We demonstrate a programmable gain equalizer for 7-core fiber that can independently equalize spectra or block wavelengths in each core across the C-band. It is spliced directly to a side-pumped multi-core amplifying fiber.

  18. Single-mode operation of a coiled multimode fiber amplifier

    International Nuclear Information System (INIS)

    Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew

    2000-01-01

    We report a new approach to obtaining single-transverse-mode operation of a multimode fiber amplifier in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. We demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 μm and a numerical aperture of ∼0.1 (V≅7.4) . When the amplifier was operated as an amplified-spontaneous-emission source, the output beam had an M 2 value of 1.09±0.09 ; when seeded at 1064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality. (c) 2000 Optical Society of America

  19. Erbium-doped yttrium aluminium garnet ablative laser treatment for endogenous ochronosis.

    Science.gov (United States)

    Chaptini, Cassandra; Huilgol, Shyamala C

    2015-08-01

    Ochronosis is a rare disease characterised clinically by bluish-grey skin discolouration and histologically by yellow-brown pigment deposits in the dermis. It occurs in endogenous and exogenous forms. Endogenous ochronosis, also known as alkaptonuria, is an autosomal recessive disease of tyrosine metabolism, resulting in the accumulation and deposition of homogentisic acid in connective tissue. We report a case of facial endogenous ochronosis and coexistent photodamage, which was successfully treated with erbium-doped yttrium aluminium garnet laser resurfacing and deep focal point treatment to remove areas of residual deep pigment. © 2014 The Australasian College of Dermatologists.

  20. Monte Carlo simulations of homogeneous upconversion in erbium-doped silica glasses

    DEFF Research Database (Denmark)

    Philipsen, Jacob Lundgreen; Bjarklev, Anders Overgaard

    1997-01-01

    Quenching of Er3+ ions by homogeneous energy-transfer upconversion in high-concentration erbium-doped silica glasses has been theoretically investigated, The results indicate that at Er3+ concentrations of 1.0-2.0·1026 m-3 or below, the kinetic limit of strong migration is not reached, and hence...... the widely accepted quadratic upconversion model is not generally valid. Nevertheless, the results offer an explanation of the experimental observations of quadratic upconversion. Furthermore, it has been shown that at a given population inversion, the quenching rate depends on the rate of exchange...

  1. Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Makarova, Maria; Sih, Vanessa; Vuckovic, Jelena; Warga, Joe; Li Rui; Dal Negro, Luca

    2008-01-01

    Photonic crystal nanocavities are fabricated in silicon membranes covered by thermally annealed silicon-rich nitride films with Erbium-doped silicon nanocrystals. Silicon nitride films were deposited by sputtering on top of silicon on insulator wafers. The nanocavities were carefully designed in order to enhance emission from the nanocrystal sensitized Erbium at the 1540 nm wavelength. Experimentally measured quality factors of ∼6000 were found to be consistent theoretical predictions. The Purcell factor of 1.4 was estimated from the observed 20-fold enhancement of Erbium luminescence

  2. The infra-red photoresponse of erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Kenyon, A.J.; Bhamber, S.S.; Pitt, C.W.

    2003-01-01

    We have exploited the interaction between erbium ions and silicon nanoclusters to probe the photoresponse of erbium-doped silicon nanocrystals in the spectral region around 1.5 μm. We have produced an MOS device in which the oxide layer has been implanted with both erbium and silicon and annealed to produce silicon nanocrystals. Upon illumination with a 1480 nm laser diode, interaction between the nanocrystals and the rare-earth ions results in a modification of the conductivity of the oxide that enables a current to flow when a voltage is applied across the oxide layer

  3. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  4. Influence of mode competition on beam quality of fiber amplifier

    International Nuclear Information System (INIS)

    Xiao Qi-Rong; Yan Ping; Sun Jun-Yi; Chen Xiao; Ren Hai-Cui; Gong Ma-Li

    2014-01-01

    Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical model. In the experiment, the output beam-quality factor of a fiber amplifier, which is based on a Yb-doped double-clad large mode area fiber as a function of the seed beam quality and the pump power of the amplifier, is measured. The experimental results are consistent with the theoretical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    Science.gov (United States)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  6. Fiber amplifiers under thermal loads leading to transverse mode instability

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard

    2014-01-01

    Transverse mode instability (TMI) in rare-earth doped fiber amplifiers operating above an average power threshold is caused by intermodal stimulated thermal Rayleigh scattering due to quantum defect heating. We investigate thermally induced longitudinal waveguide perturbations causing power...

  7. Wideband multi-element Er-doped fiber amplifier

    International Nuclear Information System (INIS)

    Thipparapu, N K; Jain, S; May-Smith, T C; Sahu, J K

    2014-01-01

    A multi-element Er-doped fiber amplifier (MEEDFA) is demonstrated in which the gain profile is extended into the S and L bands. Each fiber element of the MEEDFA is found to provide a maximum gain of 37 dB and a noise figure of < 4 dB in the C-band. The gain profile of the amplifier is shifted towards longer wavelength by cascading fiber elements. The novel geometry of the multi-element fiber (MEF) could allow for the development of a broadband amplifier in a split-band configuration. The proposed amplifier can operate in the wavelength band of 1520 to 1595 nm (75 nm), with a minimum gain of 20 dB. (letter)

  8. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  9. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2012-01-01

    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion inf...... characteristics of the amplifier and shows local maxima for specific dispersion values....

  10. Gain characteristics of a saturated fiber optic parametric amplifier

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny

    2008-01-01

    In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....

  11. Synthesis and characterization of erbium-doped SiO2 nanoparticles fabricated by using reverse micelle and sol-gel processing

    International Nuclear Information System (INIS)

    Park, Hoyyul; Bae, Dongsik

    2012-01-01

    Erbium-doped SiO 2 nanoparticles have been synthesized using a reverse micelle technique combined with metal-alkoxide hydrolysis and condensation. The sizes and the morphologies of the erbium-doped SiO 2 nanoparticles could be changed by varying the molar ratio of water to surfactant. The sizes and the morphologies of the erbium-doped SiO 2 nanoparticles were examined by using a transmission electron microscope. The average size of synthesized erbium-doped SiO 2 nanoparticles was approximately 20 - 25 nm and that of the erbium particles was 3 - 5 nm. The effects of the synthesis parameters, such as the molar ratio of water to surfactant, are discussed.

  12. Light up conversion effects in Erbium doped CaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Bokolia, Renuka; Sreenivas, K.

    2013-01-01

    In recent years the rare earth doped bismuth layered structured ferroelectric (BLSF) compositions such as CaBi 4 Ti 4 O 15 , SrBi 4 Ti 4 O 15 and BaBi 4 Ti 4 O 15 ceramics have shown interesting light up-conversion emission effects. The observation of such novel effects has generated a lot of scientific interest, and there is a need to further improve their dielectric, piezoelectric and light up-conversion properties. In the present study, Erbium doped CaBi 4 Ti 4 O 15 (CBT), and SrBi 4 Ti 4 O 15 (SBT) ferroelectric ceramic have been prepared by the conventional solid state reaction method. Formation of single phase material is confirmed by X-Ray Diffraction (XRD), and changes occurring in the lattice parameters with Erbium dopant are analysed. Room temperature dielectric studies and ferroelectric studies will be discussed. (author)

  13. A Continuously Tunable Erbium-Doped Fibre Laser Using Tunable Fibre Bragg Gratings and Optical Circulator

    International Nuclear Information System (INIS)

    Peng, Liu; Feng-Ping, Yan; Jian, Li; Lin, Wang; Ti-Gang, Ning; Tao-Rong, Gong; Shui-Sheng, Jian

    2008-01-01

    A continuously tunable erbium-doped fibre laser (TEDFL) based on tunable fibre Bragger grating (TFBG) and a three-port optical circulator (OC) is proposed and demonstrated. The OC acts as a 100%-reflective mirror. A strain-induced uniform fibre Bragger grating (FBG) which functions as a partial-reflecting mirror is implemented in the linear cavity. By applying axial strain onto the TFBG, a continuously tunable lasing output can be realized. The wavelength tuning range covers approximately 7.00nm in C band (from 1543.6161 to 1550.3307nm). The side mode suppression ratio (SMSR) is better than 50 dB, and the 3 dB bandwidth of the laser is less than 0.01 nm. Moreover, an array waveguide grating (AWG) is inserted into the cavity for wavelength preselecting, and a 50 km transmission experiment was performed using our TEDFL at a 10Gb/s modulation rate

  14. Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials

    Czech Academy of Sciences Publication Activity Database

    Hamzaoui, M.; Soltani, M.; Baazouzi, M.; Tioua, B.; Ivanova, Z.G.; Lebullenger, R.; Poulain, M.; Zavadil, Jiří

    2012-01-01

    Roč. 249, č. 11 (2012), s. 2213-2221 ISSN 0370-1972 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985882 Keywords : Glasses * Rare earths * Photoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2012

  15. Room Temperature Erbium-Doped Yttrium Vanadate (Er:YVO4) Laser and Amplifier

    Science.gov (United States)

    2016-09-01

    10%. We maintained the LDM pump pulse duration at 5 ms, which is much longer than the Er3+ upper laser level (4I13/2) lifetime in YVO4 at RT (3 ms...of 2 ms ranging from 4 to 131 W was used to invert the gain medium. At 1.8 ms into the pump pulse, the 1603-nm seed was turned on for 500 µs. As

  16. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    Science.gov (United States)

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan

    2016-02-22

    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  17. Thermal-recovery of modal instability in rod fiber amplifiers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Laurila, Marko; Noordegraaf, Danny

    2013-01-01

    We investigate the temporal dynamics of Modal instabilities (MI) in ROD fiber amplifiers using a 100 μm core rod fiber in a single-pass amplifier configuration, and we achieve ~200W of extracted output power before the onset of MI. Above the MI threshold, we investigate the temporal dynamics of b...... and thermally annealed between each test series. We find that the MI threshold degrades as it is reached multiple times, but is recovered by thermal annealing. We also find that the test history of the rods affects the temporal dynamics....

  18. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  19. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  20. Frequency resolved transverse mode instability in rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Laurila, Marko; Maack, Martin D.

    2013-01-01

    Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dy...

  1. Self-pulsation threshold of Raman amplified Brillouin fiber cavities

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Pedersen, Martin Erland Vestergaard; Rottwitt, Karsten

    2009-01-01

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement...

  2. Processing of optical combs with fiber optic parametric amplifiers

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Kakande, J.; Richardson, D.J.; Petropoulos, P.

    2012-01-01

    Roč. 20, č. 9 (2012), s. 10059-10070 ISSN 1094-4087 Institutional support: RVO:67985882 Keywords : Fiber -optic parametric amplifier * Phase sensitive * Spectral coverage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  3. Visible and infrared photoluminescence from erbium-doped silicon nanocrystals produced by rf sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, M.F.; Alpuim, P. [Departamento de Fisica, Universidade do Minho, Braga (Portugal); Losurdo, M. [Plasma Chemistry Research Center, CNR, Bari (Italy); Monteiro, T.; Soares, M.J.; Peres, M. [Departamento de Fisica, Universidade de Aveiro, Aveiro (Portugal); Stepikova, M. [Institute for Physics of Microstructures RAS, 603600 Nizhnij Novgorod GSP-105 (Russian Federation)

    2007-06-15

    Erbium-doped low-dimensional Si films with different microstructures were deposited by reactive magnetron sputtering on glass substrates by varying the hydrogen flow rate during deposition. Amorphous, micro- and nanocrystalline samples, consisting of Si nanocrystalls embedded in silicon-based matrices with different structures, were achieved with optical properties in the visible and IR depending on nanocrystalline fraction and matrix structure and chemical composition. Structural characterization was performed by X-ray diffraction in the grazing incidence geometry and Raman spectroscopy. The chemical composition was studied using RBS/ERD techniques. Spectroscopic ellipsometry was combined with the previous techniques to further resolve the film microstructure and composition. In particular, the distribution along the film thickness of the volume fractions of nanocrystalline/amorphous silicon and SiO{sub x} phases has been obtained. In this contribution we discuss visible and infrared photoluminescence as a function of sample microstructure and of the oxygen/hydrogen concentration ratio present in the matrix. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Rate equation modelling of erbium luminescence dynamics in erbium-doped silicon-rich-silicon-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Miraj, E-mail: m.shah@ee.ucl.ac.uk [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Wojdak, Maciej; Kenyon, Anthony J. [Department of Electronic and Electrical Engineering, UCL, Torrington Place, London WC1E 7JE (United Kingdom); Halsall, Matthew P.; Li, Hang; Crowe, Iain F. [Photon Science Institute and School of Electrical and Electronic Engineering, University of Manchester, Sackville St Building, Manchester M13 9PL (United Kingdom)

    2012-12-15

    Erbium doped silicon-rich silica offers broad band and very efficient excitation of erbium photoluminescence (PL) due to a sensitization effect attributed to silicon nanocrystals (Si-nc), which grow during thermal treatment. PL decay lifetime measurements of sensitised Er{sup 3+} ions are usually reported to be stretched or multi exponential, very different to those that are directly excited, which usually show a single exponential decay component. In this paper, we report on SiO{sub 2} thin films doped with Si-nc's and erbium. Time resolved PL measurements reveal two distinct 1.54 {mu}m Er decay components; a fast microsecond component, and a relatively long lifetime component (10 ms). We also study the structural properties of these samples through TEM measurements, and reveal the formation of Er clusters. We propose that these Er clusters are responsible for the fast {mu}s decay component, and we develop rate equation models that reproduce the experimental transient observations, and can explain some of the reported transient behaviour in previously published literature.

  5. Random fiber laser based on artificially controlled backscattering fibers.

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  6. On the Creation of Solitons in Amplifying Optical Fibers

    Directory of Open Access Journals (Sweden)

    Christoph Mahnke

    2018-01-01

    Full Text Available We treat the creation of solitons in amplifying fibers. Strictly speaking, solitons are objects in an integrable setting while in real-world systems loss and gain break integrability. That case usually has been treated in the perturbation limit of low loss or gain. In a recent approach fiber-optic solitons were described beyond that limit, so that it became possible to specify how and where solitons are eventually destroyed. Here we treat the opposite case: in the presence of gain, new solitons can arise from an initially weak pulse. We find conditions for that to happen for both localized and distributed gain, with no restriction to small gain. By tracing the energy budget we show that even when another soliton is already present and copropagates, a newly created soliton takes its energy from radiation only. Our results may find applications in amplified transmission lines or in fiber lasers.

  7. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  8. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  9. Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer

    International Nuclear Information System (INIS)

    Pan, Z Q; Zhou, J; Yang, F; Ye, Q; Cai, H W; Qu, R H; Fang, Z J

    2013-01-01

    We have designed a power stabilizer based on a round-trip erbium-doped fiber amplifier (EDFA) structure to suppress the low-frequency relative intensity noise (RIN) for a narrow linewidth fiber laser. The noise suppressor is analyzed theoretically and its feasibility is verified experimentally. For a short-cavity single-frequency fiber laser with this device, about 20 dB low-frequency RIN improvement is achieved (down to −120 dB Hz −1 at 10 Hz). The corresponding frequency noise is also reduced by a factor of 1.6. The proposed method is an effective solution to achieve a low-frequency low RIN laser source for highly coherent detection applications. (paper)

  10. Demonstration of theoretical and experimental simulations in fiber optics course

    Science.gov (United States)

    Yao, Tianfu; Wang, Xiaolin; Shi, Jianhua; Lei, Bing; Liu, Wei; Wang, Wei; Hu, Haojun

    2017-08-01

    "Fiber optics" course plays a supporting effect in the curriculum frame of optics and photonics at both undergraduate and postgraduate levels. Moreover, the course can be treated as compulsory for students specialized in the fiber-related field, such as fiber communication, fiber sensing and fiber light source. The corresponding content in fiber optics requires the knowledge of geometrical and physical optics as background, including basic optical theory and fiber components in practice. Thus, to help the students comprehend the relatively abundant and complex content, it is necessary to investigate novel teaching method assistant the classic lectures. In this paper, we introduce the multidimensional pattern in fiber-optics teaching involving theoretical and laboratory simulations. First, the theoretical simulations is demonstrated based on the self-developed software named "FB tool" which can be installed in both smart phone with Android operating system and personal computer. FB tool covers the fundamental calculations relating to transverse modes, fiber lasers and nonlinearities and so on. By comparing the calculation results with other commercial software like COMSOL, SFTool shows high accuracy with high speed. Then the laboratory simulations are designed including fiber coupling, Erbium doped fiber amplifiers, fiber components and so on. The simulations not only supports students understand basic knowledge in the course, but also provides opportunities to develop creative projects in fiber optics.

  11. Multi-core fiber amplifier arrays for intra-satellite links

    Science.gov (United States)

    Kechagias, Marios; Crabb, Jonathan; Stampoulidis, Leontios; Farzana, Jihan; Kehayas, Efstratios; Filipowicz, Marta; Napierala, Marek; Murawski, Michal; Nasilowski, Tomasz; Barbero, Juan

    2017-09-01

    In this paper we present erbium doped fibre (EDF) aimed at signal amplification within satellite photonic payload systems operating in C telecommunication band. In such volume-hungry applications, the use of advanced optical transmission techniques such as space division multiplexing (SDM) can be advantageous to reduce the component and cable count.

  12. Experimental demonstration of the switching dose-rate method on doped optical fibers

    Science.gov (United States)

    Thomas, J.; Myara, M.; Troussellier, L.; Régnier, E.; Burov, E.; Gilard, O.; Sottom, M.; Signoret, P.

    2017-11-01

    Optical technology developed for ground and submarine telecommunications is becoming of strong interest for next generation satellites. In addition to inter-satellite laser communications and LIDAR's, new applications are being considered such as on-board distribution and processing of microwave signals, fiber sensors or gyroscopes as well. Whereas common optical / optoelectronic components are known to be weakly sensitive to radiations, the essential optical amplifiers are strongly degraded in such an environment because of the RIA (Radio-Induced-Absorption) experienced by the Erbium-Doped Fiber (EDF) itself [1-3]. This degradation is mainly caused by the presence of co-doping ions, such as Aluminium or Germanium, inserted in the fibre to assist the inclusion of the Erbium ions in the silica matrix or to provide to the optical fibre its guiding properties.

  13. Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Alshemary, Ammar Z.; Akram, Muhammed; Goh, Yi-Fan [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Abdolahi, Ahmad [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia)

    2015-10-05

    Highlights: • Phase pure nano-sized Er doped hydroxyapatite has been prepared. • TEM micrograph confirmed formation of mesoporous material. • Increased Er doping resulted in blue shift with slight increase in energy band gab. • Er-HA showed better dissolution behavior in SBF comparing with pure HA. • Er doping of HA resulted in formation of apatite layer in SBF with Ca/P ratio of 1.72. - Abstract: We report the successful synthesis of mesoporous erbium doped hydroxyapatite (Er-HA, Ca{sub 10−x}Er{sub 2x/3}□{sub x/3}(PO{sub 4}){sub 6}(OH){sub 2}) by using a rapid and efficient microwave assisted wet precipitation method. Characterization techniques like X-ray diffraction (XRD), Fourier transform infra-red (FTIR), X-ray fluorescence spectrometer (XRF), Brunauer, Emmett and Teller (BET) and transmission electron microscopy (TEM) were used to determine lattice parameters, particle size, degree of crystallinity, elemental composition, surface area and morphology of Er-HA. Results confirmed the formation of crystalline Er-HA having crystallite size of 25 nm with spherical and rod like morphology, while the TEM analysis confirmed the mesoporous nature of the particles. Optical spectra of Er-HA contained seven electron transitions, whereas blue shift in the energy band gap (E{sub g}) was observed upon increase in Er{sup 3+} content. The photoluminescence (PL) spectra contained green and red emissions. In vitro bioactivity study conducted in SBF revealed that the incorporation of Er{sup 3+} ions into HA structure lead to the faster discharge of Er{sup 3+} ions resulting in intense growth of apatite grains on the surface of the Er-HA pellets with Ca/P ratio of 1.72.

  14. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  15. Optimum design of Nd-doped fiber optical amplifiers

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Bjarklev, Anders Overgaard; Lumholt, Ole

    1992-01-01

    The waveguide parameters for a Nd-doped fluoride (Nd:ZBLANP) fiber amplifier have been optimized for small-signal and booster operation using an accurate numerical model. The optimum cutoff wavelength is shown to be 800 nm and the numerical aperture should be made as large as possible. Around 80%......% booster quantum conversion efficiency can be reached for an input power of 10 dBm and a pump power of 100 mW by the use of one filter...

  16. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    Science.gov (United States)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  17. Fiber optical parametric amplifiers in optical communication systems

    Science.gov (United States)

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  18. Deep UV light generation by a fiber/bulk hybrid amplifier at 199 nm

    International Nuclear Information System (INIS)

    Urata, Yoshiharu; Shinozaki, Tatsuya; Wada, Yoshio; Kaneda, Yushi; Wada, Satoshi; Imai, Shinichi

    2009-01-01

    A high-pulse-repetition-frequency (PRF) pulsed light source in the deep ultraviolet region has been realized by a multiple wavelength conversion technique using a hybrid fiber/bulk amplifier system. Output of 199 nm with a power of 50 mW was achieved at 2.4 MHz PRF. The 1 μm amplifier consisted of a Yb-doped fiber amplifier and a Nd-doped YVO4 amplifier. A 1.5 μm fiber master-oscillator power amplifier was employed as the other fundamental source. The amplifiers exhibited good amplification properties in pulse energy, polarization extinction ratio, and spectrum for nonlinear wavelength conversion

  19. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers.

    Science.gov (United States)

    George, Roy; Walsh, Laurence J

    2010-04-01

    To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.

  20. Fiber-based laser MOPA transmitter packaging for space environment

    Science.gov (United States)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian

    2018-02-01

    NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.

  1. Wide range optofluidically tunable multimode interference fiber laser

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2014-01-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range. (paper)

  2. Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass

    International Nuclear Information System (INIS)

    Vishnubhatla, K C; Kumar, R Sai Santosh; Rao, D Narayana; Rao, S Venugopal; Osellame, R; Ramponi, R; Bhaktha, S N B; Mattarelli, M; Montagna, M; Turrell, S; Chiappini, A; Chiasera, A; Ferrari, M; Righini, G C

    2009-01-01

    The femtosecond laser direct writing technique was employed to inscribe gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. Using the butt coupling technique, a systematic study of waveguide loss with respect to input pulse energy and writing speed was performed to achieve the best waveguide with low propagation loss (PL). By pumping at 980 nm, we observed signal enhancement in these active waveguides in the telecom spectral region. The refractive index change was smooth and we estimated it to be ∼10 -3 . The high quantum efficiency (∼80%) and a best PL of ∼0.9 dB cm -1 combined with signal enhancement makes Baccarat glass a potential candidate for application in photonics.

  3. Stable Dual-Wavelength Fibre Laser with Bragg Gratings Fabricated in a Polarization-Maintaining Erbium-Doped Fibre

    International Nuclear Information System (INIS)

    Lin, Wang; Feng-Ping, Yan; Xiang-Qiao, Mao; Shui-Sheng, Jian

    2008-01-01

    A new polarization-independent dual-wavelength fibre laser by fabricating a uniform FBG and a chirped FBG in a polarization-maintaining erbium-doped fibre (PM-EDF) is proposed and demonstrated. The wavelength spacing is 0.18nm and the optical signal-to-noise ratio is greater than 50dB with pump power of 246mW. Chirped FBG is used to make the reflectivity wavelengths of two PM-FBGs match easier. Since both EDF and FBGs are polarization-maintaining without splices and the two wavelengths are polarization-independent, the maximum amplitude variation and wavelength shifts for both lasing wavelength with 3-min intervals over a period of six hours are less than 0.2 dB and 0.005 nm, respectively, which shows stable dual-wavelength output

  4. High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers

    Science.gov (United States)

    Zheng, Jinkun; Zhao, Wei; Zhao, Baoyin; Li, Zhe; Chang, Chang; Li, Gang; Gao, Qi; Ju, Pei; Gao, Wei; She, Shengfei; Wu, Peng; Hou, Chaoqi; Li, Weinan

    2018-03-01

    A high pumping-power fiber combiner for backward pumping configurations is fabricated and demonstrated by manufacturing process refinement. The pump power handling capability of every pump fiber can extend to 600 W, corresponding to the average pump coupling efficiency of 94.83%. Totally, 2.67-kW output power with the beam quality factor M2 of 1.41 was obtained, using this combiner in the fiber amplifier experimental setup. In addition, the temperature of the splicing region was less than 50.0°C in the designed combiner under the action of circulating cooling water. The experimental results prove that the designed combiner is a promising integrated all-fiber device for multikilowatt continuous-wave fiber laser with excellent beam quality.

  5. Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon

    NARCIS (Netherlands)

    Bradley, J.; Agazzi, L.; Geskus, D.; Ay, F.; Worhoff, Kerstin; Pollnau, Markus

    Erbium-doped aluminum oxide integrated optical amplifiers were fabricated on silicon substrates, and their characteristics were investigated for Er concentrations ranging from 0.27 to 4.2x10e20 cm−3. Background losses below 0.3 dB/cm at 1320 nm were measured. For optimum Er concentrations in the

  6. All-metal coupling and package of semiconductor laser and amplifier with optical fiber

    International Nuclear Information System (INIS)

    Xu Fenglan; Li Lina; Zhang Yueqing

    1992-01-01

    The semiconductor laser and optical amplifier made by Changchun Institute of Physics coupled with optical fiber by use of all-metal coupling are represented. The net gain of semiconductor laser amplifier with optical fiber is 14 ∼18 dB

  7. Radiation hardening techniques for rare-earth based optical fibers and amplifiers

    International Nuclear Information System (INIS)

    Girard, Sylvain; Marcandella, Claude; Vivona, Marilena; Prudenzano, Luciano Mescia F.; Laurent, Arnaud; Robin, Thierry; Cadier, Benoit; Pinsard, Emmanuel; Ouerdane, Youcef; Boukenter, Aziz; Cannas, Marco; Boscaino, Roberto

    2012-01-01

    Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern the fiber composition, some possible pre-treatments and the interest of simulation tools used to harden by design the amplifiers. We showed that adding cerium inside the fiber phospho-silicate-based core strongly decreases the fiber radiation sensitivity compared to the standard fiber. For both fibers, a pre-treatment with hydrogen permits to enhance again the fiber resistance. Furthermore, simulations tools can also be used to improve the tolerance of the fiber amplifier by helping identifying the best amplifier configuration for operation in the radiative environment. (authors)

  8. 40 W picosecond fiber amplifier with the large mode-area polarized crystal fiber

    International Nuclear Information System (INIS)

    Yu, H; Zhou, J; Wushouer, X; Yan, P; Wang, D; Gong, M

    2009-01-01

    We reported the 5W picosecond laser with pulse width of 30 ps and the repetition rate of 100 MHz, which was amplified to 40.2 W with the linear polarized Yb-doped photonic crystal fiber (PCF), with the slope efficiency of about 58%. As much as 17.3 W second-harmonic power was achieved corresponding to the conversion efficiency of 43%

  9. The generation of a lower threshold multiwavelength fiber laser in the L-band region assisted by a Sagnac loop mirror

    International Nuclear Information System (INIS)

    Aziz, Siti Narimah; Arsad, Norhana; Bakar, Ahmad Ashrif Abu; Elias, Sayidatul Nadia; Menon, P Sushita; Shaari, Sahbudin

    2015-01-01

    A low threshold multiwavelength laser generated with the assistance of a Sagnac loop mirror is proposed. Two simple ring cavity designs are studied, namely a standard design ring cavity (design A) and a ring cavity with a Sagnac loop mirror (design B). Design B, which integrates a Sagnac loop mirror together with a polarization controller, exhibits the most optimum performance, generating seven lasing modes. Using only a 40 mW pump power from the erbium-doped fiber amplifier (EDFA), design B is the preferred ring cavity design, as it successfully produces seven lasing modes simultaneously within a 0.42 nm channel spacing in the L-band region. The ring cavity is characterized by investigating the lasing threshold through the tuning output power of the EDFA, the percentages of extracted power and cavity loss. (paper)

  10. Mid-infrared 1  W hollow-core fiber gas laser source.

    Science.gov (United States)

    Xu, Mengrong; Yu, Fei; Knight, Jonathan

    2017-10-15

    We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.

  11. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita

    2009-01-01

    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  12. Fractional erbium-doped yttrium aluminum garnet laser-assisted drug delivery of hydroquinone in the treatment of melasma

    Science.gov (United States)

    Badawi, Ashraf M; Osman, Mai Abdelraouf

    2018-01-01

    Background Melasma is a difficult-to-treat hyperpigmentary disorder. Ablative fractional laser (AFL)-assisted delivery of topically applied drugs to varied targets in the skin has been an area of ongoing study and research. Objective The objective of this study was to evaluate the efficacy and safety of fractional erbium-doped yttrium aluminum garnet (Er:YAG) laser as an assisted drug delivery for enhancing topical hydroquinone (HQ) permeation into the skin of melasma patients. Patients and methods Thirty female patients with bilateral melasma were randomly treated in a split-face controlled manner with a fractional Er:YAG laser followed by 4% HQ cream on one side and 4% HQ cream alone on the other side. All patients received six laser sessions with a 2-week interval. The efficacy of treatments was determined through photographs, dermoscopic photomicrographs and Melasma Area Severity Index (MASI) score, all performed at baseline and at 12 weeks of starting therapy. The patient’s level of satisfaction was also recorded. Results Er:YAG laser + HQ showed significantly better results (plaser + HQ side vs HQ side. Minor reversible side effects were observed on both sides. Conclusion AFL-assisted delivery of HQ is a safe and effective method for the treatment of melasma. PMID:29379308

  13. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    Science.gov (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  14. Theoretical study of fiber Raman amplifiers by broadband pumps through moment method

    International Nuclear Information System (INIS)

    Teimorpour, M. H.; Pourmoghadas, A.; Rahimi, L.; Farman, F.; Bahrampour, A.

    2007-01-01

    The governing equations of Raman optical fiber amplifier with broadband pumps in the steady state are a system of Uncountable Nonlinear Ordinary Differential Equations. In this paper, the Moment Method is used to reduce the uncountable system of Nonlinear Ordinary Differential Equations to a system of finite number of Nonlinear Ordinary Differential Equations. This system of equations is solved numerically. It is shown that the Moment Method is a precise and fast technique for analysis of optical fiber Raman Amplifier with broadband pumps.

  15. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...

  16. 32-core Inline Multicore Fiber Amplifier for Dense Space Division Multiplexed Transmission Systems

    DEFF Research Database (Denmark)

    Jain, S.; Mizuno, T.; Jung, Y.

    2016-01-01

    We present a high-core-count SDM amplifier, i.e. 32-core multicore-fiber amplifier, in a cladding-pumped configuration. An average gain of 17dB and NF of 7dB is obtained for -5dBm input signal power in the wavelength range 1544nm-1564nm....

  17. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Lægsgaard, Jesper

    2014-01-01

    We present a coupled-mode model of transverse mode instability in high-power fiber amplifiers, which takes the effect of gain saturation into account. The model provides simple semi-analytical formulas for the mode instability threshold, which are valid also for highly saturated amplifiers...

  18. Active control of long-period fiber-grating-based filters made in erbium-doped optical fibers

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Kulishov, M.

    2007-01-01

    Roč. 32, č. 7 (2007), s. 757-759 ISSN 0146-9592 R&D Projects: GA AV ČR(CZ) KJB200670601; GA ČR(CZ) GA102/07/0999 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fibre filters Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.711, year: 2007

  19. Smart architecture for stable multipoint fiber Bragg grating sensor system

    Science.gov (United States)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung

    2017-12-01

    In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.

  20. Neural networks within multi-core optic fibers.

    Science.gov (United States)

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  1. Low-NA single-mode LMA photonic crystal fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara

    2011-01-01

    a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm...

  2. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  3. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Jørgensen, Mette Marie; Hansen, Kristian Rymann

    2012-01-01

    We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode inst...

  4. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2011-01-01

    We investigate the effect of temperature gradients in high-power Yb-doped fiber amplifiers by a numerical beam propagation model, which takes thermal effects into account in a self-consistent way. The thermally induced change in the refractive index of the fiber leads to a thermal lensing effect...

  5. 1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier

    Science.gov (United States)

    Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi

    2018-01-01

    A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.

  6. Efficacy and safety of Erbium-doped Yttrium Aluminium Garnet fractional resurfacing laser for treatment of facial acne scars

    Directory of Open Access Journals (Sweden)

    Balakrishnan Nirmal

    2013-01-01

    Full Text Available Background: Treatment of acne scars with ablative fractional laser resurfacing has given good improvement. But, data on Indian skin are limited. A study comparing qualitative, quantitative, and subjective assessments is also lacking. Aim: Our aim was to assess the improvement of facial acne scars with Erbium-doped Yttrium Aluminium Garnet (Er:YAG 2940 nm fractional laser resurfacing and its adverse effects in 25 patients at a tertiary care teaching hospital. Methods: All 25 patients received four treatment sessions with Er:YAG fractional laser at 1-month interval. The laser parameters were kept constant for each of the four sittings in all patients. Qualitative and quantitative assessments were done using Goodman and Barron grading. Subjective assessment in percentage of improvement was also documented 1 month after each session. Photographs were taken before each treatment session and 1 month after the final session. Two unbiased dermatologists performed independent clinical assessments by comparing the photographs. The kappa statistics was used to monitor the agreement between the dermatologists and patients. Results: Most patients (96% showed atleast fair improvement. Rolling and superficial box scars showed higher significant improvement when compared with ice pick and deep box scars. Patient′s satisfaction of improvement was higher when compared to physician′s observations. No serious adverse effects were noted with exacerbation of acne lesions forming the majority. Conclusion: Ablative fractional photothermolysis is both effective and safe treatment for atrophic acne scars in Indian skin.Precise evaluation of acne scar treatment can be done by taking consistent digital photographs.

  7. Performance of Erbium-doped TiO2 thin film grown by physical vapor deposition technique

    Science.gov (United States)

    Lahiri, Rini; Ghosh, Anupam; Dwivedi, Shyam Murli Manohar Dhar; Chakrabartty, Shubhro; Chinnamuthu, P.; Mondal, Aniruddha

    2017-09-01

    Undoped and Erbium-doped TiO2 thin films (Er:TiO2 TFs) were fabricated on the n-type Si substrate using physical vapour deposition technique. Field emission scanning electron microscope showed the morphological change in the structure of Er:TiO2 TF as compared to undoped sample. Energy dispersive X-ray spectroscopy (EDX) confirmed the Er doping in the TiO2 thin film (TF). The XRD and Raman spectrum showed the presence of anatase phase TiO2 and Er2O3 in the Er:TiO2 TF. The Raman scattering depicted additional number of vibrational modes for Er:TiO2 TF due to the presence of Er as compared to the undoped TiO2 TF. The UV-Vis absorption measurement showed that Er:TiO2 TF had approximately 1.2 times more absorption over the undoped TiO2 TF in the range of 300-400 nm. The main band transition, i.e., the transition between the oxygen (2p) state and the Ti (3d) state was obtained at 3.0 eV for undoped TiO2 and at 3.2 eV for Er:TiO2 TF, respectively. The photo responsivity measurement was done on both the detectors, where Er:TiO2 TF detector showed better detectivity ( D *), noise equivalent power and temporal response as compared to undoped detector under ultra-violet illumination.

  8. Shear bond strength of orthodontic brackets after acid-etched and erbium-doped yttrium aluminum garnet laser-etched

    Directory of Open Access Journals (Sweden)

    Shiva Alavi

    2014-01-01

    Full Text Available Background: Laser ablation has been suggested as an alternative method to acid etching; however, previous studies have obtained contrasting results. The purpose of this study was to compare the shear bond strength (SBS and fracture mode of orthodontic brackets that are bonded to enamel etched with acid and erbium-doped yttrium aluminum garnet (Er:YAG laser. Materials and Methods: In this experimental in vitro study, buccal surfaces of 15 non-carious human premolars were divided into mesial and distal regions. Randomly, one of the regions was etched with 37% phosphoric acid for 15 s and another region irradiated with Er:YAG laser at 100 mJ energy and 20 Hz frequency for 20 s. Stainless steel brackets were then bonded using Transbond XT, following which all the samples were stored in distilled water for 24 h and then subjected to 500 thermal cycles. SBS was tested by a chisel edge, mounted on the crosshead of universal testing machine. After debonding, the teeth were examined under Χ10 magnification and adhesive remnant index (ARI score determined. SBS and ARI scores of the two groups were then compared using t-test and Mann-Whitney U test. Significant level was set at P < 0.05. Results: The mean SBS of the laser group (16.61 ± 7.7 MPa was not significantly different from that of the acid-etched group (18.86 ± 6.09 MPa (P = 0.41. There was no significant difference in the ARI scores between two groups (P = 0.08. However, in the laser group, more adhesive remained on the brackets, which is not suitable for orthodontic purposes. Conclusion: Laser etching at 100 mJ energy produced bond strength similar to acid etching. Therefore, Er:YAG laser may be an alternative method for conventional acid-etching.

  9. Influences of finite gain bandwidth on pulse propagation in parabolic fiber amplifiers with distributed gain profiles

    International Nuclear Information System (INIS)

    Zhao Jia-Sheng; Li Pan; Chen Xiao-Dong; Feng Su-Juan; Mao Qing-He

    2012-01-01

    The evolutions of the pulses propagating in decreasing and increasing gain distributed fiber amplifiers with finite gain bandwidths are investigated by simulations with the nonlinear Schrödinger equation. The results show that the parabolic pulse propagations in both the decreasing and the increasing gain amplifiers are restricted by the finite gain bandwidth. For a given input pulse, by choosing a small initial gain coefficient and gain variation rate, the whole gain for the pulse amplification limited by the gain bandwidth may be higher, which is helpful for the enhancement of the output linearly chirped pulse energy. Compared to the decreasing gain distributed fiber amplifier, the increasing gain distributed amplifier may be more conducive to suppress the pulse spectral broadening and increase the critical amplifier length for achieving a larger output linearly chirped pulse energy

  10. Design of a transimpedance amplifier for a bio-optical fiber sensor

    International Nuclear Information System (INIS)

    Pola, L.; Camasa, J.; Gomez B, J.

    2012-01-01

    In this work we present a fairly detailed model for a photodiode coupled to an operational amplifier in the trans impedance circuit configuration, for the applications in Biotechnology. An optical signal of the fiber optic biosensor is detected by a photodiode and its photocurrent generated is introduced in the trans impedance amplifier. The proposed design uses a photodiode in photovoltaic mode, and its photocurrent is coupled to an amplifier with positive output. Finally, the trans impedance amplifier presents reliable design characteristics such as accuracy, stability, low noise, and the ability to measure photocurrent from 1nA to 100μA. (Author)

  11. Radiation-hardened optical amplifier based on multicore fiber for telecommunication satellites

    Science.gov (United States)

    Filipowicz, M.; Napierała, M.; Murawski, M.; Ostrowski, L.; Szostkiewicz, L.; Mergo, P.; Kechagias, M.; Farzana, J.; Stampoulidis, L.; Kehayas, E.; Crabb, J.; Nasilowski, T.

    2017-10-01

    Our research results concerning a space-dedicated C-band optical amplifier for application in telecommunication satellites are presented in this article. The device is based on a 7-core microstructured fiber where independent access to each core is granted by an all fiber fan-in/ fan-out coupler. The amplifier properties are described as well as its performance after irradiation to a maximal dose of 100 kRad. Also the difference between two kinds of fiber material compositions is discussed with regard to radiation resistance.

  12. Polarization-maintaining, double-clad fiber amplifier employing externally applied stress-induced birefringence

    International Nuclear Information System (INIS)

    Koplow, Jeffrey P.; Goldberg, Lew; Moeller, Robert P.; Kliner, Dahv A. V.

    2000-01-01

    We report a new approach to obtaining linear-polarization operation of a rare-earth-doped fiber amplifier in which the gain fiber is coiled under tension to induce birefringence. We demonstrated this method by constructing an Er/Yb-doped, double-clad, single-mode fiber amplifier with an output power of 530 mW and a polarization extinction ratio of >17 dB (when seeded with linearly polarized light) at a wavelength of ∼1.5 μm . The technique is achromatic, permits single- or multiple-pass operation of the amplifier, requires no additional components in the optical path, leaves the fiber ends unobstructed, and is inexpensive to implement. (c) 2000 Optical Society of America

  13. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  14. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    Science.gov (United States)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  15. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  16. Preparation and microstructural properties of erbium doped alumina–yttria oxide thin films deposited by aerosol MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Rached, E-mail: salhi_rached@yahoo.fr [Laboratoire de Science et Ingénierie des MAtériaux et Procédés 1130 rue de la PiscineBP 75-F-38402 Saint Martin D’Hères Cedex 1 (France); Laboratoire des Matériaux et du Génie Physique, CNRS UMR 5628, INP Grenoble-Minatec, 3 parvis Louis Néel BP 257, 38 016 Grenoble Cedex 1 (France); Jimenez, Carmen; Deschanvres, Jean-Luc [Laboratoire des Matériaux et du Génie Physique, CNRS UMR 5628, INP Grenoble-Minatec, 3 parvis Louis Néel BP 257, 38 016 Grenoble Cedex 1 (France); Guyot, Yannick [LPCML-UMR 5620 CNRS/UCBL Universite´ Claude Bernard Lyon 110 Rue Ada Byron 69622 Villeurbanne Cedex (France); Chaix-Pluchery, Odette; Rapenne, Laetitia [Laboratoire des Matériaux et du Génie Physique, CNRS UMR 5628, INP Grenoble-Minatec, 3 parvis Louis Néel BP 257, 38 016 Grenoble Cedex 1 (France); Maâlej, Ramzi [LPCML-UMR 5620 CNRS/UCBL Universite´ Claude Bernard Lyon 110 Rue Ada Byron 69622 Villeurbanne Cedex (France); Fourati, Mohieddine [Laboratoire de Chimie Industrielle, Ecole Nationale d’Ingénieur de Sfax, University of Sfax BP W 3038 Sfax (Tunisia); Laboratoire de Physique Appliquée, Groupe de Physique Théorique, Département de Physique, Faculté des Sciences de Sfax, University of Sfax 3018 Sfax (Tunisia)

    2013-10-15

    Erbium-doped aluminum–yttrium oxide films (Er: Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3}) were prepared by aerosol-UV assisted Metalorganic Chemical Vapor Deposition (MOCVD) at 410 °C and annealed at 1000 °C. The effects of humidity of carrier gas and UV-assistance on their structure and optical properties were investigated using scanning electron microscope, X-ray diffraction and Transmission electron microscopy. It was found that under low air humidity and without UV-assistance the films present a low mol% Al{sub 2}O{sub 3} (10 mol%) two different structural phases are observed corresponding to the cubic and the monoclinic structures of Y{sub 2}O{sub 3}. When the deposition takes place under high air humidity and with UV assistance the Er:Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3} films present a very high mol% Al{sub 2}O{sub 3} (88 mol%) and crystallize in the Y{sub 3}Al{sub 5}O{sub 12} (YAG) compound mixed with an amorphous phase. The Er{sup 3+} luminescence analyzed in the visible and IR regions, shows the classical green transitions. The best optical properties were obtained with the Er:Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3} films grown under high air humidity with UV-assistance. Under such deposition conditions, {sup 4}I{sub 13/2} lifetimes was found to be 1.1 ms. This indicates that the deposition conditions, in particular air humidity, play an important role in the luminescent properties even after annealing. -- Highlights: • We investigate the effects of humidity and UV on the properties of Er:Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3}. • Under low air humidity and without UV-assistance the films present a low mol% Al{sub 2}O{sub 3}. • Under high air humidity and with UV the Er:Al{sub 2}O{sub 3}–Y{sub 2}O{sub 3} present high mol% Al{sub 2}O{sub 3}. • The film crystallize in the YAG phase mixed with an amorphous phase. • The best optical properties were obtained under high air humidity with UV-assistance.

  17. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  18. Pulse-shaping strategies in short-pulse fiber amplifiers

    International Nuclear Information System (INIS)

    Schimpf, Damian Nikolaus

    2010-01-01

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  19. Optimization of pump parameters for gain flattened Raman fiber amplifiers based on artificial fish school algorithm

    Science.gov (United States)

    Jiang, Hai Ming; Xie, Kang; Wang, Ya Fei

    2011-11-01

    In this work, a novel metaheuristic named artificial fish school algorithm is introduced into the optimization of pump parameters for the design of gain flattened Raman fiber amplifiers for the first time. Artificial fish school algorithm emulates three simple social behaviors of a fish in a school, namely, preying, swarming and following, to optimize a target function. In this algorithm the pump wavelengths and power levels are mapped respectively to the state of a fish in a school, and the gain of a Raman fiber amplifier is mapped to the concentration of a food source for the fish school to search. Application of this algorithm to the design of a C-band gain flattened Raman fiber amplifier leads to an optimized amplifier that produces a flat gain spectrum with 0.63 dB in band ripple for given conditions. This result demonstrates that the artificial fish school algorithm is efficient for the optimization of pump parameters of gain flattened Raman fiber amplifiers.

  20. New Trends in Amplifiers and Sources via Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    L. Mescia

    2012-01-01

    Full Text Available Rare-earth-doped chalcogenide glass fiber lasers and amplifiers have great applicative potential in many fields since they are key elements in the near and medium-infrared (mid-IR wavelength range. In this paper, a review, even if not exhaustive, on amplification and lasing obtained by employing rare-earth-doped chalcogenide photonic crystal fibers is reported. Materials, devices, and feasible applications in the mid-IR are briefly mentioned.

  1. Ytterbium-doped large-mode-area photonic crystal fiber amplifier with gain shaping for use at long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with efficient suppression of amplified spontaneous emission is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes...

  2. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system

    DEFF Research Database (Denmark)

    Jain, Saurabh; Castro, Carlos; Jung, Yongmin

    2017-01-01

    We present a high-core-count 32-core multicore erbium/ytterbium-doped fiber amplifier (32c-MC-EYDFA) in a cladding pumped configuration. A side pumping technique is employed for ease of pump coupling in this monolithic all-fiber amplifier. A minimum gain of >17 dB and an average noise figure (NF)...

  3. Pr3 + -doped GeSx-based glasses for fiber amplifiers at 1.3 µm

    Science.gov (United States)

    Simons, D. R.; Faber, A. J.; de Waal, H.

    1995-03-01

    The photoluminescence properties of Pr3+ -doped GeS x -based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-containing glasses in the telecommunications window at 1.3 mu m is discussed.

  4. Pr3+-doped GeSx-based glasses for fiber amplifiers at 1.3 mm

    NARCIS (Netherlands)

    Simons, D.R.; Faber, A.J.; Waal, de H.

    1995-01-01

    The luminescence of Pr3+-doped GeSx-based glasses were studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeSx-contg. glasses in the telecommunications window at 1.3 mm is discussed. [on SciFinder (R)

  5. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase...

  6. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers

    International Nuclear Information System (INIS)

    Wang, Yanshan; Ma, Yi; Sun, Yinhong; Peng, Wanjing; Tang, Chun; Liu, Qinyong; Ke, Weiwei; Wang, Xiaojun

    2017-01-01

    We experimentally investigate the behavior of the mode instability (MI) threshold in the double cladding Yb-doped fiber amplifier when the amplifier is pumped by broad linewidth laser diodes and narrow linewidth laser diodes respectively. It is found that the MI threshold increases by 26% when the amplifier is pumped by the broad linewidth laser diodes. Experiment results show that the MI threshold is affected by the local heat load rather than the average or the total heat load. The calculation shows that the local heat deposit actually plays the key role to stimulate the MI behaviour. At the MI threshold position in the fiber, the local heat deposit also changes dramatically. The effect of the thermal conductivity on the MI threshold is also studied. Our investigation shows that the MI threshold increases from 1269 W to 1950 W when the thermal conductivity of the fiber amplifier is increased from 0.3 W/(m . K) to 5 W/(m . K). Through optimizing the pump linewidth and the cooling efficiency of the gain fiber, the MI threshold is doubled in our experiment. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Research of the mode instability threshold in high power double cladding Yb-doped fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanshan; Ma, Yi; Sun, Yinhong; Peng, Wanjing; Tang, Chun [Institute of Applied Electronics, CAEP, Mianyang, Sichuan (China); The Key Laboratory of Science and Technology on High Energy Laser, CAEP, Mianyang, Sichuan (China); Liu, Qinyong; Ke, Weiwei [Institute of Applied Physics and Computational Mathematics, CAEP, Beijing (China); Wang, Xiaojun [Institute of Applied Physics and Computational Mathematics, CAEP, Beijing (China); Technical Institute of Physics and Chemistry, CAS, Beijing (China)

    2017-08-15

    We experimentally investigate the behavior of the mode instability (MI) threshold in the double cladding Yb-doped fiber amplifier when the amplifier is pumped by broad linewidth laser diodes and narrow linewidth laser diodes respectively. It is found that the MI threshold increases by 26% when the amplifier is pumped by the broad linewidth laser diodes. Experiment results show that the MI threshold is affected by the local heat load rather than the average or the total heat load. The calculation shows that the local heat deposit actually plays the key role to stimulate the MI behaviour. At the MI threshold position in the fiber, the local heat deposit also changes dramatically. The effect of the thermal conductivity on the MI threshold is also studied. Our investigation shows that the MI threshold increases from 1269 W to 1950 W when the thermal conductivity of the fiber amplifier is increased from 0.3 W/(m . K) to 5 W/(m . K). Through optimizing the pump linewidth and the cooling efficiency of the gain fiber, the MI threshold is doubled in our experiment. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes

    Directory of Open Access Journals (Sweden)

    Joseba Zubia

    2011-07-01

    Full Text Available Polymer optical fibers (POFs doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.

  9. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  10. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    Science.gov (United States)

    2010-07-27

    PS) FOPAs are discussed, and the phase-squeezing behavior of PS-FOPAs is characterized in Sec V. In Sec. VI, we present measurements of the noise...fiber and has the following parameters: L = 350 m, Aeff = 9.4 μm2, S0 = 0.025 ps/nm2km, λ0 = 1561.9 nm, β4 = 2.5*10-5 ps4 /km, estimated variation of...obtained the average gain and NF, which makes the analysis complicated and time- consuming . When considering the impacts of ZDW distributions on FOPA

  11. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers

    International Nuclear Information System (INIS)

    Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    We report on the influence of core NA on thermal-induced mode instabilities (MI) in high power fiber amplifiers. The influence of core NA and the V-parameter on MI has been investigated numerically. It shows that core NA has a larger influence on MI for fibers with a smaller core-cladding-ratio, and the influence of core NA on the threshold is more obvious when the amplifiers are pumped at 915 nm. The dependence of the threshold on the V-parameter revealed that the threshold increases linearly as the V-parameter decreases when the V-parameter is larger than 3.5, and the threshold shows an exponential increase as the V-parameter decreases when the V-parameter is less than 3.5. We also discussed the effect of linewidth on MI, which indicates that the influence of linewidth can be neglected for a linewidth smaller than 1 nm when the fiber core NA is smaller than 0.07 and the fiber length is shorter than 20 m. Fiber amplifiers with different core NA were experimentally analyzed, which agreed with the theoretical predictions. (letter)

  12. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength

    International Nuclear Information System (INIS)

    Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    We investigated the effect of pump wavelength on the modal instabilities (MI) in high-power linearly polarized Yb-doped fiber amplifiers. We built a novel semi-analytical model to determine the frequency coupling characteristics and power threshold of MI, which indicates promising MI suppression through pumping at an appropriate wavelength. By pumping at 915 nm, the threshold can be enhanced by a factor of 2.1 as compared to that pumped at 976 nm. Based on a high-power linearly polarized fiber amplifier platform, we studied the influence of pump wavelength experimentally. A maximal enhancement factor of 1.9 has been achieved when pumped at 915 nm, which agrees with the theoretical calculation and verified our theoretical model. Furthermore, we show that MI suppression by detuning the pump wavelength is weakened for fiber with a large core-to-cladding ratio. (paper)

  13. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm

    Science.gov (United States)

    Yan, Y. C.; Faber, A. J.; de Waal, H.; Kik, P. G.; Polman, A.

    1997-11-01

    Erbium-doped multicomponent phosphate glass waveguides were deposited by rf sputtering techniques. The Er concentration was 5.3×1020cm-3. By pumping the waveguide at 980 nm with a power of ˜21 mW, a net optical gain of 4.1 dB at 1.535 μm was achieved. This high gain per unit length at low pump power could be achieved because the Er-Er cooperative upconversion interactions in this heavily Er-doped phosphate glass are very weak [the upconversion coefficient is (2.0±0.5)×10-18 cm3/s], presumably due to the homogeneous distribution of Er in the glass and due to the high optical mode confinement in the waveguide which leads to high pump power density at low pump power.

  14. Theoretical Investigation of Oxazine 170 Perchlorate Doped Polymeric Optical Fiber Amplifier

    Directory of Open Access Journals (Sweden)

    Piotr Miluski

    2017-01-01

    Full Text Available Optical signal amplification in the waveguiding structure of optical fibers can be used for optical telecommunication systems and new light sources constructions. Organic dyes doped materials are interesting for new applications in polymeric optical fibers technology due to their benefits (efficient fluorescence, high absorption cross section, and easy processing. This article presents a numerical simulation of gain in poly(methyl methacrylate optical fiber doped by Oxazine 170 Perchlorate. The calculated gain characteristic for the used dye molar concentration (0.2·10-6–1.4·10-6 and pump power (1–10 kW is presented. The fabricated fluorescent polymeric optical fiber is also shown. The presented analysis can be used for optical amplifier construction based on dye-doped polymeric optical fiber (POF.

  15. Maximizing power output from continuous-wave single-frequency fiber amplifiers.

    Science.gov (United States)

    Ward, Benjamin G

    2015-02-15

    This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.

  16. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  17. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    International Nuclear Information System (INIS)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-01-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band (<5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is -110 dB/Hz, with uncertainty ≤0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by ≤0.2 dB. [copyright] 2001 Optical Society of America

  18. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    Energy Technology Data Exchange (ETDEWEB)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-06-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band ({lt}5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is {minus}110 dB/Hz, with uncertainty {le}0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by {le}0.2 dB. {copyright} 2001 Optical Society of America

  19. Design of an amplifier model accounting for thermal effect in fully aperiodic large pitch fibers

    Science.gov (United States)

    Tragni, K.; Molardi, C.; Poli, F.; Dauliat, R.; Leconte, B.; Darwich, D.; du Jeu, R.; Malleville, M. A.; Jamier, R.; Selleri, S.; Roy, P.; Cucinotta, A.

    2018-02-01

    Yb-doped Photonic Crystal Fibers (PCFs) have triggered a significant power scaling into fiber-based lasers. However thermally-induced effects, like mode instability, can compromise the output beam quality. PCF design with improved Higher Order Mode (HOM) delocalization and effective thermal resilience can contain the problem. In particular, Fully- Aperiodic Large-Pitch Fibers (FA-LPFs) have shown interesting properties in terms of resilience to thermal effects. In this paper the performances of a Yb-doped FA-LPF amplifier are experimentally and numerically investigated. Modal properties and gain competition between Fundamental Mode (FM) and first HOM have been calculated, in presence of thermal effects. The main doped fiber characteristics have been derived by comparison between experimental and numerical results.

  20. Optimization of Multiple Active Ion Doped Fiber Amplifiers for Three Communication Windows

    Directory of Open Access Journals (Sweden)

    Chun Jiang

    2009-01-01

    Full Text Available We present for the first time a theoretical model of Er3+-Tm3+-Pr3+ codoped fiber pumped with both 800 nm and 980 nm lasers to explore possibility of this co-doped system as all-wave fiber amplifier. The rate and power propagation equations of the model are solved numerically and the dependence of the gains at 1310, 1470, 1530, 1600, 1650 nm windows on fiber length is calculated. The results show that with pump power of 200 mW/200 mW, when the concentrations of Pr3+, Tm3+, Er3+ are around 1.7×1024, 3.9×1024, 1.2×1024 (ions/m3, respectively, the signals at 1310, 1470, 1530, 1600, 1650 nm may be nearly equally amplified with gain of 13–16.0 dB in the active fiber with length of 23.5 m; the co-doping concentrations and fiber length and pump powers may be further optimized to reduce the ripple.

  1. Theoretical analysis of mode instability in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2013-01-01

    We present a simple theoretical model of transverse mode instability in high-power rare-earth doped fiber amplifiers. The model shows that efficient power transfer between the fundamental and higher-order modes of the fiber can be induced by a nonlinear interaction mediated through the thermo......-optic effect, leading to transverse mode instability. The temporal and spectral characteristics of the instability dynamics are investigated, and it is shown that the instability can be seeded by both quantum noise and signal intensity noise, while pure phase noise of the signal does not induce instability...

  2. Static thermo-optic instability in double-pass fiber amplifiers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2016-01-01

    A coupled-mode formalism, earlier used to describe transverse mode instabilities in single-pass optical fiber amplifiers, is extended to the case of double-pass amplifiers. Contrary to the single-pass case, it is shown that the thermo-optic nonlinearity can couple light at the same frequency...... between the LP01 and LP11 modes, leading to a static deformation of the output beam profile. This novel phenomenon is caused by the interaction of light propagating in either direction with thermo-optic index perturbations caused by light propagating in the opposite direction. The threshold power...... for the static deformation is found to be several times lower than what is typically found for the dynamic modal instabilities observed in single-pass amplifiers. (C) 2016 Optical Society of America...

  3. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...... diameter of ∼59Lim at 1064nm and exhibits a pump absorption of 27dB/m at 976nm. © 2011 Optical Society of America....

  4. Variation method for optimization of Raman fiber amplifier pumped by continuous-spectrum radiation

    International Nuclear Information System (INIS)

    Ghasempour Ardekani, A.; Bahrampour, A. R.; Feizpour, A.

    2007-01-01

    In Raman fiber amplifiers, reduction of gain ripple versus frequency has a great importance. In this article using variational method and continuous pump, gain ripple is optimized. It is shown here that for a 40 km line the average gain is 1.3dB and the gain ripple is 0.12 dB, that is lower than the latest published data.

  5. Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier

    Science.gov (United States)

    Song, Rui; Lei, Cheng-Min; Chen, Sheng-Ping; Wang, Ze-Feng; Hou, Jing

    2015-08-01

    The effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier is investigated theoretically and experimentally. The complex Ginzburg-Landau equation and adaptive split-step Fourier method are used to simulate the propagation of pulses with different pulse widths in the fiber amplifier, and the results show that a longer pulse is more profitable in near-infrared supercontinuum generation if the central wavelength of the input laser lies in the normal dispersion region of the gain fiber. A four-stage master oscillator power amplifier configuration is adopted and the output spectra under picosecond and nanosecond input pulses are compared with each other. The experimental results are in good accordance with the simulations which can provide some guidance for further optimization of the system. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404404 and 11274385) and the Outstanding Youth Fund Project of Hunan Province and the Fund of Innovation of National University of Defense Technology, China (Grant No. B120701).

  6. A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging

    Science.gov (United States)

    Coyle, Barry; Poulios, Demetrios

    2013-01-01

    A fiber/solid-state hybrid seeded regenerative amplifier, capable of achieving high output energy with tunable pulse widths, has been developed for satellite laser ranging applications. The regenerative amplifier cavity uses a pair of Nd:YAG zigzag slabs oriented orthogonally to one another in order to make thermal lensing effects symmetrical and simplify optical correction schemes. The seed laser used is a fiber-coupled 1,064-nm narrowband (pumped by a single 120-W, pulsed 808-nm laser diode array. In this configuration, the average pump beam distribution in the slabs had a 1-D Gaussian shape, which matches the estimated cavity mode size. A half-wave plate between the slabs reduces losses from Fresnel reflections due to the orthogonal slabs Brewster-cut end faces. Successful "temporal" seeding of the regenerative amplifier cavity results in a cavity Q-switch pulse envelope segmenting into shorter pulses, each having the width of the input seed, and having a uniform temporal separation corresponding to the cavity round-trip time of approx. =10 ns. The pulse energy is allowed to build on successive passes in the regenerative amplifier cavity until a maximum is reached, (when cavity gains and losses are equal), after which the pulse is electro- optically switched out on the next round trip The overall gain of the amplifier is approx. =82 dB (or a factor of 1.26 million). After directing the amplified output through a LBO frequency doubling crystal, approx. = 2.1 W of 532-nm output (>1 mJ) was measured. This corresponds to a nonlinear conversion efficiency of >60%. Furthermore, by pulse pumping this system, a single pulse per laser shot can be created for the SLR (satellite laser ranging) measurement, and this can be ejected into the instrument. This is operated at the precise frequency needed by the measurement, as opposed to commercial short-pulsed, mode-locked systems that need to operate in a continuous fashion, or CW (continuous wave), and create pulses at many

  7. Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cunningham, P. [Boeing Company, Springfield, VA (United States)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.

  8. Highly Doped Phosphate Glass Fibers for Compact Lasers and Amplifiers: A Review

    Directory of Open Access Journals (Sweden)

    Nadia Giovanna Boetti

    2017-12-01

    Full Text Available In recent years, the exploitation of compact laser sources and amplifiers in fiber form has found extensive applications in industrial and scientific fields. The fiber format offers compactness, high beam quality through single-mode regime and excellent heat dissipation, thus leading to high laser reliability and long-term stability. The realization of devices based on this technology requires an active medium with high optical gain over a short length to increase efficiency while mitigating nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections, chemical stability and high optical damage threshold. In this paper, we review recent advances in the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing techniques. We also present the main performance achievements and outlook both in continuous wave (CW and pulsed mode regimes.

  9. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier

    Science.gov (United States)

    Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.

    2016-03-01

    We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.

  10. High-Performance BiCMOS Transimpedance Amplifiers for Fiber-Optic Receivers

    Directory of Open Access Journals (Sweden)

    F. Touati

    2007-12-01

    Full Text Available High gain, wide bandwidth, low noise, and low-power transimpedance amplifiers based on new BiCMOS common- base topologies have been designed for fiber-optic receivers. In particular a design approach, hereafter called "A more- FET approach", added a new dimension to effectively optimize performance tradeoffs inherent in such circuits. Using conventional silicon 0.8 μm process parameters, simulated performance features of a total-FET transimpedance amplifier operating at 7.2 GHz, which is close to the technology fT of 12 GHz, are presented. The results are superior to those of similar recent designs and comparable to IC designs using GaAs technology. A detailed analysis of the design architecture, including a discussion on the effects of moving toward more FET-based designs is presented.

  11. Enhanced performance of semiconductor optical amplifier at high direct modulation speed with birefringent fiber loop

    Directory of Open Access Journals (Sweden)

    K. E. Zoiros

    2014-07-01

    Full Text Available We employ a birefringent fiber loop (BFL for enhancing the performance of a semiconductor optical amplifier (SOA which is directly modulated. By properly exploiting the BFL comb-like spectral response, we show that the SOA can be directly modulated at a data rate which is more than five times faster than that enabled by the SOA electrical bandwidth. The experimental results, which include chirp measurements, demonstrate the significant improvements achieved in the performance of the directly modulated SOA with the help of the BFL.

  12. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    Science.gov (United States)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  13. Effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier

    International Nuclear Information System (INIS)

    Song Rui; Hou Jing; Wang Ze-Feng; Lu Qi-Sheng; Xiao Rui

    2013-01-01

    Theoretical and experimental research on the effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier is carried out. The complex Ginzburg—Landau equation is used to simulate the propagation of the pulse in the fiber amplifier and the results show that pulses with negative initial chirp produce the widest supercontinuum and pulses with positive initial chirp produce the narrowest supercontinuum when the central wavelength of the pump lies in the normal dispersion region of the gain fiber. A self-made line width narrowing system is utilized to control the initial chirp of the nanosecond pump pulse and a four-stage master oscillator power amplifier configuration is adopted to produce a high power near-infrared suppercontinuum. The experimental results are in good agreement with simulations which can provide some guidance on further optimization of the system in future work. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    Directory of Open Access Journals (Sweden)

    Mitul Kumar Mishra

    2013-01-01

    Full Text Available Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface

  15. All-polarization maintaining erbium fiber laser based on carbon nanowalls saturable absorber

    Science.gov (United States)

    Kurata, Shintaro; Izawa, Jun; Kawaguchi, Norihito

    2018-02-01

    We report a soliton mode locked femtosecond oscillation with all-polarization maintaining erbuim doped fiber laser based on Carbon Nanowalls saturable absorber (CNWs SA). To improve the stability and the capability of the oscillator, the all-polarization maintaining(all-PM) fiber is generally used since PM fiber is tolerant of stretches and bends. The saturable absorber is an optical device that placed in a laser cavity to suppress continuous wave operation to promote cooperation between many modes to sustain ultrashort pulse operation. We apply CNWs for the material of SAs in our oscillator. CNWs are one of the nanocarbon materials, which are a high-aspect-ratio structure in the cross-section, where, although their width and height range in a few micrometers, the thickness is as small as ten nanometers or so. A sheet of CNWs is made up of nano-size graphite grain aggregates. Then CNWs structure is expected to have a high absorption to the incident light and large modulation depth due to a small number of carbon layers as well as CNT and Graphene. With this all-PM fiber laser oscillator based on CNWs SA, the soliton mode-locked laser oscillated with 66.3MHz repetition frequency and its spectrum width is 5.6nm in FWHM. Average output power is 8.1mW with 122.5mW laser diode pump power. In addition, the laser amplification system with erbium-doped fiber is constructed and amplifies the femtosecond pulse laser into 268.2mW and 3000mW pumping power.

  16. Development and applications of femtosecond monolithic Yb-doped fiber chirped-pulse amplifiers

    International Nuclear Information System (INIS)

    Zhu, L.

    2011-01-01

    In the past few years, compact and environmentally stable high-energy ultrashort pulse laser sources have been broadly utilized in many different applications. Fiber lasers offer big practical advantages over bulk solid-state laser systems in terms of flexibility, compactness, reliability, cost effectiveness and turn-key operability. Moreover, thermal effects are dramatically reduced due to the large surface-to-volume ratio of an optical fiber, and good spatial mode quality can be ensured by its waveguiding property. Therefore, a fiber-based laser system is considered to be the preferred laser architecture. The main theme of this thesis is the development of various femtosecond monolithic Yb-doped fiber chirped-pulse-amplification (FCPA) system and their applications. We demonstrate an ultrafast high-energy monolithic Yb-doped FCPA system in which the pulse fidelity is preserved by weakening the nonlinear effects via a substantial level of temporal stretching of the seed pulses and by using highly doped active fibers as amplifying media. The presented monolithic FCPA delivers up to ∼ 25 μJ diffraction-limited pulses that can be recompressed to sub-200 fs duration, and the pulse quality has been confirmed through the second-harmonic-generation (SHG) conversion efficiency of over 52%. Improved dispersion and nonlinearity management schemes of the FCPA system allowing substantial pulse energy scaling in the monolithic format as well as methods for overcoming a series of technological challenges are reported. Three different types of Yb-doped fiber oscillators have been developed and built in the course of this PhD work. First, we compare two oscillator types that are based on the all-normal-dispersion (ANDi) regime and the dispersion-managed (DM) regime. Both of them have been tested as the seed-pulse source of the monolithic Yb-doped FCPA system. Then we introduce another novel design based on higher-order-mode (HOM) dispersion management that competes with a

  17. Computational analysis of the amplified spontaneous emission in quantum dot doped plastic optical fibers

    International Nuclear Information System (INIS)

    Peng, Xuefeng; Han, Yinxia; Hu, Guoqiang; Wu, Pinghui

    2014-01-01

    The properties of amplified spontaneous emission (ASE) in CdSe/ZnS quantum dot (QD) doped step-index polymer optical fibers (POFs) were computationally analyzed in this paper. A theoretical model based on the rate equations between two main energy levels of CdSe/ZnS QD was built in terms of time (t), distance traveled by light (z) and wavelength (λ), which can describe the ASE successfully. Through analyzing the spectral evolution with distance of the pulses propagating along the CdSe/ZnS QD doped POFs, dependences of the ASE threshold and the slope efficiency on the numerical aperture were obtained. Compared to the ASE in common dye-doped POFs, the pump threshold was just about 1/1000, but the slope efficiency was much higher. (paper)

  18. A flexible receiver with fiber optical parametric amplifier in OCDMA-FSO communication system

    Science.gov (United States)

    Xia, Min; Yuan, Jin-hui; Sang, Xin-zhu; Yin, Xiao-li; Rao, Lan; Yu, Chong-xiu

    2014-11-01

    A new receiver is proposed, which uses the fiber optical parametric amplifier (FOPA) in optical code division multiple access (OCDMA) over free space optic (FSO) communication system. The noise tolerance as the performance index in this receiver is derived. The receiver can not only improve the noise tolerance but also change the pump data conveniently for adapting to the length variation of the coding sequence under a complex and fast-changing weather condition. The influence of different factors on the noise tolerance is analyzed, and a significant improvement of about 18.77 dB for the noise tolerance can be achieved when the pump power and the length of coding sequence are 5 W and 256, respectively.

  19. Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Ancona, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); CNR-INFM Regional Laboratory ' LIT3' , Dipartimento Interuniversitario di Fisica, Bari (Italy); Nodop, D.; Limpert, J.; Nolte, S. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Tuennermann, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Angewandte Physik, Jena (Germany); Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena (Germany)

    2009-01-15

    We have investigated the ultra-fast microdrilling of metals using a compact and cheap fiber amplified passively Q-switched microchip laser. This laser system delivers 100-ps pulses with repetition rates higher than 100 kHz and pulse energies up to 80 {mu}J. The ablation process has been studied on metals with quite different thermal properties (copper, carbon steel and stainless steel). The dependence of the ablation depth per pulse on the pulse energy follows the same logarithmic scaling laws governing laser ablation with sub-picosecond pulses. Structures ablated with 100-ps laser pulses are accompanied only by a thin layer of melted material. Despite this, results with a high level of precision are obtained when using the laser trepanning technique. This simple and affordable laser system could be a valid alternative to nanosecond laser sources for micromachining applications. (orig.)

  20. Laser sensor with Bragg gratings of fiber optics to physics parameter measuring

    International Nuclear Information System (INIS)

    Vazquez, R.; Garcia, C.; May, M.; Camas, J.

    2009-01-01

    We present the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980nm, an 4.23 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength increases their temperature which can be used as a sensor element. The laser generation thus shows that the Bragg grating is increasing their temperature. We used a Peltier cell for to change gradually the temperature. (Author)

  1. High-power diode laser bars as pump sources for fiber lasers and amplifiers (Invited Paper)

    Science.gov (United States)

    Bonati, G.; Hennig, P.; Wolff, D.; Voelckel, H.; Gabler, T.; Krause, U.; T'nnermann, A.; Reich, M.; Limpert, J.; Werner, E.; Liem, A.

    2005-04-01

    Fiber lasers are pumped by fibercoupled, multimode single chip devices at 915nm. That"s what everybody assumes when asked for the type of fiber laser pumps and it was like this for many years. Coming up as an amplifier for telecom applications, the amount of pump power needed was in the range of several watts. Highest pump powers for a limited market entered the ten watts range. This is a range of power that can be covered by highly reliable multimode chips, that have to survive up to 25 years, e.g. in submarine applications. With fiber lasers entering the power range and the application fields of rod and thin disc lasers, the amount of pump power needed raised into the area of several hundred watts. In this area of pump power, usually bar based pumps are used. This is due to the much higher cost pressure of the industrial customers compared to telecom customers. We expect more then 70% of all industrial systems to be pumped by diode laser bars. Predictions that bar based pumps survive for just a thousand hours in cw-operation and fractions of this if pulsed are wrong. Bar based pumps have to perform on full power for 10.000h on Micro channel heat sinks and 20.000h on passive heatsinks in industrial applications, and they do. We will show a variety of data, "real" long time tests and statistics from the JENOPTIK Laserdiode as well as data of thousands of bars in the field, showing that bar based pumps are not just well suitable for industrial applications on high power levels, but even showing benefits compared to chip based pumps. And it"s reasonable, that the same objectives of cost effectiveness, power and lifetime apply as well to thin disc, rod and slab lasers as to fiber lasers. Due to the pumping of fiber lasers, examples will be shown, how to utilize bars for high brightness fiber coupling. In this area, the automation is on its way to reduce the costs on the fibercoupling, similar to what had been done in the single chip business. All these efforts are

  2. Simulation and measurement of optical access network with different types of optical-fiber amplifiers

    Science.gov (United States)

    Latal, Jan; Vogl, Jan; Koudelka, Petr; Vitasek, Jan; Siska, Petr; Liner, Andrej; Papes, Martin; Vasinek, Vladimir

    2012-01-01

    The optical access networks are nowadays swiftly developing in the telecommunications field. These networks can provide higher data transfer rates, and have great potential to the future in terms of transmission possibilities. Many local internet providers responded to these facts and began gradually installing optical access networks into their originally built networks, mostly based on wireless communication. This allowed enlargement of possibilities for end-users in terms of high data rates and also new services such as Triple play, IPTV (Internet Protocol television) etc. However, with this expansion and building-up is also related the potential of reach in case of these networks. Big cities, such as Prague, Brno, Ostrava or Olomouc cannot be simply covered, because of their sizes and also because of their internal regulations given by various organizations in each city. Standard logical and also physical reach of EPON (IEEE 802.3ah - Ethernet Passive Optical Network) optical access network is about 20 km. However, for networks based on Wavelength Division Multiplex the reach can be up to 80 km, if the optical-fiber amplifier is inserted into the network. This article deals with simulation of different types of amplifiers for WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) network in software application Optiwave OptiSystem and than are the values from the application and from real measurement compared.

  3. 110 GHz rapid, continous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser

    NARCIS (Netherlands)

    Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, Klaus J.

    2005-01-01

    A singly-resonant continuous-wave optical parametric oscillator (cw-OPO) pumped by a fiber-amplified diode laser is described. Tuning of the pump source allowed the OPO output to be tuned continuously, without mode-hops, over 110 GHz in 29 ms. Discontinuous pump tuning over 20 nm in the region of

  4. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  5. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    Science.gov (United States)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  6. In-fiber modal interferometer based on multimode and double cladding fiber segments for tunable fiber laser applications

    Science.gov (United States)

    Prieto-Cortés, P.; Álvarez-Tamayo, R. I.; Durán-Sánchez, M.; Castillo-Guzmán, A.; Salceda-Delgado, G.; Ibarra-Escamilla, B.; Kuzin, E. A.; Barcelata-Pinzón, A.; Selvas-Aguilar, R.

    2018-02-01

    We report an in-fiber structure based on the use of a multimode fiber segment and a double cladding fiber segment, and its application as spectral filter in an erbium-doped fiber laser for selection and tuning of the laser line wavelength. The output transmission of the proposed device exhibit spectrum modulation of the input signal with free spectral range of 21 nm and maximum visibility enhanced to more than 20 dB. The output spectrum of the in-fiber filter is wavelength displaced by bending application which allows a wavelength tuning of the generated laser line in a range of 12 nm. The use of the proposed in-fiber structure is demonstrated as a reliable, simple, and low-cost wavelength filter for tunable fiber lasers design and optical instrumentation applications.

  7. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression

    Science.gov (United States)

    Su, Rongtao; Tao, Rumao; Wang, Xiaolin; Zhang, Hanwei; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun

    2017-08-01

    We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.

  8. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Muzhi; Wei, Tao; Zhou, Beier; Tian, Ying; Zhou, Jiajia; Xu, Shiqing, E-mail: shiqingxu@cjlu.edu.cn; Zhang, Junjie, E-mail: jjzhang@cjlu.edu.cn

    2015-03-25

    Highlights: • Er{sup 3+} doped germanate glass with good thermal stability were prepared. • Ionic boding nature was proved by bonding parameter calculation. • Mid-infrared fluorescent behaviors and energy transfer were investigated. • Rate equation and Dexter’s theory were utilized to elucidate 2.7 μm emission. - Abstract: Er{sup 3+} activated germanate glass with good thermal stability was prepared. Bonding parameters have been calculated and the nature of ionic bonding of the germanate glass has been determined. Mid-infrared fluorescence was observed and corresponding radiative properties were investigated. For Er{sup 3+}:{sup 4}I{sub 11/2}→{sup 4}I{sub 13/2} transition, high spontaneous radiative transition probability (30.09 s{sup −1}), large emission cross section ((14.84 ± 0.10) × 10{sup −21} cm{sup 2}) and superior gain performance were obtained from the prepared glass. Besides, energy transfer processes concerning the 2.7 μm emission were also discussed in detail. According to simplified rate equation and Dexter’s theory, energy transfer microscopic parameters were computed to elucidate observed 2.7 μm emissions. Results demonstrate that the prepared germanate glass possessing excellent spectroscopic properties might be an attractive candidate for mid-infrared laser or amplifier.

  9. Analysis of energy transfer process based emission spectra of erbium doped germanate glasses for mid-infrared laser materials

    International Nuclear Information System (INIS)

    Cai, Muzhi; Wei, Tao; Zhou, Beier; Tian, Ying; Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie

    2015-01-01

    Highlights: • Er 3+ doped germanate glass with good thermal stability were prepared. • Ionic boding nature was proved by bonding parameter calculation. • Mid-infrared fluorescent behaviors and energy transfer were investigated. • Rate equation and Dexter’s theory were utilized to elucidate 2.7 μm emission. - Abstract: Er 3+ activated germanate glass with good thermal stability was prepared. Bonding parameters have been calculated and the nature of ionic bonding of the germanate glass has been determined. Mid-infrared fluorescence was observed and corresponding radiative properties were investigated. For Er 3+ : 4 I 11/2 → 4 I 13/2 transition, high spontaneous radiative transition probability (30.09 s −1 ), large emission cross section ((14.84 ± 0.10) × 10 −21 cm 2 ) and superior gain performance were obtained from the prepared glass. Besides, energy transfer processes concerning the 2.7 μm emission were also discussed in detail. According to simplified rate equation and Dexter’s theory, energy transfer microscopic parameters were computed to elucidate observed 2.7 μm emissions. Results demonstrate that the prepared germanate glass possessing excellent spectroscopic properties might be an attractive candidate for mid-infrared laser or amplifier

  10. Effect of Ga2O3 on the spectroscopic properties of erbium-doped boro-bismuth glasses.

    Science.gov (United States)

    Ling, Zhou; Ya-Xun, Zhou; Shi-Xun, Dai; Tie-Feng, Xu; Qiu-Hua, Nie; Xiang, Shen

    2007-11-01

    The spectroscopic properties and thermal stability of Er3+-doped Bi2O3-B2O3-Ga2O3 glasses are investigated experimentally. The effect of Ga2O3 content on absorption spectra, the Judd-Ofelt parameters Omega t (t=2, 4, 6), fluorescence spectra and the lifetimes of Er3+:4I 13/2 level are also investigated, and the stimulated emission cross-section is calculated from McCumber theory. With the increasing of Ga2O3 content in the glass composition, the Omega t (t=2, 4, 6) parameters, fluorescence full width at half maximum (FWHM) and the 4I 13/2 lifetimes of Er3+ first increase, reach its maximum at Ga2O3=8 mol.%, and then decrease. The results show that Er3+-doped 50Bi2O3-42B2O3-8Ga2O3 glass has the broadest FWHM (81nm) and large stimulated emission cross-section (1.03 x1 0(-20)cm2) in these glass samples. Compared with other glass hosts, the gain bandwidth properties of Er+3-doped Bi2O3-B2O3-Ga2O3 glass is better than tellurite, silicate, phosphate and germante glasses. In addition, the lifetime of 4I 13/2 level of Er(3+) in bismuth-based glass, compared with those in other glasses, is relative low due to the high-phonon energy of the B-O bond, the large refractive index of the host and the existence of OH* in the glass. At the same time, the glass thermal stability is improved in which the substitution of Ga2O3 for B2O3 strengthens the network structure. The suitability of bismuth-based glass as a host for a Er3+-doped broadband amplifier and its advantages over other glass hosts are also discussed.

  11. Efficient phase locking of two dual-wavelength fiber amplifiers by an all-optical self-feedback loop

    Science.gov (United States)

    Lei, Bing; Chen, Keshan; Yao, Tianfu; Shi, Jianhua; Hu, Haojun

    2017-10-01

    Efficient phase locking of two dual-wavelength fiber amplifiers has been demonstrated by using a self-feedback coupling and intracavity filtering configuration, and the effect of bandwidth and wavelength spacing on their phase locking performances have been investigated in experiment. Two independent fiber lasers with different operating wavelength were combined incoherently by a 3 dB fiber coupler to form a dual-wavelength seed source laser, which was injected into the fiber amplifiers' coupling array through the self-feedback loop. The effect of bandwidth and wavelength spacing was researched by altering the seed laser's pump power and operating wavelengths respectively. As long as the feedback loop and the single-mode fiber filtering configuration were well constructed in the unidirectional ring laser cavity, stable phase locking states and high fringe visibility interference patterns could always be obtained in our experiment. When the spacing of two operating wavelength was varied from 1.6 nm to 19.6 nm, the fringe visibility decreased slightly with the increase of wavelength spacing, and the corresponding fringe visibility was always larger than 0.6. In conclusion, we believe that efficient phase locking of several multi-wavelength laser sources is also feasible by passive self-adjusting methods, and keeping the component laser beams' phase relationship stable and fixed is more important than controlling their operating wavelengths.

  12. Efficient Phase Locking of Fiber Amplifiers Using a Low-Cost and High-Damage-Threshold Phase Control System

    International Nuclear Information System (INIS)

    Pu, Zhou; Yan-Xing, Ma; Xiao-Lin, Wang; Hao-Tong, Ma; Xiao-Jun, Xu; Ze-Jin, Liu

    2010-01-01

    We propose a low-cost and high-damage-threshold phase control system that employs a piezoelectric ceramic transducer modulator controlled by a stochastic parallel gradient descent algorithm. Efficient phase locking of two fiber amplifiers is demonstrated. Experimental results show that energy encircled in the target pinhole is increased by a factor of 1.76 and the visibility of the fringe pattern is as high as 90% when the system is in close-loop. The phase control system has potential in phase locking of large-number and high-power fiber laser endeavors. (fundamental areas of phenomenology (including applications))

  13. Remote Water Temperature Measurements Based on Brillouin Scattering with a Frequency Doubled Pulsed Yb:doped Fiber Amplifier

    Directory of Open Access Journals (Sweden)

    Thomas Walther

    2008-09-01

    Full Text Available Temperature profiles of the ocean are of interest for weather forecasts, climate studies and oceanography in general. Currently, mostly in situ techniques such as fixed buoys or bathythermographs deliver oceanic temperature profiles. A LIDAR method based on Brillouin scattering is an attractive alternative for remote sensing of such water temperature profiles. It makes it possible to deliver cost-effective on-line data covering an extended region of the ocean. The temperature measurement is based on spontaneous Brillouin scattering in water. In this contribution, we present the first water temperature measurements using a Yb:doped pulsed fiber amplifier. The fiber amplifier is a custom designed device which can be operated in a vibrational environment while emitting narrow bandwidth laser pulses. The device shows promising performance and demonstrates the feasibility of this approach. Furthermore, the current status of the receiver is briefly discussed; it is based on an excited state Faraday anomalous dispersion optical filter.

  14. Optimizing pulse compressibility in completely all-fibered Ytterbium chirped pulse amplifiers for in vivo two photon laser scanning microscopy.

    Science.gov (United States)

    Fernández, A; Grüner-Nielsen, L; Andreana, M; Stadler, M; Kirchberger, S; Sturtzel, C; Distel, M; Zhu, L; Kautek, W; Leitgeb, R; Baltuska, A; Jespersen, K; Verhoef, A

    2017-08-01

    A simple and completely all-fiber Yb chirped pulse amplifier that uses a dispersion matched fiber stretcher and a spliced-on hollow core photonic bandgap fiber compressor is applied in nonlinear optical microscopy. This stretching-compression approach improves compressibility and helps to maximize the fluorescence signal in two-photon laser scanning microscopy as compared with approaches that use standard single mode fibers as stretcher. We also show that in femtosecond all-fiber systems, compensation of higher order dispersion terms is relevant even for pulses with relatively narrow bandwidths for applications relying on nonlinear optical effects. The completely all-fiber system was applied to image green fluorescent beads, a stained lily-of-the-valley root and rat-tail tendon. We also demonstrated in vivo imaging in zebrafish larvae, where we simultaneously measure second harmonic and fluorescence from two-photon excited red-fluorescent protein. Since the pulses are compressed in a fiber, this source is especially suited for upgrading existing laser scanning (confocal) microscopes with multiphoton imaging capabilities in space restricted settings or for incorporation in endoscope-based microscopy.

  15. A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating

    International Nuclear Information System (INIS)

    Spirin, V V; López-Mercado, C A; Kinet, D; Mégret, P; Fotiadi, A A; Zolotovskiy, I O

    2013-01-01

    We demonstrate a single-longitudinal-mode Brillouin ring fiber laser passively stabilized at the resonance frequency with a 1.7 m section that is an unpumped polarization-maintaining erbium-doped fiber. The two coupled all-fiber Fabry–Perot interferometers that comprise the cavity, in combination with the dynamical population inversion gratings self-induced in the active fiber, provide adaptive pump-mode selection and Stokes wave generation at the same time. The laser is shown to emit a single-frequency Stokes wave with a linewidth narrower than 100 Hz. (letter)

  16. All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps

    Science.gov (United States)

    2016-02-15

    coating can exceed its long-term damage threshold. Such a concern obviously does not apply to a fiber with gold protective coating [14]. Thus in... coated triple-clad fibers, we are developing triple-clad Yb fiber with gold coating for improved thermal management. 2.1 Pump laser The two...is still an acrylate coating outside the glass clad for fiber handling and protection . Calculation shows that the temperature of the fiber acrylate

  17. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser...

  18. Quantum and Raman Noise in a Depleted Fiber Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, Colin J.

    2013-01-01

    The noise properties of both phase-sensitive and phase-insensitive saturated parametric amplifiers are studied using a semi-classical approach. Vacuum fluctuations as well as spontaneous Raman scattering are included in the analysis....

  19. Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten

    2011-01-01

    The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....

  20. Application of nonlinear pulse shaping of femtosecond pulse generation in a fiber amplifier at 500 MHz repetition rate

    Science.gov (United States)

    Liu, Yang; Luo, Daping; Wang, Chao; Zhu, Zhiwei; Li, Wenxue

    2018-03-01

    We numerically and experimentally demonstrate that a nonlinear pulse shaping technique based on pre-chirping management in a short gain fiber can be exploited to improve the quality of a compressed pulse. With prior tuning of the pulse chirp, the amplified pulse express different nonlinear propagating processes. A spectrum with s flat top and more smooth wings, showing a similariton feature, generates with the optimal initial pulse chirp, and the shortest pulses with minimal pulse pedestals are obtained. Experimental results show the ability of nonlinear pulse shaping to enhance the quality of compressed pulses, as theoretically expected.

  1. Photonic Lantern Adaptive Spatial Mode Control in LMA Fiber Amplifiers using SPGD

    Science.gov (United States)

    2015-12-15

    3 non -overlapping (orthogonal) beams on the output. Similarly, sending in a single fiber on the input to a lantern results in three orthogonal...proof of concept experiment is illustrated in Fig. 4 below. A seed laser is split into three fibers using a polarization -maintaining fiber splitter ... Polarization , Coupling and Symmetry (New York, NY, USA: McGraw-Hill, 2009). 11. D. A. B. Miller, "All linear optical devices are mode converters

  2. Generation of 46 W green-light by frequency doubling of 96 W picosecond unpolarized Yb-doped fiber amplifier

    Science.gov (United States)

    Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun

    2018-05-01

    We demonstrated a high efficiency and high average power picosecond green light source based on SHG (second harmonic generation) of an unpolarized ytterbium-doped fiber amplifier chain. Using single-pass frequency doubling in two temperature-tuned type-I phase-matching LBO crystals, we were able to generate 46 W, >70 ps pulses at 532 nm from a fundamental beam at 1064 nm, whose output is 96 W, 4.8 μJ, with a repetition frequency of 20 MHz and nearly diffraction limited. The optical conversion efficiency was ∼48% in a highly compact design. To the best of our knowledge, this is the first reported on ps green source through SHG of an unpolarized fiber laser with such a high output and high efficiency.

  3. Gain optimization in fiber optical parametric amplifiers by combining standard and high-SBS threshold highly nonlinear fibers

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Rottwitt, Karsten; Peucheret, Christophe

    2012-01-01

    Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber.......Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber....

  4. 85 μm core rod fiber amplifier delivering 350 W/m

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben

    2016-01-01

    An improved version of the distributed modal filtering (DMF) rod fiber is tested in a high power setup delivering 350 W/m of extracted signal average power limited by the available pump power. The rod fiber is thoroughly tested to record the transverse modal instability (TMI) behavior and also me...

  5. Efficient design of gain-flattened multi-pump Raman fiber amplifiers using least squares support vector regression

    Science.gov (United States)

    Chen, Jing; Qiu, Xiaojie; Yin, Cunyi; Jiang, Hao

    2018-02-01

    An efficient method to design the broadband gain-flattened Raman fiber amplifier with multiple pumps is proposed based on least squares support vector regression (LS-SVR). A multi-input multi-output LS-SVR model is introduced to replace the complicated solving process of the nonlinear coupled Raman amplification equation. The proposed approach contains two stages: offline training stage and online optimization stage. During the offline stage, the LS-SVR model is trained. Owing to the good generalization capability of LS-SVR, the net gain spectrum can be directly and accurately obtained when inputting any combination of the pump wavelength and power to the well-trained model. During the online stage, we incorporate the LS-SVR model into the particle swarm optimization algorithm to find the optimal pump configuration. The design results demonstrate that the proposed method greatly shortens the computation time and enhances the efficiency of the pump parameter optimization for Raman fiber amplifier design.

  6. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers.

    Science.gov (United States)

    Boyd, Keiron; Simakov, Nikita; Hemming, Alexander; Daniel, Jae; Swain, Robert; Mies, Eric; Rees, Simon; Andrew Clarkson, W; Haub, John

    2016-04-10

    We present and characterize a simple CO2 laser processing technique for the fabrication of compact all-glass optical fiber cladding light strippers. We investigate the cladding light loss as a function of radiation angle of incidence and demonstrate devices in a 400 μm diameter fiber with cladding losses of greater than 20 dB for a 7 cm device length. The core losses are also measured giving a loss of cladding light stripping of a 300 W laser diode with minimal heating of the fiber coating and packaging adhesives.

  7. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  8. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes

    OpenAIRE

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C. T. Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-01-01

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively....

  9. Developing Topological Insulator Fiber Based Photon Pairs Source for Ultrafast Optoelectronic Applications

    Science.gov (United States)

    2016-04-01

    of a thin layer of topological insulator Bi2Se3 with the transmission of T = 50%. We apply magnetic field B=3 tesla normal to the sample and parallel...nonlinear induced by magnetic field in the Topological Insulator Bi2Se3 and Molybdenum Disulfide MoS2. The nonlinear effect is pulse broadening...Topological Insulator Q- Switched Erbium-Doped Fiber Laser”, IEEE J. Sel. Top. Quant. Electron., 20, 0900508 (2014). [2]. Shuqing Chen et al, “Stable Q

  10. Protection of surviving channels in pump-controlled gain-locked Raman fiber amplifier

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Menif, M.

    2002-01-01

    Roč. 210, 1/2 (2002), s. 57-65 ISSN 0030-4018 R&D Projects: GA AV ČR IAA2067202 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre amplifiers * wavelength division multiplexing * optical communication Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.488, year: 2002

  11. Channel addition/removal response in all-optical gain-clamped lumped Raman fiber amplifier

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří; Honzátko, Pavel; Radil, J.

    2004-01-01

    Roč. 16, č. 3 (2004), s. 771-773 ISSN 1041-1135 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical communication * optical fibre amplifiers * wavelength division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.552, year: 2004

  12. Cross-gain modulation in Raman fiber amplifier: experimentation and modeling

    Czech Academy of Sciences Publication Activity Database

    Menif, M.; Karásek, Miroslav; Rusch, L. A.

    2002-01-01

    Roč. 14, č. 9 (2002), s. 1261-1263 ISSN 1041-1135 R&D Projects: GA MŠk OC 265.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : wavelength division multiplexing * optical communication * optical fibre amplifiers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.100, year: 2002

  13. High energy single frequency Yb:YAG crystalline fiber waveguide master oscillator power amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective is to demonstrate the concept of Yb:YAG crystalline fiber MOPA laser and investigation the technical feasibility toward 50 mJ single frequency...

  14. Near-infrared multispectral photoacoustic microscopy using a graded-index fiber amplifier

    Directory of Open Access Journals (Sweden)

    Takashi Buma

    2016-09-01

    Full Text Available We demonstrate optical resolution photoacoustic microscopy (OR-PAM of lipid-rich tissue using a multi-wavelength pulsed laser based on nonlinear fiber optics. 1047 nm laser pulses are converted to 1098, 1153, 1215, and 1270 nm pulses via stimulated Raman scattering in a graded-index multimode fiber. Multispectral PAM of a lipid phantom is demonstrated with our low-cost and simple technique.

  15. Frequency dependence of the pump-to-signal RIN transfer in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Pakarzadeh Dezfuli Nezhad, Hassan; Rottwitt, Karsten; Zakery, A.

    2009-01-01

    Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams.......Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams....

  16. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  17. Design of application specific long period waveguide grating filters using adaptive particle swarm optimization algorithms

    International Nuclear Information System (INIS)

    Semwal, Girish; Rastogi, Vipul

    2014-01-01

    We present design optimization of wavelength filters based on long period waveguide gratings (LPWGs) using the adaptive particle swarm optimization (APSO) technique. We demonstrate optimization of the LPWG parameters for single-band, wide-band and dual-band rejection filters for testing the convergence of APSO algorithms. After convergence tests on the algorithms, the optimization technique has been implemented to design more complicated application specific filters such as erbium doped fiber amplifier (EDFA) amplified spontaneous emission (ASE) flattening, erbium doped waveguide amplifier (EDWA) gain flattening and pre-defined broadband rejection filters. The technique is useful for designing and optimizing the parameters of LPWGs to achieve complicated application specific spectra. (paper)

  18. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    Science.gov (United States)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  19. Gain-clamping techniques in two-stage double-pass L-band EDFA

    Indian Academy of Sciences (India)

    Two designs of long-wavelength band erbium-doped fiber amplifier (L-band. EDFA) for gain clamping in double-pass systems are demonstrated and compared. The first design is based on ring laser technique where a backward amplified spontaneous emis- sion (ASE) from the second stage is routed into the feedback loop ...

  20. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.

    Science.gov (United States)

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-07-28

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.

  1. Comparison of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet laser for treatment of cosmetic tattoos containing titanium and iron in an animal model.

    Science.gov (United States)

    Wang, Chia-Chen; Huang, Chuen-Lin; Yang, An-Hang; Chen, Chih-Kang; Lee, Shao-Chen; Leu, Fur-Jiang

    2010-11-01

    Cosmetic tattoos contain titanium and ferric oxide and darken through reduction after Q-switched laser irradiation. The optimal treatment for removing these pigments remains unknown. To compare the effects of two Q-switched lasers and a short-pulse erbium-doped yttrium aluminum garnet (SP Er:YAG) laser to remove cosmetic tattoos in an animal model. Rats were tattooed using white, flesh-colored, and brown inks (4 bands of each color) on their backs. For each color, one band was left untreated, and one each was treated with a Q-switched neodymium-doped YAG laser, a Q-switched alexandrite laser, and a SP Er:YAG laser every 3 weeks until the pigments were clear. The two Q-switched lasers were equally effective; all three pigments darkened initially and then resolved gradually. Up to 20, 18, and 10 sessions were required to remove white, flesh-colored, and brown tattoos, respectively. Only six sessions were required with the SP Er:YAG laser. Minimal scarring was observed with all lasers. Skin biopsies confirmed pigment granule fragmentation after Q-switched laser treatment and a decrease in the amount of pigment after SP Er:YAG laser treatment. The SP Er:YAG laser was superior to the Q-switched lasers for removing cosmetic tattoos. © 2010 by the American Society for Dermatologic Surgery, Inc.

  2. Modal instability of rod fiber amplifiers: a semi-analytic approach

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Hansen, Kristian Rymann; Laurila, Marko

    2013-01-01

    The modal instability (MI) threshold is estimated for four rod fiber designs by combining a semi-analytic model with the finite element method. The thermal load due to the quantum defect is calculated and used to numerically determine the mode distributions on which the expression for the onset o...

  3. Regime dependence of photo-darkening-induced modal degradation in high power fiber amplifier (Conference Presentation)

    Science.gov (United States)

    Boullet, Johan; Vincont, Cyril; Jolly, Alain; Pierre, Christophe

    2017-03-01

    Thermally induced transverse modal instabilities (TMI) have attracted these five years an intense research efforts of the entire fiber laser development community, as it represents the current most limiting effect of further power scaling of high power fiber laser. Anyway, since 2014, a few publications point out a new limiting thermal effect: fiber modal degradation (FMD). It is characterized by a power rollover and simultaneous increase of the cladding light at an average power far from the TMI threshold together with a degraded beam which does not exhibit temporal fluctuations, which is one of the main characteristic of TMI. We report here on the first systemic experimental study of FMD in a high power photonic crystal fiber. We put a particular emphasis on the dependence of its average power threshold on the regime of operation. We experimentally demonstrate that this dependence is intrinsically linked to regime-dependent PD-saturated losses, which are nearly three times higher in CW regime than in short pulse picosecond regime. We make the hypothesis that the existence of these different PD equilibrium states between CW regime and picosecond QCW pulsed regime is due to a partial photo-bleaching of color centers in picosecond regime thanks to a higher probability of multi-photon process induced photobleaching (PB) at high peak power. This hypothesis is corroborated by the demonstration of the reversibility of the FMD induced in CW regime by simply switching the seed CW 1064 nm light by a short pulse, picosecond oscillator.

  4. Broadband generation by multiple four-wave mixing process due to ASE Q-switching in high-power double-clad ytterbium-doped fiber amplifier

    Science.gov (United States)

    Chowdhury, Sourav D.; Shekhar, Nishant; Saha, Maitreyee; Sen, Ranjan; Pal, Mrinmay

    2014-11-01

    Broadband output from 1060nm to 1700nm and cascaded four-wave mixing generated red light pulsing is observed in a fiber amplifier set up consisting of a 5.5m double clad, double D shaped Ytterbium doped fiber, a single clad passive fiber for excess pump absorption and a splitter, both with and without a CW seed. Self-pulsing occurs from ASE due to passive Q-switching by saturable absorption effect of the active fiber and also depends on splice loss. The pulses generate broadband output by multiple four-wave mixing process with maximum broadening efficiency near 1300nm which is the zero dispersion wavelength for silica fiber. Pulses traveling both in forward and backward direction have enough peak power and energy to damage splice points and fiber components. When seeded the self-pulsing and broadband generation is often suppressed but again generate at increased pump powers.

  5. SBS management in Yb-fiber-amplifiers using multimode seeds and pulse-shaping

    International Nuclear Information System (INIS)

    Jolly, Alain; Fikri Serdar Gokhan; Bello, Ramatou; Dupriez, Pascal

    2014-01-01

    We present a comprehensive analysis of the technique of Longitudinal-Mode-Filling (LMF) to reduce Stimulated Brillouin Scattering (SBS) limitations in Ytterbium Doped Fibre Amplifiers (YDFA), for the generation of nanosecond, temporally shaped pulses. A basic Master-Oscillator-Power-Amplifier (MOPA) system, comprising an output YDFA with 10 μm-core active fibre, is experienced for benchmarking purposes. Input pulse-shaping is operated thanks to direct current modulation in highly multimode laser-diode seeds, either based on the use of Distributed Feed-Back (DFB) or of a Fibre Bragg Grating (FBG). These seeds enable wavelength control. We verify the effectiveness of the combination of LMF, with appropriate mode spacing, in combination with natural chirp effects from the seed to control the SBS threshold in a broad range of output energies, from a few to some tens of μJ. These variations are discussed versus all the parameters of the laser system. In accordance with the proposal of a couple of basic principles and with the addition of gain saturation effects along the active fibre, we develop a full-vectorial numerical model. Fine fits between experimental results and theoretical expectations are demonstrated. The only limitation of the technique arises from broadband beating noise, which is analysed thanks to a simplified, but fully representative description to discuss the signal-to-noise ratio of the amplified pulses. This provides efficient tools for application to the design of robust and cost-effective MOPAs, aiming to the generation of finely shaped and energetic nanosecond pulses without the need for any additional electro-optics. (authors)

  6. Stable Single Polarization, Single Frequency, and Linear Cavity Er-Doped Fiber Laser Using a Saturable Absorber

    International Nuclear Information System (INIS)

    Li Qi; Yan Feng-Ping; Peng Wan-Jing; Feng Su-Chun; Feng Ting; Tan Si-Yu; Liu Peng

    2013-01-01

    A simple approach for stable single polarization, single frequency, and linear cavity erbium doped fiber laser is proposed and demonstrated. A Fabry—Pérot filter, polarizer and saturable absorber are used together to ensure stable single frequency, single polarization operation. The optical signal-to-noise ratio of the laser is approximately 57 dB, and the Lorentz linewidth is 13.9 kHz. The polarization state of the laser with good stability is confirmed and the degree of polarization is >99%

  7. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    International Nuclear Information System (INIS)

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue; Chai, Lu; Liu, Bowen; Hu, Minglie; Li, Yanfeng; Fedotov, Andrey B.; Zheltikov, Aleksei M.

    2014-01-01

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources

  8. Mode-locked 1.5 micrometers semiconductor optical amplifier fiber ring

    DEFF Research Database (Denmark)

    Pedersen, Niels V.; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product=0.7) 1.5 μm 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental...... results agree well with the simulation results obtained using a transmission line laser model (TLLM) model, Both experiments and numerical simulations show how the RF power and the detuning affect the pulsewidth...

  9. A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    International Nuclear Information System (INIS)

    Stappel, M; Steinborn, R; Kolbe, D; Walz, J

    2013-01-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52%. Two different approaches to frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO 3 crystal and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate crystal in an external enhancement cavity. (paper)

  10. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  11. Broadband Electric-Field Sensor Array Technology

    Science.gov (United States)

    2012-08-05

    output voltage modulation on the output RF transmission line (impedance Z0 = 50 Ω) via a transimpedance amplifier connected to the photodiode. The...voltage amplitude is where G is the conversion gain of the photodiode and amplifier . The RF power detected by an RF receiver with a matched impedance...wave (CW) tunable near-infrared laser amplified by an erbium-doped fiber amplifier (EDFA) is guided by single-mode optical fiber and coupled into

  12. Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method

    Science.gov (United States)

    Savage-Leuchs,; Matthias, P [Woodinville, WA

    2009-05-26

    Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.

  13. Optical fiber laser sensor with a cavity of 8.6 Km formed by two fiber Bragg gratings used as mirrors

    Energy Technology Data Exchange (ETDEWEB)

    May A, M.; Kuzin, E.A.; Vazquez S, R.A. [Instituto Nacional de Astrofisica, Optica y Electronica, A. P. 51 y 216, C.P. 72000 Puebla (Mexico); Basurto P, M.A. [Universidad Autonoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Shlyagin, M.G.; Marquez B, I. [Centro de Investigacion Cientifica y de Ensenanza Superior de Ensenada, C.P. 22860 Ensenada, Baja California (Mexico)

    2002-07-01

    We report the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980 nm, an 8.67 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength is strained which can be used as a sensor element. The laser generation thus shows that the Bragg grating is under strain. Furthermore, our configuration give us the possibility for knowing the distance between two Bragg gratings when the laser beating frequency is measured. A measurement precision better than 25 m in 8.67 Km is shown to be feasible. (Author)

  14. Optical fiber laser sensor with a cavity of 8.6 Km formed by two fiber Bragg gratings used as mirrors

    CERN Document Server

    May, M; Vázquez, R A; Basurto, M A; Shlyagin, M G; Márquez, I

    2002-01-01

    We report the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980 nm, an 8.67 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength is strained which can be used as a sensor element. The laser generation thus shows that the Bragg grating is under strain. Furthermore, our configuration give us the possibility for knowing the distance between two Bragg gratings when the laser beating frequency is measured. A measurement precision better than 25 m in 8.67 Km is shown to be feasible. (Author)

  15. Application of Judd-Ofelt Theory Upon Chlofluorophosphate Glass ...

    African Journals Online (AJOL)

    A series of erbium doped glasses chlorofluorophosphates were prepared and characterized. The absorption spectra were analyzed to determine the Judd-Ofelt parameters. The optical performance of these doped glasses suggesting the relevance of these glasses for optical fiber/ wave guide lasers and optical amplifiers.

  16. Pr{sup 3+}-doped GeS{sub {ital x}}-based glasses for fiber amplifiers at 1.3 {mu}m

    Energy Technology Data Exchange (ETDEWEB)

    Simons, D.R.; Faber, A.J.; de Waal, H. [Glass Technology, Eindhoven University of Technology, P.O. Box 595, 5600 AN Eindhoven (Netherlands)

    1995-03-01

    The photoluminescence properties of Pr{sup 3+}-doped GeS{sub {ital x}}-based glasses are studied and compared with those of other sulfide and fluoride glasses. The possibility of highly pump-power-efficient fiber amplifiers based on these GeS{sub {ital x}}-containing glasses in the telecommunications window at 1.3 {mu}m is discussed.

  17. Experimental and theoretical studies in non-linear optical applications. Fiber oscillatiors, regenerative amplifiers, simulations on white-light generation

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Haider

    2015-12-15

    Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently

  18. Experimental and theoretical studies in non-linear optical applications. Fiber oscillatiors, regenerative amplifiers, simulations on white-light generation

    International Nuclear Information System (INIS)

    Zia, Haider

    2015-12-01

    Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently

  19. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  20. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter

    Science.gov (United States)

    Jia, Xiu-jie; Liu, Yan-ge; Si, Li-bin; Guo, Zhan-cheng; Fu, Sheng-gui; Kai, Gui-yun; Dong, Xiao-yi

    2008-01-01

    A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.

  1. MoS2-wrapped microfiber-based multi-wavelength soliton fiber laser

    Science.gov (United States)

    Lu, Feifei

    2017-11-01

    The single-, dual- and triple-wavelength passively mode-locked erbium-doped fiber lasers are demonstrated with MoS2 and polarization-dependent isolator (PD-ISO). The saturable absorber is fabricated by wrapping an MoS2 around a microfiber. The intracavity PD-ISO acts as a wavelength-tunable filter with a polarization controller (PC) by adjusting the linear birefringence. Single-wavelength mode-locked fiber laser can self-start with suitable pump power. With appropriate PC state, dual- and triple-wavelength operations can be observed when gains at different wavelengths reach a balance. It is noteworthy that dual-wavelength pulses exhibiting peak and dip sidebands, respectively, are demonstrated in the experiment. The proposed simple and multi-wavelength all-fiber conventional soliton lasers could possess potential applications in numerous fields, such as sensors, THz generations and optical communications.

  2. Strain and temperature characteristics of the LP11 mode based on a few-mode fiber Bragg grating and core-offset splicing

    Science.gov (United States)

    Jin, Wenxing; Xu, Yao; Jiang, Youchao; Wu, Yue; Yao, Shuzhi; Xiao, Shiying; Qi, Yanhui; Ren, Wenhua; Jian, Shuisheng

    2018-02-01

    We propose and demonstrate a ring fiber laser based on a few-mode fiber Bragg grating for strain and temperature sensing using only the LP11 mode. The core-offset splicing method is used to ensure effective coupling from the fundamental mode to the LP11 mode. A stable erbium-doped fiber laser operating as a single LP11 mode with a 3 dB linewidth of about 0.02 nm and an optical signal-to-noise ratio over 42 dB is achieved by appropriately adjusting the polarization controller between the optical circulator and the few-mode fiber Bragg grating. A high axial strain sensitivity of 0.8778 pm μ\\varepsilon-1 and a temperature sensitivity of 9.9214 pm °C-1 are achieved with the advantages of all-fiber, simple construction and easy control.

  3. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  4. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    International Nuclear Information System (INIS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-01-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30–70 mA. In addition, the output stabilities of the power and wavelength are also discussed. (paper)

  5. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-05-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.

  6. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....

  7. An ultra-long cavity passively mode-locked fiber laser based on nonlinear polarization rotation in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Liu, Tonghui; Jia, Dongfang; Yang, Jingwen; Chen, Jiong; Wang, Zhaoying; Yang, Tianxin

    2013-01-01

    In this paper we investigate an ultra-long cavity passively mode-locked fiber laser based on a semiconductor optical amplifier (SOA). Experimental results are presented which indicate that stable mode-locked pulses can be obtained by combining nonlinear polarization rotation (NPR) in the SOA with a polarization controller. By adding a 4 km single mode fiber into the ring cavity, a stable fundamental-order mode-locked pulse train with a repetition rate of 50.72 kHz is generated through the NPR effect in the SOA. The central wavelength, 3 dB bandwidth and single pulse energy of the output pulse are 1543.95 nm, 1.506 nm and 33.12 nJ, respectively. Harmonic mode-locked pulses are also observed in experiments when the parameters are chosen properly. (paper)

  8. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    Science.gov (United States)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  9. Proceedings of the 2009 Antenna Applications Symposium, Volume 2

    Science.gov (United States)

    2009-12-12

    This optical signal is amplified using an erbium-doped fiber amplifier (EDFA) (Nuphoton NP2000RS). Figure 3: Schematic Drawing of the Photonic...SyntheSys Research Inc., BSA12500A). Photodiode 1 mm-to-WR-10 transition Optical Fiber (b) (a) Figure 5: Photo of (a) HHI-Fraunhofer’s PIN...variant of the popular coaxial collinear ( COCO ) antenna [24]. This array is band-limited because of the narrow-band nature of the dipole elements

  10. Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber

    International Nuclear Information System (INIS)

    Xia Han-Ding; Li He-Ping; Lan Chang-Yong; Li Chun; Deng Guang-Lei; Li Jian-Feng; Liu Yong

    2015-01-01

    Passive harmonic mode locking of an erbium-doped fiber laser based on few-layer molybdenum disulfide (MoS 2 ) saturable absorber (SA) is demonstrated. The few-layer MoS 2 is prepared by the chemical vapor deposition (CVD) method and then transferred onto the end face of a fiber connector to form a fiber-compatible MoS 2 SA. The 20th harmonic mode-locked pulses at 216-MHz repetition rate are stably generated with a pulse duration of 1.42 ps and side-mode suppression ratio (SMSR) of 36.1 dB. The results confirm that few-layer MoS 2 can serve as an effective SA for mode-locked fiber lasers. (paper)

  11. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    Science.gov (United States)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  12. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu-De [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China); School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000 (China); Luo, Zhi-Chao; Liu, Hao; Liu, Meng; Luo, Ai-Ping, E-mail: luoaiping@scnu.edu.cn; Xu, Wen-Cheng, E-mail: xuwch@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-10-20

    We reported on the femtosecond pulse generation from an erbium-doped fiber (EDF) laser by using microfiber-based gold nanorods (GNRs) as saturable absorber (SA). By virtue of the geometric characteristic of microfiber-based GNRs, the optical damage threshold of GNRs-SA could be greatly enhanced. The microfiber-based GNRs-SA shows a modulation depth of 4.9% and a nonsaturable loss of 21.1%. With the proposed GNRs-SA, the fiber laser emitted a mode-locked pulse train with duration of ∼887 fs. The obtained results demonstrated that the GNRs deposited microfiber could indeed serve as a high-performance SA towards the practical applications in the field of ultrafast photonics.

  13. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    Science.gov (United States)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  14. Efficient fiber-laser-pumped Ho:YLF oscillator and amplifier utilizing the transmitted pump power of the oscillator

    CSIR Research Space (South Africa)

    Strauss, HJ

    2009-06-01

    Full Text Available the amplifier. OCIS codes: 140.0140, 140.3070, 140.3480, 140.3580, 140.5680s 1. Introduction High energy 2 �m laser sources are of great interested for applications in remote sensing, medicine and defense. Ho:YLF is an attractive laser material to use since...

  15. Analysis of channel addition/removal response in all-optical gain-clamped cascade of lumped Raman fiber amplifiers

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří; Radil, J.

    2004-01-01

    Roč. 22, č. 10 (2004), s. 2271-2278 ISSN 0733-8724 R&D Projects: GA AV ČR IAA2067202 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical communication * optical fibre amplifiers * wavelength division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.113, year: 2004

  16. Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output

    International Nuclear Information System (INIS)

    Yeh, C H; Shih, F Y; Wang, C H; Chow, C W; Chi, S

    2008-01-01

    In this investigation, we propose and investigate a stable and tunable dual-wavelength erbium-doped fiber (EDF) ring laser with self-injected Fabry-Perot laser diode (FP-LD) scheme. By using an FP-LD incorporated with a tunable bandpass filter (TBF) within the gain cavity, the fiber laser can lase at two single-longitudinal-mode (SLM) wavelengths simultaneously due to the self-injected operation. The proposed dual-wavelength laser has a good performance of the output power and optical side-mode suppression ratio (SMSR). The laser also shows a wide tuning range from 1523.08 to 1562.26 nm. Besides, the output stabilities of the fiber laser are also discussed

  17. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    Science.gov (United States)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  18. Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier

    Science.gov (United States)

    Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei

    2018-04-01

    This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.

  19. High-Power Yb-Doped Solid-Core Photonic Bandgap Fiber Amplifier at 1150-1200nm

    DEFF Research Database (Denmark)

    Maruyama, H.; Shirakawa, A.; Ueda, K.

    2008-01-01

    Solid-core photonic-bandgap fiber amplification at the long-wavelength edge of ytterbium band is reported. A 32W output at 1156nm with a 66% slope efficiency and 9.1W output at 1178nm were succesfully obtained.......Solid-core photonic-bandgap fiber amplification at the long-wavelength edge of ytterbium band is reported. A 32W output at 1156nm with a 66% slope efficiency and 9.1W output at 1178nm were succesfully obtained....

  20. Fabrication of an electro-absorption transceiver with a monolithically integrated optical amplifier for fiber transmission of 40–60 GHz radio signals

    International Nuclear Information System (INIS)

    Zhang, Andy Zhenzhong; Wang, Qin; Fonjallaz, Pierre-Yves; Almqvist, Susanne; Karlsson, Stefan; Kjebon, Olle; Schatz, Richard; Chacinski, Marek; Thylén, Lars; Berggren, Jesper; Hammar, Mattias; Honecker, Jörg; Steffan, Andreas

    2011-01-01

    We report on the fabrication of a monolithically integrated semiconductor optical amplifier (SOA) and a reflective electro-absorption transceiver (EAT) for 40–60 GHz radio-over-fiber applications. The EAT can either function as a transmitter (reflective modulator) or as a receiver (photodetector) depending on operation mode. The SOA and the EAT sections are based on different InGaAsP multiple quantum-well active layers connected by a butt joint. Benzocyclobutene is used to reduce the capacitance beside the ridge mesa. Devices are designed to have a peaked response at the operating frequency through the design of microwave waveguides on top of the devices. The packaged device exhibits at 0.1 mW optical input power an amplified DC responsivity of 18.5 mA mW −1 and a modulation efficiency of 0.67 mW V −1 . The estimated radio frequency loss at 40 GHz of an optical link consisting of two SOA–EAT devices was 23 dB using an unmodulated optical input carrier to the transmitter of 0.94 mW

  1. Multi-channel, fiber-based seed pulse distribution system for femtosecond-level synchronized chirped pulse amplifiers

    Czech Academy of Sciences Publication Activity Database

    Horáček, Martin; Indra, Lukáš; Green, Jonathan T.; Naylon, Jack A.; Tykalewicz, Boguslav; Novák, Jakub; Batysta, František; Mazanec, Tomáš; Horáček, Jakub; Antipenkov, Roman; Hubka, Zbyněk; Boge, Robert; Bakule, Pavel; Rus, Bedřich

    2017-01-01

    Roč. 88, č. 1 (2017), s. 1-6, č. článku 013109. ISSN 0034-6748 R&D Projects: GA MŠk LQ1606; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : disk amplifier * timing jitter * 1 khz * amplification Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.515, year: 2016

  2. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  3. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2014-01-01

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all...

  4. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.

    Science.gov (United States)

    Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In

    2014-01-13

    A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).

  5. Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, Robert M.; Gnauck, Alan H.

    2017-01-01

    We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 x 32-Gbaud PDM QPSK channels and 8 x 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear...... threshold and a best achievable Q(2) factor after transmission. In addition, after an even number of OPCs, the signal wavelength can be preserved after transmission. The performance of multiple OPCs for fiber nonlinearity mitigation was evaluated independently for WDM PDM QPSK signals and WDM PDM 16QAM...... to 1 dB compared to the case of mid-span OPC. The improvements in the best achievable Q(2) factors were more modest, ranging from 0.2 dB to 1.1 dB for the results presented. (C) 2017 Optical Society of America...

  6. The Physics of Ultrabroadband Frequency Comb Generation and Optimized Combs for Measurements in Fundamental Physics

    Science.gov (United States)

    2016-07-02

    order phase-matched cascaded frequency gene , high harmonic generation, fine structure constant measurements, -envelope phase stabilization, ultra fast...MHz repetition rate are generated from a picosecond fiber laser (Pritel FFL-500) before amplifica- tion in an erbium- doped fiber amplifier (EDFA). The...width from 1 to 36 nm with central wavelength tunable over 1527–1550 nm. The pump pulses were combined with the seed and injected into 9.5 m of Ge- doped

  7. High Power Broadband Multispectral Source on a Hybrid Silicon Chip

    Science.gov (United States)

    2017-03-14

    optical bandwidth of the erbium-doped- fiber -amplifier with densely-spaced frequency channels. To extend the spectral capacity of the Si-on-insulator...associated with non-uniform undercut at the taper tip across the chip after wet etching the active region. Figure 14. Normalized optical emission...Hutchinson, J., Shin, J.-H., Fish, G., and Fang, A., “Integrated silicon photonic laser sources for telecom and datacom,” in [National Fiber Optic

  8. Multi-parameter sensor based on random fiber lasers

    Directory of Open Access Journals (Sweden)

    Yanping Xu

    2016-09-01

    Full Text Available We demonstrate a concept of utilizing random fiber lasers to achieve multi-parameter sensing. The proposed random fiber ring laser consists of an erbium-doped fiber as the gain medium and a random fiber grating as the feedback. The random feedback is effectively realized by a large number of reflections from around 50000 femtosecond laser induced refractive index modulation regions over a 10cm standard single mode fiber. Numerous polarization-dependent spectral filters are formed and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which gives an access for a high-fidelity multi-parameter sensing scheme. The number of sensing parameters can be controlled by the number of the lasing lines via input polarizations and wavelength shifts of each peak can be explored for the simultaneous multi-parameter sensing with one sensing probe. In addition, the random grating induced coupling between core and cladding modes can be potentially used for liquid medical sample sensing in medical diagnostics, biology and remote sensing in hostile environments.

  9. Nanographene-Based Saturable Absorbers for Ultrafast Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Kuo

    2014-01-01

    Full Text Available The generation of femtosecond pulse laser in the erbium-doped fiber laser system is presented by integrating of the nanographene-based saturable absorbers (SAs. A simplified method of dispersed nanographene-based SAs side-polished fiber device with controllable polished length and depth was also developed. The dependence of geometry of a graphene-deposited side-polished fiber device on optical nonlinear characteristics and on the performance of the MLFL was screened. We found that the 10 mm polished length with 1.68 dB insertion loss had the highest modulation depth (MD of 1.2%. A stable MLFL with graphene-based SAs employing the optimized side-polished fiber device showed a pulse width, a 3 dB bandwidth, a time-bandwidth product (TBP, a repetition rate, and pulse energy of 523 fs, 5.4 nm, 0.347, 16.7 MHz, and 0.18 nJ, respectively, at fundamental soliton-like operation. The femtosecond pulse laser is achieved by evanescent field coupling through graphene-deposited side-polished fiber devices in the laser cavity. This study demonstrates that the polished depth is the key fabrication geometric parameter affecting the overall optical performance and better results exist within the certain polished range.

  10. Fiber-integrated tungsten disulfide saturable absorber (mirror) for pulsed fiber lasers

    Science.gov (United States)

    Chen, Hao; Li, Irene Ling; Ruan, Shuangchen; Guo, Tuan; Yan, Peiguang

    2016-08-01

    We propose two schemes for achieving tungsten disulfide (WS2)-based saturable absorber (SA) and saturable absorber mirror (SAM). By utilizing the pulsed laser deposition method, we grow the WS2 film on microfiber to form an evanescent field interaction SA device. Incorporating this SA device into a common ring-cavity erbium-doped fiber (EDF) laser, stably passive mode-locking can be achieved with pulse duration of 395 fs and signal-to-noise ratio of 64 dB. We also produce a fiber tip integrated WS2-SAM by utilizing the magnetron sputtering technique (MST). This new type of SAM combines the WS2 layer as SA and gold mirror as high reflective mirror. By employing the WS2-SAM, we construct the linear-cavity EDF lasers, and achieve passive mode-locking operation with pulse duration of ˜1 ns and SNR of ˜61 dB. We further achieve stably passive Q-switching operation with pulse duration of ˜160 ns and pulse energy of 54.4 nJ. These fiber-integrated SAs and SAMs have merits of compactness and reliability, paving the way for the development of new photonic devices such as SAs for pulsed laser technology.

  11. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers

    International Nuclear Information System (INIS)

    Kik, P.G.; Polman, A.

    2003-01-01

    Erbium doped Al 2 O 3 waveguide amplifiers were fabricated using two different doping methods, namely Er ion implantation into sputter deposited Al 2 O 3 , and co-sputtering from an Er 2 O 3 /Al 2 O 3 target. Although the Er concentration in both materials is almost identical (0.28 and 0.31 at. %), the amplifiers show a completely different behavior. Upon pumping with 1.48 μm, the co-sputtered waveguide shows a strong green luminescence from the 4 S 3/2 level, indicating efficient cooperative upconversion in this material. This is confirmed by pump power dependent measurements of the optical transmission at 1.53 μm and the spontaneous emission at 1.53 and 0.98 μm. All measurements can be accurately modeled using a set of rate equations that include first order and second order cooperative upconversion. The first order cooperative upconversion coefficient C 24 is found to be 3.5x10 -16 cm 3 s -1 in the co-sputtered material, two orders of magnitude higher than the value obtained in Er implanted Al 2 O 3 of 4.1x10 -18 cm 3 s -1 . It is concluded that the co-sputtering process results in a strongly inhomogeneous atomic scale spatial distribution of the Er ions. As a result, the co-sputtered waveguides do not show optical gain, while the implanted waveguides do

  12. Operation amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2008-01-01

    To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1;

  13. Fiber laser master oscillators for optical synchronization systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A.

    2008-04-15

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  14. Fiber laser master oscillators for optical synchronization systems

    International Nuclear Information System (INIS)

    Winter, A.

    2008-04-01

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  15. Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section

    DEFF Research Database (Denmark)

    Buxens Azcoaga, Alvaro Juan; Poulsen, Henrik Nørskov; Clausen, Anders

    2000-01-01

    A novel method is presented for implementing an L-band erbium doped fibre amplifier (EDFA) making use of forward amplified spontaneous emission pumping, from a commercially available c-band EDFA, in an erbium doped fibre. Tuning of the length of erbium doped fibre enables a flat gain characteristic...... to be obtained with a low noise figure over the entire L-band window....

  16. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  17. PUMP-PUMP FOUR-WAVE MIXING IN DISTRIBUTED FIBER RAMAN AMPLIFIERS MEZCLA DE CUATRO ONDAS ENTRE BOMBAS EN AMPLIFICADORES DE FIBRA RAMAN DISTRIBUIDOS

    Directory of Open Access Journals (Sweden)

    Marcelo Soto

    2007-08-01

    Full Text Available In this work, a comprehensive mathematical model which rigorously describes the interaction between stimulated Raman scattering (SRS and four-wave mixing (FWM in distributed fiber Raman amplifiers (DFRAs is presented. The parametric effects on DFRAs due to pump-pump FWM processes are completely characterized. Numerical simulations are contrasted with experimental measurements which were carried out with different configurations of DFRAs. The results validate the proposed mathematical model, which can be extended to include other non-linear effects. Finally, the pump-to-pump FWM effects on the spectral gain of a DFRA are analyzed.En este trabajo se presenta un modelo matemático que describe rigurosamente la interacción entre esparcimiento Raman estimulado (SRS y mezcla de cuatro ondas (FWM en amplificadores Raman distribuidos (DFRAs. Los efectos paramétricos ocurridos en DFRAs debido al proceso de FWM entre bombas, son completamente caracterizados. Los resultados de las simulaciones numéricas son contrastados con mediciones experimentales llevadas a cabo en diferentes configuraciones de DFRAs. Los resultados permiten validar el modelo matemático propuesto, el cual puede ser extendido para incluir otras no-linealidades. Finalmente, se analizan los efectos de FWM entre bombas en el comportamiento espectral de la ganancia de un DFRA.

  18. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    Science.gov (United States)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  19. Center for Hybrid Communications and Networks

    Science.gov (United States)

    2016-09-08

    being separated by a polarization beam splitter (PBS). The operations of all other blocks in transmitter are similar to those we reported in [7],[9...architecture. PBS/PBC: polarization beam splitter /combiner, EDFA: erbium-doped fiber amplifier. Ivan B. Djordjevic, ECE Dept., University of Arizona...an official Department of the Army position, policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S

  20. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2011-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a

  1. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, S.; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. ; SOLUTION: The operation amplifier comprises: a

  2. Operational amplifiers

    CERN Document Server

    Dostal, Jiri

    1993-01-01

    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  3. Amplifier Distortion

    Science.gov (United States)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  4. A wavelength-tunable fiber laser using a novel filter based on a compound interference effect

    Science.gov (United States)

    Zou, Hui; Lou, Shuqin; Su, Wei; Han, Bolin; Shen, Xiao

    2015-01-01

    A wavelength-tunable erbium-doped fiber laser is proposed and experimentally demonstrated by using a novel filter which is formed from a 2  ×  2 3 dB multimode coupler incorporating a segment of polarization maintaining fiber (PMF). By using the filter with 2.1 m lengths of PMF in a ring fiber laser, a stable single wavelength lasing is obtained experimentally. Its 3 dB bandwidth is less than 0.0147 nm and the side mode suppression ratio (SMSR) is higher than 58.91 dB. Experimental results demonstrate that mode competition can be effectively suppressed and the SMSR can be improved due to the compound interference effect aroused by the novel filter. Meanwhile the stability of the output lasing can be enhanced. By appropriately adjusting the polarization controllers (PCs), the output lasing wavelength can be tuned from 1563.51 to 1568.21 nm. This fiber laser has the advantage of a simple structure and stable operation at room temperature.

  5. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  6. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  7. Amplified Policymaking

    Science.gov (United States)

    Prince, Katherine; Woempner, Carolyn

    2010-01-01

    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  8. Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors

    Science.gov (United States)

    Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.

    2018-05-01

    Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5  ×  10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.

  9. Study on the weighing system based on optical fiber Bragg grating

    Science.gov (United States)

    Wang, Xiaona; Yu, Qingxu; Li, Yefang

    2010-10-01

    The optical fiber sensor based on wavelength demodulation such as fiber Bragg grating(FBG), with merits of immunity to electromagnetic interference, low drift and high precision, has been widely used in many areas, such as structural health monitoring and smart materials, and the wavelength demodulation system was also studied widely. In the paper, a weighing system based on FBG was studied. The optical source is broadband Erbium-doped fiber ring laser with a spectral range of 1500~1600nm and optical power of 2mW; A Fabry-Perot Etalon with orientation precision of 1pm was adopted as real-time wavelength calibration for the swept laser; and multichannel high resolution simultaneous sampling card was used in the system to acquire sensing signals simultaneously, thus high-resolution and real-time calibration of sweep-wavelength can be achieved. The FBG was adhered to a cantilever beam and the Bragg wavelength was demodulated with the system. The weighing system was done after calibrated with standard weight. Experimental results show that the resolution of the weighing system is 0.5 g with a full scale of 2Kg.

  10. High-damage-resistant tungsten disulfide saturable absorber mirror for passively Q-switched fiber laser.

    Science.gov (United States)

    Chen, Hao; Chen, YuShan; Yin, Jinde; Zhang, Xuejun; Guo, Tuan; Yan, Peiguang

    2016-07-25

    In this paper, we demonstrate a high-damage-resistant tungsten disulfide saturable absorber mirror (WS2-SAM) fabricated by magnetron sputtering technique. The WS2-SAM has an all-fiber-integrated configuration and high-damage-resistant merit because the WS2 layer is protected by gold film so as to avoid being oxidized and destroyed at high pump power. Employing the WS2-SAM in an Erbium-doped fiber laser (EDFL) with linear cavity, the stable Q-switching operation is achieved at central wavelength of 1560 nm, with the repetition rates ranging from 29.5 kHz to 367.8 kHz and the pulse duration ranging from 1.269 μs to 154.9 ns. For the condition of the maximum pump power of 600 mW, the WS2-SAM still works stably with an output power of 25.2 mW, pulse energy of 68.5 nJ, and signal-noise-ratio of 42 dB. The proposed WS2-SAM configuration provides a promising solution for advanced pulsed fiber lasers with the characteristics of high damage resistance, high output energy, and wide tunable frequency.

  11. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers

    Science.gov (United States)

    Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H.

    2017-01-01

    We fabricate ultrasmall phosphorene quantum dots (PQDs) with an average size of 2.6 ± 0.9 nm using a liquid exfoliation method involving ultrasound probe sonication followed by bath sonication. By coupling the as-prepared PQDs with microfiber evanescent light field, the PQD-based saturable absorber (SA) device exhibits ultrafast nonlinear saturable absorption property, with an optical modulation depth of 8.1% at the telecommunication band. With the integration of the all-fiber PQD-based SA, a continuous-wave passively mode-locked erbium-doped (Er-doped) laser cavity delivers stable, self-starting pulses with a pulse duration of 0.88 ps and at the cavity repetition rate of 5.47 MHz. Our results contribute to the growing body of work studying the nonlinear optical properties of ultrasmall PQDs that present new opportunities of this two-dimensional (2D) nanomaterial for future ultrafast photonic technologies. PMID:28211471

  12. Optical crosstalk reduction using Amplified Spontaneous Emission (ASE)

    NARCIS (Netherlands)

    Chen, H.; Fontaine, N.K.; Ryf, R.; Alvarado, J.C.; van Weerdenburg, J.A.A.; Amezcua-Correa, R.; Okonkwo, C.; Koonen, A.M.J.

    2018-01-01

    We employ spectrally filtered amplified spontaneous emission as the signal carrier and matched local oscillator to mitigate optical crosstalk. We demonstrate polarization crosstalk reduction in single-mode fiber transmission and modal crosstalk reduction over multimode fiber.

  13. Optical properties of ion beam modified waveguide materials doped with erbium and silver

    NARCIS (Netherlands)

    Strohhöfer, C. (Christof)

    2001-01-01

    In the first part of this thesis we investigate codoping of erbium-doped waveguide materials with different ions in order to increase the efficiency of erbium-doped optical amplifiers. Codoping with ytterbium can overcome the limitations due to the small absorption cross section of Er3+ in Al2O3 at

  14. A model to obtain an optimum erbium desity for gain increasing in EDFA

    OpenAIRE

    E. Arzi; A. Hassani; F. E. Seraji

    2003-01-01

      In this paper, we suggest a novel model, based on input pump power and wave guidestructure, to calculate the Er-density profile in Erbium doped fiber amplifiers. This optimization is carried out for both SMF and DSF fibers. These optimized profiles have a Gaussian-like shape. Using the SMF optimized Er-density profile, high gain enhancement is obtained in a relatively short length of fibers. On the other hand, the DSF optimized profile shows small changes in the gain, which agrees with the ...

  15. A model to obtain an optimum erbium desity for gain increasing in EDFA

    Directory of Open Access Journals (Sweden)

    E. Arzi

    2003-12-01

    Full Text Available   In this paper, we suggest a novel model, based on input pump power and wave guidestructure, to calculate the Er-density profile in Erbium doped fiber amplifiers. This optimization is carried out for both SMF and DSF fibers. These optimized profiles have a Gaussian-like shape. Using the SMF optimized Er-density profile, high gain enhancement is obtained in a relatively short length of fibers. On the other hand, the DSF optimized profile shows small changes in the gain, which agrees with the previously report on other method of gain enhancement. This model is applicable to all active waveguides and any other dopant as well .

  16. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    International Nuclear Information System (INIS)

    Wang Tao; Sang Xin-Zhu; Yan Bin-Bin; Li Yan; Song Fei-Jun; Zhang Xia; Wang Kui-Ru; Yuan Jin-Hui; Yu Chong-Xiu; Ai Qi; Chen Xiao; Zhang Ying; Chen Gen-Xiang; Xiao Feng; Kamal Alameh

    2014-01-01

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature

  17. Experimental and Numerical Comparison Q-Switched Fiber Laser Generation using Graphene as Saturable Absorber

    Directory of Open Access Journals (Sweden)

    Awang Noor Azura

    2018-01-01

    Full Text Available We demonstrated the comparison experimentally and numerically a compact Q-switched erbium-doped fiber (EDF laser based on graphene as a saturable absorber (SA. By optically driven deposition of graphene on a fiber core, the SA is constructed and inserted into a diode-pumped EDF laser cavity. Lasing in CW region starts at 10 mW, whereas stable self-starting Q-switching with a central wavelength of 1530 nm begins at 18 mW. In this paper, at 35 mW, the maximum pulse energy reaches at 2 μJ with pulse repetition rate of 1 MHz and the narrowest pulse width is around 10 μs is obtained. The stability of the pulse is verified from the radio-frequency (RF spectrum with a measured signal-to-noise ratio (SNR of 48 dB. In this study, the design is compared with the simulation using the Optisystem software. The output power of the experimental study is also compared with the simulation to examine the performance.

  18. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...

  19. Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber

    International Nuclear Information System (INIS)

    Ahmad, H; Soltanian, M R K; Alimadad, M; Harun, S W

    2014-01-01

    An ultra-stable dual-wavelength saturable absorber based on a cladding-embedded commercial graphene oxide (GO) solution by capillary action in a solid core photonic crystal fiber (PCF) is demonstrated for the first time. The saturation absorption property is achieved through evanescent coupling between the guided light and the cladding-filled graphene layers. Stable spacing dual-wavelength fiber lasing is attained by controlling the polarization state of a simple 0.9 m long ring of highly doped Leikki Er80-8/125 erbium-doped fiber as the primary gain medium with PCF, polarization controller and tunable bandpass filter. Embedded GO is used to generate the desired pulsed output, and the laser is capable of generating pulses having a repetition rate of 24 kHz with an average output power and pulse energy of 0.167 mW and 8.98 nJ, respectively, at the maximum pump power of 220 mW. (paper)

  20. High SBS-Threshold Er/Yb Co-Doped Phosphate Glass Fiber Amplifiers for High Power, Sub-us Pulsed, Narrow Linewidth, All Fiber-Based Laser Transmitter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I, NP Photonics has achieved 1.2 kW peak power for 105 ns fiber laser pulses, and successfully demonstrated the feasibility to produce monolithic high SBS...

  1. Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method.

    Science.gov (United States)

    Feng, Ting; Ding, Dongliang; Yan, Fengping; Zhao, Ziwei; Su, Hongxin; Yao, X Steve

    2016-08-22

    High stability single- and dual-wavelength compound cavity erbium-doped fiber lasers (EDFLs) with ultra-narrow linewidth, high optical signal to noise ratio (OSNR) and widely tunable range are demonstrated. Different from using traditional cascaded Type-1/Type-2 fiber rings as secondary cavities, we nest a Type-1 ring inside a Type-2 ring to form a passive subring cavity to achieve single-longitudinal-mode (SLM) lasing with ultra-narrow linewidth for the first time. We also show that the SLM lasing stability can be further improved by inserting a length of polarization maintaining fiber in the Type-2 ring. Using a uniform fiber Bragg grating (FBG) and two superimposed FBGs as mode restricting elements, respectively, we obtain a single-wavelength EDFL with a linewidth as narrow as 715 Hz and an OSNR as high as 73 dB, and a dual-wavelength EDFL with linewidths less than 1 kHz and OSNRs higher than 68 dB for both lasing wavelengths. Finally, by employing a novel self-designed strain adjustment device capable of applying both the compression and tension forces to the FBGs for wavelength tuning, we achieve the tuning range larger than 10 nm for both of the EDFLs.

  2. Optical properties of erbium-doped porous silicon waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France); Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France)]. E-mail: joel.charier@univ-rennes1.fr; Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Lorrain, N. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France); Elhouichet, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B P. 80518, 22305 Lannion Cedex (France)

    2006-12-15

    Planar and buried channel porous silicon waveguides (WG) were prepared from p{sup +}-type silicon substrate by a two-step anodization process. Erbium ions were incorporated into pores of the porous silicon layers by an electrochemical method using ErCl{sub 3}-saturated solution. Erbium concentration of around 10{sup 20} at/cm{sup 3} was determined by energy-dispersive X-ray analysis performed on SEM cross-section. The luminescence properties of erbium ions in the IR range were determined and a luminescence time decay of 420 {mu}s was measured. Optical losses were studied on these WG. The increased losses after doping were discussed.

  3. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    Science.gov (United States)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  4. Precipitate coarsening and self organization in erbium-doped silica

    DEFF Research Database (Denmark)

    Sckerl, Mads W.; Guldberg-Kjær, Søren Andreas; Poulsen, Mogens Rysholt

    1999-01-01

    The influence of heat treatment at and above 1100 degrees C on thin erbium-rich silica layers embedded in silica has been studied experimentally by secondary ion-mass spectrometry and cross-sectional transmission electron microscopy. Redistribution of erbium atoms is observed at these temperature...

  5. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  6. Measurement of the isotope shift of the 63 P 1 ↔53 D 1 transition of ytterbium by using a diode oscillator fiber amplified laser

    Science.gov (United States)

    Lee, L.; Park, H.; Ko, K.-H.; Jeong, D.-Y.

    2010-08-01

    We demonstrated a Diode Oscillator Fiber Amplification (DOFA) system in order to study the 63 P 1 ↔53 D 1 (1539 nm) transition line of a neutral ytterbium atom that is accessed by the stepwise excitation of the ground state. The frequency of the DOFA system was doubled by a MgO:PPLN crystal for the resonant excitation of the 61 S 0 ↔63 P 1 transition. The frequency of the second harmonic beam was stabilized to the 61 S 0 ↔63 P 1 transition of each isotope with the stability of about 2 MHz. We performed absorption spectroscopy on the 63 P 1 ↔53 D 1 (1539 nm) transition after the velocity selective excitation by the frequency-doubled beam. The isotope shifts in the 63 P 1 ↔53 D 1 (1539 nm) transition were directly measured for the first time. The relative isotope shifts from 174Yb were measured as -105.8 MHz and 109.7 MHz for 176Yb and 172Yb, respectively.

  7. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    Science.gov (United States)

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  8. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  9. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  10. 2 micron femtosecond fiber laser

    Science.gov (United States)

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  11. Amplifier for nuclear spectrometry

    International Nuclear Information System (INIS)

    Suarez Canner, E.

    1996-01-01

    The spectroscopy amplifier model AE-020 is designed to adjust suitable the pulses coming from nuclear radiation detectors. Due to is capacity and specifications, the amplifier can be used together with high and medium resolution spectroscopy system

  12. Portable musical instrument amplifier

    Science.gov (United States)

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  13. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and

  14. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2010-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can

  15. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  16. Performance Enhancement in L-Band Edfa Through Dual Stage Technique

    Directory of Open Access Journals (Sweden)

    S. W. Harun and H. Ahmad

    2012-10-01

    Full Text Available An experiment on gain enhancement in the long wavelength band erbium doped fiber amplifier (L-band EDFA is demonstrated. It uses a dual stage technique with dual forward pumping scheme. Compared to a conventional single stage amplifier, the small signal gain for 1580nm signal can be improved by 5.5dB without paying much noise figure penalty. The corresponding noise figure penalty was 0.3dB due to the insertion loss of the optical isolator. The optimum pump power ratio for the first pump is experimentally determined to be 33%. The maximum gain improvement of 8.3dB was obtained at a signal wavelength of 1568nm while signal and total pump powers were fixed at -30dBm and 92mW, respectively. The employment of dual stage amplifier system seems to play an important role in the development of practical L-band EDFA from the perspective of economical usage of pump power.Key Words:  erbium doped fibre; optical amplifier; L-band EDFA; dual stage EDFA; amplified spontaneous emission

  17. Fiber MOPA for Ascends, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CO2 sensing using absorption bands near 1570nm is very attractive by taking advantage of the mature fiber-amplifier technology derived from fiber-optic telecom...

  18. Fiber MOPA for Ascends, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CO2 sensing using absorption bands near 1570nm is very attractive by taking advantage of the mature fiber-amplifier technology derived from fiber-optic telecom...

  19. Distributed CMOS Bidirectional Amplifiers Broadbanding and Linearization Techniques

    CERN Document Server

    El-Khatib, Ziad; Mahmoud, Samy A

    2012-01-01

    This book describes methods to design distributed amplifiers useful for performing circuit functions such as duplexing, paraphrase amplification, phase shifting power splitting and power combiner applications.  A CMOS bidirectional distributed amplifier is presented that combines for the first time device-level with circuit-level linearization, suppressing the third-order intermodulation distortion. It is implemented in 0.13μm RF CMOS technology for use in highly linear, low-cost UWB Radio-over-Fiber communication systems. Describes CMOS distributed amplifiers for optoelectronic applications such as Radio-over-Fiber systems, base station transceivers and picocells; Presents most recent techniques for linearization of CMOS distributed amplifiers; Includes coverage of CMOS I-V transconductors, as well as CMOS on-chip inductor integration and modeling; Includes circuit applications for UWB Radio-over-Fiber networks.

  20. Noise figure of amplified dispersive Fourier transformation

    International Nuclear Information System (INIS)

    Goda, Keisuke; Jalali, Bahram

    2010-01-01

    Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.

  1. Oscillators and operational amplifiers

    OpenAIRE

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.

  2. Active and passive silica waveguide integration

    DEFF Research Database (Denmark)

    Hübner, Jörg; Guldberg-Kjær, Søren Andreas

    2001-01-01

    . The increasing complexity and functionality of optical networks prompts a demand for highly integrated optical circuits. On-board optical amplifiers, monolithically integrated with functionalities like switching or multiplexing/demultiplexing will allow flexible incorporation of optical integrated circuits...... in existing and future networks without affecting the power budget of the system. Silica on silicon technology offers a unique possibility to selectively dope sections of the integrated circuit with erbium where amplification is desired. Some techniques for active/passive integration are reviewed and a silica......Integrated optical amplifiers are currently regaining interest. Stand-alone single integrated amplifiers offer only limited advantage over current erbium doped fiber amplifiers, whereas arrays of integrated amplifiers are very attractive due to miniaturization and the possibility of mass production...

  3. FLUIDIC AC AMPLIFIERS.

    Science.gov (United States)

    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  4. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  5. Auto-Zero Differential Amplifier

    Science.gov (United States)

    Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)

    2017-01-01

    An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.

  6. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-30

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications in building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  7. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  8. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  9. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  10. Fast pulse amplifier

    International Nuclear Information System (INIS)

    Lepetit, J.; Poussier, E.

    1984-01-01

    This amplifier comprises an inverter transformer, the primary circuit of which receives a pulse and the secondary circuit of which is connected to several amplifying elements in parallel. The inverter transformer is made of coaxial cable segments winded around a magnetic torus; the cable cores connected in series constitute the primary circuit and the braiding of cables, connected in parallel, are the secondary circuit. The transformer comprises, besides, delay lines in series with each braiding of the secondary circuit, these ones are such that pulses issued from each braiding arrive together to the secondary circuit connectors. This invention applies, noticeably in the case of a high voltage amplifier, to the control of deflection blocks of particles used in medicine or in particle accelerators [fr

  11. Fast logarithmic amplifier

    International Nuclear Information System (INIS)

    Tai, I.; Hasegawa, K.

    1975-01-01

    This paper reports on the improvement of frequency characteristics of a logarithmic amplifier with a Paterson transdiode connection. The improvement of the response speed has been achieved by using a phase compensation technique. Small signal response analyses of the logging circuit revealed the effects of a series resistor Rsub(p) and a parallel capacitance Csub(p) on the response of the circuit. The improvement of the frequency characteristics are remarkable at higher current levels. These facts were proved by the practical logarithmic amplifier. (auth.)

  12. Modeling of SBS Phase Conjugation in Multimode Step Index Fibers

    National Research Council Canada - National Science Library

    Spring, Justin B

    2008-01-01

    ... limited, double-pass high-power amplifiers or coherent beam combination. Little modeling of such a fiber-based phase-conjugator has been done, making it difficult to make decisions about the right fiber to use...

  13. Q-factor improvement of degenerate four-wave-mixing regenerators for ASE degraded signals

    Science.gov (United States)

    Lu, Hang; Wu, Bao-jian; Geng, Yong; Zhou, Xing-yu; Sun, Fan

    2017-11-01

    All-optical regenerators can be used to suppress amplified spontaneous emission (ASE) noise introduced by cascaded erbium doped fiber amplifiers (EDFAs) in optical fiber communication systems and lead to the improvement of optical receiver sensitivity. By introducing the Q-factor transfer function (QTF), we evaluate the Q-factor performance of degenerate four-wave mixing (DFWM) regenerators with clock pump and reveal the differences between the optimal input powers determined from the static and dynamic power tranfer function (PTF) and the QTF curves. Our simulation shows that the clock-pump regnerator is capable of improving the Q-facor and receiver sensitivity for 40 Gbit/s ASE-degraded return-to-zero on-off keying (RZ-OOK) signal by 2.58 dB and 4.2 dB, respectively.

  14. Generation of Flattened Multicarrier Signals from a Single Laser Source for 330 Gbps WDM-PON Transmission over 25 km SSMF

    Science.gov (United States)

    Ullah, Sibghat; Liu, Bo; Ullah, Rahat; Ahmad, Muhammad; Wang, Fu; Zhang, Lijia; Xin, Xiangjun; Memon, Kamran Ali; Khalid, Hafiz Ahmad

    2017-12-01

    A novel technique is proposed for optical frequency comb generation with a budget friendly system. A Mach-Zehnder modulator is used in connectivity with continuous wave optical signal which is filtered by rectangle optical filter and the signal is then amplified by erbium-doped fiber amplifier. With a frequency spacing of 10 GHz 33 useable OFC lines were generated with good tone to noise ratio which is quite impressive for such a cost effective setup. Each generated carrier carries differential phase shift keying based data of 10 Gbps. A total of 330 Gbps multiplexed data is successfully transmitted through a standard single mode fiber length of 25-km. During the downlink transmission the power penalties are observed to be negligible. The resulted eye diagrams are wide and promises to be a good system for wavelength division multiplexed-passive optical network.

  15. Enhancing Optical Communications with Brand New Fibers

    DEFF Research Database (Denmark)

    Morioka, Toshio; Awaji, Yoshinari; Ryf, Roland

    2012-01-01

    Optical fibers have often been considered to offer effectively infinite capacity to support the rapid traffic growth essential to our information society. However, as demand has grown and technology has developed, we have begun to realize that there is a fundamental limit to fiber capacity of ~ 100...... Tb/s per fiber for systems based on conventional single-core single-mode optical fiber as the transmission medium. This limit arises from the interplay of a number of factors including the Shannon limit, optical fiber nonlinearities, the fiber fuse effect, as well as optical amplifier bandwidth...... new fibers for space-division multiplexing and mode-division multiplexing....

  16. Extinction Ratio and Gain Optimization of Dual- Pump Degenerate-Idler Phase Sensitive Amplifiers

    DEFF Research Database (Denmark)

    Kang, Ning; Lund-Hansen, Toke; Seoane, Jorge

    2011-01-01

    Numerical optimization of dual-pump degenerateidler phase sensitive amplifiers is performed for Al-doped and standard highly nonlinear fibers. Design considerations for operating the PSAs at an optimum combination of gain and extinction ratio are discussed.......Numerical optimization of dual-pump degenerateidler phase sensitive amplifiers is performed for Al-doped and standard highly nonlinear fibers. Design considerations for operating the PSAs at an optimum combination of gain and extinction ratio are discussed....

  17. Amplifying genetic logic gates.

    Science.gov (United States)

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  18. Flashlamp excited fluid laser amplified

    International Nuclear Information System (INIS)

    1976-01-01

    The patent describes a laser amplifier with chambers for containing and amplifying an intensifier medium. It serves the need for a large impulse repetition rate and high intensities as required e.g. for laser isotope separation

  19. C.A.D for broad-band multistage microwave transimpedance amplifier.

    OpenAIRE

    Olomo Ngongo, A.; Perennec, A.; Soares, R.; Jarry, P.

    1992-01-01

    In high data rate optical-fiber, it is necessary to employ an ultra broad-band transimpedance amplifier. In this paper, we present a technique for the design of a transimpedance amplifiers. It can be applied as well to the design of interstage equalizers for microwave transimpedance amplifiers. In the version described in this paper, the optimisation process is applied to the transimpedance gain and noise which is adjusted. Based on the load charge matching technique, a sequential procedure t...

  20. Improved-Bandwidth Transimpedance Amplifier

    Science.gov (United States)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  1. Fiber-Optic Optical-Microwave Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used to conduct programs of basic science and applied research in the development of laser sources, high-power fiber amplifiers, photonic control of phased...

  2. Simplified design of IC amplifiers

    CERN Document Server

    Lenk, John

    1996-01-01

    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  3. Multipath interference test method for distributed amplifiers

    Science.gov (United States)

    Okada, Takahiro; Aida, Kazuo

    2005-12-01

    A method for testing distributed amplifiers is presented; the multipath interference (MPI) is detected as a beat spectrum between the multipath signal and the direct signal using a binary frequency shifted keying (FSK) test signal. The lightwave source is composed of a DFB-LD that is directly modulated by a pulse stream passing through an equalizer, and emits the FSK signal of the frequency deviation of about 430MHz at repetition rate of 80-100 kHz. The receiver consists of a photo-diode and an electrical spectrum analyzer (ESA). The base-band power spectrum peak appeared at the frequency of the FSK frequency deviation can be converted to amount of MPI using a calibration chart. The test method has improved the minimum detectable MPI as low as -70 dB, compared to that of -50 dB of the conventional test method. The detailed design and performance of the proposed method are discussed, including the MPI simulator for calibration procedure, computer simulations for evaluating the error caused by the FSK repetition rate and the fiber length under test and experiments on singlemode fibers and distributed Raman amplifier.

  4. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  5. Building valve amplifiers

    CERN Document Server

    Jones, Morgan

    2013-01-01

    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  6. High-power piezo drive amplifier for large stack and PFC applications

    Science.gov (United States)

    Clingman, Dan J.; Gamble, Mike

    2001-08-01

    This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.

  7. A 158 fs 5.3 nJ fiber-laser system at 1 mu m using photonic bandgap fibers for dispersion control and pulse compression

    DEFF Research Database (Denmark)

    Nielsen, C.K.; Jespersen, Kim Giessmann; Keiding, S.R.

    2006-01-01

    We demonstrate a 158 fs 5.3 nJ mode-locked laser system based on a fiber oscillator, fiber amplifier and fiber compressor. Dispersion compensation in the fiber oscillator was obtained with a solid-core photonic bandgap (SC-PBG) fiber spliced to standard fibers, and external compression is obtained...... with a hollow-core photonic bandgap (HC-PBG) fiber....

  8. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  9. Modeling FWM and impairments aware amplifiers placement technique for an optical MAN/WAN: Inline amplifiers case

    Science.gov (United States)

    Singh, Gurpreet; Singh, Maninder Lal

    2015-08-01

    A new four wave mixing (FWM) model for an optical network with amplifiers and a comparative analysis among three proposed amplifiers placement techniques have been presented in this paper. The FWM model is validated with the experimental measured data. The novelty of this model is its uniqueness that on direct substitutions of network parameters like length, it works even for unequal inter amplifier separations. The novelty of the analysis done among three schemes is that it presents fair choice of amplifiers placement methods for varied total system length. The appropriateness of these three schemes has been analyzed on the basis of critical system length, critical number of amplifiers and critical bit error rate (10-9) in presence of four wave mixing (FWM) and amplified spontaneous emission noise (ASE). The implementation of analysis done has been given with the help of an example of a regenerative metropolitan area network (MAN). The results suggest that the decreasing fiber section scheme should be avoided for placements of amplifiers and schemes IUFS and EFS shows their importance interchangeably for different set of parameters.

  10. Superconducting digital logic amplifier

    International Nuclear Information System (INIS)

    Przybysz, J.X.

    1989-01-01

    This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions

  11. Cascade energy amplifier

    International Nuclear Information System (INIS)

    Barzilov, A.P.; Gulevich, A.V.; Kukharchuk, O.F.

    2000-01-01

    The technical problem of long-life fission product and minor actinide incineration and production of plutonium fuel in the prospective nuclear systems will arise at significant scales of nuclear power industry development. Subcritical nuclear reactors driven by extemal neutron sources (energy amplifiers) are considered as incinerators of toxicity of complete nuclear industry. In the frames of this concept, the subcritical reactor part consisting of two coupled blanket regions (inner fast neutron spectrum core and outer thermal core) driven by extemal neutron source is discussed. Two types of source are studied: spallation target and 14-MeV fusion bum of micropellets. Liquid metal Pb-Bi is considered as target material and coolant of inner fast core. Thermal core is a heavy-water subcritical reactor of the Candu-type. The fast core is protected from thermal neutrons influence with the boron shield. All reactor technologies used in this concept are tested during years of operation and commercially available. Thus, the cascade energy amplifiers have a set of advantages in comparison with traditional concepts: in energy production, in transmutation efficiency, and in economics. (authors)

  12. Investigation into constant envelope orthogonal frequency division multiplexing for polarization-division multiplexing coherent optical communication

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2017-09-01

    Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.

  13. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  14. Nanoscale electromechanical parametric amplifier

    Science.gov (United States)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  15. Linear pulse amplifier

    International Nuclear Information System (INIS)

    Tjutju, R.L.

    1977-01-01

    Pulse amplifier is standard significant part of spectrometer. Apart from other type of amplification, it's a combination of amplification and pulse shaping. Because of its special purpose the device should fulfill the following : High resolution is desired to gain a high yield comparable to its actual state of condition. High signal to noise is desired to nhν resolution. High linearity to facilitate calibration. A good overload recovery, in order to the device will capable of analizing a low energy radiation which appear joinly on the high energy fields. Other expections of the device are its economical and practical use its extentive application. For that reason it's built on a standard NIM principle. Taking also into account the above mentioned considerations. High quality component parts are used throughout, while its availability in the domestic market is secured. (author)

  16. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  17. Preparation of Ho3+/Tm3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 μm

    Science.gov (United States)

    Zhou, Dechun; Bai, Xuemei; Zhou, Hang

    2017-03-01

    Ho3+/Tm3+ co-doped 50TeO2-25GeO2-3WO3-5La2O3-3Nb2O5-5Li2O-9BaF2 glass fiber is prepared with the rod-tube drawing method of 15 μm core diameter and 125 μm inner cladding diameter applied in the 2.0 μm-infrared laser. The 2.0 μm luminescence properties of the core glass are researched and the fluorescence intensity variation for different Tm3+ doping concentration is systematically analyzed. The results show that the 2.0 μm luminescence of Ho3+ is greatly influenced by the doping concentration ratio of Ho3+ to Tm3+ and that the maximum fluorescence intensity of the core glass can be obtained and its emission cross section can reach 0.933 × 10-21 cm2 when the sensitized proportion of holmium to thulium is 0.3 to 0.7 (mol%). Simultaneously, the maximum phonon energy of the core glass sample is 753 cm-1, which is significantly lower than that of silicate, gallate and germanate glass and the smaller matrix phonon energy can be conductive to the increase 2.0 μm-band emission intensity. The continuous laser with the maximum laser output power of 0.993 W and 2051 nm -wavelength of 31.9%-slope efficiency is output within the 0.5 m glass fiber and the experiment adopts 1560 nm erbium-doped fiber laser(EDFL) as the pump source and the self-built all-fiber laser. Therefore, the glass fiber has excellent laser characteristics and it is suitable for the 2.0 μm-band laser.

  18. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  19. CERN: Energy amplifier

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Even under the heavy burden of responsibility as CERN's Director General from 1989-3 the fertile mind of Carlo Rubbia the scientist was never still. A long-time Rubbia 'hobby' has been the search for new sources of nuclear energy, exploiting knowledge and skills from high energy physics. An initial objective was to adopt heavy ion techniques to induce controlled thermonuclear fusion, but in 1994 this quest changed direction. Putting the problems of thermonuclear fusion aside, Rubbia began to explore an alternative route to energy production through controlled nuclear fission. The idea is to use a particle accelerator producing neutrons by spallation (interaction of particles with a target) to feed a fuel/moderator assembly where the neutrons multiply by fission chain reactions. If the energy liberated becomes substantially greater than that needed to drive the accelerator, the process has a net gain and becomes selfsupporting. Hence the name ''Energy Amplifier'' (EA). Similar systems for energy production or for nuclear waste incineration have been proposed at Los Alamos and in Japan and Russia, but appear to require the prior development of innovative linear accelerators. For Rubbia's Amplifier, the requisite accelerator is a reasonable extrapolation of an existing cyclotron such that at the Swiss Paul Scherrer Institute. Moreover, the EA would require fuel rods very similar to those of conventional reactors, rather than demand-ing new technology using liquid fuel loops (molten salts) with on-line separation of radioactive products. Unlike a reactor, the EA's fission reaction is not self-sustaining: it is sub-critical and needs a continuous supply of neutrons from the accelerator. This makes Chernobyl-type meltdowns unlikely: if the accelerator stops, the reaction stops too. Another major advantage is that the old dream of using thorium as a fuel is now made possible. Thorium is not itself fissile, but under neutron

  20. High brightness photonic lantern kW-class amplifier

    Science.gov (United States)

    Montoya, Juan; Hwang, Chris; Aleshire, Chris; Reed, Patricia; Martz, Dale; Riley, Mike; Trainor, Michael; Belley, Catherine; Shaw, Scot; Fan, T. Y.; Ripin, Dan

    2018-02-01

    Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control was achieved. A photonic lantern front end was used to inject an arbitrary superposition of modes on the input to a kW-class fiber amplifier to achieve a nearly diffraction-limited output. We report on the adaptive spatial mode control architecture which allows for compensating transverse-mode disturbances at high power. We also describe the advantages of adaptive spatial mode control for optical phased array systems. In particular, we show that the additional degrees of freedom allow for broader steering and improved atmospheric turbulence compensation relative to piston-only optical phased arrays.

  1. Millimeter-wave power amplifiers

    CERN Document Server

    du Preez, Jaco

    2017-01-01

    This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.

  2. Efficient Tm-Fiber-Pumped Ho:YLF Laser System for Coherent LIDAR Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to employ a recently developed, efficient, high-power, heavily-doped Tm:silica-fiber technology as a high-gain fiber pre-amplifier and as a...

  3. Optical study of Erbium-doped-porous silicon based planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France) and Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia)]. E-mail: najar.adel@laposte.net; Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France); Lorrain, N. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France); Haesaert, S. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 ElManar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, B.P. 80518, 22305 Lannion Cedex (France)

    2007-06-15

    Planar waveguides were formed from porous silicon layers obtained on P{sup +} substrates. These waveguides were then doped by erbium using an electrochemical method. Erbium concentration in the range 2.2-2.5 at% was determined by energy dispersive X-ray (EDX) analysis performed on SEM cross sections. The refractive index of layers was studied before and after doping and thermal treatments. The photoluminescence of Er{sup 3+} ions in the IR range and the decay curve of the 1.53 {mu}m emission peak were studied as a function of the excitation power. The value of excited Er density was equal to 0.07%. Optical loss contributions were analyzed on these waveguides and the losses were equal to 1.1 dB/cm at 1.55 {mu}m after doping.

  4. Optical, mechanical and fractographic response of transparent alumina ceramics on erbium doping

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Drdlíková, K.; Hadraba, Hynek; Máca, K.

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4265-4270 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Alumina * Erbia * Fractography * Hardness * Transparency Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  5. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  6. Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles

    Science.gov (United States)

    Rajeshree Patwari, D.; Eraiah, B.

    2018-02-01

    Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.

  7. Erbium-doped twin-core fibre narrow-band filter for fibre lasers

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Kaňka, Jiří

    2001-01-01

    Roč. 33, 4/5 (2001), s. 571-581 ISSN 0306-8919. [Optical Waveguide Theory and Numerical Modelling /8./. Prague, 26.05.2000-27.05.2000] R&D Projects: GA ČR GA102/99/M057; GA ČR GA102/99/0393; GA AV ČR IAC2067902 Grant - others:EU COST(XE) OC 265.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre lasers * optical fibre filters * optical fibre couplers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.706, year: 2001 http://www.ufe.cz/~peterka/opera/OQE_Peterka01_fulltext.pdf

  8. Optical signal inverter of erbium-doped yttrium aluminum garnet with red shift of laser diodes.

    Science.gov (United States)

    Maeda, Y

    1994-08-10

    An optical signal inverter was demonstrated in a simple structure that combined a laser diode with Er-doped YAG crystal. The optical signal inversion occurred at a response time of 7 ns and was caused by the decrease of transmission of Er:YAG against the red shift of the wavelength of the laser diode.

  9. Thermal Stability and Optical Activity of Erbium Doped Chalcogenide Glasses for Photonics

    Science.gov (United States)

    Tonchev, D.; Koughia, K.; Kasap, S. O.; Maeda, K.; Sakai, T.; Ikuta, J.; Ivanova, Z. G.

    The glass transition and crystallization temperatures (T g , T c ), heat capacity, thermal stability and glass uniformity of GeSGa, GeSeGa, Ge(SeTe)Ga chalcogenide glasses doped with Er3+ by the addition of Er2S3 have been investigated by conventional differential scanning calorimetry (DSC) and Temperature-Modulated DSC (TMDSC). While some of the glasses have two crystallization peaks, these glasses were nonetheless optically actively and uniform. Essential optical properties have been evaluated, such as the photoluminescence (PL) intensity and lifetime as a function of the glass composition. We present typical results to emphasize some of the important characteristics of these systems and discuss trends within a glass system; and also highlight differences between glass systems.

  10. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  11. Effect of γ-ray irradiation on optical properties of erbium doped bismuth-tellurite glasses

    Science.gov (United States)

    Keshavamurthy, K.; Eraiah, B.

    2018-05-01

    Heavy metal oxide contained glasses are very promising candidates in shielding and photonic materials. In this paper, we studied the effect of γ-ray irradiation on optical properties of Er2O3-Bi2O3-TeO2 glasses through UV-Visible spectrophotometer. After γ-ray exposure, the optical band gap decreases and Urbach energy increases, which is due to creation of defects within the glass network as a result increases the number of non-bridging oxygens.

  12. Effect of B2O3 on luminescence of erbium doped tellurite glasses.

    Science.gov (United States)

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Dai, Shixun; Wang, Xunsi

    2007-02-01

    The B2O3 was introduced into the Er3+ doped TeO2-ZnO-Na2O glass to increase the phonon energy of the host. The effect of B2O3 on the non-radiative rate of the 4I11/2-->4I13/2 transition of Er3+, the lifetime of the 4I11/2 and 4I13/2 levels, the green and red upconversion emissions intensity, and the 4I13/2-->4I15/2 emission intensity was discussed. The results show that the phonon energy of boro-tellurite glass is close to that of germanate glass and is quite smaller than that of borate glass. The lifetime of 4I11/2 level and the upconversion emissions decrease with increasing B2O3 concentration. The higher OH group concentration presented in the boro-tellurite glass may shorten the lifetime of 4I13/2 level and also reduce the quantum efficiency of 4I13/2-->4I15/2 emission. The future dehydrating procedures are suggested to enhance the efficiency of amplification at 1.5 microm band.

  13. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  14. Direct imaging of optical interference in erbium-doped Al2O3 waveguides

    NARCIS (Netherlands)

    Hoven, van den G.N.; Polman, A.; Dam, van C.; Uffelen, van J.W.M.; Smit, M.K.

    1996-01-01

    Interference of 1.48-mu m light in multimode interference waveguides is made visible by imaging green and infrared upconversion luminescence from Er3+ ions dispersed in the waveguide. A two-dimensional mode density image can be derived from the data and agrees well with mode calculations for this

  15. Spectroscopic Properties of Neodymium and Erbium-Doped Magnesium Oxide Ceramics

    Science.gov (United States)

    2015-09-01

    universally >99% of theoretical. Powder x-ray diffraction (XRD) analysis was employed to determine the crystalline phases in doped MgO ceramics after the...different sintering steps. Powders of sintered pellets were prepared by grinding fragments in a glass mortar and pestle to avoid crystalline...than anticipated for the doped MgO. Somewhat more conclusive information on the extent of successful RE doping was derived from the XRD analysis

  16. Small signal microwave amplifier design

    CERN Document Server

    Grosch, Theodore

    2000-01-01

    This book explains techniques and examples for designing stable amplifiers for high-frequency applications in which the signal is small and the amplifier circuit is linear. An in-depth discussion of linear network theory provides the foundation needed to develop actual designs. Examples throughout the book will show you how to apply the knowledge gained in each chapter leading to the complex design of low noise amplifiers. Many exercises at the end of each chapter will help students to practice their skills. The solutions to these design problems are available in an accompanying solutions book

  17. Final amplifier design and mercury

    International Nuclear Information System (INIS)

    Rose, E.A.; Hanson, D.E.

    1991-01-01

    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met

  18. Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Lu, Ting-Chien; Wu, Chang-Jen; Chu, Chien-An; Shiva, Ajay; Mochii, Takao

    2016-02-01

    A bidirectional fiber-wireless and fiber-visible-laser-light-communication (VLLC) transmission system based on an optoelectronic oscillator (OEO)-based broadband light source (BLS) and a reflective semiconductor optical amplifier (RSOA) is proposed and experimentally demonstrated. Through an in-depth observation of such bidirectional fiber-wireless and fiber-VLLC transmission systems, good bit error rate performances are obtained over a 40 km single-mode fiber and a 10 m RF/optical wireless transport. Such a bidirectional fiber-wireless and fiber-VLLC transmission system is an attractive option for providing broadband integrated services.

  19. Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers.

    Science.gov (United States)

    Chen, George F R; Zhao, Xinyu; Sun, Yang; He, Chaobin; Tan, Mei Chee; Tan, Dawn T H

    2017-06-13

    On-chip waveguide amplifiers offer higher gain in small device sizes and better integration with photonic devices than the commonly available fiber amplifiers. However, on-chip amplifiers have yet to make its way into the mainstream due to the limited availability of materials with ideal light guiding and amplification properties. A low-loss nanostructured on-chip channel polymeric waveguide amplifier was designed, characterized, fabricated and its gain experimentally measured at telecommunication wavelength. The active polymeric waveguide core comprises of NaYF 4 :Yb,Er,Ce core-shell nanocrystals dispersed within a SU8 polymer, where the nanoparticle interfacial characteristics were tailored using hydrolyzed polyhedral oligomeric silsesquioxane-graft-poly(methyl methacrylate) to improve particle dispersion. Both the enhanced IR emission intensity from our nanocrystals using a tri-dopant scheme and the reduced scattering losses from our excellent particle dispersion at a high solid loading of 6.0 vol% contributed to the outstanding optical performance of our polymeric waveguide. We achieved one of the highest reported gain of 6.6 dB/cm using a relatively low coupled pump power of 80 mW. These polymeric waveguide amplifiers offer greater promise for integrated optical circuits due to their processability and integration advantages which will play a key role in the emerging areas of flexible communication and optoelectronic devices.

  20. New Packaging for Amplifier Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  1. Operational amplifiers theory and design

    CERN Document Server

    Huijsing, Johan

    2017-01-01

    This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations. Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports. Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures. In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises. Provides te...

  2. TARC: Carlo Rubbia's Energy Amplifier

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.

  3. Enhanced performance CCD output amplifier

    Science.gov (United States)

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  4. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  5. Spectroscopic amplifier for pin diode

    International Nuclear Information System (INIS)

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.

    2014-10-01

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  6. Radiation Effects on Ytterbium-doped Optical Fibers

    Science.gov (United States)

    2014-06-02

    conducted on Er- doped fiber amplifiers (Lezius, et al., 2012; Ahrens, et al., 1999; Ahrens, Jaques , LuValle, DiGiovanni, & Windeler, 2001; Ott, 2004...Ahrens, R. G., Abate, J. A., Jaques , J. J., Presby, H. M., Fields, A. B., DiGiovanni, D. J., LuValle, M. J. (1999). Radiation reliability of rare... Jaques , J. J., LuValle, M. J., DiGiovanni, D. J., & Windeler, R. S. (2001). Radiation effects on optical fibers and amplifiers. Testing, Reliability

  7. Fiber optical parametric amplifiers in optical communication systems

    DEFF Research Database (Denmark)

    Marhic, Michel E.; Andrekson, Peter A.; Petropoulos, Periklis

    2015-01-01

    -modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512Gb/s have been transmitted over 6,000km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products...

  8. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  9. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, Markus

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length

  10. Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW.

    Science.gov (United States)

    Bolpasi, V; von Klitzing, W

    2010-11-01

    A 1 W tapered amplifier requiring only 200 μW of injection power at 780 nm is presented in this paper. This is achieved by injecting the seeding light into the amplifier from its tapered side and feeding the amplified light back into the small side. The amplified spontaneous emission of the tapered amplifier is suppressed by 75 dB. The double-passed tapered laser, presented here, is extremely stable and reliable. The output beam remains well coupled to the optical fiber for a timescale of months, whereas the injection of the seed light did not require realignment for over a year of daily operation.

  11. Analysis and evaluation of the power amplifier device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. K.; Ryu, J. W. [Kongju National University, Gongju (Korea, Republic of)

    2011-11-15

    We developed a master oscillator power amplifier (MOPA) type fiber amplifier for the separation of the Ca-48 isotope by using a fiber laser. The ytterbium (Yb)-doped end-capped rod-type photonic crystal fiber (PCF) was used as a gain medium of MOPA amplifier. The PCFs used in our experiments were a 56-cm and an 81-cm rod-type end-capped Yb-doped double-clad PM fibers 'DC-285/100-PM-Yb-Rod', with a 100-{mu}m core (NA 0.02) and a 285-{mu}m cladding (NA 0.6) fabricated by NKT Photonics. The mode field diameter (MFD) of the rod-type PCF was 75-{mu}m, and an absorption efficiency of 30 dB/m at 976 nm and a low NA 0.02 helped to sustain the excellent lasing beam quality. We obtained an output power of 112 W at a pump power of 380 W with a repetition rate of 150 kHz. The measured pulse width was 13 ns at 150 kHz, 1056 nm. The laser beam quality shows a single mode amplification characteristics with a beam quality factor values of M2 are 2 -3. The PCF launching efficiency reached a maximum value of 86.7% with an average efficiencies of above 80%. At a pump power of 250 W and seed power input of 4 W, the CW PCF amplifier was found to generate average output powers of 138 W, 110 W, and 82 W at 1056-nm, 1070-nm, and 1089-nm wavelengths, respectively. The amplified PCF output beam had a line width of 70 MHz full width at half maximum (FWHM). These PCF amplified beams had good beam qualities with M2values of less than 1.8 at all three wavelengths. The gain saturation seed input power in the 81-cm PCF was found to be {approx}6 W at 1056 nm. The temperature of the PCF core reached over 230 .deg. C at the pumping section of the PCF. The temperatures of the end-cap heads on both the pumping and the output end-cap sides were 81.4 .deg. C and 35.7 .deg. C, respectively. The PCF amplifier maintained good polarization mode characteristics with an average DOP of over 87%. The slight decrease in the DOP oat output powers over 170 W output power may have been caused by a

  12. Simulative Analysis of Inter-Satellite Optical Wireless Communication (IsOWC) Link with EDFA

    Science.gov (United States)

    Singh, Mehtab; Singh, Navpreet

    2018-04-01

    In this paper, simulative analysis and performance comparison of different EDFA (Erbium-doped fiber amplifier) configurations in a 10 Gbps inter-satellite optical wireless communication (IsOWC) link have been reported for a 5,000 km long link and 1,550 nm operating wavelength. The results show that system in which both pre-amplifier and booster amplifier stages are implemented simultaneously outperforms systems with only pre-amplifier and booster amplifier stage. From the results, it can be seen that by deploying a transmission power level of 15 dBm, a link distance of 9,600 km can be achieved with a quality factor of 6.01 dB and BER (Bit error rate) of 1.07×10-9. Also, in this paper, the performance of an 8×7 Gbps WDM-IsOWC link has been reported. The results show that by using both EDFA pre-amplifier and booster amplifier stages, a link distance of 8,000 km for each channel is achievable with desired performance levels (Q≥6 and BER≤10-9). Also, the effect of channel spacing on the performance of WDM-IsOWC link is investigated. The results show that the received signal has acceptable performance levels when the channel spacing is 100 GHz but when the channel spacing is reduced to 80 GHz, the quality of the received signal degrades and link distance decreases.

  13. Ring mirror fiber laser gyroscope

    Science.gov (United States)

    Shalaby, Mohamed Y.; Khalil, Kamal; Afifi, Abdelrahman E.; Khalil, Diaa

    2017-02-01

    In this work we present a new architecture for a laser gyroscope based on the use of a Sagnac fiber loop mirror. The proposed system has the unique property that its scale factor can be increased by increasing the gain of the optical amplifier used in the system as demonstrated experimentally using standard single mode fiber and explained physically by the system operation. The proposed gyroscope system is also capable of identifying the direction of rotation. This new structure opens the door for a new category of low cost optical gyroscopes.

  14. CMOS Current-mode Operational Amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1992-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-range ±700¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2......A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  15. A CMOS current-mode operational amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1993-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain-bandwidth product of 3 MHz, an offset current of 0.8 μA (signal range ±700 μA), and a (theoretically) unlimited slew rate. The amplifier is realized in a standard CMOS 2......A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  16. Amplified spontaneous emissions in a high-gain laser amplifier

    International Nuclear Information System (INIS)

    Osada, Hidenori; Gamo, Hideya.

    1978-01-01

    The gain and line-narrowing of the amplified spontaneous emissions(ASE) in a partially homogeneous high-gain Xe 3.51 μm laser amplifier were studied theoretically and experimentally with emphasis of saturation effect. The unidirectionally travelling ASE was generated by conveniently using optical isolators and used as a broadband radiation source. It has properties of 10 μW/mm 2 in intensity with fluctuation of less than 1% in 5 hours, 43.5 MHz of the linewidth and 1.0 x 10 -3 radians of beam divergence. The measured saturation intensity was 4.85 μW/mm 2 and a small signal gain was 0.1 cm -1 . The theoretical prediction of the line-narrowing shows reasonablly good agreement with the measured one. (author)

  17. Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University

    Science.gov (United States)

    Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong

    2012-06-01

    A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other

  18. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  19. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei

    2017-05-15

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration <60 fs are highly desired. We proposed and demonstrated a novel amplification technique, named as pre-chirp managed amplification (PCMA). We successfully constructed an Yb-fiber based PCMA system that outputs 75-MHz spectrally broadened pulses with >130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation

  20. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  1. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  2. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  3. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  4. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.

    2010-01-01

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players...... of the European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....

  5. Integrated amplifying circuit with MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Baylac, B; Merckel, G; Meunier, P

    1974-01-25

    The invention relates to a feedback-pass-band amplifier with MOS-transistors. The differential stage of conventional amplifiers is changed into an adding state, whereas the differential amplification stages are changed into amplifier inverter stages. All MOS transistors used in that amplifier are of similar configuration and are interdigitized, whereby the operating speed dispersion is reduced. This can be applied to obtaining a measurement channel for proportional chambers.

  6. Research on the ϕ-OTDR fiber sensor sensitive for all of the distance

    Science.gov (United States)

    Kong, Yong; Liu, Yang; Shi, Yi; Ansari, Farhad; Taylor, Todd

    2018-01-01

    In this paper, a modified construction for the traditional ϕ-OTDR fiber sensor sensitive for all of distance is presented, the related numerical simulation and experiment analysis results show that this construction can reduce the gain imbalance for all of the distance along the fiber caused by the Rayleigh scattering loss of the fiber and the gain imbalance of Raman fiber amplifier in this fiber sensor system. In order to improve further the vibration sensitivity of this system, the possible methods to restrain the influences of modulation instability effect, Stimulated Brillouin effect, reduce the amplified spontaneous emission (ASE) noises of Raman laser (RL) and Erbium3+-doped fiber amplifiers (EDFA), double Rayleigh backscattering noise in this system are discussed, which will offer a great reference value for the science research and engineering application in the field of fiber sensor as we believe.

  7. NASA developments in solid state power amplifiers

    Science.gov (United States)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  8. A pulse amplifier for nuclear instrumentation

    International Nuclear Information System (INIS)

    Martin, D.; Cliff, P.

    1987-01-01

    A Class-A 1 Watt amplifier has been designed and optimized for nanosecond pulses. Spanning .01MHz to 1300Mhz, signal gain is 26dB with gain flatness of 1dB. The amplifier drive +- 10 volts across 500 with 350ps risetime. Each amplifier is housed in a 2-wide NIM

  9. Remote Acquisition Amplifier For 50-Ohm Cable

    Science.gov (United States)

    Amador, Jose J.

    1995-01-01

    Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.

  10. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2016-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier...

  11. Advances in high power linearly polarized fiber laser and its application

    Science.gov (United States)

    Zhou, Pu; Huang, Long; Ma, Pengfei; Xu, Jiangming; Su, Rongtao; Wang, Xiaolin

    2017-10-01

    Fiber lasers are now attracting more and more research interest due to their advantages in efficiency, beam quality and flexible operation. Up to now, most of the high power fiber lasers have random distributed polarization state. Linearlypolarized (LP) fiber lasers, which could find wide application potential in coherent detection, coherent/spectral beam combining, nonlinear frequency conversion, have been a research focus in recent years. In this paper, we will present a general review on the achievements of various kinds of high power linear-polarized fiber laser and its application. The recent progress in our group, including power scaling by using power amplifier with different mechanism, high power linearly polarized fiber laser with diversified properties, and various applications of high power linear-polarized fiber laser, are summarized. We have achieved 100 Watt level random distributed feedback fiber laser, kilowatt level continuous-wave (CW) all-fiber polarization-maintained fiber amplifier, 600 watt level average power picosecond polarization-maintained fiber amplifier and 300 watt level average power femtosecond polarization-maintained fiber amplifier. In addition, high power linearly polarized fiber lasers have been successfully applied in 5 kilowatt level coherent beam combining, structured light field and ultrasonic generation.

  12. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical...

  13. Passively Q-switched ytterbium- and chromium-doped all-fiber laser

    Czech Academy of Sciences Publication Activity Database

    Dussardier, B.; Maria, J.; Peterka, Pavel

    2011-01-01

    Roč. 50, č. 25 (2011), E20-E23 ISSN 0003-6935 R&D Projects: GA MŠk(CZ) ME10119 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical fiber * fiber lasers * fiber amplifiers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.703, year: 2010

  14. Advanced ultrafast fiber laser sources enabled by fiber nonlinearities

    International Nuclear Information System (INIS)

    Liu, Wei

    2017-05-01

    Development of high power/energy ultrafast fiber lasers for scientific research and industrial applications is one of the most exciting fields in ultrafast optics. This thesis demonstrated new means to improve two essential properties - which are indispensable for novel applications such as high-harmonic generation (HHG) and multiphoton microscopy (MPM) - of an ultrafast fiber laser system: energy scaling capability and wavelength tunability. High photon-flux extreme ultraviolet sources enabled by HHG desire high power (>100 W), high repetition-rate (>1 MHz) ultrafast driving laser sources. We have constructed from scratch a high-power Yb-fiber laser system using the well-known chirped-pulse amplification (CPA) technique. Such a CPA system capable of producing ∝200-W average power consists of a monolithic Yb-fiber oscillator, an all-fiber stretcher, a pre-amplifier chain, a main amplifier constructed from rode-type large pitch fiber, and a diffraction-grating based compressor. To increase the HHG efficiency, ultrafast pulses with duration 130-W average power. The amplified pulses are compressed to 60-fs pulses with 100-W average power, constituting a suitable HHG driving source. MPM is a powerful biomedical imaging tool, featuring larger penetration depth while providing the capability of optical sectioning. Although femtosecond solid-state lasers have been widely accepted as the standard option as MPM driving sources, fiber-based sources have received growing research efforts due to their superior performance. In the second part of this thesis, we both theoretically and experimentally demonstrated a new method of producing wavelength widely tunable femtosecond pulses for driving MPM. We employed self-phase modulation to broaden a narrowband spectrum followed by bandpass filters to select the rightmost/leftmost spectral lobes. Widely tunable in 820-1225 nm, the resulting sources generated nearly transform-limited, ∝100 fs pulses. Using short fibers with large

  15. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2003-01-01

    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. The amplifier is constructed in a fully differential topology to maximize noise rejection. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved....... A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...

  16. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  17. CMOS Current-mode Operational Amplifier

    OpenAIRE

    Kaulberg, Thomas

    1992-01-01

    A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-r...

  18. NIF/LMJ prototype amplifier mechanical design

    International Nuclear Information System (INIS)

    Horvath, J.

    1996-10-01

    Amplifier prototypes for the National Ignition Facility and the Laser Megajoule will be tested at Lawrence Livermore National Laboratory. The prototype amplifier, which is an ensemble of modules from LLNL and Centre d'Etudes de Limeil-Valenton, is cassette-based with bottom access for maintenance. A sealed maintenance transfer vehicle which moves optical cassettes between the amplifier and the assembly cleanroom, and a vacuum gripper which holds laser slabs during cassette assembly will also be tested. The prototype amplifier will be used to verify amplifier optical performance, thermal recovery time, and cleanliness of mechanical operations

  19. Photonic crystal rod fibers: Understanding a new class of active optical waveguides

    DEFF Research Database (Denmark)

    Laurila, Marko

    core modes and the cladding band as the underlying mechanics to ensure SM operation of the new rod fiber design (85 μm core diameter), which was developed during this thesis work. The second focus of this work is the study of the new ytterbiumdoped rod fiber design under active operation. Performance...... of the rod fiber is evaluated in high power laser and laser amplifier configurations. The high power rod amplifier setup including the seed source is developed and characterized. Results obtained from the rod fiber showed simultaneously SM, near diffraction limited output beam quality with high average power...... and pulse energy generation using both laser and laser amplifier configurations. Modal instabilities (MIs) in high power fiber amplifiers are discussed, and a memory effect of the MI threshold level together with a recovery method and evidence of improved performance while suppressing MIs are reported...

  20. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department