WorldWideScience

Sample records for er chaperone grp78

  1. Physical exercise alleviates ER stress in obese humans through reduction in the expression and release of GRP78 chaperone.

    Science.gov (United States)

    Khadir, Abdelkrim; Kavalakatt, Sina; Abubaker, Jehad; Cherian, Preethi; Madhu, Dhanya; Al-Khairi, Irina; Abu-Farha, Mohamed; Warsame, Samia; Elkum, Naser; Dehbi, Mohammed; Tiss, Ali

    2016-09-01

    Perturbation of the endoplasmic reticulum (ER) homeostasis has emerged as one of the prominent features of obesity and diabetes. This occurs when the adaptive unfolded protein response (UPR) fails to restore ER function in key metabolic tissues. We previously reported increased inflammation and impaired heat shock response (HSR) in obese human subjects that were restored by physical exercise. Here, we investigated the status of ER stress chaperone; glucose-regulated protein 78 (GRP78) and its downstream UPR pathways in human obese, and their modulation by a supervised 3-month physical exercise. Subcutaneous adipose tissue (SAT) and blood samples were collected from non-diabetic adult human lean (n=40) and obese (n=40, at baseline and after 3months of physical exercise). Transcriptomic profiling was used as a primary screen to identify differentially expressed genes and it was carried out on SAT samples using the UPR RT(2) Profiler PCR Array. Conventional RT-PCR, immunohistochemistry, immunofluorescence, Western blot and ELISA were used to validate the transcriptomic data. Correlation analyses with the physical, clinical and biochemical outcomes were performed using Pearson's rank correlation coefficient. Levels of GRP78 and its three downstream UPR arms; activating transcription factor-6 (ATF6), inositol-requiring enzyme-1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK) were increased in obese subjects. More interestingly, higher levels of circulating GRP78 protein were found in obese compared to lean subjects which correlated negatively with maximum oxygen uptake (VO2 Max) but positively with high-sensitivity C-reactive protein (hsCRP) and obesity indicators such as BMI, percentage body fat (PBF) and waist circumference. GRP78 increased secretion in obese was further confirmed in vitro using 3T3-L1 preadipocyte cells under ER stress. Finally, we showed that physical exercise significantly attenuated the expression and release of GRP78

  2. The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo.

    Science.gov (United States)

    Park, Kyung-Won; Eun Kim, Gyoung; Morales, Rodrigo; Moda, Fabio; Moreno-Gonzalez, Ines; Concha-Marambio, Luis; Lee, Amy S; Hetz, Claudio; Soto, Claudio

    2017-03-23

    Prion diseases are fatal neurodegenerative disorders affecting several mammalian species, characterized by the accumulation of the misfolded form of the prion protein, which is followed by the induction of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). GRP78, also called BiP, is a master regulator of the UPR, reducing ER stress levels and apoptosis due to an enhancement of the cellular folding capacity. Here, we studied the role of GRP78 in prion diseases using several in vivo and in vitro approaches. Our results show that a reduction in the expression of this molecular chaperone accelerates prion pathogenesis in vivo. In addition, we observed that prion replication in cell culture was inversely related to the levels of expression of GRP78 and that both proteins interact in the cellular context. Finally, incubation of PrP Sc with recombinant GRP78 led to the dose-dependent reduction of protease-resistant PrP Sc in vitro. Our results uncover a novel role of GRP78 in reducing prion pathogenesis, suggesting that modulating its levels/activity may offer a novel opportunity for designing therapeutic approaches for these diseases. These findings may also have implications for other diseases involving the accumulation of misfolded proteins.

  3. AAV delivery of GRP78/BiP promotes adaptation of human RPE cell to ER stress.

    Science.gov (United States)

    Ghaderi, Shima; Ahmadian, Shahin; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Samiei, Shahram; Kheitan, Samira; Pirmardan, Ehsan R

    2018-02-01

    Adeno associated virus (AAV)-mediated gene delivery of GRP78 (78 kDa glucose-regulated protein) attenuates the condition of endoplasmic reticulum (ER) stress and prevents apoptotic loss of photoreceptors in Retinitis pigmentosa (RP) rats. In the current study we overexpressed Grp78 with the help of AAV-2 in primary human retinal pigmented epithelium (hRPE) cell cultures and examined its effect on cell response to ER stress. The purpose of this work was studying potential stimulating effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress, as an in vitro model for RPE degeneration. To investigate the effect of Grp78 overexpression on unfolded protein response (UPR) markers under ER stress, hRPE primary cultures were transduced by recombinant virus rAAV/Grp78, and treated with ER stressor drug, tunicamycin. Expression changes of four UPR markers including GRP78, PERK, ATF6α, and GADD153/CHOP, were assessed by real-time PCR and western blotting. We found that GRP78 has a great contribution in modulation of UPR markers to favor adaptive response in ER-stressed hRPE cells. In fact, GRP78 overexpression affected adaptation and apoptotic phases of early UPR, through enhancement of two master regulators/ER stress sensors (PERK and ATF6α) and down-regulation of a key pro-apoptotic cascade activator (GADD153/CHOP). Together these findings demonstrate the promoting effect of GRP78 on adaptation/pro-survival of hRPE cells under ER stress. This protein with anti-apoptotic actions in the early UPR and important role in cell fate regulation, can be recruited as a useful candidate for future investigations of RPE degenerative diseases. © 2017 Wiley Periodicals, Inc.

  4. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.

    Science.gov (United States)

    Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing

    2017-07-01

    The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Endoplasmic reticulum (ER Chaperones and Oxidoreductases: Critical Regulators of Tumor Cell Survival and Immunorecognition

    Directory of Open Access Journals (Sweden)

    Thomas eSimmen

    2014-10-01

    Full Text Available Endoplasmic reticulum (ER chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed bulk flow, ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER. However, solid tumors are characterized by the increased production of reactive oxygen species (ROS, combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response (UPR upregulate ER chaperones and oxidoreductases. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the production of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an eat-me signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI, Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.

  6. Discovery of a novel target for the dysglycemic chromogranin A fragment pancreastatin: interaction with the chaperone GRP78 to influence metabolism.

    Directory of Open Access Journals (Sweden)

    Nilima Biswas

    Full Text Available RATIONALE: The chromogranin A-derived peptide pancreastatin (PST is a dysglycemic, counter-regulatory peptide for insulin action, especially in liver. Although previous evidence for a PST binding protein has been reported, such a receptor has not been identified or sequenced. METHODS AND RESULTS: We used ligand affinity to purify the PST target, with biotinylated human PST (hCHGA273-301-amide as "bait" and mouse liver homogenate as "prey", and identified GRP78 (a.k.a. "78 kDa Glucose Regulated Protein", HSPA5, BIP as a major interacting partner of PST. GRP78 belongs to the family of heat shock proteins (chaperones, involved in several cellular processes including protein folding and glucose metabolism. We analyzed expression of GRP78 in the absence of PST in a mouse knockout model lacking its precursor CHGA: hepatic transcriptome data revealed global over-expression of not only GRP78 but also other heat shock transcripts (of the "adaptive UPR" in CHGA(-/- mice compared to wild-type (+/+. By contrast, we found a global decline in expression of hepatic pro-apoptotic transcripts in CHGA(-/- mice. GRP78's ATPase enzymatic activity was dose-dependently inhibited by PST (IC50∼5.2 µM. PST also inhibited the up-regulation of GRP78 expression during UPR activation (by tunicamycin in hepatocytes. PST inhibited insulin-stimulated glucose uptake in adipocytes, and increased hepatic expression of G6Pase (the final step in gluconeogenesis/glycogenolysis. In hepatocytes not only PST but also other GRP78-ATPase inhibitors (VER-155008 or ADP increased G6Pase expression. GRP78 over-expression inhibited G6Pase expression in hepatocytes, with partial restoration by GRP78-ATPase inhibitors PST, VER-155008, or ADP. CONCLUSIONS: Our results indicate that an unexpected major hepatic target of PST is the adaptive UPR chaperone GRP78. PST not only binds to GRP78 (in pH-dependent fashion, but also inhibits GRP78's ATPase enzymatic activity, and impairs its biosynthetic

  7. Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells.

    Science.gov (United States)

    Nami, Babak; Ghasemi-Dizgah, Armin; Vaseghi, Akbar

    2016-01-01

    Breast cancer stem cell with CD44(hi)/CD24(lo) phonotype is described having stem cell properties and represented as the main driving factor in breast cancer initiation, growth, metastasis and low response to anti-cancer agents. Glucoseregulated proteins (GRPs) are heat shock protein family chaperons that are charged with regulation of protein machinery and modulation of endoplasmic reticulum homeostasis whose important roles in stem cell development and invasion of various cancers have been demonstrated. Here, we investigated the expression levels of GRP78 and GRP94 in CD44(hi)/CD24(lo) phenotype breast cancer stem cells (BCSCs). MCF7, T-47D and MDA-MB-231 breast cancer cell lines were used. CD44(hi)/CD24(lo) phenotype cell population were analyzed and sorted by fluorescence-activated cell sorting (FACS). Transcriptional and translational expression of GRP78 and GRP94 were investigated by western blotting and quantitative real time PCR. RESULTS showed different proportion of CD44(hi)/CD24(lo) phenotype cell population in their original bulk cells. The ranking of the cell lines in terms of CD44(hi)/CD24(lo) phenotype cell population was as MCF7hi)/CD24(lo) phenotype cells exhibited higher mRNA and protein expression level of GRP78 and GRP94 compared to their original bulk cells. Our results show a relationship between overexpression of GRP78 and GRP94 and exhibiting CD44hi/CD24lo phenotype in breast cancer cells. We conclude that upregulation of GRPs may be an important factor in the emergence of CD44hi/CD24lo phenotype BCSCs features.

  8. Role of prostate apoptosis response 4 in translocation of GRP78 from the endoplasmic reticulum to the cell surface of trophoblastic cells.

    Directory of Open Access Journals (Sweden)

    Marie Cohen

    Full Text Available Glucose-regulated protein 78 (GRP78 is an endoplasmic reticulum (ER molecular chaperone that belongs to the heat shock protein 70 family. GRP78 is also present on the cell surface membrane of trophoblastic cells, where it is associated with invasive or fusion properties of these cells. Impaired mechanism of GRP78 relocation from ER to the cell surface was observed in preeclamptic cytotrophoblastic cells (CTB and could take part in the pathogenesis of preeclampsia. In this study, we have investigated whether prostate apoptosis response 4 (Par-4, a protein identified as a partner of GRP78 relocation to the cell surface in prostate cancer cells, is present in trophoblastic cells and is involved in the translocation of GRP78 to the cell surface of CTB. Par-4 is indeed present in trophoblastic cells and its expression correlates with expression of membrane GRP78. Moreover, overexpression of Par-4 led to an increase of cell surface expression of GRP78 and decreased Par-4 gene expression reduced cell surface localization of GRP78 confirming a role of Par-4 in relocation of GRP78 from ER to the cell surface. Accordingly, invasive property was modified in these cells. In conclusion, we show that Par-4 is expressed in trophoblastic cells and is involved in transport of GRP78 to the cell surface and thus regulates invasive property of extravillous CTB.

  9. Induction of endoplasmic reticulum stress by deletion of Grp78 depletes Apc mutant intestinal epithelial stem cells.

    Science.gov (United States)

    van Lidth de Jeude, J F; Meijer, B J; Wielenga, M C B; Spaan, C N; Baan, B; Rosekrans, S L; Meisner, S; Shen, Y H; Lee, A S; Paton, J C; Paton, A W; Muncan, V; van den Brink, G R; Heijmans, J

    2017-06-15

    Intestinal epithelial stem cells are highly sensitive to differentiation induced by endoplasmic reticulum (ER) stress. Colorectal cancer develops from mutated intestinal epithelial stem cells. The most frequent initiating mutation occurs in Apc, which results in hyperactivated Wnt signalling. This causes hyperproliferation and reduced sensitivity to chemotherapy, but whether these mutated stem cells are sensitive to ER stress induced differentiation remains unknown. Here we examined this by generating mice in which both Apc and ER stress repressor chaperone Grp78 can be conditionally deleted from the intestinal epithelium. For molecular studies, we used intestinal organoids derived from these mice. Homozygous loss of Apc alone resulted in crypt elongation, activation of the Wnt signature and accumulation of intestinal epithelial stem cells, as expected. This phenotype was however completely rescued on activation of ER stress by additional deletion of Grp78. In these Apc-Grp78 double mutant animals, stem cells were rapidly lost and repopulation occurred by non-mutant cells that had escaped recombination, suggesting that Apc-Grp78 double mutant stem cells had lost self-renewal capacity. Although in Apc-Grp78 double mutant mice the Wnt signature was lost, these intestines exhibited ubiquitous epithelial presence of nuclear β-catenin. This suggests that ER stress interferes with Wnt signalling downstream of nuclear β-catenin. In conclusion, our findings indicate that ER stress signalling results in loss of Apc mutated intestinal epithelial stem cells by interference with the Wnt signature. In contrast to many known inhibitors of Wnt signalling, ER stress acts downstream of β-catenin. Therefore, ER stress poses a promising target in colorectal cancers, which develop as a result of Wnt activating mutations.

  10. Inhibition of casein kinase 2 modulates XBP1-GRP78 arm of unfolded protein responses in cultured glial cells.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available Stress signals cause abnormal proteins to accumulate in the endoplasmic reticulum (ER. Such stress is known as ER stress, which has been suggested to be involved in neurodegenerative diseases, diabetes, obesity and cancer. ER stress activates the unfolded protein response (UPR to reduce levels of abnormal proteins by inducing the production of chaperon proteins such as GRP78, and to attenuate translation through the phosphorylation of eIF2α. However, excessive stress leads to apoptosis by generating transcription factors such as CHOP. Casein kinase 2 (CK2 is a serine/threonine kinase involved in regulating neoplasia, cell survival and viral infections. In the present study, we investigated a possible linkage between CK2 and ER stress using mouse primary cultured glial cells. 4,5,6,7-tetrabromobenzotriazole (TBB, a CK2-specific inhibitor, attenuated ER stress-induced XBP-1 splicing and subsequent induction of GRP78 expression, but was ineffective against ER stress-induced eIF2α phosphorylation and CHOP expression. Similar results were obtained when endogenous CK2 expression was knocked-down by siRNA. Immunohistochemical analysis suggested that CK2 was present at the ER. These results indicate CK2 to be linked with UPR and to resist ER stress by activating the XBP-1-GRP78 arm of UPR.

  11. Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells

    International Nuclear Information System (INIS)

    Zhai Ling; Kita, Kazuko; Wano, Chieko; Wu Yuping; Sugaya, Shigeru; Suzuki, Nobuo

    2005-01-01

    In contrast to extensive studies on the roles of molecular chaperones, such as heat shock proteins, there are only a few reports about the roles of GRP78/BiP, an endoplasmic reticulum (ER) stress-induced molecular chaperone, in mammalian cell responses to DNA-damaging stresses. To investigate whether GRP78/BiP is involved in resistance to a DNA-damaging agent, UVC (principally 254 nm in wavelength), we established human cells with down-regulation of GRP78/BiP by transfection of human RSa cells with antisense cDNA for GRP78/BiP. We found that the transfected cells showed higher sensitivity to UVC-induced cell death than control cells transfected with the vector alone. In the antisense-cDNA transfected cells, the removal capacities of the two major types of UVC-damaged DNA (thymine dimers and (6-4) photoproducts) in vivo and DNA synthesis activity of whole cell extracts to repair UVC-irradiated plasmids in vitro were remarkably decreased compared with those in the control cells. Furthermore, the antisense-cDNA transfected cells also showed slightly higher sensitivity to cisplatin-induced cell death than the control cells. Cisplatin-induced DNA damage is primarily repaired by nucleotide excision repair, like UVC-induced DNA damage. The present results suggest that GRP78/BiP plays a protective role against UVC-induced cell death possibly via nucleotide excision repair, at least in the human RSa cells tested

  12. High Level Soluble Expression and ATPase Characterization of Human Heat Shock Protein GRP78.

    Science.gov (United States)

    Wu, Shuang; Zhang, Hongpeng; Luo, Miao; Chen, Ke; Yang, Wei; Bai, Lei; Huang, Ailong; Wang, Deqiang

    2017-02-01

    Human GRP78 has been shown to promote cancer progression and is regarded as a novel target for anticancer drugs. However, generation of recombinant full-length GRP78 remains challenging. This report demonstrates that E. coli autoinduction is an excellent method for the preparation of active recombinant GRP78 protein. The final yield was approximately 50 mg/liter of autoinduction culture. Gel-filtration experiments confirmed that the chaperone is a monomer. The purified human GRP78 catalyzed the conversion of ATP to ADP without requiring metal ions as cofactors. Three mutants, T38A, T229A, and S300A, exhibited much lower activity than wild-type GRP78, indicating that the active sites of the ATPase are located at the negatively charged cavity. Three mutants in the negatively charged cavity region dramatically reduced GRP78 activity, further confirming the region as the site of ATPase activity.

  13. Serum GRP78 as a Tumor Marker and Its Prognostic Significance in Non-Small Cell Lung Cancers: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    Xiao Ma

    2015-01-01

    Full Text Available Introduction. Glucose-regulated protein 78 (78 kDa, GRP78, which is also known as immunoglobulin heavy chain binding protein (BIP, is a major chaperone in the endoplasmic reticulum (ER. The expression and clinical significance of GRP78 in the serum of non-small cell lung cancer patients have not yet been clearly described. The aims of the present study were to investigate the expression of GRP78 in the serum of non-small cell lung cancer patients, the relationships with clinicopathological parameters, and the potential implications for survival. Patients and Methods. A total of 163 peripheral blood samples from non-small cell lung cancer patients were prospectively collected at the Department of Thoracic Surgery, Fudan University Shanghai Cancer, China. Clinical characteristics data, including age, gender, stage, overall survival (OS time, and relapse-free survival (RFS time, were also collected. Serum GRP78 levels were measured using a commercially available ELISA kit. The associations between GRP78 levels and clinicopathological characteristics and survival were examined using Student’s t-test, Kaplan-Meier, or Cox regression analyses. Results. The mean ± standard error (SE value of GRP78 was 326.5 ± 49.77 pg/mL. This level was significantly lower compared with the level in late-stage non-small cell lung cancer patients (1227 ± 223.6, p=0.0001. There were no significant correlations with the clinicopathological parameters. No significant difference was found between high GRP78 expression and low GRP78 expression with regard to RFS (p=0.1585. However, the OS of patients with higher GRP78 expression was significantly poorer (p=0.0334. Conclusions. GRP78 was expressed in non-small cell lung cancer patients and was highly enriched in late-stage lung cancer. GRP78 may have an important role in the carcinogenesis of non-small cell lung cancer and may be a prognostic marker for non-small cell lung cancer.

  14. Inhibition of GRP78 abrogates radioresistance in oropharyngeal carcinoma cells after EGFR inhibition by cetuximab.

    Directory of Open Access Journals (Sweden)

    Chaonan Sun

    Full Text Available The EGFR-specific mAb cetuximab is one of the most effective treatments for oropharyngeal carcinoma, while patient responses to EGFR inhibitors given alone are modest. Combination treatment with radiation can improve the efficacy of treatment through increasing radiosensitivity, while resistance to radiation after administration of cetuximab limits its efficiency. Radiation and drugs can damage the endoplasmic reticulum (ER homeostatic state and result in ER stress (ERS, subsequently causing resistance to radiation and drugs. Whether the ERS pathway is involved in radioresistance after administration of cetuximab has not been reported. Herein, we show that cetuximab could increase the radiosensitivity of FaDu cells but not Detroit562 cells. In addition, cetuximab inhibited the radiation-induced activation of the ERS signalling pathway IRE1α/ATF6-GRP78 in FaDu cells, while this effect was absent in Detroit562 cells. Silencing GRP78 increased the radiosensitivity of oropharyngeal carcinoma cells and inhibited radiation-induced DNA double-strand-break (DSB repair and autophagy. More interestingly, silencing GRP78 abrogated resistance to cetuximab and radiation in Detroit562 cells and had a synergistic effect with cetuximab in increasing the radiosensitivity of FaDu cells. Immunohistochemistry showed that overexpression of both GRP78 and EGFR was associated with a poor prognosis in oropharyngeal carcinoma patients (P<0.05. Overall, the results of this study show that radioresistance after EGFR inhibition by cetuximab is mediated by the ERS signalling pathway IRE1α/ATF6-GRP78. This suppression was consequently unable to inhibit radiation-induced DSB repair and autophagy in oropharyngeal carcinoma cells, which conferred resistance to radiotherapy and cetuximab. These results suggest that the cooperative effects of radiotherapy and cetuximab could be further improved by inhibiting GRP78 in non-responsive oropharyngeal carcinoma patients.

  15. Pharmacologic inhibition of S1P attenuates ATF6 expression, causes ER stress and contributes to apoptotic cell death.

    Science.gov (United States)

    Lebeau, Paul; Byun, Jae Hyun; Yousof, Tamana; Austin, Richard C

    2018-04-22

    Mammalian cells express unique transcription factors embedded in the endoplasmic reticulum (ER) membrane, such as the sterol regulatory element-binding proteins (SREBPs), that promote de novo lipogenesis. Upon their release from the ER, the SREBPs require proteolytic activation in the Golgi by site-1-protease (S1P). As such, inhibition of S1P, using compounds such as PF-429242 (PF), reduces cholesterol synthesis and may represent a new strategy for the management of dyslipidemia. In addition to the SREBPs, the unfolded protein response (UPR) transducer, known as the activating transcription factor 6 (ATF6), is another ER membrane-bound transcription factor that requires S1P-mediated activation. ATF6 regulates ER protein folding capacity by promoting the expression of ER chaperones such as the 78-kDa glucose-regulated protein (GRP78). ER-resident chaperones like GRP78 prevent and/or resolve ER polypeptide accumulation and subsequent ER stress-induced UPR activation by folding nascent polypeptides. Here we report that pharmacological inhibition of S1P reduced the expression of ATF6 and GRP78 and induced the activation of UPR transducers inositol-requiring enzyme-1α (IRE1α) and protein kinase RNA-like ER kinase (PERK). As a consequence, S1P inhibition also increased the susceptibility of cells to ER stress-induced cell death. Our findings suggest that S1P plays a crucial role in the regulation of ER folding capacity and also identifies a compensatory cross-talk between UPR transducers in order to maintain adequate ER chaperone expression and activity. Copyright © 2018. Published by Elsevier Inc.

  16. Binding to membrane proteins within the endoplasmic reticulum cannot explain the retention of the glucose-regulated protein GRP78 in Xenopus oocytes.

    Science.gov (United States)

    Ceriotti, A; Colman, A

    1988-03-01

    We have studied the compartmentation and movement of the rat 78-kd glucose-regulated protein (GRP78) and other secretory and membrane proteins in Xenopus oocytes. Full length GRP78, normally found in the lumen of rat endoplasmic reticulum (ER), is localized to a membraneous compartment in oocytes and is not secreted. A truncated GRP78 lacking the C-terminal (KDEL) ER retention signal is secreted, although at a slow rate. When the synthesis of radioactive GRP78 is confined to a polar (animal or vegetal) region of the oocyte and the subsequent movement across the oocyte monitored, we find that both full-length and truncated GRP78 move at similar rates and only slightly slower than a secretory protein, chick ovalbumin. In contrast, a plasma membrane protein (influenza haemagglutinin) and two ER membrane proteins (rotavirus VP10 and a mutant haemagglutinin) remained confined to their site of synthesis. We conclude that the retention of GRP78 in the ER is not due to its tight binding to a membrane-bound receptor.

  17. Expression and clinical significance of Glucose Regulated Proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus

    International Nuclear Information System (INIS)

    Langer, Rupert; Feith, Marcus; Siewert, Joerg Rüdiger; Wester, Hans-Juergen; Hoefler, Heinz

    2008-01-01

    Glucose regulated proteins (GRPs) are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett) adenocarcinomas (n = 137) and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G) and overall survival. GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm) as compared to more advanced stages (pT2 and pT3) and normal tissue (p = 0.031). Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035). In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07). GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038). For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001) and less lymph node involvement (p = 0.036). Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or pT1sm) or advanced (pT3) tumor stages and no

  18. Expression and clinical significance of Glucose Regulated Proteins GRP78 (BiP and GRP94 (GP96 in human adenocarcinomas of the esophagus

    Directory of Open Access Journals (Sweden)

    Wester Hans-Juergen

    2008-03-01

    Full Text Available Abstract Background Glucose regulated proteins (GRPs are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP and GRP94 (GP96 in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Methods Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett adenocarcinomas (n = 137 and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G and overall survival. Results GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm as compared to more advanced stages (pT2 and pT3 and normal tissue (p = 0.031. Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035. In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07. GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038. For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001 and less lymph node involvement (p = 0.036. Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or p

  19. Targeting HSP70 and GRP78 in canine osteosarcoma cells in combination with doxorubicin chemotherapy.

    Science.gov (United States)

    Asling, Jonathan; Morrison, Jodi; Mutsaers, Anthony J

    2016-11-01

    Heat shock proteins (HSPs) are molecular chaperones subdivided into several families based on their molecular weight. Due to their cytoprotective roles, these proteins may help protect cancer cells against chemotherapy-induced cell death. Investigation into the biologic activity of HSPs in a variety of cancers including primary bone tumors, such as osteosarcoma (OSA), is of great interest. Both human and canine OSA tumor samples have aberrant production of HSP70. This study assessed the response of canine OSA cells to inhibition of HSP70 and GRP78 by the ATP-mimetic VER-155008 and whether this treatment strategy could sensitize cells to doxorubicin chemotherapy. Single-agent VER-155008 treatment decreased cellular viability and clonogenic survival and increased apoptosis in canine OSA cell lines. However, combination schedules with doxorubicin after pretreatment with VER-155008 did not improve inhibition of cellular viability, apoptosis, or clonogenic survival. Treatment with VER-155008 prior to chemotherapy resulted in an upregulation of target proteins HSP70 and GRP78 in addition to the co-chaperone proteins Herp, C/EBP homologous transcription protein (CHOP), and BAG-1. The increased GRP78 was more cytoplasmic in location compared to untreated cells. Single-agent treatment also revealed a dose-dependent reduction in activated and total Akt. Based on these results, targeting GRP78 and HSP70 may have biologic activity in canine osteosarcoma. Further studies are required to determine if and how this strategy may impact the response of osteosarcoma cells to chemotherapy.

  20. Grp78 promotes the invasion of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Su, Rongjian; Li, Zhen; Li, Hongdan; Song, Huijuan; Bao, Cuifen; Wei, Jia; Cheng, Liufang

    2010-01-01

    Glucose regulated protein 78 (Grp78) is involved in the invasion and metastasis in many human cancers including gastric cancer, breast cancer, prostate cancer. But the role of Grp78 in the invasion of human hepatocellular carcinoma has not been reported. In this article, we examined if Grp78 was associated with the invasion of hepatocellular carcinoma and explored the possible underlying mechanism. The Grp78 and FAK expression levels in 44 patients with hepatocellular carcinoma were examined using immunohistochemistry. Grp78 overexpressing SMMC7721 cells were established by pcDNA3.1 (+)-Grp78 transfection and screened by G418. Grp78 and FAK levels in Grp78 overexpressing cells were down-regulated by siRNA transfection. The invasion status of tumor cells was evaluated by transwell assay in vitro, and chick embryo metastasis model in vivo. Cell spreading was determined by cell spreading assay, and quantitatively measured by Orisis software HUG. Grp78, pY397 FAK, pY576/577 FAK and FAK levels were detected by western blot. RhoA activity was detected by GST pulldown assay. The distribution of actin cytoskeleton was observed by fluorescent staining. Grp78 expression levels in 44 patients with hepatocellular carcinoma were negatively correlated with tumor grading, and positively correlated with portal invasion and intra-hepatic invasion. Overexpression of Grp78 in SMMC7721 cells promoted the invasion of cancer cells in vitro and in vivo, and this increase in tumor cell invasion was blocked by Grp78 siRNA knockdown. Our results also revealed that overexpression of Grp78 in SMMC7721 cells accelerated the process of cell spreading and promoted lamellipodia formation. Further analysis showed that overexpression of Grp78 in SMMC7721 cells increased pY397 and pY576/577 levels of FAK. Grp78 siRNA knockdown decreased FAK activation and activity. Our results also revealed that Grp78 overexpression in SMMC7721 cells decreased RhoA-GTP level, and Grp78 siRNA knockdown rescued Rho

  1. Grp78 promotes the invasion of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Li Hongdan

    2010-01-01

    Full Text Available Abstract Background Glucose regulated protein 78 (Grp78 is involved in the invasion and metastasis in many human cancers including gastric cancer, breast cancer, prostate cancer. But the role of Grp78 in the invasion of human hepatocellular carcinoma has not been reported. In this article, we examined if Grp78 was associated with the invasion of hepatocellular carcinoma and explored the possible underlying mechanism. Methods The Grp78 and FAK expression levels in 44 patients with hepatocellular carcinoma were examined using immunohistochemistry. Grp78 overexpressing SMMC7721 cells were established by pcDNA3.1 (+-Grp78 transfection and screened by G418. Grp78 and FAK levels in Grp78 overexpressing cells were down-regulated by siRNA transfection. The invasion status of tumor cells was evaluated by transwell assay in vitro, and chick embryo metastasis model in vivo. Cell spreading was determined by cell spreading assay, and quantitatively measured by Orisis software HUG. Grp78, pY397 FAK, pY576/577 FAK and FAK levels were detected by western blot. RhoA activity was detected by GST pulldown assay. The distribution of actin cytoskeleton was observed by fluorescent staining. Results Grp78 expression levels in 44 patients with hepatocellular carcinoma were negatively correlated with tumor grading, and positively correlated with portal invasion and intra-hepatic invasion. Overexpression of Grp78 in SMMC7721 cells promoted the invasion of cancer cells in vitro and in vivo, and this increase in tumor cell invasion was blocked by Grp78 siRNA knockdown. Our results also revealed that overexpression of Grp78 in SMMC7721 cells accelerated the process of cell spreading and promoted lamellipodia formation. Further analysis showed that overexpression of Grp78 in SMMC7721 cells increased pY397 and pY576/577 levels of FAK. Grp78 siRNA knockdown decreased FAK activation and activity. Our results also revealed that Grp78 overexpression in SMMC7721 cells decreased

  2. BAG3 sensitizes cancer cells exposed to DNA damaging agents via direct interaction with GRP78.

    Science.gov (United States)

    Kong, De-Hui; Zhang, Qiang; Meng, Xin; Zong, Zhi-Hong; Li, Chao; Liu, Bao-Qin; Guan, Yifu; Wang, Hua-Qin

    2013-12-01

    Bcl-2 associated athanogene 3 (BAG3) has a modular structure that contains a BAG domain, a WW domain, a proline-rich (PxxP) domain to mediate potential interactions with chaperons and other proteins that participate in more than one signal transduction. In search for novel interacting partners, the current study identified that 78kDa glucose-regulated protein (GRP78) was a novel partner interacting with BAG3. Interaction between GRP78 and BAG3 was confirmed by coimmunoprecipitation and glutathione S-transferase (GST) pulldown. We also identified that the ATPase domain of GRP78 and BAG domain of BAG3 mediated their interaction. Counterintuitive for a prosurvival protein, BAG3 was found to promote the cytotoxicity of breast cancer MCF7, thyroid cancer FRO and glioma U87 cells subjected to genotoxic stress. In addition, the current study demonstrated that BAG3 interfered with the formation of the antiapoptotic GRP78-procaspase-7 complex, which resulted in an increased genotoxic stress-induced cytotoxicity in cancer cells. Furthermore, overexpression of GRP78 significantly blocked the enhancing effects of BAG3 on activation of caspase-7 and induction of apoptosis by genotoxic stress. Overall, these results suggested that through direct interaction BAG3 could prevent the antiapoptotic effect of GRP78 upon genotoxic stress. © 2013.

  3. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Directory of Open Access Journals (Sweden)

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  4. Structure-activity relationship of piperine and its synthetic amide analogs for therapeutic potential to prevent experimentally induced ER stress in vitro.

    Science.gov (United States)

    Hammad, Ayat S; Ravindran, Sreenithya; Khalil, Ashraf; Munusamy, Shankar

    2017-05-01

    Endoplasmic reticulum (ER) is the key organelle involved in protein folding and maturation. Emerging studies implicate the role of ER stress in the development of chronic kidney disease. Thus, there is an urgent need for compounds that could ameliorate ER stress and prevent CKD. Piperine and its analogs have been reported to exhibit multiple pharmacological activities; however, their efficacy against ER stress in kidney cells has not been studied yet. Hence, the goal of this study was to synthesize amide-substituted piperine analogs and screen them for pharmacological activity to relieve ER stress using an in vitro model of tunicamycin-induced ER stress using normal rat kidney (NRK-52E) cells. Five amide-substituted piperine analogs were synthesized and their chemical structures were elucidated by pertinent spectroscopic techniques. An in vitro model of ER stress was developed using tunicamycin, and the compounds of interest were screened for their effect on cell viability, and the expression of ER chaperone GRP78, the pro-apoptotic ER stress marker CHOP, and apoptotic caspases 3 and 12 (via western blotting). Our findings indicate that exposure to tunicamycin (0.5 μg/mL) for 2 h induces the expression of GRP78 and CHOP, and apoptotic markers (caspase-3 and caspase-12) and causes a significant reduction in renal cell viability. Pre-treatment of cells with piperine and its cyclohexylamino analog decreased the tunicamycin-induced upregulation of GRP78 and CHOP and cell death. Taken together, our findings demonstrate that piperine and its analogs differentially regulate ER stress, and thus represent potential therapeutic agents to treat ER stress-related renal disorders. Graphical Abstract Piperine (PIP) reduces the expression of ER stress markers (GRP78 and CHOP) induced by pathologic stimuli and consequently decreases the activation of apoptotic caspase-12 and caspase-3; all of which contributes to its chemical chaperone and cytoprotective properties to protect

  5. Repositioning of Verrucosidin, a Purported Inhibitor of Chaperone Protein GRP78, as an Inhibitor of Mitochondrial Electron Transport Chain Complex I

    Science.gov (United States)

    Gonzalez, Reyna; Pao, Peng-Wen; Hofman, Florence M.; Chen, Thomas C.; Louie, Stan G.; Pirrung, Michael C.; Schönthal, Axel H.

    2013-01-01

    Verrucosidin (VCD) belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78) expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD’s anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose), but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin). However, VCD’s strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin) might act in a similar GRP78-independent fashion will be discussed. PMID:23755268

  6. Repositioning of Verrucosidin, a purported inhibitor of chaperone protein GRP78, as an inhibitor of mitochondrial electron transport chain complex I.

    Directory of Open Access Journals (Sweden)

    Simmy Thomas

    Full Text Available Verrucosidin (VCD belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78 expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD's anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose, but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin. However, VCD's strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin might act in a similar GRP78-independent fashion will be discussed.

  7. Exploring the Functional Complementation between Grp94 and Hsp90.

    Directory of Open Access Journals (Sweden)

    Kevin A Maharaj

    Full Text Available Grp94 and Hsp90 are the ER and cytoplasmic paralog members, respectively, of the hsp90 family of molecular chaperones. The structural and biochemical differences between Hsp90 and Grp94 that allow each paralog to efficiently chaperone its particular set of clients are poorly understood. The two paralogs exhibit a high degree of sequence similarity, yet also display significant differences in their quaternary conformations and ATPase activity. In order to identify the structural elements that distinguish Grp94 from Hsp90, we characterized the similarities and differences between the two proteins by testing the ability of Hsp90/Grp94 chimeras to functionally substitute for the wild-type chaperones in vivo. We show that the N-terminal domain or the combination of the second lobe of the Middle domain plus the C-terminal domain of Grp94 can functionally substitute for their yeast Hsp90 counterparts but that the equivalent Hsp90 domains cannot functionally replace their counterparts in Grp94. These results also identify the interface between the Middle and C-terminal domains as an important structural unit within the Hsp90 family.

  8. High expression of GRP78/BiP as a novel predictor of favorable outcomes in patients with advanced thymic carcinoma.

    Science.gov (United States)

    Miura, Yosuke; Kaira, Kyoichi; Sakurai, Reiko; Imai, Hisao; Tomizawa, Yoshio; Sunaga, Noriaki; Minato, Koichi; Hisada, Takeshi; Oyama, Tetsunari; Yamada, Masanobu

    2017-10-01

    Glucose-regulated protein (GRP) 78/immunoglobulin heavy chain binding protein (BiP) is a member of the endoplasmic reticulum chaperone family, and its role in various types of human malignancies has recently been investigated. However, the clinicopathological characteristics of GRP78/BiP in advanced thymic carcinoma (ATC) remain unknown. We aimed to examine the relationship between GRP78/BiP expression and the clinical outcomes of ATC patients. Thirty-four patients with ATC receiving combination chemotherapy at three institutions between April 1998 and April 2014 were enrolled in this study. We retrospectively collected patient characteristics such as therapeutic efficacy, pathological findings, and survival data from their medical records. We performed immunohistochemical analysis to evaluate the expression of GRP78/BiP in tumor specimens obtained from surgical resection or biopsy. This study included 21 men (68%) and 13 women (32%) with a median age of 62 years (range 36-75 years). GRP78/BiP overexpression was observed in 65% of the patients (22 of 34 patients). There was no correlation between GRP78/BiP expression and any patient characteristic. Patients with a high level of GRP78/BiP expression had significantly longer overall survival (OS) compared to those with a low level (46.2 vs. 16.8 months, p = 0.04). Multivariate analysis demonstrated that a high level of GRP78/BiP expression was an independent prognostic factor for prolonged OS. Our findings indicate that the overexpression of GRP78/BiP is a novel predictor of favorable outcomes in patients with ATC who receive combination chemotherapy.

  9. Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins.

    Directory of Open Access Journals (Sweden)

    Yiwen Xiang

    Full Text Available BACKGROUND: Lactic acid, a natural by-product of glycolysis, is produced at excess levels in response to impaired mitochondrial function, high-energy demand, and low oxygen availability. The enzyme involved in the production of β-amyloid peptide (Aβ of Alzheimer's disease, BACE1, functions optimally at lower pH, which led us to investigate a potential role of lactic acid in the processing of amyloid precursor protein (APP. METHODOLOGY/PRINCIPAL FINDINGS: Lactic acid increased levels of Aβ40 and 42, as measured by ELISA, in culture medium of human neuroblastoma cells (SH-SY5Y, whereas it decreased APP metabolites, such as sAPPα. In cell lysates, APP levels were increased and APP was found to interact with ER-chaperones in a perinuclear region, as determined by co-immunoprecipitation and fluorescence microscopy studies. Lactic acid had only a very modest effect on cellular pH, did increase the levels of ER chaperones Grp78 and Grp94 and led to APP aggregate formation reminiscent of aggresomes. CONCLUSIONS/SIGNIFICANCE: These findings suggest that sustained elevations in lactic acid levels could be a risk factor in amyloidogenesis related to Alzheimer's disease through enhanced APP interaction with ER chaperone proteins and aberrant APP processing leading to increased generation of amyloid peptides and APP aggregates.

  10. GRP-R expression in breast cancer as target for nuclear imaging and therapy, correlation with ER

    International Nuclear Information System (INIS)

    Dalm, S.U.; Melis, M.; Sieuwerts, A.M.; Martens, J.W.M.; Jong, M. de

    2015-01-01

    Full text of publication follows. Introduction: Breast cancer (BC) is a complex and heterogeneous disease: several molecular characteristics reflect subtypes, partly overlapping with therapeutic targets. Examples include the expression of the oestrogen receptor (ER), expressed in approximately 75 % of all breast cancer cases. Currently mammography, MRI, 99m Tc-Sestamibi scintigraphy, and 18 F-FDG PET are commonly used for diagnostic imaging to accurately localize BC. Since it has been reported that the gastrin releasing peptide receptor (GRP-R) is expressed in BC, targeting this receptor with radiolabeled GRP analogues might offer opportunities for SPECT/CT or PET/CT imaging as well as radionuclide therapy in BC. In this study GRP-R expression was determined in human BC specimens and BC cell lines and correlated with ER status. Methods: GRP-R mRNA levels of 90 human breast cancer specimens, with known ER status (48 ER-positive and 42 ER-negative) were determined using qRT-PCR in a Taqman Gene expression assay. Furthermore a panel of 21 BC cell lines characterized for ER expression (13 ER-positive, 8 ER-negative) was analysed for GRP-R expression at the protein level. Internalisation studies were performed with 10-9 M 111 In-AMBA (an receptor-agonist GRP analogue) for 1 hour and 15 minutes at 37 C. degrees. Thirteen of these BC cell lines were also analyzed for GRP-R expression at mRNA level using qRT-PCR. Results: Clinical BC specimens with high GRP-R mRNA level were all ER-positive, resulting in a significant positive correlation (p=0.03). Fifty-two percent of the analyzed BC cell lines showed the ability to internalize 111 In-AMBA, although high variation between cell lines was observed. GRP-R mRNA levels of the BC cell lines significantly correlated with the internalisation rate (p=0.0003), indicating that the amount of internalized 111 In-AMBA is partly determined by the level of receptor expression. However, no correlation was found between ER status and GRP

  11. Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells

    International Nuclear Information System (INIS)

    Wang, Yingyan; Wang, Wei; Wang, Siyan; Wang, Jiarui; Shao, Shujuan; Wang, Qi

    2008-01-01

    Chemotherapy resistance remains a major obstacle for the treatment of small cell lung cancer (SCLC). Glucose-regulated protein 78 (GRP78), an endoplasmic reticulum chaperone, plays a critical role in chemotherapy resistance in some cancers. However, whether the suppression of the chaperone can enhance the sensitivity of chemotherapy in SCLC is still unclear. The SCLC NCI-H446 cells were divided into three groups: BAPTA-AM→A23187-treated group, A23187-treated group and control-group. Immunofluorescence, western blot and RT-PCR were used to assess the expression of GRP78 at both protein and mRNA levels. Cell apoptosis and the cell cycle distributions of the cells were analyzed by flow cytometry in order to evaluate the therapeutic sensitivity to VP-16. The expression of GRP78 at both protein and mRNA levels in the BAPTA-AM→A23187-treated cells dramatically decreased as compared to that in both A23187-treated and control groups. After treatment by VP-16, the percentage of apoptotic cells in BAPTA-AM→A23187-treated cells were: 33.4 ± 1.01%, 48.2 ± 1.77%, 53.0 ± 1.43%, 56.5 ± 2.13%, respectively, corresponding to the concentrations of BAPTA-AM 10, 15, 25, 40 μM, which was statistically significant high in comparison with the A23187-treated group and untreated-group (7.18 ± 1.03% and 27.8 ± 1.45%, respectively, p < 0.05). The results from analysis of cell cycle distribution showed that there was a significantly decreased in G 1 phase and a dramatically increased in S phase for the BAPTA-AM→A23187-treated cells as compared with the untreated cells. BAPTA-AM is a strong inhibitor of GRP78 in the NCI-H446 cell line, the down-regulation of GRP78 can significantly increase the sensitivity to VP-16. The suppression of GRP78 may offer a new surrogated therapeutic approach to the clinical management of lung cancer

  12. Cell surface localization of the 78 kD glucose regulated protein (GRP 78) induced by thapsigargin.

    Science.gov (United States)

    Delpino, A; Piselli, P; Vismara, D; Vendetti, S; Colizzi, V

    1998-01-01

    In the present study it was found that the synthesis of the 78 kD glucose-regulated protein (GRP 78 or BIP) is vigorously induced in human rabdomiosarcoma cells (TE 671/RD) following both short-term (1 h) and prolonged (18 h) exposure to 100 nM thapsigargin (Tg). Flow cytometric analysis with a specific anti-GRP 78 polyclonal antibody showed that Tg-treated cells express the GRP 78 on the plasma membrane. Cell surface localization of the Tg-induced GRP 78 was confirmed by biotinylation of membrane-exposed proteins and subsequent isolation of the biotin-labelled proteins by streptavidin/agarose affinity chromatography. It was found that a fraction of the Tg-induced GRP 78 is present among the biotin-labelled, surface-exposed, proteins. Conversely, the GRP 78 immunoprecipitated from unfractionated lysates of Tg-treated and biotin-reacted cells was found to be biotinylated. This is the first report demonstrating surface expression of GRP 78 in cells exposed to a specific GRP 78-inducing stimulus.

  13. Questiomycin A stimulates sorafenib-induced cell death via suppression of glucose-regulated protein 78.

    Science.gov (United States)

    Machihara, Kayo; Tanaka, Hidenori; Hayashi, Yoshihiro; Murakami, Ichiro; Namba, Takushi

    2017-10-07

    Hepatocellular carcinoma (HCC) is one of the most difficult cancers to treat owing to the lack of effective chemotherapeutic methods. Sorafenib, the first-line and only available treatment for HCC, extends patient overall survival by several months, with a response rate below 10%. Thus, the identification of an agent that enhances the anticancer effect of sorafenib is critical for the development of therapeutic options for HCC. Endoplasmic reticulum (ER) stress response is one of the methods of sorafenib-induced cell death. Here we report that questiomycin A suppresses expression of GRP78, a cell-protective ER chaperone protein. Analysis of the molecular mechanisms of questiomycin A revealed that this compound stimulated GRP78 protein degradation in an ER stress response-independent manner. Cotreatment with sorafenib and questiomycin A suppressed GRP78 protein expression, which is essential for the stimulation of sorafenib-induced cell death. Moreover, our in vivo study demonstrated that the coadministration of sorafenib and questiomycin A suppressed tumor formation in HCC-induced xenograft models. These results suggest that cotreatment with sorafenib and questiomycin A is a novel therapeutic strategy for HCC by enhancing sorafenib-dependent ER stress-induced cell death, and downregulation of GRP78 is a new target for the stimulation of the therapeutic effects of sorafenib in HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Chemical chaperon 4-phenylbutyrate protects against the endoplasmic reticulum stress-mediated renal fibrosis in vivo and in vitro.

    Science.gov (United States)

    Liu, Shing-Hwa; Yang, Ching-Chin; Chan, Ding-Cheng; Wu, Cheng-Tien; Chen, Li-Ping; Huang, Jenq-Wen; Hung, Kuan-Yu; Chiang, Chih-Kang

    2016-04-19

    Renal tubulointerstitial fibrosis is the common and final pathologic change of kidney in end-stage renal disease. Interesting, endoplasmic reticulum (ER) stress is known to contribute to the pathophysiological mechanisms during the development of renal fibrosis. Here, we investigated the effects of chemical chaperon sodium 4-phenylbutyrate (4-PBA) on renal fibrosis in vivo and in vitro. In a rat unilateral ureteral obstruction (UUO) model, 4-PBA mimicked endogenous ER chaperon in the kidneys and significantly reduced glucose regulated protein 78 (GRP78), CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), activating transcription factor 4 (ATF4), and phosphorylated JNK protein expressions as well as restored spliced X-box-binding protein 1 (XBP1) expressions in the kidneys of UUO rats. 4-PBA also attenuated the increases of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) protein expressions, tubulointerstitial fibrosis, and apoptosis in the kidneys of UUO rats. Moreover, transforming growth factor (TGF)-β markedly increased ER stress-associated molecules, profibrotic factors, and apoptotic markers in the renal tubular cells (NRK-52E), all of which could be significantly counteracted by 4-PBA treatment. 4-PBA also diminished TGF-β-increased CTGF promoter activity and CTGF mRNA expression in NRK-52E cells. Taken together, our results indicated that 4-PBA acts as an ER chaperone to ameliorate ER stress-induced renal tubular cell apoptosis and renal fibrosis.

  15. Identification of anti-HBV activities in Paeonia suffruticosa Andr. using GRP78 as a drug target on Herbochip®.

    Science.gov (United States)

    Lam, Iao-Fai; Huang, Min; Chang, Margaret Dah-Tysr; Yao, Pei-Wun; Chou, Yu-Ting; Ng, Sim-Kun; Tsai, Ying-Lin; Lin, Yu-Chang; Zhang, Yun-Feng; Yang, Xiao-Yuan; Lai, Yiu-Kay

    2017-01-01

    Herbochip ® technology is a high throughput drug screening platform in a reverse screening manner, in which potential chemical leads in herbal extracts are immobilized and drug target proteins can be used as probes for screening process [BMC Complementary and Alternative Medicine (2015) 15:146]. While herbal medicines represent an ideal reservoir for drug screenings, here a molecular chaperone GRP78 is demonstrated to serve as a potential target for antiviral drug discovery. We cloned and expressed a truncated but fully functional form of human GRP78 (hGRP78 1-508 ) and used it as a probe for anti-HBV drug screening on herbochips. In vitro cytotoxicity and in vitro anti-HBV activity of the herbal extracts were evaluated by MTT and ELISA assays, respectively. Finally, anti-HBV activity was confirmed by in vivo assay using DHBV DNA levels in DHBV-infected ducklings as a model. Primary screenings using GRP78 on 40 herbochips revealed 11 positives. Four of the positives, namely Dioscorea bulbifera , Lasiosphaera fenzlii , Paeonia suffruticosa and Polygonum cuspidatum were subjected to subsequent assays. None of the above extracts was cytotoxic to AML12 cells, but P. cuspidatum extract (PCE) was found to be cytotoxic to HepG2 2.2.15 cells. Both PCE and P. suffruticosa extract (PSE) suppressed secretion of HBsAg and HBeAg in HepG2 2.2.15 cells. The anti-HBV activity of PSE was further confirmed in vivo. We have demonstrated that GRP78 is a valid probe for anti-HBV drug screening on herbochips. We have also shown that PSE, while being non-cytotoxic, possesses in vitro and in vivo anti-HBV activities. Taken together, our data suggest that PSE may be a potential anti-HBV agent for therapeutic use.

  16. Adenosine-derived inhibitors of 78 kDa glucose regulated protein (Grp78) ATPase: insights into isoform selectivity.

    Science.gov (United States)

    Macias, Alba T; Williamson, Douglas S; Allen, Nicola; Borgognoni, Jenifer; Clay, Alexandra; Daniels, Zoe; Dokurno, Pawel; Drysdale, Martin J; Francis, Geraint L; Graham, Christopher J; Howes, Rob; Matassova, Natalia; Murray, James B; Parsons, Rachel; Shaw, Terry; Surgenor, Allan E; Terry, Lindsey; Wang, Yikang; Wood, Mike; Massey, Andrew J

    2011-06-23

    78 kDa glucose-regulated protein (Grp78) is a heat shock protein (HSP) involved in protein folding that plays a role in cancer cell proliferation. Binding of adenosine-derived inhibitors to Grp78 was characterized by surface plasmon resonance and isothermal titration calorimetry. The most potent compounds were 13 (VER-155008) with K(D) = 80 nM and 14 with K(D) = 60 nM. X-ray crystal structures of Grp78 bound to ATP, ADPnP, and adenosine derivative 10 revealed differences in the binding site between Grp78 and homologous proteins.

  17. Secretion of the endoplasmic reticulum stress protein, GRP78, into the BALF is increased in cigarette smokers.

    Science.gov (United States)

    Aksoy, Mark O; Kim, Victor; Cornwell, William D; Rogers, Thomas J; Kosmider, Beata; Bahmed, Karim; Barrero, Carlos; Merali, Salim; Shetty, Neena; Kelsen, Steven G

    2017-05-02

    Identification of biomarkers of cigarette smoke -induced lung damage and early COPD is an area of intense interest. Glucose regulated protein of 78 kD (i.e., GRP78), a multi-functional protein which mediates cell responses to oxidant stress, is increased in the lungs of cigarette smokers and in the serum of subjects with COPD. We have suggested that secretion of GRP78 by lung cells may explain the increase in serum GRP78 in COPD. To assess GRP78 secretion by the lung, we assayed GRP78 in bronchoalveolar lavage fluid (BALF) in chronic smokers and non-smokers. We also directly assessed the acute effect of cigarette smoke material on GRP78 secretion in isolated human airway epithelial cells (HAEC). GRP78 was measured in BALF of smokers (S; n = 13) and non-smokers (NS; n = 11) by Western blotting. GRP78 secretion by HAEC was assessed by comparing its concentration in cell culture medium and cell lysates. Cells were treated for 24 h with either the volatile phase of cigarette smoke (cigarette smoke extract (CSE) or the particulate phase (cigarette smoke condensate (CSC)). GRP78 was present in the BALF of both NS and S but levels were significantly greater in S (p = 0.04). GRP78 was secreted constitutively in HAEC. CSE 15% X 24 h increased GRP78 in cell-conditioned medium without affecting its intracellular concentration. In contrast, CSC X 24 h increased intracellular GRP78 expression but did not affect GRP78 secretion. Brefeldin A, an inhibitor of classical Golgi secretion pathways, did not inhibit GRP78 secretion indicating that non-classical pathways were involved. The present study indicates that GRP78 is increased in BALF in cigarette smokers; that HAEC secrete GRP78; and that GRP78 secretion by HAEC is augmented by cigarette smoke particulates. Enhanced secretion of GRP78 by lung cells makes it a potential biomarker of cigarette smoke-induced lung injury.

  18. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction.

    Science.gov (United States)

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-05-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent.

  19. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction

    Science.gov (United States)

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-01-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent. PMID:24464222

  20. A Proteomic Screen Identified Stress-Induced Chaperone Proteins as Targets of Akt Phosphorylation in Mesangial Cells

    OpenAIRE

    Barati, Michelle T.; Rane, Madhavi J.; Klein, Jon B.; McLeish, Kenneth R.

    2006-01-01

    The serine-threonine kinase Akt regulates mesangial cell apoptosis, proliferation, and hypertrophy. To define Akt signaling pathways in mesangial cells, we performed a functional proteomic screen for rat mesangial cell proteins phosphorylated by Akt. A group of chaperone proteins, heat shock protein (Hsp) 70, Hsp90α, Hsp90β, Glucose-regulated protein (Grp) Grp78, Grp94, and protein disulfide isomerase (PDI) were identified as potential Akt substrates by two techniques: (a) in vitro phosphoryl...

  1. Continuous high expression of XBP1 and GRP78 is important for the survival of bone marrow cells in CCl4-treated cirrhotic liver

    International Nuclear Information System (INIS)

    Marumoto, Yoshio; Terai, Shuji; Urata, Yohei; Matsumoto, Toshihiko; Mizunaga, Yuko; Yamamoto, Naoki; Jin, Haiyan; Fujisawa, Koichi; Murata, Tomoaki; Shinoda, Koh; Nishina, Hiroshi; Sakaida, Isao

    2008-01-01

    We have previously shown that infusion of bone marrow cells (BMC) improves CCl 4 -induced cirrhosis. However, it is unclear why the injected BMC are resistant to CCl 4 damage and subsequently improve the local microenvironment in damaged liver. To analyze the cellular phenomena involved in this process, we studied the damaged liver using electron microscopy. We found that CCl 4 caused rough endoplasmic reticula to swell in hepatocytes. To analyze the gene expression patterns associated with this process, we conducted PCR-selected suppressive subtractive hybridization. We found that expression levels of HSP84, HSP40, and XBP1 differed markedly between control liver and liver infused with BMC. Immunohistochemical staining revealed that expression levels of HSP84 and HSP40 were markedly higher in the early phase of differentiation immediately after BMC infusion, but decreased over time. XBP1 expression remained high during the late phase, and GRP78 expression increased with XBP1 activation. We also found that GFP-positive BMC expressed XBP1 and GRP78. XBP1 and GRP78 are associated with ER stress. Thus, continuous high XBP1 and GRP78 expression might be essential for the survival and proliferation of BMC in a CCl 4 -induced persistent liver damage environment

  2. Anti-pancreatic cancer activity of ONC212 involves the unfolded protein response (UPR) and is reduced by IGF1-R and GRP78/BIP.

    Science.gov (United States)

    Lev, Avital; Lulla, Amriti R; Wagner, Jessica; Ralff, Marie D; Kiehl, Joshua B; Zhou, Yan; Benes, Cyril H; Prabhu, Varun V; Oster, Wolfgang; Astsaturov, Igor; Dicker, David T; El-Deiry, Wafik S

    2017-10-10

    Pancreatic cancer is chemo-resistant and metastasizes early with an overall five-year survival of ∼8.2%. First-in-class imipridone ONC201 is a small molecule in clinical trials with anti-cancer activity. ONC212, a fluorinated-ONC201 analogue, shows preclinical efficacy in melanoma and hepatocellular-cancer models. We investigated efficacy of ONC201 and ONC212 against pancreatic cancer cell lines ( N =16 including 9 PDX-cell lines). We demonstrate ONC212 efficacy in 4 in-vivo models including ONC201-resistant tumors. ONC212 is active in pancreatic cancer as single agent or in combination with 5-fluorouracil, irinotecan, oxaliplatin or RTK inhibitor crizotinib. Based on upregulation of pro-survival IGF1-R in some tumors, we found an active combination of ONC212 with inhibitor AG1024, including in vivo . We show a rationale for targeting pancreatic cancer using ONC212 combined with targeting the unfolded-protein response and ER chaperones such as GRP78/BIP. Our results lay the foundation to test imipridones, anti-cancer agents, in pancreatic cancer, that is refractory to most drugs.

  3. Avian reovirus S1133-induced apoptosis is associated with Bip/GRP79-mediated Bim translocation to the endoplasmic reticulum.

    Science.gov (United States)

    Lin, Ping-Yuan; Liu, Hung-Jen; Chang, Ching-Dong; Chen, Yo-Chia; Chang, Chi-I; Shih, Wen-Ling

    2015-04-01

    In this study the mechanism of avian reovirus (ARV) S1133-induced pathogenesis was investigated, with a focus on the contribution of ER stress to apoptosis. Our results showed that upregulation of the ER stress response protein, as well as caspase-3 activation, occurred in ARV S1133-infected cultured cells and in SPF White Leghorn chicks organs. Upon infection, Bim was translocated specifically to the ER, but not mitochondria, in the middle to late infectious stages. In addition, ARV S1133 induced JNK phosphorylation and promoted JNK-Bim complex formation, which correlated with the Bim translocation and apoptosis induction that was observed at the same time point. Knockdown of BiP/GRP78 by siRNA and inhibition of BiP/GRP78 using EGCG both abolished the formation of the JNK-Bim complex, caspase-3 activation, and subsequent apoptosis induction by ARV S1133 efficiently. These results suggest that BiP/GRP78 played critical roles and works upstream of JNK-Bim in response to the ARV S1133-mediated apoptosis process.

  4. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1α-GRP78-Akt Axis.

    Science.gov (United States)

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-06-21

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. Under hypoxia (2% O₂), the expression of GRP78 was significantly increased via hypoxia-inducible factor (HIF)-1α. Hypoxia-induced GRP78 promoted the proliferation and migration potential of MSCs through the HIF-1α-GRP78-Akt signal axis. In a murine hind-limb ischemia model, hypoxic preconditioning enhanced the survival and proliferation of transplanted MSCs through suppression of the cell death signal pathway and augmentation of angiogenic cytokine secretion. These effects were regulated by GRP78. Our findings indicate that hypoxic preconditioning promotes survival, proliferation, and angiogenic cytokine secretion of MSCs via the HIF-1α-GRP78-Akt signal pathway, suggesting that hypoxia-preconditioned MSCs might provide a therapeutic strategy for MSC-based therapies and that GRP78 represents a potential target for the development of functional MSCs.

  5. The rs391957 variant cis-regulating oncogene GRP78 expression contributes to the risk of hepatocellular carcinoma.

    Science.gov (United States)

    Zhu, Xiao; Zhang, Jinfang; Fan, Wenguo; Wang, Fang; Yao, Hong; Wang, Zifeng; Hou, Shengping; Tian, Yinghong; Fu, Weiming; Xie, Dan; Zhu, Wei; Long, Jun; Wu, Leijie; Zheng, Xuebao; Kung, Hsiangfu; Zhou, Keyuan; Lin, Marie C M; Luo, Hui; Li, Dongpei

    2013-06-01

    Glucose-regulated protein 78 (GRP78) is one of the most important responders to disease-related stress. We assessed the association of the promoter polymorphisms of GRP78 with risk of hepatocellular carcinoma (HCC) and GRP78 expression in a Chinese population. We examined 1007 patients undergoing diagnostic HCC and 810 unrelated healthy controls. Mechanisms by which the GRP78 promoter polymorphism modulates HCC risk and GRP78 levels were analyzed. The promoter haplotype and diplotype carrying rs391957 (-415bp) allele G and genotype GG was strongly associated with HCC risk. Luciferase reporter assays indicated that the promoter carrying rs391957 allele G (haplotype GCCd) showed increased activity in HepG2 cells and Hela cells. rs391957 was also shown to increase the affinity of the transcriptional activator Ets-2, the resistance to apoptosis, as well as cell instability in stressful microenvironment. Furthermore, compared with allele A, rs391957 allele G was associated with higher levels of GRP78 mRNA and protein in HCC tissues. These findings provided new insights into the pathogenesis of HCC and an unexpected effect of the interaction between rs391957 and Ets-2 on hepatocarcinogenesis, and especially supported the hypothesis that stress-related and evolutionarily conserved genetic variant(s) influencing transcriptional regulation could predict susceptibilities.

  6. The 78 kDa glucose-regulated protein (GRP78/BIP) is expressed on the cell membrane, is released into cell culture medium and is also present in human peripheral circulation.

    Science.gov (United States)

    Delpino, Andrea; Castelli, Mauro

    2002-01-01

    In human rabdomiosarcoma cells (TE671/RD) chronic exposure to 500 nM thapsigargin (a powerful inhibitor of the endoplasmic reticulum Ca2+-ATPases) resulted in the induction of the stress protein GRP78/BIP. Making use of the surface biotinylation method, followed by the isolation of the GRP78 using ATP-agarose affinity chromatography, it was found that a fraction of the thapsigargin-induced GRP78 is expressed on the cell surface. The presence of GRP78 on the membrane of thapsigargin-treated cells was confirmed by fractionation of cell lysates into a soluble and a membrane fraction, followed by Western blot analysis with an anti-GRP78 antibody. It was also found that conspicuous amounts of GRP78 are present in the culture medium collected from thapsigargin-treated cultures. This extracellular GRP78 originates mostly by an active release from intact cells and does not result solely from the leakage of proteins from dead cells. Moreover, small amounts of circulating, free GRP78 and naturally-occurring anti-GRP78 autoantibodies were detected in the peripheral circulation of healthy human individuals.

  7. GRP78 Protein Expression as Prognostic Values in Neoadjuvant Chemoradiotherapy and Laparoscopic Surgery for Locally Advanced Rectal Cancer.

    Science.gov (United States)

    Lee, Hee Yeon; Jung, Ji-Han; Cho, Hyun-Min; Kim, Sung Hwan; Lee, Kang-Moon; Kim, Hyung-Jin; Lee, Jong Hoon; Shim, Byoung Yong

    2015-10-01

    We investigated the relationships between biomarkers related to endoplasmic reticulum stress proteins (glucose-regulated protein of molecular mass 78 [GRP78] and Cripto-1 [teratocarcinoma-derived growth factor 1 protein]), pathologic response, and prognosis in locally advanced rectal cancer. All clinical stage II and III rectal cancer patients received 50.4 Gy over 5.5 weeks, plus 5-fluorouracil (400 mg/m(2)/day) and leucovorin (20 mg/m(2)/day) bolus on days 1 to 5 and 29 to 33, and surgery was performed at 7 to 10 weeks after completion of all therapies. Expression of GRP78 and Cripto-1 proteins was determined by immunohistochemistry and was assessed in 101 patients with rectal cancer treated with neoadjuvant chemoradiotherapy (CRT). High expression of GRP78 and Cripto-1 proteins was observed in 86 patients (85.1%) and 49 patients (48.5%), respectively. Low expression of GRP78 protein was associated with a significantly high rate of down staging (80.0% vs. 52.3%, respectively; p=0.046) and a significantly low rate of recurrence (0% vs. 33.7%, respectively; p=0.008) compared with high expression of GRP78 protein. Mean recurrence-free survival according to GRP78 expression could not be estimated because the low expression group did not develop recurrence events but showed a significant correlation with time to recurrence, based on the log rank method (p=0.007). GRP78 also showed correlation with overall survival, based on the log rank method (p=0.045). GRP78 expression is a predictive and prognostic factor for down staging, recurrence, and survival in rectal cancer patients treated with 5-fluorouracil and leucovorin neoadjuvant CRT.

  8. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda.

    Science.gov (United States)

    Zhang, Xiaoxue; Zhang, Rui; Yang, HuiOu; Xiang, Qian; Jiang, Qing; He, Qi; Zhang, Ting; Chen, Chen; Zhu, Huifen; Wang, Qiang; Ning, Qin; Li, Yiwu; Lei, Ping; Shen, Guanxin

    2016-07-25

    Cisplatin is a classical platinum-based chemotherapeutic drug used in the treatment of many cancer types, including hepatocellular carcinoma (HCC). The application of cisplatin is significantly limited by its toxicity, which may be affected by various biological factors. Persistence of Hepatitis B virus (HBV) infection leads to HCC development and may be associated with higher incidence of severe hepatitis during chemotherapy. However, whether HBV alters the susceptibility of hepatocytes to cisplatin remains poorly understood. Here, we demonstrate that HBV transfection enhanced cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 KDa (Grp78), a major stress-induced chaperone that localizes to the endoplasmic reticulum. Silencing Grp78 gene increased the susceptibility of HepG2 to cisplatin by activating caspase-3. Grp78 expression was down-regulated by HBV infection both in vitro and in liver tissues of patients. We compared the cisplatin sensitivity of hepatoma cells either expressing (HepG2.2.15 cells) or not expressing the entire Hepatitis B Virus genome (HepG2). HepG2.2.15 cells showed increased sensitivity to cisplatin and a higher apoptosis rate. Overexpression of Grp78 counteracted the increase of sensitivity of HepG2.215 cells to cisplatin. Furthermore, we found that HBV disrupted Grp78 synthesis in response to cisplatin stimulation, which may trigger severe and prolonged endoplasmic reticulum (ER) stress that can induce cellular apoptosis. Our findings provide new information into the effect of HBV in the modulation of Grp78 expression, and, consequently on cisplatin-induced hepatotoxicity during viral infection. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Isthmin is a novel vascular permeability inducer that functions through cell-surface GRP78-mediated Src activation.

    Science.gov (United States)

    Venugopal, Shruthi; Chen, Mo; Liao, Wupeng; Er, Shi Yin; Wong, Wai-Shiu Fred; Ge, Ruowen

    2015-07-01

    Isthmin (ISM) is a recently identified 60 kDa secreted angiogenesis inhibitor. Two cell-surface receptors for ISM have been defined, the high-affinity glucose-regulated protein 78 kDa (GRP78) and the low-affinity αvβ5 integrin. As αvβ5 integrin plays an important role in pulmonary vascular permeability (VP) and ISM is highly expressed in mouse lung, we sought to clarify the role of ISM in VP. Recombinant ISM (rISM) dose-dependently enhances endothelial monolayer permeability in vitro and local dermal VP when administered intradermally in mice. Systemic rISM administration through intravenous injection leads to profound lung vascular hyperpermeability but not in other organs. Mechanistic investigations using molecular, biochemical approaches and specific chemical inhibitors revealed that ISM-GRP78 interaction triggers a direct interaction between GRP78 and Src, leading to Src activation and subsequent phosphorylation of adherens junction proteins and loss of junctional proteins from inter-endothelial junctions, resulting in enhanced VP. Dynamic studies of Src activation, VP and apoptosis revealed that ISM induces VP directly via Src activation while apoptosis contributes indirectly only after prolonged treatment. Furthermore, ISM is significantly up-regulated in lipopolysaccharide (LPS)-treated mouse lung. Blocking cell-surface GRP78 by systemic infusion of anti-GRP78 antibody significantly attenuates pulmonary vascular hyperpermeability in LPS-induced acute lung injury (ALI) in mice. ISM is a novel VP inducer that functions through cell-surface GRP78-mediated Src activation as well as induction of apoptosis. It induces a direct GRP78-Src interaction, leading to cytoplasmic Src activation. ISM contributes to pulmonary vascular hyperpermeability of LPS-induced ALI in mice. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  10. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival.

    Directory of Open Access Journals (Sweden)

    Tomohisa Mori

    Full Text Available The membrane of the endoplasmic reticulum (ER of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.

  11. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival.

    Science.gov (United States)

    Mori, Tomohisa; Hayashi, Teruo; Hayashi, Eri; Su, Tsung-Ping

    2013-01-01

    The membrane of the endoplasmic reticulum (ER) of a cell forms contacts directly with mitochondria whereby the contact is referred to as the mitochondrion-associated ER membrane or the MAM. Here we found that the MAM regulates cellular survival via an MAM-residing ER chaperone the sigma-1 receptor (Sig-1R) in that the Sig-1R chaperones the ER stress sensor IRE1 to facilitate inter-organelle signaling for survival. IRE1 is found in this study to be enriched at the MAM in CHO cells. We found that IRE1 is stabilized at the MAM by Sig-1Rs when cells are under ER stress. Sig-1Rs stabilize IRE1 and thus allow for conformationally correct IRE1 to dimerize into the long-lasting, activated endonuclease. The IRE1 at the MAM also responds to reactive oxygen species derived from mitochondria. Therefore, the ER-mitochondrion interface serves as an important subcellular entity in the regulation of cellular survival by enhancing the stress-responding signaling between mitochondria, ER, and nucleus.

  12. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress.

    Science.gov (United States)

    Kim, Jinhwan; Choi, Tae Gyu; Ding, Yan; Kim, Yeonghwan; Ha, Kwon Soo; Lee, Kyung Ho; Kang, Insug; Ha, Joohun; Kaufman, Randal J; Lee, Jinhwa; Choe, Wonchae; Kim, Sung Soo

    2008-11-01

    Prolonged accumulation of misfolded proteins in the endoplasmic reticulum (ER) results in ER stress-mediated apoptosis. Cyclophilins are protein chaperones that accelerate the rate of protein folding through their peptidyl-prolyl cis-trans isomerase (PPIase) activity. In this study, we demonstrated that ER stress activates the expression of the ER-localized cyclophilin B (CypB) gene through a novel ER stress response element. Overexpression of wild-type CypB attenuated ER stress-induced cell death, whereas overexpression of an isomerase activity-defective mutant, CypB/R62A, not only increased Ca(2+) leakage from the ER and ROS generation, but also decreased mitochondrial membrane potential, resulting in cell death following exposure to ER stress-inducing agents. siRNA-mediated inhibition of CypB expression rendered cells more vulnerable to ER stress. Finally, CypB interacted with the ER stress-related chaperones, Bip and Grp94. Taken together, we concluded that CypB performs a crucial function in protecting cells against ER stress via its PPIase activity.

  13. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival.

    Science.gov (United States)

    Hayashi, Teruo; Su, Tsung-Ping

    2007-11-02

    Communication between the endoplasmic reticulum (ER) and mitochondrion is important for bioenergetics and cellular survival. The ER supplies Ca(2+) directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). We found here that the ER protein sigma-1 receptor (Sig-1R), which is implicated in neuroprotection, carcinogenesis, and neuroplasticity, is a Ca(2+)-sensitive and ligand-operated receptor chaperone at MAM. Normally, Sig-1Rs form a complex at MAM with another chaperone, BiP. Upon ER Ca(2+) depletion or via ligand stimulation, Sig-1Rs dissociate from BiP, leading to a prolonged Ca(2+) signaling into mitochondria via IP3Rs. Sig-1Rs can translocate under chronic ER stress. Increasing Sig-1Rs in cells counteracts ER stress response, whereas decreasing them enhances apoptosis. These results reveal that the orchestrated ER chaperone machinery at MAM, by sensing ER Ca(2+) concentrations, regulates ER-mitochondrial interorganellar Ca(2+) signaling and cell survival.

  14. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner.

    Directory of Open Access Journals (Sweden)

    Hong Wa Yung

    2011-03-01

    Full Text Available Endoplasmic reticulum (ER stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473 confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308. The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling.

  15. Regulation of AKT Phosphorylation at Ser473 and Thr308 by Endoplasmic Reticulum Stress Modulates Substrate Specificity in a Severity Dependent Manner

    Science.gov (United States)

    Yung, Hong Wa

    2011-01-01

    Endoplasmic reticulum (ER) stress is a common factor in the pathophysiology of diverse human diseases that are characterised by contrasting cellular behaviours, from proliferation in cancer to apoptosis in neurodegenerative disorders. Coincidently, dysregulation of AKT/PKB activity, which is the central regulator of cell growth, proliferation and survival, is often associated with the same diseases. Here, we demonstrate that ER stress modulates AKT substrate specificity in a severity-dependent manner, as shown by phospho-specific antibodies against known AKT targets. ER stress also reduces both total and phosphorylated AKT in a severity-dependent manner, without affecting activity of the upstream kinase PDK1. Normalisation to total AKT revealed that under ER stress phosphorylation of Thr308 is suppressed while that of Ser473 is increased. ER stress induces GRP78, and siRNA-mediated knock-down of GRP78 enhances phosphorylation at Ser473 by 3.6 fold, but not at Thr308. Substrate specificity is again altered. An in-situ proximity ligation assay revealed a physical interaction between GRP78 and AKT at the plasma membrane of cells following induction of ER stress. Staining was weak in cells with normal nuclear morphology but stronger in those displaying rounded, condensed nuclei. Co-immunoprecipitation of GRP78 and P-AKT(Ser473) confirmed the immuno-complex consists of non-phosphorylated AKT (Ser473 and Thr308). The interaction is likely specific as AKT did not bind to all molecular chaperones, and GRP78 did not bind to p70 S6 kinase. These findings provide one mechanistic explanation for how ER stress contributes to human pathologies demonstrating contrasting cell fates via modulation of AKT signalling. PMID:21445305

  16. The interplay between GRP78 expression and Akt activation in human colon cancer cells under celecoxib treatment.

    Science.gov (United States)

    Tian, Shaobo; Chang, Weilong; Du, Hansong; Bai, Jie; Sun, Zhenhai; Zhang, Qing; Wang, Hui; Zhu, Guangsheng; Tao, Kaixiong; Long, Yueping

    2015-10-01

    It has been reported previously that celecoxib shows antitumor effects in many types of cancers. Here, we detected its effects on DLD-1 and SW480 (two human colon cancer cell lines) and investigated the dynamic relationship between the 78-kDa glucose-regulatory protein (GRP78) and the phosphoinositide 3-kinase (PI3K)/Akt pathway. Gene expression was detected by real-time PCR and western blot analysis; the cytotoxicity was determined by the MTT assay and flow cytometry. First, the results showed that celecoxib induced cytotoxicity in a dose-dependent and time-dependent manner. Furthermore, we found the celecoxib-triggered unfolded protein response and the bidirectional regulation of Akt activation in both cell lines. Inhibiting the Akt activation by the PI3K inhibitor LY294002 markedly enhanced GRP78 expression. Besides, silencing the GRP78 expression regulated Akt activation in a time-dependent manner and increased the induction of the C/EBP homologous protein (CHOP) as well as considerably promoted celecoxib-induced apoptosis. In conclusion, these findings provide evidence that under the celecoxib treatment, GRP78 plays a protective role by modulating Akt activation and abrogating CHOP expression. However, Akt activation can provide a feedback loop to inhibit GRP78 expression. These studies can lead to novel therapeutic strategies for human colon cancer.

  17. Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis

    International Nuclear Information System (INIS)

    Bruchmann, Anja; Roller, Corinna; Walther, Tamara Vanessa; Schäfer, Georg; Lehmusvaara, Sara; Visakorpi, Tapio; Klocker, Helmut; Cato, Andrew C B; Maddalo, Danilo

    2013-01-01

    The Bag (Bcl-2 associated athanogene) family of proteins consists of 6 members sharing a common, single-copied Bag domain through which they interact with the molecular chaperone Hsp70. Bag5 represents an exception in the Bag family since it consists of 5 Bag domains covering the whole protein. Bag proteins like Bag1 and Bag3 have been implicated in tumor growth and survival but it is not known whether Bag5 also exhibits this function. Bag5 mRNA and protein expression levels were investigated in prostate cancer patient samples using real-time PCR and immunoblot analyses. In addition immunohistological studies were carried out to determine the expression of Bag5 in tissue arrays. Analysis of Bag5 gene expression was carried out using one-way ANOVA and Bonferroni’s Multiple Comparison test. The mean values of the Bag5 stained cells in the tissue array was analyzed by Mann-Whitney test. Functional studies of the role of Bag5 in prostate cancer cell lines was performed using overexpression and RNA interference analyses. Our results show that Bag5 is overexpressed in malignant prostate tissue compared to benign samples. In addition we could show that Bag5 levels are increased following endoplasmic reticulum (ER)-stress induction, and Bag5 relocates from the cytoplasm to the ER during this process. We also demonstrate that Bag5 interacts with the ER-resident chaperone GRP78/BiP and enhances its ATPase activity. Bag5 overexpression in 22Rv.1 prostate cancer cells inhibited ER-stress induced apoptosis in the unfolded protein response by suppressing PERK-eIF2-ATF4 activity while enhancing the IRE1-Xbp1 axis of this pathway. Cells expressing high levels of Bag5 showed reduced sensitivity to apoptosis induced by different agents while Bag5 downregulation resulted in increased stress-induced cell death. We have therefore shown that Bag5 is overexpressed in prostate cancer and plays a role in ER-stress induced apoptosis. Furthermore we have identified GRP78/BiP as a novel

  18. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice

    Science.gov (United States)

    Liu, Mingfu; Spellberg, Brad; Phan, Quynh T.; Fu, Yue; Fu, Yong; Lee, Amy S.; Edwards, John E.; Filler, Scott G.; Ibrahim, Ashraf S.

    2010-01-01

    Mucormycosis is a fungal infection of the sinuses, brain, or lungs that causes a mortality rate of at least 50% despite first-line therapy. Because angioinvasion is a hallmark of mucormycosis infections, we sought to define the endothelial cell receptor(s) for fungi of the order Mucorales (the fungi that cause mucormycosis). Furthermore, since patients with elevated available serum iron, including those with diabetic ketoacidosis (DKA), are uniquely susceptible to mucormycosis, we sought to define the role of iron and glucose in regulating the expression of such a receptor. Here, we have identified glucose-regulated protein 78 (GRP78) as what we believe to be a novel host receptor that mediates invasion and damage of human endothelial cells by Rhizopus oryzae, the most common etiologic species of Mucorales, but not Candida albicans or Aspergillus fumigatus. Elevated concentrations of glucose and iron, consistent with those seen during DKA, enhanced GRP78 expression and the resulting R. oryzae invasion and damage of endothelial cells in a receptor-dependent manner. Mice with DKA, which have enhanced susceptibility to mucormycosis, exhibited increased expression of GRP78 in sinus, lungs, and brain compared with normal mice. Finally, GRP78-specific immune serum protected mice with DKA from mucormycosis. These results suggest a unique susceptibility of patients with DKA to mucormycosis and provide a foundation for the development of new therapeutic interventions for these deadly infections. PMID:20484814

  19. The role of c-Src in the invasion and metastasis of hepatocellular carcinoma cells induced by association of cell surface GRP78 with activated α2M

    International Nuclear Information System (INIS)

    Zhao, Song; Li, Hongdan; Wang, Qingjun; Su, Chang; Wang, Guan; Song, Huijuan; Zhao, Liang; Luan, Zhidong; Su, Rongjian

    2015-01-01

    Emerging data have suggested that cell surface GRP78 is a multifunctional receptor and has been linked to proliferative and antiapoptotic signaling cascades. Activated α 2− macroglobin (α 2 M*) is a natural circulating ligand of cell surface GRP78. Association of cell surface GRP78 with α 2 M* is involved in the regulation of cell proliferation, survival and apoptosis in human cancers. The invasion and metastasis of HCC cells were examined using transwell and wound healing assay; Cell surface expression of GRP78 was detected by in cell western assay. Translocation of GRP78 from cytosol to cell surface was observed by transfection of GRP78-EGFP plus TRIRC-WGA staining. The levels of Src, phosphor-Src, FAK, phospho-FAK, EGFR, phospho-EGFR, phospho-Cortactin, phospho-Paxillin were determined by western blot. Cell surface expression of GRP78 in HCC tissue samples was observed by immunofluorescence. The distribution of Paxillin and Cortactin in HCC cells was also observed by immunofluorescence. The interaction between GRP78 and Src were detected by far-western blot, co-immunoprecipitation and GST pulldown. GRP78 mRNA was detected by RT-PCR. In the current study, we showed that association of cell surface GRP78 with α 2 M* stimulated the invasion and metastasis of HCC. Cell surface GRP78 could interact directly with c-Src, promoted the phosphorylation of c-Src at Y416. Inhibition of the tyrosine kinase activity of c-Src with PP2 reverted the stimulatory effect caused by association of cell surface GRP78 with α 2 M*. Moreover, association of cell surface GRP78 with α 2 M* facilitates the interaction between EGFR and c-Src and consequently phosphorylated EGFR at Y1101 and Y845, promoting the invasion and metastasis of HCCs. However, inhibition of the tyrosine kinase of c-Src do not affect the interaction between EGFR and Src. c-Src plays a critical role in the invasion and metastasis of HCC induced by association of cell surface GRP78 with α 2 M*. Cell surface GRP

  20. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsin deficiency.

    LENUS (Irish Health Repository)

    Kelly, Emer

    2009-06-19

    Z alpha(1)-antitrypsin (ZAAT) deficiency is a disease associated with emphysematous lung disease and also with liver disease. The liver disease of AAT deficiency is associated with endoplasmic reticulum (ER) stress. SEPS1 is a selenoprotein that, through a chaperone activity, decreases ER stress. To determine the effect of SEPS1 on ER stress in ZAAT deficiency, we measured activity of the grp78 promoter and levels of active ATF6 as markers of the unfolded protein response in HepG2 cells transfected with the mutant form of AAT, a ZAAT transgene. We evaluated levels of NFkappaB activity as a marker of the ER overload response. To determine the effect of selenium supplementation on the function of SEPS1, we investigated glutathione peroxidase activity, grp78 promoter activity, and NFkappaB activity in the presence or absence of selenium. SEPS1 reduced levels of active ATF6. Overexpression of SEPS1 also inhibited grp78 promoter and NFkappaB activity, and this effect was enhanced in the presence of selenium supplementation. This finding demonstrates a role for SEPS1 in ZAAT deficiency and suggests a possible therapeutic potential for selenium supplementation.

  1. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    International Nuclear Information System (INIS)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-01-01

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  2. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng, E-mail: zhouqs@suda.edu.cn

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  3. Sodium 4-phenylbutyrate prevents murine dietary steatohepatitis caused by trans-fatty acid plus fructose.

    Science.gov (United States)

    Morinaga, Maki; Kon, Kazuyoshi; Saito, Hiroaki; Arai, Kumiko; Kusama, Hiromi; Uchiyama, Akira; Yamashina, Shunhei; Ikejima, Kenichi; Watanabe, Sumio

    2015-11-01

    Excess consumption of trans-fatty acid could increase the risk of non-alcoholic steatohepatitis (NASH); however, treatment targeting trans-fatty acid-induced NASH has not been examined. Here we focused on the influence of trans-fatty acid intake on endoplasmic reticulum (ER) stress in hepatocytes, so we investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA), on trans-fatty acid-caused steatohepatitis using diabetic KK-A(y) mice. Elaidic acid (EA, trans-fatty acid) alone did not cause definitive liver injury. In contrast, EA plus low-dose fructose induced extensive apoptosis in hepatocytes with severe fat accumulation. EA plus fructose significantly increased ER stress markers such as glucose-regulated protein 78 (GRP78), eukaryotic initiation factor 2α (eIF2α) and phosphorylated c-jun N-terminal kinase (JNK), while PBA significantly reduced this response. In vitro, EA promoted expression of GRP78 and phosphorylation of eIF2α in primary-cultured hepatocytes. EA also increased hepatocellular susceptibility to low-dose tert-butyl hydroperoxide. Treatment with PBA significantly reduced these responses. In conclusion, EA potentiates susceptibly to non-hazardous dose of fructose, and increases ER and oxidative stress. PBA improved steatohepatitis induced by EA plus fructose through amelioration of ER stress. Therefore, ER stress-targeted therapy using a chemical chaperone is a promising novel strategy for trans-fatty acid-induced steatohepatitis.

  4. Elimination of head and neck cancer initiating cells through targeting glucose regulated protein78 signaling

    Directory of Open Access Journals (Sweden)

    Huang Chih-Yang

    2010-10-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC is a highly lethal cancer that contains cellular and functional heterogeneity. Previously, we enriched a subpopulation of highly tumorigenic head and neck cancer initiating cells (HN-CICs from HNSCC. However, the molecular mechanisms by which to govern the characteristics of HN-CICs remain unclear. GRP78, a stress-inducible endoplasmic reticulum chaperone, has been reported to play a crucial role in the maintenance of embryonic stem cells, but the role of GRP78 in CICs has not been elucidated. Results Initially, we recognized GRP78 as a putative candidate on mediating the stemness and tumorigenic properties of HN-CICs by differential systemic analyses. Subsequently, cells with GRP78 anchored at the plasma membrane (memGRP78+ exerted cancer stemness properties of self-renewal, differentiation and radioresistance. Of note, xenotransplantation assay indicated merely 100 memGRP78+ HNSCCs resulted in tumor growth. Moreover, knockdown of GRP78 significantly reduced the self-renewal ability, side population cells and expression of stemness genes, but inversely promoted cell differentiation and apoptosis in HN-CICs. Targeting GRP78 also lessened tumorigenicity of HN-CICs both in vitro and in vivo. Clinically, co-expression of GRP78 and Nanog predicted the worse survival prognosis of HNSCC patients by immunohistochemical analyses. Finally, depletion of GRP78 in HN-CICs induced the expression of Bax, Caspase 3, and PTEN. Conclusions In summary, memGRP78 should be a novel surface marker for isolation of HN-CICs, and targeting GRP78 signaling might be a potential therapeutic strategy for HNSCC through eliminating HN-CICs.

  5. Endoplasmic reticulum chaperone glucose regulated protein 170-Pokemon complexes elicit a robust antitumor immune response in vivo.

    Science.gov (United States)

    Yuan, Bangqing; Xian, Ronghua; Wu, Xianqu; Jing, Junjie; Chen, Kangning; Liu, Guojun; Zhou, Zhenhua

    2012-07-01

    Previous evidence suggested that the stress protein grp170 can function as a highly efficient molecular chaperone, binding to large protein substrates and acting as a potent vaccine against specific tumors when purified from the same tumor. In addition, Pokemon can be found in almost all malignant tumor cells and is regarded to be a promising candidate for the treatment of tumors. However, the potential of the grp170-Pokemon chaperone complex has not been well described. In the present study, the natural chaperone complex between grp170 and the Pokemon was formed by heat shock, and its immunogenicity was detected by ELISPOT and (51)Cr-release assays in vitro and by tumor bearing models in vivo. Our results demonstrated that the grp170-Pokemon chaperone complex could elicit T cell responses as determined by ELISPOT and (51)Cr-release assays. In addition, immunized C57BL/6 mice were challenged with subcutaneous (s.c.) injection of Lewis cancer cells to induce primary tumors. Treatment of mice with the grp170-Pokemon chaperone complex also significantly inhibited tumor growth and prolonged the life span of tumor-bearing mice. Our results indicated that the grp170-Pokemon chaperone complex might represent a powerful approach to tumor immunotherapy and have significant potential for clinical application. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. ER stress proteins in autoimmune and inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Daisuke eMorito

    2012-03-01

    Full Text Available Over the past two decades, heat shock proteins (HSPs have been implicated in inflammatory responses and autoimmunity. HSPs were originally believed to maintain protein quality control in the cytosol. However, they also exist extracellularly and appear to act as inflammatory factors. Recently, a growing body of evidence suggested that the other class of stress proteins such as, endoplasmic reticulum (ER stress proteins, which originally act as protein quality control factors in the secretory pathway and are induced by ER stress in inflammatory lesions, also participate in inflammation and autoimmunity. The immunoglobulin heavy-chain binding protein (Bip/glucose-regulated protein 78 (Grp78, homocysteine-induced ER protein (Herp, calnexin, calreticulin, glucose-regulated protein 94 (Grp94/gp96, oxygen-regulated protein 150 (ORP150 and heat shock protein 47 (Hsp47/Serpin H1, which are expressed not only in the ER but also occasionally at the cell surface play pathophysiological roles in autoimmune and inflammatory diseases as pro- or anti-inflammatory factors. Here we describe the accumulating evidence of the participation of ER stress proteins in autoimmunity and inflammation and discuss the critical differences between the two classes of stress proteins.

  7. A new polymorphism in the GRP78 is not associated with HBV invasion

    Science.gov (United States)

    Zhu, Xiao; Wang, Yi; Tao, Tao; Li, Dong-Pei; Lan, Fei-Fei; Zhu, Wei; Xie, Dan; Kung, Hsiang-Fu

    2009-01-01

    AIM: To examine the association between -86 bp (T > A) in the glucose-regulated protein 78 gene (GRP78) and hepatitis B virus (HBV) invasion. METHODS: DNA was genotyped for the single-nucleotide polymorphism by polymerase chain reaction followed by sequencing in a sample of 382 unrelated HBV carriers and a total of 350 sex- and age-matched healthy controls. Serological markers for HBV infection were determined by enzyme-linked immunosorbent assay kits or clinical chemistry testing. RESULTS: The distributions of allelotype and genotype in cases were not significantly different from those in controls. In addition, our findings suggested that neither alanine aminotransferase/hepatitis B e antigen nor HBV-DNA were associated with the allele/genotype variation in HBV infected individuals. CONCLUSION: -86 bp T > A polymorphism in GRP78 gene is not related to the clinical risk and acute exacerbation of HBV invasion. PMID:19842229

  8. Inhibitory Effects of Verrucarin A on Tunicamycin-Induced ER Stress in FaO Rat Liver Cells

    Directory of Open Access Journals (Sweden)

    Eun Young Bae

    2015-05-01

    Full Text Available Endoplasmic reticulum (ER stress is linked with development and maintenance of cancer, and serves as a therapeutic target for treatment of cancer. Verrucarin A, isolated from the broth of Fusarium sp. F060190, showed potential inhibitory activity on tunicamycin-induced ER stress in FaO rat liver cells. In addition, the compound decreased tunicamycin-induced GRP78 promoter activity in a dose dependent manner without inducing significant inhibition of luciferase activity and cell growth for 6 and 12 h. Moreover, the compound decreased the expression of GRP78, CHOP, XBP-1, and suppressed XBP-1, and reduced phosphorylation of IRE1α in FaO rat liver cells. This evidence suggests for the first time that verrucarin A inhibited tunicamycin-induced ER stress in FaO rat liver cells.

  9. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elżbieta Kania

    2015-01-01

    Full Text Available Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death.

  10. AR-12 suppresses dengue virus replication by down-regulation of PI3K/AKT and GRP78.

    Science.gov (United States)

    Chen, Hsin-Hsin; Chen, Chien-Chin; Lin, Yee-Shin; Chang, Po-Chun; Lu, Zi-Yi; Lin, Chiou-Feng; Chen, Chia-Ling; Chang, Chih-Peng

    2017-06-01

    Dengue virus (DENV) infection has become a public health issue of worldwide concern and is a serious health problem in Taiwan, yet there are no approved effective antiviral drugs to treat DENV. The replication of DENV requires both viral and cellular factors. Targeting host factors may provide a potential antiviral strategy. It has been known that up-regulation of PI3K/AKT signaling and GRP78 by DENV infection supports its replication. AR-12, a celecoxib derivative with no inhibiting activity on cyclooxygenase, shows potent inhibitory activities on both PI3K/AKT signaling and GRP78 expression levels, and recently has been found to block the replication of several hemorrhagic fever viruses. However the efficacy of AR-12 in treating DENV infection is still unclear. Here, we provide evidence to show that AR-12 is able to suppress DENV replication before or after virus infection in cell culture and mice. The antiviral activities of AR-12 are positive against infection of the four different DENV serotypes. AR-12 significantly down-regulates the PI3K/AKT activity and GRP78 expression in DENV infected cells whereas AKT and GRP78 rescue are able to attenuate anti-DENV effect of AR-12. Using a DENV-infected suckling mice model, we further demonstrate that treatment of AR-12 before or after DENV infection reduces virus replication and mice mortality. In conclusion, we uncover the potential efficacy of AR-12 as a novel drug for treating dengue. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish.

    Science.gov (United States)

    Ishikawa, Tokiro; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Todo, Takeshi; Kamei, Yasuhiro; Shigenobu, Shuji; Tanaka, Minoru; Saito, Taro L; Yoshimura, Jun; Morishita, Shinichi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Taniguchi, Yoshihito; Takeda, Shunichi; Mori, Kazutoshi

    2013-05-01

    ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra.

  12. Reversible thermal transition in GrpE, the nucleotide exchange factor of the DnaK heat-shock system.

    Science.gov (United States)

    Grimshaw, J P; Jelesarov, I; Schönfeld, H J; Christen, P

    2001-03-02

    DnaK, a Hsp70 acting in concert with its co-chaperones DnaJ and GrpE, is essential for Escherichia coli to survive environmental stress, including exposure to elevated temperatures. Here we explored the influence of temperature on the structure of the individual components and the functional properties of the chaperone system. GrpE undergoes extensive but fully reversible conformational changes in the physiologically relevant temperature range (transition midpoint at approximately 48 degrees C), as observed with both circular dichroism measurements and differential scanning calorimetry, whereas no thermal transitions occur in DnaK and DnaJ between 15 degrees C and 48 degrees C. The conformational changes in GrpE appear to be important in controlling the interconversion of T-state DnaK (ATP-liganded, low affinity for polypeptide substrates) and R-state DnaK (ADP-liganded, high affinity for polypeptide substrates). The rate of the T --> R conversion of DnaK due to DnaJ-triggered ATP hydrolysis follows an Arrhenius temperature dependence. In contrast, the rate of the R --> T conversion due to GrpE-catalyzed ADP/ATP exchange increases progressively less with increasing temperature and even decreases at temperatures above approximately 40 degrees C, indicating a temperature-dependent reversible inactivation of GrpE. At heat-shock temperatures, the reversible structural changes of GrpE thus shift DnaK toward its high-affinity R state.

  13. Purple perilla extracts allay ER stress in lipid-laden macrophages.

    Directory of Open Access Journals (Sweden)

    Sin-Hye Park

    Full Text Available There is a growing body of evidence that excess lipids, hypoxic stress and other inflammatory signals can stimulate endoplasmic reticulum (ER stress in metabolic diseases. However, the pathophysiological importance and the underlying mechanisms of this phenomenon remain unknown. The current study investigated that 50 ng/ml oxidized LDL promoted unfolded protein response (UPR and ER stress in J774A1 murine macrophages, which was blocked by extracts (PPE of purple Perilla frutescens, a plant of the mint family Lamiaceae. The ER stressor tunicamycin was employed as a positive control. Treating 1-10 µg/ml oxidized LDL for 24 h elicited lipotoxic apoptosis in macrophages with obvious nuclear condensation and DNA fragmentation, which was inhibited by PPE. Tunicamycin and oxidized LDL activated and induced the UPR components of activating transcription factor 6 and ER resident chaperone BiP/Grp78 in temporal manners and such effects were blocked by ≥5 µg/ml PPE. In addition, PPE suppressed the enhanced mRNA transcription and splicing of X-box binding protein 1 (XBP1 by tunicamycin and oxidized LDL. The protein induction and nuclear translocation of XBP1 were deterred in PPE-treated macrophages under ER stress. The induction of ATP-binding cassette transporter A1 (ABCA1, scavenger receptor-B1 (SR-B1 and intracellular adhesion molecule-1 (ICAM-1 was abolished by the ER stressor in activated macrophages. The protein induction of ABCA1 and ICAM1 but not SR-B1 was retrieved by adding 10 µg/ml PPE to cells. These results demonstrate that PPE inhibited lipotoxic apoptosis and demoted the induction and activation of UPR components in macrophages. PPE restored normal proteostasis in activated macrophages oxidized LDL. Therefore, PPE was a potent agent antagonizing macrophage ER stress due to lipotoxic signals associated with atherosclerosis.

  14. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

    Science.gov (United States)

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-06-08

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese.

  15. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    Science.gov (United States)

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  16. GRP94 Regulates Circulating Cholesterol Levels through Blockade of PCSK9-Induced LDLR Degradation

    Directory of Open Access Journals (Sweden)

    Steve Poirier

    2015-12-01

    Full Text Available Clearance of circulating low-density lipoprotein cholesterol (LDLc by hepatic LDL receptors (LDLR is central for vascular health. Secreted by hepatocytes, PCSK9 induces the degradation of LDLR, resulting in higher plasma LDLc levels. Still, it remains unknown why LDLR and PCSK9 co-exist within the secretory pathway of hepatocytes without leading to complete degradation of LDLR. Herein, we identified the ER-resident GRP94, and more precisely its client-binding C-terminal domain, as a PCSK9-LDLR inhibitory binding protein. Depletion of GRP94 did not affect calcium homeostasis, induce ER stress, nor did it alter PCSK9 processing or its secretion but greatly increased its capacity to induce LDLR degradation. Accordingly, we found that hepatocyte-specific Grp94-deficient mice have higher plasma LDLc levels correlated with ∼80% reduction in hepatic LDLR protein levels. Thus, we provide evidence that, in physiological conditions, binding of PCSK9 to GRP94 protects LDLR from degradation likely by preventing early binding of PCSK9 to LDLR within the ER.

  17. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan, E-mail: danw@bjmu.edu.cn [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Liu, Jing; Wu, Baiyan [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Tu, Bo; Zhu, Weiguo [Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Luo, Jianyuan, E-mail: jluo@som.umaryland.edu [Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191 (China); Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore 21201 (United States)

    2014-04-25

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  18. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    International Nuclear Information System (INIS)

    Wu, Dan; Liu, Jing; Wu, Baiyan; Tu, Bo; Zhu, Weiguo; Luo, Jianyuan

    2014-01-01

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration

  19. Hypoxic Preconditioning Promotes the Bioactivities of Mesenchymal Stem Cells via the HIF-1?-GRP78-Akt Axis

    OpenAIRE

    Lee, Jun Hee; Yoon, Yeo Min; Lee, Sang Hun

    2017-01-01

    Mesenchymal stem cells (MSC) are ideal materials for stem cell-based therapy. As MSCs reside in hypoxic microenvironments (low oxygen tension of 1% to 7%), several studies have focused on the beneficial effects of hypoxic preconditioning on MSC survival; however, the mechanisms underlying such effects remain unclear. This study aimed to uncover the potential mechanism involving 78-kDa glucose-regulated protein (GRP78) to explain the enhanced MSC bioactivity and survival in hindlimb ischemia. ...

  20. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo.

    Science.gov (United States)

    Wang, Bin; Lin, Lilu; Wang, Haidong; Guo, Honglei; Gu, Yong; Ding, Wei

    2016-10-25

    The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity.

  1. Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines

    Directory of Open Access Journals (Sweden)

    Michael William Graner

    2015-01-01

    Full Text Available The endoplasmic reticulum (ER is a major site of passage for proteins en route to other organelles, to the cell surface, and to the extracellular space. It is also the transport route for peptides generated in the cytosol by the proteasome into the ER for loading onto major histocompatibility complex class I (MHC I molecules for eventual antigen presentation at the cell surface. Chaperones within the ER are critical for many of these processes; however, outside the ER certain of those chaperones may play important and direct roles in immune responses. In some cases, particular ER chaperones have been utilized as vaccines against tumors or infectious disease pathogens when purified from tumor tissue or recombinantly generated and loaded with antigen. In other cases, the cell surface location of ER chaperones has implications for immune responses as well as possible tumor resistance. We have produced heat shock protein/chaperone protein-based cancer vaccines called CRCL (Chaperone-Rich Cell Lysate that are conglomerates of chaperones enriched from solid tumors by an isoelectric focusing technique. These preparations have been effective against numerous murine tumors, as well as in a canine with an advanced lung carcinoma treated with autologous CRCL. We also published extensive proteomic analyses of CRCL prepared from human surgically-resected tumor samples. Of note, these preparations contained at least ten ER chaperones and a number of other residents, along with many other chaperones/heat shock proteins. Gene ontology and network analyses utilizing these proteins essentially recapitulate the antigen presentation pathways and interconnections. In conjunction with our current knowledge of cell surface/extracellular ER chaperones, these data collectively suggest that a systems-level view may provide insight into the potent immune stimulatory activities of CRCL with an emphasis on the roles of ER components in those processes.

  2. Taurine Supplementation Alleviates Puromycin Aminonucleoside Damage by Modulating Endoplasmic Reticulum Stress and Mitochondrial-Related Apoptosis in Rat Kidney

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2018-05-01

    Full Text Available Taurine (TAU is a sulfur-containing beta amino acid that is not involved in protein composition and anabolism, conditionally essential in mammals provided through diet. Growing evidence supports a protective role of TAU supply in osmoregulation, calcium flux, and reduction of inflammation and oxidant damage in renal diseases like diabetes. Endoplasmic reticulum (ER stress, due to abnormal proteostasis, is a contributor to nephrotic syndrome and related renal damage. Here, we investigated the effect of dietary TAU (1.5% in drinking water for 15 days in an established rat model that mimics human minimal change nephrosis, consisting of a single puromycin aminonucleoside (PAN injection (intraperitoneally 15 mg/100 g body weight, with sacrifice after eight days. TAU limited proteinuria and podocytes foot processes effacement, and balanced slit diaphragm nephrin and glomerular claudin 1 expressions. In cortical proximal tubules, TAU improved lysosomal density, ER perimeter, restored proper ER-mitochondria tethering and mitochondrial cristae, and decreased inflammation. Remarkably, TAU downregulated glomerular ER stress markers (GRP78, GRP94, pro-apoptotic C/EBP homologous protein, activated caspase 3, tubular caspase1, and mitochondrial chaperone GRP75, but maintained anti-apoptotic HSP25. In conclusion, TAU, by targeting upstream ER stress separate from mitochondria dysfunctions at crucial renal sites, might be a promising dietary supplement in the treatment of the drug-resistant nephrotic syndrome.

  3. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  4. Valosin-Containing Protein/p97 as a Novel Therapeutic Target in Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Gabriele Gugliotta

    2017-10-01

    Full Text Available B acute lymphoblastic leukemia (B-ALL cells are distinctively vulnerable to endoplasmic reticulum (ER stress. Recently, inhibition of p97 was shown to induce ER stress and subsequently cell death in solid tumors and in multiple myeloma. We investigated the role of a novel, orally available, p97 inhibitor (CB-5083; Cleave Biosciences in B-ALL. CB-5083 induced a significant reduction in viability in 10 human B-ALL cell lines, harboring the most common fusion-genes involved in pediatric and adult B-ALL, with IC50s ranging from 0.34 to 0.76 μM. Moreover, CB-5083 significantly reduced the colony formation of OP1 and NALM6 cells. Early and strong induction of apoptosis was demonstrated in BALL1 and OP1 cells, together with a robust cleavage of PARP. CB-5083 induced ER stress, as documented through: 1 prominent expression of chaperones (GRP78, GRP94, PDI, DNAJC3, and DNAJB9; 2 increased activation of IRE1-alpha, as demonstrated by the splicing of XBP1; and 3 activation of PERK, which resulted in a significant overexpression of CHOP, and its downstream genes. CB-5083 reduced the viability also in GRP78−/−, GRP94−/−, and XBP1−/− cells, suggesting that none of these proteins alone was strictly required for CB-5083 activity. Moreover, we showed that the absence of XBP1 (XBP1−/− increased the sensitivity to CB-5083, leading to the hypothesis that XBP1 splicing counteracts the activity of CB-5083, probably mitigating ER stress. Finally, vincristine was synergistic with CB-5083 in both BALL1 and OP1 cells. In summary, the targeting of p97 with CB-5083 is a novel promising therapeutic approach that should be further evaluated in B-ALL.

  5. Anti-Fibrotic Effect of Losartan, an Angiotensin II Receptor Blocker, Is Mediated through Inhibition of ER Stress via Up-Regulation of SIRT1, Followed by Induction of HO-1 and Thioredoxin

    Directory of Open Access Journals (Sweden)

    Hyosang Kim

    2017-01-01

    Full Text Available Endoplasmic reticulum (ER stress is increasingly identified as modulator of fibrosis. Losartan, an angiotensin II receptor blocker, has been widely used as the first choice of treatment in chronic renal diseases. We postulated that anti-fibrotic effect of losartan is mediated through inhibition of ER stress via SIRT1 (silent mating type information regulation 2 homolog 1 hemeoxygenase-1 (HO-1/thioredoxin pathway. Renal tubular cells, tunicamycin (TM-induced ER stress, and unilateral ureteral obstruction (UUO mouse model were used. Expression of ER stress was assessed by Western blot analysis and immunohistochemical stain. ER stress was induced by chemical ER stress inducer, tunicamycin, and non-chemical inducers such as TGF-β, angiotensin II, high glucose, and albumin. Losartan suppressed the TM-induced ER stress, as shown by inhibition of TM-induced expression of GRP78 (glucose related protein 78 and p-eIF2α (phosphospecific-eukaryotic translation initiation factor-2α, through up-regulation of SIRT1 via HO-1 and thioredoxin. Losartan also suppressed the ER stress by non-chemical inducers. In both animal models, losartan reduced the tubular expression of GRP78, which were abolished by pretreatment with sirtinol (SIRT1 inhibitor. Sirtinol also blocked the inhibitory effect of losartan on the UUO-induced renal fibrosis. These findings provide new insights into renoprotective effects of losartan and suggest that SIRT1, HO-1, and thioredoxin may be potential pharmacological targets in kidney diseases under excessive ER stress condition.

  6. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress.

    Science.gov (United States)

    Xie, Wen-Yue; Zhou, Xiang-Dong; Li, Qi; Chen, Ling-Xiu; Ran, Dan-Hua

    2015-12-10

    An acidic tumor microenvironment exists widely in solid tumors. However, the detailed mechanism of cell survival under acidic stress remains unclear. The aim of this study is to clarify whether acid-induced autophagy exists and to determine the function and mechanism of autophagy in lung cancer cells. We have found that acute low pH stimulated autophagy by increasing LC3-positive punctate vesicles, increasing LC3 II expression levels and reducing p62 protein levels. Additionally, autophagy was inhibited by the addition of Baf or knockdown of Beclin 1, and cell apoptosis was increased markedly. In mouse tumors, the expression of cleaved caspase3 and p62 was enhanced by oral treatment with sodium bicarbonate, which can raise the intratumoral pH. Furthermore, the protein levels of ER stress markers, including p-PERK, p-eIF2α, CHOP, XBP-1s and GRP78, were also increased in response to acidic pH. The antioxidant NAC, which reduces ROS accumulation, alleviated acid-mediated ER stress and autophagy, and knocking down GRP78 reduced autophagy activation under acidic conditions, which suggests that autophagy was induced by acidic pH through ER stress. Taken together, these results indicate that the acidic microenvironment in non-small cell lung cancer cells promotes autophagy by increasing ROS-ER stress, which serves as a survival adaption in this setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Directory of Open Access Journals (Sweden)

    Rinki Minakshi

    2009-12-01

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  8. Urotensin II Induces ER Stress and EMT and Increase Extracellular Matrix Production in Renal Tubular Epithelial Cell in Early Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xin-Xin Pang

    2016-07-01

    Full Text Available Background/Aims: Urotensin II (UII and its receptor are highly expressed in the kidney tissue of patients with diabetic nephropathy (DN. The aim of this study is to examine the roles of UII in the induction of endoplasmic reticulum stress (ER stress and Epithelial-mesenchymal transition (EMT in DN in vivo and in vitro. Methods: Kidney tissues were collected from patients with DN. C57BL/6 mice and mice with UII receptor knock out were injected with two consecutive doses of streptozotocin to induce diabetes and were sacrificed at 3th week for in vivo study. HK-2 cells in vitro were cultured and treated with UII. Markers of ER stress and EMT, fibronectin and type IV collagen were detected by immunohistochemistry, real time PCR and western blot. Results: We found that the expressions of protein of UII, GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were upregulated while E-cadherin protein was downregulated as shown by immunohistochemistry or western blot analysis in kidney of diabetic mice in comparison to normal control; moreover expressions of GRP78, CHOP, ALPHA-SMA, fibronectin and type IV collagen were inhibited while E-caherin expression was enhanced in kidney in diabetic mice with UII receptor knock out in comparison to C57BL/6 diabetic mice. In HK-2 cells, UII induced upregulation of GRP78, CHOP, ALPHA-SMA, fibroblast-specifc protein 1(FSP-1, fibronectin and type collagen and downregulation of E-cadherin. UII receptor antagonist can block UII-induced ER stress and EMT; moreover, 4-PBA can inhibit the mRNA expression of ALPHA-SMA and FSP1 induced by UII in HK-2 cells. Conclusions: We are the first to verify UII induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice. Moreover, UII may induce renal tubular epithelial EMT via triggering ER stress pathway in vitro, which might be the new pathogenic pathway for the development of renal fibrosis in DN.

  9. Amelioration of Glucolipotoxicity-Induced Endoplasmic Reticulum Stress by a “Chemical Chaperone” in Human THP-1 Monocytes

    Directory of Open Access Journals (Sweden)

    Raji Lenin

    2012-01-01

    Full Text Available Chronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress. Therefore, the aims of this study are (a to investigate whether glucolipotoxicity could impose ER stress and apoptosis in THP-1 human monocytes and (b to investigate whether 4-Phenyl butyric acid (PBA, a chemical chaperone could resist the glucolipotoxicity-induced ER stress and apoptosis. Cells subjected to either glucolipotoxicity or tunicamycin exhibited increased ROS generation, gene and protein (PERK, GRP-78, IRE1α, and CHOP expression of ER stress markers. In addition, these cells showed increased TRPC-6 channel expression and apoptosis as revealed by DNA damage and increased caspase-3 activity. While glucolipotoxicity/tunicamycin increased oxidative stress, ER stress, mRNA expression of TRPC-6, and programmed the THP-1 monocytes towards apoptosis, all these molecular perturbations were resisted by PBA. Since ER stress is one of the underlying causes of monocyte dysfunction in diabetes and atherosclerosis, our study emphasize that chemical chaperones such as PBA could alleviate ER stress and have potential to become novel therapeutics.

  10. Second Generation Grp94-Selective Inhibitors Provide Opportunities for the Inhibition of Metastatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Vincent M. [Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Dr. Malott 4070 Lawrence KS 66045 USA; Huard, Dustin J. E. [School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Lieberman, Raquel L. [School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Blagg, Brian S. J. [Warren Family Research Center for Drug Discovery and Development, and Department of Chemistry & Biochemistry, University of Notre Dame, 305 McCourtney Hall Notre Dame IN 46556 USA

    2017-09-27

    Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum (ER) resident isoform of the 90 kDa heat shock protein (Hsp90) family and its inhibition represents a promising therapeutic target for the treatment of many diseases. Modification of the first generation cis-amide bioisostere imidazole to alter the angle between the resorcinol ring and the benzyl side chain via cis-amide replacements produced compounds with improved Grp94 affinity and selectivity. Structure–activity relationship studies led to the discovery of compound 30, which exhibits 540 nm affinity and 73-fold selectivity towards Grp94. Grp94 is responsible for the maturation and trafficking of proteins associated with cell signaling and motility, including select integrins. The Grp94-selective inhibitor 30 was shown to exhibit potent anti-migratory effects against multiple aggressive and metastatic cancers.

  11. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Marzec, Michal; Eletto, Davide; Argon, Yair

    2012-01-01

    Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94...

  12. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    Science.gov (United States)

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  13. Mammalian ECD Protein Is a Novel Negative Regulator of the PERK Arm of the Unfolded Protein Response.

    Science.gov (United States)

    Olou, Appolinaire A; Sarkar, Aniruddha; Bele, Aditya; Gurumurthy, C B; Mir, Riyaz A; Ammons, Shalis A; Mirza, Sameer; Saleem, Irfana; Urano, Fumihiko; Band, Hamid; Band, Vimla

    2017-09-15

    Mammalian Ecdysoneless (ECD) is a highly conserved ortholog of the Drosophila Ecd gene product whose mutations impair the synthesis of Ecdysone and produce cell-autonomous survival defects, but the mechanisms by which ECD functions are largely unknown. Here we present evidence that ECD regulates the endoplasmic reticulum (ER) stress response. ER stress induction led to a reduced ECD protein level, but this effect was not seen in PKR-like ER kinase knockout (PERK-KO) or phosphodeficient eukaryotic translation initiation factor 2α (eIF2α) mouse embryonic fibroblasts (MEFs); moreover, ECD mRNA levels were increased, suggesting impaired ECD translation as the mechanism for reduced protein levels. ECD colocalizes and coimmunoprecipitates with PERK and GRP78. ECD depletion increased the levels of both phospho-PERK (p-PERK) and p-eIF2α, and these effects were enhanced upon ER stress induction. Reciprocally, overexpression of ECD led to marked decreases in p-PERK, p-eIF2α, and ATF4 levels but robust increases in GRP78 protein levels. However, GRP78 mRNA levels were unchanged, suggesting a posttranscriptional event. Knockdown of GRP78 reversed the attenuating effect of ECD overexpression on PERK signaling. Significantly, overexpression of ECD provided a survival advantage to cells upon ER stress induction. Taken together, our data demonstrate that ECD promotes survival upon ER stress by increasing GRP78 protein levels to enhance the adaptive folding protein in the ER to attenuate PERK signaling. Copyright © 2017 Olou et al.

  14. Mapping the ER Interactome: The P Domains of Calnexin and Calreticulin as Plurivalent Adapters for Foldases and Chaperones.

    Science.gov (United States)

    Kozlov, Guennadi; Muñoz-Escobar, Juliana; Castro, Karla; Gehring, Kalle

    2017-09-05

    The lectin chaperones calreticulin (CRT) and calnexin (CNX) contribute to the folding of glycoproteins in the ER by recruiting foldases such as the protein disulfide isomerase ERp57 and the peptidyl prolyl cis-trans isomerase CypB. Recently, CRT was shown to interact with the chaperone ERp29. Here, we show that ERp29 directly binds to the P domain of CNX. Crystal structures of the D domain of ERp29 in complex with the P domains from CRT and calmegin, a tissue-specific CNX homolog, reveal a commonality in the mechanism of binding whereby the tip of the P domain functions as a plurivalent adapter to bind a variety of folding factors. We show that mutation of a single residue, D348 in CNX, abrogates binding to ERp29 as well as ERp57 and CypB. The structural diversity of the accessory factors suggests that these chaperones became specialized for glycoprotein folding through convergent evolution of their P-domain binding sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Residues Phe103 and Phe149 are critical for the co-chaperone activity of Bacillus licheniformis GrpE.

    Science.gov (United States)

    Lin, Min-Guan; Chi, Meng-Chun; Chen, Bo-En; Wang, Tzu-Fan; Lo, Huei-Fen; Lin, Long-Liu

    2015-01-01

    A tryptophan-free Bacillus licheniformis nucleotide exchange factor (BlGrpE) and its Trp mutants (F70W, F103W, F149W, F70/103W, F70/149W, F103/149W and F70/103/149W) were over-expressed and purified to near homogeneity. Simultaneous addition of B. licheniformis DnaJ, NR-peptide and individual variants synergistically stimulated the ATPase activity of a recombinant DnaK (BlDnaK) from the same bacterium by 3.1-14.7-fold, which are significantly lower than the synergistic stimulation (18.9-fold) of BlGrpE. Protein-protein interaction analysis revealed that Trp mutants relevant to amino acid positions 103 and 149 lost the ability to bind BlDnaK. Circular dichroism measurements indicate that F70W displayed a comparable level of secondary structure to that of BlGrpE, and the wild-type protein and the Trp mutants as well all experienced a reversible behavior of thermal denaturation. Guanidine hydrochloride (GdnHCl)-induced unfolding transition for BlGrpE was calculated to be 1.25 M corresponding to ΔG(N-U) of 4.29 kcal/mol, whereas the unfolding transitions of mutant proteins were in the range of 0.77-1.31 M equivalent to ΔG(N-U) of 2.41-4.14 kcal/mol. Taken together, the introduction of tryptophan residue, especially at positions 103 and 149, into the primary structure of BlGrpE has been proven to be detrimental to structural integrity and proper function of the protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The novel white spot syndrome virus-induced gene, PmERP15, encodes an ER stress-responsive protein in black tiger shrimp, Penaeus monodon.

    Science.gov (United States)

    Leu, Jiann-Horng; Liu, Kuan-Fu; Chen, Kuan-Yu; Chen, Shu-Hwa; Wang, Yu-Bin; Lin, Chung-Yen; Lo, Chu-Fang

    2015-04-01

    By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Svoboda, Kathy K. [Texas A and M University, Baylor College of Dentistry, Center for Craniofacial Research 3302 Gaston Ave, Dallas, Texas 75246 (United States); Casillas, Robert P. [MRIGlobal, 425 Volker Boulevard, Kansas City, MO 64110 (United States); Laskin, Jeffrey D. [UMDNJ-Robert Wood Johnson Medical School, Environmental and Occupational Medicine, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gordon, Marion K. [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Rutgers University, Pharmacology and Toxicology, 170 Frelinghuysen Rd, Piscataway, NJ 08854 (United States)

    2013-04-15

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.

  18. The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMA{sup III})-induced cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Naranmandura, Hua, E-mail: narenman@zju.edu.cn [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Xu, Shi [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Koike, Shota [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan); Pan, Li Qiang [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Bin [Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Wang, Yan Wei; Rehman, Kanwal; Wu, Bin [Department of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Chen, Zhe [Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou (China); Suzuki, Noriyuki, E-mail: n-suzuki@p.chiba-u.ac.jp [Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675 (Japan)

    2012-05-01

    The purpose of present study was to characterize the endoplasmic reticulum stress and generation of ROS in rat liver RLC-16 cells by exposing to trivalent dimethylarsinous acid (DMA{sup III}) and compared with that of trivalent arsenite (iAs{sup III}) and monomethylarsonous acid (MMA{sup III}). Protein kinase-like endoplasmic reticulum kinase (PERK) phosphorylation was significantly induced in cells exposed to DMA{sup III}, while there was no change in phosphorylated PERK (P-PERK) detected in cells after exposure to iAs{sup III} or MMA{sup III}. The generation of reactive oxygen species (ROS) after DMA{sup III} exposure was found to take place specifically in the endoplasmic reticulum (ER), while previous reports showed that ROS was generated in mitochondria following exposure to MMA{sup III}. Meanwhile, cycloheximide (CHX) which is an inhibitor of protein biosynthesis strongly inhibited the DMA{sup III}-induced intracellular ROS generation in the ER and the phosphorylation of PERK, suggesting the induction of ER stress probably occurs through the inhibition of the protein folding process. Activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) mRNA were induced by all three arsenic species, however, evidence suggested that they might be induced by different pathways in the case of iAs{sup III} and MMA{sup III}. In addition, ER resident molecular chaperone glucose-regulated protein78 (GRP78) was not affected by trivalent arsenicals, while it was induced in positive control only at high concentration (Thapsigargin;Tg), suggesting the GRP78 is less sensitive to low levels of ER stress. In summary, our findings demonstrate that the endoplasmic reticulum is a target organelle for DMA{sup III}-induced cytotoxicity. Highlights: ►ER is a target organelle for trivalent DMA{sup III}-induced cytotoxicity. ►Generation of ROS in ER can be induced specially by trivalent DMA{sup III}. ►ER-stress and generation of ROS are caused by the increase in

  19. Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1α.

    Science.gov (United States)

    Sepulveda, Denisse; Rojas-Rivera, Diego; Rodríguez, Diego A; Groenendyk, Jody; Köhler, Andres; Lebeaupin, Cynthia; Ito, Shinya; Urra, Hery; Carreras-Sureda, Amado; Hazari, Younis; Vasseur-Cognet, Mireille; Ali, Maruf M U; Chevet, Eric; Campos, Gisela; Godoy, Patricio; Vaisar, Tomas; Bailly-Maitre, Béatrice; Nagata, Kazuhiro; Michalak, Marek; Sierralta, Jimena; Hetz, Claudio

    2018-01-18

    Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    Science.gov (United States)

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  1. Protective effects of 4-phenylbutyrate derivatives on the neuronal cell death and endoplasmic reticulum stress.

    Science.gov (United States)

    Mimori, Seisuke; Okuma, Yasunobu; Kaneko, Masayuki; Kawada, Koichi; Hosoi, Toru; Ozawa, Koichiro; Nomura, Yasuyuki; Hamana, Hiroshi

    2012-01-01

    Endoplasmic reticulum (ER) stress responses play an important role in neurodegenerative diseases. Sodium 4-phenylbutyrate (4-PBA) is a terminal aromatic substituted fatty acid that has been used for the treatment of urea cycle disorders. 4-PBA possesses in vitro chemical chaperone activity and reduces the accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R), which is involved in autosomal recessive juvenile parkinsonism (AR-JP). In this study, we show that terminal aromatic substituted fatty acids, including 3-phenylpropionate (3-PPA), 4-PBA, 5-phenylvaleric acid, and 6-phenylhexanoic acid, prevented the aggregation of lactalbumin and bovine serum albumin. Aggregation inhibition increased relative to the number of carbons in the fatty acids. Moreover, these compounds protected cells against ER stress-induced neuronal cell death. The cytoprotective effect correlated with the in vitro chemical chaperone activity. Similarly, cell viability decreased on treatment with tunicamycin, an ER stress inducer, and was dependent on the number of carbons in the fatty acids. Moreover, the expression of glucose-regulated proteins 94 and 78 (GRP94, 78) decreased according to the number of carbons in the fatty acids. Furthermore, we investigated the effects of these compounds on the accumulation of Pael-R in neuroblastoma cells. 3-PPA and 4-PBA significantly suppressed neuronal cell death caused by ER stress induced by the overexpression of Pael-R. Overexpressed Pael-R accumulated in the ER of cells. With 3-PPA and 4-PBA treatment, the localization of the overexpressed Pael-R shifted away from the ER to the cytoplasmic membrane. These results suggest that terminal aromatic substituted fatty acids are potential candidates for the treatment of neurodegenerative diseases.

  2. Bipolar disorder: an update

    African Journals Online (AJOL)

    lifetime incidence), recurrent mood disorder, with strong genetic undertones ... self-esteem/grandiosity, significantly decreased need for sleep, racing speech .... chaperone protein, GRP 78.26 Valproate's effects on DNA histone acetylation may ...

  3. TSA protects H9c2 cells against thapsigargin-induced apoptosis related to endoplasmic reticulum stress-mediated mitochondrial injury.

    Science.gov (United States)

    Li, Zhiping; Liu, Yan; Dai, Xinlun; Zhou, Qiangqiang; Liu, Xueli; Li, Zeyu; Chen, Xia

    2017-05-01

    Endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. Recently, TSA has shown protective effects on ERS and its mechanisms related to ER pathway has been previously characterized. However, whether TSA exerts its protective role via metabolic events remain largely undefined. Objectives : To explore the possible involvement of the metabolic changes during ERS and to better understand how TSA influence mitochondrial function to facilitate cellular adaptation. Results : TSA is an inhibitor of histone deacetylase which could significantly inhibit H9c2 cell apoptosis induced by Thapsigargin (TG). It also intervene the decrease of mitochondrial membrane potential. By immunofluorescence staining, we have shown that GRP78 was concentrated in the perinuclear region and co-localized with ER. However, treatments with TG and TSA could let it overlap with the mitochondrial marker MitoTracker. Cellular fractionation also confirmed the location of GRP78 in mitochondrion. TSA decreases ERS-induced cell apoptosis and mitochondrial injury may related to enhance the location of GRP78 in mitochondrion.

  4. The ER stress sensor PERK luminal domain functions as a molecular chaperone to interact with misfolded proteins

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Li, Jingzhi; Sha, Bingdong

    2016-11-29

    PERK is one of the major sensor proteins which can detect the protein-folding imbalance generated by endoplasmic reticulum (ER) stress. It remains unclear how the sensor protein PERK is activated by ER stress. It has been demonstrated that the PERK luminal domain can recognize and selectively interact with misfolded proteins but not native proteins. Moreover, the PERK luminal domain may function as a molecular chaperone to directly bind to and suppress the aggregation of a number of misfolded model proteins. The data strongly support the hypothesis that the PERK luminal domain can interact directly with misfolded proteins to induce ER stress signaling. To illustrate the mechanism by which the PERK luminal domain interacts with misfolded proteins, the crystal structure of the human PERK luminal domain was determined to 3.2 Å resolution. Two dimers of the PERK luminal domain constitute a tetramer in the asymmetric unit. Superimposition of the PERK luminal domain molecules indicated that the β-sandwich domain could adopt multiple conformations. It is hypothesized that the PERK luminal domain may utilize its flexible β-sandwich domain to recognize and interact with a broad range of misfolded proteins.

  5. Mechanisms of ER Stress-Mediated Mitochondrial Membrane Permeabilization.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    During apoptosis, the process of mitochondrial outer membrane permeabilization (MOMP) represents a point-of-no-return as it commits the cell to death. Here we have assessed the role of caspases, Bcl-2 family members and the mitochondrial permeability transition pore on ER stress-induced MOMP and subsequent cell death. Induction of ER stress leads to upregulation of several genes such as Grp78, Edem1, Erp72, Atf4, Wars, Herp, p58ipk, and ERdj4 and leads to caspase activation, release of mitochondrial intermembrane proteins and dissipation of mitochondrial transmembrane potential (DeltaPsim). Mouse embryonic fibroblasts (MEFs) from caspase-9, -2 and, -3 knock-out mice were resistant to ER stress-induced apoptosis which correlated with decreased processing of pro-caspase-3 and -9. Furthermore, pretreatment of cells with caspase inhibitors (Boc-D.fmk and DEVD.fmk) attenuated ER stress-induced loss of DeltaPsim. However, only deficiency of caspase-9 and -2 could prevent ER stress-mediated loss of DeltaPsim. Bcl-2 overexpression or pretreatment of cells with the cell permeable BH4 domain (BH4-Tat) or the mitochondrial permeability transition pore inhibitors, bongkrekic acid or cyclosporine A, attenuated the ER stress-induced loss of DeltaPsim. These data suggest a role for caspase-9 and -2, Bcl-2 family members and the mitochondrial permeability transition pore in loss of mitochondrial membrane potential during ER stress-induced apoptosis.

  6. Brucella suis vaccine strain 2 induces endoplasmic reticulum stress that affects intracellular replication in goat trophoblast cells in vitro

    Directory of Open Access Journals (Sweden)

    Xiangguo eWang

    2016-02-01

    Full Text Available Brucella has been reported to impair placental trophoblasts, a cellular target where Brucella efficiently replicates in association with the endoplasmic reticulum (ER, and ultimately trigger abortion in pregnant animals. However, the precise effects of Brucella on trophoblast cells remain unclear. Here, we describe the infection and replication of Brucella suis vaccine strain 2 (B.suis.S2 in goat trophoblast cells (GTCs and the cellular and molecular responses induced in vitro. Our studies demonstrated that B.suis.S2 was able to infect and proliferate to high titers, hamper the proliferation of GTCs and induce apoptosis due to ER stress. Tunicamycin (Tm, a pharmacological chaperone that strongly mounts ER stress-induced apoptosis, inhibited B.suis.S2 replication in GTCs. In addition, 4 phenyl butyric acid (4-PBA, a pharmacological chaperone that alleviates ER stress-induced apoptosis, significantly enhanced B.suis.S2 replication in GTCs. The Unfolded Protein Response (UPR chaperone molecule GRP78 also promoted B.suis.S2 proliferation in GTCs by inhibiting ER stress-induced apoptosis. We also discovered that the IRE1 pathway, but not the PERK or ATF6 pathway, was activated in the process. However, decreasing the expression of phosphoIRE1α and IRE1α proteins with Irestatin 9389 (IRE1 antagonist in GTCs did not affect the proliferation of B.suis.S2. Although GTC implantation was not affected upon B.suis.S2 infection, progesterone secretion was suppressed, and prolactin and estrogen secretion increased; these effects were accompanied by changes in the expression of genes encoding key steroidogenic enzymes. This study systematically explored the mechanisms of abortion in Brucella infection from the viewpoint of pathogen invasion, ER stress and reproductive endocrinology. Our findings may provide new insight for understanding the mechanisms involved in goat abortions caused by Brucella infection.

  7. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  8. A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Christoph Schmal

    Full Text Available The circadian clock controls many physiological processes in higher plants and causes a large fraction of the genome to be expressed with a 24h rhythm. The transcripts encoding the RNA-binding proteins AtGRP7 (Arabidopsis thaliana Glycine Rich Protein 7 and AtGRP8 oscillate with evening peaks. The circadian clock components CCA1 and LHY negatively affect AtGRP7 expression at the level of transcription. AtGRP7 and AtGRP8, in turn, negatively auto-regulate and reciprocally cross-regulate post-transcriptionally: high protein levels promote the generation of an alternative splice form that is rapidly degraded. This clock-regulated feedback loop has been proposed to act as a molecular slave oscillator in clock output. While mathematical models describing the circadian core oscillator in Arabidopsis thaliana were introduced recently, we propose here the first model of a circadian slave oscillator. We define the slave oscillator in terms of ordinary differential equations and identify the model's parameters by an optimization procedure based on experimental results. The model successfully reproduces the pertinent experimental findings such as waveforms, phases, and half-lives of the time-dependent concentrations. Furthermore, we obtain insights into possible mechanisms underlying the observed experimental dynamics: the negative auto-regulation and reciprocal cross-regulation via alternative splicing could be responsible for the sharply peaking waveforms of the AtGRP7 and AtGRP8 mRNA. Moreover, our results suggest that the AtGRP8 transcript oscillations are subordinated to those of AtGRP7 due to a higher impact of AtGRP7 protein on alternative splicing of its own and of the AtGRP8 pre-mRNA compared to the impact of AtGRP8 protein. Importantly, a bifurcation analysis provides theoretical evidence that the slave oscillator could be a toggle switch, arising from the reciprocal cross-regulation at the post-transcriptional level. In view of this

  9. Unfolded protein response and activated degradative pathways regulation in GNE myopathy.

    Directory of Open Access Journals (Sweden)

    Honghao Li

    Full Text Available Although intracellular beta amyloid (Aβ accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP deposition including unfolded protein response (UPR, ubiquitin proteasome system (UPS activation and its correlation with autophagy system. Eight GNE myopathy patients and five individuals with normal muscle morphology were included in this study. We performed immunofluorescence and immunoblotting to investigate the expression of AβPP, phosphorylated tau (p-tau and endoplasmic reticulum molecular chaperones. Proteasome activities were measured by cleavage of fluorogenic substrates. The expression of proteasome subunits and linkers between proteasomal and autophagy systems were also evaluated by immunoblotting and relative quantitative real-time RT-PCR. Four molecular chaperones, glucose-regulated protein 94 (GRP94, glucose-regulated protein 78 (GRP78, calreticulin and calnexin and valosin containing protein (VCP were highly expressed in GNE myopathy. 20S proteasome subunits, three main proteasome proteolytic activities, and the factors linking UPS and autophagy system were also increased. Our study suggests that AβPP deposition results in endoplasmic reticulum stress (ERS and highly expressed VCP deliver unfolded proteins from endoplasmic reticulum to proteosomal system which is activated in endoplasmic reticulum associated degradation (ERAD in GNE myopathy. Excessive ubiquitinated unfolded proteins are exported by proteins that connect UPS and autophagy to autophagy system, which is activated as an alternative pathway for degradation.

  10. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases.

    Science.gov (United States)

    Martin-Jiménez, Cynthia A; García-Vega, Ángela; Cabezas, Ricardo; Aliev, Gjumrakch; Echeverria, Valentina; González, Janneth; Barreto, George E

    2017-11-01

    Endoplasmic reticulum (ER) is a subcellular organelle involved in protein folding and processing. ER stress constitutes a cellular process characterized by accumulation of misfolded proteins, impaired lipid metabolism and induction of inflammatory responses. ER stress has been suggested to be involved in several human pathologies, including neurodegenerative diseases and obesity. Different studies have shown that both neurodegenerative diseases and obesity trigger similar cellular responses to ER stress. Moreover, both diseases are assessed in astrocytes as evidences suggest these cells as key regulators of brain homeostasis. However, the exact contributions to the effects of ER stress in astrocytes in the various neurodegenerative diseases and its relation with obesity are not well known. Here, we discuss recent advances in the understanding of molecular mechanisms that regulate ER stress-related disorders in astrocytes such as obesity and neurodegeneration. Moreover, we outline the correlation between the activated proteins of the unfolded protein response (UPR) in these pathological conditions in order to identify possible therapeutic targets for ER stress in astrocytes. We show that ER stress in astrocytes shares UPR activation pathways during both obesity and neurodegenerative diseases, demonstrating that UPR related proteins like ER chaperone GRP 78/Bip, PERK pathway and other exogenous molecules ameliorate UPR response and promote neuroprotection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Activation of the Unfolded Protein Response Contributes toward the Antitumor Activity of Vorinostat

    Directory of Open Access Journals (Sweden)

    Soumen Kahali

    2010-01-01

    Full Text Available Histone deacetylase (HDAC inhibitors represent an emerging class of anticancer agents progressing through clinical trials. Although their primary target is thought to involve acetylation of core histones, several nonhistone substrates have been identified, including heat shock protein (HSP 90, which may contribute towards their antitumor activity. Glucose-regulated protein 78 (GRP78 is a member of the HSP family of molecular chaperones and plays a central role in regulating the unfolded protein response (UPR. Emerging data suggest that GRP78 is critical in cellular adaptation and survival associated with oncogenesis and may serve as a cancer-specific therapeutic target. On the basis of shared homology with HSP family proteins, we sought to determine whether GRP78 could serve as a molecular target of the HDAC inhibitor vorinostat. Vorinostat treatment led to GRP78 acetylation, dissociation, and subsequent activation of its client protein double-stranded RNA-activated protein-like endoplasmic reticulum kinase (PERK. Investigations in a panel of cancer cell lines identified that UPR activation after vorinostat exposure is specific to certain lines. Mass spectrometry performed on immunoprecipitated GRP78 identified lysine-585 as a specific vorinostat-induced acetylation site of GRP78. Downstream activation of the UPR was confirmed, including eukaryotic initiating factor 2α phosphorylation and increase in ATF4 and C/EBP homologous protein expression. To determine the biologic relevance of UPR activation after vorinostat, RNA interference of PERK was performed, demonstrating significantly decreased sensitivity to vorinostat-induced cytotoxicity. Collectively, these findings indicate that GRP78 is a biologic target of vorinostat, and activation of the UPR through PERK phosphorylation contributes toward its antitumor activity.

  12. Naphthoquinone Derivative PPE8 Induces Endoplasmic Reticulum Stress in p53 Null H1299 Cells

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Lien

    2015-01-01

    Full Text Available Endoplasmic reticulum (ER plays a key role in synthesizing secretory proteins and sensing signal function in eukaryotic cells. Responding to calcium disturbance, oxidation state change, or pharmacological agents, ER transmembrane protein, inositol-regulating enzyme 1 (IRE1, senses the stress and triggers downstream signals. Glucose-regulated protein 78 (GRP78 dissociates from IRE1 to assist protein folding and guard against cell death. In prolonged ER stress, IRE1 recruits and activates apoptosis signal-regulating kinase 1 (ASK1 as well as downstream JNK for cell death. Naphthoquinones are widespread natural phenolic compounds. Vitamin K3, a derivative of naphthoquinone, inhibits variant tumor cell growth via oxygen uptake and oxygen stress. We synthesized a novel naphthoquinone derivative PPE8 and evaluated capacity to induce ER stress in p53 null H1299 and p53 wild-type A549 cells. In H1299 cells, PPE8 induced ER enlargement, GRP78 expression, and transient IER1 activation. Activated IRE1 recruited ASK1 for downstream JNK phosphorylation. IRE1 knockdown by siRNA attenuated PPE8-induced JNK phosphorylation and cytotoxicity. Prolonged JNK phosphorylation may be involved in PPE8-induced cytotoxicity. Such results did not arise in A549 cells, but p53 knockdown by siRNA restored PPE8-induced GRP78 expression and JNK phosphorylation. We offer a novel compound to induce ER stress and cytotoxicity in p53-deficient cancer cells, presenting an opportunity for treatment.

  13. The unfolded protein response is required for dendrite morphogenesis

    Science.gov (United States)

    Wei, Xing; Howell, Audrey S; Dong, Xintong; Taylor, Caitlin A; Cooper, Roshni C; Zhang, Jianqi; Zou, Wei; Sherwood, David R; Shen, Kang

    2015-01-01

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.06963.001 PMID:26052671

  14. Humoral and cellular immune responses to glucose regulated protein 78 - a novel Leishmania donovani antigen

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Ismail, Ahmed; Gaafar, Ameera

    2002-01-01

    The recently cloned glucose regulated protein 78 (GRP78) of Leishmania donovani has been suggested as a new and promising Leishmania vaccine candidate. We assessed antibody and T-cell reactivity to GRP78 in an enzyme-linked immunosorbent assay (ELISA) and in lymphoproliferative assays. Serological...... with a positive leishmanin skin test showed antibody reactivity to recombinant GRP78 (rGRP78). In lymphoproliferative assays, 9 of 13 isolates of peripheral blood mononuclear cells (PBMC) from individuals previously infected with L. donovani and one of three individuals previously infected with L. major showed...... in an area endemic for malaria but free of leishmaniasis and plasma from healthy Danes was negative in the assay. GRP78 antibody was detected in 10% and 5% of plasma samples from Sudanese and Ghanaian malaria patients, respectively, whereas 35% of plasma samples from otherwise healthy Sudanese individuals...

  15. New and evolving concepts in the neurotoxicology of lead

    International Nuclear Information System (INIS)

    White, L.D.; Cory-Slechta, D.A.; Gilbert, M.E.; Tiffany-Castiglioni, E.; Zawia, N.H.; Virgolini, M.; Rossi-George, A.; Lasley, S.M.; Qian, Y.C.; Basha, Md. Riyaz

    2007-01-01

    Lead (Pb) is a xenobiotic metal with no known essential function in cellular growth, proliferation, or signaling. Decades of research characterizing the toxicology of Pb have shown it to be a potent neurotoxicant, especially during nervous system development. New concepts in the neurotoxicology of Pb include advances in understanding the mechanisms and cellular specificity of Pb. Experimental studies have shown that stress can significantly alter the effects of Pb, effects that could potentially be mediated through alterations in the interactions of glucocorticoids with the mesocorticolimbic dopamine system of the brain. Elevated stress, with corresponding elevated glucocorticoid levels, has been postulated to contribute to the increased levels of many diseases and dysfunctions in low socioeconomic status populations. Cellular models of learning and memory have been utilized to investigate the potential mechanisms of Pb-induced cognitive deficits. Examination of long-term potentiation in the rodent hippocampus has revealed Pb-induced increases in threshold, decreases in magnitude, and shorter retention times of synaptic plasticity. Structural plasticity in the form of adult neurogenesis in the hippocampus is also impacted by Pb exposure. The action of Pb on glutamate release, NMDA receptor function, or structural plasticity may underlie perturbations in synaptic plasticity and contribute to learning impairments. In addition to providing insight into potential mechanisms of Pb-induced cognitive deficits, cellular models offer an opportunity to investigate direct effects of Pb on isolated biological substrates. A target of interest is the 78-kDa molecular chaperone glucose-regulated protein (GRP78). GRP78 chaperones the secretion of the cytokine interleukin-6 (IL-6) by astrocytes. In vitro evidence shows that Pb strongly binds to GRP78, induces GRP78 aggregation, and blocks IL-6 secretion in astroglial cells. These findings provide evidence for a significant

  16. Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules

    International Nuclear Information System (INIS)

    Kuwabara, Hiroko; Yoneda, Masahiko; Hayasaki, Hana; Nakamura, Toshiya; Mori, Hiroshi

    2006-01-01

    The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins. By double immunostaining, GRP78 and GRP75 colocalized with RHAMM in interphase microtubules, but were separated in mitotic spindles. Prevention of microtubule polymerization by TN-16 and vincristine sulfate induced RHAMM overexpression without a significant change in GRP78/75. Taken together, GRP78/75 and RHAMM complexes may stabilize microtubules in the interphase, associated with a downregulation of RHAMM. These results reveal a new biochemical activity of RHAMM

  17. Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins.

    Directory of Open Access Journals (Sweden)

    Sandra Almeida

    Full Text Available The reduced production or activity of the cysteine-rich glycoprotein progranulin is responsible for about 20% of cases of familial frontotemporal dementia. However, little is known about the molecular mechanisms that govern the level and secretion of progranulin. Here we show that progranulin is expressed in mouse cortical neurons and more prominently in mouse microglia in culture and is abundant in the endoplasmic reticulum (ER and Golgi. Using chemical crosslinking, immunoprecipitation, and mass spectrometry, we found that progranulin is bound to a network of ER Ca(2+-binding chaperones including BiP, calreticulin, GRP94, and four members of the protein disulfide isomerase (PDI family. Loss of ERp57 inhibits progranulin secretion. Thus, progranulin is a novel substrate of several PDI family proteins and modulation of the ER chaperone network may be a therapeutic target for controlling progranulin secretion.

  18. Effects of air transportation cause physiological and biochemical changes indicative of stress leading to regulation of chaperone expression levels and corticosterone concentration.

    Science.gov (United States)

    Shim, SunBo; Lee, SeHyun; Kim, ChuelKyu; Kim, ByoungGuk; Jee, SeungWan; Lee, SuHae; Sin, JiSoon; Bae, ChangJoon; Woo, Jong-Min; Cho, JungSik; Lee, EonPil; Choi, HaeWook; Kim, HongSung; Lee, JaeHo; Jung, YoungJin; Cho, ByungWook; Chae, KabRyong; Hwang, DaeYoun

    2009-01-01

    Laboratory animals generally experience numerous unfamiliar environmental and psychological influences such as noises, temperatures, handling, shaking, and smells during the process of air transportation. To investigate whether stress induced by air transportation affects stress-related factors in animals, the levels of hormone and chaperone protein were measured in several tissues of F344 rats transported for 13 h and not transported. Herein, we conclude that the levels of corticosterone, HSP70, and GRP78 were significantly increased in the transported group compare to not transported group, but they were rapidly restored to the not transported group level after a recovery period of one week. However, the magnitude of induction and restoration levels of these factors varied depending on the tissue type. Thus, these results suggest that air transportation should be considered for the improvement of laboratory animal health and to reduce the incidence of laboratory animal stress.

  19. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    Science.gov (United States)

    Mohammad, Mohammad K; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-01-01

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. PMID:23026831

  20. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  1. Administration of Tauroursodeoxycholic Acid Attenuates Early Brain Injury via Akt Pathway Activation

    Directory of Open Access Journals (Sweden)

    Dongdong Sun

    2017-07-01

    Full Text Available Traumatic brain injury (TBI is one of the leading causes of trauma-induced mortality and disability, and emerging studies have shown that endoplasmic reticulum (ER stress plays an important role in the pathophysiology of TBI. Tauroursodeoxycholic acid (TUDCA, a hydrophilic bile acid, has been reported to act as an ER stress inhibitor and chemical chaperone and to have the potential to attenuate apoptosis and inflammation. To study the effects of TUDCA on brain injury, we subjected mice to TBI with a controlled cortical impact (CCI device. Using western blotting, we first examined TBI-induced changes in the expression levels of GRP78, an ER stress marker, p-PERK, PERK, p-eIF2a, eIF2a, ATF4, p-Akt, Akt, Pten, Bax, Bcl-2, Caspase-12 and CHOP, as well as changes in the mRNA levels of Akt, GRP78, Caspase-12 and CHOP using RT-PCR. Neuronal cell death was assessed by a terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick end-labeling (TUNEL assay, and CHOP expression in neuronal cells was detected by double-immunofluorescence staining. Neurological and motor deficits were assessed by modified neurological severity scores (mNSS and beam balance and beam walking tests, and brain water content was also assessed. Our results indicated that ER stress peaked at 72 h after TBI and that TUDCA abolished ER stress and inhibited p-PERK, p-eIF2a, ATF4, Pten, Caspase-12 and CHOP expression levels. Moreover, our results show that TUDCA also improved neurological function and alleviated brain oedema. Additionally, TUDCA increased p-Akt expression and the Bcl-2/Bax ratio. However, the administration of the Akt inhibitor MK2206 or siRNA targeting of Akt abolished the beneficial effects of TUDCA. Taken together, our results indicate that TUDCA may attenuate early brain injury via Akt pathway activation.

  2. Tributyltin-induced endoplasmic reticulum stress and its Ca2+-mediated mechanism

    International Nuclear Information System (INIS)

    Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-01-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca 2+ signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca 2+ homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca 2+ depletion, and to test this idea, we examined the effect of TBT on intracellular Ca 2+ concentration using fura-2 AM, a Ca 2+ fluorescent probe. TBT increased intracellular Ca 2+ concentration in a TBT-concentration-dependent manner, and Ca 2+ increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca 2+ concentration by releasing Ca 2+ from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca 2+ release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca 2+

  3. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.

  4. Role of endoplasmic reticulum stress in acrolein-induced endothelial activation.

    Science.gov (United States)

    Haberzettl, Petra; Vladykovskaya, Elena; Srivastava, Sanjay; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous environmental pollutant and an endogenous product of lipid peroxidation. It is also generated during the metabolism of several drugs and amino acids. In this study, we examined the effects of acrolein on endothelial cells. Treatment of human umbilical vein endothelial cells (HUVECs) with 2 to 10 microM acrolein led to an increase in the phosphorylation of eIF-2alpha within 10 to 30 min of exposure. This was followed by alternate splicing of XBP-1 mRNA and an increase in the expression of the endoplasmic reticulum (ER) chaperone genes Grp78 and Herp. Within 2-4 h of treatment, acrolein also increased the abundance and the nuclear transport of the transcription factors ATF3, AFT4, and CHOP. Acrolein-induced increase in ATF3 was prevented by treating the cells with the chemical chaperone - phenylbutyric acid (PBA). Treatment with acrolein increased phosphorylation of ERK1/2, p38, and JNK. The increase in JNK phosphorylation was prevented by PBA. Acrolein treatment led to activation and nuclear translocation of the transcription factor NF-kappaB and an increase in TNF-alpha, IL-6 and IL-8, but not MCP-1, mRNA. Increased expression of cytokine genes and NF-kappaB activation were not observed in cells treated with PBA. These findings suggest that exposure to acrolein induces ER stress and triggers the unfolded protein response and that NF-kappaB activation and stimulation of cytokine production by acrolein could be attributed, in part, to ER stress. Chemical chaperones of protein-folding may be useful in treating toxicological and pathological states associated with excessive acrolein exposure or production.

  5. Role of endoplasmic reticulum stress in acrolein-induced endothelial activation

    International Nuclear Information System (INIS)

    Haberzettl, Petra; Vladykovskaya, Elena; Srivastava, Sanjay; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous environmental pollutant and an endogenous product of lipid peroxidation. It is also generated during the metabolism of several drugs and amino acids. In this study, we examined the effects of acrolein on endothelial cells. Treatment of human umbilical vein endothelial cells (HUVECs) with 2 to 10 μM acrolein led to an increase in the phosphorylation of eIF-2α within 10 to 30 min of exposure. This was followed by alternate splicing of XBP-1 mRNA and an increase in the expression of the endoplasmic reticulum (ER) chaperone genes Grp78 and Herp. Within 2-4 h of treatment, acrolein also increased the abundance and the nuclear transport of the transcription factors ATF3, AFT4, and CHOP. Acrolein-induced increase in ATF3 was prevented by treating the cells with the chemical chaperone - phenylbutyric acid (PBA). Treatment with acrolein increased phosphorylation of ERK1/2, p38, and JNK. The increase in JNK phosphorylation was prevented by PBA. Acrolein treatment led to activation and nuclear translocation of the transcription factor NF-κB and an increase in TNF-α, IL-6 and IL-8, but not MCP-1, mRNA. Increased expression of cytokine genes and NF-κB activation were not observed in cells treated with PBA. These findings suggest that exposure to acrolein induces ER stress and triggers the unfolded protein response and that NF-κB activation and stimulation of cytokine production by acrolein could be attributed, in part, to ER stress. Chemical chaperones of protein-folding may be useful in treating toxicological and pathological states associated with excessive acrolein exposure or production

  6. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea.

    Science.gov (United States)

    Petitjean, Céline; Moreira, David; López-García, Purificación; Brochier-Armanet, Céline

    2012-11-26

    In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer) domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants). Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs) to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  7. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system.

    Science.gov (United States)

    Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man

    2015-11-01

    Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

  8. Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones.

    Directory of Open Access Journals (Sweden)

    Haiping Tang

    Full Text Available In the present study, monocytes were treated with 5-azacytidine (azacytidine, gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.

  9. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes.

    Science.gov (United States)

    Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang

    2013-03-01

    Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg(-1)). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.

  10. Glucose-regulated protein 78 regulates the expression of mitochondrial genesis proteins in HBV-related hepatocellular carcinoma: a clinical analysis

    Directory of Open Access Journals (Sweden)

    LI Yaping

    2017-10-01

    Full Text Available ObjectiveTo investigate the expression of glucose-regulated protein 78 (GRP78 in HBV-related hepatocellular carcinoma (HBV-HCC and its association with clinicopathological features, as well as its regulatory effect on mitochondrial genesis proteins in hepatoma cells, and to provide a basis for new strategies for the prevention and treatment of HCC. MethodsTissue samples were collected from 54 patients with HBV-HCC, and immunohistochemistry and Western blot were used to measure the expression of GRP78, Lon, TFAM, and cytochrome C oxidase Ⅳ (COXⅣ. The expression of GRP78 in hepatoma cells was interfered by siRNA, and then the expression of GRP78, Lon, mitochondrial transcription factor A (TFAM, and COX Ⅳ was measured. Quantitative real-time PCR was used to measure the level of mitochondrial DNA (mtDNA in clinical specimens and HCC cells after GRP78 expression was interfered with. A statistical analysis was performed for clinical and experimental data. The t-test was used for comparison of continuous data between groups, the Fisher′s exact test was used for comparison of categorical data between groups, and the Kaplan-Meier method was used for survival analysis. Results Compared with the adjacent tissues, HBV-HCC tissues had significantly higher expression of GRP78 and Lon (t=9.135 and 5523, both P<0.0001 and significantly lower expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level (t=2.765, 4260, and 12.280, P=0.011, <0.001, and <0.001. There were significant increases in the expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level after the interference with GRP78 expression in hepatoma cells (all P<0.05. There were significant differences in the expression of GRP78 between patients with different numbers of tumors, patients with and without portal vein tumor thrombus, and patients with different tumor stages (P=0.016, 0.003, and 0.045. The patients with low GRP78

  11. RNAi silenced Dd-grp94 (Dictyostelium discoideum glucose-regulated protein 94 kDa) cell lines in Dictyostelium exhibit marked reduction in growth rate and delay in development.

    Science.gov (United States)

    Baviskar, Sandhya N; Shields, Malcolm S

    2010-01-01

    Glucose-regulated 94 kDa protein (Grp94) is a resident of the endoplasmic reticulum (ER) of multicellular eukaryotes. It is a constitutively expressed protein that is overexpressed in certain abnormal conditions of the cell such as depletion of glucose and calcium, and low oxygen and pH. The protein is also implicated in diseased conditions like cancer and Alzheimer's disease. In this study, the consequences of downregulation of Grp94 were investigated at both unicellular and multicellular stages of Dictyostelium discoideum. Previous studies have shown the expression of Dd-Grp94 (Dictyostelium discoideum glucose-regulated 94 kDa protein) in wild-type cells varies during development, and overexpression of Dd-Grp94 leads to abnormal cell shape and inhibition of development (i.e., formation of fruiting bodies). Grp94 is a known calcium binding protein and an efficient calcium buffer. Therefore, in the present study we hypothesized that downregulation of Dd-Grp94 protein would affect Dictyostelium cell structure, growth, and development. We found that Dd-grp94 RNAi recombinants exhibited reduced growth rate, cell size, and a subtle change in cell motility compared to the parental cells. The recombinants also exhibited a delay in development and small fruiting bodies. These results establish that Dd-grp94 plays a crucial role in determining normal cell structure, growth and differentiation.

  12. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea

    Directory of Open Access Journals (Sweden)

    Petitjean Céline

    2012-11-01

    Full Text Available Abstract Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants. Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  13. Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation.

    Science.gov (United States)

    Fujimori, Tsutomu; Suno, Ryoji; Iemura, Shun-Ichiro; Natsume, Tohru; Wada, Ikuo; Hosokawa, Nobuko

    2017-08-01

    The folding of newly synthesized proteins in the endoplasmic reticulum (ER) is assisted by ER-resident chaperone proteins. BiP (immunoglobulin heavy-chain-binding protein), a member of the HSP70 family, plays a central role in protein quality control. The chaperone function of BiP is regulated by its intrinsic ATPase activity, which is stimulated by ER-resident proteins of the HSP40/DnaJ family, including ERdj3. Here, we report that two closely related proteins, SDF2 and SDF2L1, regulate the BiP chaperone cycle. Both are ER-resident, but SDF2 is constitutively expressed, whereas SDF2L1 expression is induced by ER stress. Both luminal proteins formed a stable complex with ERdj3 and potently inhibited the aggregation of different types of misfolded ER cargo. These proteins associated with non-native proteins, thus promoting the BiP-substrate interaction cycle. A dominant-negative ERdj3 mutant that inhibits the interaction between ERdj3 and BiP prevented the dissociation of misfolded cargo from the ERdj3-SDF2L1 complex. Our findings indicate that SDF2 and SDF2L1 associate with ERdj3 and act as components in the BiP chaperone cycle to prevent the aggregation of misfolded proteins, partly explaining the broad folding capabilities of the ER under various physiological conditions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  14. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles.

    Science.gov (United States)

    Villarreal-Calderon, Rodolfo; Franco-Lira, Maricela; González-Maciel, Angélica; Reynoso-Robles, Rafael; Harritt, Lou; Pérez-Guillé, Beatriz; Ferreira-Azevedo, Lara; Drecktrah, Dan; Zhu, Hongtu; Sun, Qiang; Torres-Jardón, Ricardo; Aragón-Flores, Mariana; Calderón-Garcidueñas, Ana; Diaz, Philippe; Calderón-Garcidueñas, Lilian

    2013-11-28

    Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  15. Up-Regulation of mRNA Ventricular PRNP Prion Protein Gene Expression in Air Pollution Highly Exposed Young Urbanites: Endoplasmic Reticulum Stress, Glucose Regulated Protein 78, and Nanosized Particles

    Directory of Open Access Journals (Sweden)

    Rodolfo Villarreal-Calderon

    2013-11-01

    Full Text Available Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4 vs. high (n:26 air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005. Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.

  16. Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation.

    Directory of Open Access Journals (Sweden)

    Eunhee Kim

    2017-07-01

    Full Text Available The unfolded protein response (UPR in the endoplasmic reticulum (ER and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1 activation have previously been considered as attractive potential therapeutic targets for Alzheimer's disease (AD-a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221, identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280. We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78 suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78. Our work reveals how the bidirectional crosstalk between the two stress response systems

  17. Rab7a modulates ER stress and ER morphology.

    Science.gov (United States)

    Mateus, Duarte; Marini, Elettra Sara; Progida, Cinzia; Bakke, Oddmund

    2018-05-01

    The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called "ER matrices" together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22 N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Aging induced ER stress alters sleep and sleep homeostasis

    Science.gov (United States)

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2014-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical chaperone sodium 4-phenylbutyrate (PBA) reduces ER stress and ameliorates age-associated sleep changes in Drosophila. PBA consolidates both baseline and recovery sleep in aging flies. The behavioral modifications of PBA are linked to its suppression of ER stress. PBA decreased splicing of x-box binding protein 1 (XBP1) and upregulation of phosphorylated elongation initiation factor 2 α (p-eIF2α), in flies that were subjected to sleep deprivation. We also demonstrate that directly activating ER stress in young flies fragments baseline sleep and alters recovery sleep. Alleviating prolonged/sustained ER stress during aging contributes to sleep consolidation and improves recovery sleep/ sleep debt discharge. PMID:24444805

  19. Expression and Location of Glucose-regulated Protein 78 in Testis and Epididymis

    Directory of Open Access Journals (Sweden)

    W Wang

    2014-04-01

    Full Text Available Objective: To know the role of glucose-regulated protein 78 (GRP78/BiP/HSPA5 in spermatogenesis and its expression and location in the testis and epididymis. Methods: Immunohistochemistry and Western blot were used to detect GRP78 location and expression in the testis and epididymis. Results: Glucose-regulated protein 78 was observed in spermatocytes, round spermatids and interstitial cells of the testis and in principal cells of the epididymis. Glucose-regulated protein 78 was first detected in the rat testis at postnatal day 14. Thereafter, the protein level increased gradually with age and was maintained at a high and stable state after postnatal day 28. In the rat, GRP78 was expressed in the principal cells but not in clear cells of the epididymis. Conclusion: Glucose-regulated protein 78 participates in the process of spermatogenesis.

  20. RasGRP1, but not RasGRP3, is required for efficient thymic β-selection and ERK activation downstream of CXCR4.

    Directory of Open Access Journals (Sweden)

    Dominic P Golec

    Full Text Available T cell development is a highly dynamic process that is driven by interactions between developing thymocytes and the thymic microenvironment. Upon entering the thymus, the earliest thymic progenitors, called CD4(-CD8(- 'double negative' (DN thymocytes, pass through a checkpoint termed "β-selection" before maturing into CD4(+CD8(+ 'double positive' (DP thymocytes. β-selection is an important developmental checkpoint during thymopoiesis where developing DN thymocytes that successfully express the pre-T cell receptor (TCR undergo extensive proliferation and differentiation towards the DP stage. Signals transduced through the pre-TCR, chemokine receptor CXCR4 and Notch are thought to drive β-selection. Additionally, it has long been known that ERK is activated during β-selection; however the pathways regulating ERK activation remain unknown. Here, we performed a detailed analysis of the β-selection events in mice lacking RasGRP1, RasGRP3 and RasGRP1 and 3. We report that RasGRP1 KO and RasGRP1/3 DKO deficient thymi show a partial developmental block at the early DN3 stage of development. Furthermore, DN3 thymocytes from RasGRP1 and RasGRP1/3 double knock-out thymi show significantly reduced proliferation, despite expression of the TCRβ chain. As a result of impaired β-selection, the pool of TCRβ(+ DN4 is significantly diminished, resulting in inefficient DN to DP development. Also, we report that RasGRP1 is required for ERK activation downstream of CXCR4 signaling, which we hypothesize represents a potential mechanism of RasGRP1 regulation of β-selection. Our results demonstrate that RasGRP1 is an important regulator of proliferation and differentiation at the β-selection checkpoint and functions downstream of CXCR4 to activate the Ras/MAPK pathway.

  1. Impairment of ER-mitochondrial coupling provides neuroprotection in a model of oxytosis

    NARCIS (Netherlands)

    Honrath, Birgit; Metz, Isabell; Bendridi, Nadia; Rieusset, Jennifer; Culmsee, Carsten; Dolga, Amalia Mihalea

    2017-01-01

    The crosstalk between the endoplasmic reticulum (ER) and mitochondria facilitates calcium transfer between these organelles, thereby maintaining the driving force for calcium into the mitochondrial matrix to modulate mitochondrial respiration. Glucose-regulated protein 75 (GRP75/mortalin) physically

  2. Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes.

    Science.gov (United States)

    Dobroff, Andrey S; D'Angelo, Sara; Eckhardt, Bedrich L; Ferrara, Fortunato; Staquicini, Daniela I; Cardó-Vila, Marina; Staquicini, Fernanda I; Nunes, Diana N; Kim, Kisu; Driessen, Wouter H P; Hajitou, Amin; Lomo, Lesley C; Barry, Marc; Krishnamurthy, Savitri; Sahin, Aysegul; Woodward, Wendy A; Prossnitz, Eric R; Anderson, Robin L; Dias-Neto, Emmanuel; Brown-Glaberman, Ursa A; Royce, Melanie E; Ueno, Naoto T; Cristofanilli, Massimo; Hortobagyi, Gabriel N; Marchiò, Serena; Gelovani, Juri G; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-10-24

    Inflammatory breast carcinoma (IBC) is one of the most lethal forms of human breast cancer, and effective treatment for IBC is an unmet clinical need in contemporary oncology. Tumor-targeted theranostic approaches are emerging in precision medicine, but only a few specific biomarkers are available. Here we report up-regulation of the 78-kDa glucose-regulated protein (GRP78) in two independent discovery and validation sets of specimens derived from IBC patients, suggesting translational promise for clinical applications. We show that a GRP78-binding motif displayed on either bacteriophage or adeno-associated virus/phage (AAVP) particles or loop-grafted onto a human antibody fragment specifically targets orthotopic IBC and other aggressive breast cancer models in vivo. To evaluate the theranostic value, we used GRP78-targeting AAVP particles to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) transgene, obtaining simultaneous in vivo diagnosis through PET imaging and tumor treatment by selective activation of the prodrug ganciclovir at tumor sites. Translation of this AAVP system is expected simultaneously to image, monitor, and treat the IBC phenotype and possibly other aggressive (e.g., invasive and/or metastatic) subtypes of breast cancer, based on the inducible cell-surface expression of the stress-response chaperone GRP78, and possibily other cell-surface receptors in human tumors.

  3. Chaperone-Mediated Sec61 Channel Gating during ER Import of Small Precursor Proteins Overcomes Sec61 Inhibitor-Reinforced Energy Barrier

    Directory of Open Access Journals (Sweden)

    Sarah Haßdenteufel

    2018-05-01

    Full Text Available Summary: Protein transport into the mammalian endoplasmic reticulum (ER is mediated by the heterotrimeric Sec61 channel. The signal recognition particle (SRP and TRC systems and Sec62 have all been characterized as membrane-targeting components for small presecretory proteins, whereas Sec63 and the lumenal chaperone BiP act as auxiliary translocation components. Here, we report the transport requirements of two natural, small presecretory proteins and engineered variants using semipermeabilized human cells after the depletion of specific ER components. Our results suggest that hSnd2, Sec62, and SRP and TRC receptor each provide alternative targeting pathways for short secretory proteins and define rules of engagement for the actions of Sec63 and BiP during their membrane translocation. We find that the Sec62/Sec63 complex plus BiP can facilitate Sec61 channel opening, thereby allowing precursors that have weak signal peptides or other inhibitory features to translocate. A Sec61 inhibitor can mimic the effect of BiP depletion on Sec61 gating, suggesting that they both act at the same essential membrane translocation step. : Protein transport into the human endoplasmic reticulum (ER is mediated by the heterotrimeric Sec61 channel. Haßdenteufel et al. map the determinants for requirement of different targeting pathways and different auxiliary components of the Sec61 channel in ER import of short presecretory proteins. Different characteristics of precursor polypeptides dictate the engagement of each component. Keywords: endoplasmic reticulum, protein targeting and translocation, Sec61 channel gating, Sec62, Sec63, BiP, CAM741, signal peptide, mature region, cluster of positive charges

  4. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    International Nuclear Information System (INIS)

    Mohammad, Mohammad K.; Avila, Diana; Zhang, Jingwen; Barve, Shirish; Arteel, Gavin; McClain, Craig; Joshi-Barve, Swati

    2012-01-01

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of

  5. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Mohammad K. [Department of Medicine, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Avila, Diana [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Zhang, Jingwen [Department of Medicine, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Barve, Shirish [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Arteel, Gavin [Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); McClain, Craig [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States); Robley Rex VAMC, Louisville, KY (United States); Joshi-Barve, Swati, E-mail: s0josh01@louisville.edu [Department of Medicine, University of Louisville (United States); Department of Pharmacology and Toxicology, University of Louisville (United States); Alcohol Research Center, University of Louisville (United States)

    2012-11-15

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel finding of

  6. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles

    Directory of Open Access Journals (Sweden)

    Cheng CC

    2013-04-01

    Full Text Available Chun-Chia Cheng,1,2,* Chiung-Fang Huang,3,4,* Ai-Sheng Ho,5 Cheng-Liang Peng,6 Chun-Chao Chang,7,8 Fu-Der Mai,1,9 Ling-Yun Chen,10 Tsai-Yueh Luo,2 Jungshan Chang1,11,121Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 2Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, 3School of Dental Technology, Taipei Medical University, Taipei, 4Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei, 5Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, 6Institute of Biomedical Engineering, National Taiwan University, Taipei, 7Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 8Department of Internal Medicine, Taipei Medical University, Taipei, 9Department of Biochemistry, Taipei Medical University, Taipei, 10Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, 11Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 12Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan*These authors contributed equally to this workAbstract: Increased expression of cellular membrane bound glucose-regulated protein 78 (GRP78 is considered to be one of the biomarkers for gastric cancers. Therefore, peptides or molecules with specific recognition to GRP78 can act as a guiding probe to direct conjugated imaging agents to localized cancers. Based on this rationale, GRP78-guided polymeric micelles were designed and manufactured for nuclear imaging detection of tumors. Thiolated GRP78 binding peptide (GRP78BP was first labeled with maleimide-terminated poly(ethylene glycol–poly(ε-caprolactone and then mixed with diethylenetriaminepentaacetic acid (DTPA-linked poly(ethylene glycol–poly(ε-caprolactone to form DTPA/GRP78BP-conjugated micelles. The coupling efficiency of micelles with

  7. The use of a chaperone in obstetrical and gynaecological practice.

    LENUS (Irish Health Repository)

    Afaneh, I

    2012-02-01

    The aim of this study was to assess the use of a chaperone in obstetrical and gynaecological practice in Ireland and to explore patients\\' opinions. Two questionnaires were designed; one for patients and the other one was sent to 145 gynaecologists in Ireland. One hundred and fifty two women took part in this survey of whom 74 were gynaecological and 78 were obstetric patients. Ninety five (65%) patients felt no need for a chaperone during a vaginal examination (VE) by a male doctor. On the other hand 34 (23%) participating women would request a chaperone if being examined by a female doctor. Among clinicians 116 (80%) responded by returning the questionnaire. Overall 60 (52%) always used a chaperone in public practice, in contrast to 24 (27%) in private practice. The study demonstrated that most patients do not wish to have a chaperone during a VE but a small proportion would still request one regardless of the examiner\\'s gender. Patients should be offered the choice of having a chaperone and their opinion should be respected and documented.

  8. The use of a chaperone in obstetrical and gynaecological practice.

    LENUS (Irish Health Repository)

    Afaneh, I

    2010-05-01

    The aim of this study was to assess the use of a chaperone in obstetrical and gynaecological practice in Ireland and to explore patients\\' opinions. Two questionnaires were designed; one for patients and the other one was sent to 145 gynaecologists in Ireland. One hundred and fifty two women took part in this survey of whom 74 were gynaecological and 78 were obstetric patients. Ninety five (65%) patients felt no need for a chaperone during a vaginal examination (VE) by a male doctor. On the other hand 34 (23%) participating women would request a chaperone if being examined by a female doctor. Among clinicians 116 (80%) responded by returning the questionnaire. Overall 60 (52%) always used a chaperone in public practice, in contrast to 24 (27%) in private practice. The study demonstrated that most patients do not wish to have a chaperone during a VE but a small proportion would still request one regardless of the examiner\\'s gender. Patients should be offered the choice of having a chaperone and their opinion should be respected and documented.

  9. Pre-emptive Quality Control Protects the ER from Protein Overload via the Proximity of ERAD Components and SRP

    Directory of Open Access Journals (Sweden)

    Hisae Kadowaki

    2015-11-01

    Full Text Available Cells possess ER quality control systems to adapt to ER stress and maintain their function. ER-stress-induced pre-emptive quality control (ER pQC selectively degrades ER proteins via translocational attenuation during ER stress. However, the molecular mechanism underlying this process remains unclear. Here, we find that most newly synthesized endogenous transthyretin proteins are rerouted to the cytosol without cleavage of the signal peptide, resulting in proteasomal degradation in hepatocytes during ER stress. Derlin family proteins (Derlins, which are ER-associated degradation components, reroute specific ER proteins, but not ER chaperones, from the translocon to the proteasome through interactions with the signal recognition particle (SRP. Moreover, the cytosolic chaperone Bag6 and the AAA-ATPase p97 contribute to the degradation of ER pQC substrates. These findings demonstrate that Derlins-mediated substrate-specific rerouting and Bag6- and p97-mediated effective degradation contribute to the maintenance of ER homeostasis without the need for translocation.

  10. Activation of the unfolded protein response during anoxia exposure in the turtle Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2013-02-01

    Red-eared slider turtles, Trachemys scripta elegans, can survive for several weeks without oxygen when submerged in cold water. We hypothesized that anaerobiosis is aided by adaptive up-regulation of the unfolded protein response (UPR), a stress-responsive pathway that is activated by accumulation of unfolded proteins in the endoplasmic reticulum (ER) and functions to restore ER homeostasis. RT-PCR, western immunoblotting and DNA-binding assays were used to quantify the responses and/or activation status of UPR-responsive genes and proteins in turtle tissues after animal exposure to 5 or 20 h of anoxic submergence at 4 °C. The phosphorylation state of protein kinase-like ER kinase (PERK) (a UPR-regulated kinase) and eukaryotic initiation factor 2 (eIF2α) increased by 1.43-2.50 fold in response to anoxia in turtle heart, kidney, and liver. Activation of the PERK-regulated transcription factor, activating transcription factor 4 (ATF4), during anoxia was documented by elevated atf4 transcripts and total ATF4 protein (1.60-2.43 fold), increased nuclear ATF4 content, and increased DNA-binding activity (1.44-2.32 fold). ATF3 and GADD34 (downstream targets of ATF4) also increased by 1.38-3.32 fold in heart and liver under anoxia, and atf3 transcripts were also elevated in heart. Two characteristic chaperones of the UPR, GRP78, and GRP94, also responded positively to anoxia with strong increases in both the transcript and protein levels. The data demonstrate that the UPR is activated in turtle heart, kidney, and liver in response to anoxia, suggesting that this pathway mediates an integrated stress response to protect tissues during oxygen deprivation.

  11. MicroRNAs meet calcium: joint venture in ER proteostasis.

    Science.gov (United States)

    Finger, Fabian; Hoppe, Thorsten

    2014-11-04

    The endoplasmic reticulum (ER) is a cellular compartment that has a key function in protein translation and folding. Maintaining its integrity is of fundamental importance for organism's physiology and viability. The dynamic regulation of intraluminal ER Ca(2+) concentration directly influences the activity of ER-resident chaperones and stress response pathways that balance protein load and folding capacity. We review the emerging evidence that microRNAs play important roles in adjusting these processes to frequently changing intracellular and environmental conditions to modify ER Ca(2+) handling and storage and maintain ER homeostasis. Copyright © 2014, American Association for the Advancement of Science.

  12. Receptors for GRP/bombesin-like peptides in the rat forebrain

    International Nuclear Information System (INIS)

    Wolf, S.S.; Moody, T.W.

    1985-01-01

    Binding sites in the rat forebrain were characterized using ( 125 I-Tyr4)bombesin as a receptor probe. Pharmacology experiments indicate that gastrin releasing peptide (GRP) and the GRP fragments GRP as well as Ac-GRP inhibited radiolabeled (Tyr4)bombesin binding with high affinity. Biochemistry experiments indicated that heat, N-ethyl maleimide or trypsin greatly reduced radiolabeled (Tyr4)bombesin binding. Also, autoradiographic studies indicated that highest grain densities were present in the stria terminalis, periventricular and suprachiasmatic nucleus of the hypothalamus, dorsomedial and rhomboid thalamus, dentate gyrus, hippocampus and medial amygdaloid nucleus. The data suggest that CNS protein receptors, which are discretely distributed in the rat forebrain, may mediate the action of endogenous GRP/bombesin-like peptides

  13. Molecular and immunological characterisation of the glucose regulated protein 78 of Leishmania donovani

    DEFF Research Database (Denmark)

    Jensen, A T; Curtis, J; Montgomery, J

    2001-01-01

    was assessed in mice vaccine experiments. A GRP78 DNA vaccine primed for an immune response that protected C57Bl/6 and C3H/He mice against infection with L. major. Similarly vaccination with a recombinant form of GRP78 purified from Escherichia coli and administered with Freund's as adjuvant induced protective...

  14. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Faria, Gisele; Cardoso, Cristina R.B.; Larson, Roy E.; Silva, Joao S.; Rossi, Marcos A.

    2009-01-01

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug

  15. Sirt3-Mediated Autophagy Contributes to Resveratrol-Induced Protection against ER Stress in HT22 Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jun Yan

    2018-02-01

    Full Text Available Endoplasmic reticulum (ER stress occurring in stringent conditions is critically involved in neuronal survival and death. Resveratrol is a non-flavonoid polyphenol that has neuroprotective effects against many neurological disorders. Here, we investigated the potential protective effects of resveratrol in an in vitro ER stress model mimicked by tunicamycin (TM treatment in neuronal HT22 cells. We found that TM dose-dependently decreased cell viability and increased apoptosis, which were both significantly attenuated by resveratrol treatment. Resveratrol markedly reduced the expression or activation of ER stress-associated factors, including GRP78, CHOP, and caspase-12. The results of immunocytochemistry and western blot showed that resveratrol promoted autophagy in TM-treated cells, as evidenced by increased LC3II puncta number, bcelin1 expression and LC3II/LC3I ratio. Pretreatment with the autophagy inhibitor chloroquine could reduce the protective effects of resveratrol. In addition, the expression of Sirt3 protein and its downstream enzyme activities were significantly increased in resveratrol-treated HT22 cells. To confirm the involvement of Sirt3-mediated mechanisms, siRNA transfection was used to knockdown Sirt3 expression in vitro. The results showed that downregulation of Sirt3 could partially prevented the autophagy and protection induced by resveratrol after TM treatment. Our study demonstrates a pivotal role of Sirt3-mediated autophagy in mediating resveratrol-induced protection against ER stress in vitro, and suggests the therapeutic values of resveratrol in ER stress-associated neuronal injury conditions.

  16. Sodium phenylbutyrate ameliorates focal cerebral ischemic/reperfusion injury associated with comorbid type 2 diabetes by reducing endoplasmic reticulum stress and DNA fragmentation.

    Science.gov (United States)

    Srinivasan, Krishnamoorthy; Sharma, Shyam S

    2011-11-20

    Endoplasmic reticulum (ER) stress has been postulated to play a crucial role in the pathophysiology of cerebral ischemic/reperfusion (I/R) injury and diabetes. Diabetes is a major risk factor and also common amongst the people who suffer from stroke. In this study, we have investigated the neuroprotective potential of sodium 4-phenylbutyrate (SPB; 30-300mg/kg), a chemical chaperone by targeting ER stress in a rat model of transient focal cerebral ischemia associated with comorbid type 2 diabetes. Intraperitoneal treatment with SPB (100 and 300mg/kg) significantly ameliorated brain I/R damage as evidenced by reduction in cerebral infarct and edema volume. It also significantly improved the functional recovery of various neurobehavioral impairments (neurological deficit score, grip strength and rota rod) evoked by I/R compared with vehicle-treatment. Further, SPB (100mg/kg) significantly reduced the DNA fragmentation as shown by prominent reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells. This effect was observed concomitantly with significant attenuation in upregulation of 78kDa glucose regulated protein (GRP78), CCAAT/enhancer binding protein homologous protein or growth arrest DNA damage-inducible gene 153 (CHOP/GADD153) and activation of caspase-12, specific markers of ER stress/apoptosis. The neuroprotection observed with SPB was independent of its effect on cerebral blood flow and blood glucose. In conclusion, this study demonstrates the neuroprotective effect of SPB owing to amelioration of ER stress and DNA fragmentation. It also suggest that targeting ER stress might offer a promising therapeutic approach and benefits against ischemic stroke associated with comorbid type 2 diabetes. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Oxidative and endoplasmic reticulum stress is impaired in leukocytes from metabolically unhealthy vs healthy obese individuals.

    Science.gov (United States)

    Bañuls, C; Rovira-Llopis, S; Lopez-Domenech, S; Diaz-Morales, N; Blas-Garcia, A; Veses, S; Morillas, C; Victor, V M; Rocha, M; Hernandez-Mijares, A

    2017-10-01

    Oxidative stress and inflammation are related to obesity, but the influence of metabolic disturbances on these parameters and their relationship with endoplasmic reticulum (ER) stress is unknown. Therefore, this study was performed to evaluate whether metabolic profile influences ER and oxidative stress in an obese population with/without comorbidities. A total of 113 obese patients were enrolled in the study; 29 were metabolically healthy (MHO), 53 were metabolically abnormal (MAO) and 31 had type 2 diabetes (MADO). We assessed metabolic parameters, proinflammatory cytokines (TNFα and IL-6), mitochondrial and total reactive oxygen species (ROS) production, glutathione levels, antioxidant enzymes activity, total antioxidant status, mitochondrial membrane potential and ER stress marker expression levels (glucose-regulated protein (GRP78), spliced X-box binding protein 1 (XBP1), P-subunit 1 alpha (P-eIF2α) and activating transcription factor 6 (ATF6). The MAO and MADO groups showed higher blood pressure, atherogenic dyslipidemia, insulin resistance and inflammatory profile than that of MHO subjects. Total and mitochondrial ROS production was enhanced in MAO and MADO patients, and mitochondrial membrane potential and catalase activity differed significantly between the MADO and MHO groups. In addition, decreases in glutathione levels and superoxide dismutase activity were observed in the MADO vs MAO and MHO groups. GRP78 and CHOP protein and gene expression were higher in the MAO and MADO groups with respect to MHO subjects, and sXBP1 gene expression was associated with the presence of diabetes. Furthermore, MAO patients exhibited higher levels of ATF6 than their MHO counterparts. Waist circumference was positively correlated with ATF6 and GRP78, and A1c was positively correlated with P-Eif2α. Interestingly, CHOP was positively correlated with TNFα and total ROS production and GRP78 was negatively correlated with glutathione levels. Our findings support the

  18. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae

    International Nuclear Information System (INIS)

    Van Molle, Inge; Buts, Lieven; Coppens, Fanny; Qiang, Liu; Wyns, Lode; Loris, Remy; Bouckaert, Julie; De Greve, Henri

    2005-01-01

    The periplasmic chaperone FaeE of E. coli F4 fimbriae crystallizes in three crystal forms. F4 (formerly K88) fimbriae from enterotoxigenic Escherichia coli are assembled via the FaeE/FaeD chaperone/usher pathway. The chaperone FaeE crystallizes in three crystal forms, all belonging to space group C2. Crystals of form 1 diffract to 2.3 Å and have unit-cell parameters a = 195.7, b = 78.5, c = 184.6 Å, β = 102.2°. X-ray data for crystal form 2 were collected to 2.7 Å using an SeMet variant of FaeE. The crystals have unit-cell parameters a = 136.4, b = 75.7, c = 69.4 Å, β = 92.8°. Crystals of form 3 were formed in a solution containing the FaeE–FaeG complex and diffract to 2.8 Å. Unit-cell parameters are a = 109.7, b = 78.6, c = 87.8 Å, β = 96.4°

  19. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae

    Energy Technology Data Exchange (ETDEWEB)

    Van Molle, Inge, E-mail: ivmolle@vub.ac.be; Buts, Lieven; Coppens, Fanny; Qiang, Liu; Wyns, Lode; Loris, Remy; Bouckaert, Julie; De Greve, Henri [Laboratorium voor Ultrastructuur, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium)

    2005-04-01

    The periplasmic chaperone FaeE of E. coli F4 fimbriae crystallizes in three crystal forms. F4 (formerly K88) fimbriae from enterotoxigenic Escherichia coli are assembled via the FaeE/FaeD chaperone/usher pathway. The chaperone FaeE crystallizes in three crystal forms, all belonging to space group C2. Crystals of form 1 diffract to 2.3 Å and have unit-cell parameters a = 195.7, b = 78.5, c = 184.6 Å, β = 102.2°. X-ray data for crystal form 2 were collected to 2.7 Å using an SeMet variant of FaeE. The crystals have unit-cell parameters a = 136.4, b = 75.7, c = 69.4 Å, β = 92.8°. Crystals of form 3 were formed in a solution containing the FaeE–FaeG complex and diffract to 2.8 Å. Unit-cell parameters are a = 109.7, b = 78.6, c = 87.8 Å, β = 96.4°.

  20. Rescue of a pathogenic mutant human glucagon receptor by pharmacological chaperones.

    Science.gov (United States)

    Yu, Run; Chen, Chun-Rong; Liu, Xiaohong; Kodra, János T

    2012-10-01

    We have previously demonstrated that a homozygous inactivating P86S mutation of the glucagon receptor (GCGR) causes a novel human disease of hyperglucagonemia, pancreatic α-cell hyperplasia, and pancreatic neuroendocrine tumors (Mahvash disease). The mechanisms for the decreased activity of the P86S mutant (P86S) are abnormal receptor localization to the endoplasmic reticulum (ER) and defective interaction with glucagon. To search for targeted therapies for Mahvash disease, we examined whether P86S can be trafficked to the plasma membrane by pharmacological chaperones and whether novel glucagon analogs restore effective receptor interaction. We used enhanced green fluorescent protein-tagged P86S stably expressed in HEK 293 cells to allow fluorescence imaging and western blotting and molecular modeling to design novel glucagon analogs in which alanine 19 was replaced with serine or asparagine. Incubation at 27 °C largely restored normal plasma membrane localization and normal processing of P86S but osmotic chaperones had no effects. The ER stressors thapsigargin and curcumin partially rescued P86S. The lipophilic GCGR antagonist L-168,049 also partially rescued P86S, so did Cpd 13 and 15 to a smaller degree. The rescued P86S led to more glucagon-stimulated cAMP production and was internalized by glucagon. Compared with the native glucagon, the novel glucagon analogs failed to stimulate more cAMP production by P86S. We conclude that the mutant GCGR is partially rescued by several pharmacological chaperones and our data provide proof-of-principle evidence that Mahvash disease can be potentially treated with pharmacological chaperones. The novel glucagon analogs, however, failed to interact with P86S more effectively.

  1. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    Full Text Available BACKGROUND: To investigate if microRNAs (miRNAs play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+ current. RESULTS: H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2, with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. CONCLUSIONS: Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  2. MiR-17-5p impairs trafficking of H-ERG K+ channel protein by targeting multiple er stress-related chaperones during chronic oxidative stress.

    Science.gov (United States)

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Luciferase reporter gene assay was used to study miRNA and target interactions. Whole-cell patch-clamp techniques were employed to record h-ERG K(+) current. H-ERG trafficking was impaired by H2O2 after 48 h treatment, accompanied by reciprocal changes of expression between miR-17-5p seed miRNAs and several chaperones (Hsp70, Hsc70, CANX, and Golga2), with the former upregulated and the latter downregulated. We established these chaperones as targets for miR-17-5p. Application miR-17-5p inhibitor rescued H2O2-induced impairment of h-ERG trafficking. Upregulation of endogenous by H2O2 or forced miR-17-5p expression either reduced h-ERG current. Sequestration of AP1 by its decoy molecule eliminated the upregulation of miR-17-5p, and ameliorated impairment of h-ERG trafficking. Collectively, deregulation of the miR-17-5p seed family miRNAs can cause severe impairment of h-ERG trafficking through targeting multiple ER stress-related chaperones, and activation of AP1 likely accounts for the deleterious upregulation of these miRNAs, in the setting of prolonged duration of oxidative stress. These findings revealed the role of miRNAs in h-ERG trafficking, which may contribute to the cardiac electrical disturbances associated with oxidative stress.

  3. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment

    International Nuclear Information System (INIS)

    Adomako, Alfred; Calvo, Veronica; Biran, Noa; Osman, Keren; Chari, Ajai; Paton, James C; Paton, Adrienne W; Moore, Kateri; Schewe, Denis M; Aguirre-Ghiso, Julio A

    2015-01-01

    The mechanisms allowing residual multiple myeloma (MM) cells to persist after bortezomib (Bz) treatment remain unclear. We hypothesized that studying the biology of bortezomib-surviving cells may reveal markers to identify these cells and survival signals to target and kill residual MM cells. We used H2B-GFP label retention, biochemical tools and in vitro and in vivo experiments to characterize growth arrest and the unfolded protein responses in quiescent Bz-surviving cells. We also tested the effect of a demethylating agent, 5-Azacytidine, on Bz-induced quiescence and whether inhibiting the chaperone GRP78/BiP (henceforth GRP78) with a specific toxin induced apoptosis in Bz-surviving cells. Finally, we used MM patient samples to test whether GRP78 levels might associate with disease progression. Statistical analysis employed t-test and Mann-Whitney tests at a 95% confidence. We report that Bz-surviving MM cells in vitro and in vivo enter quiescence characterized by p21 CIP1 upregulation. Bz-surviving MM cells also downregulated CDK6, Ki67 and P-Rb. H2B-GFP label retention showed that Bz-surviving MM cells are either slow-cycling or deeply quiescent. The Bz-induced quiescence was stabilized by low dose (500nM) of 5-azacytidine (Aza) pre-treatment, which also potentiated the initial Bz-induced apoptosis. We also found that expression of GRP78, an unfolded protein response (UPR) survival factor, persisted in MM quiescent cells. Importantly, GRP78 downregulation using a specific SubAB bacterial toxin killed Bz-surviving MM cells. Finally, quantification of Grp78 high /CD138+ MM cells from patients suggested that high levels correlated with progressive disease. We conclude that Bz-surviving MM cells display a GRP78 HIGH /p21 HIGH /CDK6 LOW /P-Rb LOW profile, and these markers may identify quiescent MM cells capable of fueling recurrences. We further conclude that Aza + Bz treatment of MM may represent a novel strategy to delay recurrences by enhancing Bz

  4. Exposure to tributyltin induces endoplasmic reticulum stress and the unfolded protein response in zebrafish.

    Science.gov (United States)

    Komoike, Yuta; Matsuoka, Masato

    2013-10-15

    Tributyltin (TBT) is a major marine contaminant and causes endocrine disruption, hepatotoxicity, immunotoxicity, and neurotoxicity. However, the molecular mechanisms underlying the toxicity of TBT have not been fully elucidated. We examined whether exposure to TBT induces the endoplasmic reticulum (ER) stress response in zebrafish, a model organism. Zebrafish-derived BRF41 fibroblast cells were exposed to 0.5 or 1 μM TBT for 0.5-16 h and subsequently lysed and immunoblotted to detect ER stress-related proteins. Zebrafish embryos, grown until 32 h post fertilization (hpf), were exposed to 1 μM TBT for 16 h and used in whole mount in situ hybridization and immunohistochemistry to visualize the expression of ER chaperones and an ER stress-related apoptosis factor. Exposure of the BRF41 cells to TBT caused phosphorylation of the zebrafish homolog of protein kinase RNA-activated-like ER kinase (PERK), eukaryotic translation initiation factor 2 alpha (eIF2α), and inositol-requiring enzyme 1 (IRE1), characteristic splicing of X-box binding protein 1 (XBP1) mRNA, and enhanced expression of activating transcription factor 4 (ATF4) protein. In TBT-exposed zebrafish embryos, ectopic expression of the gene encoding zebrafish homolog of the 78 kDa glucose-regulating protein (GRP78) and gene encoding CCAAT/enhancer-binding protein homologous protein (CHOP) was detected in the precursors of the neuromast, which is a sensory organ for detecting water flow and vibration. Our in vitro and in vivo studies revealed that exposure of zebrafish to TBT induces the ER stress response via activation of both the PERK-eIF2α and IRE1-XBP1 pathways of the unfolded protein response (UPR) in an organ-specific manner. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Region-specific vulnerability to endoplasmic reticulum stress ...

    Indian Academy of Sciences (India)

    2013-11-06

    Nov 6, 2013 ... glucose-regulated protein (GRP) 78, a good marker of ER stress, were assessed by Western ..... calcium homeostasis is disturbed, because ATP is needed to ... lum stress and insulin signalling proteins in diabetes-induced.

  6. Endoplasmic reticulum stress regulates inflammation and insulin resistance in skeletal muscle from pregnant women.

    Science.gov (United States)

    Liong, Stella; Lappas, Martha

    2016-04-15

    Sterile inflammation and infection are key mediators of inflammation and peripheral insulin resistance associated with gestational diabetes mellitus (GDM). Studies have shown endoplasmic reticulum (ER) stress to induce inflammation and insulin resistance associated with obesity and type 2 diabetes, however is paucity of studies investigating the effects of ER stress in skeletal muscle on inflammation and insulin resistance associated with GDM. ER stress proteins IRE1α, GRP78 and XBP-1s were upregulated in skeletal muscle of obese pregnant women, whereas IRE1α was increased in GDM women. Suppression of ER stress, using ER stress inhibitor tauroursodeoxycholic acid (TUDCA) or siRNA knockdown of IRE1α and GRP78, significantly downregulated LPS-, poly(I:C)- or IL-1β-induced production of IL-6, IL-8, IL-1β and MCP-1. Furthermore, LPS-, poly(I:C)- or TNF-α-induced insulin resistance was improved following suppression of ER stress, by increasing insulin-stimulated phosphorylation of IR-β, IRS-1, GLUT-4 expression and glucose uptake. In summary, our inducible obesity and GDM-like models suggests that the development of GDM may be involved in activating ER stress-induced inflammation and insulin resistance in human skeletal muscle. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Sodium 4-phenylbutyrate protects against spinal cord ischemia by inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Mizukami, Taketomo; Orihashi, Kazumasa; Herlambang, Bagus; Takahashi, Shinya; Hamaishi, Makoto; Okada, Kenji; Sueda, Taijiro

    2010-12-01

    Delayed paraplegia after operation on the thoracoabdominal aorta is considered to be related to vulnerability of motor neurons to ischemia. Previous studies have demonstrated the relationship between neuronal vulnerability and endoplasmic reticulum (ER) stress after transient ischemia in the spinal cord. The aim of this study was to investigate whether sodium 4-phenylbutyrate (PBA), a chemical chaperone that reduces the load of mutant or unfolded proteins retained in the ER during cellular stress, can protect against ischemic spinal cord damage. Spinal cord ischemia was induced in rabbits by direct aortic cross-clamping (below the renal artery and above the bifurcation) for 15 minutes at normothermia. Group A (n = 6) was a sham operation control group. In group B (n = 6) and group C (n = 6), vehicle or 15 mg/kg/h of sodium 4-PBA was infused intravenously, respectively, from 30 minutes before the induction of ischemia until 30 minutes after reperfusion. Neurologic function was assessed at 8 hours, and 2 and 7 days after reperfusion with a Tarlov score. Histologic changes were studied with hematoxylin-eosin staining. Immunohistochemistry analysis for ER stress-related molecules, including caspase12 and GRP78 were examined. The mean Tarlov scores were 4.0 in every group at 8 hours, but were 4.0, 2.5, and 3.9 at 2 days; and 4.0, 0.7, and 4.0 at 7 days in groups A, B, and C, respectively. The numbers of intact motor neurons at 7 days after reperfusion were 47.4, 21.5, and 44.9 in groups A, B, and C, respectively. There was no significant difference in terms of viable neurons between groups A and C. Caspase12 and GRP78 immunoreactivities were induced in motor neurons in group B, whereas they were not observed in groups A and C. Reduction in ER stress-induced spinal cord injury was achieved by the administration of 4-PBA. 4-PBA may be a strong candidate for use as a therapeutic agent in the treatment of ischemic spinal cord injury. Copyright © 2010 Society for Vascular

  8. Unfolded Protein Response-regulated Drosophila Fic (dFic) Protein Reversibly AMPylates BiP Chaperone during Endoplasmic Reticulum Homeostasis*

    Science.gov (United States)

    Ham, Hyeilin; Woolery, Andrew R.; Tracy, Charles; Stenesen, Drew; Krämer, Helmut; Orth, Kim

    2014-01-01

    Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, whereas the level of AMPylated BiP decreases upon the accumulation of misfolded proteins in the ER. Both dFic and BiP are transcriptionally activated upon ER stress, supporting the role of dFic in the unfolded protein response pathway. The inactive conformation of BiP is the preferred substrate for dFic, thus endorsing a model whereby AMPylation regulates the function of BiP as a chaperone, allowing acute activation of BiP by deAMPylation during an ER stress response. These findings not only present the first substrate of eukaryotic AMPylator but also provide a target for regulating the unfolded protein response, an emerging avenue for cancer therapy. PMID:25395623

  9. New insights on the functional role of URG7 in the cellular response to ER stress.

    Science.gov (United States)

    Armentano, Maria Francesca; Caterino, Marianna; Miglionico, Rocchina; Ostuni, Angela; Pace, Maria Carmela; Cozzolino, Flora; Monti, Maria; Milella, Luigi; Carmosino, Monica; Pucci, Piero; Bisaccia, Faustino

    2018-04-28

    Up-regulated Gene clone 7 (URG7) is an ER resident protein, whose expression is up-regulated in the presence of hepatitis B virus X antigen (HBxAg) during HBV infection. In virus-infected hepatocytes, URG7 shows an anti-apoptotic activity due to the PI3K/AKT signalling activation, does not seem to have tumorigenic properties, but it appears to promote the development and progression of fibrosis. However, the molecular mechanisms underlying URG7 activity remain largely unknown. To shed light on URG7 activity, we first analysed its interactome in HepG2 transfected cells: this analysis suggests that URG7 could have a role in affecting protein synthesis, folding and promoting proteins degradation. Moreover, keeping into account its subcellular localisation in the ER and that several viral infections give rise to ER stress, a panel of experiments was performed to evaluate a putative role of URG7 in ER stress. Our main results demonstrate that in ER-stressed cells URG7 is able to modulate the expression of Unfolded Protein Response (UPR) markers towards survival outcomes, up-regulating GRP78 protein and down-regulating the pro-apoptotic protein CHOP. Furthermore, URG7 reduces the ER stress by decreasing the amount of unfolded proteins, by increasing both the total protein ubiquitination and the AKT activation and reducing Caspase 3 activation. All together these data suggest that URG7 plays a pivotal role as a reliever of ER stress-induced apoptosis. This is the first characterisation of URG7 activity under ER stress conditions. The results presented here will help to hypothesise new strategies to counteract the antiapoptotic activity of URG7 in the context of the viral infection. © 2018 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  10. Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis.

    Science.gov (United States)

    Yam, Gary Hin-Fai; Gaplovska-Kysela, Katarina; Zuber, Christian; Roth, Jürgen

    2007-04-01

    To evaluate the effect of chemical chaperones on the trafficking of secretion-incompetent primary open-angle glaucoma-associated mutant myocilin and the possibility to rescue cells coexpressing mutant and wild-type myocilin from endoplasmic reticulum (ER) stress and apoptosis. CHO-K1, HEK293 and human trabecular meshwork cells were transfected to express wild-type or mutant (C245Y, G364V, P370L, Y437H) myocilin-green fluorescent protein fusion protein and were treated or not with various chemical chaperones (glycerol, dimethylsulfoxide, or sodium 4-phenylbutyrate) for different time periods. The secretion, Triton X-100 solubility, and intracellular distribution of wild-type and mutant myocilin were analyzed by immunoprecipitation, Western blotting, and confocal double immunofluorescence. The effect of sodium 4-phenylbutyrate on ER stress proteins and apoptosis was examined in cells coexpressing mutant and wild-type myocilin. Treatment with sodium 4-phenylbutyrate, but not with glycerol or dimethylsulfoxide, reduced the amount of detergent-insoluble myocilin aggregates, diminished myocilin interaction with calreticulin, and restored the secretion of mutant myocilin. Heteromeric complexes formed by mutant and wild-type myocilin induced the ER stress-associated phosphorylated form of ER-localized eukaryotic initiation factor (eIF)-2alpha kinase and the active form of caspase 3, which resulted in an increased rate of apoptosis. Sodium 4-phenylbutyrate treatment of cells coexpressing mutant and wild-type myocilin relieved ER stress and significantly reduced the rate of apoptosis. These findings indicate that sodium 4-phenylbutyrate protects cells from the deleterious effects of ER-retained aggregated mutant myocilin. These data point to the possibility of a chemical chaperone treatment for myocilin-caused primary open-angle glaucoma.

  11. Gemcitabine treatment induces endoplasmic reticular (ER) stress and subsequently upregulates urokinase plasminogen activator (uPA) to block mitochondrial-dependent apoptosis in Panc-1 cancer stem-like cells (CSCs).

    Science.gov (United States)

    Wang, Li; Zhang, Yi; Wang, Weiguo; Zhu, Yunjie; Chen, Yang; Tian, Bole

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor survival rates. The presence of cancer stem-like cells (CSCs) is believed to be among the underlying reasons for the aggressiveness of PDAC, which contributes to chemoresistance and recurrence. However, the mechanisms that induce chemoresistance and inhibit apoptosis remain largely unknown. We used serum-free medium to enrich CSCs from panc-1 human pancreatic cancer cells and performed sphere formation testing, flow cytometry, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and semi-quantitative western blotting to confirm the stemness of panc-1 CSCs. Hallmarks of endoplasmic reticulum (ER) stress, including IRE1, PERK, ATF4, ATF6α, GRP78 and uPA expression, were detected after gemcitabine treatment. Effects of gemcitabine-induced uPA expression on cell invasion, sphere formation, colony formation and gemcitabine sensitivity were detected. Electrophoretic mobility shift assays (EMSAs) and RNA-immunoprecipitation (RIP) were performed to detect interaction between the uPA mRNA 3'-UTR and mutant p53-R273H expressed by panc-1 CSCs. The effects of upregulated uPA by gemcitabine on apoptosis were detected by Annexin V-FITC/PI staining, and the impact of uPA on small molecule CP-31398-restored mutant p53 transcriptional activity was measured by a luciferase reporter assay. Enriched panc-1 CSCs expressing high levels of CD44 and CD133 also produced significantly higher amounts of Oct4 and Nanog. Compared with panc-1 cells, panc-1 CSCs presented chemoresistance to gemcitabine. ER stress gene detections demonstrated effects of gemcitabine-induced ER stress on both the pro-apoptotic and pro-survival branches. ER stress-induced ATF6α upregulated level of uPA by transcriptionally activating GRP78. Gemcitabine-induced uPA promoted invasion, sphere formation and colony formation and attenuated apoptosis induced by gemcitabine in panc-1 CSCs, depending on interaction with mutant p53

  12. ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Yoon-hee eHong

    2015-07-01

    Full Text Available Unfolded protein response (UPR is crucial for both survival and death of mammalian cells, which is regulated by reactive oxygen species (ROS and nutrient depletion. In this study, we demonstrated the effect of ROS-accumulation, induced by β-phenethyl isothiocyanate (PEITC, on UPR mediated apoptosis in ovarian cancer cells. We used ovarian cancer cell lines, PA-1 and SKOV-3, with different p53 status (wild- and null- type, respectively. PEITC caused increased ROS-accumulation and inhibited proliferation selectively in ovarian cancer cells, and glutathione (GSH depletion in SKOV-3. However, PEITC did not cause any effect in normal ovarian epithelial cells and peripheral blood mononuclear cells. After 48 h of PEITC treatment (5 µM, apoptotic cell death was shown to increase significantly in the ovarian cancer cells and not in the normal cells. The key regulator of UPR-mediated apoptosis, CHOP/GADD153 and ER resident chaperone BiP/GRP78 were parallely up-regulated with activation of two major sensors of the UPR (PERK and ATF-6 in PA-1; PERK, and IRE1α in SKOV-3 in response to ROS accumulation induced by PEITC (5 µM. ROS scavenger, N-acetyl-cysteine (NAC, attenuated the effect of PEITC on UPR signatures (P-PERK, IRE1α, CHOP/GADD153, and BiP/GRP78, suggesting the involvement of ROS in UPR-mediated apoptosis. Altogether, PEITC induces UPR-mediated apoptosis in ovarian cancer cells via accumulation of ROS in a cancer-specific manner.

  13. Study of histopathological and molecular changes of rat kidney under simulated weightlessness and resistance training protective effect.

    Directory of Open Access Journals (Sweden)

    Ye Ding

    Full Text Available To explore the effects of long-term weightlessness on the renal tissue, we used the two months tail suspension model to simulate microgravity and investigated the simulated microgravity on the renal morphological damages and related molecular mechanisms. The microscopic examination of tissue structure and ultrastructure was carried out for histopathological changes of renal tissue morphology. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated the observations. Hematoxylin and eosin (HE staining showed severe pathological kidney lesions including glomerular atrophy, degeneration and necrosis of renal tubular epithelial cells in two months tail-suspended rats. Ultrastructural studies of the renal tubular epithelial cells demonstrated that basal laminas of renal tubules were rough and incrassate with mitochondria swelling and vacuolation. Cell apoptosis in kidney monitored by the expression of Bax/Bcl-2 and caspase-3 accompanied these pathological damages caused by long-term microgravity. Analysis of the HSP70 protein expression illustrated that overexpression of HSP70 might play a crucial role in inducing those pathological damages. Glucose regulated protein 78 (GRP78, one of the endoplasmic reticulum (ER chaperones, was up-regulated significantly in the kidney of tail suspension rat, which implied that ER-stress was associated with apoptosis. Furthermore, CHOP and caspase-12 pathways were activated in ER-stress induced apoptosis. Resistance training not only reduced kidney cell apoptosis and expression of HSP70 protein, it also can attenuate the kidney impairment imposed by weightlessness. The appropriate optimization might be needed for the long term application for space exploration.

  14. Study of Histopathological and Molecular Changes of Rat Kidney under Simulated Weightlessness and Resistance Training Protective Effect

    Science.gov (United States)

    Li, Zhili; Tian, Jijing; Abdelalim, Saed; Du, Fang; She, Ruiping; Wang, Desheng; Tan, Cheng; Wang, Huijuan; Chen, Wenjuan; Lv, Dongqiang; Chang, Lingling

    2011-01-01

    To explore the effects of long-term weightlessness on the renal tissue, we used the two months tail suspension model to simulate microgravity and investigated the simulated microgravity on the renal morphological damages and related molecular mechanisms. The microscopic examination of tissue structure and ultrastructure was carried out for histopathological changes of renal tissue morphology. The immunohistochemistry, real-time PCR and Western blot were performed to explore the molecular mechanisms associated the observations. Hematoxylin and eosin (HE) staining showed severe pathological kidney lesions including glomerular atrophy, degeneration and necrosis of renal tubular epithelial cells in two months tail-suspended rats. Ultrastructural studies of the renal tubular epithelial cells demonstrated that basal laminas of renal tubules were rough and incrassate with mitochondria swelling and vacuolation. Cell apoptosis in kidney monitored by the expression of Bax/Bcl-2 and caspase-3 accompanied these pathological damages caused by long-term microgravity. Analysis of the HSP70 protein expression illustrated that overexpression of HSP70 might play a crucial role in inducing those pathological damages. Glucose regulated protein 78 (GRP78), one of the endoplasmic reticulum (ER) chaperones, was up-regulated significantly in the kidney of tail suspension rat, which implied that ER-stress was associated with apoptosis. Furthermore, CHOP and caspase-12 pathways were activated in ER-stress induced apoptosis. Resistance training not only reduced kidney cell apoptosis and expression of HSP70 protein, it also can attenuate the kidney impairment imposed by weightlessness. The appropriate optimization might be needed for the long term application for space exploration. PMID:21625440

  15. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  16. Single-prolonged stress induces endoplasmic reticulum-dependent apoptosis in the hippocampus in a rat model of post-traumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Fang Han

    Full Text Available BACKGROUND: Our previous research indicated that apoptosis induced atrophy in the hippocampus of post-traumatic stress disorder (PTSD rats. Endoplasmic reticulum (ER stress-induced apoptosis has been implicated in the development of several disorder diseases. The aim of this study was to investigate whether endoplasmic reticulum-related pathway is involved in single-prolonged stress (SPS induces apoptosis in the hippocampus of PTSD rats by examining the expression levels of three important indicators in the ER-related apoptotic pathway: Glucose-regulated protein (GRP 78, caspase-12 and Ca(2+/CaM/CaMkinaseIIα (CaMkIIα. METHODS: Wistar rats were sacrificed at 1, 4 and 7 days after SPS. SPS is a reliable animal model of PTSD. The apoptotic cells in the hippocampus were assessed by TUNEL method and transmission electron microscopy (TEM. Free intracellular Ca(2+ concentration was measured. GRP78 expression was examined by immunohistochemistry, western blotting and RT-PCR. mRNA of caspase-12 and CaM/CaMkIIα were determined by RT-PCR. RESULTS: Our results showed that apoptotic cells were increased in the SPS rats. TEM analysis revealed characteristic morphological changes of apoptosis in these cells. We observed that GRP78 was significantly up-regulated during early PTSD, and then recovered at 7 days after SPS. By RT-PCR, we observed that the change in caspase-12 expression level was similar to that in GRP78. Moreover, the free intracellular Ca(2+ concentration was significantly higher at 1 day after SPS and decreased in 7 days. CaM expression increased significantly, while CaMKIIα expression decreased significantly in the hippocampus at 1 day after SPS. CONCLUSION: SPS induced change in the expression levels of GRP78, caspase-12 and Ca(2+/CaM/CaMkIIα in the hippocampus of PTSD rats indicated that the endoplasmic reticulum pathway may be involved in PTSD-induced apoptosis.

  17. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    Science.gov (United States)

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  18. The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes.

    Science.gov (United States)

    Gao, Yang; Jia, Pengyu; Shu, WenQi; Jia, Dalin

    2016-03-05

    Nowadays, drugs protecting ischemia/reperfusion (I/R) myocardium become more suitable for clinic. It has been confirmed lycopene has various protections, but lacking the observation of its effect on endoplasmic reticulum stress (ERS)-mediated apoptosis caused by hypoxia/reoxygenation (H/R). This study aims to clarify the protective effect of lycopene on ERS induced by H/R in H9C2 cardiomyocytes. Detect the survival rate, lactic dehydrogenase (LDH) activity, apoptosis ratio, glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP), c-Jun-N-terminal protein Kinase (JNK) and Caspase-12 mRNA and protein expression and phosphorylation of JNK (p-JNK) protein expression. LDH activity, apoptosis ratio and GRP78 protein expression increase in the H/R group, reduced by lycopene. The survival rate reduces in the H/R and thapsigargin (TG) groups; lycopene and 4-phenyl butyric acid (4-PBA) can improve it caused by H/R, lycopene also can improve it caused by TG. The apoptosis ratio, the expression of GRP78, CHOP and Caspase-12 mRNA and protein and p-JNK protein increase in the H/R and TG groups, weaken in the lycopene+H/R, 4-PBA+H/R and lycopene+TG groups. There is no obvious change in the expression of JNK mRNA or protein. Hence, our results provide the evidence that 10 μM lycopene plays an obviously protective effect on H/R H9C2 cardiomyocytes, realized through reducing ERS and apoptosis. The possible mechanism may be related to CHOP, p-JNK and Caspase-12 pathways. Copyright © 2016. Published by Elsevier B.V.

  19. Bicyclol attenuates tetracycline-induced fatty liver associated with inhibition of hepatic ER stress and apoptosis in mice.

    Science.gov (United States)

    Yao, Xiao-Min; Li, Yue; Li, Hong-Wei; Cheng, Xiao-Yan; Lin, Ai-Bin; Qu, Jun-Ge

    2016-01-01

    Endoplasmic reticulum (ER) stress is known to be involved in the development of several metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). Tetracycline can cause hepatic steatosis, and ER stress may be involved in tetracycline-induced fatty liver. Our previous study showed that bicyclol has been proven to protect against tetracycline-induced fatty liver in mice, and ER stress may also be involved in bicyclol's hepatoprotective effect. Therefore, this study was performed to investigate the underlying mechanisms associated with ER stress and apoptosis, by which bicyclol attenuated tetracycline-induced fatty liver in mice. Bicyclol (300 mg/kg) was given to mice by gavage 3 times. Tetracycline (200 mg/kg, intraperitoneally) was injected at 1 h after the last dose of bicyclol. At 6 h and 24 h after single dose of tetracycline injection, serum ALT, AST, TG, CHO and hepatic histopathological examinations were performed to evaluate liver injuries. Hepatic steatosis was assessed by the accumulation of hepatic TG and CHO. Moreover, hepatic apoptosis and ER stress related markers were determined by TUNEL, real-time PCR, and western blot. As a result, bicyclol significantly protected against tetracycline-induced fatty liver as evidenced by the decrease of elevated serum transaminases and hepatic triglyceride, and the attenuation of histopathological changes in mice. In addition, bicyclol remarkably alleviated hepatic apoptosis and the gene expression of caspase-3, and increased the gene expression of XIAP. The gene expressions of ER stress-related markers, including CHOP, GRP78, IRE-1α, and ATF6, which were downregulated by bicyclol pretreatment in tetracycline-injected mice. These results suggested that bicyclol protected tetracycline-induced fatty liver partly due to its ability of anti-apoptosis associated with ER stress.

  20. Efectiveness of GrpMI with fibromyalgia patients

    DEFF Research Database (Denmark)

    Torres Serna, Esperanza

    This study attempts to demonstrate the effectiveness of Group Music and Imagery (GrpMI) with women suffering from fibromyalgia (FM). It uses a randomized controlled trial, with a pretest-posttest control group design, and a three month follow-up. The results show statistically or tendentially...... that it is advisable to use music therapy and especially Group Imagery and Music for FM treatment. The results obtained open the way for further research studies focussing on the usefulness of GrpMI in other populations that, like FM sufferers, experience chronic pain....

  1. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome.

    Science.gov (United States)

    Shang, Linshan; Hua, Haiqing; Foo, Kylie; Martinez, Hector; Watanabe, Kazuhisa; Zimmer, Matthew; Kahler, David J; Freeby, Matthew; Chung, Wendy; LeDuc, Charles; Goland, Robin; Leibel, Rudolph L; Egli, Dieter

    2014-03-01

    Wolfram syndrome is an autosomal recessive disorder caused by mutations in WFS1 and is characterized by insulin-dependent diabetes mellitus, optic atrophy, and deafness. To investigate the cause of β-cell failure, we used induced pluripotent stem cells to create insulin-producing cells from individuals with Wolfram syndrome. WFS1-deficient β-cells showed increased levels of endoplasmic reticulum (ER) stress molecules and decreased insulin content. Upon exposure to experimental ER stress, Wolfram β-cells showed impaired insulin processing and failed to increase insulin secretion in response to glucose and other secretagogues. Importantly, 4-phenyl butyric acid, a chemical protein folding and trafficking chaperone, restored normal insulin synthesis and the ability to upregulate insulin secretion. These studies show that ER stress plays a central role in β-cell failure in Wolfram syndrome and indicate that chemical chaperones might have therapeutic relevance under conditions of ER stress in Wolfram syndrome and other forms of diabetes.

  2. An unexpected role for the yeast nucleotide exchange factor Sil1 as a reductant acting on the molecular chaperone BiP

    Science.gov (United States)

    Siegenthaler, Kevin D; Pareja, Kristeen A; Wang, Jie; Sevier, Carolyn S

    2017-01-01

    Unfavorable redox conditions in the endoplasmic reticulum (ER) can decrease the capacity for protein secretion, altering vital cell functions. While systems to manage reductive stress are well-established, how cells cope with an overly oxidizing ER remains largely undefined. In previous work (Wang et al., 2014), we demonstrated that the chaperone BiP is a sensor of overly oxidizing ER conditions. We showed that modification of a conserved BiP cysteine during stress beneficially alters BiP chaperone activity to cope with suboptimal folding conditions. How this cysteine is reduced to reestablish 'normal' BiP activity post-oxidative stress has remained unknown. Here we demonstrate that BiP's nucleotide exchange factor – Sil1 – can reverse BiP cysteine oxidation. This previously unexpected reductant capacity for yeast Sil1 has potential implications for the human ataxia Marinesco-Sjögren syndrome, where it is interesting to speculate that a disruption in ER redox-signaling (due to genetic defects in SIL1) may influence disease pathology. DOI: http://dx.doi.org/10.7554/eLife.24141.001 PMID:28257000

  3. Suppress flashover of GRP fire with water mist inside ISO 9705 Room

    Directory of Open Access Journals (Sweden)

    Qiang Xu

    2011-01-01

    Full Text Available Water mist suppression tests for glass-reinforced polyester (GRP panels were conducted in ISO 9705 room. GRP panels covered part of the room and a wood crib fire was used as fire source to ignite GRP fire. A four-nozzle water mist suppression equipment was used inside test room on the time of flashover. Heat release rate of the combustion inside the room, room temperature, surface temperature of GRP panels, total heat flux to wall, ceiling and floor in specific positions were measured. Gas concentration of O2, CO, and CO2 was also measured in the corner of the room at two different levels. A thermal image video was used to record the suppression procedure inside room. Test results show that the water mist system is efficient in suppressing the flashover of GRP fire and cooling the room within short time.

  4. Tributyltin-induced endoplasmic reticulum stress and its Ca(2+)-mediated mechanism.

    Science.gov (United States)

    Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca(2+) signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca(2+) homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca(2+) depletion, and to test this idea, we examined the effect of TBT on intracellular Ca(2+) concentration using fura-2 AM, a Ca(2+) fluorescent probe. TBT increased intracellular Ca(2+) concentration in a TBT-concentration-dependent manner, and Ca(2+) increase in 700nM TBT was mainly blocked by 50μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca(2+) concentration by releasing Ca(2+) from ER, thereby causing ER stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. RasGRP1 confers the phorbol ester-sensitive phenotype to EL4 lymphoma cells.

    Science.gov (United States)

    Han, Shujie; Knoepp, Stewart M; Hallman, Mark A; Meier, Kathryn E

    2007-01-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to the tumor promoter phorbol 12-myristate 13-acetate (PMA). In sensitive EL4 cells, PMA causes robust Erk mitogen-activated protein kinase activation that results in growth arrest. In resistant cells, PMA induces minimal Erk activation, without growth arrest. PMA stimulates IL-2 production in sensitive, but not resistant, cells. The role of RasGRP1, a PMA-activated guanine nucleotide exchange factor for Ras, in EL4 phenotype was examined. Endogenous RasGRP1 protein is expressed at much higher levels in sensitive than in resistant cells. PMA-induced Ras activation is observed in sensitive cells but not in resistant cells lacking Ras-GRP1. PMA induces down-regulation of RasGRP1 protein in sensitive cells but increases RasGRP1 in resistant cells. Transfection of RasGRP1 into resistant cells enhances PMA-induced Erk activation. In the reverse experiment, introduction of small interfering RNA (siRNA) for RasGRP1 suppresses PMA-induced Ras and Erk activations in sensitive cells. Sensitive cells incubated with siRNA for RasGRP1 exhibit the PMA-resistant phenotype, in that they are able to proliferate in the presence of PMA and do not secrete IL-2 when stimulated with PMA. These studies indicate that the PMA-sensitive phenotype, as previously defined for the EL4 cell line, is conferred by endogenous expression of RasGRP1 protein.

  6. Mechanical and hypoxia stress can cause chondrocytes apoptosis through over-activation of endoplasmic reticulum stress.

    Science.gov (United States)

    Huang, Ziwei; Zhou, Min; Wang, Qian; Zhu, Mengjiao; Chen, Sheng; Li, Huang

    2017-12-01

    To examine the role of mechanical force and hypoxia on chondrocytes apoptosis and osteoarthritis (OA)-liked pathological change on mandibular cartilage through over-activation of endoplasmic reticulum stress (ERS). We used two in vitro models to examine the effect of mechanical force and hypoxia on chondrocytes apoptosis separately. The mandibular condylar chondrocytes were obtained from three-week-old male Sprague-Dawley rats. Flexcell 5000T apparatus was used to produce mechanical forces (12%, 0.5Hz, 24h vs 20%, 0.5Hz, 24h) on chondrocytes. For hypoxia experiment, the concentration of O 2 was down regulated to 5% or 1%. Cell apoptosis rates were quantified by annexin V and propidium iodide (PI) double staining and FACS analysis. Quantitative real-time PCR and western blot were performed to evaluate the activation of ERS and cellular hypoxia. Then we used a mechanical stress loading rat model to verify the involvement of ERS in OA-liked mandibular cartilage pathological change. Histological changes in mandibular condylar cartilage were assessed via hematoxylin & eosin (HE) staining. Immunohistochemistry of GRP78, GRP94, HIF-1α, and HIF-2α were performed to evaluate activation of the ERS and existence of hypoxia. Apoptotic cells were detected by the TUNEL method. Tunicamycin, 20% mechanical forces and hypoxia (1% O 2 ) all significantly increased chondrocytes apoptosis rates and expression of ERS markers (GRP78, GRP94 and Caspase 12). However, 12% mechanical forces can only increase the apoptotic sensitivity of chondrocytes. Mechanical stress resulted in OA-liked pathological change on rat mandibular condylar cartilage which included thinning cartilage and bone erosion. The number of apoptotic cells increased. ERS and hypoxia markers expressions were also enhanced. Salubrinal, an ERS inhibitor, can reverse these effects in vitro and in vivo through the down-regulation of ERS markers and hypoxia markers. We confirmed that mechanical stress and local hypoxia both

  7. Gla-Rich Protein Is a Potential New Vitamin K Target in Cancer: Evidences for a Direct GRP-Mineral Interaction

    Directory of Open Access Journals (Sweden)

    Carla S. B. Viegas

    2014-01-01

    Full Text Available Gla-rich protein (GRP was described in sturgeon as a new vitamin-K-dependent protein (VKDP with a high density of Gla residues and associated with ectopic calcifications in humans. Although VKDPs function has been related with γ-carboxylation, the Gla status of GRP in humans is still unknown. Here, we investigated the expression of recently identified GRP spliced transcripts, the γ-carboxylation status, and its association with ectopic calcifications, in skin basal cell and breast carcinomas. GRP-F1 was identified as the predominant splice variant expressed in healthy and cancer tissues. Patterns of γ-carboxylated GRP (cGRP/undercarboxylated GRP (ucGRP accumulation in healthy and cancer tissues were determined by immunohistochemistry, using newly developed conformation-specific antibodies. Both GRP protein forms were found colocalized in healthy tissues, while ucGRP was the predominant form associated with tumor cells. Both cGRP and ucGRP found at sites of microcalcifications were shown to have in vitro calcium mineral-binding capacity. The decreased levels of cGRP and predominance of ucGRP in tumor cells suggest that GRP may represent a new target for the anticancer potential of vitamin K. Also, the direct interaction of cGRP and ucGRP with BCP crystals provides a possible mechanism explaining GRP association with pathological mineralization.

  8. Creatine phosphate disodium salt protects against Dox-induced cardiotoxicity by increasing calumenin.

    Science.gov (United States)

    Wang, Yu; Sun, Ying; Guo, Xin; Fu, Yao; Long, Jie; Wei, Cheng-Xi; Zhao, Ming

    2018-06-01

    Inhibiting endoplasmic reticulum stress (ERS)-induced apoptosis may be a new therapeutic target in cardiovascular diseases. Creatine phosphate disodium salt (CP) has been reported to have cardiovascular protective effect, but its effects on ERS are unknown. The aim of this study was to identify the mechanism by which CP exerts its cardioprotection in doxorubicin (Dox)-induced cardiomyocytes injury. In our study, neonatal rats cardiomyocytes (NRC) was randomly divided into control group, model group, and treatment group. The cell viability and apoptosis were detected. grp78, grp94, and calumenin of the each group were monitored. To investigate the role of calumenin, Dox-induced ERS was compared in control and down-regulated calumenin cardiomyocytes. Our results showed that CP decreased Dox-induced apoptosis and relieved ERS. We found calumenin increased in Dox-induced apoptosis with CP. ERS effector C/EBP homologous protein was down-regulated by CP and it was influenced by calumenin. CP could protect NRC by inhibiting ERS, this mechanisms may be associated with its increasing of calumenin.

  9. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity.

    Science.gov (United States)

    Park, Chang-Jin; Seo, Young-Su

    2015-12-01

    As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

  10. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

    Directory of Open Access Journals (Sweden)

    Chang-Jin Park

    2015-12-01

    Full Text Available As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs or resistance (R proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

  11. Central ventilatory and cardiovascular actions of trout gastrin-releasing peptide (GRP in the unanesthetized trout

    Directory of Open Access Journals (Sweden)

    Jean-Claude Le Mével

    2013-07-01

    Gastrin-releasing peptide (GRP, a neuropeptide initially isolated from porcine stomach, shares sequence similarity with bombesin. GRP and its receptors are present in the brains and peripheral tissues of several species of teleost fish, but little is known about the ventilatory and cardiovascular effects of this peptide in these vertebrates. The goal of this study was to compare the central and peripheral actions of picomolar doses of trout GRP on ventilatory and cardiovascular variables in the unanesthetized rainbow trout. Compared to vehicle, intracerebroventricular (ICV injection of GRP (1–50 pmol significantly elevated the ventilation rate (ƒV and the ventilation amplitude (VAMP, and consequently the total ventilation (VTOT. The maximum hyperventilatory effect of GRP (VTOT: +225%, observed at a dose of 50 pmol, was mostly due to its stimulatory action on VAMP (+170% rather than ƒV (+20%. In addition, ICV GRP (50 pmol produced a significant increase in mean dorsal aortic blood pressure (PDA (+35% and in heart rate (ƒH (+25%. Intra-arterial injections of GRP (5–100 pmol were without sustained effect on the ventilatory variables but produced sporadic and transient increases in ventilatory movement at doses of 50 and 100 pmol. At these doses, GRP elevated PDA by +20% but only the 50 pmol dose significantly increased HR (+15%. In conclusion, our study suggests that endogenous GRP within the brain of the trout may act as a potent neurotransmitter and/or neuromodulator in the regulation of cardio-ventilatory functions. In the periphery, endogenous GRP may act as locally-acting and/or circulating neurohormone with an involvement in vasoregulatory mechanisms.

  12. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The expression patterns of CHOP and glucose-regulated protein (GRP) 78, a good marker of ER stress, were assessed by Western blotting, real-time PCR, Hoechst and immunohistochemistry in the hippocampus, cortex and striatum on a status epilepticus (SE) model. Double-fluorescent staining of CHOP and the terminal ...

  13. The effect of chronic ozone exposure on the activation of endoplasmic reticulum stress and apoptosis in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Erika Rodríguez-Martínez

    2016-10-01

    Full Text Available The chronic exposure to low doses of ozone, like in environmental pollution, leads to a state of oxidative stress, which has been proposed to contribute to neurodegenerative disorders, including Alzheimer's disease. It induces an increase of calcium in the endoplasmic reticulum (ER, which produces ER stress. On the other hand, different studies show that, in diseases such as Alzheimer’s, there exist disturbances in protein folding where ER plays an important role. The objective of this study was to evaluate the state of chronic oxidative stress on ER stress and its relationship with apoptotic death in the hippocampus of rats exposed to low doses of ozone. We used 108 male Wistar rats randomly divided into five groups. The groups received one of the following treatments: 1 Control (air, 2 Ozone (O3 7 days, 3 O3 15 days, 4 O3 30 days, 5 O3 60 days, and 6 O3 90 days. Two hours after each treatment, the animals were sacrificed and the hippocampus was extracted. Afterwards, the tissue was processed for western blot and immunohistochemistry using the following antibodies: ATF6, GRP8 and caspase 12. It was also performed TUNEL assay and electronic microscopy. Our results show an increase in ATF6, GRP78 and caspase 12 as well as ER ultrastructural alterations and an increase of TUNEL positive cells after 60 and 90 days of exposure to ozone. With the obtained results, we can conclude that oxidative stress induced by chronic exposure to low doses of ozone leads to ER stress. ER stress activates ATF6 inducing the increase of GRP78 in the cytoplasm, which leads to the increase in the nuclear translocation of ATF6. Finally, the translocation creates a vicious cycle that, together with the activation of the cascade for apoptotic cell death, contributes to the maintenance of ER stress. These events potentially contribute in the neurodegeneration processes in diseases like Alzheimer’s Disease.

  14. Propofol attenuates H2O2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes.

    Science.gov (United States)

    Liu, Xue-Ru; Cao, Lu; Li, Tao; Chen, Lin-Lin; Yu, Yi-Yan; Huang, Wen-Jun; Liu, Li; Tan, Xiao-Qiu

    2017-05-01

    Previous studies have shown that propofol, an intravenous anesthetic commonly used in clinical practice, protects the myocardium from injury. Mitochondria- and endoplasmic reticulum (ER)-mediated oxidative stress and apoptosis are two important signaling pathways involved in myocardial injury and protection. The present study aimed to test the hypothesis that propofol could exert a cardio-protective effect via the above two pathways. Cultured neonatal rat cardiomyocytes were treated with culture medium (control group), H 2 O 2 at 500 μM (H 2 O 2 group), propofol at 50 μM (propofol group), and H 2 O 2 plus propofol (H 2 O 2  + propofol group), respectively. The oxidative stress, mitochondrial membrane potential (ΔΨm) and apoptosis of the cardiomyocytes were evaluated by a series of assays including ELISA, flow cytometry, immunofluorescence microscopy and Western blotting. Propofol significantly suppressed the H 2 O 2 -induced elevations in the activities of caspases 3, 8, 9 and 12, the ratio of Bax/Bcl-2, and cell apoptosis. Propofol also inhibited the H 2 O 2 -induced reactive oxygen species (ROS) generation, lactic dehydrogenase (LDH) release and mitochondrial transmembrane potential (ΔΨm) depolarization, and restored the H 2 O 2 -induced reductions of glutathione (GSH) and superoxide dismutase (SOD). In addition, propofol decreased the expressions of glucose-regulated protein 78 kDa (Grp78) and inositol-requiring enzyme 1α (IRE1α), two important signaling molecules in the ER-mediated apoptosis pathway. Propofol protects cardiomyocytes from H 2 O 2 -induced injury by inhibiting the mitochondria- and ER-mediated apoptosis signaling pathways.

  15. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.

    Science.gov (United States)

    Zhang, Hong; Yang, Jie; Wu, Si; Gong, Weibin; Chen, Chang; Perrett, Sarah

    2016-03-25

    DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A Human Variant of Glucose-Regulated Protein 94 That Inefficiently Supports IGF Production

    DEFF Research Database (Denmark)

    Marzec, Michal; Hawkes, Colin P; Eletto, Davide

    2016-01-01

    IGFs are critical for normal intrauterine and childhood growth and sustaining health throughout life. We showed previously that the production of IGF-1 and IGF-2 requires interaction with the chaperone glucose-regulated protein 94 (GRP94) and that the amount of secreted IGFs is proportional...... in a child with primary IGF deficiency and was later shown to be a noncommon single-nucleotide polymorphism with frequencies of 1%-4% in various populations. When tested in the grp94(-/-) cell-based complementation assay, P300L supported only approximately 58% of IGF secretion relative to wild-type GRP94....... Furthermore, recombinant P300L showed impaired nucleotide binding activity. These in vitro data strongly support a causal relationship between the GRP94 variant and the decreased concentration of circulating IGF-1, as observed in human carriers of P300L. Thus, mutations in GRP94 that affect its IGF chaperone...

  17. ER signaling is activated to protect human HaCaT keratinocytes from ER stress induced by environmental doses of UVB

    International Nuclear Information System (INIS)

    Mera, Kentaro; Kawahara, Ko-ichi; Tada, Ko-ichi; Kawai, Kazuhiro; Hashiguchi, Teruto; Maruyama, Ikuro; Kanekura, Takuro

    2010-01-01

    Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-Lα, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10 mJ/cm 2 irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm 2 UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.

  18. Redox signaling via the molecular chaperone BiP protects cells against endoplasmic reticulum-derived oxidative stress

    Science.gov (United States)

    Wang, Jie; Pareja, Kristeen A; Kaiser, Chris A; Sevier, Carolyn S

    2014-01-01

    Oxidative protein folding in the endoplasmic reticulum (ER) has emerged as a potentially significant source of cellular reactive oxygen species (ROS). Recent studies suggest that levels of ROS generated as a byproduct of oxidative folding rival those produced by mitochondrial respiration. Mechanisms that protect cells against oxidant accumulation within the ER have begun to be elucidated yet many questions still remain regarding how cells prevent oxidant-induced damage from ER folding events. Here we report a new role for a central well-characterized player in ER homeostasis as a direct sensor of ER redox imbalance. Specifically we show that a conserved cysteine in the lumenal chaperone BiP is susceptible to oxidation by peroxide, and we demonstrate that oxidation of this conserved cysteine disrupts BiP's ATPase cycle. We propose that alteration of BiP activity upon oxidation helps cells cope with disruption to oxidative folding within the ER during oxidative stress. DOI: http://dx.doi.org/10.7554/eLife.03496.001 PMID:25053742

  19. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Fenglei Chen

    2015-08-01

    Full Text Available Zearalenone (ZEA is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78 and CCAAT/enhancer binding protein homologous protein (CHOP, two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs, significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.

  20. The crystal structure of the human co-chaperone P58(IPK.

    Directory of Open Access Journals (Sweden)

    Maria Svärd

    Full Text Available P58(IPK is one of the endoplasmic reticulum- (ER- localised DnaJ (ERdj proteins which interact with the chaperone BiP, the mammalian ER ortholog of Hsp70, and are thought to contribute to the specificity and regulation of its diverse functions. P58(IPK, expression of which is upregulated in response to ER stress, has been suggested to act as a co-chaperone, binding un- or misfolded proteins and delivering them to BiP. In order to give further insights into the functions of P58(IPK, and the regulation of BiP by ERdj proteins, we have determined the crystal structure of human P58(IPK to 3.0 Å resolution using a combination of molecular replacement and single wavelength anomalous diffraction. The structure shows the human P58(IPK monomer to have a very elongated overall shape. In addition to the conserved J domain, P58(IPK contains nine N-terminal tetratricopeptide repeat motifs, divided into three subdomains of three motifs each. The J domain is attached to the C-terminal end via a flexible linker, and the structure shows the conserved Hsp70-binding histidine-proline-aspartate (HPD motif to be situated on the very edge of the elongated protein, 100 Å from the putative binding site for unfolded protein substrates. The residues that comprise the surface surrounding the HPD motif are highly conserved in P58(IPK from other organisms but more varied between the human ERdj proteins, supporting the view that their regulation of different BiP functions is facilitated by differences in BiP-binding.

  1. Protective effect of catechin in type I Gaucher disease cells by reducing endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Lee, Yea-Jin; Kim, Sung-Jo; Heo, Tae-Hwe

    2011-01-01

    Highlights: → Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. → Catechin induces the proliferation rate of GD cells similar levels to normal cells. → Catechin improves wound healing activity. → Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. → We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.

  2. Protective effect of catechin in type I Gaucher disease cells by reducing endoplasmic reticulum stress

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yea-Jin [Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, 336-795 (Korea, Republic of); Kim, Sung-Jo, E-mail: sungjo@hoseo.edu [Department of Biotechnology, Hoseo University, Baebang, Asan, Chungnam, 336-795 (Korea, Republic of); Heo, Tae-Hwe, E-mail: thhur92@catholic.ac.kr [College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2011-09-23

    Highlights: {yields} Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. {yields} Catechin induces the proliferation rate of GD cells similar levels to normal cells. {yields} Catechin improves wound healing activity. {yields} Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. {yields} We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset in adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.

  3. Excessive endoplasmic reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise.

    Science.gov (United States)

    Li, Feng; Liu, Bei Bei; Cai, Ming; Li, Jing Jing; Lou, Shu-Jie

    2018-04-06

    Studies have shown high fat diet induced obesity may cause cognition impairment and down-regulation of neuroplasticity-associated proteins, while aerobic exercise could improve that damage. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating neuroplasticity-associated proteins expression, folding and post-translational modification in hippocampus of obese rodent models, however, the effects of ERS on neuroplasticity-associated proteins and possible underlying mechanisms in prefrontal cortex are not fully clear. In order to clarify changes of neuroplasticity-associated proteins and ERS in the prefrontal cortex of obese rats, male SD rats were fed on high fat diet for 8 weeks to establish the obese model. Then, 8 weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that high fat diet induced obesity caused hyperlipidemia, and significantly promoted FATP1 expression in the prefrontal cortex, meanwhile, we found up-regulation of GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2, reflecting the activation of ERS and ERS-mediated apoptosis. Moreover, reduced BDNF and SYN was found in obese rats. However, FATP1, GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2 expressions were obviously reversed by aerobic exercise intervention. These results suggested that dietary obesity could induce Prefrontal ERS in SD rats and excessive ERS may play a critical role in decreasing the levels of neuroplasticity-associated proteins. Moreover, aerobic exercise could relieve ERS, thus promoted the expression of neuroplasticity-associated proteins. Copyright © 2018. Published by Elsevier Inc.

  4. Chaperoning Proteins for Destruction: Diverse Roles of Hsp70 Chaperones and their Co-Chaperones in Targeting Misfolded Proteins to the Proteasome

    Directory of Open Access Journals (Sweden)

    Ayala Shiber

    2014-07-01

    Full Text Available Molecular chaperones were originally discovered as heat shock-induced proteins that facilitate proper folding of proteins with non-native conformations. While the function of chaperones in protein folding has been well documented over the last four decades, more recent studies have shown that chaperones are also necessary for the clearance of terminally misfolded proteins by the Ub-proteasome system. In this capacity, chaperones protect misfolded degradation substrates from spontaneous aggregation, facilitate their recognition by the Ub ligation machinery and finally shuttle the ubiquitylated substrates to the proteasome. The physiological importance of these functions is manifested by inefficient proteasomal degradation and the accumulation of protein aggregates during ageing or in certain neurodegenerative diseases, when chaperone levels decline. In this review, we focus on the diverse roles of stress-induced chaperones in targeting misfolded proteins to the proteasome and the consequences of their compromised activity. We further discuss the implications of these findings to the identification of new therapeutic targets for the treatment of amyloid diseases.

  5. The chaperone BAG6 captures dislocated glycoproteins in the cytosol.

    Directory of Open Access Journals (Sweden)

    Jasper H L Claessen

    Full Text Available Secretory and membrane (glycoproteins are subject to quality control in the endoplasmic reticulum (ER to ensure that only functional proteins reach their destination. Proteins deemed terminally misfolded and hence functionally defective may be dislocated to the cytosol, where the proteasome degrades them. What we know about this process stems mostly from overexpression of tagged misfolded proteins, or from situations where viruses have hijacked the quality control machinery to their advantage. We know of only very few endogenous substrates of ER quality control, most of which are degraded as part of a signaling pathway, such as Insig-1, but such examples do not necessarily represent terminally misfolded proteins. Here we show that endogenous dislocation clients are captured specifically in association with the cytosolic chaperone BAG6, or retrieved en masse via their glycan handle.

  6. Experimental study of inhibitory effects of diallyl trisulfide on the growth of human osteosarcoma Saos-2 cells by downregulating expression of glucose-regulated protein 78

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2018-01-01

    Full Text Available Yue Zhang,1,* Wen-Peng Xie,1,* Yong-Kui Zhang,2 Yi-Qiang Chen,3 Dong-Li Wang,2 Gang Li,2 Dong-Hui Guan2 1First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 2Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 3Department of Orthopedics, The First People’s Hospital of Taian City, Taian, People’s Republic of China *These authors contributed equally to the paper Background: Diallyl trisulfide (DATS is a natural organic sulfur compound isolated from garlic that has good anticancer activity according to many previous reports. There are many studies pointing out that DATS can downregulate expression of the glucose-regulated protein 78 (GRP78, which is associated with poor prognosis and drug resistance in various types of human cancers. However, it remains unknown whether DATS has the same effect on human osteosarcoma cells. This study attempted to clarify the potential molecular mechanisms of the action of DATS in human osteosarcoma Saos-2 cells.Methods: We used an inverted phase microscope and immunofluorescent staining to observe the morphological changes of Saos-2 cells after being cultured in different concentrations of DATS (0, 25, 50, and 100 µM for 24 h, or for four time periods (24, 48, 72, and 96 h in the same DATS concentration (50 µM. Quantitative real-time polymerase chain reaction and Western blot were used to detect the expression level of GRP78 mRNA and proteins in Saos-2 cells. GRP78 expression was suppressed in Saos-2 cells by utilizing small-interfering RNA, and the cells were subsequently used to study the anti-proliferative effects of DATS treatment.Results: The expression level of GRP78 mRNA and proteins was significantly downregulated due to the increased concentration and effective times of DATS (P<0.05. In addition, there were significant associations between GRP78

  7. Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-κB regulation

    Science.gov (United States)

    Chhunchha, Bhavana; Fatma, Nigar; Kubo, Eri; Rai, Prerana; Singh, Sanjay P.

    2013-01-01

    Oxidative stress and endoplasmic reticulum (ER) stress are emerging as crucial events in the etiopathology of many neurodegenerative diseases. While the neuroprotective contributions of the dietary compound curcumin has been recognized, the molecular mechanisms underlying curcumin's neuroprotection under oxidative and ER stresses remains elusive. Herein, we show that curcumin protects HT22 from oxidative and ER stresses evoked by the hypoxia (1% O2 or CoCl2 treatment) by enhancing peroxiredoxin 6 (Prdx6) expression. Cells exposed to CoCl2 displayed reduced expression of Prdx6 with higher reactive oxygen species (ROS) expression and activation of NF-κB with IκB phosphorylation. When NF-κB activity was blocked by using SN50, an inhibitor of NF-κB, or cells treated with curcumin, the repression of Prdx6 expression was restored, suggesting the involvement of NF-κB in modulating Prdx6 expression. These cells were enriched with an accumulation of ER stress proteins, C/EBP homologous protein (CHOP), GRP/78, and calreticulin, and had activated states of caspases 12, 9, and 3. Reinforced expression of Prdx6 in HT22 cells by curcumin reestablished survival signaling by reducing propagation of ROS and blunting ER stress signaling. Intriguingly, knockdown of Prdx6 by antisense revealed that loss of Prdx6 contributed to cell death by sustaining enhanced levels of ER stress-responsive proapoptotic proteins, which was due to elevated ROS production, suggesting that Prdx6 deficiency is a cause of initiation of ROS-mediated ER stress-induced apoptosis. We propose that using curcumin to reinforce the naturally occurring Prdx6 expression and attenuate ROS-based ER stress and NF-κB-mediated aberrant signaling improves cell survival and may provide an avenue to treat and/or postpone diseases associated with ROS or ER stress. PMID:23364261

  8. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    Science.gov (United States)

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  9. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy.

    Directory of Open Access Journals (Sweden)

    Shvetank Sharma

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a known outcome of hepatosteatosis. Free fatty acids (FFA induce the unfolded protein response (UPR or endoplasmic reticulum (ER stress that may induce apoptosis. Recent data indicate ER stress to be a major player in the progression of fatty liver to more aggressive lesions. Autophagy on the other hand has been demonstrated to be protective against ER stress-induced cell death. We hypothesized that exendin-4 (GLP-1 analog treatment of fat loaded hepatocytes can reduce steatosis by autophagy which leads to reduced ER stress-related hepatocyte apoptosis.Primary human hepatocytes were loaded with saturated, cis- and trans-unsaturated fatty acids (palmitic, oleic and elaidic acid respectively. Steatosis, induced with all three fatty acids, was significantly resolved after exendin-4 treatment. Exendin-4 sustained levels of GRP78 expression in fat-loaded cells when compared to untreated fat-loaded cells alone. In contrast, CHOP (C/EBP homologous protein; the penultimate protein that leads to ER stress-related cell death was significantly decreased by exendin-4 in hepatocytes loaded with fatty acids. Finally, exendin-4 in fat loaded hepatocytes clearly promoted gene products associated with macroautophagy as measured by enhanced production of both Beclin-1 and LC3B-II, markers for autophagy; and visualized by transmission electron microscopy (TEM. Similar observations were made in mouse liver lysates after mice were fed with high fat high fructose diet and treated with a long acting GLP-1 receptor agonist, liraglutide.GLP-1 proteins appear to protect hepatocytes from fatty acid-related death by prohibition of a dysfunctional ER stress response; and reduce fatty acid accumulation, by activation of both macro-and chaperone-mediated autophagy. These findings provide a novel role for GLP-1 proteins in halting the progression of more aggressive lesions from underlying steatosis in humans afflicted with NAFLD.

  10. Nicotine suppresses the neurotoxicity by MPP+/MPTP through activating α7nAChR/PI3K/Trx-1 and suppressing ER stress.

    Science.gov (United States)

    Cai, Yanxue; Zhang, Xianwen; Zhou, Xiaoshuang; Wu, Xiaoli; Li, Yanhui; Yao, Jianhua; Bai, Jie

    2017-03-01

    Parkinson's disease (PD) is a neurodegenerative disease. Nicotine has been reported to have the role in preventing Parkinson's disease. However, its mechanism is still unclear. In present study we found that nicotine suppressed 1-methyl-4-phenylpyridinium ion(MPP + ) toxicity in PC12 cells by MTT assay. The expression of thioredoxin-1(Trx-1) was decreased by MPP + , which was restored by nicotine. The nicotine suppressed expressions of Glucose-regulated protein 78(GRP78/Bip) and C/EBP homologous protein (CHOP) induced by MPP + . The methyllycaconitine (MLA), the inhibitor of α7nAChR and LY294002, the inhibitor of phosphatidylinositol 3-kinase (PI3K) blocked the suppressions of above molecules, respectively. Consistently, pretreatment with nicotine ameliorated the motor ability, restored the declines of Trx-1 and tyrosine hydroxylase (TH), and suppressed the expressions of Bip and CHOP induced by 1-Methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Our results suggest that nicotine plays role in resisting MPP + /MPTP neurotoxicity through activating the α7nAChR/PI3K/Trx-1 pathway and suppressing ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hepatitis B Virus Middle Protein Enhances IL-6 Production via p38 MAPK/NF-κB Pathways in an ER Stress-Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Yang-Xia Li

    Full Text Available During hepatitis B virus (HBV infection, three viral envelope proteins of HBV are overexpressed in the endoplasmic reticulum (ER. The large S protein (LHBs and truncated middle S protein (MHBst have been documented to play roles in regulating host gene expression and contribute to hepatic disease development. As a predominant protein at the ultrastructural level in biopsy samples taken from viremic patients, the role of the middle S protein (MHBs remains to be understood despite its high immunogenicity. When we transfected hepatocytes with an enhanced green fluorescent protein (EGFP-tagged MHBs expressing plasmid, the results showed that expression of MHBs cause an upregulation of IL-6 at the message RNA and protein levels through activating the p38 mitogen-activated protein kinase (p38 MAPK and nuclear factor-kappa B (NF-κB pathways. The use of specific inhibitors of the signaling pathways can diminish this upregulation. The use of BAPTA-AM attenuated the stimulation caused by MHBs. We further found that MHBs accumulated in the endoplasmic reticulum and increased the amount of glucose regulated protein 78 (GRP78/BiP. Our results provide a possibility that MHBs could be involved in liver disease progression.

  12. Targeting HSP90 and monoclonal protein trafficking modulates the unfolded protein response, chaperone regulation and apoptosis in myeloma cells

    International Nuclear Information System (INIS)

    Born, E J; Hartman, S V; Holstein, S A

    2013-01-01

    Multiple myeloma is characterized by the production of substantial quantities of monoclonal protein. We have previously demonstrated that select inhibitors of the isoprenoid biosynthetic pathway (IBP) induce apoptosis of myeloma cells via inhibition of Rab geranylgeranylation, leading to disruption of monoclonal protein trafficking and induction of the unfolded protein response (UPR) pathway. Heat-shock protein 90 (HSP90) inhibitors disrupt protein folding and are currently under clinical investigation in myeloma. The effects of combining IBP and HSP90 inhibitors on cell death, monoclonal protein trafficking, the UPR and chaperone regulation were investigated in monoclonal protein-producing cells. An enhanced induction of cell death was observed following treatment with IBP and HSP90 inhibitors, which occurred through both ER stress and non-ER stress pathways. The HSP90 inhibitor 17-AAG abrogated the effects of the IBP inhibitors on intracellular monoclonal protein levels and localization as well as induction of the UPR in myeloma cells. Disparate effects on chaperone expression were observed in myeloma vs amyloid light chain cells. Here we demonstrate that the novel strategy of targeting MP trafficking in concert with HSP90 enhances myeloma cell death via a complex modulation of ER stress, UPR, and cell death pathways

  13. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment.

    Science.gov (United States)

    Banerjee, Aditi; Ahmed, Hafiz; Yang, Peixin; Czinn, Steven J; Blanchard, Thomas G

    2016-07-05

    The plant metabolite andrographolide induces cell cycle arrest and apoptosis in cancer cells. The mechanism(s) by which andrographolide induces apoptosis however, have not been elucidated. The present study was performed to determine the molecular events that promote apoptosis in andrographolide treated cells using T84, HCT116 and COLO 205 colon cancer cell lines. Andrographolide was determined to limit colony formation and Ki67 expression, alter nuclear morphology, increase cytoplasmic histone-associated-DNA-fragments, and increase cleaved caspase-3 levels. Andrographolide also induced significantly higher expression of endoplasmic reticulum (ER) stress proteins GRP-78 and IRE-1 by 48 h but not PERK or ATF6. Apoptosis signaling molecules BAX, spliced XBP-1 and CHOP were also significantly increased. Moreover, chemical inhibition of ER stress or IRE-1 depletion with siRNA in andrographolide treated cells significantly limited expression of IRE-1 and CHOP as determined by immunofluorescence staining, real time PCR, or immunobloting. This was accompanied by a decreased BAX/Bcl-2 ratio. Andrographolide significantly promotes cancer cell death compared to normal cells. These data demonstrate that andrographolide associated ER stress contributes to apoptosis through the activation of a pro-apoptotic GRP-78/IRE-1/XBP-1/CHOP signaling pathway.

  14. Aging induced ER stress alters sleep and sleep homeostasis

    OpenAIRE

    Brown, Marishka K.; Chan, May T.; Zimmerman, John E.; Pack, Allan I.; Jackson, Nicholas E.; Naidoo, Nirinjini

    2013-01-01

    Alterations in the quality, quantity and architecture of baseline and recovery sleep have been shown to occur during aging. Sleep deprivation induces endoplasmic reticular (ER) stress and upregulates a protective signaling pathway termed the unfolded protein response (UPR). The effectiveness of the adaptive UPR is diminished by age. Previously, we showed that endogenous chaperone levels altered recovery sleep in Drosophila melanogaster. We now report that acute administration of the chemical ...

  15. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis.

    Directory of Open Access Journals (Sweden)

    Yuping Zhang

    Full Text Available Heat shock proteins (Hsps are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78, Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h, were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination.

  16. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis.

    Science.gov (United States)

    Zhang, Yuping; Liu, Yaoming; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2015-01-01

    Heat shock proteins (Hsps) are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78), Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR) was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd) stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h), were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination.

  17. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    Science.gov (United States)

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  18. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    Science.gov (United States)

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  19. Morbillivirus glycoprotein expression induces ER stress, alters Ca2+ homeostasis and results in the release of vasostatin.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Brunner

    Full Text Available Although the pathology of Morbillivirus in the central nervous system (CNS is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV that we inoculated into two different cell systems: a monkey cell line (Vero and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H markedly accumulated in the endoplasmic reticulum (ER. This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT, another ER resident chaperon critically involved in the response to misfolded proteins and in Ca(2+ homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca(2+ homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.

  20. Compressive Strength of Longitudinally Stiffened GRP Panels

    DEFF Research Database (Denmark)

    Böhme, J.; Noury, P.; Riber, Hans Jørgen

    1996-01-01

    A structural analysis of a cross stiffened orthotropic GRP panel subjected to uniaxial compressive loads is carried out. Analytical solutions to the buckling of such structures are proposed and validated by a finite element analysis. Both analytical and finite element approaches confirm an identi...

  1. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat shock protein 90 (HSP90 inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70 family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  2. Antitumor agent 25-epi Ritterostatin GN1N induces endoplasmic reticulum stress and autophagy mediated cell death in melanoma cells.

    Science.gov (United States)

    Riaz Ahmed, Kausar Begam; Kanduluru, Ananda Kumar; Feng, Li; Fuchs, Philip L; Huang, Peng

    2017-05-01

    Metastatic melanoma is the most aggressive of all skin cancers and is associated with poor prognosis owing to lack of effective treatments. 25-epi Ritterostatin GN1N is a novel antitumor agent with yet undefined mechanisms of action. We sought to delineate the antitumor mechanisms of 25-epi Ritterostatin GN1N in melanoma cells to determine the potential of this compound as a treatment for melanoma. Activation of the endoplasmic reticulum (ER) stress protein glucose-regulated protein 78 (GRP78) has been associated with increased melanoma progression, oncogenic signaling, drug resistance, and suppression of cell death. We found that 25-epi Ritterostatin GN1N induced cell death in melanoma cells at nanomolar concentrations, and this cell death was characterized by inhibition of GRP78 expression, increased expression of the ER stress marker CHOP, loss of mitochondrial membrane potential, and lipidation of the autophagy marker protein LC3B. Importantly, normal melanocytes exhibited limited sensitivity to 25-epi Ritterostatin GN1N. Subsequent in vivo results demonstrated that 25-epi Ritterostatin GN1N reduced melanoma growth in mouse tumor xenografts and did not affect body weight, suggesting minimal toxicity. In summary, our findings indicate that 25-epi Ritterostatin GN1N causes ER stress and massive autophagy, leading to collapse of mitochondrial membrane potential and cell death in melanoma cells, with minimal effects in normal melanocytes. Thus, 25-epi Ritterostatin GN1N is a promising anticancer agent that warrants further investigation.

  3. Chaperone-client complexes: A dynamic liaison

    Science.gov (United States)

    Hiller, Sebastian; Burmann, Björn M.

    2018-04-01

    Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.

  4. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-07-01

    Full Text Available Peroxisome proliferator-activated receptor α (PPARα is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF. However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN- and lipopolysaccharide (LPS-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1 PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78, Grp94 and C/EBP-homologous protein (CHOP in vivo; (2 the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA treatment reversed liver protection and increased hepatocyte apoptosis; (3 in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF.

  5. TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors

    Directory of Open Access Journals (Sweden)

    Anna Prudova

    2016-08-01

    Full Text Available Deregulated cathepsin proteolysis occurs across numerous cancers, but in vivo substrates mediating tumorigenesis remain ill-defined. Applying 8-plex iTRAQ terminal amine isotopic labeling of substrates (TAILS, a systems-level N-terminome degradomics approach, we identified cathepsin B, H, L, S, and Z in vivo substrates and cleavage sites with the use of six different cathepsin knockout genotypes in the Rip1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis. Among 1,935 proteins and 1,114 N termini identified by TAILS, stable proteolytic products were identified in wild-type tumors compared with one or more different cathepsin knockouts (17%–44% of 139 cleavages. This suggests a lack of compensation at the substrate level by other cathepsins. The majority of neo-N termini (56%–83% for all cathepsins was consistent with protein degradation. We validated substrates, including the glycolytic enzyme pyruvate kinase M2 associated with the Warburg effect, the ER chaperone GRP78, and the oncoprotein prothymosin-alpha. Thus, the identification of cathepsin substrates in tumorigenesis improves the understanding of cathepsin functions in normal physiology and cancer.

  6. Role of the Escherichia coli grpE heat shock protein in the initiation of bacteriophage lambda DNA replication.

    Science.gov (United States)

    Osipiuk, J; Zylicz, M

    1991-01-01

    Initiation of replication of lambda DNA requires assembly of the proper nucleoprotein complex consisting of the lambda origin of replication-lambda O-lambda P-dnaB proteins. The dnaJ, dnaK and grpE heat shock proteins destabilize the lambda P-dnaB interaction in this complex permitting dnaB helicase to unwind lambda DNA near ori lambda sequence. First step of this disassembling reaction is the binding of dnaK protein to lambda P protein. In this report we examined the influence of dnaJ and grpE proteins on stability of the lambda P-dnaK complex. Our results show that grpE alone dissociates this complex, but both grpE and dnaJ together do not. These results suggest that, in the presence of grpE protein, dnaK protein has a higher affinity for lambda P protein complexed with dnaJ protein than in the situation where grpE protein is not used.

  7. LIMIT STRESS SPLINE MODELS FOR GRP COMPOSITES

    African Journals Online (AJOL)

    ES OBE

    INTRODUCTION. The strength of any material used in any design is very important in order to evaluate the performance index of a particular project. Plastics are polymers that are viscoelastic in nature, show time dependence response to applied stress (Creep), [1]. GRP mechanical properties are therefore affected by creep.

  8. Randomized Trial of a Group Music and Imagery Method (GrpMI) for Women with Fibromyalgia.

    Science.gov (United States)

    Torres, Esperanza; Pedersen, Inge N; Pérez-Fernández, José I

    2018-06-07

    Fibromyalgia (FM) affects about 2-4% of the world population. Patients, mostly women, experience chronic widespread pain, fatigue, stiffness, sleep disturbances, and psychological disorders, especially depression and anxiety. The aim of this study was to examine preliminary efficacy of a Group Music and Imagery (GrpMI) intervention, which included relaxation, music listening, and spontaneous imagery, to improve subjective psychological well-being, functional capacity and health, pain perception, anxiety, and depression in women with FM. Fifty-six women aged 35 to 65 years (M = 51.3) diagnosed with FM were randomly assigned to either GrpMI treatment (n = 33) or control (n = 26) condition. Experimental group participants received 12 weekly GrpMI sessions, and control group participants who did not receive any additional service completed measures at the same time points as the experimental group. Intra-group analyses showed that GrpMI participants had a significant increase in psychological well-being and significant decrease in the impact of FM on functional capacity and health, pain perception, anxiety, and depression post-treatment, with sustained benefit at three-month follow-up for all variables except psychological well-being. Control group participants showed decreases in trait anxiety and depression at post-treatment, with no significant benefit at three-month follow-up. Inter-group analyses showed that compared with control participants, GRpMI participants had significantly higher scores for psychological well-being and lower-state anxiety post-treatment; however, no differences were observed between groups at three-month follow-up. Findings offer preliminary evidence for the benefit of GrpMI to improve well-being and reduce anxiety in women with FM. Findings also suggest that GrpMI may help diminish pain intensity, state depression, and the impact of FM on functional capacity and health, but further studies are needed to establish efficacy.

  9. Histone chaperone networks shaping chromatin function

    DEFF Research Database (Denmark)

    Hammond, Colin; Strømme, Caroline Bianchi; Huang, Hongda

    2017-01-01

    and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone...... chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin....

  10. Cadmium-induced teratogenicity: Association with ROS-mediated endoplasmic reticulum stress in placenta

    International Nuclear Information System (INIS)

    Wang, Zhen; Wang, Hua; Xu, Zhong Mei; Ji, Yan-Li; Chen, Yuan-Hua; Zhang, Zhi-Hui; Zhang, Cheng; Meng, Xiu-Hong; Zhao, Mei; Xu, De-Xiang

    2012-01-01

    The placenta is essential for sustaining the growth of the fetus. An increased endoplasmic reticulum (ER) stress has been associated with the impaired placental and fetal development. Cadmium (Cd) is a potent teratogen that caused fetal malformation and growth restriction. The present study investigated the effects of maternal Cd exposure on placental and fetal development. The pregnant mice were intraperitoneally injected with CdCl 2 (4.5 mg/kg) on gestational day 9. As expected, maternal Cd exposure during early limb development significantly increased the incidences of forelimb ectrodactyly in fetuses. An obvious impairment in the labyrinth, a highly developed tissue of blood vessels, was observed in placenta of mice treated with CdCl 2 . In addition, maternal Cd exposure markedly repressed cell proliferation and increased apoptosis in placenta. An additional experiment showed that maternal Cd exposure significantly upregulated the expression of GRP78, an ER chaperone. Moreover, maternal Cd exposure induced the phosphorylation of placental eIF2α, a downstream molecule of PERK signaling. In addition, maternal Cd exposure significantly increased the level of placental CHOP, another target of PERK signaling, indicating that the unfolded protein response (UPR) signaling was activated in placenta of mice treated with CdCl 2 . Interestingly, alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, significantly alleviated Cd-induced placental ER stress and UPR. Taken together, these results suggest that reactive oxygen species (ROS)-mediated ER stress might be involved in Cd-induced impairment on placental and fetal development. Antioxidants may be used as pharmacological agents to protect against Cd-induced fetal malformation and growth restriction. -- Highlights: ► Cd induces fetal malformation and growth restriction. ► Cd induced placental ER stress and UPR. ► PBN alleviates Cd-induced ER stress and UPR in placenta. ► ROS-mediated ER stress might

  11. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    Science.gov (United States)

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  12. Endoplasmic reticulum stress is induced in the human placenta during labour.

    Science.gov (United States)

    Veerbeek, J H W; Tissot Van Patot, M C; Burton, G J; Yung, H W

    2015-01-01

    Placental endoplasmic reticulum (ER) stress has been postulated in the pathophysiology of pre-eclampsia (PE) and intrauterine growth restriction (IUGR), but its activation remains elusive. Oxidative stress induced by ischaemia/hypoxia-reoxygenation activates ER stress in vitro. Here, we explored whether exposure to labour represents an in vivo model for the study of acute placental ER stress. ER stress markers, GRP78, P-eIF2α and XBP-1, were significantly higher in laboured placentas than in Caesarean-delivered controls localised mainly in the syncytiotrophoblast. The similarities to changes observed in PE/IUGR placentas suggest exposure to labour can be used to investigate induction of ER stress in pathological placentas. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Protective effect of sulforaphane against retinal degeneration in the Pde6rd10 mouse model of retinitis pigmentosa.

    Science.gov (United States)

    Kang, Kai; Yu, Minzhong

    2017-12-01

    Retinitis pigmentosa (RP) is a group of inherited diseases characterized by the death of rod photoreceptors, followed by the death of cone photoreceptors, progressively leading to partial or complete blindness. Currently no specific treatment is available for RP patients. Sulforaphane (SFN) has been confirmed to be an effective antioxidant in the treatment of many diseases. In this study, we tested the therapeutic effects of SFN against photoreceptor degeneration in Pde6b rd10 mice. rd10 mice and C57/BL6 wild-type (WT) mice were treated with SFN and saline, respectively, from P6 to P20. Electroretinography (ERG), terminal deoxynucleotidyl transferase dUTP nick end labeling and western blot were tested, respectively, at P21 for the analysis of retinal function, retinal cell apoptosis or death and the protein express of GRP78/BiP (TUNEL) as a marker of endoplasmic reticulum (ER) stress. Compared with the saline group, the SFN-treated group showed significantly higher ERG a-wave and b-wave amplitudes, less photoreceptor death, and the downregulation of GRP78/BiP. Our data showed that SFN ameliorated the retinal degeneration of rd10 mice, which is possibly related to the downregulation of GRP78 expression.

  14. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration.

    Directory of Open Access Journals (Sweden)

    Ravi N Vellanki

    Full Text Available OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87 and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.

  15. Lipopolysaccharide-Induced Behavioral Alterations Are Alleviated by Sodium Phenylbutyrate via Attenuation of Oxidative Stress and Neuroinflammatory Cascade.

    Science.gov (United States)

    Jangra, Ashok; Sriram, Chandra Shaker; Lahkar, Mangala

    2016-08-01

    Oxido-nitrosative stress, neuroinflammation, and reduced level of neurotrophins are implicated in the pathophysiology of anxiety and depressive illness. A few recent studies have revealed the role of endoplasmic reticulum (ER) stress in the pathophysiology of stress and depression. The aim of the present study is to investigate the neuroprotective potential of sodium phenylbutyrate (SPB), an ER stress inhibitor against lipopolysaccharide (LPS)-induced anxiety and depressive-like behavior in Swiss albino mice. Anxiety and depressive-like behavior was induced by LPS (0.83 mg/kg; i.p.) administration. Various behavioral tests were conducted to evaluate the anxiety and depressive-like behavior in mice. Real-time PCR was employed for the detection and expression of ER stress markers (78-kDa glucose-regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Pretreatment with SPB significantly ameliorated the LPS-induced anxiety and depressive-like behavior as revealed by behavioral paradigm results. LPS-induced oxidative stress was ameliorated by SPB pretreatment in hippocampus (HC) and prefrontal cortex (PFC) region. Neuroinflammation was significantly reduced by SPB pretreatment in LPS-treated mice as evident from reduction in proinflammatory cytokines (IL-1β and TNF-α). Importantly, LPS administration significantly up-regulated the GRP78 mRNA expression level in the HC which suggests the involvement of unfolded protein response (UPR) in LPS-evoked behavioral anomalies. These results highlight the neuroprotective potential of SPB in LPS-induced anxiety and depressive illness model which may be partially due to inhibition of oxidative stress-neuroinflammatory cascade.

  16. Postconditioning with sevoflurane ameliorates spatial learning and memory deficit via attenuating endoplasmic reticulum stress induced neuron apoptosis in a rat model of hemorrhage shock and resuscitation.

    Science.gov (United States)

    Hu, Xianwen; Wang, Jingxian; Zhang, Li; Zhang, Qiquan; Duan, Xiaowen; Zhang, Ye

    2018-06-02

    Hemorrhage shock could initiate endoplasmic reticulum stress (ERS) and then induce neuronal apoptosis. The aim of this study was to investigate whether sevoflurane postconditioning could attenuate brain injury via suppressing apoptosis induced by ERS. Seventy male rats were randomized into five groups: sham, shock, low concentration (sevo1, 1.2%), middle concentration (sevo2, 2.4%) and high concentration (sevo3, 3.6%) of sevoflurane postconditioning. Hemorrhage shock was induced by removing 40% of the total blood volume during an interval of 30 min. 1h after the completion of bleeding, the animals were reinfused with shed blood during the ensuing 30 min. The spatial learning and memory ability of rats were measured by Morris water maze (MWM) test three days after the operation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region were assessed after the MWM test. The expression of C/EBP-homologousprotein (CHOP) and glucose-regulated protein 78 (GRP78) in the hippocampus were measured at 24h after reperfusion. We found that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% significantly ameliorated the spatial learning and memory ability, decreased the TUNEL-positive cells, and reduced the GRP78 and CHOP expression compared with the shock group. These results suggested that sevoflurane postconditioning with the concentrations of 2.4% and 3.6% could ameliorate spatial learning and memory deficit after hemorrhage shock and resuscitation injury via suppressing apoptosis induced by ERS. Copyright © 2018. Published by Elsevier B.V.

  17. Protective Effects of Olive Leaf Extract on Acrolein-Exacerbated Myocardial Infarction via an Endoplasmic Reticulum Stress Pathway

    Directory of Open Access Journals (Sweden)

    Yuyu Xu

    2018-02-01

    Full Text Available Many studies reported that air pollution particulate matter (PM exposure was associated with myocardial infarction (MI. Acrolein representing the unsaturated aldehydes, the main component of PM, derives from the incomplete combustion of wood, plastic, fossil fuels and the main constitute of cigarette smoking. However, the effect of acrolein on MI remains not that clear. In the current study, the effect of acrolein-exacerbated MI was investigated. In vivo, male Sprague–Dawley rats received olive leaf extract (OLE followed by acrolein, then isoprenaline (ISO was received by subcutaneous injection to induce MI. Results showed that the expression levels of GRP78 and CHOP, two major components of endoplasmic reticulum (ER stress were higher in the combination of acrolein and ISO than those in ISO treatment. The apoptosis marker, Bax, was also higher while the anti-apoptosis indicator, Bcl2 expression was lower both at protein and mRNA levels in the combination group. Also, the acrolein-protein adducts and myocardial pathological damage increased in the combination of acrolein and ISO relative to the ISO treatment. Besides, cardiac parameters, ejection fraction (EF and fractional shortening (FS were reduced more significantly when acrolein was added than in ISO treatment. Interestingly, all the changes were able to be ameliorated by OLE. Since hydroxytyrosol (HT and oleuropein (OP were the main components in OLE, we next investigated the effect of HT and OP on cardiomyocyte H9c2 cell apoptosis induced by acrolein through ER stress and Bax pathway. Results showed that GRP78, CHOP and Bax expression were upregulated, while Bcl2 expression was downregulated both at the protein and mRNA levels, when the H9c2 cells were treated with acrolein. In addition, pretreatment with HT can reverse the expression of GRP78, CHOP, Bax and Bcl2 on the protein and mRNA levels, while there was no effect of OP on the expression of GRP78 and CHOP on the mRNA levels

  18. Glutathione Peroxidase-1 Suppresses the Unfolded Protein Response upon Cigarette Smoke Exposure

    Directory of Open Access Journals (Sweden)

    Patrick Geraghty

    2016-01-01

    Full Text Available Oxidative stress provokes endoplasmic reticulum (ER stress-induced unfolded protein response (UPR in the lungs of chronic obstructive pulmonary (COPD subjects. The antioxidant, glutathione peroxidase-1 (GPx-1, counters oxidative stress induced by cigarette smoke exposure. Here, we investigate whether GPx-1 expression deters the UPR following exposure to cigarette smoke. Expression of ER stress markers was investigated in fully differentiated normal human bronchial epithelial (NHBE cells isolated from nonsmoking, smoking, and COPD donors and redifferentiated at the air liquid interface. NHBE cells from COPD donors expressed heightened ATF4, XBP1, GRP78, GRP94, EDEM1, and CHOP compared to cells from nonsmoking donors. These changes coincided with reduced GPx-1 expression. Reintroduction of GPx-1 into NHBE cells isolated from COPD donors reduced the UPR. To determine whether the loss of GPx-1 expression has a direct impact on these ER stress markers during smoke exposure, Gpx-1−/− mice were exposed to cigarette smoke for 1 year. Loss of Gpx-1 expression enhanced cigarette smoke-induced ER stress and apoptosis. Equally, induction of ER stress with tunicamycin enhanced antioxidant expression in mouse precision-cut lung slices. Smoke inhalation also exacerbated the UPR response during respiratory syncytial virus infection. Therefore, ER stress may be an antioxidant-related pathophysiological event in COPD.

  19. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    International Nuclear Information System (INIS)

    Gao, Jialin; Zhang, Yao; Yu, Cui; Tan, Fengbiao; Wang, Lizhuo

    2016-01-01

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2"−"/"− mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2"−"/"− mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2"−"/"− mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2"−"/"− mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2"−"/"− mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2"−"/"− mice had spontaneous nonalcoholic fatty liver

  20. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jialin [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Zhang, Yao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Yu, Cui [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Tan, Fengbiao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Wang, Lizhuo, E-mail: 19277924@qq.com [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China)

    2016-08-05

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2{sup −/−} mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2{sup −/−} mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2{sup −/−} mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2{sup −/−} mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2{sup −/−} mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2{sup −/−} mice had spontaneous

  1. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    Science.gov (United States)

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  2. A molecular ensemble in the rER for procollagen maturation.

    Science.gov (United States)

    Ishikawa, Yoshihiro; Bächinger, Hans Peter

    2013-11-01

    Extracellular matrix (ECM) proteins create structural frameworks in tissues such as bone, skin, tendon and cartilage etc. These connective tissues play important roles in the development and homeostasis of organs. Collagen is the most abundant ECM protein and represents one third of all proteins in humans. The biosynthesis of ECM proteins occurs in the rough endoplasmic reticulum (rER). This review describes the current understanding of the biosynthesis and folding of procollagens, which are the precursor molecules of collagens, in the rER. Multiple folding enzymes and molecular chaperones are required for procollagen to establish specific posttranslational modifications, and facilitate folding and transport to the cell surface. Thus, this molecular ensemble in the rER contributes to ECM maturation and to the development and homeostasis of tissues. Mutations in this ensemble are likely candidates for connective tissue disorders. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases.

    Science.gov (United States)

    Penke, Botond; Fulop, Livia; Szucs, Maria; Frecska, Ede

    2018-01-01

    Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. Research articles on Sigma-1 receptor were reviewed. ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM. It serves for Ca2+-signaling between the ER and mitochondria, involved in ion channel activities and especially important during neuronal differentiation. Sig-1R acts as central modulator in inter-organelle signaling. Sig-1R helps cell survival by attenuating ER-stress. According to sequence based predictions Sig-1R is a 223 amino acid protein with two transmembrane (2TM) domains. The X-ray structure of the Sig-1R [1] showed a membrane-bound trimeric assembly with one transmembrane (1TM) region. Despite the in vitro determined assembly, the results of in vivo studies are rather consistent with the 2TM structure. The receptor has unique and versatile pharmacological profile. Dimethyl tryptamine (DMT) and neuroactive steroids are endogenous ligands that activate Sig-1R. The receptor has a plethora of interacting client proteins. Sig-1R exists in oligomeric structures (dimer-trimer-octamer-multimer) and this fact may explain interaction with diverse proteins. Sig-1R agonists have been used in the treatment of different neurodegenerative diseases, e.g. Alzheimer's and Parkinson's diseases (AD and PD) and amyotrophic lateral sclerosis. Utilization of Sig-1R agents early in AD and similar other diseases has remained an overlooked therapeutic opportunity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. TGP attenuates endoplasmic reticulum stress and regulates the expression of thioredoxin-interacting protein in the kidneys of diabetic rats.

    Science.gov (United States)

    Shao, Yunxia; Qi, Xiangming; Xu, Xinxing; Wang, Kun; Wu, Yonggui; Xia, Lingling

    2017-01-16

    Recent evidence suggests that the endoplasmic reticulum stress (ERS)-thioredoxin-interacting protein (TXNIP)-inflammation chain contributes to diabetic renal injury. The aim of the current study was to investigate whether total glucosides of peony (TGP) could inhibit ERS and attenuate up-regulation of TXNIP in the kidneys of rats with streptozotocin-induced diabetes. TGP was orally administered daily at a dose of 50, 100, or 200 mg/kg for 8 weeks. The expression of glucose-regulated protein 78 (GRP78), phospho-protein kinase RNA-like ER kinase (p-PERK), phosphor- eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), and TXNIP was assessed. Results indicated that TGP significantly decreased diabetes-induced albuminuria and it acted by down-regulating activation of the ERS-TXNIP-inflammation chain in the kidneys of diabetic rats. These findings indicate that renoprotection from TGP in diabetic rats possibly contributed to inhibition of ERS and decreased expression of TXNIP. These findings also offer a new perspective from which to study the molecular mechanisms of diabetic nephropathy and prevent its progression.

  5. Allosteric mechanism controls traffic in the chaperone/usher pathway.

    Science.gov (United States)

    Di Yu, Xiao; Dubnovitsky, Anatoly; Pudney, Alex F; Macintyre, Sheila; Knight, Stefan D; Zavialov, Anton V

    2012-11-07

    Many virulence organelles of Gram-negative bacterial pathogens are assembled via the chaperone/usher pathway. The chaperone transports organelle subunits across the periplasm to the outer membrane usher, where they are released and incorporated into growing fibers. Here, we elucidate the mechanism of the usher-targeting step in assembly of the Yersinia pestis F1 capsule at the atomic level. The usher interacts almost exclusively with the chaperone in the chaperone:subunit complex. In free chaperone, a pair of conserved proline residues at the beginning of the subunit-binding loop form a "proline lock" that occludes the usher-binding surface and blocks usher binding. Binding of the subunit to the chaperone rotates the proline lock away from the usher-binding surface, allowing the chaperone-subunit complex to bind to the usher. We show that the proline lock exists in other chaperone/usher systems and represents a general allosteric mechanism for selective targeting of chaperone:subunit complexes to the usher and for release and recycling of the free chaperone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Role of silent information regulator 1 in the protective effect of hydrogen sulfide on homocysteine-induced cognitive dysfunction: Involving reduction of hippocampal ER stress.

    Science.gov (United States)

    Tang, Yi-Yun; Wang, Ai-Ping; Wei, Hai-Jun; Li, Man-Hong; Zou, Wei; Li, Xiang; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-04-16

    Homocysteine (Hcy) causes cognitive deficits and hippocampal endoplasmic reticulum (ER) stress. Our previous study has confirmed that Hydrogen sulfide (H 2 S) attenuates Hcy-induced cognitive dysfunction and hippocampal ER stress. Silent information regulator 1 (Sirt-1) is indispensable in the formation of learning and memory. Therefore, the aim of this study was to explore the role of Sirt-1 in the protective effect of H 2 S against Hcy-induced cognitive dysfunction. We found that NaHS (a donor of H 2 S) markedly up-regulated the expression of Sirt-1 in the hippocampus of Hcy-exposed rats. Sirtinol, a specific inhibitor of Sirt-1, reversed the improving role of NaHS in the cognitive function of Hcy-exposed rats, as evidenced by that sirtinol increased the escape latency and the swim distance in the acquisition trial of morris water maze (MWM) test, decreased the times crossed through and the time spent in the target quadrant in the probe trail of MWM test, and reduced the discrimination index in the novel object recognition test (NORT) in the rats cotreated with NaHS and Hcy. We also found that sirtinol reversed the protection of NaHS against Hcy-induced hippocampal ER-stress, as evidenced by up-regulating the expressions of GRP78, CHOP, and cleaved caspase-12 in the hippocampus of rats cotreated with NaHS and Hcy. These results suggested the contribution of upregulation of hippocampal Sirt-1 to the improving role of H 2 S in the cognitive function of Hcy-exposed rats, which involves suppression of hippocampal ER stress. Our finding provides a new insight into the mechanism underlying the inhibitory role of H 2 S in Hcy-induced cognitive dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Effect of α-linolenic acid on endoplasmic reticulum stress-mediated apoptosis of palmitic acid lipotoxicity in primary rat hepatocytes

    Directory of Open Access Journals (Sweden)

    Dong Lei

    2011-07-01

    Full Text Available Abstract Background Hepatic inflammation and degeneration induced by lipid depositions may be the major cause of nonalcoholic fatty liver disease (NAFLD. In this study, we investigated the effects of saturated and unsaturated fatty acids (FA on apoptosis in primary rat hepatocytes. Methods The primary rat hepatocytes were treated with palmitic acid and/or α-linolenic acid in vitro. The expression of proteins associated with endoplasmic reticulum (ER stress, apoptosis, caspase-3 levels were detected after the treatment. Results The treatment with palmitic acid produced a significant increase in cell death. The unfolded protein response (UPR-associated genes CHOP, GRP78, and GRP94 were induced to higher expression levels by palmitic acid. Co-treatment with α-linolenic acid reversed the apoptotic effect and levels of all three indicators of ER stress exerted by palmitic acid. Tunicamycin, which induces ER stress produced similar effects to those obtained using palmitic acid; its effects were also reversed by α-linolenic acid. Conclusions α-Linolenic acid may provide a useful strategy to avoid the lipotoxicity of dietary palmitic acid and nutrient overload accompanied with obesity and NAFLD.

  8. The current status of radiopharmacy laboratories in Turkey, conveniences to good radiopharmacy practice (GRP) and quality management systems (ISO)

    International Nuclear Information System (INIS)

    Atak, I.E.

    2004-01-01

    This study ha been conducted in the Radiopharmacy Laboratories of Nuclear Medicine departments of various hospitals and private nuclear medicine laboratories. A total of 35 laboratories from 7 regions of Turkey have been selected by layered sampling method from 131 Radiopharmacy Laboratories located in 30 different cities. During the study, a GRP investigation list with 67 questions and direct communication technique have been used. The aim was determine the current status of the Radiopharmacy Laboratories in general and the administration of radiopharmaceuticals on patients, and good practices in radiopharmacy and conformance with quality assurance systems. In this respect, questions have been asked to determine a) General status, b) Information level of lab workers regarding to the GRP and ISO concepts (i-Status of lab managers, ii- Responsibilities and knowledge of lab workers and iii- regarding to GRP and ISO-9000), c) Conditions of infrastructure, and lab services and its quality, d) Status of organizations. Results showed that only two of the 35 managers of laboratories were radiopharmacists, the rest were Nuclear Medicine specialists. There were less knowledge on GRP than ISO, the labs holding ISO certificate were in minority even though ISO is known concept, radiopharmacist were more knowledgeable in GRP while nuclear medicine specialists were in ISO, the labs with better GRP knowledge have better infrastructure, the GRP knowledge were better in the university and armed forces hospitals while ISO knowledge and certificates were more in private labs and hospitals, the armed forces hospitals better paraphernalia, practically almost all radiopharmaceutical kits were imported goods and there were important problems in quality control

  9. 7-ketocholesterol induces apoptosis of MC3T3-E1 cells associated with reactive oxygen species generation, endoplasmic reticulum stress and caspase-3/7 dependent pathway

    Directory of Open Access Journals (Sweden)

    Yuta Sato

    2017-03-01

    Full Text Available Type 2 diabetes mellitus (T2DM is associated with an increased risk of bone fractures without reduction of bone mineral density. The cholesterol oxide 7-ketocholesterol (7KCHO has been implicated in numerous diseases such as atherosclerosis, Alzheimer's disease, Parkinson's disease, cancer, age-related macular degeneration and T2DM. In the present study, 7KCHO decreased the viability of MC3T3-E1 cells, increased reactive oxygen species (ROS production and apoptotic rate, and upregulated the caspase-3/7 pathway. Furthermore, these effects of 7KCHO were abolished by pre-incubation of the cells with N-acetylcysteine (NAC, an ROS inhibitor. Also, 7KCHO enhanced the mRNA expression of two endoplasmic reticulum (ER stress markers; CHOP and GRP78, in MC3T3-E1 cells. Pre-incubation of the cells with NAC suppressed the 7KCHO-induced upregulation of CHOP, but not GRP78. In conclusion, we demonstrated that 7KCHO induced apoptosis of MC3T3-E1 cells associated with ROS generation, ER stress, and caspase-3/7 activity, and the effects of 7KCHO were abolished by the ROS inhibitor NAC. These findings may provide new insight into the relationship between oxysterol and pathophysiology of osteoporosis seen in T2DM.

  10. Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression.

    Science.gov (United States)

    Hashimoto, Kenji

    2013-01-01

    Epidemiological studies have demonstrated a close relationship between depression and cardiovascular disease (CVD). Although it is known that the central nervous system (CNS) contributes to this relationship, the detailed mechanisms involved in this process remain unclear. Recent studies suggest that the endoplasmic reticulum (ER) molecular chaperone sigma-1 receptor and brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of CVD and depression. Several meta-analysis studies have showed that levels of BDNF in the blood of patients with major depressive disorder (MDD) are lower than normal controls, indicating that blood BDNF might be a biomarker for depression. Furthermore, blood levels of BDNF in patients with CVD are also lower than normal controls. A recent study using conditional BDNF knock-out mice in animal models of myocardial infarction highlighted the role of CNS-mediated mechanisms in the cardioprotective effects of BDNF. In addition, a recent study shows that decreased levels of sigma-1 receptor in the mouse brain contribute to the association between heart failure and depression. Moreover, sigma-1 receptor agonists, including the endogenous neurosteroid dehydroepiandosterone (DHEA) and the selective serotonin reuptake inhibitor (SSRI) fluvoxamine, show potent cardioprotective and antidepressive effects in rodents, via sigma-1 receptor stimulation. Interestingly, agonist activation of sigma-1 receptors increased the secretion of mature BDNF from its precursor proBDNF via chaperone activity in the ER. Given the role of ER stress in the pathophysiology of CVD and MDD, the author will discuss the potential link between sigma-1 receptors and BDNF-TrkB pathway in the pathophysiology of these two diseases. Finally, the author will make a case for potent sigma-1 receptor agonists and TrkB agonists as new potential therapeutic drugs for depressive patients with CVD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Secondary Creep Response of Hand Lay-Up GRP Composites ...

    African Journals Online (AJOL)

    Glass Reinforced Plastics (GRP) composite load bearing components are now in common use, quite often at temperatures above the ambient, where creep behaviour may be significant, as in pressurized industrial containers. This is especially true of those composites produced by the Hand Lay-Up Contact Moulding ...

  12. Synthesis and green up-conversion fluorescence of colloidal La0.78Yb0.20Er0.02F3/SiO2 core/shell nanocrystals

    International Nuclear Information System (INIS)

    Wang Yan; Qin Weiping; Zhang Jisen; Cao Chunyan; Zhang Jishuang; Jin Ye; Zhu Peifen; Wei Guodong; Wang Guofeng; Wang Lili

    2007-01-01

    Water-soluble PVP-stabilized hexagonal-phase La 0.78 Yb 0.20 Er 0.02 F 3 nanocrystals (NCs) were synthesized by hydrothermal method. The NCs were coated with a very thin silica shell, and amino groups were introduced to the surface of silica shells by copolymerization of 3-aminopropyl(triethoxy)silane. The core/shell NCs can be dispersed in ethanol and water to form stable colloidal solution. The transmission electron microscopy (TEM), selected area electron diffraction (SAED), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the core/shell materials. In addition, the green up-conversion fluorescence mechanism of La 0.78 Yb 0.20 Er 0.02 F 3 /SiO 2 NCs was studied with a 980-nm diode laser as excitation source. The water solubility, small core/shell particles size, and well colloidal stability mean the green up-conversion fluorescence NCs have potential applications in bioassay. - Graphical abstract: Colloidal La 0.78 Yb 0.20 Er 0.02 F 3 /SiO 2 Core/Shell nanocrystals (NCs) were synthesized and the free amino groups were introduced to the surface of silica shells by copolymerization 3-aminopropyl(triethoxy)silane. The NCs can be dispersed in ethanol and water to form stable colloidal solution. In addition, the NCs exhibit green up-conversion fluorescence under 980-nm excitation

  13. Cross-system excision of chaperone-mediated proteolysis in chaperone-assisted recombinant protein production

    Science.gov (United States)

    Martínez-Alonso, Mónica; Villaverde, Antonio

    2010-01-01

    Main Escherichia coli cytosolic chaperones such as DnaK are key components of the control quality network designed to minimize the prevalence of polypeptides with aberrant conformations. This is achieved by both favoring refolding activities but also stimulating proteolytic degradation of folding reluctant species. This last activity is responsible for the decrease of the proteolytic stability of recombinant proteins when co-produced along with DnaK, where an increase in solubility might be associated to a decrease in protein yield. However, when DnaK and its co-chaperone DnaJ are co-produced in cultured insect cells or whole insect larvae (and expectedly, in other heterologous hosts), only positive, folding-related effects of these chaperones are observed, in absence of proteolysis-mediated reduction of recombinant protein yield. PMID:21326941

  14. [Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome].

    Science.gov (United States)

    Makhnovskii, P A; Kuzmin, I V; Nefedova, L N; Kima, A I

    2016-01-01

    Drosophila melanogaster is the only invertebrate that contains endogenous retroviruses, which are called errantiviruses. Two domesticated genes, Grp and Iris, which originate from errantivirus gag and env, respectively, have been found in the D. melanogaster genome. The functions performed by the genes in Drosophila are still unclear. To identify the functions of domesticated gag and env in the D. melanogaster genome, expression of Iris and Grp was studied in strains differing by the presence or absence of the functional gypsy errantivirus. In addition, the expression levels were measured after injection of gram-positive and gram-negative bacteria, which activate different immune response pathways, and exposure to various abiotic stress factors. The presence of functional D. melanogaster retrovirus gypsy was found to increase the Grp expression level in somatic tissues of the carcass, while exerting no effect on the Iris expression level. Activation of the immune response in D. melanogaster by bacteria Bacillus cereus increased the Grp expression level and did not affect Iris expression. As for the effects of abiotic stress factors (oxidative stress, starvation, and heat and cold stress), the Grp expression level increased in response to starvation in D. melanogaster females, and the Iris expression level was downregulated in heat shock and oxidative stress. Based on the findings, Grp was assumed to play a direct role in the immune response in D. melanogaster; Iris is not involved in immune responses, but and apparently performs a cell function that is inhibited in stress.

  15. The Effect of Boric Acid and Borax on Oxidative Stress, Inflammation, ER Stress and Apoptosis in Cisplatin Toxication and Nephrotoxicity Developing as a Result of Toxication.

    Science.gov (United States)

    Hazman, Ömer; Bozkurt, Mehmet Fatih; Fidan, Abdurrahman Fatih; Uysal, Fadime Erkan; Çelik, Sefa

    2018-03-02

    The development of treatment protocols that can reduce side effects in chemotherapy applications is extremely important in terms of cancer treatment. In this context, it was aimed to investigate the effects of boric acid and borax on cisplatin toxicity (nephrotoxicity) in rats. In the experimental phase, eight groups were formed from rats. Boric acid and borax were given to the treatment groups with three different doses using gavage. On the fifth day of the study, cisplatin (10 mg/kg) was administered to all rats except the control group. At the end of the study, oxidative stress-related (GSH, MDA, PCO, GPx, 8-OHdG), inflammation-related (TNF-α, IL-1β, IL-18, MCP-1, ICAM, TGF-β), apoptosis-related (p53, caspase 1, 3, 8, 12, bcl-2, bcl-xL, NFkB), and ER stress-related (GRP78, ATF-6, PERK) basic parameters were analyzed in serum, erythrocyte, and kidney tissues. Kidney tissues were also examined by histopathological and immunohistochemical methods. Borax and boric acid at different doses decreased inflammation and oxidative stress caused by cisplatin toxicity and increased ER stress. As a result of the treatments applied to experimental animals, it was determined that boric acid and borax reduced apoptotic damage in kidney tissue, but the decrease was statistically significant only in 200 mg/kg boric acid-administered group. In the study, low anti-apoptotic effects of borate doses with the anti-inflammatory and antioxidant effect may be due to increased ER stress at the relevant doses. Further studies on the effects of boron compounds on ER stress and apoptotic mechanisms may clarify this issue. Thus, possible side effects or if there are new usage areas of borone compounds which have many usage areas in clinics can be detected.

  16. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    Data from the two ESA satellites ERS-1 and ERS-2 are used in global and regional analysis of sea level and sea surface temperature trends over the last, 7.8 years. T he ERS satellites and in the future the ENVISAT satellite provide unique opportunity for monitoring both changes in sea level and sea...

  17. Tang-Luo-Ning, a Traditional Chinese Medicine, Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis of Schwann Cells under High Glucose Environment

    Directory of Open Access Journals (Sweden)

    Weijie Yao

    2017-01-01

    Full Text Available Tang-Luo-Ning (TLN has a definite effect in the clinical treatment of diabetic peripheral neuropathy (DPN. Schwann cells (SCs apoptosis induced by endoplasmic reticulum stress (ER stress is one of the main pathogeneses of DPN. This study investigates whether TLN can inhibit SCs apoptosis by inhibiting ER stress-induced apoptosis. Our previous researches have demonstrated that TLN could increase the expression of ER stress marker protein GRP78 and inhibited the expression of apoptosis marker protein CHOP in ER stress. In this study, the results showed that TLN attenuated apoptosis by decreasing Ca2+ level in SCs and maintaining ER morphology. TLN could decrease downstream proteins of CHOP including GADD34 and Ero1α, while it increased P-eIF2α and decreased the upstream proteins of CHOP including P-IRE1α/IRE1α and XBP-1, thereby reducing ER stress-induced apoptosis.

  18. Progesterone production is affected by unfolded protein response (UPR) signaling during the luteal phase in mice.

    Science.gov (United States)

    Park, Hyo-Jin; Park, Sun-Ji; Koo, Deog-Bon; Lee, Sang-Rae; Kong, Il-Keun; Ryoo, Jae-Woong; Park, Young-Il; Chang, Kyu-Tae; Lee, Dong-Seok

    2014-09-15

    We examined whether the three unfolded protein response (UPR) signaling pathways, which are activated in response to endoplasmic reticulum (ER)-stress, are involved in progesterone production in the luteal cells of the corpus luteum (CL) during the mouse estrous cycle. The luteal phase of C57BL/6 female mice (8 weeks old) was divided into two stages: the functional stage (16, 24, and 48 h) and the regression stage (72 and 96 h). Western blotting and reverse transcription (RT)-PCR were performed to analyze UPR protein/gene expression levels in each stage. We investigated whether ER stress affects the progesterone production by using Tm (0.5 μg/g BW) or TUDCA (0.5 μg/g BW) through intra-peritoneal injection. Our results indicate that expressions of Grp78/Bip, p-eIF2α/ATF4, p50ATF6, and p-IRE1/sXBP1 induced by UPR activation were predominantly maintained in functional and early regression stages of the CL. Furthermore, the expression of p-JNK, CHOP, and cleaved caspase3 as ER-stress mediated apoptotic factors increased during the regression stage. Cleaved caspase3 levels increased in the late-regression stage after p-JNK and CHOP expression in the early-regression stage. Additionally, although progesterone secretion and levels of steroidogenic enzymes decreased following intra-peritoneal injection of Tunicamycin, an ER stress inducer, the expression of Grp78/Bip, p50ATF6, and CHOP dramatically increased. These results suggest that the UPR signaling pathways activated in response to ER stress may play important roles in the regulation of the CL function. Furthermore, our findings enhance the understanding of the basic mechanisms affecting the CL life span. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Modulation of human IAPP fibrillation: cosolutes, crowders and chaperones.

    Science.gov (United States)

    Gao, Mimi; Estel, Kathrin; Seeliger, Janine; Friedrich, Ralf P; Dogan, Susanne; Wanker, Erich E; Winter, Roland; Ebbinghaus, Simon

    2015-04-07

    The cellular environment determines the structure and function of proteins. Marginal changes of the environment can severely affect the energy landscape of protein folding. However, despite the important role of chaperones on protein folding, less is known about chaperonal modulation of protein aggregation and fibrillation considering different classes of chaperones. We find that the pharmacological chaperone O4, the chemical chaperone proline as well as the protein chaperone serum amyloid P component (SAP) are inhibitors of the type 2 diabetes mellitus-related aggregation process of islet amyloid polypeptide (IAPP). By applying biophysical methods such as thioflavin T fluorescence spectroscopy, fluorescence anisotropy, total reflection Fourier-transform infrared spectroscopy, circular dichroism spectroscopy and atomic force microscopy we analyse and compare their inhibition mechanism. We demonstrate that the fibrillation reaction of human IAPP is strongly inhibited by formation of globular, amorphous assemblies by both, the pharmacological and the protein chaperones. We studied the inhibition mechanism under cell-like conditions by using the artificial crowding agents Ficoll 70 and sucrose. Under such conditions the suppressive effect of proline was decreased, whereas the pharmacological chaperone remains active.

  20. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    Science.gov (United States)

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Calcium plays a key role in paraoxon-induced apoptosis in EL4 cells by regulating both endoplasmic reticulum- and mitochondria-associated pathways.

    Science.gov (United States)

    Li, Lan; Du, Yi; Ju, Furong; Ma, Shunxiang; Zhang, Shengxiang

    2016-01-01

    Paraoxon (POX) is one of the most toxic organophosphorus pesticides, but its toxic mechanisms associated with apoptosis remain unclear. The aim of this study was to investigate calcium-associated mechanisms in POX-induced apoptosis in EL4 cells. EL4 cells were exposed to POX for 0-16 h. EGTA was used to chelate Ca(2+ ) in extracellular medium, and heparin and procaine were used to inhibit Ca(2+ )efflux from the endoplasmic reticulum (ER). Z-ATAD-FMK was used to inhibit caspase-12 activity. The apoptotic rate assay, western blotting and immunocytochemistry (ICC) were used to reveal the mechanisms of POX-induced apoptosis. POX significantly increased the expression and activation of caspase-12 and caspase-3, enhanced expression of calpain 1 and calpain 2, and induced the release of cyt c, but did not change the expression of Grp 78. Inhibiting caspase-12 activity alleviated POX-induced upregulation of calpain 1 and caspase-3, promoted POX-induced upregulation of calpain 2, and reduced POX-induced cyt c release, suggesting that there was a cross-talk between the ER-associated pathway and mitochondria-associated apoptotic signals. Attenuating intracellular calcium concentration with EGTA, heparin or procaine decreased POX-induced upregulation of calpain 1, calpain 2, caspase-12 and caspase-3, and reduced POX-induced cyt c release. After pretreatment with EGTA or procaine, POX significantly promoted expression of Grp 78. Calcium played a key role in POX-induced apoptosis in EL4 cells by regulating both ER- and mitochondria-associated pathways. The cross-talk of ER- and mitochondria-associated pathways was accomplished through calcium signal.

  2. Altered methylation and expression of ER-associated degradation factors in long-term alcohol and constitutive ER stress-induced murine hepatic tumors

    Directory of Open Access Journals (Sweden)

    Hui eHan

    2013-10-01

    Full Text Available Mortality from liver cancer in humans is increasingly attributable to heavy or long-term alcohol consumption. The mechanisms by which alcohol exerts its carcinogenic effect are not well understood. In this study, the role of alcohol-induced endoplasmic reticulum (ER stress response in liver cancer development was investigated using an animal model with a liver knockout of the chaperone BiP and under constitutive hepatic ER stress. Long-term alcohol and high fat diet (HFD feeding resulted in higher levels of serum alanine aminotransferase (ALT, impaired ER stress response, and higher incidence of liver tumor in older (aged 16 months knockout females than in either middle-aged (6 months knockouts or older (aged 16 months wild type females. In the older knockout females, stronger effects of the alcohol on methylation of CpG islands at promoter regions of genes involved in the ER associated degradation (ERAD were also detected. Altered expression of ERAD factors including derlin 3, Creld2 (cysteine-rich with EGF-like domains 2, Herpud1 (ubiquitin-like domain member, Wfs1 (wolfram syndrome gene, and Yod1 (deubiquinating enzyme 1 was co-present with decreased proteasome activities, increased estrogen receptor alpha variant (ERa36, and enhanced phosphorylations of ERK1/2 (extracellular signal-regulated protein kinases 1 and 2 and STAT3 (the signal transducers and activators of transcription in the older knockout female fed alcohol. Our results suggest that long-term alcohol consumption and ageing may promote liver tumorigenesis in females through interfering with DNA methylation and expression of genes involved in the ER associated degradation.

  3. Information encoded in non-native states drives substrate-chaperone pairing.

    Science.gov (United States)

    Mapa, Koyeli; Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik

    2012-09-05

    Many proteins refold in vitro through kinetic folding intermediates that are believed to be by-products of native-state centric evolution. These intermediates are postulated to play only minor roles, if any, in vivo because they lack any information related to translation-associated vectorial folding. We demonstrate that refolding intermediate of a test protein, generated in vitro, is able to find its cognate chaperone, from the whole complement of Escherichia coli soluble chaperones. Cognate chaperone-binding uniquely alters the conformation of non-native substrate. Importantly, precise chaperone targeting of substrates are maintained as long as physiological molar ratios of chaperones remain unaltered. Using a library of different chaperone substrates, we demonstrate that kinetically trapped refolding intermediates contain sufficient structural features for precise targeting to cognate chaperones. We posit that evolution favors sequences that, in addition to coding for a functional native state, encode folding intermediates with higher affinity for cognate chaperones than noncognate ones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects.

    Directory of Open Access Journals (Sweden)

    Ainhoa Martínez-Pizarro

    Full Text Available Proper function of endoplasmic reticulum (ER and mitochondria is crucial for cellular homeostasis, and dysfunction at either site as well as perturbation of mitochondria-associated ER membranes (MAMs have been linked to neurodegenerative and metabolic diseases. Previously, we have observed an increase in ROS and apoptosis levels in patient-derived fibroblasts with remethylation disorders causing homocystinuria. Here we show increased mRNA and protein levels of Herp, Grp78, IP3R1, pPERK, ATF4, CHOP, asparagine synthase and GADD45 in patient-derived fibroblasts suggesting ER stress and calcium perturbations in homocystinuria. In addition, overexpressed MAM-associated proteins (Grp75, σ-1R and Mfn2 were found in these cells that could result in mitochondrial calcium overload and oxidative stress increase. Our results also show an activation of autophagy process and a substantial degradation of altered mitochondria by mitophagy in patient-derived fibroblasts. Moreover, we have observed that autophagy was partially abolished by antioxidants suggesting that ROS participate in this process that may have a protective role. Our findings argue that alterations in Ca2+ homeostasis and autophagy may contribute to the development of this metabolic disorder and suggest a therapeutic potential in homocystinuria for agents that stabilize calcium homeostasis and/or restore the proper function of ER-mitochondria communications.

  5. Chemical chaperones exceed the chaperone effects of RIC-3 in promoting assembly of functional α7 AChRs.

    Directory of Open Access Journals (Sweden)

    Alexander Kuryatov

    Full Text Available Functional α7 nicotinic acetylcholine receptors (AChRs do not assemble efficiently in cells transfected with α7 subunits unless the cells are also transfected with the chaperone protein RIC-3. Despite the presence of RIC-3, large amounts of these subunits remain improperly assembled. Thus, additional chaperone proteins are probably required for efficient assembly of α7 AChRs. Cholinergic ligands can act as pharmacological chaperones to promote assembly of mature AChRs and upregulate the amount of functional AChRs. In addition, we have found that the chemical chaperones 4-phenylbutyric acid (PBA and valproic acid (VPA greatly increase the amount of functional α7 AChRs produced in a cell line expressing both α7 and RIC-3. Increased α7 AChR expression allows assay of drug action using a membrane potential-sensitive fluorescent indicator. Both PBA and VPA also increase α7 expression in the SH-SY5Y neuroblastoma cell line that endogenously expresses α7 AChRs. VPA increases expression of endogenous α7 AChRs in hippocampal neurons but PBA does not. RIC-3 is insufficient for optimal assembly of α7 AChRs, but provides assay conditions for detecting additional chaperones. Chemical chaperones are a useful pragmatic approach to express high levels of human α7 AChRs for drug selection and characterization and possibly to increase α7 expression in vivo.

  6. Selective in vitro targeting of GRP and NMB receptors in human tumours with the new bombesin tracer 177Lu-AMBA

    International Nuclear Information System (INIS)

    Waser, Beatrice; Eltschinger, Veronique; Reubi, Jean C.; Linder, Karen; Nunn, Adrian

    2007-01-01

    To investigate the in vitro binding properties of a novel radiolabelled bombesin analogue, 177 Lu-AMBA, in human neoplastic and non-neoplastic tissues selected for their expression of the bombesin receptor subtypes GRP-R, NMB-R and BRS-3. In vitro receptor autoradiography was performed in cancers expressing the various bombesin receptor subtypes. The novel radioligand 177 Lu-AMBA was used and compared with established bombesin radioligands such as 125 I-Tyr 4 -bombesin and 125 I-[D-Tyr 6 ,β-Ala 11 ,Phe 13 ,Nle 14 ]-bombesin(6-14). In vitro incidence of detection of each of the three bombesin receptor subtypes was evaluated in each tumour. 177 Lu-AMBA identified all GRP-R-expressing tumours, such as prostatic, mammary and renal cell carcinomas as well as gastrointestinal stromal tumours. 177 Lu-AMBA also identified all NMB-expressing tumours, but did not detect BRS-3-expressing tumours or BRS-3-expressing pancreatic islets. GRP-R-expressing peritumoural vessels were heavily labelled with 177 Lu-AMBA. In contrast to the strongly GRP-R-positive mouse pancreas, the human pancreas was not labelled with 177 Lu-AMBA unless chronic pancreatitis was diagnosed. In general, the sensitivity was slightly better with 177 Lu-AMBA than with the conventional bombesin radioligands. The present in vitro study suggests that 177 Lu-AMBA may be a very useful in vivo targeting agent for GRP-R-expressing tumours, NMB-R-expressing tumours and GRP-R-expressing neoangiogenic vessels. (orig.)

  7. Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Tang, C.-H.; Chiu, Y.-C.; Huang, C.-F.; Chen, Y.-W.; Chen, P.-C.

    2009-01-01

    Osteoporosis is characterized by low bone mass resulting from an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Therefore, decreased bone formation by osteoblasts may lead to the development of osteoporosis, and rate of apoptosis is responsible for the regulation of bone formation. Arsenic (As) exists ubiquitously in our environment and increases the risk of neurotoxicity, liver injury, peripheral vascular disease and cancer. However, the effect of As on apoptosis of osteoblasts is mostly unknown. Here, we found that As induced cell apoptosis in osteoblastic cell lines (including hFOB, MC3T3-E1 and MG-63) and mouse bone marrow stromal cells (M2-10B4). As also induced upregulation of Bax and Bak, downregulation of Bcl-2 and dysfunction of mitochondria in osteoblasts. As also triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosolic-calcium levels. We found that As increased the expression and activities of glucose-regulated protein 78 (GRP78) and calpain. Transfection of cells with GRP78 or calpain siRNA reduced As-mediated cell apoptosis in osteoblasts. Therefore, our results suggest that As increased cell apoptosis in cultured osteoblasts and increased the risk of osteoporosis.

  8. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    OpenAIRE

    Wu, B; Georgopoulos, C; Ang, D

    1992-01-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of on...

  9. Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte-endothelium interactions in PCOS.

    Science.gov (United States)

    Bañuls, Celia; Rovira-Llopis, Susana; Martinez de Marañon, Aranzazu; Veses, Silvia; Jover, Ana; Gomez, Marcelino; Rocha, Milagros; Hernandez-Mijares, Antonio; Victor, Victor M

    2017-06-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance, which can lead to metabolic syndrome (MetS). Oxidative stress and leukocyte-endothelium interactions are related to PCOS. Our aim was to evaluate whether the presence of MetS in PCOS patients can influence endoplasmic reticulum (ER) and oxidative stress and leukocyte-endothelium interactions. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 148 PCOS women (116 without/32 with MetS) and 112 control subjects (87 without / 25 with MetS). Metabolic parameters, reactive oxygen species (ROS) production, ER stress markers (GRP78, sXBP1, ATF6), leukocyte-endothelium interactions, adhesion molecules (VCAM-1, ICAM-1, E-Selectin), TNF-α and IL-6 were determined. Total ROS, inflammatory parameters and adhesion molecules were enhanced in the presence of MetS (pPCOS+MetS group showed higher levels of IL-6 and ICAM-1 than controls (pPCOS and PCOS+MetS groups vs their respective controls (pPCOS groups (pPCOS+MetS patients exhibited higher GRP78 and ATF6 levels than controls and PCOS patients without MetS (pPCOS women, HOMA-IR was positively correlated with ICAM-1 (r=0.501; pPCOS, all of which are related to vascular complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor.

    Science.gov (United States)

    Fujimoto, Michiko; Hayashi, Teruo; Urfer, Roman; Mita, Shiro; Su, Tsung-Ping

    2012-07-01

    The sigma-1 receptor (Sig-1R) is a novel endoplasmic reticulum (ER) molecular chaperone that regulates protein folding and degradation. The Sig-1R activation by agonists is known to improve memory, promote cell survival, and exert an antidepressant-like action in animals. Cutamesine (SA4503), a selective Sig-1R ligand, was shown to increase BDNF in the hippocampus of rats. How exactly the intracellular chaperone Sig-1R or associated ligand causes the increase of BDNF or any other neurotrophins is unknown. We examined here whether the action of Sig-1Rs may relate to the post-translational processing and release of BDNF in neuroblastoma cell lines. We used in vitro assays and confirmed that cutamesine possesses the bona fide Sig-1R agonist property by causing the dissociation of BiP from Sig-1Rs. The C-terminus of Sig-1Rs exerted robust chaperone activity by completely blocking the aggregation of BDNF and GDNF in vitro. Chronic treatment with cutamesine in rat B104 neuroblastoma caused a time- and dose-dependent potentiation of the secretion of BDNF without affecting the mRNA level of BDNF. Cutamesine decreased the intracellular level of pro-BDNF and mature BDNF whereas increased the extracellular level of mature BDNF. The pulse-chase experiment indicated that the knockdown of Sig-1Rs decreased the secreted mature BDNF in B104 cells without affecting the synthesis of BDNF. Our findings indicate that, in contrast to clinically used antidepressants that promote the transcriptional upregulation of BDNF, the Sig-1R agonist cutamesine potentiates the post-translational processing of neurotrophins. This unique pharmacological profile may provide a novel therapeutic opportunity for the treatment of neuropsychiatric disorders. Copyright © 2012 Wiley Periodicals, Inc.

  11. Insight into the assembly of chaperones

    Energy Technology Data Exchange (ETDEWEB)

    May, R P [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Stegmann, R; Manakova, E; Roessle, M; Hermann, T; Heumann, H [Max-Planck-Institut fuer Biochemie, Martinsried (Germany); Axmann, S; Plueckthun, A [Zurich Univ. (Switzerland); Wiedenmann, A [HMI, Berlin (Germany)

    1997-04-01

    Chaperones are proteins that help other proteins (substrate proteins) to acquire a `good` conformation. The folding is a dynamic process and involves repetitive binding and release of the chaperone components and of the substrate protein. Small-angle neutron scattering is used to investigate the structural changes that appear to happen during the folding process. (author). 2 refs.

  12. Expression, purification, crystallization and preliminary X-ray characterization of the GRP carbohydrate-recognition domain from Homo sapiens

    International Nuclear Information System (INIS)

    Zhou, Dongwen; Sun, Jianping; Zhao, Wei; Zhang, Xiao; Shi, Yunyu; Teng, Maikun; Niu, Liwen; Dong, Yuhui; Liu, Peng

    2006-01-01

    The CRD domain of GRP from H. sapiens has been expressed, purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.0 Å. Galectins are a family of animal lectins which share similar carbohydrate-recognition domains (CRDs) and an affinity for β-galactosides. A novel human galectin-related protein named GRP (galectin-related protein; previously known as HSPC159) comprises only one conserved CRD with 38 additional N-terminal residues. The C-terminal fragment of human GRP (GRP-C; residues 38–172) containing the CRD has been expressed and purified. The protein was crystallized using the hanging-drop vapour-diffusion method from a solution containing 2% PEG 400 and 2M ammonium sulfate in 100 mM Tris–HCl buffer pH 7.5. Diffraction data were collected to a resolution limit of 2.0 Å at beamline 3W1A of Beijing Synchrotron Radiation Facility at 100 K. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 123.07, b = 96.67, c = 61.56 Å, β = 118.72°. The estimated Matthews coefficient was 2.6 Å 3 Da −1 , corresponding to 51.8% solvent content

  13. Expression, purification, crystallization and preliminary X-ray characterization of the GRP carbohydrate-recognition domain from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dongwen; Sun, Jianping; Zhao, Wei; Zhang, Xiao; Shi, Yunyu; Teng, Maikun, E-mail: mkteng@ustc.edu.cn; Niu, Liwen, E-mail: mkteng@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027 (China); Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230027 (China); Dong, Yuhui; Liu, Peng [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100039 (China); Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027 (China)

    2006-05-01

    The CRD domain of GRP from H. sapiens has been expressed, purified and crystallized and X-ray diffraction data have been collected to a resolution of 2.0 Å. Galectins are a family of animal lectins which share similar carbohydrate-recognition domains (CRDs) and an affinity for β-galactosides. A novel human galectin-related protein named GRP (galectin-related protein; previously known as HSPC159) comprises only one conserved CRD with 38 additional N-terminal residues. The C-terminal fragment of human GRP (GRP-C; residues 38–172) containing the CRD has been expressed and purified. The protein was crystallized using the hanging-drop vapour-diffusion method from a solution containing 2% PEG 400 and 2M ammonium sulfate in 100 mM Tris–HCl buffer pH 7.5. Diffraction data were collected to a resolution limit of 2.0 Å at beamline 3W1A of Beijing Synchrotron Radiation Facility at 100 K. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 123.07, b = 96.67, c = 61.56 Å, β = 118.72°. The estimated Matthews coefficient was 2.6 Å{sup 3} Da{sup −1}, corresponding to 51.8% solvent content.

  14. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits.

    Science.gov (United States)

    Li, Bao; Tian, Jing; Sun, Yi; Xu, Tao-Rui; Chi, Rui-Fang; Zhang, Xiao-Li; Hu, Xin-Ling; Zhang, Yue-An; Qin, Fu-Zhong; Zhang, Wei-Fang

    2015-05-01

    Nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidase activity and endoplasmic reticulum (ER) stress are increased after myocardial infarction (MI). In this study, we proposed to test whether activation of the NADPH oxidase in the remote non-infarcted myocardium mediates ER stress and left ventricular (LV) remodeling after MI. Rabbits with MI or sham operation were randomly assigned to orally receive an NADPH oxidase inhibitor apocynin or placebo for 30 days. The agents were administered beginning at 1 week after surgery. MI rabbits exhibited decreases in LV fractional shortening, LV ejection fraction and the first derivative of the LV pressure rise, which were abolished by apocynin treatment. NADPH oxidase Nox2 protein and mRNA expressions were increased in the remote non-infarcted myocardium after MI. Immunolabeling further revealed that Nox2 was increased in cardiac myocytes in the remote myocardium. The apocynin treatment prevented increases in the Nox2 expression, NADPH oxidase activity, oxidative stress, myocyte apoptosis and GRP78, CHOP and cleaved caspase 12 protein expression in the remote myocardium. The apocynin treatment also attenuated increases in myocyte diameter and cardiac fibrosis. In cultured H9C2 cardiomyocytes exposed to angiotensin II, an important stimulus for post-MI remodeling, Nox2 knockdown with siRNA significantly inhibited angiotensin II-induced NADPH oxidase activation, reactive oxygen species and GRP78 and CHOP protein expression. We conclude that NADPH oxidase inhibition attenuates increased ER stress in the remote non-infarcted myocardium and LV remodeling late after MI in rabbits. These findings suggest that the activation of NADPH oxidase in the remote non-infarcted myocardium mediates increased ER stress, contributing to myocyte apoptosis and LV remodeling after MI. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Chaperoning Roles of Macromolecules Interacting with Proteins in Vivo

    Directory of Open Access Journals (Sweden)

    Baik L. Seong

    2011-03-01

    Full Text Available The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features.

  16. Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly.

    OpenAIRE

    Slonim, L N; Pinkner, J S; Brändén, C I; Hultgren, S J

    1992-01-01

    The assembly of adhesive pili in Gram-negative bacteria is modulated by specialized periplasmic chaperone systems. PapD is the prototype member of the superfamily of periplasmic pilus chaperones. Previously, the alignment of chaperone sequences superimposed on the three dimensional structure of PapD revealed the presence of invariant, conserved and variable amino acids. Representative residues that protruded into the PapD cleft were targeted for site directed mutagenesis to investigate the pi...

  17. Selective in vitro targeting of GRP and NMB receptors in human tumours with the new bombesin tracer {sup 177}Lu-AMBA

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Eltschinger, Veronique; Reubi, Jean C. [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, P.O. Box 62, Bern (Switzerland); Linder, Karen; Nunn, Adrian [Bracco Research USA Inc, Princeton, NJ (United States)

    2007-01-15

    To investigate the in vitro binding properties of a novel radiolabelled bombesin analogue, {sup 177}Lu-AMBA, in human neoplastic and non-neoplastic tissues selected for their expression of the bombesin receptor subtypes GRP-R, NMB-R and BRS-3. In vitro receptor autoradiography was performed in cancers expressing the various bombesin receptor subtypes. The novel radioligand {sup 177}Lu-AMBA was used and compared with established bombesin radioligands such as {sup 125}I-Tyr{sup 4}-bombesin and {sup 125}I-[D-Tyr{sup 6},{beta}-Ala{sup 11},Phe{sup 13},Nle{sup 14}]-bombesin(6-14). In vitro incidence of detection of each of the three bombesin receptor subtypes was evaluated in each tumour. {sup 177}Lu-AMBA identified all GRP-R-expressing tumours, such as prostatic, mammary and renal cell carcinomas as well as gastrointestinal stromal tumours. {sup 177}Lu-AMBA also identified all NMB-expressing tumours, but did not detect BRS-3-expressing tumours or BRS-3-expressing pancreatic islets. GRP-R-expressing peritumoural vessels were heavily labelled with {sup 177}Lu-AMBA. In contrast to the strongly GRP-R-positive mouse pancreas, the human pancreas was not labelled with {sup 177}Lu-AMBA unless chronic pancreatitis was diagnosed. In general, the sensitivity was slightly better with {sup 177}Lu-AMBA than with the conventional bombesin radioligands. The present in vitro study suggests that {sup 177}Lu-AMBA may be a very useful in vivo targeting agent for GRP-R-expressing tumours, NMB-R-expressing tumours and GRP-R-expressing neoangiogenic vessels. (orig.)

  18. Bortezomib initiates endoplasmic reticulum stress, elicits autophagy and death in Echinococcus granulosus larval stage.

    Directory of Open Access Journals (Sweden)

    María Celeste Nicolao

    Full Text Available Cystic echinococcosis (CE is a worldwide distributed helminthic zoonosis caused by Echinococcus granulosus. Benzimidazole derivatives are currently the only drugs for chemotherapeutic treatment of CE. However, their low efficacy and the adverse effects encourage the search for new therapeutic targets. We evaluated the in vitro efficacy of Bortezomib (Bz, a proteasome inhibitor, in the larval stage of the parasite. After 96 h, Bz showed potent deleterious effects at a concentration of 5 μM and 0.5 μM in protoscoleces and metacestodes, respectively (P < 0.05. After 48 h of exposure to this drug, it was triggered a mRNA overexpression of chaperones (Eg-grp78 and Eg-calnexin and of Eg-ire2/Eg-xbp1 (the conserved UPR pathway branch in protoscoleces. No changes were detected in the transcriptional expression of chaperones in Bz-treated metacestodes, thus allowing ER stress to be evident and viability to highly decrease in comparison with protoscoleces. We also found that Bz treatment activated the autophagic process in both larval forms. These facts were evidenced by the increase in the amount of transcripts of the autophagy related genes (Eg-atg6, Eg-atg8, Eg-atg12, Eg-atg16 together with the increase in Eg-Atg8-II detected by western blot and by in toto immunofluorescence labeling. It was further confirmed by direct observation of autophagic structures by electronic microscopy. Finally, in order to determine the impact of autophagy induction on Echinococcus cell viability, we evaluated the efficacy of Bz in combination with rapamycin and a synergistic cytotoxic effect on protoscolex viability was observed when both drugs were used together. In conclusion, our findings demonstrated that Bz induced endoplasmic reticulum stress, autophagy and subsequent death allowing to identify unstudied parasite-host pathways that could provide a new insight for control of parasitic diseases.

  19. Critical Role of Endoplasmic Reticulum Stress in Cognitive Impairment Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Fei Cai

    2015-11-01

    Full Text Available Recent studies showed that cyanobacteria-derived microcystin-leucine-arginine (MCLR can cause hippocampal pathological damage and trigger cognitive impairment; but the underlying mechanisms have not been well understood. The objective of the present study was to investigate the mechanism of MCLR-induced cognitive deficit; with a focus on endoplasmic reticulum (ER stress. The Morris water maze test and electrophysiological study demonstrated that MCLR caused spatial memory injury in male Wistar rats; which could be inhibited by ER stress blocker; tauroursodeoxycholic acid (TUDCA. Meanwhile; real-time polymerase chain reaction (real-time PCR and immunohistochemistry demonstrated that the expression level of the 78-kDa glucose-regulated protein (GRP78; C/EBP homologous protein (CHOP and caspase 12 were significantly up-regulated. These effects were rescued by co-administration of TUDCA. In agreement with this; we also observed that treatment of rats with TUDCA blocked the alterations in ER ultrastructure and apoptotic cell death in CA1 neurons from rats exposed to MCLR. Taken together; the present results suggested that ER stress plays an important role in potential memory impairments in rats treated with MCLR; and amelioration of ER stress may serve as a novel strategy to alleviate damaged cognitive function triggered by MCLR.

  20. Biokinetics and dosimetry in patients of {sup 99m}Tc-HYNIC-Lys{sup 3}-Bombesin: images of GRP receptors; Biocinetica y dosimetria en humanos de {sup 99m}Tc-HYNIC-Lys{sup 3}-Bombesina: imagenes de receptores GRP

    Energy Technology Data Exchange (ETDEWEB)

    Santos C, C L [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2007-07-01

    The bombesin (BN) receptor subtype 2 (GRP-r) is expressed in several normal human tissues and is over-expressed in various human tumors including breast, prostate, small cell lung and pancreatic cancer. Recently [{sup 99m}Tc]EDDA/HYNIC-Lys{sup 3}-bombesin ({sup 99m}Tc-HYNIC-BN) was reported as a radiopharmaceutical with high stability in human serum, specific cell GRP-r binding and rapid cell internalization. The aim of this study was to evaluate the feasibility of using {sup 99m}Tc-HYNIC-BN to image GRP-r and to assess the radiopharmaceutical biokinetics and dosimetry in 4 breast cancer patients and in 7 healthy women. Methods: Whole-body images were acquired at 20, 90, 180 min and 24 h after {sup 99m}Tc-HYNIC-BN administration. Regions of interest (ROIs) were drawn around source organs on each time frame. The same set of ROIs was used for all 11 scans and the cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate {sup 99m}Tc-HYNIC-BN time-activity curves in each organ in order to calculate the total number of disintegrations (N) that occurred in the source regions, according with MIRD methodology. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Results: Images showed a rapid radiopharmaceutical blood clearance with renal excretion as predominant route. {sup 99m}Tc-HYNIC-BN exhibited high in vivo affinity for GRP-r over-expression successfully visualized in cancer mammary glands and well differentiated from the ubiquitous GRP-r expression in normal breast, lungs and airways. There was no statistically significant difference (p > 0.05) in the radiation absorbed doses between cancer patients and healthy women. The average equivalent doses (n=11) for a study using 740 MBq were 24.8 +- 8.8 mSv (kidneys), 7.3 +- 1.8 mSv (lungs), 6.5 +- 4.0 mSv (breast) 2.0 +- 0.3 mSv (pancreas), 1.6 +- 0.3 mSv (liver), 1.2 +- 0.2 mSv (ovaries) and 1.0 +- 0.2 mSv (red

  1. Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Soundara Raghavan Pavithra

    2007-09-01

    Full Text Available Molecular chaperones participate in the maintenance of cellular protein homeostasis, cell growth and differentiation, signal transduction, and development. Although a vast body of information is available regarding individual chaperones, few studies have attempted a systems level analysis of chaperone function. In this paper, we have constructed a chaperone interaction network for the malarial parasite, Plasmodium falciparum. P. falciparum is responsible for several million deaths every year, and understanding the biology of the parasite is a top priority. The parasite regularly experiences heat shock as part of its life cycle, and chaperones have often been implicated in parasite survival and growth. To better understand the participation of chaperones in cellular processes, we created a parasite chaperone network by combining experimental interactome data with in silico analysis. We used interolog mapping to predict protein-protein interactions for parasite chaperones based on the interactions of corresponding human chaperones. This data was then combined with information derived from existing high-throughput yeast two-hybrid assays. Analysis of the network reveals the broad range of functions regulated by chaperones. The network predicts involvement of chaperones in chromatin remodeling, protein trafficking, and cytoadherence. Importantly, it allows us to make predictions regarding the functions of hypothetical proteins based on their interactions. It allows us to make specific predictions about Hsp70-Hsp40 interactions in the parasite and assign functions to members of the Hsp90 and Hsp100 families. Analysis of the network provides a rational basis for the anti-malarial activity of geldanamycin, a well-known Hsp90 inhibitor. Finally, analysis of the network provides a theoretical basis for further experiments designed toward understanding the involvement of this important class of molecules in parasite biology.

  2. Chaperone-like properties of tobacco plastid thioredoxins f and m

    Science.gov (United States)

    Sanz-Barrio, Ruth; Fernández-San Millán, Alicia; Carballeda, Jon; Corral-Martínez, Patricia; Seguí-Simarro, José M.; Farran, Inmaculada

    2012-01-01

    Thioredoxins (Trxs) are ubiquitous disulphide reductases that play important roles in the redox regulation of many cellular processes. However, some redox-independent functions, such as chaperone activity, have also been attributed to Trxs in recent years. The focus of our study is on the putative chaperone function of the well-described plastid Trxs f and m. To that end, the cDNA of both Trxs, designated as NtTrxf and NtTrxm, was isolated from Nicotiana tabacum plants. It was found that bacterially expressed tobacco Trx f and Trx m, in addition to their disulphide reductase activity, possessed chaperone-like properties. In vitro, Trx f and Trx m could both facilitate the reactivation of the cysteine-free form of chemically denatured glucose-6 phosphate dehydrogenase (foldase chaperone activity) and prevent heat-induced malate dehydrogenase aggregation (holdase chaperone activity). Our results led us to infer that the disulphide reductase and foldase chaperone functions prevail when the proteins occur as monomers and the well-conserved non-active cysteine present in Trx f is critical for both functions. By contrast, the holdase chaperone activity of both Trxs depended on their oligomeric status: the proteins were functional only when they were associated with high molecular mass protein complexes. Because the oligomeric status of both Trxs was induced by salt and temperature, our data suggest that plastid Trxs could operate as molecular holdase chaperones upon oxidative stress, acting as a type of small stress protein. PMID:21948853

  3. Biokinetics and dosimetry in patients of 99mTc-HYNIC-Lys3-Bombesin: images of GRP receptors

    International Nuclear Information System (INIS)

    Santos C, C. L.

    2007-01-01

    The bombesin (BN) receptor subtype 2 (GRP-r) is expressed in several normal human tissues and is over-expressed in various human tumors including breast, prostate, small cell lung and pancreatic cancer. Recently [ 99m Tc]EDDA/HYNIC-Lys 3 -bombesin ( 99m Tc-HYNIC-BN) was reported as a radiopharmaceutical with high stability in human serum, specific cell GRP-r binding and rapid cell internalization. The aim of this study was to evaluate the feasibility of using 99m Tc-HYNIC-BN to image GRP-r and to assess the radiopharmaceutical biokinetics and dosimetry in 4 breast cancer patients and in 7 healthy women. Methods: Whole-body images were acquired at 20, 90, 180 min and 24 h after 99m Tc-HYNIC-BN administration. Regions of interest (ROIs) were drawn around source organs on each time frame. The same set of ROIs was used for all 11 scans and the cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate 99m Tc-HYNIC-BN time-activity curves in each organ in order to calculate the total number of disintegrations (N) that occurred in the source regions, according with MIRD methodology. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Results: Images showed a rapid radiopharmaceutical blood clearance with renal excretion as predominant route. 99m Tc-HYNIC-BN exhibited high in vivo affinity for GRP-r over-expression successfully visualized in cancer mammary glands and well differentiated from the ubiquitous GRP-r expression in normal breast, lungs and airways. There was no statistically significant difference (p > 0.05) in the radiation absorbed doses between cancer patients and healthy women. The average equivalent doses (n=11) for a study using 740 MBq were 24.8 +- 8.8 mSv (kidneys), 7.3 +- 1.8 mSv (lungs), 6.5 +- 4.0 mSv (breast) 2.0 +- 0.3 mSv (pancreas), 1.6 +- 0.3 mSv (liver), 1.2 +- 0.2 mSv (ovaries) and 1.0 +- 0.2 mSv (red marrow). The mean effective dose

  4. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding.

    Science.gov (United States)

    Mamipour, Mina; Yousefi, Mohammadreza; Hasanzadeh, Mohammad

    2017-09-01

    The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Current trends in chaperone use by plastic and reconstructive surgeons.

    Science.gov (United States)

    Choudry, Umar; Barta, Ruth J; Kim, Nicholas

    2013-06-01

    There is a paucity of literature regarding the use of chaperones by surgeons when examining patients. Use of a chaperone not only makes the patient comfortable but also potentially protects the surgeon from perceived misconduct. This is especially true for plastic surgeons who examine sensitive areas commonly. The purpose of this study was to determine the current trends in chaperone use by plastic surgeons when examining patients. A 23-question online survey was sent to all members of the American Society of Plastic Surgeons. Data collected online were analyzed using Student t test and Pearson χ test. A P use by plastic surgeons during all examinations of patients was 30%. This rate increased up to 60% while examining sensitive areas. Male surgeons reported a higher frequency of chaperone use than female surgeons (P use compared to reconstructive surgeons (P = 0.001). Similarly, surgeons who had been in practice for more than 20 years reported a higher rate of chaperone use compared to surgeons in practice for less than 20 years (P = 0.032). Sixty-one (7.6%; 56 male and 5 female) surgeons reported being accused of inappropriate behavior by patients, of whom 49 (80%) did not have a chaperone present. There was no significant difference among male and female surgeons in rates of being accused of inappropriate behavior (7.9% vs 4.2%, P = 0.19). There was a higher rate of chaperone use by male plastic surgeons, surgeons with more than 20 years experience, and cosmetic surgeons. Despite the difference in chaperone use between the sexes, both had similar rates of being accused of inappropriate behavior during examinations by patients, and although these incidents were quite low, most had no chaperone present during those examinations.

  6. Effect of quercetin on apoptosis of PANC-1 cells.

    Science.gov (United States)

    Lee, Joo Hyun; Lee, Han-Beom; Jung, Gum O; Oh, Jung Taek; Park, Dong Eun; Chae, Kwon Mook

    2013-12-01

    To investigate the chemotherapeutic effect of quercetin against cancer cells, signaling pathway of apoptosis was explored in human pancreatic cells. Various anticancer drugs including adriamycin, cisplatin, 5-fluorouracil (5-FU) and gemcitabine were used. Cell viability was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphe-nyltetra zolium bromide assay. Apoptosis was determined by 4'-6-diamidino-2-phenylindole nuclei staining and flow cytometry in PANC-1 cells treated with 50 µg/mL quercetin for 24 hours. Expression of endoplas mic reticulum (ER) stress mediators including, Grp78/Bip, p-PERK, PERK, ATF4, ATF6 and GADD153/CHOP proteins were measured by Western blot analysis. Mitochondrial membrane potential was measured by fluorescence staining with JC-1, rhodamine 123. Quercetin induced the apoptosis of PANC-1, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G0/G1 fraction of cell cycle increase. But not adriamycin, cisplatin, gemcitabine, and 5-FU. PANC-1 cells were markedly sensitive to quercetin. Treatment with quercetin resulted in the increased accumulation of intracellular Ca(2+) ion. Treatment with quercetin also increased the expression of Grp78/Bip and GADD153/CHOP protein and induced mitochondrial dysfunction. Quercetin exerted cytotoxicity against human pancreatic cancer cells via ER stress-mediated apoptotic signaling including reactive oxygen species production and mitochondrial dysfunction. These data suggest that quercetin may be an important modulator of chemosensitivity of cancer cells against anticancer chemotherapeutic agents.

  7. Pentoxifylline Attenuates Methionine- and Choline-Deficient-Diet-Induced Steatohepatitis by Suppressing TNF-α Expression and Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Min Kyung Chae

    2012-01-01

    Full Text Available Background. Pentoxifylline (PTX anti-TNF properties are known to exert hepatoprotective effects in various liver injury models. The aim of this study was to investigate whether PTX has beneficial roles in the development of methionine- and choline-deficient-(MCD- diet-induced NAFLD SD rats in vivo and TNF-α-induced Hep3B cells in vitro. Methods. SD Rats were classified according to diet (chow or MCD diet and treatment (normal saline or PTX injection over a period of 4 weeks: group I (chow + saline, n=4, group II (chow + PTX, group III (MCD + saline, and group IV (MCD + PTX. Hep3B cells were treated with 100 ng/ml TNF-α (24 h in the absence or presence of PTX (1 mM. Results. PTX attenuated MCD-diet-induced serum ALT levels and hepatic steatosis. In real-time PCR and western blotting analysis, PTX decreased MCD-diet-induced TNF-alpha mRNA expression and proapoptotic unfolded protein response by ER stress (GRP78, p-eIF2, ATF4, IRE1α, CHOP, and p-JNK activation in vivo. PTX (1 mM reduced TNF-α-induced activation of GRP78, p-eIF2, ATF4, IRE1α, and CHOP in vitro. Conclusion. PTX has beneficial roles in the development of MCD-diet-induced steatohepatitis through partial suppression of TNF-α and ER stress.

  8. Initiation of lambda DNA replication. The Escherichia coli small heat shock proteins, DnaJ and GrpE, increase DnaK's affinity for the lambda P protein.

    Science.gov (United States)

    Osipiuk, J; Georgopoulos, C; Zylicz, M

    1993-03-05

    It is known that the initiation of bacteriophage lambda replication requires the orderly assembly of the lambda O.lambda P.DnaB helicase protein preprimosomal complex at the ori lambda DNA site. The DnaK, DnaJ, and GrpE heat shock proteins act together to destabilize the lambda P.DnaB complex, thus freeing DnaB and allowing it to unwind lambda DNA near the ori lambda site. The first step of this disassembly reaction is the binding of DnaK to the lambda P protein. In this report, we examined the influence of the DnaJ and GrpE proteins on the stability of the lambda P.DnaK complex. We present evidence for the existence of the following protein-protein complexes: lambda P.DnaK, lambda P.DnaJ, DnaJ.DnaK, DnaK.GrpE, and lambda P.DnaK.GrpE. Our results suggest that the presence of GrpE alone destabilizes the lambda P.DnaK complex, whereas the presence of DnaJ alone stabilizes the lambda P.DnaK complex. Using immunoprecipitation, we show that in the presence of GrpE, DnaK exhibits a higher affinity for the lambda P.DnaJ complex than it does alone. Using cross-linking with glutaraldehyde, we show that oligomeric forms of DnaK exhibit a higher affinity for lambda P than monomeric DnaK. However, in the presence of GrpE, monomeric DnaK can efficiently bind lambda P protein. These findings help explain our previous results, namely that in the GrpE-dependent lambda DNA replication system, the DnaK protein requirement can be reduced up to 10-fold.

  9. The histone chaperone ASF1 is essential for sexual development in the filamentous fungus Sordaria macrospora.

    Science.gov (United States)

    Gesing, Stefan; Schindler, Daniel; Fränzel, Benjamin; Wolters, Dirk; Nowrousian, Minou

    2012-05-01

    Ascomycetes develop four major types of fruiting bodies that share a common ancestor, and a set of common core genes most likely controls this process. One way to identify such genes is to search for conserved expression patterns. We analysed microarray data of Fusarium graminearum and Sordaria macrospora, identifying 78 genes with similar expression patterns during fruiting body development. One of these genes was asf1 (anti-silencing function 1), encoding a predicted histone chaperone. asf1 expression is also upregulated during development in the distantly related ascomycete Pyronema confluens. To test whether asf1 plays a role in fungal development, we generated an S. macrospora asf1 deletion mutant. The mutant is sterile and can be complemented to fertility by transformation with the wild-type asf1 and its P. confluens homologue. An ASF1-EGFP fusion protein localizes to the nucleus. By tandem-affinity purification/mass spectrometry as well as yeast two-hybrid analysis, we identified histones H3 and H4 as ASF1 interaction partners. Several developmental genes are dependent on asf1 for correct transcriptional expression. Deletion of the histone chaperone genes rtt106 and cac2 did not cause any developmental phenotypes. These data indicate that asf1 of S. macrospora encodes a conserved histone chaperone that is required for fruiting body development. © 2012 Blackwell Publishing Ltd.

  10. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    Science.gov (United States)

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress. © 2015 International Federation for Cell Biology.

  11. 15,16-Dihydrotanshinone I, a Compound of Salvia miltiorrhiza Bunge, Induces Apoptosis through Inducing Endoplasmic Reticular Stress in Human Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Mao-Te Chuang

    2011-01-01

    Full Text Available 5,16-dihydrotanshinone I (DHTS is extracted from Salvia miltiorrhiza Bunge (tanshen root and was found to be the most effective compound of tanshen extracts against breast cancer cells in our previous studies. However, whether DHTS can induce apoptosis through an endoplasmic reticular (ER stress pathway was examined herein. In this study, we found that DHTS significantly inhibited the proliferation of human prostate DU145 carcinoma cells and induced apoptosis. DHTS was able to induce ER stress as evidenced by the upregulation of glucose regulation protein 78 (GRP78/Bip and CAAT/enhancer binding protein homologous protein/growth arrest- and DNA damage-inducible gene 153 (CHOP/GADD153, as well as increases in phosphorylated eukaryotic initiation factor 2α (eIF2α, c-jun N-terminal kinase (JNK, and X-box-binding protein 1 (XBP1 mRNA splicing forms. DHTS treatment also caused significant accumulation of polyubiquitinated proteins and hypoxia-inducible factor (HIF-1α, indicating that DHTS might be a proteasome inhibitor that is known to induce ER stress or enhance apoptosis caused by the classic ER stress-dependent mechanism. Moreover, DHTS-induced apoptosis was reversed by salubrinal, an ER stress inhibitor. Results suggest that DHTS can induce apoptosis of prostate carcinoma cells via induction of ER stress and/or inhibition of proteasome activity, and may have therapeutic potential for prostate cancer patients.

  12. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Su, Chen-Ming; Wang, Shih-Wei; Lee, Tzong-Huei; Tzeng, Wen-Pei; Hsiao, Che-Jen; Liu, Shih-Chia; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  13. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen-Ming [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Wang, Shih-Wei [Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (China); Lee, Tzong-Huei [Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan (China); Tzeng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan (China); Hsiao, Che-Jen [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Liu, Shih-Chia [Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  14. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78.

    Science.gov (United States)

    Moriya, Chiharu; Taniguchi, Hiroaki; Nagatoishi, Satoru; Igarashi, Hisayoshi; Tsumoto, Kouhei; Imai, Kohzoh

    2018-02-01

    PRDM14 is overexpressed in various cancers and can regulate cancer phenotype under certain conditions. Inhibiting PRDM14 expression in breast and pancreatic cancers has been reported to reduce cancer stem-like phenotypes, which are associated with aggressive tumor properties. Therefore, PRDM14 is considered a promising target for cancer therapy. To develop a pharmaceutical treatment, the mechanism and interacting partners of PRDM14 need to be clarified. Here, we identified the proteins interacting with PRDM14 in triple-negative breast cancer (TNBC) cells, which do not express the three most common types of receptor (estrogen receptors, progesterone receptors, and HER2). We obtained 13 candidates that were pulled down with PRDM14 in TNBC HCC1937 cells and identified them by mass spectrometry. Two candidates-glucose-regulated protein 78 (GRP78) and heat shock protein 90-α (HSP90α)-were confirmed in immunoprecipitation assay in two TNBC cell lines (HCC1937 and MDA-MB231). Surface plasmon resonance analysis using GST-PRDM14 showed that these two proteins directly interacted with PRDM14 and that the interactions required the C-terminal region of PRDM14, which includes zinc finger motifs. We also confirmed the interactions in living cells by NanoLuc luciferase-based bioluminescence resonance energy transfer (NanoBRET) assay. Moreover, HSP90 inhibitors (17DMAG and HSP990) significantly decreased breast cancer stem-like CD24 -  CD44 + and side population (SP) cells in HCC1937 cells, but not in PRDM14 knockdown HCC1937 cells. The combination of the GRP78 inhibitor HA15 and PRDM14 knockdown significantly decreased cell proliferation and SP cell number in HCC1937 cells. These results suggest that HSP90α and GRP78 interact with PRDM14 and participate in cancer regulation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  15. Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge: implication for adaptive responses in the skin.

    Science.gov (United States)

    Babizhayev, Mark A; Nikolayev, Gennady M; Nikolayeva, Juliana G; Yegorov, Yegor E

    2012-03-01

    Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of photoaged skin and pathogenesis of human cutaneous disease. Growing evidence demonstrates the ability of molecular chaperone proteins and of pharmacologic chaperones to decrease the environmental stress and ameliorate the oxidation stress-related and glycation disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for skin diseases and aging. In this review, we examine the evidence suggesting a role for molecular chaperone proteins in the skin and their inducer and protecting agents: pharmacologic chaperone imidazole dipeptide-based agents (carcinine and related compounds) in cosmetics and dermatology. Furthermore, we discuss the use of chaperone therapy for the treatment of skin photoaging diseases and other skin pathologies that have a component of increased glycation and/or free radical-induced oxidation in their genesis. We examine biologic activities of molecular and pharmacologic chaperones, including strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human skin disease. This allows the protein to function and traffic to the appropriate location in the skin, thereby increasing protein activity and cellular function and reducing stress on skin cells. The benefits of imidazole dipeptide antioxidants with transglycating activity (such as carcinine) in skin care are that they help protect and repair cell membrane damage and help retain youthful, younger-looking skin. All skin types will benefit from daily, topical application of pharmacologic chaperone antioxidants, anti-irritants, in combination with water-binding protein agents that work to mimic the structure and function of healthy skin. General strategies are presented addressing ground techniques to improve absorption of usually active chaperone proteins and dipeptide compounds, include

  16. Neuroprotective Effect of Ginkgolide B on Bupivacaine-Induced Apoptosis in SH-SY5Y Cells

    Science.gov (United States)

    Li, Le; Zhang, Qing-guo; Lai, Lu-ying; Wen, Xian-jie; Zheng, Ting; Cheung, Chi-wai; Zhou, Shu-qin; Xu, Shi-yuan

    2013-01-01

    Local anesthetics are used routinely and effectively. However, many are also known to activate neurotoxic pathways. We tested the neuroprotective efficacy of ginkgolide B (GB), an active component of Ginkgo biloba, against ROS-mediated neurotoxicity caused by the local anesthetic bupivacaine. SH-SY5Y cells were treated with different concentrations of bupivacaine alone or following preincubation with GB. Pretreatment with GB increased SH-SY5Y cell viability and attenuated intracellular ROS accumulation, apoptosis, mitochondrial dysfunction, and ER stress. GB suppressed bupivacaine-induced mitochondrial depolarization and mitochondria complex I and III inhibition and increased cleaved caspase-3 and Htra2 expression, which was strongly indicative of activation of mitochondria-dependent apoptosis with concomitantly enhanced expressions of Grp78, caspase-12 mRNA, protein, and ER stress. GB also improved ultrastructural changes indicative of mitochondrial and ER damage induced by bupivacaine. These results implicate bupivacaine-induced ROS-dependent mitochondria, ER dysfunction, and apoptosis, which can be attenuated by GB through its antioxidant property. PMID:24228138

  17. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Irmgard Schuiki

    Full Text Available Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor and mCherry protein driven by a GRP78 promoter (UPR-sensor. Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.

  18. Stress sensing in plants by the ER stress sensor/transducer, bZIP28

    Directory of Open Access Journals (Sweden)

    Renu eSrivastava

    2014-02-01

    Full Text Available Two classes of ER stress sensors are known in plants, membrane associated bZIP transcription factors and RNA splicing factors. ER stress occurs under adverse environmental conditions and results from the accumulation of misfolded or unfolded proteins in the ER lumen. One of the membrane-associated transcription factors activated by heat and ER stress agents is bZIP28. In its inactive form, bZIP28 is a type II protein with a single pass transmembrane domain, residing in the ER. bZIP28’s N-terminus, containing a transcriptional activation domain, is oriented towards the cytoplasm and its C-terminal tail is inserted into the ER lumen. In response to stress, bZIP28 exits the ER and moves to the Golgi where it is proteolytically processed, liberating its cytosolic component which relocates to the nucleus to upregulate stress-response genes. bZIP28 is thought to sense stress through its interaction with the major ER chaperone, BIP. BiP binds to bZIP28’s lumenal domain under unstressed conditions and retains it in the ER. BIP binds to the intrinsically disordered regions on bZIP28’s lumen-facing tail. A truncated form of bZIP28, without its C-terminal tail is not retained in the ER but migrates constitutively to the nucleus. Upon stress, BiP releases bZIP28 allowing it to exit the ER. One model to account for the release of bZIP28 by BiP is that BiP is competed away from bZIP28 by the accumulation of misfolded proteins in the ER. However, other forces such as changes in energy charge levels, redox conditions or interaction with DNAJ proteins may also promote release of bZIP28 from BiP. Movement of bZIP28 from the ER to the Golgi is assisted by the interaction of elements of the COPII machinery with the cytoplasmic domain of bZIP28. Thus, the mobilization of bZIP28 in response to stress involves the dissociation of factors that retain it in the ER and the association of factors that mediate its further organelle-to-organelle movement.

  19. Applying chaperones to protein-misfolding disorders: molecular chaperones against α-synuclein in Parkinson's disease.

    Science.gov (United States)

    Chaari, Ali; Hoarau-Véchot, Jessica; Ladjimi, Moncef

    2013-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the accumulation of a protein called α-synuclein (α-syn) into inclusions known as lewy bodies (LB) within neurons. This accumulation is also due to insufficient formation and activity of dopamine produced in certain neurons within the substantia nigra. Lewy bodies are the pathological hallmark of the idiopathic disorder and the cascade that allows α-synuclein to misfold, aggregate and form these inclusions has been the subject of intensive research. Targeting these early steps of oligomerization is one of the main therapeutic approaches in order to develop neurodegenerative-modifying agents. Because the folding and refolding of alpha synuclein is the key point of this cascade, we are interested in this review to summarize the role of some molecular chaperones proteins such as Hsp70, Hsp90 and small heat shock proteins (sHsp) and Hsp 104. Hsp70 and its co-chaperone, Hsp70 and small heat shock proteins can prevent neurodegeneration by preventing α-syn misfolding, oligomerization and aggregation in vitro and in Parkinson disease animal models. Hsp104 is able to resolve disordered protein aggregates and cross beta amyloid conformers. Together, these chaperones have a complementary effect and can be a target for therapeutic intervention in PD. Published by Elsevier B.V.

  20. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Casey Carlisle

    2017-12-01

    Full Text Available Protein folding factors (chaperones are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS, have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease.

  1. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Erica L. Gorenberg

    2017-05-01

    Full Text Available Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions. Without proper synaptic chaperone activity, local proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and neurodegeneration. In this review, we address the roles of four synaptic chaperones in the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative disease. Three of these are Hsp40 co-chaperones (DNAJs: Cysteine String Protein alpha (CSPα; DNAJC5, auxilin (DNAJC6, and Receptor-Mediated Endocytosis 8 (RME-8; DNAJC13. These co-chaperones contain a conserved J domain through which they form a complex with heat shock cognate 70 (Hsc70, enhancing the chaperone's ATPase activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25 and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-chaperones maintain client function by preserving folding and assembly to prevent client aggregation, but they do not break down aggregates that have already formed. The fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110, which interacts with Hsc70, DNAJAs, and

  2. Clinical value of Pro-GRP and T lymphocyte subpopulation for the assessment of immune functions of lung cancer patients after DC-CIK biological therapy.

    Science.gov (United States)

    He, Lijie; Wang, Jing; Chang, Dandan; Lv, Dandan; Li, Haina; Zhang, Heping

    2018-02-01

    The present study investigated the aptness of assessing the levels of progastrin-releasing peptide (Pro-GRP) in addition to the T lymphocyte subpopulation in lung cancer patients prior to and after therapy for determining immune function. A total of 45 patients with lung cancer were recruited and stratified in to a non-small cell lung cancer (NSCLC) and an SCLC group. Prior to and after treatment by combined biological therapy comprising chemotherapy or chemoradiotherapy followed by three cycles of retransformation of autologous dendritic cells-cytokine-induced killer cells (DC-CIK), the peripheral blood was assessed for populations of CD3 + , CD4 + , CD8 + and regulatory T cells (Treg) by flow cytometry, and for the levels of pro-GRP, carcinoembryonic antigen, neuron-specific enolase and Cyfra 21-1. The results revealed that in NSCLC patients, CD8 + T lymphocytes and Treg populations were decreased, and that CD3 + and CD4 + T lymphocytes as well as the CD4 + /CD8 + ratio were increased after therapy; in SCLC patients, CD3 + , CD4 + and CD8 + T lymphocytes were increased, while Treg cells were decreased after treatment compared with those at baseline. In each group, Pro-GRP was decreased compared with that prior to treatment, and in the SCLC group only, an obvious negative correlation was identified between Pro-GRP and the T lymphocyte subpopulation. Furthermore, a significant correlation between Pro-GRP and Tregs was identified in each group. In conclusion, the present study revealed that the immune function of the patients was improved after biological therapy. The results suggested a significant correlation between Pro-GRP and the T lymphocyte subpopulation in SCLC patients. Detection of Pro-GRP may assist the early clinical diagnosis of SCLC and may also be used to assess the immune regulatory function of patients along with the T lymphocyte subpopulation. Biological therapy with retransformed autologous DC-CIK was indicated to enhance the specific elimination

  3. SYVN1, an ERAD E3 Ubiquitin Ligase, Is Involved in GABAAα1 Degradation Associated with Methamphetamine-Induced Conditioned Place Preference

    Directory of Open Access Journals (Sweden)

    Dong-Liang Jiao

    2017-10-01

    Full Text Available Abuse of methamphetamine (METH, a powerful addictive amphetamine-type stimulants (ATS, is becoming a global public health problem. The gamma-aminobutyric acid (GABAergic system plays a critical role in METH use disorders. By using rat METH conditioned place preference (CPP model, we previously demonstrated that METH-associated rewarding memory formation was associated with the reduction of GABAAα1 expression in the dorsal straitum (Dstr, however, the underlying mechanism was unclear. In the present study, we found that METH-induced CPP formation was accompanied by a significant increase in the expression of Synovial apoptosis inhibitor 1 (SYVN1, an endoplasmic reticulum (ER-associated degradation (ERAD E3 ubiquitin ligase, in the Dstr. The siRNA knockdown of SYVN1 significantly increased GABAAα1 protein levels in both primary cultured neurons and rodent Dstr. Inhibition of proteasomal activity by MG132 and Lactacystin significantly increased GABAAα1 protein levels. We further found that SYVN1 knockdown increased GABAAα1 in the intra-ER, but not in the extra-ER. Accordingly, endoplasmic reticulum stress (ERS-associated Glucose-regulated protein 78 (GRP78 and C/EBP homologous protein (CHOP increased. Thus, this study revealed that SYVN1, as the ERAD E3 ubiquitin ligase, was associated with Dstr GABAAα1 degradation induced by METH conditioned pairing.

  4. Biokinetics and dosimetry of 99m Tc-EDDA/HYNIC-[Lys3]-bombesin in humans: imaging of GRP receptors

    International Nuclear Information System (INIS)

    Santos C, C.L.; Ferro F, G.; Murphy, C.A de; Cardena, E.; Pichardo R, P.

    2007-01-01

    Full text: Bombesin (BN) receptor subtype 2 (GRP-r) is over-expressed on various human tumors including breast, prostate, small cell lung and pancreatic cancer. Recently we reported the 99- mTc-EDDA/HYNIC-[Lys 3 ]-Bombesin ( 99m Tc-HYNIC-BN) complex as a new radiopharmaceutical with high stability in human serum, specific cell GRP-receptor binding and rapid internalization. The aim of this study was to evaluate the 99m Tc-HYNIC-BN biokinetics and dosimetry in 5-healthy and 3-breast cancer women. Whole-body images were acquired at 20, 90, 180 min and 24 h after 99m Tc-HYNIC-BN administration. Regions of interest (ROIs) were drawn around source' organs on each time frame. The same set of ROIs was used for all 8 scans and the cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate 99m Tc-HYNIC-BN time activity curves in each organ, to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Images showed a rapid radiopharmaceutical blood clearance with predominantly renal excretion and minimal hepatobiliary elimination. 99m Tc-HYNIC-BN exhibited high in vivo affinity for GRP-r over-expression successfully visualized in breast cancer lesions and well differentiated from GRP-r expression in lungs and airways with normal GRP-r density (ratio 3:1). The equivalent doses for a study using 370 MBq were 7.38±1.68, 0.59±0.08, 2.07±0.60, 0.58±0.1, 0.75±0.09 and 0.43±0.07 mSv for kidneys, liver, lungs, ovaries, pancreas and red marrow respectively. The effective dose was 1.64±0.25 mSv which is comparable with the doses known for most of the 99m Tc radiopharmaceutical studies in nuclear medicine. (Author)

  5. Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease

    Directory of Open Access Journals (Sweden)

    Teresa Mena-Barragán

    2018-04-01

    Full Text Available A series of sp2-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido, the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 β-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N′-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase. The 1-deoxynojirimycin (DNJ-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM. At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives.

  6. Chaperone use during intimate examinations in primary care: postal survey of family physicians

    Directory of Open Access Journals (Sweden)

    Upshur Ross EG

    2005-12-01

    Full Text Available Abstract Background Physicians have long been advised to have a third party present during certain parts of a physical examination; however, little is known about the frequency of chaperone use for those specific intimate examinations regularly performed in primary care. We aimed to determine the frequency of chaperone use among family physicians across a variety of intimate physical examinations for both male and female patients, and also to identify the factors associated with chaperone use. Methods Questionnaires were mailed to a randomly selected sample of 500 Ontario members of the College of Family Physicians of Canada. Participants were asked about their use of chaperones when performing a variety of intimate examinations, namely female pelvic, breast, and rectal exams and male genital and rectal exams. Results 276 of 500 were returned (56%, of which 257 were useable. Chaperones were more commonly used with female patients than with males (t = 9.09 [df = 249], p Conclusion Clinical practice concerning the use of chaperones during intimate exams continues to be discordant with the recommendations of medical associations and medico-legal societies. Chaperones are used by only a minority of Ontario family physicians. Chaperone use is higher for examinations of female patients than of male patients and is highest for female pelvic exams. The availability of a nurse in the clinic to act as a chaperone is associated with more frequent use of chaperones.

  7. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration.

    Science.gov (United States)

    Giarola, Valentino; Krey, Stephanie; von den Driesch, Barbara; Bartels, Dorothea

    2016-04-01

    Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Polypeptide binding properties of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C S; Heegaard, N H; Holm, A

    2000-01-01

    Calreticulin is a highly conserved eukaryotic ubiquitious protein located mainly in the endoplasmic reticulum. Two major characteristics of calreticulin are its chaperone activity and its lectin properties, but its precise function in intracellular protein and peptide processing remains to be elu......Calreticulin is a highly conserved eukaryotic ubiquitious protein located mainly in the endoplasmic reticulum. Two major characteristics of calreticulin are its chaperone activity and its lectin properties, but its precise function in intracellular protein and peptide processing remains...

  9. ER stress stimulates production of the key antimicrobial peptide, cathelicidin, by forming a previously unidentified intracellular S1P signaling complex.

    Science.gov (United States)

    Park, Kyungho; Ikushiro, Hiroko; Seo, Ho Seong; Shin, Kyong-Oh; Kim, Young Il; Kim, Jong Youl; Lee, Yong-Moon; Yano, Takato; Holleran, Walter M; Elias, Peter; Uchida, Yoshikazu

    2016-03-08

    We recently identified a previously unidentified sphingosine-1-phosphate (S1P) signaling mechanism that stimulates production of a key innate immune element, cathelicidin antimicrobial peptide (CAMP), in mammalian cells exposed to external perturbations, such as UVB irradiation and other oxidative stressors that provoke subapoptotic levels of endoplasmic reticulum (ER) stress, independent of the well-known vitamin D receptor-dependent mechanism. ER stress increases cellular ceramide and one of its distal metabolites, S1P, which activates NF-κB followed by C/EBPα activation, leading to CAMP production, but in a S1P receptor-independent fashion. We now show that S1P activates NF-κB through formation of a previously unidentified signaling complex, consisting of S1P, TRAF2, and RIP1 that further associates with three stress-responsive proteins; i.e., heat shock proteins (GRP94 and HSP90α) and IRE1α. S1P specifically interacts with the N-terminal domain of heat shock proteins. Because this ER stress-initiated mechanism is operative in both epithelial cells and macrophages, it appears to be a universal, highly conserved response, broadly protective against diverse external perturbations that lead to increased ER stress. Finally, these studies further illuminate how ER stress and S1P orchestrate critical stress-specific signals that regulate production of one protective response by stimulating production of the key innate immune element, CAMP.

  10. Stress proteins and oxidative damage in a renal derived cell line exposed to inorganic mercury and lead

    International Nuclear Information System (INIS)

    Stacchiotti, Alessandra; Morandini, Fausta; Bettoni, Francesca; Schena, Ilaria; Lavazza, Antonio; Grigolato, Pier Giovanni; Apostoli, Pietro; Rezzani, Rita; Aleo, Maria Francesca

    2009-01-01

    A close link between stress protein up-regulation and oxidative damage may provide a novel therapeutic tool to counteract nephrotoxicity induced by toxic metals in the human population, mainly in children, of industrialized countries. Here we analysed the time course of the expression of several heat shock proteins, glucose-regulated proteins and metallothioneins in a rat proximal tubular cell line (NRK-52E) exposed to subcytotoxic doses of inorganic mercury and lead. Concomitantly, we used morphological and biochemical methods to evaluate metal-induced cytotoxicity and oxidative damage. In particular, as biochemical indicators of oxidative stress we detected reactive oxygen species (ROS) and nitrogen species (RNS), total glutathione (GSH) and glutathione-S-transferase (GST) activity. Our results clearly demonstrated that mercury increases ROS and RNS levels and the expressions of Hsp25 and inducible Hsp72. These findings are corroborated by evident mitochondrial damage, apoptosis or necrosis. By contrast, lead is unable to up-regulate Hsp72 but enhances Grp78 and activates nuclear Hsp25 translocation. Furthermore, lead causes endoplasmic reticulum (ER) stress, vacuolation and nucleolar segregation. Lastly, both metals stimulate the over-expression of MTs, but with a different time course. In conclusion, in NRK-52E cell line the stress response is an early and metal-induced event that correlates well with the direct oxidative damage induced by mercury. Indeed, different chaperones are involved in the specific nephrotoxic mechanism of these environmental pollutants and work together for cell survival.

  11. Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in pancreatic tumour AR42J cells.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; Plaza-Davila, María; Martinez-Ruiz, Antonio; Fernandez-Bermejo, Miguel; Mateos-Rodriguez, Jose M; Salido, Gines M; Gonzalez, Antonio

    2018-01-01

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca 2+ concentration ([Ca 2+ ] c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca 2+ ] c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells. © 2017 Wiley Periodicals, Inc.

  12. Temperature influence on spectroscopic properties and 2.7-μm lasing of Er:YAP crystal

    Science.gov (United States)

    Švejkar, Richard; Šulc, Jan; Němec, Michal; Jelínková, Helena; Nejezchleb, Karel; Čech, Miroslav

    2018-02-01

    The spectroscopic and laser properties of Er:YAP crystal, that is appropriate for generation at 2.7 μm, in temperature range 78 - 400 K are presented. The sample of Er:YAP (1 at. % of Er3+) had face-polished plan-parallel faces without anti-reflection coatings (thickness 4.47 mm). During experiments the Er:YAP was attached to temperature controlled copper holder and it was placed in vacuum chamber. The transmission and emission spectra together with the fluorescence decay time were measured depending on temperature. The Er:YAP crystal was longitudinally pumped by radiation from laser diode that works in pulse regime (repetition rate 66.6 Hz, pulse duration 1.5 ms, pump wavelength 972.5 nm) or in CW regime. Laser resonator was hemispherical, 145 mm in length with flat pumping mirror (HR @ 2.7 μm) and spherical output coupler (r = 150 mm, R = 95 % @ 2.5 - 2.8 μm). The fluorescence decay time of manifold 4I11/2 (upper laser level) became shorter and intensity of up-conversion radiation was increasing with decreasing temperature. In pulsed regime, the highest slope efficiency with respect to absorbed mean power was 1.27 % at 78 K. The maximum output of mean power was 3.5 mW at 78 K, i.e. 8.7 times higher than measured this value at 300 K. The maximal output power 27 mW with slope efficiency up to 3.5 % was achieved in CW. The radiation generated by Er:YAP laser (2.73 μm) is close to absorption peak of water (3 μm) thus this wavelength can be use in medicine and spectroscopy.

  13. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  14. Hsp100/ClpB Chaperone Function and Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Vierling, Elizabeth [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Biochemistry and Molecular Biology

    2015-01-27

    The supported research investigated the mechanism of action of a unique class of molecular chaperones in higher plants, the Hsp100/ClpB proteins, with the ultimate goal of defining how these chaperones influence plant growth, development, stress tolerance and productivity. Molecular chaperones are essential effectors of cellular “protein quality control”, which comprises processes that ensure the proper folding, localization, activation and turnover of proteins. Hsp100/ClpB proteins are required for temperature acclimation in plants, optimal seed yield, and proper chloroplast development. The model plant Arabidopsis thaliana and genetic and molecular approaches were used to investigate two of the three members of the Hsp100/ClpB proteins in plants, cytosolic AtHsp101 and chloroplast-localized AtClpB-p. Investigating the chaperone activity of the Hsp100/ClpB proteins addresses DOE goals in that this activity impacts how “plants generate and assemble components” as well as “allowing for their self repair”. Additionally, Hsp100/ClpB protein function in plants is directly required for optimal “utilization of biological energy” and is involved in “mechanisms that control the architecture of energy transduction systems”.

  15. Effect of glycation on α-crystallin structure and chaperone-like function

    Science.gov (United States)

    Kumar, P. Anil; Kumar, M. Satish; Reddy, G. Bhanuprakash

    2007-01-01

    The chaperone-like activity of α-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of α-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone function of α-crystallin in aging and in diabetes. A variety of agents have been identified as the predominant sources for the formation of AGEs (advanced glycation end-products) in various tissues, including the lens. Nevertheless, glycation of α-crystallin with various sugars has resulted in divergent results. In the present in vitro study, we have investigated the effect of glucose, fructose, G6P (glucose 6-phosphate) and MGO (methylglyoxal), which represent the major classes of glycating agents, on the structure and chaperone function of α-crystallin. Modification of α-crystallin with all four agents resulted in the formation of glycated protein, increased AGE fluorescence, protein cross-linking and HMM (high-molecular-mass) aggregation. Interestingly, these glycation-related profiles were found to vary with different glycating agents. For instance, CML [Nϵ-(carboxymethyl)lysine] was the predominant AGE formed upon glycation of α-crystallin with these agents. Although fructose and MGO caused significant conformational changes, there were no significant structural perturbations with glucose and G6P. With the exception of MGO modification, glycation with other sugars resulted in decreased chaperone activity in aggregation assays. However, modification with all four sugars led to the loss of chaperone activity as assessed using an enzyme inactivation assay. Glycation-induced loss of α-crystallin chaperone activity was associated with decreased hydrophobicity. Furthermore, α-crystallin isolated from glycated TSP (total lens soluble protein) had also increased AGE

  16. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Directory of Open Access Journals (Sweden)

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  17. The heat-shock protein/chaperone network and multiple stress resistance.

    Science.gov (United States)

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Chaperones and intimate physical examinations: what do male and female patients want?

    Science.gov (United States)

    Fan, V C; Choy, H T; Kwok, G Yj; Lam, H G; Lim, Q Y; Man, Y Y; Tang, C K; Wong, C C; Yu, Y F; Leung, G Kk

    2017-02-01

    Many studies of patients' perception of a medical chaperone have focused on female patients; that of male patients are less well studied. Moreover, previous studies were largely based on patient populations in English-speaking countries. Therefore, this study was conducted to investigate the perception and attitude of male and female Chinese patients to the presence of a chaperone during an intimate physical examination. A cross-sectional guided questionnaire survey was conducted on a convenient sample of 150 patients at a public teaching hospital in Hong Kong. Over 90% of the participants considered the presence of a chaperone appropriate during intimate physical examination, and 84% felt that doctors, irrespective of gender, should always request the presence of a chaperone. The most commonly cited reasons included the availability of an objective account should any legal issue arise, protection against sexual harassment, and to provide psychological support. This contrasted with the experience of those who had previously undergone an intimate physical examination of whom only 72.6% of women and 35.7% of men had reportedly been chaperoned. Among female participants, 75.0% preferred to be chaperoned during an intimate physical examination by a male doctor, and 28.6% would still prefer to be chaperoned when being examined by a female doctor. Among male participants, over 50% indicated no specific preference but a substantial minority reported a preference for chaperoned examination (21.2% for male doctor and 25.8% for female doctor). Patients in Hong Kong have a high degree of acceptance and expectations about the role of a medical chaperone. Both female and male patients prefer such practice regardless of physician gender. Doctors are strongly encouraged to discuss the issue openly with their patients before they conduct any intimate physical examination.

  19. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae.

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Lavergne, Jean-Pierre; Gabus, Caroline; Ficheux, Damien; Darlix, Jean-Luc

    2008-02-01

    RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning-possibly mediated by intrinsically disordered protein segments-is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication.

  20. Chaperone activity of human small heat shock protein-GST fusion proteins.

    Science.gov (United States)

    Arbach, Hannah; Butler, Caley; McMenimen, Kathryn A

    2017-07-01

    Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST

  1. Study of receptor-chaperone interactions using the optical technique of spectroscopic ellipsometry.

    Science.gov (United States)

    Kriechbaumer, Verena; Tsargorodskaya, Anna; Mustafa, Mohd K; Vinogradova, Tatiana; Lacey, Joanne; Smith, David P; Abell, Benjamin M; Nabok, Alexei

    2011-07-20

    This work describes a detailed quantitative interaction study between the novel plastidial chaperone receptor OEP61 and isoforms of the chaperone types Hsp70 and Hsp90 using the optical method of total internal reflection ellipsometry (TIRE). The receptor OEP61 was electrostatically immobilized on a gold surface via an intermediate layer of polycations. The TIRE measurements allowed the evaluation of thickness changes in the adsorbed molecular layers as a result of chaperone binding to receptor proteins. Hsp70 chaperone isoforms but not Hsp90 were shown to be capable of binding OEP61. Dynamic TIRE measurements were carried out to evaluate the affinity constants of the above reactions and resulted in clear discrimination between specific and nonspecific binding of chaperones as well as differences in binding properties between the highly similar Hsp70 isoforms. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS, leading to programmed cell death in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Hanoch Goldshmidt

    2010-01-01

    Full Text Available Trypanosomes are parasites that cycle between the insect host (procyclic form and mammalian host (bloodstream form. These parasites lack conventional transcription regulation, including factors that induce the unfolded protein response (UPR. However, they possess a stress response mechanism, the spliced leader RNA silencing (SLS pathway. SLS elicits shut-off of spliced leader RNA (SL RNA transcription by perturbing the binding of the transcription factor tSNAP42 to its cognate promoter, thus eliminating trans-splicing of all mRNAs. Induction of endoplasmic reticulum (ER stress in procyclic trypanosomes elicits changes in the transcriptome similar to those induced by conventional UPR found in other eukaryotes. The mechanism of up-regulation under ER stress is dependent on differential stabilization of mRNAs. The transcriptome changes are accompanied by ER dilation and elevation in the ER chaperone, BiP. Prolonged ER stress induces SLS pathway. RNAi silencing of SEC63, a factor that participates in protein translocation across the ER membrane, or SEC61, the translocation channel, also induces SLS. Silencing of these genes or prolonged ER stress led to programmed cell death (PCD, evident by exposure of phosphatidyl serine, DNA laddering, increase in reactive oxygen species (ROS production, increase in cytoplasmic Ca(2+, and decrease in mitochondrial membrane potential, as well as typical morphological changes observed by transmission electron microscopy (TEM. ER stress response is also induced in the bloodstream form and if the stress persists it leads to SLS. We propose that prolonged ER stress induces SLS, which serves as a unique death pathway, replacing the conventional caspase-mediated PCD observed in higher eukaryotes.

  3. Biokinetics and dosimetry of {sup 99m} Tc-EDDA/HYNIC-[Lys{sup 3}]-bombesin in humans: imaging of GRP receptors

    Energy Technology Data Exchange (ETDEWEB)

    Santos C, C.L.; Ferro F, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Murphy, C.A de [INCMNSZ, 14000 Mexico D.F. (Mexico); Cardena, E.; Pichardo R, P. [Departamento de Medicina Nuclear, Oncologia Centro Medico Siglo XXI, Mexico D.F. (Mexico)

    2007-07-01

    Full text: Bombesin (BN) receptor subtype 2 (GRP-r) is over-expressed on various human tumors including breast, prostate, small cell lung and pancreatic cancer. Recently we reported the {sup 99-}mTc-EDDA/HYNIC-[Lys{sup 3}]-Bombesin ({sup 99m}Tc-HYNIC-BN) complex as a new radiopharmaceutical with high stability in human serum, specific cell GRP-receptor binding and rapid internalization. The aim of this study was to evaluate the {sup 99m}Tc-HYNIC-BN biokinetics and dosimetry in 5-healthy and 3-breast cancer women. Whole-body images were acquired at 20, 90, 180 min and 24 h after {sup 99m}Tc-HYNIC-BN administration. Regions of interest (ROIs) were drawn around source' organs on each time frame. The same set of ROIs was used for all 8 scans and the cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate {sup 99m}Tc-HYNIC-BN time activity curves in each organ, to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Images showed a rapid radiopharmaceutical blood clearance with predominantly renal excretion and minimal hepatobiliary elimination. {sup 99m}Tc-HYNIC-BN exhibited high in vivo affinity for GRP-r over-expression successfully visualized in breast cancer lesions and well differentiated from GRP-r expression in lungs and airways with normal GRP-r density (ratio 3:1). The equivalent doses for a study using 370 MBq were 7.38{+-}1.68, 0.59{+-}0.08, 2.07{+-}0.60, 0.58{+-}0.1, 0.75{+-}0.09 and 0.43{+-}0.07 mSv for kidneys, liver, lungs, ovaries, pancreas and red marrow respectively. The effective dose was 1.64{+-}0.25 mSv which is comparable with the doses known for most of the {sup 99m}Tc radiopharmaceutical studies in nuclear medicine. (Author)

  4. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    Science.gov (United States)

    Wu, B; Georgopoulos, C; Ang, D

    1992-08-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of one of them, designated msgB. The msgB gene maps at approximately 53 min on the E. coli chromosome. The minimal gene possesses an open reading frame that encodes a protein with a predicted size of 41,269 M(r). This open reading frame was confirmed the correct one by direct amino-terminal sequence analysis of the overproduced msgB gene product. Genetic experiments demonstrated that msgB is essential for E. coli growth in the temperature range of 22 to 37 degrees C. Through a sequence homology search, MsgB was shown to be identical to N-succinyl-L-diaminopimelic acid desuccinylase (the dapE gene product), which participates in the diaminopimelic acid-lysine pathway involved in cell wall biosynthesis. Consistent with this finding, the msgB null allele mutant is viable only when the growth medium is supplemented with diaminopimelic acid. These results suggest that GrpE may have a previously unsuspected function(s) in cell wall biosynthesis in E. coli.

  5. Which way is the wind blowing for GRP? Materials and processes for manufacturing rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Bittmann, E. [Werkstoff and Struktur, Herreth (Germany)

    2002-11-01

    The material technology for the production of large-area rotor blades made of glass reinforced plastics (GRP) constitutes an important milestone in development. Customised resin systems, flexible, automated processing methods and high component quality document the progress made in the wind power industry. (orig.)

  6. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L. (Scripps); (GIT)

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  7. Hepatoprotective Effect of Quercetin on Endoplasmic Reticulum Stress and Inflammation after Intense Exercise in Mice through Phosphoinositide 3-Kinase and Nuclear Factor-Kappa B

    Directory of Open Access Journals (Sweden)

    Yuhan Tang

    2016-01-01

    Full Text Available The mechanisms underlying intense exercise-induced liver damage and its potential treatments remain unclear. We explored the hepatoprotection and mechanisms of quercetin, a naturally occurring flavonoid, in strenuous exercise-derived endoplasmic reticulum stress (ERS and inflammation. Intense exercise (28 m/min at a 5° slope for 90 min resulted in the leakage of aminotransferases in the BALB/C mice. The hepatic ultrastructural malformations and oxidative stress levels were attenuated by quercetin (100 mg/kg·bw. Intense exercise and thapsigargin- (Tg- induced ERS (glucose-regulated protein 78, GRP78 and inflammatory cytokines levels (IL-6 and TNF-α were decreased with quercetin. Furthermore, quercetin resulted in phosphoinositide 3-kinase (PI3K induction, Ca2+ restoration, and blockade of the activities of Jun N-terminal kinase (JNK, activating transcription factor 6 (ATF6 and especially NF-κB (p65 and p50 nuclear translocation. A PI3K inhibitor abrogated the protection of quercetin on ERS and inflammation of mouse hepatocytes. SP600125 (JNK inhibitor, AEBSF (ATF6 inhibitor, and especially PDTC (NF-κB inhibitor enhanced the quercetin-induced protection against Tg stimulation. Collectively, intense exercise-induced ERS and inflammation were attenuated by quercetin. PI3K/Akt activation and JNK, ATF6, and especially NF-κB suppression were involved in the protection. Our results highlight a novel preventive strategy for treating ERS and inflammation-mediated liver damage induced by intense exercise using natural phytochemicals.

  8. Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats.

    Science.gov (United States)

    Li, Man-Hong; Tang, Ji-Ping; Zhang, Ping; Li, Xiang; Wang, Chun-Yan; Wei, Hai-Jun; Yang, Xue-Feng; Zou, Wei; Tang, Xiao-Qing

    2014-04-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Hydrogen sulfide (H2S) acts as an endogenous neuromodulator and neuroprotectant. It has been shown that endoplasmic reticulum (ER) stress is involved in the pathological mechanisms of the learning and memory dysfunctions and that H2S exerts its neuroprotective role via suppressing ER stress. In the present work, we explored the effects of intracerebroventricular injection of Hcy on the formation of learning and memory, the generation of endogenous H2S, and the expression of ER stress in the hippocampus of rats. We found that intracerebroventricular injection of Hcy in rats leads to learning and memory dysfunctions in the Morris water maze and novel of object recognition test and decreases in the expression of cystathionine-β-synthase, the major enzyme responsible for endogenous H2S generation, and the generation of endogenous H2S in the hippocampus of rats. We also showed that exposure of Hcy could up-regulate the expressions of glucose-regulated protein 78 (GRP78), CHOP, and cleaved caspase-12, which are the major mark proteins of ER stress, in the hippocampus of rats. Taken together, these results suggest that the disturbance of hippocampal endogenous H2S generation and the increase in ER stress in the hippocampus are related to Hcy-induced defect in learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors.

    OpenAIRE

    Craven, R A; Egerton, M; Stirling, C J

    1996-01-01

    The yeast genome sequencing project predicts an open reading frame (YKL073) that would encode a novel member of the Hsp70 family of molecular chaperones. We report that this 881 codon reading frame represents a functional gene expressing a 113-119 kDa glycoprotein localized within the lumen of the endoplasmic reticulum (ER). We therefore propose to designate this gene LHS1 (Lumenal Hsp Seventy). Our studies indicate that LHS1 is regulated by the unfolded protein response pathway, as evidenced...

  10. Magnetic properties of ErGa3

    International Nuclear Information System (INIS)

    Murasik, A.; Czopnik, A.; Keller, L.; Fischer, P.

    1999-01-01

    Bulk magnetization measurements and magnetic phase diagram for ErGa 3 show that zero-external magnetic field it undergoes two successive transitions at T 1 = 2.6 K and T 2 = 2.8 K, respectively. Its magnetic ordering examined by neutron diffraction, can be derived from the so-called [1/2, 1/2, 0] structure, i.e. one in which the successive antiparallel (110) sheets of spins have additionally superimposed on them a sinusoidal modulation parallel to the [100] axis. The temperature dependence of neutron diffraction diagrams studied with powder and single crystal samples revealed, that in the range of (2.6 - 2.78) k there occurs an abrupt reorientation of the Er 3+ spins from the [110]-type direction, towards the [100] axis. This rotation can be attributed to the T 1 transition found in the magnetic phase diagram. (author)

  11. Effect of hesperetin on chaperone activity in selenite-induced cataract

    Directory of Open Access Journals (Sweden)

    Nakazawa Yosuke

    2016-01-01

    Full Text Available Background. Chaperone activity of α-crystallin in the lens works to prevent protein aggregation and is important to maintain the lens transparency. This study evaluated the effect of hesperetin on lens chaperone activity in selenite-induced cataracts. Methodology. Thirteen-day-old rats were divided into four groups. Animals were given hesperetin (groups G2 and G4 or vehicle (G1 and G3 on Days 0, 1, and 2. Rats in G3 and G4 were administered selenite subcutaneously 4 hours after the first hesperetin injection. On Days 2, 4, and 6, cataract grades were evaluated using slit-lamp biomicroscopy. The amount of a-crystallin and chaperone activity in water-soluble fraction were measured after animals sacrificed. Results. G3 on day 4 had developed significant cataract, as an average cataract grading of 4.6 ± 0.2. In contrast, G4 had less severe central opacities and lower stage cataracts than G3, as an average cataract grading of 2.4 ± 0.4. The a-crystallin levels in G3 lenses were lower than in G1, but the same as G4. Additionally, chaperone activity was weaker in G3 lenses than G1, but the same as in G4. Conclusions. Our results suggest that hesperetin can prevent the decreasing lens chaperone activity and a-crystallin water solubility by administered of selenite.

  12. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells

    Directory of Open Access Journals (Sweden)

    Thomas D. B. MacVicar

    2015-06-01

    Full Text Available Autophagy is an important stress response pathway responsible for the removal and recycling of damaged or redundant cytosolic constituents. Mitochondrial damage triggers selective mitochondrial autophagy (mitophagy, mediated by a variety of response factors including the Pink1/Parkin system. Using human retinal pigment epithelial cells stably expressing autophagy and mitophagy reporters, we have conducted parallel screens of regulators of endoplasmic reticulum (ER and mitochondrial morphology and function contributing to starvation-induced autophagy and damage-induced mitophagy. These screens identified the ER chaperone and Ca2+ flux modulator, sigma non-opioid intracellular receptor 1 (SIGMAR1, as a regulator of autophagosome expansion during starvation. Screens also identified phosphatidyl ethanolamine methyl transferase (PEMT and the IP3-receptors (IP3Rs as mediators of Parkin-induced mitophagy. Further experiments suggested that IP3R-mediated transfer of Ca2+ from the ER lumen to the mitochondrial matrix via the mitochondrial Ca2+ uniporter (MCU primes mitochondria for mitophagy. Importantly, recruitment of Parkin to damaged mitochondria did not require IP3R-mediated ER-to-mitochondrial Ca2+ transfer, but mitochondrial clustering downstream of Parkin recruitment was impaired, suggesting involvement of regulators of mitochondrial dynamics and/or transport. Our data suggest that Ca2+ flux between ER and mitochondria at presumed ER/mitochondrial contact sites is needed both for starvation-induced autophagy and for Parkin-mediated mitophagy, further highlighting the importance of inter-organellar communication for effective cellular homeostasis.

  13. Peripheral T-Cell Reactivity to Heat Shock Protein 70 and Its Cofactor GrpE from Tropheryma whipplei Is Reduced in Patients with Classical Whipple's Disease.

    Science.gov (United States)

    Trotta, Lucia; Weigt, Kathleen; Schinnerling, Katina; Geelhaar-Karsch, Anika; Oelkers, Gerrit; Biagi, Federico; Corazza, Gino Roberto; Allers, Kristina; Schneider, Thomas; Erben, Ulrike; Moos, Verena

    2017-08-01

    Classical Whipple's disease (CWD) is characterized by the lack of specific Th1 response toward Tropheryma whipplei in genetically predisposed individuals. The cofactor GrpE of heat shock protein 70 (Hsp70) from T. whipplei was previously identified as a B-cell antigen. We tested the capacity of Hsp70 and GrpE to elicit specific proinflammatory T-cell responses. Peripheral mononuclear cells from CWD patients and healthy donors were stimulated with T. whipplei lysate or recombinant GrpE or Hsp70 before levels of CD40L, CD69, perforin, granzyme B, CD107a, and gamma interferon (IFN-γ) were determined in T cells by flow cytometry. Upon stimulation with total bacterial lysate or recombinant GrpE or Hsp70 of T. whipplei , the proportions of activated effector CD4 + T cells, determined as CD40L + IFN-γ + , were significantly lower in patients with CWD than in healthy controls; CD8 + T cells of untreated CWD patients revealed an enhanced activation toward unspecific stimulation and T. whipplei -specific degranulation, although CD69 + IFN-γ + CD8 + T cells were reduced upon stimulation with T. whipplei lysate and recombinant T. whipplei -derived proteins. Hsp70 and its cofactor GrpE are immunogenic in healthy individuals, eliciting effective responses against T. whipplei to control bacterial spreading. The lack of specific T-cell responses against these T. whipplei -derived proteins may contribute to the pathogenesis of CWD. Copyright © 2017 American Society for Microbiology.

  14. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. Copyright © 2014 Mosby, Inc. All rights reserved.

  15. Spin rotation in ErGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Murasik, A. E-mail: amur@cyf.gov.pl; Czopnik, A. E-mail: czopnik@int.pan.wroc.pl; Keller, L. E-mail: lukas.keller@psi.ch; Fischer, P. E-mail: peter.fischer@psi.ch

    2000-04-01

    The magnetic phase diagram of ErGa{sub 3}, built up from bulk magnetisation data, shows in zero-applied magnetic field two successive transitions at T{sub 1}=2.6 and T{sub 2} congruent with 2.8 K, respectively. The magnetic ordering of ErGa{sub 3} examined by neutron diffraction, can be derived from the so-called {l_brace}((1)/(2)), ((1)/(2)), 0{r_brace} structure, i.e. one in which the successive antiparallel (1 1 0) sheets of spins have additionally superimposed on them a sinusoidal modulation parallel to the [1 0 0] axis. The temperature dependence of neutron diffraction diagrams studied on the single crystal, revealed in the range of (2.6-2.78) K an abrupt reorientation of the Er{sup 3+} spins from the nearly [1 1 0] direction, towards the [1 0 0] axis. In this way previously observed effect on the polycrystalline sample has been confirmed. This rotation can be attributed to the T{sub 1} transition found in the H-T magnetic phase diagram.

  16. Identification and changes in the seasonal concentrations of heat shock proteins in roe deer (Capreolus capreolus) epididymides.

    Science.gov (United States)

    Majewska, A M; Kordan, W; Koziorowska-Gilun, M; Wysocki, P

    2017-02-01

    Heat shock proteins (HSPs) act as molecular chaperones with important regulatory functions. HSPs are considered to be essential factors in animal reproduction. In view of seasonal variations in the secretory activity of the reproductive tract of mature roe deer (Capreolus capreolus), the aims of this study were to identify HSPs in the epididymides and compare the expression of the identified proteins in three periods of the reproductive season. Two-dimensional polyacrylamide gel electrophoresis revealed the highest number of polypeptides in homogenates of epididymal tissues and in caput, corpus and cauda epididymal fluids throughout the reproductive season. Epididymal tissue homogenates and epididymal fluids were analysed by tandem mass spectrometry (MS/MS) to reveal 31 polypeptides with enzymatic activity, including polypeptides with antioxidant properties, structural and cell signalling functions. Moreover, among the identified polypeptides, five of them were similar to heat shock proteins: endoplasmin (Grp94); heat shock protein 90 kDa (HSP90); 78-kDa glucose-regulated protein (Grp78); chain A, the crystal structure of the human HSP70 ATPase domain and heat shock protein beta-1 isoform X. The concentrations of the analysed polypeptides, expressed in optical density units (ODU), differed significantly (p ≤ .05) across the examined periods of the reproductive season. The highest ODU values for almost all analysed proteins were observed during the rutting period. The presence of HSPs in the epididymal tissues and fluids of roe deer in different periods of the reproductive season could indicate that those proteins play an important role in sperm maturation in the epididymis. © 2016 Blackwell Verlag GmbH.

  17. Hsp90 molecular chaperone: structure, functions and participation in cardio-vascular pathologies

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.

    2009-10-01

    Full Text Available The review is devoted to the analysis of structural and functional properties of molecular chaperon Hsp90. Hsp90 is a representative of highly widespread family of heat shock proteins. The protein is found in eubacteria and all branches of eukarya, but it is apparently absent in archaea. It is one of key regulators of numerous signalling pathways, cell growth and development, apoptosis, induction of autoimmunity, and progression of heart failure. The full functional activity of Hsp90 shows up in a complex with other molecular chaperones and co-chaperones. Molecular interactions between chaperones, different signalling proteins and protein-partners are highly crucial for the normal functioning of signalling pathways and their destruction causes an alteration in the cell physiology up to its death.

  18. A study for the structural and functional regulation of chaperon protein by radiation

    International Nuclear Information System (INIS)

    Lee, Seung Sik; Chung, Byung Yeoup; Kim, Jin Hong

    2011-01-01

    The purpose of the this project provides new application areas for radiation technology for improvement of protein activities using radiation through the structural changes and functional regulations of molecular chaperon. Research scope includes 1) isolation of molecular chaperon proteins related radiation response from Psedomonads and purification of recombinant protein from E. coli., 2) the establishment of effective irradiation dose for the structural changes of chaperon protein, 3) analysis of the structural and functional changes of molecular chaperon by gamma irradiation. Main results are as follow: the chaperon activities of 2-Cys peroxiredxin show the maximum (about 3 times) at 15-30 kGy of gamma irradiation, but they were reduced greater than 30 kGy of gamma rays: the peroxidase activities show a tendency to decrease with increasing gamma irradiation: the structural change of peroxiredoxin (PP1084 and PA3529) by gamma irradiation (the formation of low molecular weight complexes or fragmentation of peroxiredoxin by gamma irradiation, the increase of beta-sheet and random coil by gamma irradiation and the decrease of alpha-helix and turn by gamma irradiation, and increased chaperon activity is related with increased hydrophobicity)

  19. Impact of the lectin chaperone calnexin on the stress response, virulence and proteolytic secretome of the fungal pathogen Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Margaret V Powers-Fletcher

    Full Text Available Calnexin is a membrane-bound lectin chaperone in the endoplasmic reticulum (ER that is part of a quality control system that promotes the accurate folding of glycoproteins entering the secretory pathway. We have previously shown that ER homeostasis is important for virulence of the human fungal pathogen Aspergillus fumigatus, but the contribution of calnexin has not been explored. Here, we determined the extent to which A. fumigatus relies on calnexin for growth under conditions of environmental stress and for virulence. The calnexin gene, clxA, was deleted from A. fumigatus and complemented by reconstitution with the wild type gene. Loss of clxA altered the proteolytic secretome of the fungus, but had no impact on growth rates in either minimal or complex media at 37°C. However, the ΔclxA mutant was growth impaired at temperatures above 42°C and was hypersensitive to acute ER stress caused by the reducing agent dithiothreitol. In contrast to wild type A. fumigatus, ΔclxA hyphae were unable to grow when transferred to starvation medium. In addition, depleting the medium of cations by chelation prevented ΔclxA from sustaining polarized hyphal growth, resulting in blunted hyphae with irregular morphology. Despite these abnormal stress responses, the ΔclxA mutant remained virulent in two immunologically distinct models of invasive aspergillosis. These findings demonstrate that calnexin functions are needed for growth under conditions of thermal, ER and nutrient stress, but are dispensable for surviving the stresses encountered in the host environment.

  20. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway.

    Science.gov (United States)

    Deng, Lin; Adachi, Tetsuya; Kitayama, Kikumi; Bungyoku, Yasuaki; Kitazawa, Sohei; Ishido, Satoshi; Shoji, Ikuo; Hotta, Hak

    2008-11-01

    We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).

  1. Endothelin receptor-specific control of endoplasmic reticulum stress and apoptosis in the kidney.

    Science.gov (United States)

    De Miguel, Carmen; Hamrick, William C; Hobbs, Janet L; Pollock, David M; Carmines, Pamela K; Pollock, Jennifer S

    2017-02-23

    Endothelin-1 (ET-1) promotes renal damage during cardiovascular disease; yet, the molecular mechanisms involved remain unknown. Endoplasmic reticulum (ER) stress, triggered by unfolded protein accumulation in the ER, contributes to apoptosis and organ injury. These studies aimed to determine whether the ET-1 system promotes renal ER stress development in response to tunicamycin. ET B deficient (ET B def) or transgenic control (TG-con) rats were used in the presence or absence of ET A receptor antagonism. Tunicamycin treatment similarly increased cortical ER stress markers in both rat genotypes; however, only ET B def rats showed a 14-24 fold increase from baseline for medullary GRP78, sXBP-1, and CHOP. Pre-treatment of TG-con rats with the ET A blocker ABT-627 for 1 week prior to tunicamycin injection significantly reduced the ER stress response in cortex and medulla, and also inhibited renal apoptosis. Pre-treatment with ABT-627 failed to decrease renal ER stress and apoptosis in ET B def rats. In conclusion, the ET-1 system is important for the development of tunicamycin-induced renal ER stress and apoptosis. ET A receptor activation induces renal ER stress genes and apoptosis, while functional activation of the ET B receptor has protective effects. These results highlight targeting the ET A receptor as a therapeutic approach against ER stress-induced kidney injury.

  2. ATP-dependent molecular chaperones in plastids--More complex than expected.

    Science.gov (United States)

    Trösch, Raphael; Mühlhaus, Timo; Schroda, Michael; Willmund, Felix

    2015-09-01

    Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.

    Science.gov (United States)

    Kelsen, Steven G; Duan, Xunbao; Ji, Rong; Perez, Oscar; Liu, Chunli; Merali, Salim

    2008-05-01

    Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.

  4. Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study.

    Science.gov (United States)

    Verma, Sharad; Singh, Amit; Mishra, Abha

    2012-07-01

    Hsp90 (heat shock protein 90), a molecular chaperone, stabilizes more than 200 mutated and over expressed oncogenic proteins in cancer development. Cdc37 (cell division cycle protein 37), a co-chaperone of Hsp90, has been found to facilitate the maturation of protein kinases by acting as an adaptor and load these kinases onto the Hsp90 complex. Taxifolin (a natural phytochemical) was found to bind at ATP-binding site of Hsp90 and stabilized the inactive "open" or "lid-up" conformation as evidenced by molecular dynamic simulation. Furthermore, taxifolin was found to bind to interface of Hsp90 and Cdc37 complex and disrupt the interaction of residues of both proteins which were essential for the formation of active super-chaperone complex. Thus, taxifolin was found to act as an inhibitor of chaperoning process and may play a potential role in the cancer chemotherapeutics. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  6. Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence.

    Science.gov (United States)

    Felek, Suleyman; Jeong, Jenny J; Runco, Lisa M; Murray, Susan; Thanassi, David G; Krukonis, Eric S

    2011-03-01

    Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and expressed them in the Δfim Escherichia coli strain AAEC185 to test the assembled Y. pestis surface structures for various activities. Expression of each chaperone/usher locus gave rise to specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection. However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for virulence in mice via the intravenous route of infection, suggesting that expression of this locus is, at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was strongly induced in minimal medium even at 28 °C rather than 37 °C, a temperature previously believed to be required for Psa expression. These data indicate several potential roles for the novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such as cell adhesion and biofilm formation.

  7. Modelling of Safety Factors in the Design of GRP Composite Products

    DEFF Research Database (Denmark)

    Babu, B.J.C.; Prabhakaran, R.T. Durai; Lystrup, Aage

    2010-01-01

    as independent, while in real applications these factors may interact/influence each other. Following the concept developed by the authors, a simple graph theoretic model has been used to determine overall factor of safety. This is described with the help of an example and it has been demonstrated......An attempt has been made in this paper to arrive at the safety factor design of glass fibre reinforced polymer (GRP) composite products using graph theoretic model. In the conventional design and recommendations of the standards, these design factors affecting properties have been considered...

  8. Tunicamycin-induced unfolded protein response in the developing mouse brain

    International Nuclear Information System (INIS)

    Wang, Haiping; Wang, Xin; Ke, Zun-Ji; Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2015-01-01

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific

  9. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  10. Review: The HSP90 molecular chaperone-an enigmatic ATPase.

    Science.gov (United States)

    Pearl, Laurence H

    2016-08-01

    The HSP90 molecular chaperone is involved in the activation and cellular stabilization of a range of 'client' proteins, of which oncogenic protein kinases and nuclear steroid hormone receptors are of particular biomedical significance. Work over the last two decades has revealed a conformational cycle critical to the biological function of HSP90, coupled to an inherent ATPase activity that is regulated and manipulated by many of the co-chaperones proteins with which it collaborates. Pharmacological inhibition of HSP90 ATPase activity results in degradation of client proteins in vivo, and is a promising target for development of new cancer therapeutics. Despite this, the actual function that HSP90s conformationally-coupled ATPase activity provides in its biological role as a molecular chaperone remains obscure. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 594-607, 2016. © 2016 The Authors. Biopolymers Published by Wiley Periodicals, Inc.

  11. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit......Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length...... than 5 amino acids showed binding and a clear correlation with hydrophobicity was demonstrated for oligomers of different hydrophobic amino acids. Insertion of hydrophilic amino acids in a hydrophobic sequence diminished or abolished binding. In conclusion our results show that calreticulin has...

  12. Serum levels of RBP4 and adipose tissue levels of PTP1B are increased in obese men resident in northeast Scotland without associated changes in ER stress response genes

    Directory of Open Access Journals (Sweden)

    Hoggard N

    2012-05-01

    Full Text Available Nigel Hoggard1, Abdelali Agouni2, Nimesh Mody2, Mirela Delibegovic21Rowett Institute of Nutrition and Health, 2Integrative Physiology, University of Aberdeen, Aberdeen, UKBackground: Retinol-binding protein 4 (RBP4 is an adipokine identified as a marker of insulin resistance in mice and humans. Protein tyrosine phosphatase 1B (PTP1B expression levels as well as other genes involved in the endoplasmic reticulum (ER stress response are increased in adipose tissue of obese, high-fat-diet-fed mice. In this study we investigated if serum and/or adipose tissue RBP4 protein levels and expression levels of PTP1B and other ER stress-response genes are altered in obese and obese/diabetic men resident in northeast Scotland.Methods: We studied three groups of male volunteers: (1 normal/overweight (body mass index [BMI] < 30, (2 obese (BMI > 30, and (3 obese/diabetic (BMI > 30 controlling their diabetes either by diet or the antidiabetic drug metformin. We analyzed their serum and adipose tissue RBP4 protein levels as well as adipose tissue mRNA expression of PTP1B, binding immunoglobulin protein (BIP, activated transcription factor 4 (ATF4, and glucose-regulated protein 94 (GRP94 alongside other markers of adiposity (percentage body fat, leptin, cholesterol, triglycerides and insulin resistance (oral glucose tolerance tests, insulin, homeostatic model assessment–insulin resistance, C-reactive protein, and adiponectin.Results: We found that obese Scottish subjects had significantly higher serum RBP4 protein levels in comparison to the normal/overweight subjects (P < 0.01. Serum RBP4 levels were normalized in obese/diabetic subjects treated with diet or metformin (P < 0.05. Adipose tissue RBP4 protein levels were comparable between all three groups of subjects as were serum and adipose transthyretin levels. Adipose tissue PTP1B mRNA levels were increased in obese subjects in comparison to normal/overweight subjects (P < 0.05; however diet and/or metformin

  13. Roles of Endoplasmic Reticulum Stress in NECA-Induced Cardioprotection against Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Fengmei Xing

    2017-01-01

    Full Text Available Objective. This study aimed to investigate whether the nonselective A2 adenosine receptor agonist NECA induces cardioprotection against myocardial ischemia/reperfusion (I/R injury via glycogen synthase kinase 3β (GSK-3β and the mitochondrial permeability transition pore (mPTP through inhibition of endoplasmic reticulum stress (ERS. Methods and Results. H9c2 cells were exposed to H2O2 for 20 minutes. NECA significantly prevented H2O2-induced TMRE fluorescence reduction, indicating that NECA inhibited the mPTP opening. NECA blocked H2O2-induced GSK-3β phosphorylation and GRP94 expression. NECA increased GSK-3β phosphorylation and decreased GRP94 expression, which were prevented by both ERS inductor 2-DG and PKG inhibitor KT5823, suggesting that NECA may induce cardioprotection through GSK-3β and cGMP/PKG via ERS. In isolated rat hearts, both NECA and the ERS inhibitor TUDCA decreased myocardial infarction, increased GSK-3β phosphorylation, and reversed GRP94 expression at reperfusion, suggesting that NECA protected the heart by inhibiting GSK-3β and ERS. Transmission electron microscopy showed that NECA and TUDCA reduced mitochondrial swelling and endoplasmic reticulum expansion, further supporting that NECA protected the heart by preventing the mPTP opening and ERS. Conclusion. These data suggest that NECA prevents the mPTP opening through inactivation of GSK-3β via ERS inhibition. The cGMP/PKG signaling pathway is responsible for GSK-3β inactivation by NECA.

  14. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha\\/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  15. Quantitative analysis of the interplay between hsc70 and its co-chaperone HspBP1

    Directory of Open Access Journals (Sweden)

    Hicham Mahboubi

    2015-12-01

    Full Text Available Background. Chaperones and their co-factors are components of a cellular network; they collaborate to maintain proteostasis under normal and harmful conditions. In particular, hsp70 family members and their co-chaperones are essential to repair damaged proteins. Co-chaperones are present in different subcellular compartments, where they modulate chaperone activities.Methods and Results. Our studies assessed the relationship between hsc70 and its co-factor HspBP1 in human cancer cells. HspBP1 promotes nucleotide exchange on hsc70, but has also chaperone-independent functions. We characterized the interplay between hsc70 and HspBP1 by quantitative confocal microscopy combined with automated image analyses and statistical evaluation. Stress and the recovery from insult changed significantly the subcellular distribution of hsc70, but had little effect on HspBP1. Single-cell measurements and regression analysis revealed that the links between the chaperone and its co-factor relied on (i the physiological state of the cell and (ii the subcellular compartment. As such, we identified a linear relationship and strong correlation between hsc70 and HspBP1 distribution in control and heat-shocked cells; this correlation changed in a compartment-specific fashion during the recovery from stress. Furthermore, we uncovered significant stress-induced changes in the colocalization between hsc70 and HspBP1 in the nucleus and cytoplasm.Discussion. Our quantitative approach defined novel properties of the co-chaperone HspBP1 as they relate to its interplay with hsc70. We propose that changes in cell physiology promote chaperone redistribution and thereby stimulate chaperone-independent functions of HspBP1.

  16. Transcription elongation factor GreA has functional chaperone activity.

    Science.gov (United States)

    Li, Kun; Jiang, Tianyi; Yu, Bo; Wang, Limin; Gao, Chao; Ma, Cuiqing; Xu, Ping; Ma, Yanhe

    2012-01-01

    Bacterial GreA is an indispensable factor in the RNA polymerase elongation complex. It plays multiple roles in transcriptional elongation, and may be implicated in resistance to various stresses. In this study, we show that Escherichia coli GreA inhibits aggregation of several substrate proteins under heat shock condition. GreA can also effectively promote the refolding of denatured proteins. These facts reveal that GreA has chaperone activity. Distinct from many molecular chaperones, GreA does not form stable complexes with unfolded substrates. GreA overexpression confers the host cells with enhanced resistance to heat shock and oxidative stress. Moreover, GreA expression in the greA/greB double mutant could suppress the temperature-sensitive phenotype, and dramatically alleviate the in vivo protein aggregation. The results suggest that bacterial GreA may act as chaperone in vivo. These results suggest that GreA, in addition to its function as a transcription factor, is involved in protection of cellular proteins against aggregation.

  17. The conformational dynamics of the mitochondrial Hsp70 chaperone.

    Science.gov (United States)

    Mapa, Koyeli; Sikor, Martin; Kudryavtsev, Volodymyr; Waegemann, Karin; Kalinin, Stanislav; Seidel, Claus A M; Neupert, Walter; Lamb, Don C; Mokranjac, Dejana

    2010-04-09

    Heat shock proteins 70 (Hsp70) represent a ubiquitous and conserved family of molecular chaperones involved in a plethora of cellular processes. The dynamics of their ATP hydrolysis-driven and cochaperone-regulated conformational cycle are poorly understood. We used fluorescence spectroscopy to analyze, in real time and at single-molecule resolution, the effects of nucleotides and cochaperones on the conformation of Ssc1, a mitochondrial member of the family. We report that the conformation of its ADP state is unexpectedly heterogeneous, in contrast to a uniform ATP state. Substrates are actively involved in determining the conformation of Ssc1. The J protein Mdj1 does not interact transiently with the chaperone, as generally believed, but rather is released slowly upon ATP hydrolysis. Analysis of the major bacterial Hsp70 revealed important differences between highly homologous members of the family, possibly explaining tuning of Hsp70 chaperones to meet specific functions in different organisms and cellular compartments. 2010 Elsevier Inc. All rights reserved.

  18. Calorie-induced ER stress suppresses uroguanylin satiety signaling in diet-induced obesity.

    Science.gov (United States)

    Kim, G W; Lin, J E; Snook, A E; Aing, A S; Merlino, D J; Li, P; Waldman, S A

    2016-05-23

    The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO). Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks. The role of endoplasmic reticulum (ER) stress in suppressing uroguanylin in DIO was explored using tunicamycin, an inducer of ER stress, and tauroursodeoxycholic acid (TUDCA), a chemical chaperone that inhibits ER stress. The impact of consumed calories on uroguanylin expression was explored by dietary manipulation. The role of uroguanylin in mechanisms underlying obesity was examined using Camk2a-Cre-ER(T2)-Rosa-STOP(loxP/loxP)-Guca2b mice in which tamoxifen induces transgenic hormone expression in brain. DIO suppressed intestinal uroguanylin expression and eliminated its postprandial secretion into the circulation. DIO suppressed uroguanylin through ER stress, an effect mimicked by tunicamycin and blocked by TUDCA. Hormone suppression by DIO reflected consumed calories, rather than the pathophysiological milieu of obesity, as a diet high in calories from carbohydrates suppressed uroguanylin in lean mice, whereas calorie restriction restored uroguanylin in obese mice. However, hypothalamic GUCY2C, enriched in the arcuate nucleus, produced anorexigenic signals mediating satiety upon exogenous agonist administration, and DIO did not impair these responses. Uroguanylin replacement by transgenic expression in brain repaired the hormone insufficiency and reconstituted satiety responses opposing DIO and its associated comorbidities, including visceral adiposity, glucose intolerance and hepatic steatosis. These studies reveal a novel pathophysiological mechanism contributing to obesity in which calorie-induced suppression of intestinal uroguanylin impairs hypothalamic mechanisms

  19. Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding

    DEFF Research Database (Denmark)

    Rojek, Aleksandra; Füchtbauer, Ernst-Martin; Füchtbauer, Annette C.

    2013-01-01

    -specific Aqp11 KO mice, allowing us to study the role of AQP11 protein in liver of mice with normal kidney function. The unchallenged liver-specific Aqp11 KO mice have normal longevity, their livers appeared normal, and the plasma biochemistries revealed only a minor defect in lipid handling. Fasting......Aquaporin 11 (AQP11) is a protein channel expressed intracellularly in multiple organs, yet its physiological function is unclear. Aqp11 knockout (KO) mice die early due to malfunction of the kidney, a result of hydropic degeneration of proximal tubule cells. Here we report the generation of liver...... protein or larger doses of various amino acids. The fasting/refeeding challenge is associated with increased expression of markers of ER stress Grp78 and GADD153 and decreased glutathione levels, suggesting that ER stress may play role in the development of vacuoles in the AQP11-deficient hepatocytes. NMR...

  20. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis.

    Science.gov (United States)

    Ito, Shinya; Ogawa, Koji; Takeuchi, Koh; Takagi, Motoki; Yoshida, Masahito; Hirokawa, Takatsugu; Hirayama, Shoshiro; Shin-Ya, Kazuo; Shimada, Ichio; Doi, Takayuki; Goshima, Naoki; Natsume, Tohru; Nagata, Kazuhiro

    2017-12-08

    Fibrosis can disrupt tissue structure and integrity and impair organ function. Fibrosis is characterized by abnormal collagen accumulation in the extracellular matrix. Pharmacological inhibition of collagen secretion therefore represents a promising strategy for the management of fibrotic disorders, such as liver and lung fibrosis. Hsp47 is an endoplasmic reticulum (ER)-resident collagen-specific molecular chaperone essential for correct folding of procollagen in the ER. Genetic deletion of Hsp47 or inhibition of its interaction with procollagen interferes with procollagen triple helix production, which vastly reduces procollagen secretion from fibroblasts. Thus, Hsp47 could be a potential and promising target for the management of fibrosis. In this study, we screened small-molecule compounds that inhibit the interaction of Hsp47 with collagen from chemical libraries using surface plasmon resonance (BIAcore), and we found a molecule AK778 and its cleavage product Col003 competitively inhibited the interaction and caused the inhibition of collagen secretion by destabilizing the collagen triple helix. Structural information obtained with NMR analysis revealed that Col003 competitively binds to the collagen-binding site on Hsp47. We propose that these structural insights could provide a basis for designing more effective therapeutic drugs for managing fibrosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Valsartan Protects Against Contrast-Induced Acute Kidney Injury in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis.

    Science.gov (United States)

    Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (Pvalsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (PValsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Proteotoxicity is not the reason for the dependence of cancer cells on the major chaperone Hsp70.

    Science.gov (United States)

    Colvin, Teresa A; Gabai, Vladimir L; Sherman, Michael Y

    2014-01-01

    Several years ago a hypothesis was proposed that the survival of cancer cells depend on elevated expression of molecular chaperones because these cells are prone to proteotoxic stress. A critical prediction of this hypothesis is that depletion of chaperones in cancer cells should lead to proteotoxicity. Here, using the major chaperone Hsp70 as example, we demonstrate that its depletion does not trigger proteotoxic stress, thus refuting the model. Accordingly, other functions of chaperones, e.g., their role in cell signaling, might define the requirements for chaperones in cancer cells, which is critical for rational targeting Hsp70 in cancer treatment.

  3. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure.

    Science.gov (United States)

    Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F

    2010-08-01

    Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.

  4. The chaperone like function of the nonhistone protein HMGB1

    International Nuclear Information System (INIS)

    Osmanov, Taner; Ugrinova, Iva; Pasheva, Evdokia

    2013-01-01

    Highlights: ► The HMGB1 protein strongly enhanced the formation of nucleosome particles. ► The target of HMGB1 action as a chaperone is the DNA not the histone octamer. ► The acetylation of HMGB1 decreases the stimulating effect of the protein. -- Abstract: Almost all essential nuclear processes as replication, repair, transcription and recombination require the chromatin template to be correctly unwound and than repackaged. The major strategy that the cell uses to overcome the nucleosome barrier is the proper removal of the histone octamer and subsequent deposition onto DNA. Important factors in this multi step phenomenon are the histone chaperones that can assemble nucleosome arrays in vitro in the absence of ATP. The nonhistone protein HMGB1 is a good candidate for a chaperone as its molecule consists of two DNA binding motives, Box’s A and B, and a long nonstructured C tail highly negatively charged. HMGB1 protein is known as a nuclear “architectural” factor for its property to bind preferentially to distorted DNA structures and was reported to kink the double helix. Our experiments show that in the classical stepwise dialysis method for nucleosome assembly the addition of HMGB1 protein stimulates more than two times the formation of middle-positioned nucleosomes. The stimulation effect persists in dialysis free experiment when the reconstitution is possible only in the presence of a chaperone. The addition of HMGB1 protein strongly enhanced the formation of a nucleosome in a dose dependant manner. Our results show that the target of HMGB1 action as a chaperone is the DNA fragment not the histone octamer. One possible explanation for the stimulating effect of HMGB1 is the “architectural” property of the protein to associate with the middle of the DNA fragment and to kink it. The acquired V shaped DNA structure is probably conformationals more favorable to wrap around the prefolded histone octamer. We tested also the role of the post

  5. Multiscale Modeling of a Conditionally Disordered pH-Sensing Chaperone

    OpenAIRE

    Ahlstrom, Logan S.; Law, Sean M.; Dickson, Alex; Brooks, Charles L.

    2015-01-01

    The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodyn...

  6. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    Directory of Open Access Journals (Sweden)

    Sanjeev Gupta

    2010-07-01

    Full Text Available Endoplasmic reticulum (ER stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR. Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  7. Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: Critical role of autophagy induction.

    Science.gov (United States)

    Kim, Eun Hye; Park, Pil-Hoon

    2018-05-24

    Acetaminophen (APAP) overdose treatment causes severe liver injury. Adiponectin, a hormone predominantly produced by adipose tissue, exhibits protective effects against APAP-induced hepatotoxicity. However, the underlying mechanisms are not clearly understood. In the present study, we examined the protective effect of globular adiponectin (gAcrp) on APAP-induced hepatocyte death and its underlying mechanisms. We found that APAP (2 mM)-induced hepatocyte death was prevented by inhibition of the inflammasome. In addition, treatment with gAcrp (0.5 and 1 μg/ml) inhibited APAP-induced activation of the inflammasome, judged by suppression of interleukin-1β maturation, caspase-1 activation, and apoptosis-associated speck-like protein (ASC) speck formation, suggesting that protective effects of gAcrp against APAP-induced hepatocyte death is mediated via modulation of the inflammasome. APAP also induced ER stress and treatment with tauroursodeoxycholic acid (TUDCA), an ER chaperone and inhibitor of ER stress, abolished APAP-induced inflammasomes activation, implying that ER stress acts as signaling event leading to the inflammasome activation in hepatocytes stimulated with APAP. Moreover, gAcrp significantly suppressed APAP-induced expression of ER stress marker genes. Finally, the modulatory effects of gAcrp on ER stress and inflammasomes activation were abrogated by treatment with autophagy inhibitors, while an autophagy inducer (rapamycin) suppressed APAP-elicited ER stress, demonstrating that autophagy induction plays a crucial role in the suppression of APAP-induced inflammasome activation and ER stress by gAcrp. Taken together, these results indicate that gAcrp protects hepatocytes against APAP-induced cell death by modulating ER stress and the inflammasome activation, at least in part, via autophagy induction. Copyright © 2018. Published by Elsevier Inc.

  8. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway.

    Science.gov (United States)

    Kang, Kyoung Ah; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Ryu, Yea Seong; Oh, Min Chang; Kwon, Taeg Kyu; Chae, Sungwook; Hyun, Jin Won

    2016-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.

  9. Metformin induces apoptosis through AMPK-dependent inhibition of UPR signaling in ALL lymphoblasts.

    Directory of Open Access Journals (Sweden)

    Gilles M Leclerc

    Full Text Available The outcome of patients with resistant phenotypes of acute lymphoblastic leukemia (ALL or those who relapse remains poor. We investigated the mechanism of cell death induced by metformin in Bp- and T-ALL cell models and primary cells, and show that metformin effectively induces apoptosis in ALL cells. Metformin activated AMPK, down-regulated the unfolded protein response (UPR demonstrated by significant decrease in the main UPR regulator GRP78, and led to UPR-mediated cell death via up-regulation of the ER stress/UPR cell death mediators IRE1α and CHOP. Using shRNA, we demonstrate that metformin-induced apoptosis is AMPK-dependent since AMPK knock-down rescued ALL cells, which correlated with down-regulation of IRE1α and CHOP and restoration of the UPR/GRP78 function. Additionally rapamycin, a known inhibitor of mTOR-dependent protein synthesis, rescued cells from metformin-induced apoptosis and down-regulated CHOP expression. Finally, metformin induced PIM-2 kinase activity and co-treatment of ALL cells with a PIM-1/2 kinase inhibitor plus metformin synergistically increased cell death, suggesting a buffering role for PIM-2 in metformin's cytotoxicity. Similar synergism was seen with agents targeting Akt in combination with metformin, supporting our original postulate that AMPK and Akt exert opposite regulatory roles on UPR activity in ALL. Taken together, our data indicate that metformin induces ALL cell death by triggering ER and proteotoxic stress and simultaneously down-regulating the physiologic UPR response responsible for effectively buffering proteotoxic stress. Our findings provide evidence for a role of metformin in ALL therapy and support strategies targeting synthetic lethal interactions with Akt and PIM kinases as suitable for future consideration for clinical translation in ALL.

  10. Pharmacological chaperoning: a primer on mechanism and pharmacology.

    Science.gov (United States)

    Leidenheimer, Nancy J; Ryder, Katelyn G

    2014-05-01

    Approximately forty percent of diseases are attributable to protein misfolding, including those for which genetic mutation produces misfolding mutants. Intriguingly, many of these mutants are not terminally misfolded since native-like folding, and subsequent trafficking to functional locations, can be induced by target-specific, small molecules variably termed pharmacological chaperones, pharmacoperones, or pharmacochaperones (PCs). PC targets include enzymes, receptors, transporters, and ion channels, revealing the breadth of proteins that can be engaged by ligand-assisted folding. The purpose of this review is to provide an integrated primer of the diverse mechanisms and pharmacology of PCs. In this regard, we examine the structural mechanisms that underlie PC rescue of misfolding mutants, including the ability of PCs to act as surrogates for defective intramolecular interactions and, at the intermolecular level, overcome oligomerization deficiencies and dominant negative effects, as well as influence the subunit stoichiometry of heteropentameric receptors. Not surprisingly, PC-mediated structural correction of misfolding mutants normalizes interactions with molecular chaperones that participate in protein quality control and forward-trafficking. A variety of small molecules have proven to be efficacious PCs and the advantages and disadvantages of employing orthostatic antagonists, active-site inhibitors, orthostatic agonists, and allosteric modulator PCs are considered. Also examined is the possibility that several therapeutic agents may have unrecognized activity as PCs, and this chaperoning activity may mediate/contribute to therapeutic action and/or account for adverse effects. Lastly, we explore evidence that pharmacological chaperoning exploits intrinsic ligand-assisted folding mechanisms. Given the widespread applicability of PC rescue of mutants associated with protein folding disorders, both in vitro and in vivo, the therapeutic potential of PCs is vast

  11. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  12. Cantharidin Induced Oral Squamous Cell Carcinoma Cell Apoptosis via the JNK-Regulated Mitochondria and Endoplasmic Reticulum Stress-Related Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chin-Chuan Su

    Full Text Available Oral cancer is a subtype of head and neck cancer which represents 2.65% of all human malignancies. Most of oral cancer is histopathologically diagnosed as oral squamous cell carcinoma (OSCC. OSCC is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. How to prevention and treatment of OSCC is important and imperative. Here, we investigated the therapeutic effect and molecular mechanism of cantharidin, an active compound isolated from blister beetles, on OSCC in vitro. Results showed that cantharidin significantly decreased cell viability in human tongue squamous carcinoma-derived SAS, CAL-27, and SCC-4 cell lines. The further mechanistic studies were carried out in SAS cells. Cantharidin also significantly increased apoptosis-related signals, including caspase-9, caspase-7 and caspase-3 proteins. Besides, cantharidin decreased mitochondrial transmembrane potential (MMP and induced cytochrome c and apoptosis inducing factor (AIF release. Cantharidin also increased Bax, Bid, and Bak protein expressions and decreased Bcl-2 protein expression. Cantharidin could also increase the endoplasmic reticulum (ER stress signals, including the expressions of phosphorylated eIF-2α and CHOP, but not Grp78 and Grp94. Furthermore, cantharidin reduced pro-caspase-12 protein expression. In signals of mitogen-activated protein kinases, cantharidin increased the phosphorylation of JNK, but not ERK and p38. Transfection of shRNA-JNK to OSCC cells effectively reversed the cantharidin-induced cell apoptotic signals, including the mitochondrial and ER stress-related signaling molecules. Taken together, these findings suggest that cantharidin induces apoptosis in OSCC cells via the JNK-regulated mitochondria and ER stress-related signaling pathways.

  13. Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers

    NARCIS (Netherlands)

    Mannini, Benedetta; Cascella, Roberta; Zampagni, Mariagioia; Van Waarde-Verhagen, Maria; Meehan, Sarah; Roodveldt, Cintia; Campioni, Silvia; Boninsegna, Matilde; Penco, Amanda; Relini, Annalisa; Kampinga, Harm H.; Dobson, Christopher M.; Wilson, Mark R.; Cecchi, Cristina; Chiti, Fabrizio

    2012-01-01

    Chaperones are the primary regulators of the proteostasis network and are known to facilitate protein folding, inhibit protein aggregation, and promote disaggregation and clearance of misfolded aggregates inside cells. We have tested the effects of five chaperones on the toxicity of misfolded

  14. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.

    Directory of Open Access Journals (Sweden)

    Kris E Spaeth

    2009-09-01

    Full Text Available In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone. Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole ("inclusion". The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.

  15. UBL/BAG-domain co-chaperones cause cellular stress upon overexpression through constitutive activation of Hsf1

    DEFF Research Database (Denmark)

    Poulsen, Esben Guldahl; Kampmeyer, Caroline; Kriegenburg, Franziska

    2017-01-01

    of molecular chaperones and other stress-relieving proteins. Here, we show that the fission yeast Schizosaccharomyces pombe orthologues of human BAG-1, Bag101, and Bag102, are Hsp70 co-chaperones that associate with 26S proteasomes. Only a subgroup of Hsp70-type chaperones, including Ssa1, Ssa2, and Sks2...

  16. [Receptor status (ER and PgR) determined with histochemical and biochemical methods in breast carcinoma].

    Science.gov (United States)

    Simone, G; Paradiso, A; Cirillo, R; Mangia, A; Rella, G; Wiesel, S; Petroni, S; De Benedictis, G; De Lena, M

    1991-01-01

    Recently, a method similar to ER.ICA has been proposed for the progesterone receptor (PgR) using two monoclonal antibodies, JZB39 and KD68, specific for human PgR and characterized by a molecular weight of 95 and 120 Kd, respectively. A series of 73 breast cancer patients was studied with regards to ER and PgR using both immunocytochemical (ICA) and biochemical (DCC) assays. Results showed no substantial differences between the two methods when considering common clinical-pathological parameters. Overall agreement between ICA and DCC methods was found: 79% for PgR and 78% for ER. A slight quantitative correlation was also observed between the "score values" of the ICA method and the Fmol content of ER and PgR using the Brave-Pearson test (r = 0.49 for PgR; r = 0.43 for ER). Specificity of PgR.ICA method was 77% for PgR and 72% for ER; sensitivity was 82% and 83%, respectively. The ICA method is a reliable technique to assess PgR presence as well as ER. Further studies are necessary to evaluate the prognostic role of nuclear PgR.

  17. Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes

    Directory of Open Access Journals (Sweden)

    Jinlong Jian

    2017-09-01

    Full Text Available Multifunctional factor progranulin (PGRN plays an important role in lysosomes, and its mutations and insufficiency are associated with lysosomal storage diseases, including neuronal ceroid lipofuscinosis and Gaucher disease (GD. The first breakthrough in understanding the molecular mechanisms of PGRN as regulator of lysosomal storage diseases came unexpectedly while investigating the role of PGRN in inflammation. Challenged PGRN null mice displayed typical features of GD. In addition, GRN gene variants were identified in GD patients and the serum levels of PGRN were significantly lower in GD patients. PGRN directly binds to and functions as a chaperone of the lysosomal enzyme β-glucocerebrosidase (GCaase, whose mutations cause GD. In addition, its C-terminus containing granulin E domain, termed Pcgin (PGRN C-terminus for GCase Interaction, is required for the association between PGRN and GCase. The concept that PGRN acts as a chaperone of lysosomal enzymes was further supported and extended by a recent article showing that PGRN acts as a chaperone molecule of lysosomal enzyme cathepsin D (CSTD, and the association between PGRN and CSTD is also mediated by PGRN's C-terminal granulin E domain. Collectively, these reports suggest that PGRN may act as a shared chaperone and regulates multiple lysosomal enzymes.

  18. Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Zhang, Lingling; Picking, Wendy L.; Geisbrecht, Brian V. (UMKC); (OKLU)

    2010-10-05

    Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. In this study, we present the 3.3 {angstrom} crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC{sup 1-151}). Specifically, we observe a rotationally-symmetric 'head-to-head' dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC{sup 1-151}. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions: From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may

  19. MiR-17-5p Impairs Trafficking of H-ERG K+ Channel Protein by Targeting Multiple ER Stress-Related Chaperones during Chronic Oxidative Stress

    OpenAIRE

    Wang, Qi; Hu, Weina; Lei, Mingming; Wang, Yong; Yan, Bing; Liu, Jun; Zhang, Ren; Jin, Yuanzhe

    2013-01-01

    BACKGROUND: To investigate if microRNAs (miRNAs) play a role in regulating h-ERG trafficking in the setting of chronic oxidative stress as a common deleterious factor for many cardiac disorders. METHODS: We treated neonatal rat ventricular myocytes and HEK293 cells with stable expression of h-ERG with H2O2 for 12 h and 48 h. Expression of miR-17-5p seed miRNAs was quantified by real-time RT-PCR. Protein levels of chaperones and h-ERG trafficking were measured by Western blot analysis. Lucifer...

  20. The Malarial Exported PFA0660w Is an Hsp40 Co-Chaperone of PfHsp70-x.

    Directory of Open Access Journals (Sweden)

    Michael O Daniyan

    Full Text Available Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1 or a human Hsp70 (HSPA1A, indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-dependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria.

  1. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism?

    Directory of Open Access Journals (Sweden)

    José Pedro Castro

    2018-04-01

    Full Text Available The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis, cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer’s (AD, Parkinson’s (PD or even Huntington’s (HD diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.

  2. FKBP immunophilins and Alzheimer's disease: A chaperoned affair

    Indian Academy of Sciences (India)

    2011-07-08

    Jul 8, 2011 ... FKBP immunophilins and Alzheimer's disease: A chaperoned affair. Weihuan Cao Mary ... Keywords. Alzheimer's disease; amyloid precursor protein; beta amyloid; FKBP; FK506; immunophilins; tau ... 43 | Issue 1. March 2018.

  3. Thermodynamic assessments of the Ag-Er and Er-Y systems

    International Nuclear Information System (INIS)

    Wang, S.L.; Wang, C.P.; Liu, X.J.; Tang, A.T.; Pan, F.S.; Ishida, K.

    2010-01-01

    The phase diagrams and thermodynamic properties in the Ag-Er and Er-Y binary systems have been assessed by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data including the thermodynamic properties and phase equilibria. The Gibbs free energies of the liquid, bcc, fcc, and hcp phases were described by the subregular solution model with the Redlich-Kister equation, and those of intermetallic compounds (Ag 2 Er and AgEr phases) were treated as stoichiometric compounds, and Ag 51 Er 14 phase was modeled by the sublattice model in the Ag-Er binary system. The thermodynamic parameters of the Ag-Er and Er-Y binary systems were obtained, and an agreement between the calculated results and experimental data was obtained for each binary system.

  4. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease

    International Nuclear Information System (INIS)

    Oe, Shinji; Miyagawa, Koichiro; Honma, Yuichi; Harada, Masaru

    2016-01-01

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.

  5. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease

    Energy Technology Data Exchange (ETDEWEB)

    Oe, Shinji, E-mail: ooes@med.uoeh-u.ac.jp; Miyagawa, Koichiro, E-mail: koichiro@med.uoeh-u.ac.jp; Honma, Yuichi, E-mail: y-homma@med.uoeh-u.ac.jp; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2016-09-10

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.

  6. PrPC has nucleic acid chaperoning properties similar to the nucleocapsid protein of HIV-1.

    Science.gov (United States)

    Derrington, Edmund; Gabus, Caroline; Leblanc, Pascal; Chnaidermann, Jonas; Grave, Linda; Dormont, Dominique; Swietnicki, Wieslaw; Morillas, Manuel; Marck, Daniel; Nandi, Pradip; Darlix, Jean-Luc

    2002-01-01

    The function of the cellular prion protein (PrPC) remains obscure. Studies suggest that PrPC functions in several processes including signal transduction and Cu2+ metabolism. PrPC has also been established to bind nucleic acids. Therefore we investigated the properties of PrPC as a putative nucleic acid chaperone. Surprisingly, PrPC possesses all the nucleic acid chaperoning properties previously specific to retroviral nucleocapsid proteins. PrPC appears to be a molecular mimic of NCP7, the nucleocapsid protein of HIV-1. Thus PrPC, like NCP7, chaperones the annealing of tRNA(Lys) to the HIV-1 primer binding site, the initial step of retrovirus replication. PrPC also chaperones the two DNA strand transfers required for production of a complete proviral DNA with LTRs. Concerning the functions of NCP7 during budding, PrPC also mimices NCP7 by dimerizing the HIV-1 genomic RNA. These data are unprecedented because, although many cellular proteins have been identified as nucleic acid chaperones, none have the properties of retroviral nucleocapsid proteins.

  7. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Ray, Sougata Sinha; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31–43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25–43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min-1. Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18. PMID:26098662

  8. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18.

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Sinha Ray, Sougata; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31-43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25-43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min(-1). Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18.

  9. Structural and Functional Consequences of Chaperone Site Deletion in αA-Crystallin

    Science.gov (United States)

    Santhoshkumar, Puttur; Karmakar, Srabani; Sharma, Krishna K.

    2016-01-01

    The chaperone-like activity of αA-crystallin has an important role in maintaining lens transparency. Previously we identified residues 70–88 as a chaperone site in αA-crystallin. In this study, we deleted the chaperone site residues to generate αAΔ70–76 and αAΔ70–88 mutants and investigated if there are additional substrate-binding sites in αA-crystallin. Both mutant proteins when expressed in E. coli formed inclusion bodies, and on solubilizing and refolding, they exhibited similar structural properties, with a 2- to 3-fold increase in molar mass compared to the molar mass of wild-type protein. The deletion mutants were less stable than the wild-type αA-crystallin. Functionally αAΔ70–88 was completely inactive as a chaperone, while αAΔ70–76 demonstrated a 40–50% reduction in anti-aggregation activity against alcohol dehydrogenase (ADH). Deletion of residues 70–88 abolished the ADH binding sites in αA-crystallin at physiological temperature. At 45 °C, cryptic ADH binding site(s) became exposed, which contributed subtly to the chaperone-like activity of αAΔ70–88. Both of the deletion mutants were completely inactive in suppressing aggregation of βL-crystallin at 53 °C. The mutants completely lost the anti-apoptotic property that αA-crystallin exhibits while they protected ARPE-19 (a human retinal pigment epithelial cell line) and primary human lens epithelial (HLE) cells from oxidative stress. Our studies demonstrate that residues 70–88 in αA-crystallin act as a primary substrate binding site and account for the bulk of the total chaperone activity. The β3 and β4 strands in αA-crystallin comprising 70–88 residues play an important role in maintenance of the structure and in preventing aggregation of denaturing proteins. PMID:27524665

  10. The Escherichia coli P and Type 1 Pilus Assembly Chaperones PapD and FimC Are Monomeric in Solution

    Energy Technology Data Exchange (ETDEWEB)

    Sarowar, Samema; Hu, Olivia J.; Werneburg, Glenn T.; Thanassi, David G.; Li, Huilin; Christie, P. J.

    2016-06-27

    ABSTRACT

    The chaperone/usher pathway is used by Gram-negative bacteria to assemble adhesive surface structures known as pili or fimbriae. Uropathogenic strains ofEscherichia coliuse this pathway to assemble P and type 1 pili, which facilitate colonization of the kidney and bladder, respectively. Pilus assembly requires a periplasmic chaperone and outer membrane protein termed the usher. The chaperone allows folding of pilus subunits and escorts the subunits to the usher for polymerization into pili and secretion to the cell surface. Based on previous structures of mutant versions of the P pilus chaperone PapD, it was suggested that the chaperone dimerizes in the periplasm as a self-capping mechanism. Such dimerization is counterintuitive because the chaperone G1 strand, important for chaperone-subunit interaction, is buried at the dimer interface. Here, we show that the wild-type PapD chaperone also forms a dimer in the crystal lattice; however, the dimer interface is different from the previously solved structures. In contrast to the crystal structures, we found that both PapD and the type 1 pilus chaperone, FimC, are monomeric in solution. Our findings indicate that pilus chaperones do not sequester their G1 β-strand by forming a dimer. Instead, the chaperones may expose their G1 strand for facile interaction with pilus subunits. We also found that the type 1 pilus adhesin, FimH, is flexible in solution while in complex with its chaperone, whereas the P pilus adhesin, PapGII, is rigid. Our study clarifies a crucial step in pilus biogenesis and reveals pilus-specific differences that may relate to biological function.

    IMPORTANCEPili are critical virulence factors for many bacterial pathogens. UropathogenicE. colirelies on P and type 1 pili assembled by the chaperone/usher pathway to

  11. Angiotensin II receptor one (AT1) mediates dextrose induced endoplasmic reticulum stress and superoxide production in human coronary artery endothelial cells.

    Science.gov (United States)

    Haas, Michael J; Onstead-Haas, Luisa; Lee, Tracey; Torfah, Maisoon; Mooradian, Arshag D

    2016-10-01

    Renin-angiotensin-aldosterone system (RAAS) has been implicated in diabetes-related vascular complications partly through oxidative stress. To determine the role of angiotensin II receptor subtype one (AT1) in dextrose induced endoplasmic reticulum (ER) stress, another cellular stress implicated in vascular disease. Human coronary artery endothelial cells with or without AT1 receptor knock down were treated with 27.5mM dextrose for 24h in the presence of various pharmacologic blockers of RAAS and ER stress and superoxide (SO) production were measured. Transfection of cells with AT1 antisense RNA knocked down cellular AT1 by approximately 80%. The ER stress was measured using the placental alkaline phosphatase (ES-TRAP) assay and western blot analysis of glucose regulated protein 78 (GRP78), c-jun-N-terminal kinase 1 (JNK1), phospho-JNK1, eukaryotic translation initiation factor 2α (eIF2α) and phospho-eIF2α measurements. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. In cells with AT1 knock down, dextrose induced ER stress was significantly blunted and treatment with 27.5mM dextrose resulted in significantly smaller increase in SO production compared to 27.5mM dextrose treated and sham transfected cells. Dextrose induced ER stress was reduced with pharmacologic blockers of AT1 (losartan and candesartan) and mineralocorticoid receptor blocker (spironolactone) but not with angiotensin converting enzyme inhibitors (captopril and lisinopril). The dextrose induced SO generation was inhibited by all pharmacologic blockers of RAAS tested. The results indicate that dextrose induced ER stress and SO production in endothelial cells are mediated at least partly through AT1 receptor activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells

    Science.gov (United States)

    Li, Li; Wang, Li; Xiao, Ruijing; Zhu, Guoguo; Li, Yan; Liu, Changxuan; Yang, Ru; Tang, Zhiqing; Li, Jie; Huang, Wei; Chen, Lang; Zheng, Xiaoling; He, Yuling; Tan, Jinquan

    2011-01-01

    The ability of human cells to defend against viruses originating from distant species has long been ignored. Owing to the pressure of natural evolution and human exploration, some of these viruses may be able to invade human beings. If their ‘fresh’ host had no defences, the viruses could cause a serious pandemic, as seen with HIV, SARS (severe acute respiratory syndrome) and avian influenza virus that originated from chimpanzees, the common palm civet and birds, respectively. It is unknown whether the human immune system could tolerate invasion with a plant virus. To model such an alien virus invasion, we chose TMV (tobacco mosaic virus) and used human epithelial carcinoma cells (HeLa cells) as its ‘fresh’ host. We established a reliable system for transfecting TMV-RNA into HeLa cells and found that TMV-RNA triggered autophagy in HeLa cells as shown by the appearance of autophagic vacuoles, the conversion of LC3-I (light chain protein 3-I) to LC3-II, the up-regulated expression of Beclin1 and the accumulation of TMV protein on autophagosomal membranes. We observed suspected TMV virions in HeLa cells by TEM (transmission electron microscopy). Furthermore, we found that TMV-RNA was translated into CP (coat protein) in the ER (endoplasmic reticulum) and that TMV-positive RNA translocated from the cytoplasm to the nucleolus. Finally, we detected greatly increased expression of GRP78 (78 kDa glucose-regulated protein), a typical marker of ERS (ER stress) and found that the formation of autophagosomes was closely related to the expanded ER membrane. Taken together, our data indicate that HeLa cells used ERS and ERS-related autophagy to defend against TMV-RNA. PMID:21729006

  13. Rhein triggers apoptosis via induction of endoplasmic reticulum stress, caspase-4 and intracellular calcium in primary human hepatic HL-7702 cells

    Energy Technology Data Exchange (ETDEWEB)

    KoraMagazi, Arouna [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Wang, Dandan [Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Yousef, Bashir; Guerram, Mounia [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu (China); Yu, Feng, E-mail: yufengcpu14@yahoo.com [Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu (China); Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, Jiangsu (China)

    2016-04-22

    Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-like ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells. - Highlights: • Rhein triggers apoptotic cell death on primary human hepatic HL-7702 cells. • Rhein leads to caspase-4 activation in HL-7702 cells. • Rhein induces endoplasmic reticulum stress pathways in HL-7702 cells. • Rhein causes elevation of intracellular calcium concentrations in HL-7702 cells.

  14. A mouse model for inherited renal fibrosis associated with endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Sian E. Piret

    2017-06-01

    Full Text Available Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD due to missense uromodulin (UMOD mutations (ADTKD-UMOD. ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R. Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78 was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo. Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis.

  15. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Directory of Open Access Journals (Sweden)

    Jose M. Requena

    2015-01-01

    Full Text Available Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges for drug discovery and improving of current treatments against leishmaniasis.

  16. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Science.gov (United States)

    Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482

  17. Machined GRP laminates for components in heavy electrical engineering and their use at very low temperatures

    International Nuclear Information System (INIS)

    Fuchs, H.

    1982-01-01

    Safe and economical components can be produced from machined GRP laminates. Matrix system, fibre reinforcement and elastic properties are described. Onset of damage and long-term properties are given with detailed charting of tests. Application of the laminate studies at stresses of up to half their short-term strength can be made, provided creep strain and its dependence on time and temperature are considered

  18. Low Estrogen Receptor (ER)-Positive Breast Cancer and Neoadjuvant Systemic Chemotherapy: Is Response Similar to Typical ER-Positive or ER-Negative Disease?

    Science.gov (United States)

    Landmann, Alessandra; Farrugia, Daniel J; Zhu, Li; Diego, Emilia J; Johnson, Ronald R; Soran, Atilla; Dabbs, David J; Clark, Beth Z; Puhalla, Shannon L; Jankowitz, Rachel C; Brufsky, Adam M; Ahrendt, Gretchen M; McAuliffe, Priscilla F; Bhargava, Rohit

    2018-05-08

    Pathologic complete response (pCR) rate after neoadjuvant chemotherapy was compared between 141 estrogen receptor (ER)-negative (43%), 41 low ER+ (13%), 47 moderate ER+ (14%), and 98 high ER+ (30%) tumors. Human epidermal growth factor receptor 2-positive cases, cases without semiquantitative ER score, and patients treated with neoadjuvant endocrine therapy alone were excluded. The pCR rate of low ER+ tumors was similar to the pCR rate of ER- tumors (37% and 26% for low ER and ER- respectively, P = .1722) but significantly different from the pCR rate of moderately ER+ (11%, P = .0049) and high ER+ tumors (4%, P < .0001). Patients with pCR had an excellent prognosis regardless of the ER status. In patients with residual disease (no pCR), the recurrence and death rate were higher in ER- and low ER+ cases compared with moderate and high ER+ cases. Low ER+ breast cancers are biologically similar to ER- tumors. Semiquantitative ER H-score is an important determinant of response to neoadjuvant chemotherapy.

  19. Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells.

    Directory of Open Access Journals (Sweden)

    Chien-Ju Lin

    Full Text Available Autophagy is a crucial process for cells to maintain homeostasis and survival through degradation of cellular proteins and organelles, including mitochondria and endoplasmic reticula (ER. We previously demonstrated that temozolomide (TMZ, an alkylating agent for brain tumor chemotherapy, induced reactive oxygen species (ROS/extracellular signal-regulated kinase (ERK-mediated autophagy to protect glioma cells from apoptosis. In this study, we investigated the role of mitochondrial damage and ER stress in TMZ-induced cytotoxicity. Mitochondrial depolarization and mitochondrial permeability transition pore (MPTP opening were observed as a prelude to TMZ-induced autophagy, and these were followed by the loss of mitochondrial mass. Electron transport chain (ETC inhibitors, such as rotenone (a complex I inhibitor, sodium azide (a complex IV inhibitor, and oligomycin (a complex V inhibitor, or the MPTP inhibitor, cyclosporine A, decreased mitochondrial damage-mediated autophagy, and therefore increased TMZ-induced apoptosis. TMZ treatment triggered ER stress with increased expression of GADD153 and GRP78 proteins, and deceased pro-caspase 12 protein. ER stress consequently induced autophagy through c-Jun N-terminal kinases (JNK and Ca(2+ signaling pathways. Combination of TMZ with 4-phenylbutyrate (4-PBA, an ER stress inhibitor, augmented TMZ-induced cytotoxicity by inhibiting autophagy. Taken together, our data indicate that TMZ induced autophagy through mitochondrial damage- and ER stress-dependent mechanisms to protect glioma cells. This study provides evidence that agents targeting mitochondria or ER may be potential anticancer strategies.

  20. A novel protease activity assay using a protease-responsive chaperone protein

    International Nuclear Information System (INIS)

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-01-01

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  1. A novel protease activity assay using a protease-responsive chaperone protein

    Energy Technology Data Exchange (ETDEWEB)

    Sao, Kentaro [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Murata, Masaharu, E-mail: m-murata@dem.med.kyushu-u.ac.jp [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Fujisaki, Yuri; Umezaki, Kaori [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Nishi-ku Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hashizume, Makoto [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan)

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  2. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    International Nuclear Information System (INIS)

    Lilic, M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella

  3. Comparison of intra-organellar chaperone capacity for dealing with stress-induced protein unfolding.

    Science.gov (United States)

    Hageman, Jurre; Vos, Michel J; van Waarde, Maria A W H; Kampinga, Harm H

    2007-11-23

    Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are equipped with comparable chaperone capacities is largely unknown, mainly due to the lack of suitable reporters that allow such a comparison. Here we describe the development of fluorescent luciferase reporters that are sorted to various cellular locations (nucleus, cytoplasm, endoplasmic reticulum, and peroxisomes) and that differ minimally in their intrinsic thermal stability properties. When heating living cells, the rate of inactivation was most rapid for the nuclear-targeted luciferase, indicating that the nucleus is the most sensitive organelle toward heat-induced denaturing stress. Post-heat re-activation, however, occurred at equal kinetics irrespective of luciferase localization. Also, induction of thermotolerance by a priming heat treatment, that coordinately up-regulates all heat-inducible chaperones, resulted in a transient heat resistance of the luciferase in all organelles in a comparable manner. Overexpression of the main heat-inducible Hsp70 family member, HspA1A, protected only the cytosolic and nuclear, but not the other luciferases. Together, our data suggest that in each compartment investigated, including the peroxisome in which so far no chaperones could be detected, chaperone machines are present and can be induced with activities similar to those present in the cytosolic/nuclear compartment.

  4. Apoptosis of HeLa cells induced by a new targeting photosensitizer-based PDT via a mitochondrial pathway and ER stress

    Directory of Open Access Journals (Sweden)

    Li D

    2015-04-01

    Full Text Available Donghong Li,1 Lei Li,2 Pengxi Li,1 Yi Li,3 Xiangyun Chen1 1State Key Laboratory of Trauma, Burn and Combined Injury, The Second Department of Research Institute of Surgery, 2The First Department of Research Institute of Surgery, 3Cancer Center, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Photodynamic therapy (PDT is emerging as a viable treatment for many cancers. To decrease the cutaneous photosensitivity induced by PDT, many attempts have been made to search for a targeting photosensitizer; however, few reports describe the molecular mechanism of PDT mediated by this type of targeting photosensitizer. The present study aimed to investigate the molecular mechanism of PDT induced by a new targeting photosensitizer (PS I, reported previously by us, on HeLa cells. Apoptosis is the primary mode of HeLa cell death in our system, and apoptosis occurs in a manner dependent on concentration, irradiation dose, and drug–light intervals. After endocytosis mediated by the folate receptor, PS I was primarily localized to the mitochondria and the endoplasmic reticulum (ER of HeLa cells. PS I PDT resulted in rapid increases in intracellular reactive oxygen species (ROS production and Ca2+ concentration, both of which reached a peak nearly simultaneously at 15 minutes, followed by the loss of mitochondrial membrane potential at 30 minutes, release of cytochrome c from mitochondria into the cytoplasm, downregulation of Bcl-2 expression, and upregulation of Bax expression. Meanwhile, activation of caspase-3, -9, and -12, as well as induction of C/EBP homologous protein (CHOP and glucose-regulated protein (GRP78, in HeLa cells after PS I PDT was also detected. These results suggest that apoptosis of HeLa cells induced by PS I PDT is not only triggered by ROS but is also regulated by Ca2+ overload. Mitochondria and the ER serve as the subcellular targets of PS I PDT, the effective activation of which

  5. BiP Negatively Affects Ricin Transport

    Directory of Open Access Journals (Sweden)

    Kirsten Sandvig

    2013-05-01

    Full Text Available The AB plant toxin ricin binds both glycoproteins and glycolipids at the cell surface via its B subunit. After binding, ricin is endocytosed and then transported retrogradely through the Golgi to the endoplasmic reticulum (ER. In the ER, the A subunit is retrotranslocated to the cytosol in a chaperone-dependent process, which is not fully explored. Recently two separate siRNA screens have demonstrated that ER chaperones have implications for ricin toxicity. ER associated degradation (ERAD involves translocation of misfolded proteins from ER to cytosol and it is conceivable that protein toxins exploit this pathway. The ER chaperone BiP is an important ER regulator and has been implicated in toxicity mediated by cholera and Shiga toxin. In this study, we have investigated the role of BiP in ricin translocation to the cytosol. We first show that overexpression of BiP inhibited ricin translocation and protected cells against the toxin. Furthermore, shRNA-mediated depletion of BiP enhanced toxin translocation resulting in increased cytotoxicity. BiP-dependent inhibition of ricin toxicity was independent of ER stress. Our findings suggest that in contrast to what was shown with the Shiga toxin, the presence of BiP does not facilitate, but rather inhibits the entry of ricin into the cytosol.

  6. Counteracting chemical chaperone effects on the single-molecule α-synuclein structural landscape

    OpenAIRE

    Ferreon, Allan Chris M.; Moosa, Mahdi Muhammad; Gambin, Yann; Deniz, Ashok A.

    2012-01-01

    Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster reson...

  7. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    Science.gov (United States)

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Activated α2-macroglobulin binding to human prostate cancer cells triggers insulin-like responses.

    Science.gov (United States)

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2015-04-10

    Ligation of cell surface GRP78 by activated α2-macroglobulin (α2M*) promotes cell proliferation and suppresses apoptosis. α2M*-treated human prostate cancer cells exhibit a 2-3-fold increase in glucose uptake and lactate secretion, an effect similar to insulin treatment. In both α2M* and insulin-treated cells, the mRNA levels of SREBP1-c, SREBP2, fatty-acid synthase, acetyl-CoA carboxylase, ATP citrate lyase, and Glut-1 were significantly increased together with their protein levels, except for SREBP2. Pretreatment of cells with α2M* antagonist antibody directed against the carboxyl-terminal domain of GRP78 blocks these α2M*-mediated effects, and silencing GRP78 expression by RNAi inhibits up-regulation of ATP citrate lyase and fatty-acid synthase. α2M* induces a 2-3-fold increase in lipogenesis as determined by 6-[(14)C]glucose or 1-[(14)C]acetate incorporation into free cholesterol, cholesterol esters, triglycerides, free fatty acids, and phosphatidylcholine, which is blocked by inhibitors of fatty-acid synthase, PI 3-kinase, mTORC, or an antibody against the carboxyl-terminal domain of GRP78. We also assessed the incorporation of [(14)CH3]choline into phosphatidylcholine and observed similar effects. Lipogenesis is significantly affected by pretreatment of prostate cancer cells with fatostatin A, which blocks sterol regulatory element-binding protein proteolytic cleavage and activation. This study demonstrates that α2M* functions as a growth factor, leading to proliferation of prostate cancer cells by promoting insulin-like responses. An antibody against the carboxyl-terminal domain of GRP78 may have important applications in prostate cancer therapy. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Luminescence dosemeter of the Al{sub 2}O{sub 3}:Er,Yb

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Katia A.; Ventieri, Alexandre; Bitencourt, Jose F.S. [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Eletrica; Mittani, Juan C.R.; Tatumi, Sonia H. [Faculdade de Tecnologia de Sao Paulo (CEETEPS), SP (Brazil)

    2011-07-01

    The present work deals with the thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) properties of {alpha}-Al{sub 2}O{sub 3}: Er,Yb obtained by sol gel process. Nanocrystals formations composed by Er{sub 2}O{sub 3}, Yb{sub 2}O{sub 3} and Yb{sub 3}Al{sub 5}O{sub 12} were observed by TEM images, EDS, electron beam diffraction and RXD, located at the surface of the alumina grains. The sample codoped with 1mol% of Er and 2 mol% of Yb supplied the best results for TL and OSL responses. The growth of the intensity of dosimetric TL peak at 205 deg C was linear with gamma radiation doses and the same behavior was observed in OSL growth curve. The luminescence fading of the sample after a dose of 5 Gy was found initially for a period of 30 days and minimum detectable dose measured for TL was 60.78 mGy and for OSL was 13.09 mGy. (author)

  10. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides.

    Science.gov (United States)

    Guichard, Cécile; Ivanyi-Nagy, Roland; Sharma, Kamal Kant; Gabus, Caroline; Marc, Daniel; Mély, Yves; Darlix, Jean-Luc

    2011-10-01

    Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrP(C)) into the aggregated misfolded scrapie isoform, named PrP(Sc). Recent studies on the physiological role of PrP(C) revealed that this protein has probably multiple functions, notably in cell-cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5'-GACACAAGCCGA-3' was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities.

  11. Modulation of chaperone-like and membranolytic activities of major ...

    Indian Academy of Sciences (India)

    C Sudheer Kumar

    2017-06-20

    Jun 20, 2017 ... Keywords. Capacitation; membranolytic activity; molecular chaperone; oxidative stress ... also shown to extract phospholipids from the membrane resulting ..... Gulcin I 2006 Antioxidant and antiradical activities of L-carnitine.

  12. Multiscale modeling of a conditionally disordered pH-sensing chaperone.

    Science.gov (United States)

    Ahlstrom, Logan S; Law, Sean M; Dickson, Alex; Brooks, Charles L

    2015-04-24

    The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodynamics. Our approach combines pK(a) (logarithmic acid dissociation constant) calculations from all-atom constant pH molecular dynamics simulations with coarse-grained modeling and yields new, atomic-level, insights into HdeA chaperone function that can be directly tested by experiment. "pH triggers" that significantly destabilize the dimer are each located near the N-terminus of a helix, suggesting that their neutralization at low pH destabilizes the helix macrodipole as a mechanism of monomer disordering. Moreover, we observe a non-monotonic change in the pH-dependent stability of HdeA, with maximal stability of the dimer near pH5. This affect is attributed to the protonation Glu37, which exhibits an anomalously high pK(a) value and is located within the hydrophobic dimer interface. Finally, the pH-dependent binding pathway of HdeA comprises a partially unfolded, dimeric intermediate that becomes increasingly stable relative to the native dimer at lower pH values and displays key structural features for chaperone-substrate interaction. We anticipate that the insights from our model will help inform ongoing NMR and biochemical investigations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease.

    Science.gov (United States)

    Fries, Gabriel R; Gassen, Nils C; Rein, Theo

    2017-12-05

    Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels-transcription, post-transcription, and post-translation-and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51's involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.

  14. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  15. Pre-clinical evaluation of eight DOTA coupled gastrin-releasing peptide receptor (GRP-R) ligands for in vivo targeting of receptor-expressing tumors.

    Science.gov (United States)

    Accardo, Antonella; Galli, Filippo; Mansi, Rosalba; Del Pozzo, Luigi; Aurilio, Michela; Morisco, Anna; Ringhieri, Paola; Signore, Alberto; Morelli, Giancarlo; Aloj, Luigi

    2016-12-01

    Overexpression of the gastrin-releasing peptide receptor (GRP-R) has been documented in several human neoplasms such as breast, prostate, and ovarian cancer. There is growing interest in developing radiolabeled peptide-based ligands toward these receptors for the purpose of in vivo imaging and radionuclide therapy of GRP-R-overexpressing tumors. A number of different peptide sequences, isotopes, and labeling methods have been proposed for this purpose. The aim of this work is to perform a direct side-by-side comparison of different GRP-R binding peptides utilizing a single labeling strategy to identify the most suitable peptide sequence. Solid-phase synthesis of eight derivatives (BN1-8) designed based on literature analysis was carried out. Peptides were coupled to the DOTA chelator through a PEG4 spacer at the N-terminus. Derivatives were characterized for serum stability, binding affinity on PC-3 human prostate cancer cells, biodistribution in tumor-bearing mice, and gamma camera imaging at 1, 6, and 24 h after injection. Serum stability was quite variable among the different compounds with half-lives ranging from 16 to 400 min at 37 °C. All compounds tested showed K d values in the nanomolar range with the exception of BN3 that showed no binding. Biodistribution and imaging studies carried out for compounds BN1, BN4, BN7, and BN8 showed targeting of the GRP-R-positive tumors and the pancreas. The BN8 compound (DOTA-PEG-DPhe-Gln-Trp-Ala-Val-NMeGly-His-Sta-Leu-NH2) showed high affinity, the longest serum stability, and the highest target-to-background ratios in biodistribution and imaging experiments among the compounds tested. Our results indicate that the NMeGly for Gly substitution and the Sta-Leu substitution at the C-terminus confer high serum stability while maintaining high receptor affinity, resulting in biodistribution properties that outperform those of the other peptides.

  16. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  17. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Pechmann

    2014-06-01

    Full Text Available Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the

  18. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.

    Science.gov (United States)

    Sriram, M; Osipiuk, J; Freeman, B; Morimoto, R; Joachimiak, A

    1997-03-15

    The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes

  19. Hvis en kartoffel er forkert, hvad er en Mars-bar så?

    DEFF Research Database (Denmark)

    Lichtenstein, Mia Beck; Thomsen, Freja; Hinze, Cecilie

    2016-01-01

    Danske unge er de slankeste af 41 europæiske unge, men de føler sig ofte tykke og går på slankekur. Hvad er årsagen, og hvorfor er det et problem?......Danske unge er de slankeste af 41 europæiske unge, men de føler sig ofte tykke og går på slankekur. Hvad er årsagen, og hvorfor er det et problem?...

  20. The fragile X mental retardation protein has nucleic acid chaperone properties.

    Science.gov (United States)

    Gabus, Caroline; Mazroui, Rachid; Tremblay, Sandra; Khandjian, Edouard W; Darlix, Jean-Luc

    2004-01-01

    The fragile X syndrome is the most common cause of inherited mental retardation resulting from the absence of the fragile X mental retardation protein (FMRP). FMRP contains two K-homology (KH) domains and one RGG box that are landmarks characteristic of RNA-binding proteins. In agreement with this, FMRP associates with messenger ribonucleoparticles (mRNPs) within actively translating ribosomes, and is thought to regulate translation of target mRNAs, including its own transcript. To investigate whether FMRP might chaperone nucleic acid folding and hybridization, we analysed the annealing and strand exchange activities of DNA oligonucleotides and the enhancement of ribozyme-directed RNA substrate cleavage by FMRP and deleted variants relative to canonical nucleic acid chaperones, such as the cellular YB-1/p50 protein and the retroviral nucleocapsid protein HIV-1 NCp7. FMRP was found to possess all the properties of a potent nucleic acid chaperone, requiring the KH motifs and RGG box for optimal activity. These findings suggest that FMRP may regulate translation by acting on RNA-RNA interactions and thus on the structural status of mRNAs.

  1. Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity

    NARCIS (Netherlands)

    Eerde, André van; Hamiaux, Cyril; Pérez, Javier; Parsot, Claude; Dijkstra, Bauke W.

    2004-01-01

    Type III secretion (TTS) systems are used by many Gram-negative pathogens to inject virulence proteins into the cells of their hosts. Several of these virulence effectors require TTS chaperones that maintain them in a secretion-competent state. Whereas most chaperones bind only one effector, Spa15

  2. The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Emily Bergbower

    2018-01-01

    Full Text Available Background/Aims: The CFTR-Associated Ligand (CAL, a PDZ domain containing protein with two coiled-coil domains, reduces cell surface WT CFTR through degradation in the lysosome by a well-characterized mechanism. However, CAL’s regulatory effect on ΔF508 CFTR has remained almost entirely uninvestigated. Methods: In this study, we describe a previously unknown pathway for CAL by which it regulates the membrane expression of ΔF508 CFTR through arrest of ΔF508 CFTR trafficking in the endoplasmic reticulum (ER using a combination of cell biology, biochemistry and electrophysiology. Results: We demonstrate that CAL is an ER localized protein that binds to ΔF508 CFTR and is degraded in the 26S proteasome. When CAL is inhibited, ΔF508 CFTR retention in the ER decreases and cell surface expression of mature functional ΔF508 CFTR is observed alongside of enhanced expression of plasma membrane scaffolding protein NHERF1. Chaperone proteins regulate this novel process, and ΔF508 CFTR binding to HSP40, HSP90, HSP70, VCP, and Aha1 changes to improve ΔF508 CFTR cell surface trafficking. Conclusion: Our results reveal a pathway in which CAL regulates the cell surface availability and intracellular retention of ΔF508 CFTR.

  3. Histone H1 chaperone activity of TAF-I is regulated by its subtype-dependent intramolecular interaction.

    Science.gov (United States)

    Kajitani, Kaori; Kato, Kohsuke; Nagata, Kyosuke

    2017-04-01

    Linker histone H1 is involved in the regulation of gene activity through the maintenance of higher-order chromatin structure. Previously, we have shown that template activating factor-I (TAF-I or protein SET) is involved in linker histone H1 dynamics as a histone H1 chaperone. In human and murine cells, two TAF-I subtypes exist, namely TAF-Iα and TAF-Iβ. TAF-I has a highly acidic amino acid cluster in its C-terminal region and forms homo- or heterodimers through its dimerization domain. Both dimer formation and the C-terminal region of TAF-I are essential for the histone chaperone activity. TAF-Iα exhibits less histone chaperone activity compared with TAF-Iβ even though TAF-Iα and β differ only in their N-terminal regions. However, it is unclear how subtype-specific TAF-I activities are regulated. Here, we have shown that the N-terminal region of TAF-Iα autoinhibits its histone chaperone activity via intramolecular interaction with its C-terminal region. When the interaction between the N- and C-terminal regions of TAF-Iα is disrupted, TAF-Iα shows a histone chaperone activity similar to that of TAF-Iβ. Taken together, these results provide mechanistic insights into the concept that fine tuning of TAF-I histone H1 chaperone activity relies on the subtype compositions of the TAF-I dimer. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  4. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-01-01

    Full Text Available Methamphetamine (MA leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS. The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA, and MA plus TBHQ-treated group (MA + TBHQ. Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  5. Long-Term Exercise Protects against Cellular Stresses in Aged Mice

    Directory of Open Access Journals (Sweden)

    Irina Belaya

    2018-01-01

    Full Text Available The current study examined the effect of aging and long-term wheel-running on the expression of heat shock protein (HSP, redox regulation, and endoplasmic reticulum (ER stress markers in tibialis anterior (T.A. and soleus muscle of mice. Male mice were divided into young (Y, 3-month-old, old-sedentary (OS, 24-month-old, and old-exercise (OE, 24-month-old groups. The OE group started voluntary wheel-running at 3 months and continued until 24 months of age. Aging was associated with a higher thioredoxin-interacting protein (TxNiP level, lower thioredoxin-1 (TRX-1 to TxNiP ratio—a determinant of redox regulation and increased CHOP, an indicator of ER stress-related apoptosis signaling in both muscles. Notably, GRP78, a key indicator of ER stress, was selectively elevated in T.A. Long-term exercise decreased TxNiP in T.A. and soleus muscles and increased the TRX-1/TxNiP ratio in soleus muscle of aged mice. Inducible HSP70 and constituent HSC70 were upregulated, whereas CHOP was reduced after exercise in soleus muscle. Thus, our data demonstrated that aging induced oxidative stress and activated ER stress-related apoptosis signaling in skeletal muscle, whereas long-term wheel-running improved redox regulation, ER stress adaptation and attenuated ER stress-related apoptosis signaling. These findings suggest that life-long exercise can protect against age-related cellular stress.

  6. Presence of chaperones during pelvic examinations in southeast ...

    African Journals Online (AJOL)

    2012-12-12

    Dec 12, 2012 ... preferred male physicians and 88 (38.3%) had no gender preference. ... is recommended as a standard practice by many medical ... Department of Obstetrics and Gynecology, University of Nigeria ... and eliminates postconsultation bias. .... chaperones gave prevention of sexual harassment as a reason.

  7. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology.

    Science.gov (United States)

    Manford, Andrew G; Stefan, Christopher J; Yuan, Helen L; Macgurn, Jason A; Emr, Scott D

    2012-12-11

    Endoplasmic reticulum-plasma membrane (ER-PM) junctions are conserved structures defined as regions of the ER that tightly associate with the plasma membrane. However, little is known about the mechanisms that tether these organelles together and why such connections are maintained. Using a quantitative proteomic approach, we identified three families of ER-PM tethering proteins in yeast: Ist2 (related to mammalian TMEM16 ion channels), the tricalbins (Tcb1/2/3, orthologs of the extended synaptotagmins), and Scs2 and Scs22 (vesicle-associated membrane protein-associated proteins). Loss of all six tethering proteins results in the separation of the ER from the PM and the accumulation of cytoplasmic ER. Importantly, we find that phosphoinositide signaling is misregulated at the PM, and the unfolded protein response is constitutively activated in the ER in cells lacking ER-PM tether proteins. These results reveal critical roles for ER-PM contacts in cell signaling, organelle morphology, and ER function. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Effects of HSP27 chaperone on THP-1 tumor cell apoptosis.

    Science.gov (United States)

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Maroshkina, A N; Belkina, M V

    2012-11-01

    The role of Hsp27 (heat shock protein 27) chaperone in regulation of THP-1 tumor cell apoptosis was studied. Realization of tumor cell apoptosis under conditions of in vitro culturing with Hsp27 specific inhibitor (KRIBB3) was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Measurements of Bcl-2 family proteins (Bcl-2, Bax, Bad) in tumor cells incubated with Hsp27 inhibitor were carried out by Western blotting. Chaperone Hsp27 acted as apoptosis inhibitor in THP-1 tumor cells modulating the proportion of antiapoptotic (Bcl-2) and proapoptotic (Bax and Bad) proteins.

  9. Characterization of the recombinant copper chaperone (CCS) from the plant Glycine (G.) max.

    Science.gov (United States)

    Sagasti, Sara; Yruela, Inmaculada; Bernal, Maria; Lujan, Maria A; Frago, Susana; Medina, Milagros; Picorel, Rafael

    2011-02-01

    The goal of the present work was to characterize the recombinant copper chaperone (CCS) from soybean. Very little is known about plant copper chaperones, which makes this study of current interest, and allows for a comparison with the better known homologues from yeast and humans. To obtain sizeable amounts of pure protein suitable for spectroscopic characterization, we cloned and overexpressed the G. max CCS chaperone in E. coli in the presence of 0.5 mM CuSO(4) and 0.5 mM ZnSO(4) in the broth. A pure protein preparation was obtained by using two IMAC steps and pH gradient chromatography. Most of the proteins were obtained as apo-form, devoid of copper atoms. The chaperone showed a high content (i.e., over 40%) of loops, turns and random coil as determined both by circular dichroism and homology modelling. The homology 3-D structural model suggests the protein might fold in three structural protein domains. The 3-D model along with the primary structure and spectroscopic data may suggest that copper atoms occupy the two metal binding sites, MKCEGC and CTC, within the N-terminal domain I and C-terminal domain III, respectively. But only one Zn-binding site was obtained spectroscopically.

  10. Kinetics and thermodynamics of the thermal inactivation and chaperone assisted folding of zebrafish dihydrofolate reductase.

    Science.gov (United States)

    Thapliyal, Charu; Jain, Neha; Rashid, Naira; Chaudhuri Chattopadhyay, Pratima

    2018-01-01

    The maintenance of thermal stability is a major issue in protein engineering as many proteins tend to form inactive aggregates at higher temperatures. Zebrafish DHFR, an essential protein for the survival of cells, shows irreversible thermal unfolding transition. The protein exhibits complete unfolding and loss of activity at 50 °C as monitored by UV-Visible, fluorescence and far UV-CD spectroscopy. The heat induced inactivation of zDHFR follows first-order kinetics and Arrhenius law. The variation in the value of inactivation rate constant, k with increasing temperatures depicts faster inactivation at elevated temperatures. We have attempted to study the chaperoning ability of a shorter variant of GroEL (minichaperone) and compared it with that of conventional GroEL-GroES chaperone system. Both the chaperone system prevented the aggregation and assisted in refolding of zDHFR. The rate of thermal inactivation was significantly retarded in the presence of chaperones which indicate that it enhances the thermal stability of the enzyme. As minichaperone is less complex, and does not require high energy co-factors like ATP, for its function as compared to conventional GroEL-GroES system, it can act as a very good in vitro as well as in vivo chaperone model for monitoring assisted protein folding phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Vegge, Christina Skovgaard; Skórko-Glonek, Joanna

    2011-01-01

    activity is sufficient for growth at high temperature or oxidative stress, whereas the HtrA protease activity is only essential at conditions close to the growth limit for C. jejuni. However, the protease activity was required to prevent induction of the cytoplasmic heat-shock response even at optimal......The microaerophilic bacterium Campylobacter jejuni is the most common cause of bacterial food-borne infections in the developed world. Tolerance to environmental stress relies on proteases and chaperones in the cell envelope such as HtrA and SurA. HtrA displays both chaperone and protease activity......, but little is known about how each of these activities contributes to stress tolerance in bacteria. In vitro experiments showed temperature dependent protease and chaperone activities of C. jejuni HtrA. A C. jejuni mutant lacking only the protease activity of HtrA was used to show that the HtrA chaperone...

  12. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro.

    Science.gov (United States)

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-06-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44-61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.

  13. Treatment of Fabry's Disease with the Pharmacologic Chaperone Migalastat

    DEFF Research Database (Denmark)

    Germain, Dominique P; Hughes, Derralynn A; Nicholls, Kathleen

    2016-01-01

    BACKGROUND: Fabry's disease, an X-linked disorder of lysosomal α-galactosidase deficiency, leads to substrate accumulation in multiple organs. Migalastat, an oral pharmacologic chaperone, stabilizes specific mutant forms of α-galactosidase, increasing enzyme trafficking to lysosomes. METHODS: The...

  14. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  15. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2016-07-01

    Full Text Available Recessive osteogenesis imperfecta (OI is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  16. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Yan M

    2016-02-01

    Full Text Available Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Medicine, Shaoxing University, Shaoxing, 3Department of Chemistry, Zhejiang University, 4Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Cadmium telluride quantum dots (CdTe QDs have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs. However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (–21.63±0.91 mV, with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature. The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and

  17. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2016-01-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  18. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  19. Mapping the Interactome of a Major Mammalian Endoplasmic Reticulum Heat Shock Protein 90.

    Directory of Open Access Journals (Sweden)

    Feng Hong

    Full Text Available Up to 10% of cytosolic proteins are dependent on the mammalian heat shock protein 90 (HSP90 for folding. However, the interactors of its endoplasmic reticulum (ER paralogue (gp96, Grp94 and HSP90b1 has not been systematically identified. By combining genetic and biochemical approaches, we have comprehensively mapped the interactome of gp96 in macrophages and B cells. A total of 511 proteins were reduced in gp96 knockdown cells, compared to levels observed in wild type cells. By immunoprecipitation, we found that 201 proteins associated with gp96. Gene Ontology analysis indicated that these proteins are involved in metabolism, transport, translation, protein folding, development, localization, response to stress and cellular component biogenesis. While known gp96 clients such as integrins, Toll-like receptors (TLRs and Wnt co-receptor LRP6, were confirmed, cell surface HSP receptor CD91, TLR4 pathway protein CD180, WDR1, GANAB and CAPZB were identified as potentially novel substrates of gp96. Taken together, our study establishes gp96 as a critical chaperone to integrate innate immunity, Wnt signaling and organ development.

  20. Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.

    Science.gov (United States)

    Ohba, M

    1997-06-09

    In prokaryotes, DnaK-DnaJ chaperon is involved in the protein degradation catalyzed by proteases La and ClpA/B complex as shown in E. coli. To extend this into eukaryotic cells, we examined the effects of hsp70 genes, SSA1 and SSB1, and DnaJ genes, SIS1 and YDJ1, on the growth of proteasome subunit mutants of the yeast S. cerevisiae. The results identified SSB1 and SIS1 as a pair of chaperon genes specifically involved in efficient protein turnover in the yeast, whose overexpression suppressed the growth defects caused by the proteasome mutations. Moreover, a single amino acid substitution in the putative peptide-binding site of SSB1 protein profoundly enhanced the suppression activity, indicating that the activity is mediated by the peptide-binding activity of this chaperon. Thus SSB1, with its partner DnaJ, SIS1, modulates the efficiency of protein turnover through its chaperon activity.

  1. c-Abl Mediated Tyrosine Phosphorylation of Aha1 Activates Its Co-chaperone Function in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Diana M. Dunn

    2015-08-01

    Full Text Available The ability of Heat Shock Protein 90 (Hsp90 to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific “client” proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Hsp90 remain unknown. Here, we show that c-Abl kinase phosphorylates Y223 in human Aha1 (hAha1, promoting its interaction with Hsp90. This, consequently, results in an increased Hsp90 ATPase activity, enhances Hsp90 interaction with kinase clients, and compromises the chaperoning of non-kinase clients such as glucocorticoid receptor and CFTR. Suggesting a regulatory paradigm, we also find that Y223 phosphorylation leads to ubiquitination and degradation of hAha1 in the proteasome. Finally, pharmacologic inhibition of c-Abl prevents hAha1 interaction with Hsp90, thereby hypersensitizing cancer cells to Hsp90 inhibitors both in vitro and ex vivo.

  2. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    Science.gov (United States)

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  3. Disaggregases, molecular chaperones that resolubilize protein aggregates

    Directory of Open Access Journals (Sweden)

    David Z. Mokry

    2015-08-01

    Full Text Available The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.

  4. Interplay between Molecular Chaperones and the Ubiquitin-Proteasome System in Targeting of Misfolded Proteins for Degradation

    DEFF Research Database (Denmark)

    Poulsen, Esben Guldahl

    interacting with purified 26S proteasomes, and the subsequent characterization of two novel proteasome interacting proteins. The third study was aimed at analyzing the chaperone-assisted pathway leading to degradation of misfolded kinetochore proteins in S. pombe. In this study chaperones, E2s, E3s and DUBs...

  5. Progress and potential of non-inhibitory small molecule chaperones for the treatment of Gaucher disease and its implications for Parkinson disease.

    Science.gov (United States)

    Jung, Olive; Patnaik, Samarjit; Marugan, Juan; Sidransky, Ellen; Westbroek, Wendy

    2016-05-01

    Gaucher disease, caused by pathological mutations GBA1, encodes the lysosome-resident enzyme glucocerebrosidase, which cleaves glucosylceramide into glucose and ceramide. In Gaucher disease, glucocerebrosidase deficiency leads to lysosomal accumulation of substrate, primarily in cells of the reticulo-endothelial system. Gaucher disease has broad clinical heterogeneity, and mutations in GBA1 are a risk factor for the development of different synucleinopathies. Insights into the cell biology and biochemistry of glucocerebrosidase have led to new therapeutic approaches for Gaucher disease including small chemical chaperones. Such chaperones facilitate proper enzyme folding and translocation to lysosomes, thereby preventing premature breakdown of the enzyme in the proteasome. This review discusses recent progress in developing chemical chaperones as a therapy for Gaucher disease, with implications for the treatment of synucleinopathies. It focuses on the development of non-inhibitory glucocerebrosidase chaperones and their therapeutic advantages over inhibitory chaperones, as well as the challenges involved in identifying and validating chemical chaperones.

  6. Molecular transformers in the cell: lessons learned from the DegP protease-chaperone.

    Science.gov (United States)

    Sawa, Justyna; Heuck, Alexander; Ehrmann, Michael; Clausen, Tim

    2010-04-01

    Structure-function analysis of DegP revealed a novel mechanism for protease and chaperone regulation. Binding of unfolded proteins induces the oligomer reassembly from the resting hexamer (DegP6) into the functional protease-chaperone DegP12/24. The newly formed cage exhibits the characteristics of a proteolytic folding chamber, shredding those proteins that are severely misfolded while stabilizing and protecting proteins present in their native state. Isolation of native DegP complexes with folded outer membrane proteins (OMPs) highlights the importance of DegP in OMP biogenesis. The encapsulated OMP beta-barrel is significantly stabilized in the hydrophobic chamber of DegP12/24 and thus DegP seems to employ a reciprocal mechanism to those chaperones assisting the folding of water soluble proteins via polar interactions. In addition, we discuss in this review similarities to other complex proteolytic machines that, like DegP, are under control of a substrate-induced or stress-induced oligomer conversion.

  7. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    Science.gov (United States)

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

  8. In vitro reconstitution of chaperone-mediated human RISC assembly.

    Science.gov (United States)

    Naruse, Ken; Matsuura-Suzuki, Eriko; Watanabe, Mariko; Iwasaki, Shintaro; Tomari, Yukihide

    2018-01-01

    To silence target mRNAs, small RNAs and Argonaute (Ago) proteins need to be assembled into RNA-induced silencing complexes (RISCs). Although the assembly of Drosophila melanogaster RISC was recently reconstituted by Ago2, the Dicer-2/R2D2 heterodimer, and five chaperone proteins, the absence of a reconstitution system for mammalian RISC assembly has posed analytical challenges. Here we describe reconstitution of human RISC assembly using Ago2 and five recombinant chaperone proteins: Hsp90β, Hsc70, Hop, Dnaja2, and p23. Our data show that ATP hydrolysis by both Hsp90β and Hsc70 is required for RISC assembly of small RNA duplexes but not for that of single-stranded RNAs. The reconstitution system lays the groundwork for further studies of small RNA-mediated gene silencing in mammals. © 2018 Naruse et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. 78 FR 40484 - Determination That METADATE ER (Methylphenidate Hydrochloride) Extended-Release Tablet, 10...

    Science.gov (United States)

    2013-07-05

    ... marketing for reasons other than safety or effectiveness. ANDAs that refer to METADATE ER (methylphenidate... Withdrawn From Sale for Reasons of Safety or Effectiveness AGENCY: Food and Drug Administration, HHS. ACTION... safety or effectiveness. This determination will allow FDA to approve abbreviated new drug applications...

  10. Melatonin Modulates Endoplasmic Reticulum Stress and Akt/GSK3-Beta Signaling Pathway in a Rat Model of Renal Warm Ischemia Reperfusion

    Directory of Open Access Journals (Sweden)

    Kaouther Hadj Ayed Tka

    2015-01-01

    Full Text Available Melatonin (Mel is widely used to attenuate ischemia/reperfusion (I/R injury in several organs. Nevertheless, the underlying mechanisms remain unclear. This study was conducted to explore the effect of Mel on endoplasmic reticulum (ER stress, Akt and MAPK cascades after renal warm I/R. Eighteen Wistar rats were randomized into three groups: Sham, I/R, and Mel + I/R. The ischemia period was 60 min followed by 120 min of reperfusion. Mel (10 mg/kg was administrated 30 min prior to ischemia. The creatinine clearance, MDA, LDH levels, and histopathological changes were evaluated. In addition, Western blot was performed to study ER stress and its downstream apoptosis as well as phosphorylation of Akt, GSK-3β, VDAC, ERK, and P38. Mel decreased cytolysis and lipid peroxidation and improved renal function and morphology compared to I/R group. Parallely, it significantly reduced the ER stress parameters including GRP 78, p-PERK, XBP 1, ATF 6, CHOP, and JNK. Simultaneously, p-Akt level was significantly enhanced and its target molecules GSK-3β and VDAC were inhibited. Furthermore, the ERK and P38 phosphorylation were evidently augmented after Mel administration in comparison to I/R group. In conclusion, Mel improves the recovery of renal function by decreasing ER stress and stimulating Akt pathway after renal I/R injury.

  11. Possible Function of Molecular Chaperones in Diseases Caused by Propagating Amyloid Aggregates

    Directory of Open Access Journals (Sweden)

    Vladimir F. Lazarev

    2017-05-01

    Full Text Available The vast majority of neurodegenerative pathologies stem from the formation of toxic oligomers and aggregates composed of wrongly folded proteins. These protein complexes can be released from pathogenic cells and enthralled by other cells, causing the formation of new aggregates in a prion-like manner. By this mechanism, migrating complexes can transmit a disorder to distant regions of the brain and promote gradually transmitting degenerative processes. Molecular chaperones can counteract the toxicity of misfolded proteins. In this review, we discuss recent data on the possible cytoprotective functions of chaperones in horizontally transmitting neurological disorders.

  12. Investigation of original multivalent iminosugars as pharmacological chaperones for the treatment of Gaucher disease.

    Science.gov (United States)

    Laigre, Eugénie; Hazelard, Damien; Casas, Josefina; Serra-Vinardell, Jenny; Michelakakis, Helen; Mavridou, Irene; Aerts, Johannes M F G; Delgado, Antonio; Compain, Philippe

    2016-06-24

    Multivalent iminosugars conjugated with a morpholine moiety and/or designed as prodrugs have been prepared and evaluated as new classes of pharmacological chaperones for the treatment of Gaucher disease. This study further confirms the interest of the prodrug concept and shows that the addition of a lysosome-targeting morpholine unit into iminosugar cluster structures has no significant impact on the chaperone activity on Gaucher cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The identification and characterization of nucleic acid chaperone activity of human enterovirus 71 nonstructural protein 3AB.

    Science.gov (United States)

    Tang, Fenfen; Xia, Hongjie; Wang, Peipei; Yang, Jie; Zhao, Tianyong; Zhang, Qi; Hu, Yuanyang; Zhou, Xi

    2014-09-01

    Human enterovirus 71 (EV71) belongs to the genus Enterovirus in the family Picornaviridae and has been recognized as one of the most important pathogens that cause emerging infectious disease. Despite of the importance of EV71, the nonstructural protein 3AB from this virus is little understood for its function during EV71 replication. Here we expressed EV71 3AB protein as recombinant protein in a eukaryotic expression system and uncovered that this protein possesses a nucleic acid helix-destabilizing and strand annealing acceleration activity in a dose-dependent manner, indicating that EV71 3AB is a nucleic acid chaperone protein. Moreover, we characterized the RNA chaperone activity of EV71 3AB, and revealed that divalent metal ions, such as Mg(2+) and Zn(2+), were able to inhibit the RNA helix-destabilizing activity of 3AB to different extents. Moreover, we determined that 3B plus the last 7 amino acids at the C-terminal of 3A (termed 3B+7) possess the RNA chaperone activity, and five amino acids, i.e. Lys-80, Phe-82, Phe-85, Tyr-89, and Arg-103, are critical and probably the active sites of 3AB for its RNA chaperone activity. This report reveals that EV71 3AB displays an RNA chaperone activity, adds a new member to the growing list of virus-encoded RNA chaperones, and provides novel knowledge about the virology of EV71. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Metal chaperones: a holistic approach to the treatment of AD

    Directory of Open Access Journals (Sweden)

    Paul Anthony Adlard

    2012-03-01

    Full Text Available As the burden of proof for the role of metal ion dysregulation in the pathogenesis of multiple CNS disorders grows, it has become important to more precisely identify and differentiate the biological effects of various pharmacological modulators of metal ion homeostasis. This is particularly evident in disorders such as Alzheimer’s disease, where the use of metal chaperones (that transport metals, as opposed to chelators (which exclude metals from biological interactions, may prove to be the first truly disease modifying approach for this condition. The purpose of this mini-review is to highlight the emerging notion that metal chaperones, such as PBT2 (Prana Biotechnology, modulate a variety of critical pathways affecting key aspects of the AD cascade to provide a more holistic approach to the treatment of this disease.

  15. Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation

    DEFF Research Database (Denmark)

    Kriegenburg, Franziska; Ellgaard, Lars; Hartmann-Petersen, Rasmus

    2012-01-01

    The accumulation of misfolded proteins presents a considerable threat to the health of individual cells and has been linked to severe diseases, including neurodegenerative disorders. Considering that, in nature, cells often are exposed to stress conditions that may lead to aberrant protein...... conformational changes, it becomes clear that they must have an efficient quality control apparatus to refold or destroy misfolded proteins. In general, cells rely on molecular chaperones to seize and refold misfolded proteins. If the native state is unattainable, misfolded proteins are targeted for degradation...... via the ubiquitin-proteasome system. The specificity of this proteolysis is generally provided by E3 ubiquitin-protein ligases, hundreds of which are encoded in the human genome. However, rather than binding the misfolded proteins directly, most E3s depend on molecular chaperones to recognize...

  16. Melatonin-Mediated Intracellular Insulin during 2-Deoxy-d-glucose Treatment Is Reduced through Autophagy and EDC3 Protein in Insulinoma INS-1E Cells

    Directory of Open Access Journals (Sweden)

    Han Sung Kim

    2016-01-01

    Full Text Available 2-DG triggers glucose deprivation without altering other nutrients or metabolic pathways and then activates autophagy via activation of AMPK and endoplasmic reticulum (ER stress. We investigated whether 2-DG reduced intracellular insulin increased by melatonin via autophagy/EDC3 in insulinoma INS-1E cells. p-AMPK and GRP78/BiP level were significantly increased by 2-DG in the presence/absence of melatonin, but IRE1α level was reduced in 2-DG treatment. Levels of p85α, p110, p-Akt (Ser473, Thr308, and p-mTOR (Ser2481 were also significantly reduced by 2-DG in the presence/absence of melatonin. Mn-SOD increased with 2-DG plus melatonin compared to groups treated with/without melatonin alone. Bcl-2 was decreased and Bax increased with 2-DG plus melatonin. LC3II level increased with 2-DG treatment in the presence/absence of melatonin. Intracellular insulin production increased in melatonin plus 2-DG but reduced in treatment with 2-DG with/without melatonin. EDC3 was increased by 2-DG in the presence/absence of melatonin. Rapamycin, an mTOR inhibitor, increased GRP78/BiP and EDC3 levels in a dose-dependent manner and subsequently resulted in a decrease in intracellular production of insulin. These results suggest that melatonin-mediated insulin synthesis during 2-DG treatment involves autophagy and EDC3 protein in rat insulinoma INS-1E cells and subsequently results in a decrease in intracellular production of insulin.

  17. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Emily F A van 't Wout

    2015-06-01

    Full Text Available Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA. Efficient functioning of the endoplasmic reticulum (ER is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to "ER stress" and activation of the "unfolded protein response" (UPR. Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host.

  18. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells

    Science.gov (United States)

    van ‘t Wout, Emily F. A.; van Schadewijk, Annemarie; van Boxtel, Ria; Dalton, Lucy E.; Clarke, Hanna J.; Tommassen, Jan; Marciniak, Stefan J.; Hiemstra, Pieter S.

    2015-01-01

    Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to “ER stress” and activation of the “unfolded protein response” (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host. PMID:26083346

  19. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats.

    Science.gov (United States)

    Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C

    2016-11-01

    Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response

    International Nuclear Information System (INIS)

    Yan, Ying; Gao, Yan-Yan; Liu, Bao-Qin; Niu, Xiao-Fang; Zhuang, Ying; Wang, Hua-Qin

    2010-01-01

    Resveratrol (RES), a natural phytoalexin found at high levels in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular mechanisms are at present only partially understood. The effects of RES on activation of unfolded protein responses (UPR) were evaluated using Western blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and subsequent FACS. Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2α consistent with ER resident kinase (PERK) activation, activating transcription factor 6 (ATF6) splicing, and increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines. RES was shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP. Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt's lymphoma cells

  1. Resveratrol-induced cytotoxicity in human Burkitt's lymphoma cells is coupled to the unfolded protein response

    Directory of Open Access Journals (Sweden)

    Yan Ying

    2010-08-01

    Full Text Available Abstract Background Resveratrol (RES, a natural phytoalexin found at high levels in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. However, the underlying molecular mechanisms are at present only partially understood. Method The effects of RES on activation of unfolded protein responses (UPR were evaluated using Western blotting, semi-quantitative and real-time RT-PCR. Cell death was evaluated using Annexin V/PI staining and subsequent FACS. Results Similar as tunicamycin, treatment with RES lead to the activation of all 3 branches of the UPR, with early splicing of XBP-1 indicative of IRE1 activation, phosphorylation of eIF2α consistent with ER resident kinase (PERK activation, activating transcription factor 6 (ATF6 splicing, and increase in expression levels of the downstream molecules GRP78/BiP, GRP94 and CHOP/GADD153 in human Burkitt's lymphoma Raji and Daudi cell lines. RES was shown to induce cell death, which could be attenuated by thwarting upregulation of CHOP. Conclusions Our data suggest that activation of the apoptotic arm of the UPR and its downstream effector CHOP/GADD153 is involved, at least in part, in RES-induced apoptosis in Burkitt's lymphoma cells.

  2. A primate specific extra domain in the molecular chaperone Hsp90.

    Directory of Open Access Journals (Sweden)

    Vishwadeepak Tripathi

    Full Text Available Hsp90 (heat shock protein 90 is an essential molecular chaperone that mediates folding and quality control of client proteins. Many of them such as protein kinases, steroid receptors and transcription factors are involved in cellular signaling processes. Hsp90 undergoes an ATP hydrolysis dependent conformational cycle to assist folding of the client protein. The canonical Hsp90 shows a typical composition of three distinct domains and interacts with individual cochaperone partners such as Hop, Cdc37 and Aha1 (activator of Hsp90 ATPase that regulate the reaction cycle of the molecular chaperone. A bioinformatic survey identified an additional domain of 122 amino acids in front of the canonical Hsp90 sequence. This extra domain (E domain is specific to the Catarrhini or drooping nose monkeys, a subdivision of the higher primates that includes man, the great apes and the old world monkeys but is absent from all other species. Our biochemical analysis reveals that Hsp103 associates with cochaperone proteins such as Hop, Cdc37 and Aha1 similar to Hsp90. However, the extra domain reduces the ATP hydrolysis rate to about half when compared to Hsp90 thereby acting as a negative regulator of the molecular chaperonés intrinsic ATPase activity.

  3. Endoplasmic Reticulum Stress in Reproductive Function

    Directory of Open Access Journals (Sweden)

    Kang-sheng LIU

    2016-09-01

    Full Text Available Normal folding requires that unique conditions should be maintained within the endoplasmic reticulum (ER lumen, and nascent proteins are initially bound to Ca2+dependent chaperone proteins. Proteins synthesized in the ER are properly folded with the assistance of ER chaperones. misfolded proteins are disposed by ER-associated protein degradation. Accumulation of misfolded proteins in the ER triggers an adaptive ER stress response, which leads to activation of the unfolded protein response (UPR, a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cells. It has been shown that ER stress involves in pathophysiological development of many diseases, including neurological diseases. However, nowadays, a few studies have begun to focus on the possibility that the accumulation of misfolded proteins can also contribute to reproductive diseases. In this article, we mainly introduced the involvement of ER stress response in preimplantation embryos, placental development, intrauterine growth restriction (IUGR and testicular germ cells so as to provide important insights for the molecular mechanisms of ER stress-induced apoptosis in reproductive diseases.

  4. Characterization of the ER-Targeted Low Affinity Ca2+ Probe D4ER

    Directory of Open Access Journals (Sweden)

    Elisa Greotti

    2016-09-01

    Full Text Available Calcium ion (Ca2+ is a ubiquitous intracellular messenger and changes in its concentration impact on nearly every aspect of cell life. Endoplasmic reticulum (ER represents the major intracellular Ca2+ store and the free Ca2+ concentration ([Ca2+] within its lumen ([Ca2+]ER can reach levels higher than 1 mM. Several genetically-encoded ER-targeted Ca2+ sensors have been developed over the last years. However, most of them are non-ratiometric and, thus, their signal is difficult to calibrate in live cells and is affected by shifts in the focal plane and artifactual movements of the sample. On the other hand, existing ratiometric Ca2+ probes are plagued by different drawbacks, such as a double dissociation constant (Kd for Ca2+, low dynamic range, and an affinity for the cation that is too high for the levels of [Ca2+] in the ER lumen. Here, we report the characterization of a recently generated ER-targeted, Förster resonance energy transfer (FRET-based, Cameleon probe, named D4ER, characterized by suitable Ca2+ affinity and dynamic range for monitoring [Ca2+] variations within the ER. As an example, resting [Ca2+]ER have been evaluated in a known paradigm of altered ER Ca2+ homeostasis, i.e., in cells expressing a mutated form of the familial Alzheimer’s Disease-linked protein Presenilin 2 (PS2. The lower Ca2+ affinity of the D4ER probe, compared to that of the previously generated D1ER, allowed the detection of a conspicuous, more clear-cut, reduction in ER Ca2+ content in cells expressing mutated PS2, compared to controls.

  5. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast.

    Science.gov (United States)

    Johnson, Courtney R; Weems, Andrew D; Brewer, Jennifer M; Thorner, Jeremy; McMurray, Michael A

    2015-04-01

    Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases. © 2015 Johnson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. DiagTest3Grp: An R Package for Analyzing Diagnostic Tests with Three Ordinal Groups

    Directory of Open Access Journals (Sweden)

    Jingqin Luo

    2012-10-01

    Full Text Available Medical researchers endeavor to identify potentially useful biomarkers to develop marker-based screening assays for disease diagnosis and prevention. Useful summary measures which properly evaluate the discriminative ability of diagnostic markers are critical for this purpose. Literature and existing software, for example, R packages nicely cover summary measures for diagnostic markers used for the binary case (e.g., healthy vs. diseased. An intermediate population at an early disease stage usually exists between the healthy and the fully diseased population in many disease processes. Supporting utilities for three-group diagnostic tests are highly desired and important for identifying patients at the early disease stage for timely treatments. However, application packages which provide summary measures for three ordinal groups are currently lacking. This paper focuses on two summary measures of diagnostic accuracy—volume under the receiver operating characteristic surface and the extended Youden index, with three diagnostic groups. We provide the R package DiagTest3Grp to estimate, under both parametric and nonparametric assumptions, the two summary measures and the associated variances, as well as the optimal cut-points for disease diagnosis. An omnibus test for multiple markers and a Wald test for two markers, on independent or paired samples, are incorporated to compare diagnostic accuracy across biomarkers. Sample size calculation under the normality assumption can be performed in the R package to design future diagnostic studies. A real world application evaluating the diagnostic accuracy of neuropsychological markers for Alzheimer’s disease is used to guide readers through step-by-step implementation of DiagTest3Grp to demonstrate its utility.

  7. A novel heterozygous mutation of the WFS1 gene leading to constitutive endoplasmic reticulum stress is the cause of Wolfram syndrome.

    Science.gov (United States)

    Morikawa, Shuntaro; Tajima, Toshihiro; Nakamura, Akie; Ishizu, Katsura; Ariga, Tadashi

    2017-12-01

    Wolfram syndrome (WS) is a disorder characterized by the association of insulin-dependent diabetes mellitus (DM), diabetes insipidus, deafness, and optic nerve atrophy. WS is caused by WFS1 mutations encoding WFS1 protein expressed in endoplasmic reticulum (ER). During ER protein synthesis, misfolded and unfolded proteins accumulate, known as "ER stress". This is attenuated by the unfolded protein response (UPR), which recovers and maintains ER functions. Because WFS1 is a UPR component, mutant WFS1 might cause unresolvable ER stress conditions and cell apoptosis, the major causes underlying WS symptoms. We encountered an 11-month-old Japanese female WS patient with insulin-dependent DM, congenital cataract and severe bilateral hearing loss. Analyze the WFS1 and functional consequence of the patient WFS1 in vitro. The patient WFS1 contained a heterozygous 4 amino acid in-frame deletion (p.N325_I328del). Her mutant WFS1 increased GRP78 and ATF6α promoter activities in the absence of thapsigargin, indicating constitutive ER stress and nuclear factor of activated T-cell reporter activity, reflecting elevated cytosolic Ca 2+ signals. Mutant transfection into cells reduced mRNA expression levels of sarcoplasmic/endoplasmic reticulum Ca 2+ transport ATPase 2b (SERCA2b) compared with wild type. Because SERCA2b is required for ER and cytoplasmic Ca 2+ homeostasis, decreased SERCA2b expression might affect ER Ca 2+ efflux, causing cell apoptosis. A novel heterozygous mutation of WFS1 induced constitutive ER stress through ATF6α activation and ER Ca 2+ efflux, resulting in cell apoptosis. These results provide new insights into the roles of WFS1 in UPR and mechanism of monogenic DM. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Arctigenin suppresses unfolded protein response and sensitizes glucose deprivation-mediated cytotoxicity of cancer cells.

    Science.gov (United States)

    Sun, Shengrong; Wang, Xiong; Wang, Changhua; Nawaz, Ahmed; Wei, Wen; Li, Juanjuan; Wang, Lijun; Yu, De-Hua

    2011-01-01

    The involvement of unfolded protein response (UPR) activation in tumor survival and resistance to chemotherapies suggests a new anticancer strategy targeting UPR pathway. Arctigenin, a natural product, has been recently identified for its antitumor activity with selective toxicity against cancer cells under glucose starvation with unknown mechanism. Here we found that arctigenin specifically blocks the transcriptional induction of two potential anticancer targets, namely glucose-regulated protein-78 (GRP78) and its analog GRP94, under glucose deprivation, but not by tunicamycin. The activation of other UPR pathways, e.g., XBP-1 and ATF4, by glucose deprivation was also suppressed by arctigenin. A further transgene experiment showed that ectopic expression of GRP78 at least partially rescued arctigenin/glucose starvation-mediated cell growth inhibition, suggesting the causal role of UPR suppression in arctigenin-mediated cytotoxicity under glucose starvation. These observations bring a new insight into the mechanism of action of arctigenin and may lead to the design of new anticancer therapeutics. © Georg Thieme Verlag KG Stuttgart · New York.

  9. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD.

    Science.gov (United States)

    Needham, Patrick G; Brodsky, Jeffrey L

    2013-11-01

    All newly synthesized proteins are subject to quality control check-points, which prevent aberrant polypeptides from harming the cell. For proteins that ultimately reside in the cytoplasm, components that also reside in the cytoplasm were known for many years to mediate quality control. Early biochemical and genetic data indicated that misfolded proteins were selected by molecular chaperones and then targeted to the proteasome (in eukaryotes) or to proteasome-like particles (in bacteria) for degradation. What was less clear was how secreted and integral membrane proteins, which in eukaryotes enter the endoplasmic reticulum (ER), were subject to quality control decisions. In this review, we highlight early studies that ultimately led to the discovery that secreted and integral membrane proteins also utilize several components that constitute the cytoplasmic quality control machinery. This component of the cellular quality control pathway is known as ER associated degradation, or ERAD. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Preparation of chromatographically pure specimens, crystallization, and X-ray diffraction study of the periplasmatic chaperone protein Caf1M from Y. Pestis

    International Nuclear Information System (INIS)

    Mikhailov, A.M.; Vainshtein, B.K.; Chernovskaya, T.V.; Vasil'ev, A.M.; Rudenko, E.G.; Abramov, V.M.; Zav'yalov, V.P.; Kornev, A.N.; Kornilov, V.V.; Karlyshev, A.V.; MacIntyre, Sh.

    1999-01-01

    The for growing conditions perfect single crystals of the protein Caf1M have been established. The unit-cell parameters of the crystals are (a=112.6 A, b=78.1 A, c=65.3 A, sp. gr. P2 1 2 1 2 1 ), molecular weight is 28 kDa), which is a representative of molecular periplasmatic chaperones, were found. This investigation is the first necessary stage of determination the three-dimensional structure of this biomacromolecule at atomic resolution. Taking into account that the primary amino acid sequences of the protein Caf1M and of the structurally studied protein PapD and also their secondary structures are homologous, the phase problem can be solved by the molecular replacement method

  11. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng Tien [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Weng, Te I. [Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Li Ping [Department of Dentistry, Chang Gang Memorial Hospital, Chang Gang University, Taoyuan, Taiwan (China); Chiang, Chih Kang [Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Liu, Shing Hwa, E-mail: shinghwaliu@ntu.edu.tw [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  12. Endoplasmic reticulum stress induces different molecular structural alterations in human dilated and ischemic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Ana Ortega

    Full Text Available BACKGROUND: The endoplasmic reticulum (ER is a multifunctional organelle responsible for the synthesis and folding of proteins as well as for signalling and calcium storage, that has been linked to the contraction-relaxation process. Perturbations of its homeostasis activate a stress response in diseases such as heart failure (HF. To elucidate the alterations in ER molecular components, we analyze the levels of ER stress and structure proteins in human dilated (DCM and ischemic (ICM cardiomyopathies, and its relationship with patient's functional status. METHODS AND RESULTS: We examined 52 explanted human hearts from DCM (n = 21 and ICM (n = 21 subjects and 10 non-failing hearts as controls. Our results showed specific changes in stress (IRE1, p<0.05; p-IRE1, p<0.05 and structural (Reticulon 1, p<0.01 protein levels. The stress proteins GRP78, XBP1 and ATF6 as well as the structural proteins RRBP1, kinectin, and Nogo A and B, were upregulated in both DCM and ICM patients. Immunofluorescence results were concordant with quantified Western blot levels. Moreover, we show a novel relationship between stress and structural proteins. RRBP1, involved in procollagen synthesis and remodeling, was related with left ventricular function. CONCLUSIONS: In the present study, we report the existence of alterations in ER stress response and shaping proteins. We show a plausible effect of the ER stress on ER structure in a suitable sample of DCM and ICM subjects. Patients with higher values of RRBP1 had worse left ventricular function.

  13. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Marcianò, G.; Huang, D. T., E-mail: d.huang@beatson.gla.ac.uk [Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland (United Kingdom)

    2016-01-22

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  14. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    International Nuclear Information System (INIS)

    Marcianò, G.; Huang, D. T.

    2016-01-01

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding

  15. PfClpC Is an Essential Clp Chaperone Required for Plastid Integrity and Clp Protease Stability in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Anat Florentin

    2017-11-01

    Full Text Available Summary: The deadly malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid, known as the apicoplast, that functions to produce essential metabolites, and drugs that target the apicoplast are clinically effective. Several prokaryotic caseinolytic protease (Clp genes have been identified in the Plasmodium genome. Using phylogenetic analysis, we focused on the Clp members that may form a regulated proteolytic complex in the apicoplast. We genetically targeted members of this complex and generated conditional mutants of the apicoplast-localized PfClpC chaperone and PfClpP protease. Conditional inhibition of the PfClpC chaperone resulted in growth arrest and apicoplast loss and was rescued by addition of the essential apicoplast-derived metabolite IPP. Using a double-conditional mutant parasite line, we discovered that the chaperone activity is required to stabilize the mature protease, revealing functional interactions. These data demonstrate the essential function of PfClpC in maintaining apicoplast integrity and its role in regulating the proteolytic activity of the Clp complex. : Plasmodium falciparum contains a unique organelle, the apicoplast. Using genetic and phenotypic assays, Florentin et al. characterize the apicoplast Clp chaperone and protease. They find that the chaperone is essential for protease stability and that together they function to maintain organelle integrity and segregation into daughter cells. Keywords: malaria, Plasmodium, apicoplast, IPP, Clp, chaperone, caseinolytic protease

  16. Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Adélle Burger

    2014-01-01

    Full Text Available The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70 is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.

  17. Politik er ikke lykken

    DEFF Research Database (Denmark)

    Steenbuch, Johannes Aakjær

    2011-01-01

    Der er ikke længere nogen højere sandhed i livet end den, flertallet bestemmer sig for – og dermed ingen del af livet, der ikke er politisk. Højre- og venstrefløjen er i bund og grund enige - enige om, at det er politikernes opgave at forære os det gode liv. Dermed bliver demokratiet totalitært. ...

  18. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation

    Science.gov (United States)

    Chen, Ke; Gao, Ye; Mih, Nathan; O’Brien, Edward J.; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Maintenance of a properly folded proteome is critical for bacterial survival at notably different growth temperatures. Understanding the molecular basis of thermoadaptation has progressed in two main directions, the sequence and structural basis of protein thermostability and the mechanistic principles of protein quality control assisted by chaperones. Yet we do not fully understand how structural integrity of the entire proteome is maintained under stress and how it affects cellular fitness. To address this challenge, we reconstruct a genome-scale protein-folding network for Escherichia coli and formulate a computational model, FoldME, that provides statistical descriptions of multiscale cellular response consistent with many datasets. FoldME simulations show (i) that the chaperones act as a system when they respond to unfolding stress rather than achieving efficient folding of any single component of the proteome, (ii) how the proteome is globally balanced between chaperones for folding and the complex machinery synthesizing the proteins in response to perturbation, (iii) how this balancing determines growth rate dependence on temperature and is achieved through nonspecific regulation, and (iv) how thermal instability of the individual protein affects the overall functional state of the proteome. Overall, these results expand our view of cellular regulation, from targeted specific control mechanisms to global regulation through a web of nonspecific competing interactions that modulate the optimal reallocation of cellular resources. The methodology developed in this study enables genome-scale integration of environment-dependent protein properties and a proteome-wide study of cellular stress responses. PMID:29073085

  19. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    Science.gov (United States)

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  20. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-08-01

    Full Text Available Cold shock proteins (Csps enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal phyla and has a structural similarity to Csp proteins, yet its biological functions remain unknown. Through physiological and biochemical studies on four TRAM proteins from a cold adaptive archaeon Methanolobus psychrophilus R15, this work demonstrated that TRAM is an archaeal Csp and exhibits RNA chaperone activity. Three TRAM encoding genes (Mpsy_0643, Mpsy_3043, and Mpsy_3066 exhibited remarkable cold-shock induced transcription and were preferentially translated at lower temperature (18°C, while the fourth (Mpsy_2002 was constitutively expressed. They were all able to complement the cspABGE mutant of Escherichia coli BX04 that does not grow in cold temperatures and showed transcriptional antitermination. TRAM3066 (gene product of Mpsy_3066 and TRAM2002 (gene product of Mpsy_2002 displayed sequence-non-specific RNA but not DNA binding activity, and TRAM3066 assisted RNases in degradation of structured RNA, thus validating the RNA chaperone activity of TRAMs. Given the chaperone activity, TRAM is predicted to function beyond a Csp.

  1. Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression.

    Science.gov (United States)

    Liu, Yulan; Zhang, Yuwei; Zhang, Yanjie; Zhang, Jinlong; Liu, Yin; Feng, Peiqun; Su, Zhiguang

    2017-02-01

    Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.

  2. Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline.

    Science.gov (United States)

    Lane, Darius J R; Richardson, Des R

    2014-08-15

    How is cellular iron (Fe) uptake and efflux regulated in mammalian cells? In this issue of the Biochemical Journal, Yanatori et al. report for the first time that a member of the emerging PCBP [poly(rC)-binding protein] Fe-chaperone family, PCBP2, physically interacts with the major Fe importer DMT1 (divalent metal transporter 1) and the Fe exporter FPN1 (ferroportin 1). In both cases, the interaction of the Fe transporter with PCBP2 is Fe-dependent. Interestingly, another PCBP Fe-chaperone, PCBP1, does not appear to bind to DMT1. Strikingly, the PCBP2-DMT1 interaction is required for DMT1-dependent cellular Fe uptake, suggesting that, in addition to functioning as an intracellular Fe chaperone, PCBP2 may be a molecular 'gate- keeper' for transmembrane Fe transport. These new data hint at the possibility that PCBP2 may be a component of a yet-to-be-described Fe-transport metabolon that engages in Fe channelling to and from Fe transporters and intracellular sites.

  3. Comparison of the carboxy-terminal DP-repeat region in the co-chaperones Hop and Hip.

    Science.gov (United States)

    Nelson, Gregory M; Huffman, Holly; Smith, David F

    2003-01-01

    Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.

  4. AMPylation matches BiP activity to client protein load in the endoplasmic reticulum.

    Science.gov (United States)

    Preissler, Steffen; Rato, Cláudia; Chen, Ruming; Antrobus, Robin; Ding, Shujing; Fearnley, Ian M; Ron, David

    2015-12-17

    The endoplasmic reticulum (ER)-localized Hsp70 chaperone BiP affects protein folding homeostasis and the response to ER stress. Reversible inactivating covalent modification of BiP is believed to contribute to the balance between chaperones and unfolded ER proteins, but the nature of this modification has so far been hinted at indirectly. We report that deletion of FICD, a gene encoding an ER-localized AMPylating enzyme, abolished detectable modification of endogenous BiP enhancing ER buffering of unfolded protein stress in mammalian cells, whilst deregulated FICD activity had the opposite effect. In vitro, FICD AMPylated BiP to completion on a single residue, Thr(518). AMPylation increased, in a strictly FICD-dependent manner, as the flux of proteins entering the ER was attenuated in vivo. In vitro, Thr(518) AMPylation enhanced peptide dissociation from BiP 6-fold and abolished stimulation of ATP hydrolysis by J-domain cofactor. These findings expose the molecular basis for covalent inactivation of BiP.

  5. Fluoride-elicited developmental testicular toxicity in rats: roles of endoplasmic reticulum stress and inflammatory response.

    Science.gov (United States)

    Zhang, Shun; Jiang, Chunyang; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Zhenglun; Wang, Aiguo

    2013-09-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague-Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-κB (NF-κB)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression.

    Science.gov (United States)

    Yao, Shutong; Zong, Chuanlong; Zhang, Ying; Sang, Hui; Yang, Mingfeng; Jiao, Peng; Fang, Yongqi; Yang, Nana; Song, Guohua; Qin, Shucun

    2013-01-01

    This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.

  7. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.

    Science.gov (United States)

    Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R

    2017-07-20

    Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.

  8. Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c.

    Science.gov (United States)

    González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A

    2015-08-11

    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ's histone chaperone activity.

  9. Vreden er over os

    DEFF Research Database (Denmark)

    Mehlsen, Camilla

    2006-01-01

    Urolige elever, cyklister - der giver fuck-finger, aggressive demonstranter. Samtiden er på vej ind i en æra domineret af vrede, siger rektor Lars-Henrik Schmidt, der er aktuel med bogen 'Om vreden'. Udgivelsesdato: Juni......Urolige elever, cyklister - der giver fuck-finger, aggressive demonstranter. Samtiden er på vej ind i en æra domineret af vrede, siger rektor Lars-Henrik Schmidt, der er aktuel med bogen 'Om vreden'. Udgivelsesdato: Juni...

  10. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    Science.gov (United States)

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  11. Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.

    Science.gov (United States)

    Brady, Graham F; Galbán, Stefanie; Liu, Xuwen; Basrur, Venkatesha; Gitlin, Jonathan D; Elenitoba-Johnson, Kojo S J; Wilson, Thomas E; Duckett, Colin S

    2010-04-01

    In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.

  12. Solid biomass barometer - EurObserv'ER - December 2013

    International Nuclear Information System (INIS)

    2013-12-01

    Primary energy production from solid biomass is back on the road to growth, which according to EurObserv'ER stood at about 5.4% between 2011 and 2012. Output rose to 82.3 million tons of oil equivalent, which is a 4.2 Mtoe improvement on 2011, whose exceptionally mild winter put paid to the sector's uninterrupted rise since 1999. This growth was enjoyed by all the solid biomass energy application sectors. Heat sales to heating networks increased 12.9% to 7.9 Mtoe in 2012 while electricity production, boosted by coal-fired power station conversions, gained 7.8% to produce 79.5 TWh

  13. COPII-Dependent ER Export: A Critical Component of Insulin Biogenesis and β-Cell ER Homeostasis.

    Science.gov (United States)

    Fang, Jingye; Liu, Ming; Zhang, Xuebao; Sakamoto, Takeshi; Taatjes, Douglas J; Jena, Bhanu P; Sun, Fei; Woods, James; Bryson, Tim; Kowluru, Anjaneyulu; Zhang, Kezhong; Chen, Xuequn

    2015-08-01

    Pancreatic β-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for β-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to β-cell death. Among the 4 components to maintain ER homeostasis in β-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in β-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and β-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and β-cell survival.

  14. Protective effects of endoplasmic reticulum stress preconditioning on hippocampal neurons in rats with status epilepticus

    Directory of Open Access Journals (Sweden)

    Yi ZHANG

    2014-12-01

    Full Text Available Objective To evaluate the protective effects of endoplasmic reticulum stress preconditioning induced by 2-deoxyglucose (2-DG on hippocampal neurons of rats with status epilepticus (SE and the possible mechanism.  Methods Ninety Sprague-Dawley (SD rats were randomly enrolled into preconditioning group (N = 30, SE group (N = 30 and control group (N = 30. Each group was divided into 6 subsets (N = 5 according to six time points (before seizure, 6 h, 12 h, 1 d, 2 d and 7 d after seizure. The preconditioning group was administered 2-DG intraperitoneally with a dose of 150 mg/kg for 7 days, and the lithium-pilocarpine induced SE rat model was established on both preconditioning group and SE group. The rats were sacrificed at the above six time points, and the brains were removed to make paraffin sections. Nissl staining was performed by toluidine blue to evaluate the hippocampal neuronal damage after seizure, and the number of survival neurons in hippocampal CA1 and CA3 regions of the rats were counted. Immunohistochemical staining was performed to detect the expressions of glucose regulated protein 78 (GRP78 and X-box binding protein 1 (XBP-1 in hippocampal CA3 region of the rats.  Results The number of survival neurons in preconditioning group was much more than that in SE group at 7 d after seizure (t = 5.353, P = 0.000, and was more obvious in CA1 region. There was no significant hippocampal neuronal damage in control group. The expressions of GRP78 and XBP-1 in CA3 region of hippocampus in SE group at 6 h after seizure were significantly higher than that in control group (P = 0.000, and then kept increasing until reaching the peak at 2 d (P = 0.000, for all. The expressions of GRP78 and XBP-1 in hippocampal CA3 region in preconditioning group were significantly higher than that in control group before seizure (P = 0.000, for all. The level of GRP78 maintained the highest at 24 h and 2 d after seizure (P = 0.000, for all, while the XBP-1 level

  15. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes.

    Science.gov (United States)

    Iwasaki, Shintaro; Kobayashi, Maki; Yoda, Mayuko; Sakaguchi, Yuriko; Katsuma, Susumu; Suzuki, Tsutomu; Tomari, Yukihide

    2010-07-30

    Small silencing RNAs--small interfering RNAs (siRNAs) or microRNAs (miRNAs)--direct posttranscriptional gene silencing of their mRNA targets as guides for the RNA-induced silencing complex (RISC). Both siRNAs and miRNAs are born double stranded. Surprisingly, loading these small RNA duplexes into Argonaute proteins, the core components of RISC, requires ATP, whereas separating the two small RNA strands within Argonaute does not. Here we show that the Hsc70/Hsp90 chaperone machinery is required to load small RNA duplexes into Argonaute proteins, but not for subsequent strand separation or target cleavage. We envision that the chaperone machinery uses ATP and mediates a conformational opening of Ago proteins so that they can receive bulky small RNA duplexes. Our data suggest that the chaperone machinery may serve as the driving force for the RISC assembly pathway. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Chaperone-Mediated Regulation of Choline Acetyltransferase Protein Stability and Activity by HSC/HSP70, HSP90, and p97/VCP

    Directory of Open Access Journals (Sweden)

    Trevor M. Morey

    2017-12-01

    Full Text Available Choline acetyltransferase (ChAT synthesizes the neurotransmitter acetylcholine in cholinergic neurons, and mutations of this enzyme are linked to the neuromuscular disorder congenital myasthenic syndrome (CMS. One CMS-related mutation, V18M, reduces ChAT enzyme activity and cellular protein levels, and is located within a highly-conserved N-terminal proline-rich motif at residues 14PKLPVPP20. We showed previously that disruption of this proline-rich motif by either proline-to-alanine mutation (P17A/P19A or mutation of residue Val18 (V18M enhances ubiquitination and degradation of these mutant ChAT proteins expressed in cholinergic SN56 cells by an unknown mechanism. In this study, using proximity-dependent biotin identification (BioID, co-immunoprecipitation and in situ proximity-ligation assay (PLA, we identified the heat shock proteins (HSPs HSC/HSP70 and HSP90 as novel ChAT protein-interactors. These molecular chaperones are well-known for promoting the folding and stabilization of cellular proteins. Thus, we found that inhibition of HSPs by treatment of cells with either the HSC/HSP70 inhibitors 2-phenylethynesulfonamide (PES or VER-155008, or the HSP90 inhibitor 17-AAG reduced cellular ChAT activity and solubility, and enhanced the ubiquitination and proteasome-dependent loss of ChAT protein. Importantly, the effects of HSP inhibition were greater for mutant ChAT proteins (P17A/P19A-ChAT and CMS-related V18M- and A513T-ChAT compared to wild-type ChAT. HSPs can promote ubiquitination and degradation of terminally misfolded proteins through cooperative interaction with the E3 ubiquitin ligase CHIP/Stub1, and while we show that ChAT interacts with CHIP in situ, siRNA-mediated knock-down of CHIP had no effect on either wild-type or mutant ChAT protein levels. However, inhibition of the endoplasmic reticulum (ER- and HSP-associated co-chaperone p97/VCP prevented degradation of ubiquitinated ChAT. Together, these results identify novel mechanisms

  18. Similarities and differences in the nucleic acid chaperone activity of HIV-2 and HIV-1 nucleocapsid proteins in vitro.

    Science.gov (United States)

    Pachulska-Wieczorek, Katarzyna; Stefaniak, Agnieszka K; Purzycka, Katarzyna J

    2014-07-03

    The nucleocapsid domain of Gag and mature nucleocapsid protein (NC) act as nucleic acid chaperones and facilitate folding of nucleic acids at critical steps of retroviral replication cycle. The basic N-terminus of HIV-1 NC protein was shown most important for the chaperone activity. The HIV-2 NC (NCp8) and HIV-1 NC (NCp7) proteins possess two highly conserved zinc fingers, flanked by basic residues. However, the NCp8 N-terminal domain is significantly shorter and contains less positively charged residues. This study characterizes previously unknown, nucleic acid chaperone activity of the HIV-2 NC protein. We have comparatively investigated the in vitro nucleic acid chaperone properties of the HIV-2 and HIV-1 NC proteins. Using substrates derived from the HIV-1 and HIV-2 genomes, we determined the ability of both proteins to chaperone nucleic acid aggregation, annealing and strand exchange in duplex structures. Both NC proteins displayed comparable, high annealing activity of HIV-1 TAR DNA and its complementary nucleic acid. Interesting differences between the two NC proteins were discovered when longer HIV substrates, particularly those derived from the HIV-2 genome, were used in chaperone assays. In contrast to NCp7, NCp8 weakly facilitates annealing of HIV-2 TAR RNA to its complementary TAR (-) DNA. NCp8 is also unable to efficiently stimulate tRNALys3 annealing to its respective HIV-2 PBS motif. Using truncated NCp8 peptide, we demonstrated that despite the fact that the N-terminus of NCp8 differs from that of NCp7, this domain is essential for NCp8 activity. Our data demonstrate that the HIV-2 NC protein displays reduced nucleic acid chaperone activity compared to that of HIV-1 NC. We found that NCp8 activity is limited by substrate length and stability to a greater degree than that of NCp7. This is especially interesting in light of the fact that the HIV-2 5'UTR is more structured than that of HIV-1. The reduced chaperone activity observed with NCp8 may

  19. Effects of material growth technique and Mg doping on Er3+ photoluminescence in Er-implanted GaN

    International Nuclear Information System (INIS)

    Kim, S.; Henry, R. L.; Wickenden, A. E.; Koleske, D. D.; Rhee, S. J.; White, J. O.; Myoung, J. M.; Kim, K.; Li, X.; Coleman, J. J.

    2001-01-01

    Photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies have been carried out at 6 K on the ∼1540 nm 4 I 13/2 - 4 I 15/2 emissions of Er 3+ in Er-implanted and annealed GaN. These studies revealed the existence of multiple Er 3+ centers and associated PL spectra in Er-implanted GaN films grown by metalorganic chemical vapor deposition, hydride vapor phase epitaxy, and molecular beam epitaxy. The results demonstrate that the multiple Er 3+ PL centers and below-gap defect-related absorption bands by which they are selectively excited are universal features of Er-implanted GaN grown by different techniques. It is suggested that implantation-induced defects common to all the GaN samples are responsible for the Er site distortions that give rise to the distinctive, selectively excited Er 3+ PL spectra. The investigations of selectively excited Er 3+ PL and PLE spectra have also been extended to Er-implanted samples of Mg-doped GaN grown by various techniques. In each of these samples, the so-called violet-pumped Er 3+ PL band and its associated broad violet PLE band are significantly enhanced relative to the PL and PLE of the other selectively excited Er 3+ PL centers. More importantly, the violet-pumped Er 3+ PL spectrum dominates the above-gap excited Er 3+ PL spectrum of Er-implanted Mg-doped GaN, whereas it was unobservable under above-gap excitation in Er-implanted undoped GaN. These results confirm the hypothesis that appropriate codopants can increase the efficiency of trap-mediated above-gap excitation of Er 3+ emission in Er-implanted GaN. [copyright] 2001 American Institute of Physics

  20. Man er aldrig alene

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2013-01-01

    Nu ved vi, at der er mange slags DNA i vores krop, og at samarbejdet mellem de organismer, som bærer alt dette DNA, er essentielt for vores overlevelse" … "Kroppen er en slags økosystem, hvor alle slags samarbejde hen ad vejen bliver afprøvet"...