WorldWideScience

Sample records for equivalent elastic thickness

  1. Elastic stability of thick auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2014-01-01

    Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads. (paper)

  2. Equivalence between short-time biphasic and incompressible elastic material responses.

    Science.gov (United States)

    Ateshian, Gerard A; Ellis, Benjamin J; Weiss, Jeffrey A

    2007-06-01

    Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltatelasticity tensor, and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components.

  3. Proposal of Design Formulae for Equivalent Elasticity of Masonry Structures Made with Bricks of Low Modulus

    Directory of Open Access Journals (Sweden)

    Muhammad Ridwan

    2017-01-01

    Full Text Available Bricks of low elastic modulus are occasionally used in some developing countries, such as Indonesia and India. Most of the previous research efforts focused on masonry structures built with bricks of considerably high elastic modulus. The objective of this study is to quantify the equivalent elastic modulus of lower-stiffness masonry structures, when the mortar has a higher modulus of elasticity than the bricks, by employing finite element (FE simulations and adopting the homogenization technique. The reported numerical simulations adopted the two-dimensional representative volume elements (RVEs using quadrilateral elements with four nodes. The equivalent elastic moduli of composite elements with various bricks and mortar were quantified. The numerically estimated equivalent elastic moduli from the FE simulations were verified using previously established test data. Hence, a new simplified formula for the calculation of the equivalent modulus of elasticity of such masonry structures is proposed in the present study.

  4. Thickness dependence of nanofilm elastic modulus

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Wang, A. B.; Cheng, H.H.

    2009-01-01

    Roč. 94, č. 15 (2009), s. 152111-152113 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : nanofilm * elastic modulus * thickness dependence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.554, year: 2009 http://link.aip.org/link/?APPLAB/94/152111/1

  5. Constraints on equivalent elastic source models from near-source data

    International Nuclear Information System (INIS)

    Stump, B.

    1993-01-01

    A phenomenological based seismic source model is important in quantifying the important physical processes that affect the observed seismic radiation in the linear-elastic regime. Representations such as these were used to assess yield effects on seismic waves under a Threshold Test Ban Treaty and to help transport seismic coupling experience at one test site to another. These same characterizations in a non-proliferation environment find applications in understanding the generation of the different types of body and surface waves from nuclear explosions, single chemical explosions, arrays of chemical explosions used in mining, rock bursts and earthquakes. Seismologists typically begin with an equivalent elastic representation of the source which when convolved with the propagation path effects produces a seismogram. The Representation Theorem replaces the true source with an equivalent set of body forces, boundary conditions or initial conditions. An extension of this representation shows the equivalence of the body forces, boundary conditions and initial conditions and replaces the source with a set of force moments, the first degree moment tensor for a point source representation. The difficulty with this formulation, which can completely describe the observed waveforms when the propagation path effects are known, is in the physical interpretation of the actual physical processes acting in the source volume. Observational data from within the source region, where processes are often nonlinear, linked to numerical models of the important physical processes in this region are critical to a unique physical understanding of the equivalent elastic source function

  6. Temperature- and thickness-dependent elastic moduli of polymer thin films

    Directory of Open Access Journals (Sweden)

    Ao Zhimin

    2011-01-01

    Full Text Available Abstract The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T and thickness (h-dependent elastic moduli of polymer thin films Ef(T,h is developed with verification by the reported experimental data on polystyrene (PS thin films. For the PS thin films on a passivated substrate, Ef(T,h decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*, at which thickness Ef(T,h deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ.

  7. Rotating disk electrodes to assess river biofilm thickness and elasticity.

    Science.gov (United States)

    Boulêtreau, Stéphanie; Charcosset, Jean-Yves; Gamby, Jean; Lyautey, Emilie; Mastrorillo, Sylvain; Azémar, Frédéric; Moulin, Frédéric; Tribollet, Bernard; Garabetian, Frédéric

    2011-01-01

    The present study examined the relevance of an electrochemical method based on a rotating disk electrode (RDE) to assess river biofilm thickness and elasticity. An in situ colonisation experiment in the River Garonne (France) in August 2009 sought to obtain natural river biofilms exhibiting differentiated architecture. A constricted pipe providing two contrasted flow conditions (about 0.1 and 0.45 m s(-1) in inflow and constricted sections respectively) and containing 24 RDE was immersed in the river for 21 days. Biofilm thickness and elasticity were quantified using an electrochemical assay on 7 and 21 days old RDE-grown biofilms (t(7) and t(21), respectively). Biofilm thickness was affected by colonisation length and flow conditions and ranged from 36 ± 15 μm (mean ± standard deviation, n = 6) in the fast flow section at t(7) to 340 ± 140 μm (n = 3) in the slow flow section at t(21). Comparing the electrochemical signal to stereomicroscopic estimates of biofilms thickness indicated that the method consistently allowed (i) to detect early biofilm colonisation in the river and (ii) to measure biofilm thickness of up to a few hundred μm. Biofilm elasticity, i.e. biofilm squeeze by hydrodynamic constraint, was significantly higher in the slow (1300 ± 480 μm rpm(1/2), n = 8) than in the fast flow sections (790 ± 350 μm rpm(1/2), n = 11). Diatom and bacterial density, and biofilm-covered RDE surface analyses (i) confirmed that microbial accrual resulted in biofilm formation on the RDE surface, and (ii) indicated that thickness and elasticity represent useful integrative parameters of biofilm architecture that could be measured on natural river assemblages using the proposed electrochemical method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Lead Equivalent Thickness Measurement for Mixed Compositions of Barium Plaster Block

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Muhammad Jamal Muhammad Isa; Nur Shahriza Zainuddin; Mohd Khairusalih Md Zin; Shahrul Azlan Azizan

    2016-01-01

    Measurement of lead equivalent thickness for ionizing radiation exposure room wall shall be performed as stated in Malaysian Standard MS 838. A few numbers of sample blocks with different mixture of barium plaster compositions based and varies certain thickness as a shielding material for exposure room wall belong to a local company were tested by using Cs-137, Co-60 and Am-241 with different activities . Radiations passed through the samples were detected with calibrated survey meter. The distance between radiation source and the detector is about 40 cm. Lead uniformity test on the samples was also determined at three labeled points on the samples. Lead equivalent thicknesses for the samples were evaluated based on a calibration graph that was plotted with lead sheets and with the radiation sources. Results shown that lead equivalent thickness for the samples with same actual physical thickness represent different values for different sources. (author)

  9. Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-05-01

    A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the elastic waves across the slab thickness. For Atwood number AT=1 , the asymptotic growth rate is found to be in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998), 10.1007/s000330050121], and a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner slabs. The feedthrough factor is also calculated.

  10. Measurement Of Lead Equivalent Thickness For Irradiation Room: An Analysis

    International Nuclear Information System (INIS)

    Mohd Khalid Matori; Azuhar Ripin; Husaini Salleh; Mohd Khairusalih Mohd Zin; Muhammad Jamal Muhd Isa; Mohd Faizal Abdul Rahman

    2014-01-01

    The Malaysian Ministry of Health (MOH) has established that the irradiation room must have a sufficient thickness of shielding to ensure that requirements for the purpose of radiation protection of patients, employees and the public are met. This paper presents a technique using americium-241 source to test and verify the integrity of the shielding thickness in term of lead equivalent for irradiation room at health clinics own by MOH. Results of measurement of 8 irradiation rooms conducted in 2014 were analyzed for this presentation. Technical comparison of the attenuation of gamma rays from Am-241 source through the walls of the irradiation room and pieces of lead were used to assess the lead equivalent thickness of the walls. Results showed that almost all the irradiation rooms tested meet the requirements of the Ministry of Health and is suitable for the installation of the intended diagnostic X-ray apparatus. Some specific positions such as door knobs and locks, electrical plug sockets were identified with potential to not met the required lead equivalent thickness hence may contribute to higher radiation exposure to workers and the public. (author)

  11. Technique for determination of elastic limit of micron band-thick amorphous

    International Nuclear Information System (INIS)

    Zakharov, E.K.; Pol'dyaeva, G.P.; Tret'yakov, B.N.

    1984-01-01

    A method is suggested to determine the elastic limit of micron-thick amorphous band under bending. The elastic limit is determined by bending an amorphous band sample around a series of cylindrical mandrels of gradually decreasing radius. Experimental data on measuring the elastic limit of some amorphous iron base alloys according to the suggested technique are presented. The elastic limit of amorphous alloys is shown to lie in the 3140-4110 MPa range depending on chemical composition, which is about 2-2.5 times higher as compared to high-strength crystal alloys

  12. Global model for the lithospheric strength and effective elastic thickness

    NARCIS (Netherlands)

    Tesauro, M.; Kaban, M.K.; Cloetingh, S.A.P.L.

    2013-01-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young

  13. Mechanically equivalent elastic-plastic deformations and the problem of plastic spin

    Directory of Open Access Journals (Sweden)

    Steigmann David J.

    2011-01-01

    Full Text Available The problem of plastic spin is phrased in terms of a notion of mechanical equivalence among local intermediate configurations of an elastic/ plastic crystalline solid. This idea is used to show that, without further qualification, the plastic spin may be suppressed at the constitutive level. However, the spin is closely tied to an underlying undistorted crystal lattice which, once specified, eliminates the freedom afforded by mechanical equivalence. As a practical matter a constitutive specification of plastic spin is therefore required. Suppression of plastic spin thus emerges as merely one such specification among many. Restrictions on these are derived in the case of rate-independent response.

  14. Determination of lead equivalent thickness to building blocks used in shielding of diagnostic x-ray rooms in Syria

    International Nuclear Information System (INIS)

    Kawash, A.; Khedr, M.; Wannus, K.; Souliman, J.; Al-Oudat, M.

    1998-06-01

    Lead equivalent thicknesses of various kinds of blocks (Hollow core, solid, filled, roof) with different thicknesses were determined. These blocks are widely used for building the diagnostic X-rya departments in Syria. Different applied voltages at X-ray tube (65, 85, 100, 125, 150 KVp) were examined. The results showed that the highest lead equivalent thicknesses for hollow core blocks were at 100 KVp. These equivalent thicknesses were 0.4372, 0.7008 and 0.928 mm for block thicknesses of 10, 15 and 20 cm, respectively. it was also found that, the lead equivalent thicknesses for filled, solid and concrete block were 3.5 to 4 times higher than that of the hollow core block for the same thicknesses and the applied KVp. Values obtained for roof blocks were similar to that of hollow core for the same conditions and geometry. (Author)

  15. Energetical and multiscale approaches for the definition of an equivalent stress for magneto-elastic couplings

    International Nuclear Information System (INIS)

    Hubert, Olivier; Daniel, Laurent

    2011-01-01

    A main limitation of most models describing the effect of stress on the magnetic behavior is that they are restricted to uniaxial - tensile or compressive - stress. Nevertheless, stress is multiaxial in most of industrial applications. An idea to overcome the strong limitation of models is to define a fictive uniaxial stress, the equivalent stress, that would change the magnetic behavior in a similar manner than a multiaxial stress. A first definition of equivalent stress, called the deviatoric equivalent stress, is proposed. It is based on an equivalence in magneto-elastic energy. This formulation is first derived for isotropic materials under specific assumptions. An extension to orthotropic media under disoriented magneto-mechanical loading is made. A new equivalent stress expression, called generalized equivalent stress, is then proposed. It is based on an equivalence in magnetization. Inverse identification of equivalent stress is made possible thanks to a strong simplification of the description of the material seen as an assembly of elementary magnetic domains. It is shown that this second proposal is a generalization of the deviatoric expression. Equivalent stress proposals are compared to former proposals and validated using experimental results carried out on an iron-cobalt sheet submitted to biaxial mechanical loading. These results are compared to the predictions obtained thanks to the equivalent stress formulations. The generalized equivalent stress is shown to be a tool able to foresee the magnetic behavior of a large panel of materials submitted to multiaxial stress. - Research highlights: → Classical magneto-elastic models restricted to uniaxial stress. → Stress demonstrated multiaxial in most of industrial applications. → Proposals of deviatoric and generalized equivalent stresses - multidomain modeling. → Experimental validation using iron-cobalt sheet submitted to biaxial loading. → Generalization of former proposals and modeling of

  16. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    2013-01-01

    Full Text Available Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.

  17. Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others.

  18. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.

    Science.gov (United States)

    Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J

    2000-01-01

    We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.

  19. Americium-241 use of measurement lead equivalent thickness for medical x-ray room: A review

    International Nuclear Information System (INIS)

    Mohd Khalid Matori; Husaini Saleh; Abd Aziz Mhd Ramli; Muhammad Jamal Md Isa; Mohd Firdaus Abd Rahman; Zainal Jamaluddin

    2010-01-01

    Lead equivalent thickness measurement of a shielding material in diagnostic radiology is very important to ensure that requirements for the purpose of radiation protection of patients, employees and the public are met. The Malaysian Ministry of Health (MOH) has established that the irradiation room must have sufficient shielding thickness, for example for general radiography it must be at least equal to 2.0 mm of Pb, for panoramic dental radiography at least equal to 1.5 mm of Pb and for mammography should be a minimum of 1.0 mm of Pb. This paper presents a technique using americium-241 source to test and verify the integrity of the shielding thickness in term of lead equivalent for X-ray room at health centres. Results of measurement of 30 irradiation rooms conducted from 2009 to mid 2010 were analyzed for this presentation. Technical comparison of the attenuation of gamma rays from Am-241 source through the walls of the irradiation room and pieces of lead were used to assess the lead equivalent thickness of the walls. Results showed that 96.7 % of the irradiation rooms tested meet the requirements of the Ministry of Health and is suitable for the installation of the intended diagnostic X-ray apparatus. Some specific positions such as door knobs and locks, electrical plug sockets were identified with potential to not met the required lead equivalent thickness hence may contribute to higher radiation exposure to workers and the public. (author)

  20. Determination of equivalent copper thickness of patient equivalent phantoms in terms of attenuation, used in radiology

    International Nuclear Information System (INIS)

    Jansen, J.Th.M.; Suliman, I.I.; Zoetelief, J.

    2002-01-01

    Full text: In the radiation protection research programme of the European Union, as part of the DIMOND concerted action, constancy check protocols for fluoroscopic systems have been developed. For practical reasons copper filters are preferred to patients and tissue equivalent, water or PMMA, phantoms. The objectives are to derive patient entrance surface dose rates and the dose rate at the image intensifier input. The protocol states that copper sheets of either 1 mm or 1.5 mm thick may be used. The present study investigates the equivalent thickness of copper filters compared to PMMA phantoms in terms of attenuation for both geometries and different tube voltage and filter combinations. The geometry to determine the patient entrance surface dose is with the copper filter close to the image intensifier. The ionisation chamber is placed on the side of the copper sheet nearest to the X-ray tube. The inverse square law is used to correct for differences in position. Measurements are performed with different settings and with and without the use of an anti-scatter grid. The geometry to determine the air kerma rate at the image intensifier is with the copper filter attached to the X-ray tube diaphragm. The ionisation chamber is placed on the surface of the image intensifier housing. Again measurements are performed with different settings and with and without anti-scatter grid. If necessary, the inverse square law correction is applied. Two different radiation beam sizes are used, i.e., a small beam with a diameter of 0.10 m at a distance of 1.00 m from the focus and a large beam with a diameter of 0.23 m at a distance of 1.00 m from the focus. The applied tube voltages and PMMA phantom thickness combinations are 60 kV, 13 cm; 80 kV, 14 cm; 100 kV, 16 cm; 120 kV, 17 cm; 150 kV, 18 cm; 150 kV, 20 cm and 150 kV, 30 cm. The spectra for the different tube voltages are generated with the IPEM Report 78 software at an anode angle of 16 degree, 0% ripple and 2.5 mm added

  1. Multitaper spectral method to estimate the elastic thickness of South China: Implications for intracontinental deformation

    Directory of Open Access Journals (Sweden)

    Yangfan Deng

    2014-03-01

    Full Text Available The effective elastic thickness (Te represents the thickness of the elastic layer or the flexural rigidity of the lithosphere, the equivalent of which can be calculated from the spectral analysis of gravity and topographic data. Studies of Te have profound influence on intracontinental deformation, and coupling of the tectonic blocks. In this paper, we use the multitaper spectral estimation method to calculate the coherence between Bouguer gravity and topography data, and to obtain the Te map of South China. Through the process of correction, we discuss the relationships of Te versus heat flow, and Te versus seismicity. The results show that Te distribution of South China is affected by three factors: the original age, which controls the basic feature; the Mesozoic evolution, which affects the Te distribution; and the neotectonic movement, which shaped the final distribution. The crust age has a positive correlation with the first-order Te distribution; thus the Yangtze Craton has a relatively higher Te (about 50 km whereas the Te in Cathaysia block is only 10–20 km. By analysis and comparison among the tectonic models of South China, the Te distribution can be well explained using the flat-subduction model. As is typical with neotectonics, the region with a higher heat flow is related with a lower Te. The seismicity does not have a clear relationship with Te, but the strong seismicity could cause a low Te. Seismogenic layer (Ts has a similar trend as Te in the craton, whereas in other areas the relationship is complex.

  2. Quantification the Effect of the Thickness of Thin Films on their Elastic Parameters

    International Nuclear Information System (INIS)

    Gacem, A.; Doghmane, A.; Hadjoub, Z

    2011-01-01

    The determination of the characteristics and properties of thin films deposited on substrates is necessary in any device application in various fields. Adequate mechanical properties are highly required for the majority of surface waves and semiconductor devices. In this context, modelling the ultrasonic-material interaction, we present results of simulation curves of acoustic signatures for multiple thin film/substrate combinations. The results obtained on several structures (Al, SiO 2 , ZnO, Cu, AlN, SiC and Cr)/(Al 2 O 3 , Si, Cu or Quartz) showed a velocity dispersion of the Rayleigh wave as a function of layer thickness. The development of a theoretical calculation model based on the acoustic behaviour of these structures has enabled us to quantify the dispersive evolution (positive and negative) density. Thus, we have established a universal relationship describing the density-thickness variation. In addition, networks of dispersion curves, representing the evolution of elasticity modulus (Young and shear), were determined. These charts can be used to extract the influence of thickness of layers on the variation of elastic constants.(author)

  3. Estimation of surface elasticity by the thickness change of liquid film and its correlation with foam stability

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jung Ryoul; Park, Jai Koo [Hanyang University, Seoul (Korea, Republic of)

    1996-04-30

    The relationship between foam stability and surface elasticity by the thickness change of liquid film was investigated. Foam stability was measured by draining liquid volume and decreasing gas volume as a function of time. Foam was formed by the fixed gas-injection the surfactant aqueous solution of different concentration. The used surfactants were sodium lauryl sulfate, hexadecane sulfonic acid sodium salt, and octane sulfonic acid sodium salt. Thickness of liquid film was estimated by using the volume ratio of liquid to gas in foam and surface elasticity of lamella was calculated by the surface tension and adsorbed amount. The thinning of liquid film is due to the combined effects of gravity and capillary suction, it would be ruptured at the minimum of lamella thickness which is called critical thickness. The lamella thickness of bubble which was formed at CMC(critical micelle concentration) was very thin. In the case of sodium lauryl sulfate, the thinning of lamella was continued in the range of measurement. The critical thicknesses of octane sulfonic acid sodium salt solution, hexadecane sulfonic acid sodium salt solution were determined to 0.479{approx}0.316, 0.209{approx}0.200 {mu}m, respectively. It was found that the tendency for foam stability was similar to that of lamella thickness. It was considered that foam which was formed at CMC has very high stability, and the order of foam stability for surfactant aqueous solution was sodium lauryl sulfate > hexadecane sulfonic acid sodium salt > octane sulfonic acid sodium salt. These results was considered that the lamella-rupturing was retarded by the relatively high surface elasticity of lamella. The saturated adsorption of surfactant was determined to 3.25{approx}3.04 * 10{sup -6} mol/m{sup 2} and the surface elasticity of lamella was also determined to 3{approx}56 mN/m. (author). 19 refs., 1 tab., 11 figs.

  4. Elastic Stress Analysis of Rotating Functionally Graded Annular Disk of Variable Thickness Using Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Jalali

    2018-01-01

    Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.

  5. Forced in-plane vibration of a thick ring on a unilateral elastic foundation

    Science.gov (United States)

    Wang, Chunjian; Ayalew, Beshah; Rhyne, Timothy; Cron, Steve; Dailliez, Benoit

    2016-10-01

    Most existing studies of a deformable ring on elastic foundation rely on the assumption of a linear foundation. These assumptions are insufficient in cases where the foundation may have a unilateral stiffness that vanishes in compression or tension such as in non-pneumatic tires and bushing bearings. This paper analyzes the in-plane dynamics of such a thick ring on a unilateral elastic foundation, specifically, on a two-parameter unilateral elastic foundation, where the stiffness of the foundation is treated as linear in the circumferential direction but unilateral (i.e. collapsible or tensionless) in the radial direction. The thick ring is modeled as an orthotropic and extensible circular Timoshenko beam. An arbitrarily distributed time-varying in-plane force is considered as the excitation. The Equations of Motion are explicitly derived and a solution method is proposed that uses an implicit Newmark scheme for the time domain solution and an iterative compensation approach to determine the unilateral zone of the foundation at each time step. The dynamic axle force transmission is also analyzed. Illustrative forced vibration responses obtained from the proposed model and solution method are compared with those obtained from a finite element model.

  6. Buckling Analysis of Rectangular Plates with Variable Thickness Resting on Elastic Foundation

    International Nuclear Information System (INIS)

    Viswanathan, K K; Aziz, Z A; Navaneethakrishnan, P V

    2015-01-01

    Buckling of rectangular plates of variable thickness resting in elastic foundation is analysed using a quintic spline approximation technique. The thickness of the plate varies in the direction of one edge and the variations are assumed to be linear, exponential and sinusoidal. The plate is subjected to in plane load of two opposite edges. The buckling load and the mode shapes of buckling are computed from the eigenvalue problem that arises. Detailed parametric studies are made with different boundary conditions and the results are presented through the diagram and discussed

  7. Global model for the lithospheric strength and effective elastic thickness

    OpenAIRE

    Magdala Tesauro; Mikhail Kaban; S. A. P. L. Cloetingh

    2013-01-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member ‘hard’ (HRM) and a ‘soft’ (SR...

  8. Transtendon, Double-Row, Transosseous-Equivalent Arthroscopic Repair of Partial-Thickness, Articular-Surface Rotator Cuff Tears

    OpenAIRE

    Dilisio, Matthew F.; Miller, Lindsay R.; Higgins, Laurence D.

    2014-01-01

    Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-s...

  9. DYNAMIC RESPONSE OF THICK PLATES ON TWO PARAMETER ELASTIC FOUNDATION UNDER TIME VARIABLE LOADING

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2014-01-01

    In this paper, behavior of foundation plates with transverse shear deformation under time variable loading is presented using modified Vlasov foundation model. Finite element formulation of thick plates on elastic foundation is derived by using an 8-noded finite element based on Mindlin plate theory. Selective reduced integration technique is used to avoid shear locking problem which arises when smaller plate thickness is considered for the evaluation of the stiffness matrices. After comparis...

  10. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  11. Carotid intima-media thickness and elastic properties of aortas in normotensive children of hypertensive parents.

    Science.gov (United States)

    Yildirim, Ali; Kosger, Pelin; Ozdemir, Gokmen; Sahin, Fezan Mutlu; Ucar, Birsen; Kilic, Zubeyir

    2015-09-01

    A significant correlation between hypertension history and high blood pressure has been observed with regard to age, race and gender. Investigating carotid intima-media thickness and aortic stiffness prior to the development of hypertension in children of hypertensive parents enabled us to evaluate these patients for subclinical atherosclerosis. We compared carotid intima-media thickness, aortic strain, distensibility, stiffness indices and elastic modulus in 67 normotensive children whose parents had a diagnosis of essential hypertension and 39 normotensive children with no parental history of hypertension. Although there were no significant differences between the two groups in terms of systolic blood pressure, diastolic blood pressure, average blood pressure and pulse pressure (P>0.05), systolic blood pressures were higher among patients 15 years and older in the study group. No significant differences were noted between the control and study groups regarding interventricular septal thickness, left-ventricular posterior wall thickness, left-ventricular systolic and diastolic diameter and aortic annulus diameter (P>0.05). The left atrium diameter was larger in the study group compared with that in the control group, mainly because of the values of the 15-year-old and older children (P=0.01). The mean, maximum and minimum values of carotid intima-media thickness were significantly different in the study group compared with the control group among all age groups (Pchildren of hypertensive parents compared with the control group (P=0.014, P=0.001, respectively). Although there were no differences between the study and control groups regarding aortic strain, aortic distensibility, elastic modulus and stiffness indices (P>0.05), aortic distensibility was lower, and aortic stiffness indices were higher among children 15 years and older in the study group. An increase in the carotid intima-media thickness in all age groups and a decrease in aortic elastic properties in

  12. Equivalent half-value thickness and mean energies of filtered X-ray bremsstrahlung spectra

    International Nuclear Information System (INIS)

    Seelentag, W.W.; Panzer, W.

    1980-01-01

    X-ray beam qualities are often conveniently described by half-value thicknesses (in connection with tube voltage and filtration). Aluminium and copper are commonly used as half-value thickness materials, and either material may be used in a large intermediate energy range. Data comparisons frequently require conversions from values in Al to values in Cu. Equivalent half-value thicknesses for polychromatic radiations depend on the shapes of the spectra, but spectrometry is too expensive for routine application. Half-value thicknesses in both Al and Cu have been determined for some 250 spectra (tube potentials 10 to 300 kV). The results are tabulated, and these results together with a nomogram enable conversion with an accuracy of better than +- 5% in most cases. (UK)

  13. Elastic thickness determination based on Vening Meinesz-Moritz and flexural theories of isostasy

    Science.gov (United States)

    Eshagh, Mehdi

    2018-06-01

    Elastic thickness (Te) is one of mechanical properties of the Earth's lithosphere. The lithosphere is assumed to be a thin elastic shell, which is bended under the topographic, bathymetric and sediment loads on. The flexure of this elastic shell depends on its thickness or Te. Those shells having larger Te flex less. In this paper, a forward computational method is presented based on the Vening Meinesz-Moritz (VMM) and flexural theories of isostasy. Two Moho flexure models are determined using these theories, considering effects of surface and subsurface loads. Different values are selected for Te in the flexural method to see by which one, the closest Moho flexure to that of the VMM is achieved. The effects of topographic/bathymetric, sediments and crustal crystalline masses, and laterally variable upper mantle density, Young's modulus and Poisson's ratio are considered in whole computational process. Our mathematical derivations are based on spherical harmonics, which can be used to estimate Te at any single point, meaning that there is no edge effect in the method. However, the Te map needs to be filtered to remove noise at some points. A median filter with a window size of 5° × 5° and overlap of 4° works well for this purpose. The method is applied to estimate Te over South America using the data of CRUST1.0 and a global gravity model.

  14. Elastic-plastic behaviour of thick-walled containers considering plastic compressibility

    International Nuclear Information System (INIS)

    Betten, J.; Frosch, H.G.

    1983-01-01

    In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de

  15. Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials

    Science.gov (United States)

    Polavarapu, Rinosh; Banerjee, Arindam

    2017-11-01

    The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.

  16. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  17. Application of the equivalent radiator method for radiative corrections to the spectra of elastic electron scattering by nuclei

    Directory of Open Access Journals (Sweden)

    I. S. Timchenko

    2015-07-01

    Full Text Available For calculating the radiative tails in the spectra of inelastic electron scattering by nuclei, the approximation, namely, the equivalent radiator method (ERM, is used. However, the applicability of this method for evaluating the radiative tail from the elastic scattering peak has been little investigated, and therefore, it has become the subject of the present study for the case of light nuclei. As a result, spectral regions were found, where a significant discrepancy between the ERM calculation and the exact-formula calculation was observed. A link was established between this phenomenon and the diffraction minimum of the squared form-factor of the nuclear ground state. Varieties of calculations were carried out for different kinematics of electron scattering by nuclei. The analysis of the calculation results has shown the conditions, at which the equivalent radiator method can be applied for adequately evaluating the radiative tail of the elastic scattering peak.

  18. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2009-01-01

    Full Text Available The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4 is used for plate bending analysis based on Mindlin plate theory which is effectively applied to the analysis of thin and thick plates when selective reduced integration technique is used. The first ten natural frequency parameters are presented in tabular and graphical forms to show the effects of the parameters considered in the study. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on elastic foundation is generally larger than that of the other parameters considered in the study.

  19. Elastic thickness estimates at northeast passive margin of North America and its implications

    Science.gov (United States)

    Kumar, R. T. Ratheesh; Maji, Tanmay K.; Kandpal, Suresh Ch; Sengupta, D.; Nair, Rajesh R.

    2011-06-01

    Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ~20-100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E-W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE-SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200-400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.

  20. Transient Response of a Fluid-Filled, Thick-Walled Spherical Shell Embedded in an Elastic Medium

    Directory of Open Access Journals (Sweden)

    Bahari Ako

    2016-01-01

    Full Text Available The paper addresses the problem of transient elastodynamics analysis of a thick-walled, fluid-filled spherical shell embedded in an elastic medium with an analytical approach. This configuration is investigated at first step for a full-space case. Different constitutive relations for the elastic medium, shell material and filling fluid can be considered, as well as different excitation sources (including S/P wave or plane/spherical incident wave at different locations. With mapmaking visualisation, the wave propagation phenomena can be described and better understood. The methodology is going to be applied to analysis of the tunnels or other shell like structures under the effect of nearby underground explosion.

  1. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2009-01-01

    The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively appli...

  2. Analysis of elastic stiffness for the leaf type holddown spring assembly with uniformly tapered thickness considering the point of taper runout

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Nam [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-04-01

    In the case that the point of taper runout is outside the bent region of spring base, a formula to evaluate the elastic stiffness of the leaf type holddown spring (HDS) assembly with uniformly tapered thickness from t{sub 0} to t{sub 1} (t{sub 0}>t{sub 1}) has been analytically derived by applying the engineering beam theory and Casiliano`s theorem based on strain energy. It has found that taper runouts for the 14x14 and 17x17 type KOFA HDS were up to 2.2 mm and effects on their elastic stiffnesses were about 3.70%, and that the elastic stiffness of the HDS was mainly caused by bending moment. And in addition, for the HDS designed/manufactured from Westinghouse, elastic stiffnesses from the derived formula were in good agreement with those from the Westinghouse`s empirical formula. Therefore, the derived formula could be applicable to evaluating the elastic stiffness of any HDS with tapered thickness only with the informations of the geometric data and material properties of leaf springs regardness of the manufacturing companies. 11 tabs., 4 figs., 25 refs. (Author) .new.

  3. Finite Difference Solution of Elastic-Plastic Thin Rotating Annular Disk with Exponentially Variable Thickness and Exponentially Variable Density

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2013-01-01

    Full Text Available Elastic-plastic stresses, strains, and displacements have been obtained for a thin rotating annular disk with exponentially variable thickness and exponentially variable density with nonlinear strain hardening material by finite difference method using Von-Mises' yield criterion. Results have been computed numerically and depicted graphically. From the numerical results, it can be concluded that disk whose thickness decreases radially and density increases radially is on the safer side of design as compared to the disk with exponentially varying thickness and exponentially varying density as well as to flat disk.

  4. Transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears.

    Science.gov (United States)

    Dilisio, Matthew F; Miller, Lindsay R; Higgins, Laurence D

    2014-10-01

    Arthroscopic transtendinous techniques for the arthroscopic repair of partial-thickness, articular-surface rotator cuff tears offer the advantage of minimizing the disruption of the patient's remaining rotator cuff tendon fibers. In addition, double-row fixation of full-thickness rotator cuff tears has shown biomechanical advantages. We present a novel method combining these 2 techniques for transtendon, double-row, transosseous-equivalent arthroscopic repair of partial-thickness, articular-surface rotator cuff tears. Direct visualization of the reduction of the retracted articular tendon layer to its insertion on the greater tuberosity is the key to the procedure. Linking the medial-row anchors and using a double-row construct provide a stable repair that allows early shoulder motion to minimize the risk of postoperative stiffness.

  5. Elastic modulus of tree frog adhesive toe pads.

    Science.gov (United States)

    Barnes, W Jon P; Goodwyn, Pablo J Perez; Nokhbatolfoghahai, Mohsen; Gorb, Stanislav N

    2011-10-01

    Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5-15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4-25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs.

  6. Equivalent nozzle in thermomechanical problems

    International Nuclear Information System (INIS)

    Cesari, F.

    1977-01-01

    When analyzing nuclear vessels, it is most important to study the behavior of the nozzle cylinder-cylinder intersection. For the elastic field, this analysis in three dimensions is quite easy using the method of finite elements. The same analysis in the non-linear field becomes difficult for designs in 3-D. It is therefore necessary to resolve a nozzle in two dimensions equivalent to a 3-D nozzle. The purpose of the present work is to find an equivalent nozzle both with a mechanical and thermal load. This has been achieved by the analysis in three dimensions of a nozzle and a nozzle cylinder-sphere intersection, of a different radius. The equivalent nozzle will be a nozzle with a sphere radius in a given ratio to the radius of a cylinder; thus, the maximum equivalent stress is the same in both 2-D and 3-D. The nozzle examined derived from the intersection of a cylindrical vessel of radius R=191.4 mm and thickness T=6.7 mm with a cylindrical nozzle of radius r=24.675 mm and thickness t=1.350 mm, for which the experimental results for an internal pressure load are known. The structure was subdivided into 96 finite, three-dimensional and isoparametric elements with 60 degrees of freedom and 661 total nodes. Both the analysis with a mechanical load as well as the analysis with a thermal load were carried out on this structure according to the Bersafe system. The thermal load consisted of a transient typical of an accident occurring in a sodium-cooled fast reactor, with a peak of the temperature (540 0 C) for the sodium inside the vessel with an insulating argon temperature constant at 525 0 C. The maximum value of the equivalent tension was found in the internal area at the union towards the vessel side. The analysis of the nozzle in 2-D consists in schematizing the structure as a cylinder-sphere intersection, where the sphere has a given relation to the

  7. The use of Am-241 as Equivalence Thickness Measurement for Irradiation Room at National institute for Cancer and Malacca Hospital: A Review

    International Nuclear Information System (INIS)

    Mohd Khalid Matori; Azuhar Ripin; Husaini Salleh

    2013-01-01

    Lead equivalent thickness measurement of a shielding material in diagnostic radiology is very important to ensure that requirements for the purpose of radiation protection of patients, employees and the public are met. The Malaysian Ministry of Health (MOH) has established that the irradiation room must have sufficient shielding thickness, for example for general radiography it must be at least equal to 2.0 mm of Pb, for panoramic dental radiography at least equal to 1.5 mm of Pb and for mammography should be a minimum of 1.0 mm of Pb. This paper presents a technique using americium-241 source to test and verify the integrity of the shielding thickness in term of lead equivalent for irradiation room at National Institute for Cancer (IKN) and General Malacca Hospital. Results of measurement of 10 irradiation rooms conducted in 2012 were analyzed for this presentation. Technical comparison of the attenuation of gamma rays from Am-241 source through the walls of the irradiation room and pieces of lead were used to assess the lead equivalent thickness of the walls. Results showed that almost all the irradiation rooms tested meet the requirements of the Ministry of Health and is suitable for the installation of the intended diagnostic X-ray apparatus. Some specific positions such as door knobs and locks, electrical plug sockets were identified with potential to not met the required lead equivalent thickness hence may contribute to higher radiation exposure to workers and the public. (author)

  8. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    Science.gov (United States)

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  9. Simultaneous determination of the residual stress, elastic modulus, density and thickness of ultrathin film utilizing vibrating doubly clamped micro-/nanobeams

    International Nuclear Information System (INIS)

    Stachiv, Ivo; Kuo, Chih-Yun; Fang, Te-Hua; Mortet, Vincent

    2016-01-01

    Measurement of ultrathin film thickness and its basic properties can be highly challenging and time consuming due to necessity of using several very sophisticated devices. Here, we report an easy accessible resonant based method capable to simultaneously determinate the residual stress, elastic modulus, density and thickness of ultrathin film coated on doubly clamped micro-/nanobeam. We show that a general dependency of the resonant frequencies on the axial load is also valid for in-plane vibrations, and the one depends only on the considered vibrational mode. As a result, we found that the film elastic modulus, density and thickness can be evaluated from two measured in-plane and out-plane fundamental resonant frequencies of micro-/nanobeam with and without film under different prestress forces. Whereas, the residual stress can be determined from two out-plane (in-plane) measured consecutive resonant frequencies of beam with film under different prestress forces without necessity of knowing film and substrate properties and dimensions. Moreover, we also reveal that the common uncertainties in force (and thickness) determination have a negligible (and minor) impact on the determined film properties. The application potential of the present method is illustrated on the beam made of silicon and SiO_2 with deposited 20 nm thick AlN and 40 nm thick Au thin films, respectively.

  10. Equivalent elastic moduli of a zigzag single-walled carbon nanotube given by uniform radial deformation

    International Nuclear Information System (INIS)

    Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan

    2009-01-01

    Under hydrostatic pressure, the equivalent elastic moduli of a zigzag single-walled carbon nanotube (SWNT) are analytically determined by energy conservation, with the consideration of the covalent bond deformation. The theoretical predictions on the transverse mechanical properties of a zigzag SWNT agree reasonably well with those given by the molecular structures mechanics simulations and also the ab initio calculations. From the simple geometry calculation, the circumferential strain is about 2-3 times of the axial strain of a zigzag SWNT under hydrostatic pressure. The bulk modulus of a zigzag SWNT is found to be 3/7 times of its radial Young's modulus.

  11. The Effects of Double Oscillation Exercise Combined with Elastic Band Exercise on Scapular Stabilizing Muscle Strength and Thickness in Healthy Young Individuals: A Randomized Controlled Pilot Trial

    Directory of Open Access Journals (Sweden)

    Jieun Cho, Kyeongbong Lee, Minkyu Kim, Joohee Hahn, Wanhee Lee

    2018-03-01

    Full Text Available This study aimed to investigate the effect of double oscillation exercise combined with elastic band exercise on the strength and thickness ratio of the scapular stabilizing muscles in healthy young individuals. A total of 30 subjects (17 male, 13 female were randomly assigned to an elastic band exercise group (EBG (n = 15 or an elastic band plus double oscillation exercise group (EB-DOG (n = 15. A total of 28 subjects completed the experiment and evaluation. Patients in the EBG performed the elastic band exercise for shoulder flexion, extension, abduction, adduction, horizontal abduction/adduction, and internal/external rotation for 30 minutes/session, five times/week, for four weeks. Patients in the EB-DOG performed the elastic band exercise for 15 minutes and the double oscillation exercise in three planes of motion (frontal, sagittal, and transverse, using a Bodyblade® for 15 minutes/session, five times/week, for four weeks. Shoulder muscle strength was assessed using a manual muscle test device during maximal voluntary isometric contraction (MVIC, while the thicknesses of the scapular stabilizing muscles were assessed using rehabilitative ultrasound imaging both at rest and during MVIC. Both groups had significant effects on shoulder muscle strength, however, there was no significant difference between the two groups for change value of shoulder muscle strength (Bonferroni correction p < 0.005. Significant differences were observed in the group × time interactions for horizontal abduction, external rotation, and protraction. There was a statistically significant improvement in thickness ratio of LT and SA in the EB-DOG and no significant difference was founded in EBG (Bonferroni correction p < 0.006. In comparison between the two groups, EB-DOG showed a significant change in the thickness ratio of LT compared to EBG. In addition, significant differences were observed for the group × time interactions for the thickness ratio of the LT (F

  12. Semi-exact solution of non-uniform thickness and density rotating disks. Part II: Elastic strain hardening solution

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Jafari, S.

    2009-01-01

    Analytical solutions for the elastic-plastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption. The solution employs a technique called the homotopy perturbation method. A numerical solution of the governing differential equation is also presented based on the Runge-Kutta's method for both elastic and plastic regimes. The analysis is based on Tresca's yield criterion, its associated flow rule and linear strain hardening. The results of the two methods are compared and generally show good agreement. It is shown that, depending on the boundary conditions used, the plastic core may contain one, two or three different plastic regions governed by different mathematical forms of the yield criterion. Four different stages of elastic-plastic deformation occur. The expansion of these plastic regions with increasing angular velocity is obtained together with the distributions of stress and displacement

  13. Acoustic scattering from a contrast agent microbubble near an elastic wall of finite thickness

    International Nuclear Information System (INIS)

    Doinikov, Alexander A; Aired, Leila; Bouakaz, Ayache

    2011-01-01

    Interest in the problem under consideration in this study is motivated by targeted ultrasound imaging where one has to deal with microbubble contrast agents pulsating near blood vessel walls. A modified Rayleigh–Plesset equation is derived that describes the oscillation of a contrast agent microbubble near an elastic wall of finite thickness. It is assumed that the medium behind the wall is a fluid but it is shown that the equation obtained is easily transformable to the case that the medium behind the wall is an elastic solid. In contrast to the model of a rigid wall, which predicts decreasing natural frequency of a bubble near the wall, the elastic wall model reveals that the bubble natural frequency can both decrease and increase, and in cases of interest for medical applications, the bubble natural frequency usually increases. It is found that the influence of an elastic wall on the acoustic response of a bubble is determined by the ratio between a cumulative parameter, which integrally characterizes the mechanical properties of the wall and has the dimension of density, and the density of the liquid surrounding the bubble. It is shown that the acoustic influence of the arterial wall on the bubble is weak and apparently cannot be used to recognize the moment when the bubble approaches the wall. However, in experiments where the behavior of bubbles near various plastic walls is observed, changes in the bubble response, such as increasing natural frequency and decreasing oscillation amplitude, are detectable.

  14. Effective elastic properties of damaged isotropic solids

    International Nuclear Information System (INIS)

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  15. Elastic Thickness Estimates for Coronae Associated with Chasmata on Venus

    Science.gov (United States)

    Hoogenboom, T.; Martin, P.; Housean, G. A.

    2005-01-01

    Coronae are large-scale circular tectonic features surrounded by annular ridges. They are generally considered unique to Venus and may offer insights into the differences in lithospheric structure or mantle convective pattern between Venus and Earth. 68% of all coronae are associated with chasmata or fracture belts. The remaining 32% are located at volcanic rises or in the plains. Chasmata are linear to arcuate troughs, with trough parallel fractures and faults which extend for 1000 s of kilometers. Estimates of the elastic thickness of the lithosphere (T(sub e)) have been calculated in a number of gravity/topography studies of Venus and for coronae specifically. None of these studies, however, have explored the dependence of T(sub e) on the tectonic history of the region, as implied from the interpretation of relative timing relationships between coronae and surrounding features. We examine the relationship between the local T(sub e) and the relative ages of coronae and chasmata with the aim of further constraining the origin and evolution of coronae and chasmata systems.

  16. Marangoni elasticity of flowing soap films

    OpenAIRE

    Kim, Ildoo; Mandre, Shreyas

    2016-01-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm ...

  17. Elastic band prediction equations for combined free-weight and elastic band bench presses and squats.

    Science.gov (United States)

    Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C

    2010-01-01

    Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.

  18. Marangoni elasticity of flowing soap films

    Science.gov (United States)

    Kim, Ildoo; Mandre, Shreyas

    2017-08-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.

  19. Comprehensive analysis of Curie-point depths and lithospheric effective elastic thickness at Arctic Region

    Science.gov (United States)

    Lu, Y.; Li, C. F.

    2017-12-01

    Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.

  20. Global model for the lithospheric strength and effective elastic thickness

    Science.gov (United States)

    Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2013-08-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.

  1. Vibration of Elastic Functionally Graded Thick Rings

    Directory of Open Access Journals (Sweden)

    Guang-Hui Xu

    2017-01-01

    Full Text Available The free vibration behaviors of functionally graded rings were investigated theoretically. The material graded in the thickness direction according to the power law rule and the rings were assumed to be in plane stress and plane strain states. Based on the first-order shear deformation theory and the kinetic relation of von Kárman type, the frequency equation for free vibration of functionally graded ring was derived. The derived results were verified by those in literatures which reveals that the present theory can be appropriate to predict the free vibration characteristics for quite thick rings with the radius-to-thickness ratio from 60 down to 2.09. Comparison between the plane stress case and the plane strain case indicates a slight difference. Meanwhile, the effects of the structural dimensional parameters and the material inhomogeneous parameter are examined. It is interesting that the value of the logarithmic form of vibration frequency is inversely proportional to the logarithmic form of the radius-to-thickness ratio or the mean radius.

  2. Expression of proliferative and inflammatory markers in a full-thickness human skin equivalent following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    International Nuclear Information System (INIS)

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-01-01

    Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT TM , a commercially available full-thickness human skin equivalent. CEES (100-1000 μM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 μM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE 2 synthases, leukotriene (LT) A 4 hydrolase and LTC 4 synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.

  3. An Equivalent Circuit of Longitudinal Vibration for a Piezoelectric Structure with Losses.

    Science.gov (United States)

    Yuan, Tao; Li, Chaodong; Fan, Pingqing

    2018-03-22

    Equivalent circuits of piezoelectric structures such as bimorphs and unimorphs conventionally focus on the bending vibration modes. However, the longitudinal vibration modes are rarely considered even though they also play a remarkable role in piezoelectric devices. Losses, especially elastic loss in the metal substrate, are also generally neglected, which leads to discrepancies compared with experiments. In this paper, a novel equivalent circuit with four kinds of losses is proposed for a beamlike piezoelectric structure under the longitudinal vibration mode. This structure consists of a slender beam as the metal substrate, and a piezoelectric patch which covers a partial length of the beam. In this approach, first, complex numbers are used to deal with four kinds of losses-elastic loss in the metal substrate, and piezoelectric, dielectric, and elastic losses in the piezoelectric patch. Next in this approach, based on Mason's model, a new equivalent circuit is developed. Using MATLAB, impedance curves of this structure are simulated by the equivalent circuit method. Experiments are conducted and good agreements are revealed between experiments and equivalent circuit results. It is indicated that the introduction of four losses in an equivalent circuit can increase the result accuracy considerably.

  4. Spatial variations of effective elastic thickness of the Lithosphere in the Southeast Asia regions

    Science.gov (United States)

    Shi, Xiaobin; Kirby, Jon; Yu, Chuanhai; Swain, Chris; Zhao, Junfeng

    2016-04-01

    The effective elastic thickness Te corresponds to the thickness of an idealized elastic beam that would bend similarly to the actual lithosphere under the same applied loads, and could provide important insight into rheology and state of stress. Thus, it is helpful to improve our understanding of the relationship between tectonic styles, distribution of earthquakes and lithospheric rheology in various tectonic settings. The Southeast Asia, located in the southeastern part of the Eurasian Plate, comprises a complex collage of continental fragments, volcanic arcs, and suture zones and marginal oceanic basins, and is surrounded by tectonically active margins which exhibit intense seismicity and volcanism. The Cenozoic southeastward extrusion of the rigid Indochina Block due to the Indo-Asian collision resulted in the drastic surface deformation in the western area. Therefore, a high resolution spatial variation map of Te might be a useful tool for the complex Southeast Asia area to examine the relationships between surface deformation, earthquakes, lithospheric structure and mantle dynamics. In this study, we present a high-resolution map of spatial variations of Te in the Southeast Asia area using the wavelet method, which convolves a range of scaled wavelets with the two data sets of Bouguer gravity anomaly and topography. The topography and bathymetry grid data was extracted from the GEBCO_08 Grid of GEBCO digital atlas. The pattern of Te variations agrees well with the tectonic provinces in the study area. On the whole, low lithosphere strength characterizes the oceanic basins, such as the South China Sea, the Banda sea area, the Celebes Sea, the Sulu Sea and the Andaman Sea. Unlike the oceanic basins, the continental fragments show a complex pattern of Te variations. The Khorat plateau and its adjacent area show strong lithosphere characteristics with a Te range of 20-50 km, suggesting that the Khorat plateau is the strong core of the Indochina Block. The West

  5. The Karush–Kuhn–Tucker optimality conditions in minimum weight design of elastic rotating disks with variable thickness and density

    Directory of Open Access Journals (Sweden)

    Sanaz Jafari

    2011-10-01

    Full Text Available Rotating discs work mostly at high angular velocity. High speed results in large centrifugal forces in discs and induces large stresses and deformations. Minimizing weight of such disks yields various benefits such as low dead weights and lower costs. In order to attain a certain and reliable analysis, disk with variable thickness and density is considered. Semi-analytical solutions for the elastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption by authors in previous works. The optimum disk profile for minimum weight design is achieved by the Karush–Kuhn–Tucker (KKT optimality conditions. Inequality constrain equation is used in optimization to make sure that maximum von Mises stress is always less than yielding strength of the material of the disk.

  6. Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity

    Directory of Open Access Journals (Sweden)

    M. Shaban

    Full Text Available This paper studies free vibration and bending behavior of singlewalled carbon nanotubes (SWCNTs embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, non-local theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radiusto-length ratio.

  7. The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens

    NARCIS (Netherlands)

    Wiemer, N.G.M.; Dubbelman, M.; Kostense, P.J.; Ringens, P.J.; Polak, B.C.P.

    2008-01-01

    Purpose: To study the influence of diabetes mellitus (DM) types 1 and 2 on the thickness, radius of curvature, equivalent refractive index, and power of the lens. Design: Observational cross-sectional study. Participants and Controls: One hundred fourteen patients with DM type 1, 112 patients with

  8. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect

    International Nuclear Information System (INIS)

    Yao Hai-Yan; Fan Wen-Liang; Yun Guo-Hong

    2013-01-01

    The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elasticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 100 nm. It is also found that the theoretical results calculated by a modified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers. (condensed matter: structural, mechanical, and thermal properties)

  9. Parameter Optimisation for the Behaviour of Elastic Models over Time

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    Optimisation of parameters for elastic models is essential for comparison or finding equivalent behaviour of elastic models when parameters cannot simply be transferred or converted. This is the case with a large range of commonly used elastic models. In this paper we present a general method tha...

  10. Application of generalized function to dynamic analysis of thick plates

    International Nuclear Information System (INIS)

    Zheng, D.; Weng, Z.

    1987-01-01

    The structures with thick plates have been used extensively in national defence, mechanical engineering, chemical engineering, nuclear engineering, civil engineering, etc.. Various theories have been established to deal with the problems of elastic plates, which include the classical theory of thin plates, the improved theory of thick plates, three-dimensional elastical theory. In this paper, the derivative of δ-function is handled by using the generalized function. The dynamic analysis of thick plates subjected the concentrated load is presented. The improved Donnell's equation of thick plates is deduced and employed as the basic equation. The generalized coordinates are solved by using the method of MWR. The general expressions for the dynamic response of elastic thick plates subjected the concentrated load are given. The numerical results for rectangular plates are given herein. The results are compared with those obtained from the improved theory and the classical theory of plates. (orig./GL)

  11. Some Differential Geometric Relations in the Elastic Shell

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shen

    2016-01-01

    Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.

  12. Equivalent Young's Modulus of Perforated Shell with Square Penetration Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Jhung, Myung Jo; Ryu, Yong Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-05-15

    The analysis of a plate or shell perforated with a large number of holes, by finite element method for instance, was a very costly and time-consuming technique which solves only one particular problem. But it is possible to model the perforated plate or shell and to analyze it and it is no more time-consuming theses days due to the rapid development of the computer and software. However, if a perforated plate or shell is submerged in fluid it is almost impossible to model and analyze it as is and the fluid at the same time, which is needed to investigate the effect of the fluid structure interaction. The simplest way to avoid time consuming and costly analysis of perforated plate or shell submerged in fluid is to replace the perforated plate or shell by an equivalent solid one considering weakening effect of holes. Many authors have proposed experimental or theoretical method to solve this problem for the plate. Slot and O'Donnell determined the effective elastic constants for the thick perforated plates by equating strains in the equivalent solid material to the average strains in the perforated material. O'Donnell also presented those of thin perforated plates. These results are implemented in Article A-8000 of Appendix A to the ASME code Section III, which contains a method of analysis for flat perforated plates when subjected to directly applied loads or loadings resulting from structural interaction with adjacent members. Unfortunately the effective elastic constants for the perforated shell are not found in any references. Therefore in this study the modal characteristics of the perforated shell are investigated and the equivalent material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies

  13. New Bouguer Gravity Maps of Venezuela: Representation and Analysis of Free-Air and Bouguer Anomalies with Emphasis on Spectral Analyses and Elastic Thickness

    Directory of Open Access Journals (Sweden)

    Javier Sanchez-Rojas

    2012-01-01

    Full Text Available A new gravity data compilation for Venezuela was processed and homogenized. Gravity was measured in reference to the International Gravity Standardization Net 1971, and the complete Bouguer anomaly was calculated by using the Geodetic Reference System 1980 and 2.67 Mg/m3. A regional gravity map was computed by removing wavelengths higher than 200 km from the Bouguer anomaly. After the anomaly separation, regional and residual Bouguer gravity fields were then critically discussed in term of the regional tectonic features. Results were compared with the previous geological and tectonic information obtained from former studies. Gravity and topography data in the spectral domain were used to examine the elastic thickness and depths of the structures of the causative measured anomaly. According to the power spectrum analysis results of the gravity data, the averaged Moho depths for the massif, plains, and mountainous areas in Venezuela are 42, 35, and 40 km, respectively. The averaged admittance function computed from the topography and Free-Air anomaly profiles across Mérida Andes showed a good fit for a regional compensation model with an effective elastic thickness of 15 km.

  14. Free and Forced Vibration of the Moderately Thick Laminated Composite Rectangular Plate on Various Elastic Winkler and Pasternak Foundations

    Directory of Open Access Journals (Sweden)

    Dongyan Shi

    2017-01-01

    Full Text Available An improved Fourier series method (IFSM is applied to study the free and forced vibration characteristics of the moderately thick laminated composite rectangular plates on the elastic Winkler or Pasternak foundations which have elastic uniform supports and multipoints supports. The formulation is based on the first-order shear deformation theory (FSDT and combined with artificial virtual spring technology and the plate-foundation interaction by establishing the two-parameter foundation model. Under the framework of this paper, the displacement and rotation functions are expressed as a double Fourier cosine series and two supplementary functions which have no relations to boundary conditions. The Rayleigh-Ritz technique is applied to solve all the series expansion coefficients. The accuracy of the results obtained by the present method is validated by being compared with the results of literatures and Finite Element Method (FEM. In this paper, some results are obtained by analyzing the varying parameters, such as different boundary conditions, the number of layers and points, the spring stiffness parameters, and foundation parameters, which can provide a benchmark for the future research.

  15. Summertime Minimum Streamflow Elasticity to Antecendent Winter Precipitation, Peak Snow Water Equivalent and Summertime Evaporative Demand in the Western US Maritime Mountains

    Science.gov (United States)

    Schaperow, J.; Cooper, M. G.; Cooley, S. W.; Alam, S.; Smith, L. C.; Lettenmaier, D. P.

    2017-12-01

    As climate regimes shift, streamflows and our ability to predict them will change, as well. Elasticity of summer minimum streamflow is estimated for 138 unimpaired headwater river basins across the maritime western US mountains to better understand how climatologic variables and geologic characteristics interact to determine the response of summer low flows to winter precipitation (PPT), spring snow water equivalent (SWE), and summertime potential evapotranspiration (PET). Elasticities are calculated using log log linear regression, and linear reservoir storage coefficients are used to represent basin geology. Storage coefficients are estimated using baseflow recession analysis. On average, SWE, PET, and PPT explain about 1/3 of the summertime low flow variance. Snow-dominated basins with long timescales of baseflow recession are least sensitive to changes in SWE, PPT, and PET, while rainfall-dominated, faster draining basins are most sensitive. There are also implications for the predictability of summer low flows. The R2 between streamflow and SWE drops from 0.62 to 0.47 from snow-dominated to rain-dominated basins, while there is no corresponding increase in R2 between streamflow and PPT.

  16. A Scale Elasticity Measure for Directional Distance Function and its Dual

    OpenAIRE

    Valentin Zelenyuk

    2011-01-01

    In this paper we introduce a scale elasticity measure based on directional distance function for multi-output-multi-input technologies and explore its fundamental properties. Specifically, we derive necessary and sufficient condition for equivalence of the scale elasticity measure based on the directional distance function with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional ...

  17. Prediction of elastic properties for polymer-particle nanocomposites exhibiting an interphase

    International Nuclear Information System (INIS)

    Deng Fei; Van Vliet, Krystyn J

    2011-01-01

    Particle-polymer nanocomposites often exhibit mechanical properties described poorly by micromechanical models that include only the particle and matrix phases. Existence of an interfacial region between the particle and matrix, or interphase, has been posited and indirectly demonstrated to account for this effect. Here, we present a straightforward analytical approach to estimate effective elastic properties of composites comprising particles encapsulated by an interphase of finite thickness and distinct elastic properties. This explicit solution can treat nanocomposites that comprise either physically isolated nanoparticles or agglomerates of such nanoparticles; the same framework can also treat physically isolated nanoparticle aggregates or agglomerates of such aggregates. We find that the predicted elastic moduli agree with experiments for three types of particle-polymer nanocomposites, and that the predicted interphase thickness and stiffness of carbon black-rubber nanocomposites are consistent with measured values. Finally, we discuss the relative influence of the particle-polymer interphase thickness and stiffness to identify maximum possible changes in the macroscale elastic properties of such materials.

  18. THE STRESS-STRAIN STATE OF AN INFINITELY LONG ELASTIC ARRAYS OF DIFFERENT WIDTHS AND LIMITED THICKNESS ON THE HARD GROUND WHEN THEY HAVE FLAT DEFORMATION

    Directory of Open Access Journals (Sweden)

    I. K. Badalakha

    2009-12-01

    Full Text Available The article presents the results of solving several problems of a flat deformation of elastic infinitely long massifs of different width and limited thickness. Various cases of conditions at the massif/base contact. The relationships between stressed and strained states previously suggested by the author, which differ from the generalized Hooke’s law, are used in the solutions.

  19. Retinal sensitivity and choroidal thickness in high myopia.

    Science.gov (United States)

    Zaben, Ahmad; Zapata, Miguel Á; Garcia-Arumi, Jose

    2015-03-01

    To estimate the association between choroidal thickness in the macular area and retinal sensitivity in eyes with high myopia. This investigation was a transversal study of patients with high myopia, all of whom had their retinal sensitivity measured with macular integrity assessment microperimetry. The choroidal thicknesses in the macular area were then measured by optical coherence tomography, and statistical correlations between their functionality and the anatomical structuralism, as assessed by both types of measurements, were analyzed. Ninety-six eyes from 77 patients with high myopia were studied. The patients had a mean age ± standard deviation of 38.9 ± 13.2 years, with spherical equivalent values ranging from -6.00 diopter to -20.00 diopter (8.74 ± 2.73 diopter). The mean central choroidal thickness was 159.00 ± 50.57. The mean choroidal thickness was directly correlated with sensitivity (r = 0.306; P = 0.004) and visual acuity but indirectly correlated with the spherical equivalent values and patient age. The mean sensitivity was not significantly correlated with the macular foveal thickness (r = -0.174; P = 0.101) or with the overall macular thickness (r = 0.103; P = 0.334); furthermore, the mean sensitivity was significantly correlated with visual acuity (r = 0.431; P < 0.001) and the spherical equivalent values (r = -0.306; P = 0.003). Retinal sensitivity in highly myopic eyes is directly correlated with choroidal thickness and does not seem to be associated with retinal thickness. Thus, in patients with high myopia, accurate measurements of choroidal thickness may provide more accurate information about this pathologic condition because choroidal thickness correlates to a greater degree with the functional parameters, patient age, and spherical equivalent values.

  20. Shells on elastic foundations

    International Nuclear Information System (INIS)

    Das, Y.C.; Kedia, K.K.

    1977-01-01

    No realistic analytical work in the area of Shells on Elastic Foundations has been reported in the literature. Various foundation models have been proposed by several authors. These models involve one or more than one parameters to characterise the foundation medium. Some of these models cannot be used to derive the basic equations governing the behaviour of shells on elastic foundations. In the present work, starting from an elastic continuum hypothesis, a mathematical model for foundation has been derived in curvilinear orthogonal coordinates by the help of principle of virtual displacements, treating one of the virtual displacements as known to satisfy certain given conditions at its edge surfaces. In this model, several foundation parameters can be considered and it can also be used for layered medium of both finite and infinite thickness. (Auth.)

  1. Proposed higher order continuum-based models for an elastic ...

    African Journals Online (AJOL)

    Three new variants of continuum-based models for an elastic subgrade are proposed. The subgrade is idealized as a homogenous, isotropic elastic layer of thickness H overlying a firm stratum. All components of the stress tensor in the subgrade are taken into account. Reasonable assumptions are made regarding the ...

  2. Verification and sensitivity analysis on the elastic stiffness of the leaf type holddown spring assembly

    International Nuclear Information System (INIS)

    Song, Kee Nam

    1998-01-01

    The elastic formula of leaf type hold down spring(HDS) assembly is verified by comparing the values of elastic stiffness with the characteristic test results of the HDS's specimens. The comparisons show that the derived elastic stiffness formula is useful in reliably estimating the elastic stiffness of leaf type HDS assembly. The elastic stiffness sensitivity of leaf type HDS assembly is analyzed using the formula and its gradient vectors obtained from the mid-point formula. As a result of sensitivity analysis, the elastic stiffness sensitivity with respect to each design variable is quantified and design variables of large sensitivity are identified. Among the design variables, leaf thickness is identified as the most sensitive design variable to the elastic of leaf type HDS assembly. In addition, the elastic stiffness sensitivity, with respect to design variable, is in power-law type correlation to the base thickness of the leaf. (author)

  3. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  4. Fringe instability in constrained soft elastic layers.

    Science.gov (United States)

    Lin, Shaoting; Cohen, Tal; Zhang, Teng; Yuk, Hyunwoo; Abeyaratne, Rohan; Zhao, Xuanhe

    2016-11-04

    Soft elastic layers with top and bottom surfaces adhered to rigid bodies are abundant in biological organisms and engineering applications. As the rigid bodies are pulled apart, the stressed layer can exhibit various modes of mechanical instabilities. In cases where the layer's thickness is much smaller than its length and width, the dominant modes that have been studied are the cavitation, interfacial and fingering instabilities. Here we report a new mode of instability which emerges if the thickness of the constrained elastic layer is comparable to or smaller than its width. In this case, the middle portion along the layer's thickness elongates nearly uniformly while the constrained fringe portions of the layer deform nonuniformly. When the applied stretch reaches a critical value, the exposed free surfaces of the fringe portions begin to undulate periodically without debonding from the rigid bodies, giving the fringe instability. We use experiments, theory and numerical simulations to quantitatively explain the fringe instability and derive scaling laws for its critical stress, critical strain and wavelength. We show that in a force controlled setting the elastic fingering instability is associated with a snap-through buckling that does not exist for the fringe instability. The discovery of the fringe instability will not only advance the understanding of mechanical instabilities in soft materials but also have implications for biological and engineered adhesives and joints.

  5. Underwater sound transmission through arrays of disk cavities in a soft elastic medium.

    Science.gov (United States)

    Calvo, David C; Thangawng, Abel L; Layman, Christopher N; Casalini, Riccardo; Othman, Shadi F

    2015-10-01

    Scattering from a cavity in a soft elastic medium, such as silicone rubber, resembles scattering from an underwater bubble in that low-frequency monopole resonance is obtainable in both cases. Arrays of cavities can therefore be used to reduce underwater sound transmission using thin layers and low void fractions. This article examines the role of cavity shape by microfabricating arrays of disk-shaped air cavities into single and multiple layers of polydimethylsiloxane. Comparison is made with the case of equivalent volume cylinders which approximate spheres. Measurements of ultrasonic underwater sound transmission are compared with finite element modeling predictions. The disks provide a deeper transmission minimum at a lower frequency owing to the drum-type breathing resonance. The resonance of a single disk cavity in an unbounded medium is also calculated and compared with a derived estimate of the natural frequency of the drum mode. Variation of transmission is determined as a function of disk tilt angle, lattice constant, and layer thickness. A modeled transmission loss of 18 dB can be obtained at a wavelength about 20 times the three-layer thickness, and thinner results (wavelength/thickness ∼ 240) are possible for the same loss with a single layer depending on allowable hydrostatic pressure.

  6. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    Science.gov (United States)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  7. Equivalent network for resistance and temperature coefficient of resistance versus temperature and composition of thick resistive films

    International Nuclear Information System (INIS)

    Kusy, A.

    1987-01-01

    Two types of elementary resistances in thick resistive films have been considered: (i) constriction resistance R/sub C/ determined by the bulk properties of conducting material and by the geometry of constriction, and (ii) barrier resistance R/sub B/ determined by the parameters of a thermally activated type of tunneling process and by the geometry of the metal-insulator-metal unit. On this basis a resistance network composed of a large number of the two types of resistances has been defined. The network has been considered as being equivalent to thick resistive film (TRF) from the point of view of the resistance and temperature coefficient of resistance (TCR). The parameters of this network have been evaluated by the computer-aided approximation of the experimental data found for RuO 2 -based TRFs. On the basis of the equations derived for the network as well as the results of the approximation process, it can be concluded that the small values of the network TCR result from the superposition of the TCR of the conducting component β/sub C/ and of the temperature coefficient of barrier resistance α/sub B/. In this superposition β/sub C/ is attenuated (by 1--2 orders of magnitude), while α/sub B/ is attenuated by only few percentages. The network has been found to be strongly barrier dominated

  8. Analytical solutions to orthotropic variable thickness disk problems

    Directory of Open Access Journals (Sweden)

    Ahmet N. ERASLAN

    2016-02-01

    Full Text Available An analytical model is developed to estimate the mechanical response of nonisothermal, orthotropic, variable thickness disks under a variety of boundary conditions. Combining basic mechanical equations of disk geometry with the equations of orthotropic material, the elastic equation of the disk is obtained. This equation is transformed into a standard hypergeometric differential equation by means of a suitable transformation. An analytical solution is then obtained in terms of hypergeometric functions. The boundary conditions used to complete the solutions simulate rotating annular disks with two free surfaces, stationary annular disks with pressurized inner and free outer surfaces, and free inner and pressurized outer surfaces. The results of the solutions to each of these cases are presented in graphical forms. It is observed that, for the three cases investigated the elastic orthotropy parameter turns out to be an important parameter affecting the elastic behaviorKeywords: Orthotropic disk, Variable thickness, Thermoelasticity, Hypergeometric equation

  9. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method

    Directory of Open Access Journals (Sweden)

    Massimiliano Ferraioli

    2016-01-01

    Full Text Available Although the most commonly used isolation systems exhibit nonlinear inelastic behaviour, the equivalent linear elastic analysis is commonly used in the design and assessment of seismic-isolated structures. The paper investigates if the linear elastic model is suitable for the analysis of a seismically isolated multiple building structure. To this aim, its computed responses were compared with those calculated by nonlinear dynamic analysis. A common base isolation plane connects the isolation bearings supporting the adjacent structures. In this situation, the conventional equivalent linear elastic analysis may have some problems of accuracy because this method is calibrated on single base-isolated structures. Moreover, the torsional characteristics of the combined system are significantly different from those of separate isolated buildings. A number of numerical simulations and parametric studies under earthquake excitations were performed. The accuracy of the dynamic response obtained by the equivalent linear elastic model was calculated by the magnitude of the error with respect to the corresponding response considering the nonlinear behaviour of the isolation system. The maximum displacements at the isolation level, the maximum interstorey drifts, and the peak absolute acceleration were selected as the most important response measures. The influence of mass eccentricity, torsion, and high-modes effects was finally investigated.

  10. Two-zone elastic-plastic single shock waves in solids.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T

    2011-09-23

    By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.

  11. Relativistic elasticity of stationary fluid branes

    DEFF Research Database (Denmark)

    Armas, J.; Obers, N.A.

    2013-01-01

    under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent...

  12. The lead equivalence of plate glass for diagnostic x-rays

    International Nuclear Information System (INIS)

    Young, B.F.; Morris, N.D.

    1983-01-01

    The effectiveness of plate glass as a radiation protection barrier was determined. For x ray energies between 80 and 140 kVp, the lead equivalence of plate glass is energy independent, but below 80 kVp there is an apparent dependence. A thickness of plate glass of 25 mm for radiation energies between 80 and 140 kVp is equivalent to lead of .3mm thickness. There could be a limited application for the use of plate glass in viewing panels

  13. The Short-Term Effect of Ketogenic Diet on Carotid Intima-Media Thickness and Elastic Properties of the Carotid Artery and the Aorta in Epileptic Children.

    Science.gov (United States)

    Doksöz, Önder; Güzel, Orkide; Yılmaz, Ünsal; İşgüder, Rana; Çeleğen, Kübra; Meşe, Timur; Uysal, Utku

    2015-10-01

    The aim of this prospective study is to investigate the effect of a 6-month-long ketogenic diet on carotid intima-media thickness, carotid artery, and aortic vascular functions. Thirty-eight drug-resistant epileptic patients who were being treated with ketogenic diet were enrolled. Fasting total cholesterol, high-density lipoprotein, low-density lipoprotein, triglycerides, total cholesterol, and glucose concentrations were measured and echocardiography was performed in all patients before the beginning of ketogenic diet and at the sixth month of treatment. The body weight, height, body mass index, serum levels of triglyceride, total cholesterol, and low-density lipoprotein increased significantly at month 6 when compared to baseline values (P ketogenic diet has no effect on carotid intima-media thickness and elastic properties of the carotid artery and the aorta. © The Author(s) 2015.

  14. Determination of equivalent breast phantoms for different age groups of Taiwanese women: An experimental approach

    International Nuclear Information System (INIS)

    Dong, Shang-Lung; Chu, Tieh-Chi; Lin, Yung-Chien; Lan, Gong-Yau; Yeh, Yu-Hsiu; Chen, Sharon; Chuang, Keh-Shih

    2011-01-01

    Purpose: Polymethylmethacrylate (PMMA) slab is one of the mostly used phantoms for studying breast dosimetry in mammography. The purpose of this study was to evaluate the equivalence between exposure factors acquired from PMMA slabs and patient cases of different age groups of Taiwanese women in mammography. Methods: This study included 3910 craniocaudal screen/film mammograms on Taiwanese women acquired on one mammographic unit. The tube loading, compressed breast thickness (CBT), compression force, tube voltage, and target/filter combination for each mammogram were collected for all patients. The glandularity and the equivalent thickness of PMMA were determined for each breast using the exposure factors of the breast in combination with experimental measurements from breast-tissue-equivalent attenuation slabs. Equivalent thicknesses of PMMA to the breasts of Taiwanese women were then estimated. Results: The average ± standard deviation CBT and breast glandularity in this study were 4.2 ± 1.0 cm and 54% ± 23%, respectively. The average equivalent PMMA thickness was 4.0 ± 0.7 cm. PMMA slabs producing equivalent exposure factors as in the breasts of Taiwanese women were determined for the age groups 30-49 yr and 50-69 yr. For the 4-cm PMMA slab, the CBT and glandularity values of the equivalent breast were 4.1 cm and 65%, respectively, for the age group 30-49 yr and 4.4 cm and 44%, respectively, for the age group 50-69 yr. Conclusions: The average thickness of PMMA slabs producing the same exposure factors as observed in a large group of Taiwanese women is less than that reported for American women. The results from this study can provide useful information for determining a suitable thickness of PMMA for mammographic dose survey in Taiwan. The equivalence of PMMA slabs and the breasts of Taiwanese women is provided to allow average glandular dose assessment in clinical practice.

  15. Determination of equivalent breast phantoms for different age groups of Taiwanese women: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shang-Lung; Chu, Tieh-Chi; Lin, Yung-Chien; Lan, Gong-Yau; Yeh, Yu-Hsiu; Chen, Sharon; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Department of Radiology, Cheng Hsin General Hospital, 45 Cheng Hsin Street, Pai-Tou District, Taipei 11220, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2011-07-15

    Purpose: Polymethylmethacrylate (PMMA) slab is one of the mostly used phantoms for studying breast dosimetry in mammography. The purpose of this study was to evaluate the equivalence between exposure factors acquired from PMMA slabs and patient cases of different age groups of Taiwanese women in mammography. Methods: This study included 3910 craniocaudal screen/film mammograms on Taiwanese women acquired on one mammographic unit. The tube loading, compressed breast thickness (CBT), compression force, tube voltage, and target/filter combination for each mammogram were collected for all patients. The glandularity and the equivalent thickness of PMMA were determined for each breast using the exposure factors of the breast in combination with experimental measurements from breast-tissue-equivalent attenuation slabs. Equivalent thicknesses of PMMA to the breasts of Taiwanese women were then estimated. Results: The average {+-} standard deviation CBT and breast glandularity in this study were 4.2 {+-} 1.0 cm and 54% {+-} 23%, respectively. The average equivalent PMMA thickness was 4.0 {+-} 0.7 cm. PMMA slabs producing equivalent exposure factors as in the breasts of Taiwanese women were determined for the age groups 30-49 yr and 50-69 yr. For the 4-cm PMMA slab, the CBT and glandularity values of the equivalent breast were 4.1 cm and 65%, respectively, for the age group 30-49 yr and 4.4 cm and 44%, respectively, for the age group 50-69 yr. Conclusions: The average thickness of PMMA slabs producing the same exposure factors as observed in a large group of Taiwanese women is less than that reported for American women. The results from this study can provide useful information for determining a suitable thickness of PMMA for mammographic dose survey in Taiwan. The equivalence of PMMA slabs and the breasts of Taiwanese women is provided to allow average glandular dose assessment in clinical practice.

  16. Determination of the elastic and stiffness characteristics of cross-laminated timber plates from flexural wave velocity measurements

    Science.gov (United States)

    Santoni, Andrea; Schoenwald, Stefan; Van Damme, Bart; Fausti, Patrizio

    2017-07-01

    Cross-laminated timber (CLT) is an engineered wood with good structural properties and it is also economically competitive with the traditional building construction materials. However, due to its low volume density combined with its high stiffness, it does not provide sufficient sound insulation, thus it is necessary to develop specific acoustic treatments in order to increase the noise reduction performance. The material's mechanical properties are required as input data to perform the vibro-acoustic analyses necessary during the design process. In this paper the elastic constants of a CLT plate are derived by fitting the real component of the experimental flexural wave velocity with Mindlin's dispersion relation for thick plates, neglecting the influence of the plate's size and boundary conditions. Furthermore, its apparent elastic and stiffness properties are derived from the same set of experimental data, for the plate considered to be thin. Under this latter assumption the orthotropic behaviour of an equivalent thin CLT plate is described by using an elliptic model and verified with experimental results.

  17. Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications

    Science.gov (United States)

    Wang, Wenjun; Li, Peng; Jin, Feng

    2016-09-01

    A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.

  18. Equivalent Circuit Modeling of the Dielectric Loaded Microwave Biosensor

    Directory of Open Access Journals (Sweden)

    M. T. Jilani

    2014-12-01

    Full Text Available This article describes the modeling of biological tissues at microwave frequency using equivalent lumped elements. A microwave biosensor based on microstrip ring resonator (MRR, that has been utilized previously for meat quality evaluation is used for this purpose. For the first time, the ring-resonator loaded with the lossy and high permittivity dielectric material, such as; biological tissue, in a partial overlay configuration is analyzed. The equivalent circuit modeling of the structure is then performed to identify the effect of overlay thickness on the resonance frequency. Finally, the relationship of an overlay thickness with the corresponding RC values of the meat equivalent circuit is established. Simulated, calculated and measured results are then compared for validation. Results are well agreed while the observed discrepancy is in acceptable limit.

  19. A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers.

    Science.gov (United States)

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.

  20. A Semi-Analytical Solution for Elastic Analysis of Rotating Thick Cylindrical Shells with Variable Thickness Using Disk Form Multilayers

    Directory of Open Access Journals (Sweden)

    Mohammad Zamani Nejad

    2014-01-01

    Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.

  1. A Scale Elasticity Measure for Directional Distance Function and its Dual: Theory and DEA Estimation

    OpenAIRE

    Valentin Zelenyuk

    2012-01-01

    In this paper we focus on scale elasticity measure based on directional distance function for multi-output-multi-input technologies, explore its fundamental properties and show its equivalence with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional distance function with scale elasticity measure based on the profit function. Finally, we discuss the estimation issues of the scale...

  2. Impedance method for measuring shear elasticity of liquids

    Science.gov (United States)

    Badmaev, B. B.; Dembelova, T. S.; Damdinov, B. B.; Gulgenov, Ch. Zh.

    2017-11-01

    Experimental results of studying low-frequency (74 kHz) shear elasticity of polymer liquids by the impedance method (analogous to the Mason method) are presented. A free-volume thick liquid layer is placed on the horizontal surface of a piezoelectric quartz crystal with dimensions 34.7 × 12 × 5.5 cm. The latter performs tangential vibrations at resonance frequency. The liquid layer experiences shear strain, and shear waves should propagate in it. From the theory of the method, it follows that, with an increase in the layer thickness, both real and imaginary resonance frequency shifts should exhibit damped oscillations and tend to limiting values. For the liquids under study, the imaginary frequency shift far exceeds the real one, which testifies to the presence of bulk shear elasticity.

  3. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  4. Equivalent Circuit Model of Low-Frequency Magnetoelectric Effect in Disk-Type Terfenol-D/PZT Laminate Composites Considering a New Interface Coupling Factor.

    Science.gov (United States)

    Lou, Guofeng; Yu, Xinjie; Lu, Shihua

    2017-06-15

    This paper describes the modeling of magnetoelectric (ME) effects for disk-type Terfenol-D (Tb 0.3 Dy 0.7 Fe 1.92 )/PZT (Pb(Zr,Ti)O₃) laminate composite at low frequency by combining the advantages of the static elastic model and the equivalent circuit model, aiming at providing a guidance for the design and fabrication of the sensors based on magnetoelectric laminate composite. Considering that the strains of the magnetostrictive and piezoelectric layers are not equal in actual operating due to the epoxy resin adhesive bonding condition, the magnetostrictive and piezoelectric layers were first modeled through the equation of motion separately, and then coupled together with a new interface coupling factor k c , which physically reflects the strain transfer between the phases. Furthermore, a theoretical expression containing k c for the transverse ME voltage coefficient α v and the optimum thickness ratio n optim to which the maximum ME voltage coefficient corresponds were derived from the modified equivalent circuit of ME laminate, where the interface coupling factor acted as an ideal transformer. To explore the influence of mechanical load on the interface coupling factor k c , two sets of weights, i.e., 100 g and 500 g, were placed on the top of the ME laminates with the same thickness ratio n in the sample fabrication. A total of 22 T-T mode disk-type ME laminate samples with different configurations were fabricated. The interface coupling factors determined from the measured α v and the DC bias magnetic field H bias were 0.11 for 500 g pre-mechanical load and 0.08 for 100 g pre-mechanical load. Furthermore, the measured optimum thickness ratios were 0.61 for k c = 0.11 and 0.56 for k c = 0.08. Both the theoretical ME voltage coefficient α v and optimum thickness ratio n optim containing k c agreed well with the measured data, verifying the reasonability and correctness for the introduction of k c in the modified equivalent circuit model.

  5. Equivalent Circuit Model of Low-Frequency Magnetoelectric Effect in Disk-Type Terfenol-D/PZT Laminate Composites Considering a New Interface Coupling Factor

    Directory of Open Access Journals (Sweden)

    Guofeng Lou

    2017-06-01

    Full Text Available This paper describes the modeling of magnetoelectric (ME effects for disk-type Terfenol-D (Tb0.3Dy0.7Fe1.92/PZT (Pb(Zr,TiO3 laminate composite at low frequency by combining the advantages of the static elastic model and the equivalent circuit model, aiming at providing a guidance for the design and fabrication of the sensors based on magnetoelectric laminate composite. Considering that the strains of the magnetostrictive and piezoelectric layers are not equal in actual operating due to the epoxy resin adhesive bonding condition, the magnetostrictive and piezoelectric layers were first modeled through the equation of motion separately, and then coupled together with a new interface coupling factor kc, which physically reflects the strain transfer between the phases. Furthermore, a theoretical expression containing kc for the transverse ME voltage coefficient αv and the optimum thickness ratio noptim to which the maximum ME voltage coefficient corresponds were derived from the modified equivalent circuit of ME laminate, where the interface coupling factor acted as an ideal transformer. To explore the influence of mechanical load on the interface coupling factor kc, two sets of weights, i.e., 100 g and 500 g, were placed on the top of the ME laminates with the same thickness ratio n in the sample fabrication. A total of 22 T-T mode disk-type ME laminate samples with different configurations were fabricated. The interface coupling factors determined from the measured αv and the DC bias magnetic field Hbias were 0.11 for 500 g pre-mechanical load and 0.08 for 100 g pre-mechanical load. Furthermore, the measured optimum thickness ratios were 0.61 for kc = 0.11 and 0.56 for kc = 0.08. Both the theoretical ME voltage coefficient αv and optimum thickness ratio noptim containing kc agreed well with the measured data, verifying the reasonability and correctness for the introduction of kc in the modified equivalent circuit model.

  6. Defect-dependent elasticity: Nanoindentation as a probe of stress state

    International Nuclear Information System (INIS)

    Jarausch, K. F.; Kiely, J. D.; Houston, J. E.; Russell, P. E.

    2000-01-01

    Using an interfacial force microscope, the measured elastic response of 100-nm-thick Au films was found to be strongly correlated with the films' stress state and thermal history. Large, reversible variations (2x) of indentation modulus were recorded as a function of applied stress. Low-temperature annealing caused permanent changes in the films' measured elastic properties. The measured elastic response was also found to vary in close proximity to grain boundaries in thin films and near surface steps on single-crystal surfaces. These results demonstrate a complex interdependence of stress state, defect structure, and elastic properties in thin metallic films. (c) 2000 Materials Research Society

  7. Elastic models for the non-Arrhenius relaxation time of glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  8. Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2006-01-01

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time...... elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  9. Contact Problem for an Elastic Layer on an Elastic Half Plane Loaded by Means of Three Rigid Flat Punches

    Directory of Open Access Journals (Sweden)

    T. S. Ozsahin

    2013-01-01

    Full Text Available The frictionless contact problem for an elastic layer resting on an elastic half plane is considered. The problem is solved by using the theory of elasticity and integral transformation technique. The compressive loads P and Q (per unit thickness in direction are applied to the layer through three rigid flat punches. The elastic layer is also subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane is continuous, if the value of the load factor, λ, is less than a critical value, . In this case, initial separation loads, and initial separation points, are determined. Also the required distance between the punches to avoid any separation between the punches and the elastic layer is studied and the limit distance between punches that ends interaction of punches is investigated for various dimensionless quantities. However, if tensile tractions are not allowed on the interface, for the layer separates from the interface along a certain finite region. Numerical results for distance determining the separation area, vertical displacement in the separation zone, contact stress distribution along the interface between elastic layer and half plane are given for this discontinuous contact case.

  10. New equivalent lumped electrical circuit for piezoelectric transformers.

    Science.gov (United States)

    Gonnard, Paul; Schmitt, P M; Brissaud, Michel

    2006-04-01

    A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.

  11. Contact instabilities of anisotropic and inhomogeneous soft elastic films

    Science.gov (United States)

    Tomar, Gaurav; Sharma, Ashutosh

    2012-02-01

    Anisotropy plays important roles in various biological phenomena such as adhesion of geckos and grasshoppers enabled by the attachment pods having hierarchical structures like thin longitudinal setae connected with threads mimicked by anisotropic films. We study the contact instability of a transversely isotropic thin elastic film when it comes in contact proximity of another surface. In the present study we investigate the contact stability of a thin incompressible transversely isotropic film by performing linear stability analysis. Based on the linear stability analysis, we show that an approaching contactor renders the film unstable. The critical wavelength of the instability is a function of the total film thickness and the ratio of the Young's modulus in the longitudinal direction and the shear modulus in the plane containing the longitudinal axis. We also analyze the stability of a thin gradient film that is elastically inhomogeneous across its thickness. Compared to a homogeneous elastic film, it becomes unstable with a longer wavelength when the film becomes softer in going from the surface to the substrate.

  12. Influence of fluoride-detergent combinations on the visco-elasticity of adsorbed salivary protein films

    NARCIS (Netherlands)

    Veeregowda, Deepak H.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    The visco-elasticity of salivary-protein films is related to mouthfeel, lubrication, biofilm formation, and protection against erosion and is influenced by the adsorption of toothpaste components. The thickness and the visco-elasticity of hydrated films (determined using a quartz crystal

  13. Effect of ceramic thickness and shade on mechanical properties of a resin luting agent.

    Science.gov (United States)

    Passos, Sheila Pestana; Kimpara, Estevão Tomomitsu; Bottino, Marco Antonio; Rizkalla, Amin S; Santos, Gildo Coelho

    2014-08-01

    This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement. Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3 mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05). The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade. The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used. Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations. © 2014 by the American College of Prosthodontists.

  14. Prediction of fretting fatigue behavior under elastic-plastic conditions

    International Nuclear Information System (INIS)

    Shin, Ki Su

    2009-01-01

    Fretting fatigue generally leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Fretting fatigue is regarded as an important issue in designing aerospace structures. While many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few have focused on fretting fatigue behavior under elastic-plastic deformation conditions, especially the crack orientation and fatigue life prediction for Ti-6Al-4V. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. To calculate stress distributions under elastic-plastic fretting fatigue conditions, FEA was also performed. Several parametric approaches were used to predict fretting fatigue life along with stress distribution resulting from FEA. However, those parameters using surface stresses were unable to establish an equivalence between elastic fretting fatigue data and elastic-plastic fretting fatigue data. Based on this observation, the critical distance methods, which are commonly used in notch analysis, were applied to the fretting fatigue problem. In conclusion, the effective strain range method when used in conjunction with the SMSSR parameter showed a good correlation of data points between the pad configurations involving elastic and elastic plastic deformations

  15. Behavior of the equivalent slab thickness over three European stations

    Czech Academy of Sciences Publication Activity Database

    Mosert, M.; Magdaleno, S.; Burešová, Dalia; Altadill, D.; Gende, M.; Gularte, E.; Scida, L.

    2013-01-01

    Roč. 51, č. 4 (2013), s. 677-682 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : Ionospheric slab thickness * F2-layer peak * TEC * European stations Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117712003754

  16. Elastic-plastic and creep analyses by assumed stress finite elements

    International Nuclear Information System (INIS)

    Pian, T.H.H.; Spilker, R.L.; Lee, S.W.

    1975-01-01

    A formulation is presented of incremental finite element solutions for both initial stress and initial strain problems based on modified complementary energy principle with relaxed inter-element continuity requirement. The corresponding finite element model is the assumed stress hybrid model which has stress parameters in the interior of each element and displacements at the individual nodes as unknowns. The formulation includes an important consideration that the states of stress and strain and the beginning of each increment may not satisfy the equilibrium and compatibility equations. These imbalance and mismatch conditions all lead to correction terms for the equivalent nodal forces of the matrix equations. The initial stress method is applied to elastic-plastic analysis of structures. In this case the stress parameters for the individual elements can be eliminated resulting to a system of equations with only nodal displacements as unknowns. Two different complementary energy principles can be formulated, in one of which the equilibrium of the final state of stress is maintained while in the other the equilibrium of the stress increments is maintained. Each of these two different formulations can be combined with different iterative schemes to be used at each incremental steps of the elastic-plastic analysis. It is also indicated clearly that for the initial stress method the state of stress at the beginning of each increments is in general, not in equilibrium and an imbalance correction is needed. Results of a comprehensive evaluation of various solution procedures by the initial stress method using the assumed stress hybrid elements are presented. The example used is the static response of a thick wall cylinder of elastic-perfectly plastic material under internal pressure. Solid of revolution elements with rectangular cross sections are used

  17. Semi-exact solution of elastic non-uniform thickness and density rotating disks by homotopy perturbation and Adomian's decomposition methods. Part I: Elastic solution

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Jafari, S.

    2008-01-01

    In this work, two powerful analytical methods, namely homotopy perturbation method (HPM) and Adomian's decomposition method (ADM), are introduced to obtain distributions of stresses and displacements in rotating annular elastic disks with uniform and variable thicknesses and densities. The results obtained by these methods are then compared with the verified variational iteration method (VIM) solution. He's homotopy perturbation method which does not require a 'small parameter' has been used and a homotopy with an imbedding parameter p element of [0,1] is constructed. The method takes the full advantage of the traditional perturbation methods and the homotopy techniques and yields a very rapid convergence of the solution. Adomian's decomposition method is an iterative method which provides analytical approximate solutions in the form of an infinite power series for nonlinear equations without linearization, perturbation or discretization. Variational iteration method, on the other hand, is based on the incorporation of a general Lagrange multiplier in the construction of correction functional for the equation. This study demonstrates the ability of the methods for the solution of those complicated rotating disk cases with either no or difficult to find fairly exact solutions without the need to use commercial finite element analysis software. The comparison among these methods shows that although the numerical results are almost the same, HPM is much easier, more convenient and efficient than ADM and VIM

  18. Axisymmetric buckling analysis of laterally restrained thick annular plates using a hybrid numerical method

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Ouji, A. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Islamic Azad University, Larestan Branch, Larestan (Iran, Islamic Republic of)

    2008-11-15

    The buckling analysis of annular thick plates with lateral supports such as two-parameter elastic foundations or ring supports is investigated using an elasticity based hybrid numerical method. For this purpose, firstly, the displacement components are perturbed around the pre-buckling state, which is located using the elasticity theory. Then, by decomposing the plate into a set of sub-domain in the form of co-axial annular plates, the buckling equations are discretized through the radial direction using global interpolation functions in conjunction with the principle of virtual work. The resulting differential equations are solved using the differential quadrature method. The method has the capability of modeling the arbitrary boundary conditions either at the inner and outer edges of thin-to-thick plates and with different types of lateral restraints. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its accuracy and versatility for thin-to-thick plates.

  19. Construction of a self-supporting tissue-equivalent dividing wall and operational characteristics of a coaxial double-cylindrical tissue-equivalent proportional counter

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1994-01-01

    An additional feature incorporated in a coaxial double-cylindrical tissue-equivalent proportional counter, is the presence of a common tissue-equivalent dividing wall between the inner and outer counters of thickness equivalent to the corresponding maximum range of protons at the energy of interest. By appropriate use of an anti-coincidence arrangement with the outer counter, the inner counter could be used to discriminate microdosimetric spectra of neutrons at the desired low energy range from those of the faster neutrons. The construction of an A-150 self-supporting tissue-equivalent dividing wall and an anti-coincidence unit are described. Some operational characteristic tests have been performed to determine the operation of the new microdosimeter. (author)

  20. Determination of corneal elasticity coefficient using the ORA database.

    Science.gov (United States)

    Avetisov, Sergei E; Novikov, Ivan A; Bubnova, Irina A; Antonov, Alexei A; Siplivyi, Vladimir I

    2010-07-01

    To propose a new approach for the study of corneal biomechanics using the Reichert Ocular Response Analyzer (ORA) database, which is based on changes in velocity retardation in the central cornea at the peak of flattening. The ORA applanation curve was analyzed using a mathematical technique, which allowed calculation of the elasticity coefficient (Ke), which is primarily characteristic of the elastic properties of the cornea. Elasticity coefficient values were obtained in patients with presumably different biomechanical properties of the cornea: "normal" cornea (71 eyes, normal group), keratoconus (34 eyes, keratoconus group), LASIK (36 eyes, LASIK group), and glaucoma with elevated and compensated intraocular pressure (lOP) (38 eyes, glaucoma group). The mean Ke value in the normal group was 11.05 +/- 1.6, and the corneal thickness correlation coefficient r2 was 0.48. In the keratoconus group, the mean Ke value was 4.91 +/- 1.87 and the corneal thickness correlation coefficient r2 was 0.47. In the LASIK group, Ke and r2 were 5.99 +/- 1.18 and 0.39, respectively. In the glaucoma group, the same eyes that experienced a two-fold reduction in lOP developed a statistically significant reduction in the Ke (1.06 times lower), whereas their corneal hysteresis value increased 1.25 times. The elasticity coefficient calculated using the ORA applanation curve can be used in the evaluation of corneal biomechanical properties.

  1. Contribution to the study of slab thickness

    International Nuclear Information System (INIS)

    Moraitis, G.A.; Rorris, G.P.

    1978-01-01

    A method is proposed for calculating the time-independent values of the equivalent slab thickness of the ionosphere, defined as the ratio of the total electron content to the corresponding maximum electron density of the F region. Periodic variations of slab thickness are studied and are correlated to relative changes in exospheric temperature, deduced from the OGO-6 model

  2. Relativistic elasticity of stationary fluid branes

    Science.gov (United States)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  3. Elastic wave from fast heavy ion irradiation on solids

    CERN Document Server

    Kambara, T; Kanai, Y; Kojima, T M; Nanai, Y; Yoneda, A; Yamazaki, Y

    2002-01-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al sub 2 O sub 3), fused silica (SiO sub 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the...

  4. Interocular Symmetry in Macular Choroidal Thickness in Children

    Directory of Open Access Journals (Sweden)

    Christiane Al-Haddad

    2014-01-01

    Full Text Available Objective. To report interocular differences in choroidal thickness in children using spectral domain optical coherence tomography (SD-OCT and correlate findings with biometric data. Methods. This observational cross-sectional study included 91 (182 eyes healthy children aged 6 to 17 years with no ocular abnormality except refractive error. After a comprehensive eye exam and axial length measurement, high definition macular scans were performed using SD-OCT. Two observers manually measured the choroidal thickness at the foveal center and at 1500 µm nasally, temporally, inferiorly, and superiorly. Interocular differences were computed; correlations with age, gender, refractive error, and axial length were performed. Results. Mean age was 10.40 ± 3.17 years; mean axial length and refractive error values were similar between fellow eyes. There was excellent correlation between the two observers’ measurements. No significant interocular differences were observed at any location. There was only a trend for right eyes to have higher values in all thicknesses, except the superior thickness. Most of the choroidal thickness measurements correlated positively with spherical equivalent but not with axial length, age, or gender. Conclusion. Choroidal thickness measurements in children as performed using SD-OCT revealed a high level of interobserver agreement and consistent interocular symmetry. Values correlated positively with spherical equivalent refraction.

  5. Interocular symmetry in macular choroidal thickness in children.

    Science.gov (United States)

    Al-Haddad, Christiane; El Chaar, Lama; Antonios, Rafic; El-Dairi, Mays; Noureddin, Baha'

    2014-01-01

    Objective. To report interocular differences in choroidal thickness in children using spectral domain optical coherence tomography (SD-OCT) and correlate findings with biometric data. Methods. This observational cross-sectional study included 91 (182 eyes) healthy children aged 6 to 17 years with no ocular abnormality except refractive error. After a comprehensive eye exam and axial length measurement, high definition macular scans were performed using SD-OCT. Two observers manually measured the choroidal thickness at the foveal center and at 1500 µm nasally, temporally, inferiorly, and superiorly. Interocular differences were computed; correlations with age, gender, refractive error, and axial length were performed. Results. Mean age was 10.40 ± 3.17 years; mean axial length and refractive error values were similar between fellow eyes. There was excellent correlation between the two observers' measurements. No significant interocular differences were observed at any location. There was only a trend for right eyes to have higher values in all thicknesses, except the superior thickness. Most of the choroidal thickness measurements correlated positively with spherical equivalent but not with axial length, age, or gender. Conclusion. Choroidal thickness measurements in children as performed using SD-OCT revealed a high level of interobserver agreement and consistent interocular symmetry. Values correlated positively with spherical equivalent refraction.

  6. Effect of length to thickness ratio on free vibration analysis of thick fiber reinforced plastic skew cross-ply laminate with circular cutout

    Science.gov (United States)

    Srividya, K.; Reddy, Ch. Kishore; Sumanth, Ch. Mohan; Krishnaiah, P. Gopala; Kishan, V. Mallikharjuna

    2018-04-01

    The present investigation deals with the free vibration analysis of a thick four-layered symmetric cross-ply skew laminated composite plate with a circular cutout. Three dimensional finite element models (FEM) which use the elasticity theory for the determination of stiffness matrices are modeled in ANSYS software to evaluate first five natural frequencies of the laminate. The variations of the first five natural frequencies with respect to length to thickness ratio (S) for different diameter to length ratios (d/l) are presented. It is observed that, the natural frequencies decreases with increase of thickness ratio(S).

  7. Achilles and patellar tendinopathy display opposite changes in elastic properties: A shear wave elastography study.

    Science.gov (United States)

    Coombes, B K; Tucker, K; Vicenzino, B; Vuvan, V; Mellor, R; Heales, L; Nordez, A; Hug, F

    2018-03-01

    To compare tendon elastic and structural properties of healthy individuals with those with Achilles or patellar tendinopathy. Sixty-seven participants (22 Achilles tendinopathy, 17 patellar tendinopathy, and 28 healthy controls) were recruited between March 2015 and March 2016. Shear wave velocity (SWV), an index of tissue elastic modulus, and tendon thickness were measured bilaterally at mid-tendon and insertional regions of Achilles and patellar tendons by an examiner blinded to group. Analysis of covariance, adjusted for age, body mass index, and sex was used to compare differences in tendon thickness and SWV between the two tendinopathy groups (relative to controls) and regions. Tendon thickness was included as a covariate for analysis of SWV. Compared to controls, participants with Achilles tendinopathy had lower SWV at the distal insertion (Mean difference MD; 95% CI: -1.56; -2.49 to -0.62 m/s; P < .001) and greater thickness at the mid-tendon (MD 0.19; 0.05-0.33 cm; P = .007). Compared to controls, participants with patellar tendinopathy had higher SWV at both regions (MD 1.25; 0.40-2.10 m/s; P = .005) and greater thickness proximally (MD 0.17; 0.06-0.29 cm; P = .003). Compared to controls, participants with Achilles and patellar tendinopathy displayed lower Achilles tendon elastic modulus and higher patellar tendon elastic modulus, respectively. More research is needed to explore whether maturation, aging, or chronic load underlie these findings and whether current management programs for Achilles and patellar tendinopathy need to be tailored to the tendon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Synthetic Analysis of the Effective Elastic Thickness of the Lithosphere in China

    Science.gov (United States)

    Lu, Z.; Li, C.

    2017-12-01

    Effective elastic thickness (Te) represents the response of the lithosphere to a long-term (larger than 105 years) geological loading and reflects the deformation mechanism of plate and its thermodynamic state. Temperature and composition of the lithosphere, coupling between crust and lithospheric mantle, and lithospheric structures affect Te. Regional geology in China is quite complex, influenced by the subduction of the Pacific and Philippine Sea plates in the east and the collision of the Eurasia plate with the India-Australia plate in the southwest. Te can help understand the evolution and strength of the lithospheres in different areas and tectonic units. Here we apply the multitaper coherence method to estimate Te in China using the topography (ETOPO1) and Bouguer gravity anomalies (WGM2012) , at different window sizes (600km*600km, 800km*800km, 1000km*1000km) and moving steps. The lateral variation of Te in China coincides well with the geology. The old stable cratons or basins always correspond to larger Te, whereas the oceanic lithosphere or active orogen blocks tend to get smaller Te. We further correlate Te to curie-point depths (Zb) and heat flow to understand how temperature influences the strength of the lithosphere. Despite of a complex correlation between Te and Zb, good positive correlations are found in the North China Block, Tarim Basin, and Lower Yangtze, showing strong influence of temperature on lithospheric strength. Conversely, the Tibetan Plateau, Upper and Middle Yangtze, and East China Sea Basin even show negative correlation, suggesting that lithospheric structures and compositions play more important roles than temperature in these blocks. We also find that earthquakes tend to occur preferably in a certain range of Te. Deeper earthquakes are more likely to occur where the lithosphere is stronger with larger Te. Crust with a larger Te may also have a deeper ductile-brittle boundary, along which deep large earthquakes tend to cluster.

  9. Elasticity improves handgrip performance and user experience during visuomotor control.

    Science.gov (United States)

    Mace, Michael; Rinne, Paul; Liardon, Jean-Luc; Uhomoibhi, Catherine; Bentley, Paul; Burdet, Etienne

    2017-02-01

    Passive rehabilitation devices, providing motivation and feedback, potentially offer an automated and low-cost therapy method, and can be used as simple human-machine interfaces. Here, we ask whether there is any advantage for a hand-training device to be elastic, as opposed to rigid, in terms of performance and preference. To address this question, we have developed a highly sensitive and portable digital handgrip, promoting independent and repetitive rehabilitation of grasp function based around a novel elastic force and position sensing structure. A usability study was performed on 66 healthy subjects to assess the effect of elastic versus rigid handgrip control during various visuomotor tracking tasks. The results indicate that, for tasks relying either on feedforward or on feedback control, novice users perform significantly better with the elastic handgrip, compared with the rigid equivalent (11% relative improvement, 9-14% mean range; p  training devices.

  10. Evaluation of Permacol as a cultured skin equivalent.

    Science.gov (United States)

    MacLeod, T M; Cambrey, A; Williams, G; Sanders, R; Green, C J

    2008-12-01

    Skin loss following severe burn requires prompt wound closure to avoid such complications as fluid and electrolyte imbalance, infection, immune suppression, and pain. In clinical situations in which insufficient donor skin is available, the development of cultured skin equivalents (dermal matrices seeded with keratinocytes and fibroblasts) may provide a useful alternative. The aim of this study was to assess the suitability of a porcine-derived dermal collagen matrix (Permacol) to function as a cultured skin equivalent in supporting the growth of keratinocytes in vitro and providing cover to full thickness wounds in the BALB C/nude mouse model. A histological comparison was against Glycerol treated-Ethylene Oxide Sterilised Porcine Dermis (Gly-EO Dermis) which has successfully been used as a cultured skin equivalent in previous studies. Both Gly-EO Dermis and to a lesser extent Permacol were able to support the growth of cultured keratinocytes following a 16-day period of cell culture, however, this study was only able to demonstrate the presence of an epidermal layer on Gly-EO dermis 2 weeks after grafting onto full-thickness wounds in the BALB C/nude mouse model.

  11. Thickness Measurement of Surface Attachment on Plate with Lamb Wave

    Science.gov (United States)

    Ma, Xianglong; Zhang, Yinghong; Wen, Lichao; He, Yehu

    2017-12-01

    Aiming at the thickness detection of the plate surface attachment, a nondestructive testing method based on the Lamb wave is presented. This method utilizes Lamb wave propagation characteristics of signals in a bi-layer medium to measure the surface attachment plate thickness. Propagation of Lamb wave in bi-layer elastic is modeled and analyzed. The two-dimensional simulation model of electromagnetic ultrasonic plate - scale is established. The simulation is conducted by software COMSOL for simulation analysis under different boiler scale thickness wave form curve. Through this study, the thickness of the attached material can be judged by analyzing the characteristics of the received signal when the thickness of the surface of the plate is measured.

  12. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  13. Orientation acoustic radiation of electrons in silicon thick crystal

    International Nuclear Information System (INIS)

    Alejnik, A.N.; Afanas'ev, S.G.; Vorob'ev, S.A.; Zabaev, V.N.; Il'in, S.I.; Kalinin, B.N.; Potylitsyn, A.P.

    1989-01-01

    Results of measuring orientation acoustic radiation of 900 and 500 MeV electrons during their movement along crystallographic axis in thick silicon crystal (h=20 mm thickness) are presented for the first time. Analysis of obtained results shows that dynamic mechanism describes rather completely the main regularities of orientation dependence of the amplitude of acoustic signal occuring under electron motion near crystallographic axis of the crystal. Phenomena of orientation acoustic radiation can be also used for investigation of solid bodies. Orientation both of thin and rather thick monocrystals can be conducted on the basis of dynamic mechanism of elastic wave excitation in crystals

  14. Elastic fiber-mediated enthesis in the human middle ear.

    Science.gov (United States)

    Kawase, Tetsuaki; Shibata, Shunichi; Katori, Yukio; Ohtsuka, Aiji; Murakami, Gen; Fujimiya, Mineko

    2012-10-01

    Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone-tendon and bone-ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.

  15. Elastic emission polishing

    Energy Technology Data Exchange (ETDEWEB)

    Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

    1988-12-01

    Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

  16. Finite element modeling of single-walled carbon nanotubes with introducing a new wall thickness

    International Nuclear Information System (INIS)

    Jalalahmadi, B; Naghdabadi, R

    2007-01-01

    A three-dimensional finite element (FE) model for armchair, zigzag and chiral single-walled carbon nanotubes (SWCNTs) is proposed. By considering the covalent bonds as connecting elements between carbon atoms, a nanotube is simulated as a space frame-like structure. Here, the carbon atoms act as joints of the connecting elements. To create the FE models, nodes are placed at the locations of carbon atoms and the bonds between them are modeled using three-dimensional elastic beam elements. Using Morse atomic potential, the elastic moduli of beam elements are obtained via considering a linkage between molecular and continuum mechanics. Also, a new wall thickness ( bond diameter) equal to 0.1296 nm is introduced. In order to demonstrate the applicability of FE model and new wall thickness, the influence of tube wall thickness, diameter and chirality on the Young's modulus of SWCNTs is investigated. It is found that the choice of wall thickness significantly affects the calculation of Young's modulus. For the values of wall thickness used in the literature, the Young's moduli are estimated which agree very well with the corresponding theoretical results and experimental measurements. We also investigate the dependence of elastic moduli on diameter and chirality of the nanotube. The larger tube diameter, the higher Young's modulus of SWCNT. The Young's modulus of chiral SWCNTs is found to be generally larger than that of armchair and zigzag SWCNTs. The presented results demonstrate that the proposed FE model and wall thickness may provide a valuable tool for studying the mechanical behavior of carbon nanotubes and their application in nano-composites

  17. A study on assessment of bone mass from aluminum-equivalent image by digital imaging system

    International Nuclear Information System (INIS)

    Kim, Jin Soo; Kim, Jae Duck; Choi, Eui Hwan

    1997-01-01

    The purpose of this study was to evaluated the method for quantitative assessment of bone mass from aluminum-equivalent value of hydroxyapatite by using digital imaging system consisted of Power Macintosh 7200/120, 15-inch color monitor, and GT-9000 scanner with transparency unit. After aluminum-equivalent image made from correlation between aluminum thickness and grey scale, the accuracy of conversion to mass from aluminum-equivalent value was evaluated. Measured bone mass was compared with converted bone mass from aluminum-equivalent value of hydroxyapatite block by correlation formula between aluminum-equivalent value of hydroxy apatite block and hydroxyapatite mass. The results of this study were as follows : 1. Correlation between aluminum thickness and grey level for obtaining aluminum-equivalent image was high positively associated (r2=0.99). Converted masses from aluminum-equivalent value were very similar to measured masses. There was, statistically, no significant difference (P<0.05) between them. 2. Correlation between hydroxyapatite aluminum-equivalent and hydroxyapatite mass was shown to linear relation (r2 =0.95). 3. Converted masses from aluminum-equivalent value of 3 dry mandible segments were similar to measured masses. The difference between the exposure directions was not significantly different (P<0.05).

  18. An analytical solution for the magneto-electro-elastic bimorph beam forced vibrations problem

    International Nuclear Information System (INIS)

    Milazzo, A; Orlando, C; Alaimo, A

    2009-01-01

    Based on the Timoshenko beam theory and on the assumption that the electric and magnetic fields can be treated as steady, since elastic waves propagate very slowly with respect to electromagnetic ones, a general analytical solution for the transient analysis of a magneto-electro-elastic bimorph beam is obtained. General magneto-electric boundary conditions can be applied on the top and bottom surfaces of the beam, allowing us to study the response of the bilayer structure to electromagnetic stimuli. The model reveals that the magneto-electric loads enter the solution as an equivalent external bending moment per unit length and as time-dependent mechanical boundary conditions through the definition of the bending moment. Moreover, the influences of the electro-mechanic, magneto-mechanic and electromagnetic coupling on the stiffness of the bimorph stem from the computation of the beam equivalent stiffness constants. Free and forced vibration analyses of both multiphase and laminated magneto-electro-elastic composite beams are carried out to check the effectiveness and reliability of the proposed analytic solution

  19. The effect of multi-directional nanocomposite materials on the vibrational response of thick shell panels with finite length and rested on two-parameter elastic foundations

    Science.gov (United States)

    Tahouneh, Vahid; Naei, Mohammad Hasan

    2016-03-01

    The main purpose of this paper is to investigate the effect of bidirectional continuously graded nanocomposite materials on free vibration of thick shell panels rested on elastic foundations. The elastic foundation is considered as a Pasternak model after adding a shear layer to the Winkler model. The panels reinforced by randomly oriented straight single-walled carbon nanotubes are considered. The volume fractions of SWCNTs are assumed to be graded not only in the radial direction, but also in axial direction of the curved panel. This study presents a 2-D six-parameter power-law distribution for CNTs volume fraction of 2-D continuously graded nanocomposite that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. The benefit of using generalized power-law distribution is to illustrate and present useful results arising from symmetric, asymmetric and classic profiles. The material properties are determined in terms of local volume fractions and material properties by Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient numerical tool is used to discretize governing equations and to implement boundary conditions. The fast rate of convergence of the method is shown and results are compared against existing results in literature. Some new results for natural frequencies of the shell are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded nanocomposite volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded nanocomposite materials.

  20. Ultrasound evaluation of arthroscopic full-thickness supraspinatus rotator cuff repair: single-row versus double-row suture bridge (transosseous equivalent) fixation. Results of a prospective, randomized study.

    Science.gov (United States)

    Gartsman, Gary M; Drake, Gregory; Edwards, T Bradley; Elkousy, Hussein A; Hammerman, Steven M; O'Connor, Daniel P; Press, Cyrus M

    2013-11-01

    The purpose of this study was to compare the structural outcomes of a single-row rotator cuff repair and double-row suture bridge fixation after arthroscopic repair of a full-thickness supraspinatus rotator cuff tear. We evaluated with diagnostic ultrasound a consecutive series of ninety shoulders in ninety patients with full-thickness supraspinatus tears at an average of 10 months (range, 6-12) after operation. A single surgeon at a single hospital performed the repairs. Inclusion criteria were full-thickness supraspinatus tears less than 25 mm in their anterior to posterior dimension. Exclusion criteria were prior operations on the shoulder, partial thickness tears, subscapularis tears, infraspinatus tears, combined supraspinatus and infraspinatus repairs and irreparable supraspinatus tears. Forty-three shoulders were repaired with single-row technique and 47 shoulders with double-row suture bridge technique. Postoperative rehabilitation was identical for both groups. Ultrasound criteria for healed repair included visualization of a tendon with normal thickness and length, and a negative compression test. Eighty-three patients were available for ultrasound examination (40 single-row and 43 suture-bridge). Thirty of 40 patients (75%) with single-row repair demonstrated a healed rotator cuff repair compared to 40/43 (93%) patients with suture-bridge repair (P = .024). Arthroscopic double-row suture bridge repair (transosseous equivalent) of an isolated supraspinatus rotator cuff tear resulted in a significantly higher tendon healing rate (as determined by ultrasound examination) when compared to arthroscopic single-row repair. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  1. Use of water vapor for suppressing the growth of unstable low-κ interlayer in HfTiO gate-dielectric Ge metal-oxide-semiconductor capacitors with sub-nanometer capacitance equivalent thickness

    International Nuclear Information System (INIS)

    Xu, J.P.; Zou, X.; Lai, P.T.; Li, C.X.; Chan, C.L.

    2009-01-01

    Annealing of high-permittivity HfTiO gate dielectric on Ge substrate in different gases (N 2 , NH 3 , NO and N 2 O) with or without water vapor is investigated. Analysis by transmission electron microscopy indicates that the four wet anneals can greatly suppress the growth of a GeO x interlayer at the dielectric/Ge interface, and thus decrease interface states, oxide charges and gate leakage current. Moreover, compared with the wet N 2 anneal, the wet NH 3 , NO and N 2 O anneals decrease the equivalent permittivity of the gate dielectric due to the growth of a GeO x N y interlayer. Among the eight anneals, the wet N 2 anneal produces the best dielectric performance with an equivalent relative permittivity of 35, capacitance equivalent thickness of 0.81 nm, interface-state density of 6.4 x 10 11 eV -1 cm -2 and gate leakage current of 2.7 x 10 -4 A/cm 2 at V g = 1 V

  2. Consequences of elastic anisotropy in patterned substrate heteroepitaxy.

    Science.gov (United States)

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2018-06-13

    The role of elastic anisotropy on quantum dot formation and evolution on a pre-patterned substrate is evaluated within the framework of a continuum model. We first extend the formulation for surface evolution to take elastic anisotropy into account. Using a small slope approximation, we derive the evolution equation and show how it can be numerically implemented up to linear and second order for stripe and egg-carton patterned substrates using an accurate and efficient procedure. The semi--infinite nature of the substrate is used to solve the elasticity problem subject to other boundary conditions at the free surface and at the film--substrate interface. The positioning of the quantum dots with respect to the peaks and valleys of the pattern is explained by a competition between the length scale of the pattern and the wavelength of the Asaro--Tiller--Grinfeld instability, which is also affected by the elastic anisotropy. The alignment of dots is affected by a competition between the elastic anisotropy of the film and the pattern orientation. A domain of pattern inversion, wherein the quantum dots form exclusively in the valleys of the patterns is identified as a function of the average film thickness and the elastic anisotropy, and the time--scale for this inversion as function of height is analyzed. © 2018 IOP Publishing Ltd.

  3. Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolia (Turkey) and surrounding region

    Science.gov (United States)

    Oruç, Bülent; Gomez-Ortiz, David; Petit, Carole

    2017-12-01

    The Lithospheric structure of Eastern Anatolia and the surrounding region, including the northern part of the Arabian platform is investigated via the analysis and modeling of Bouguer anomalies from the Earth Gravitational Model EGM08. The effective elastic thickness of the lithosphere (EET) that corresponds to the mechanical cores of the crust and lithospheric mantle is determined from the spectral coherence between Bouguer anomalies and surface elevation data. Its average value is 18.7 km. From the logarithmic amplitude spectra of Bouguer anomalies, average depths of the lithosphere-asthenosphere boundary (LAB), Moho, Conrad and basement in the study area are constrained at 84 km, 39 km, 16 km and 7 km, respectively. The geometries of the LAB and Moho are then estimated using the Parker-Oldenburg inversion algorithm. We also present a lithospheric strength map obtained from the spatial variations of EET determined by Yield Stress Envelopes (YSE). The EET varies in the range of 12-23 km, which is in good agreement with the average value obtained from spectral analysis. Low EET values are interpreted as resulting from thermal and flexural lithospheric weakening. According to the lithospheric strength of the Eastern Anatolian region, the rheology model consists of a strong but brittle upper crust, a weak and ductile lower crust, and a weak lower part of the lithosphere. On the other hand, lithosphere strength corresponds to weak and ductile lower crust, a strong upper crust and a strong uppermost lithospheric mantle for the northern part of the Arabian platform.

  4. About a global model of the equivalent slab thickness of the ionosphere

    Science.gov (United States)

    Maltseva, Olga; Mozhaeva, Natalya

    2016-07-01

    Use of a median of an equivalent slab thickness of the ionosphere τ(med) is the simplest case of assimilation of the total electron content TEC. To use τ(med) on a global scale it is necessary to have its model. Some variants are possible: (1) construction of superficial function of kriging type using values of τ(med) in several points, (2) the NGM model which can be constructed on the basis of two empirical Neustrelitz models for TEC and NmF2, (3) the IRI-Plas model. Construction of a model with use of τ(med) values is difficult because of the large variability of values (in particular, a strong pre-sunrise peak at some latitudes). Testing of models NGM and IRI-Plas shows that they not always provide satisfactory results in that or another region of globe. Besides, they are not pure empirical models. In the present work, an attempt is done to use two-parameter model on a basis of hyperbolic dependence of τ(med) from NmF2 (τ(hyp) =b0+b1/NmF2) and approximation of coefficient K(τ) = τ(med)/τ(IRI) in a latitudinal course. On an example of March 2015 when there was a great number of ionosonde data, coefficients b0 and b1 were modeled. Results are presented for two regions Lat1 and Lat2. Area Lat1 contains 13 stations, basically, on the American continent of northern and southern hemispheres. Area Lat2 contains 20 stations of the European, Siberian and Southeast regions. Certain advantage of use of coefficients K(τ) can be that in its numerator there is a magnitude of τ(IRI), having a global character, and a small variation of K(τ) in zones with close longitudes. Difference is a model construction at each hour. Degree of coincidence is better to illustrate on circular diagrams. Models were tested by elimination of one of stations and definition of deviations of calculated foF2 from experimental values. Authors thank Southern Federal University for support by grant #213.01-11/2014-22.

  5. Elasticity in Elastics-An in-vitro study.

    Science.gov (United States)

    Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha

    2014-04-01

    Orthodontic tooth movement results from application of forces to teeth. Elastics in orthodontics have been used both intra-orally and extra- orally to a great effect. Their use, combined with good patient co-operation provides the clinician with the ability to correct both anteroposterior and vertical discrepancies. Force decay over a period of time is a major problem in the clinical usage of latex elastics and synthetic elastomers. This loss of force makes it difficult for the clinician to determine the actual force transmitted to the dentition. It's the intent of the clinician to maintain optimal force values over desired period of time. The majority of the orthodontic elastics on the market are latex elastics. Since the early 1990s, synthetic products have been offered in the market for latex-sensitive patients and are sold as nonlatex elastics. There is limited information on the risk that latex elastics may pose to patients. Some have estimated that 0.12-6% of the general population and 6.2% of dental professionals have hypersensitivity to latex protein. There are some reported cases of adverse reactions to latex in the orthodontic population but these are very limited to date. Although the risk is not yet clear, it would still be inadvisable to prescribe latex elastics to a patient with a known latex allergy. To compare the in-vitro performance of latex and non latex elastics. Samples of 0.25 inch, latex and non latex elastics (light, medium, heavy elastics) were obtained from three manufacturers (Forestadent, GAC, Glenroe) and a sample size of ten elastics per group was tested. The properties tested included cross sectional area, internal diameter, initial force generated by the elastics, breaking force and the force relaxation for the different types of elastics. Force relaxation testing involved stretching the elastics to three times marketed internal diameter (19.05 mm) and measuring force level at intervals over a period of 48 hours. The data were

  6. NUMERICAL ESTIMATION OF EFFECTIVE ELASTIC MODULI OF SYNTACTIC FOAMS REINFORCED BY SHORT GLASS FIBERS

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-03-01

    Full Text Available The mechanical properties of hollow glass microsphere/epoxy resin syntactic foams reinforced by short glass fibers are studied using representative volume elements. Both the glass fibers and the hollow glass microspheres exhibit random arrangement in the epoxy resin. The volume fraction and wall thickness of hollow glass microspheres and the volume fraction of glass fibers are considered as parameters. It is observed that the elastic modulus values of syntactic foams decrease with the increase of microsphere volume fraction when the microsphere relative wall thickness is lower. However, it increases with the increase of microsphere volume fraction when the relative wall thickness exceeds a critical value. The elastic modulus value goes through a maximum when the relative wall thickness is around 0.06 at 25 % volume fraction of microspheres. The addition of glass fibers reduces the critical wall thickness values of the microspheres and increases the mechanical properties of the composites. The highest stress lies on the equatorial plane perpendicular to the loading direction. Adding fibers reduces the large stress distribution areas on the microspheres, and the fibers aligned with the loading direction play an important load-bearing role.

  7. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng

    2015-01-01

    Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)

  8. Wall thickness of major coronary arteries in Pakistani population

    International Nuclear Information System (INIS)

    Ullah, Q.W.; Qamar, K.; Butt, S.A.; Butt, S.A.

    2012-01-01

    To measure the wall thickness of major coronary arteries in Pakistani population, through micrometry. Study design: An observational study. Place and duration of study: Combined Military Hospital Rawalpindi, Khyber Medical College Peshawar and District Headquarter Hospital, Rawalpindi, in collaboration with Departments of Anatomy and Pathology, Army Medical College Rawalpindi. The duration of study was six months with effect from September 2009 to March 2010. Material and methods: After incising pericardium, 1 mm long segments of major coronary arteries i.e. right coronary artery (RCA), left anterior descending artery (LAD) and left circumflex artery (LCX) were taken 1cm distal to their origin, from adult male cadavers of up to 40 years age. After processing for paraffin embedding, 5 mu m thick sections were prepared, mounted on glass slides and subsequently stained with Hematoxylin and Eosin (H and E) for routine histological study. Verhoeff's elastic stain was used to make the elastic lamina more prominent. Wall thickness for each section was measured through micrometry, circumferentially at eight different places along the planes at 45 deg. to each other and then their mean taken as a reading for the respective artery. Results: The total wall thickness of major coronary arteries and of the individual tunicae was less in Pakistani population. The mean thickness of RCA was 0.61 +- 0.05 mm; LAD had mean thickness of 0.55 +- 0.06 mm whereas that of LCX was 0.66 +- 0.13 mm. The mean thickness of tunica intima of RCA was noted to be 0.230 +- 0.044 mm; tunica media measured 0.205 +- 0.031 mm whereas tunica adventitia was 0.172 +- 0.023 mm thick. The mean thickness of tunica intima of LAD measured 0.156 +- 0.032 mm; tunica media was observed to be 0.224 +- 0.026 mm thick whereas the tunica adventitia was 0.170 +- 0.032 mm thick. The mean thickness of tunica intima of LCX was observed to be 0.203 +- 0.059 mm; tunica media to be 0.282 +- 0.097 mm whereas that of tunica

  9. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter

    International Nuclear Information System (INIS)

    Bifano, Michael F P; Kaul, Pankaj B; Prakash, Vikas

    2010-01-01

    This paper reports dependency of specific heat and ballistic thermal conductance on cross-sectional geometry (tube versus rod) and size (i.e., diameter and wall thickness), in free-standing isotropic non-metallic crystalline nanostructures. The analysis is performed using dispersion relations found by numerically solving the Pochhammer-Chree frequency equation for a tube. Estimates for the allowable phonon dispersion relations within the crystal lattice are obtained by modifying the elastic acoustic dispersion relations so as to account for the discrete nature of the material's crystal lattice. These phonon dispersion relations are then used to evaluate the specific heat and ballistic thermal conductance in the nanostructures as a function of the nanostructure geometry and size. Two major results are revealed in the analysis: increasing the outer diameter of a nanotube while keeping the ratio of the inner to outer tube radius (γ) fixed increases the total number of available phonon modes capable of thermal population. Secondly, decreasing the wall thickness of a nanotube (i.e., increasing γ) while keeping its outer diameter fixed, results in a drastic decrease in the available phonon mode density and a reduction in the frequency of the longitudinal and flexural acoustic phonon modes in the nanostructure. The dependency of the nanostructure's specific heat on temperature indicates 1D, 2D, and 3D geometric phonon confinement regimes. Transition temperatures for each phonon confinement regime are shown to depend on both the nanostructure's wall thickness and outer radius. Compared to nanowires (γ = 0), the frequency reduction of acoustic phonon modes in thinner walled nanotubes (γ = 0.96) is shown to elevate the ballistic thermal conductance of the thin-walled nanotube between 0.2 and 150 K. At 20 K, the ballistic thermal conductance of the thin-walled nanotube (γ = 0.96) becomes 300% greater than that of a solid nanowire. For temperatures above 150 K, the trend

  10. Determination of elastic stresses in gas-turbine disks

    Science.gov (United States)

    Manson, S S

    1947-01-01

    A method is presented for the calculation of elastic stresses in symmetrical disks typical of those of a high-temperature gas turbine. The method is essentially a finite-difference solution of the equilibrium and compatibility equations for elastic stresses in a symmetrical disk. Account can be taken of point-to-point variations in disk thickness, in temperature, in elastic modulus, in coefficient of thermal expansion, in material density, and in Poisson's ratio. No numerical integration or trial-and-error procedures are involved and the computations can be performed in rapid and routine fashion by nontechnical computers with little engineering supervision. Checks on problems for which exact mathematical solutions are known indicate that the method yields results of high accuracy. Illustrative examples are presented to show the manner of treating solid disks, disks with central holes, and disks constructed either of a single material or two or more welded materials. The effect of shrink fitting is taken into account by a very simple device.

  11. Elastic properties of porous low-k dielectric nano-films

    Science.gov (United States)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  12. Price and income elasticities of residential energy demand in Germany

    International Nuclear Information System (INIS)

    Schulte, Isabella; Heindl, Peter

    2017-01-01

    We apply a quadratic expenditure system to estimate price and expenditure elasticities of residential energy demand (electricity and heating) in Germany. Using official expenditure data from 1993 to 2008, we estimate an expenditure elasticity for electricity of 0.3988 and of 0.4055 for space heating. The own price elasticity for electricity is −0.4310 and −0.5008 in the case of space heating. Disaggregation of households by expenditure and socio-economic composition reveals that the behavioural response to energy price changes is weaker (stronger) for low-income (top-income) households. There are considerable economies of scale in residential energy use but scale effects are not well approximated by the new OECD equivalence scale. Real increases in energy prices show a regressive pattern of incidence, implying that the welfare consequences of direct energy taxation are larger for low income households. The application of zero-elasticities in assessments of welfare consequences of energy taxation strongly underestimates potential welfare effects. The increase in inequality is 22% smaller when compared to the application of disaggregated price and income elasticities as estimated in this paper. - Highlights: • We estimate price, income, and expenditure elasticities for residential energy demand in Germany. • We differentiate elasticities by income groups and household type. • Electricity and space heating are necessary goods since the expenditure elasticities are smaller than unity. • Low-income households show a weaker reaction to changing prices when compared to high-income households. • Direct energy taxation has regressive effects, meaning that larger burdens fall upon low-income households.

  13. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang

    2017-08-16

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  14. Elastic reflection based waveform inversion with a nonlinear approach

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2017-01-01

    Full waveform inversion (FWI) is a highly nonlinear problem due to the complex reflectivity of the Earth, and this nonlinearity only increases under the more expensive elastic assumption. In elastic media, we need a good initial P-wave velocity and even a better initial S-wave velocity models with accurate representation of the low model wavenumbers for FWI to converge. However, inverting for the low wavenumber components of P- and S-wave velocities using reflection waveform inversion (RWI) with an objective to fit the reflection shape, rather than produce reflections, may mitigate the limitations of FWI. Because FWI, performing as a migration operator, is in preference of the high wavenumber updates along reflectors. We propose a nonlinear elastic RWI that inverts for both the low wavenumber and perturbation components of the P- and S-wave velocities. To generate the full elastic reflection wavefields, we derive an equivalent stress source made up by the inverted model perturbations and incident wavefields. We update both the perturbation and propagation parts of the velocity models in a nested fashion. Applications on synthetic isotropic models and field data show that our method can efficiently update the low and high wavenumber parts of the models.

  15. Stress State of Elastic Thick-Walled Ring With Self-Balanced Pressures Distributed on Its Internal and External Borders

    Directory of Open Access Journals (Sweden)

    Kravchuk Aleksandr Stepanovich

    2015-10-01

    Full Text Available For the first time with the help of the theory of analytic functions and Kolosov-Muskhelishvili formulas the problem of the two-dimensional theory of elasticity for a thickwalled ring with the uneven pressures, acting on its borders, was solved. The pressure on the inner and outer boundaries is represented by Fourier series. The authors represent the two complex functions which solve boundary problem in the form of Laurent series. The logarithmic terms in these series are absent because the boundary problem has the self-balancing loads on each boundary of ring. The coefficients in the Laurent series are calculated by the boundary conditions. Firstly, the equations were obtained in the general form. But the hypothesis about even distributions of pressures at borders of ring was used for constructing an example. It leads to the fact that all coefficients of analytic functions represented in Laurent series have to be only real. As a solving example, the representation of pressures in equivalent hypotrochoids was used. The application of the computer algebra system Mathematica greatly simplifies the calculation of the distribution of stresses and displacements in ring. It does not require manual formal separation of real and imaginary parts in terms of Kolosov-Muskhelishvili to display the distribution of the physical parameters. It separates them only for calculated numbers with the help of built-in functions.

  16. Use of water vapor for suppressing the growth of unstable low-{kappa} interlayer in HfTiO gate-dielectric Ge metal-oxide-semiconductor capacitors with sub-nanometer capacitance equivalent thickness

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.P. [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 (China); Zou, X. [School of Electromachine and Architecture Engineering, Jianghan University, Wuhan, 430056 (China); Lai, P.T. [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)], E-mail: laip@eee.hku.hk; Li, C.X.; Chan, C.L. [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-03-02

    Annealing of high-permittivity HfTiO gate dielectric on Ge substrate in different gases (N{sub 2}, NH{sub 3}, NO and N{sub 2}O) with or without water vapor is investigated. Analysis by transmission electron microscopy indicates that the four wet anneals can greatly suppress the growth of a GeO{sub x} interlayer at the dielectric/Ge interface, and thus decrease interface states, oxide charges and gate leakage current. Moreover, compared with the wet N{sub 2} anneal, the wet NH{sub 3}, NO and N{sub 2}O anneals decrease the equivalent permittivity of the gate dielectric due to the growth of a GeO{sub x}N{sub y} interlayer. Among the eight anneals, the wet N{sub 2} anneal produces the best dielectric performance with an equivalent relative permittivity of 35, capacitance equivalent thickness of 0.81 nm, interface-state density of 6.4 x 10{sup 11} eV{sup -1} cm{sup -2} and gate leakage current of 2.7 x 10{sup -4} A/cm{sup 2} at V{sub g} = 1 V.

  17. Wave motion in elastic solids

    CERN Document Server

    Graff, Karl F

    1991-01-01

    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter

  18. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges

    Science.gov (United States)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  19. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet.

    Science.gov (United States)

    Py, Charlotte; Reverdy, Paul; Doppler, Lionel; Bico, José; Roman, Benoît; Baroud, Charles N

    2007-04-13

    The interaction between elasticity and capillarity is used to produce three-dimensional structures through the wrapping of a liquid droplet by a planar sheet. The final encapsulated 3D shape is controlled by tailoring the initial geometry of the flat membrane. Balancing interfacial energy with elastic bending energy provides a critical length scale below which encapsulation cannot occur, which is verified experimentally. This length is found to depend on the thickness as h3/2, a scaling favorable to miniaturization which suggests a new way of mass production of 3D micro- or nanoscale objects.

  20. Inversion of electron-water elastic scattering data

    International Nuclear Information System (INIS)

    Lun, A.; Chen, X.J.; Allen, L.J.; Amos, K.

    1994-01-01

    Fixed energy inverse scattering theory has been used to analyse the differential cross-sections for the elastic scattering of electrons from water molecules. Both semiclassical (WKB) and fully quantal inversion methods have been used with data taken in the energy range 100 to 1000 eV. Constrained to be real, the local inversion potentials are found to be energy dependent; a dependence that can be interpreted as the local equivalence of true nonlocality in the actual interaction. 14 refs., 4 tabs., 8 figs

  1. Synthesis of nanometre-thick MoO3 sheets

    Science.gov (United States)

    Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.

    2010-03-01

    The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.

  2. The equivalent energy method: an engineering approach to fracture

    International Nuclear Information System (INIS)

    Witt, F.J.

    1981-01-01

    The equivalent energy method for elastic-plastic fracture evaluations was developed around 1970 for determining realistic engineering estimates for the maximum load-displacement or stress-strain conditions for fracture of flawed structures. The basis principles were summarized but the supporting experimental data, most of which were obtained after the method was proposed, have never been collated. This paper restates the original bases more explicitly and presents the validating data in graphical form. Extensive references are given. The volumetric energy ratio, a modelling parameter encompassing both size and temperature, is the fundamental parameter of the equivalent energy method. It is demonstrated that, in an engineering sense, the volumetric energy ratio is a unique material characteristic for a steel, much like a material property except size must be taken into account. With this as a proposition, the basic formula of the equivalent energy method is derived. Sufficient information is presented so that investigators and analysts may judge the viability and applicability of the method to their areas of interest. (author)

  3. Excitation function of elastic scattering on 12C + 4He system, at low energies

    International Nuclear Information System (INIS)

    Perez-Torres, R.; Aguilera, E. F.; Martinez-Quiroz, E.; Murillo, G.; Belyaeva, T. L.; Maldonado-Velazquez, M.

    2011-01-01

    Interactions in the 12 C + 4 He system are of great interest in astrophysics and to help determine the relative abundances of elements in stars, at the end of helium burning [1, 2]. The Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, have made measurements of elastic scattering for this system, using the inverse kinematics method with thick white gas [3, 4], for E CM (0.5 - 4 MeV) θ CM = 180 o . In this work we obtain excitation functions of elastic scattering of 12 C + 4 He system with angular and energy dependence; E CM = 0.5 - 4 MeV and θ CM 100 o -170 o .Using inverse kinematics method with thick white gas and energy loss tables. (Author)

  4. Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires

    International Nuclear Information System (INIS)

    Villain, P.; Beauchamp, P.; Badawi, K.F.; Goudeau, P.; Renault, P.-O.

    2004-01-01

    Equilibrium state and elastic coefficients of nanometre-sized single crystal tungsten layers and wires are investigated by atomistic simulations. The variations of the equilibrium distances as a function of the layer thickness or wire cross-section are mainly due to elastic effects of surface tension forces. A strong decrease of the Young's modulus is observed when the transverse dimensions are reduced below 2-3 nm

  5. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.

  6. an elasticity solution for simply suported rectangular plates

    African Journals Online (AJOL)

    MIS

    1983-09-01

    Sep 1, 1983 ... σx, σy, σz. = direct stresses ξxy, ξxz, ξyz. = shear stresses εy, εy, εz. = direct strains rxy, rxz ryz. = shear strains μ. = Poisson's ratio α = rm /Pb. = nπ/2b. R = 2 ... based on Donnell's5 thick plate theory are examined. 2. BASIC EQUATIONS. The general solution of the equations of elasticity can be expressed in.

  7. A Galerkin approximation for linear elastic shallow shells

    Science.gov (United States)

    Figueiredo, I. N.; Trabucho, L.

    1992-03-01

    This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.

  8. Equivalente esférico e valores da espessura da camada de fibras nervosas obtidas com o GDX TM Scanning Laser System® Spherical equivalent and nerve fiber layer thickness assessed with GDX TM Scanning Laser System®

    Directory of Open Access Journals (Sweden)

    Lênio Souza Alvarenga

    1999-12-01

    Full Text Available Objetivo: Estudar a influência do equivalente esférico nos valores obtidos pelo GDX TM Scanning Laser System®. Métodos: Foram avaliados 41 olhos de 41 voluntários sem doenças oculares e com campo visual sem alterações. Foi realizada a polarimetria de varredura a laser com o GDX TM Scanning Laser System® de acordo com as instruções contidas no manual do aparelho. Foram comparados os valores obtidos nesse exame em um grupo de pacientes com equivalente esférico positivo e em um outro com este valor nulo ou negativo, pelo teste de Mann-Whitney. Resultados: Não se verificou diferença estatística entre os valores obtidos nos olhos de pacientes do grupo I e os do grupo II. Não foi encontrada correlação entre o equivalente esférico e os valores obtidos com o GDX TM Scanning Laser System®. Conclusões: Na amostra estudada não houve diferença estatística entre os valores obtidos em um grupo de olhos com equivalente esférico positivo e outro com este valor negativo ou nulo, usando-se o GDX TM Scanning Laser System®.Purpose: To evaluate the effect of spherical equivalent on the acquisition of nerve fiber layer (NFL thickness with GDX TM Scanning Laser System®. Methods: Forty-one eyes of 41 volunteers were enrolled in this study. All of them presented with no ocular disease and no visual field defect. The NFL thickness was measured with GDX TM Scanning Laser System® as described in its manual. The values obtained in a group of volunteers with negative spherical equivalent (group I were compared to those from a group with a positive spherical equivalent (group II by the Mann-Whitney test. Results: There was no statistical difference between mea-surements in eyes of group I and those in group II. The NFL thickness measurements were not correlated with the sphe-rical equivalent. Conclusions: In the studied group there was no statistical difference in the GDX TM Scanning Laser System® parameters related to spherical equivalent.

  9. Equivalent material properties of perforated plate with triangular or square penetration pattern for dynamic analysis

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull

    2006-01-01

    For a perforated plate, it is challenging to develop a finite element model due to the necessity of the fine meshing of the plate, especially if it is submerged in fluid. This necessitates the use of a solid plate with equivalent material properties. Unfortunately, the effective elastic constants suggested by the ASME code are deemed not valid for a model analysis. Therefore, in this study the equivalent material properties of a perforated plate are suggested by performing several finite element analyses with respect to the ligament efficiencies

  10. Study of the possibility to use dp-elastic scattering for the Nuclotron external deuteron beam polarimetry

    International Nuclear Information System (INIS)

    Gurchin, Yu.V.; Isupov, A.Yu.; Khrenov, A.N.; Kiselev, A.S.; Ladygin, V.P.; Reznikov, S.G.; Vasil'ev, T.A.; Janek, M.; Karachuk, J.T.

    2011-01-01

    A selection of dp-elastic scattering events at energies of 1.6 and 2.0 GeV by using scintillation counters has been performed. The procedure of the CH 2 -C subtraction has been established. The dependence of the elastic events yield on the filter thickness has been investigated. This method can be used to develop the efficient high-energy deuteron beam polarimetry

  11. Propagation law of impact elastic wave based on specific materials

    Directory of Open Access Journals (Sweden)

    Chunmin CHEN

    2017-02-01

    Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.

  12. Integrated Management of the Thick-Skinned Rhinoplasty Patient.

    Science.gov (United States)

    Cobo, Roxana; Camacho, Juan Gabrie; Orrego, Jorge

    2018-02-01

    Patients with thick skin are a challenge in facial plastic surgery. Rhinoplasty is still the most frequently performed facial plastic procedure worldwide and it becomes very difficult to obtain optimal consistent results in these patients. A systematic presurgical skin evaluation is performed dividing skin into type I-III depending on the elasticity, oiliness, presence of skin alterations, size of skin pores, and laxity. Depending on the skin type, presurgical, surgical, and postsurgical management of the epidermis and dermis is defined. Preconditioning and treating thick skin can improve postsurgical results and reduce postsurgical unwanted results. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study.

    Science.gov (United States)

    Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E; Nikolov, Svetoslav; Torp-Pedersen, Søren T; Delachartre, Philippe; Jensen, Jørgen A

    2013-02-01

    Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load cell. Load-compression data and ultrasound B-mode images were simultaneously acquired in 19 compression steps of 0.1mm each. The internal tissue displacement was for each step calculated by a phase-based cross-correlation technique and internal strain maps were derived from these displacement maps. Elastic moduli were found from the resulting stress-strain curves. The elastic moduli made it possible to distinguish eight of nine phantoms from each other according to the manufactured stiffness and showed very little dependence of the thickness. Mean elastic moduli for the three soft, the three medium, and the three hard phantoms were 89kPa, 153kPa, and 168kPa, respectively. The combination of ultrasound images and force measurements provided an effective way of assessing the elastic properties of the heel pad due to the internal strain estimation. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The Use of Deconstructed Tires as Elastic Elements in Railway Tracks.

    Science.gov (United States)

    Sol-Sánchez, Miguel; Moreno-Navarro, Fernando; Rubio-Gámez, Mª Carmen

    2014-08-18

    Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of elastic elements. In addition, an innovator technique allows deconstructing tire layers without grinding up the material, reducing production costs at the same time that tire properties are remained. This research is focused on the study of the viability of developing elastic components from used tire layers by evaluating the influence of thickness, the resistance capacity of the elements and their behavior in a ballast box. Results indicate the ability of tire pads to manufacture elastic elements (rail pads, under sleeper pads and under ballast mats) to be used in railway tracks.

  15. Elastic wave generated by granular impact on rough and erodible surfaces

    Science.gov (United States)

    Bachelet, Vincent; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Farin, Maxime

    2018-01-01

    The elastic waves generated by impactors hitting rough and erodible surfaces are studied. For this purpose, beads of variable materials, diameters, and velocities are dropped on (i) a smooth PMMA plate, (ii) stuck glass beads on the PMMA plate to create roughness, and (iii) the rough plate covered with layers of free particles to investigate erodible beds. The Hertz model validity to describe impacts on a smooth surface is confirmed. For rough and erodible surfaces, an empirical scaling law that relates the elastic energy to the radius Rb and normal velocity Vz of the impactor is deduced from experimental data. In addition, the radiated elastic energy is found to decrease exponentially with respect to the bed thickness. Lastly, we show that the variability of the elastic energy among shocks increases from some percents to 70% between smooth and erodible surfaces. This work is a first step to better quantify seismic emissions of rock impacts in natural environment, in particular on unconsolidated soils.

  16. Elastic-plastic analysis of local and integral straining behaviour in a cracked plate

    International Nuclear Information System (INIS)

    Grueter, L.; Ruettenauer, B.

    1982-01-01

    For components of the primary coolant system of the German LMFBR prototype reactor SNR-300, integrity against anticipated accidents (Bethe-Tait) has to be shown for a cracked structure. Within this programme a number of tests with cracked wide plate specimens yielding overall limit strains of approximately 15% have been run; finite element calculations have been infinated for the wide plate geometry. The paper discusses the straining behaviour of a cracked plate by considering the numerical simulation of structures strained up to such high levels. The stress-strain diagram of the weldment of the austenitic stainless steel X6 CrNi 18 at 450 0 C has been used. Plane strain and stress conditions have been prescribed. The original plate dimensions (t = thickness = 40 mm; h = height = 400 mm) have been used as well as a similar, but smaller plate of t = 8.8 mm width. The crack length is defined as 0.1 t. The results show that for a cracked plate under high plastic strain the near-crack-tip-field values still govern the structural mechanical behaviour. Concerning the absolute dimensions the effects known for elasticity retain their influence in the plastic regime; however, the crack location becomes more unimportant with increasing strain, i.e. the appropriate pure geometry factor tends to unity in the plastic regime. The center-crack, defined as 2a = 0.1 t, corresponds to an equivalent edge crack of depth a = 0.05 t in the elastic case. It can be shown that for high plastic strains this correspondence remains fully valid. (orig.)

  17. Effect of longitudinal vibration of fluid-filled pipe with elastic wall on sound transmission character

    Directory of Open Access Journals (Sweden)

    DONG Peng

    2017-01-01

    Full Text Available When one end of a fluid-filled pipe with an elastic wall is fixed and a harmonic force effect acts on the other end,a steady longitudinal vibration will be produced. Compared to the pipeline resonance mode,the amplitude of the steady longitudinal vibration of an elastic pipe is greater,and the effect on the sound is also greater. The study of the steady longitudinal vibration of pipes can better describe the effects of fluid-filled pipelines on the radiation sound field of the pipe opening. Through the contrast between the analysis calculation of the equivalent beam model and the experimental results,the accuracy of the equivalent beam model for the calculation of the steady longitudinal vibration of pipelines is verified,and a method of isolating the steady longitudinal vibration state is proposed and verified.

  18. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  19. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  20. Direct comparison of the electrical properties in metal/oxide/nitride/oxide/silicon and metal/aluminum oxide/nitride/oxide/silicon capacitors with equivalent oxide thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    An, Ho-Myoung; Seo, Yu Jeong; Kim, Hee Dong; Kim, Kyoung Chan; Kim, Jong-Guk [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Won-Ju; Koh, Jung-Hyuk [Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Sung, Yun Mo [Department of Materials and Science Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.k [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2009-07-31

    We examine the electrical properties of metal/oxide/nitride/oxide/silicon (MONOS) capacitors with two different blocking oxides, SiO{sub 2} and Al{sub 2}O{sub 3}, under the influence of the same electric field. The thickness of the Al{sub 2}O{sub 3} layer is set to 150 A, which is electrically equivalent to a thickness of the SiO{sub 2} layer of 65 A, in the MONOS structure for this purpose. The capacitor with the Al{sub 2}O{sub 3} blocking layer shows a larger capacitance-voltage memory window of 8.6 V, lower program voltage of 7 V, faster program/erase speeds of 10 ms/1 {mu}s, lower leakage current of 100 pA and longer data retention than the one with the SiO{sub 2} blocking layer does. These improvements are attributed to the suppression of the carrier transport to the gate electrode afforded by the use of an Al{sub 2}O{sub 3} blocking layer physically thicker than the SiO{sub 2} one, as well as the effective charge-trapping by Al{sub 2}O{sub 3} at the deep energy levels in the nitride layer.

  1. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Directory of Open Access Journals (Sweden)

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  2. Fillet Weld Stress Using Finite Element Methods

    Science.gov (United States)

    Lehnhoff, T. F.; Green, G. W.

    1985-01-01

    Average elastic Von Mises equivalent stresses were calculated along the throat of a single lap fillet weld. The average elastic stresses were compared to initial yield and to plastic instability conditions to modify conventional design formulas is presented. The factor is a linear function of the thicknesses of the parent plates attached by the fillet weld.

  3. Elastic tripping analysis of corroded stiffeners in stiffened plate with irregular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarranji, Ahmad [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Tripping of stiffeners is one of the buckling modes of stiffened panels which could rapidly lead to its catastrophic failure. Loss of thickness in the web and flange of stiffeners due to corrosion reduces elastic buckling strength. It is common practice to assume a uniform thickness reduction for corroded surfaces. To estimate the remaining strength of a corroded structure, a much higher level of accuracy is required since corroded surfaces are irregular. Finite element method is employed to analyze elastic tripping stress of corroded stiffeners with irregular surfaces. Comparing the results with elastic tripping stress of un-corroded stiffener, a reduction factor is introduced. It is found that for flat-bars and angle-bars the reduction factor increases by increasing corrosion loss; however, for tee-bars remains almost unchanged. Surface roughness has no significant effect on reduction of tripping Euler stress of angle-bars and flat-bars; however, it has an effect on reduction of tripping Euler stress of small flat-bars. For high values of corrosion loss, reduction of tripping Euler stress is higher in flat-bars than angle-bars. Corrosion at the mid-length or ends of flat-bars is more detrimental than full length. Corrosion at the ends of angle-bars is more detrimental than full length and mid-length.

  4. Using GPS and GRACE data to assess Solid Earth elastic parameters at regional scale

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Borghi, A.; Aoudia, A.

    2012-01-01

    We propose a way to combine GPS and GRACE data for regional scale cross check and validation especially of the most commonly used PREM (Preliminary Earth Reference Model). In form of h and k Love numbers, global PREM is very often used to simulate elastic rebound due to present-day ice mass loss......, to derive the mass distribution produced by the observed GRACE time series, and it is also used for atmospheric loading correction both in GPS and in GRACE dealiasing products. GRACE data provide load estimates, usually given as water equivalent mass distribution, from which one derives the Earth elastic...... response, by convolution with suitable elastic green functions, relying on selected Earth model and related layering and elastic parameters. We calculate at regional scale the time series of monthly uplift associated with the mass redistribution observed by GRACE implementing the high resolution technique...

  5. Wave propagation in elastic medium with heterogeneous quadratic nonlinearity

    International Nuclear Information System (INIS)

    Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin

    2011-01-01

    This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.

  6. Characterization of elastic interactions in GaAs/Si composites by optically pumped nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Ryan M.; Tokarski, John T.; McCarthy, Lauren A.; Bowers, Clifford R., E-mail: bowers@chem.ufl.edu [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Stanton, Christopher J. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)

    2016-08-28

    Elastic interactions in GaAs/Si bilayer composite structures were studied by optically pumped nuclear magnetic resonance (OPNMR). The composites were fabricated by epoxy bonding of a single crystal of GaAs to a single crystal of Si at 373 K followed by selective chemical etching of the GaAs at room temperature to obtain a series of samples with GaAs thickness varying from 37 μm to 635 μm, while the Si support thickness remained fixed at 650 μm. Upon cooling to below 10 K, a biaxial tensile stress developed in the GaAs film due to differential thermal contraction. The strain perpendicular to the plane of the bilayer and localized near the surface of the GaAs was deduced from the quadrupolar splitting of the Gallium-71 OPNMR resonance. Strain relaxation by bowing of the composite was observed to an extent that depended on the relative thickness of the GaAs and Si layers. The variation of the strain with GaAs layer thickness was found to be in good agreement with a general analytical model for the elastic relationships in composite media.

  7. Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated circuit (IC) manufacturing process

    Science.gov (United States)

    Qu, Zilian; Meng, Yonggang; Zhao, Qian

    2015-03-01

    This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.

  8. Frequency characteristics of the MIM thick film capacitors fabricated by laser micro-cladding electronic pastes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yu; Li Xiangyou [Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci and Tech, 430074 Wuhan, Hubei (China); Zeng Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci and Tech, 430074 Wuhan, Hubei (China)], E-mail: xyzeng@mail.hust.edu.cn

    2008-05-25

    With rapid development of the electronic industry, how to respond the market requests quickly, shorten R and D prototyping fabrication period, and reduce the cost of the electronic devices have become a challenge work, which need flexible manufacturing methods. In this work, two direct write processing methods, direct material deposition by microPen and Nd:YAG laser micro-cladding, are integrated with CAD/CAM technology for the hybrid fabrication of passive electronic components. Especially, the metal-insulator-metal (MIM) type thick film capacitors are fabricated on ceramic substrates by this method. A basic two-step procedure of laser micro-cladding electronic pastes (LMCEPs) process for the thick film pattern preparation is presented. For a better understanding of the MIM thick film capacitor characterization, equivalent circuit models at low-frequency and high-frequency domains are introduced, respectively. The frequency characteristics tests up to 1.8 GHz of capacitance stability, equivalent series resistance (ESR), equivalent series inductance (ESL) and impendence are performed, and the results show good DC voltage stability (<2.48%), good frequency stability (<2.6%) and low dissipation factor (<0.6%) of the MIM thick film capacitors, which may get application to megahertz regions. The further developments of the LMCEP process for fabricating MIM thick film capacitors are also investigated.

  9. Frequency characteristics of the MIM thick film capacitors fabricated by laser micro-cladding electronic pastes

    International Nuclear Information System (INIS)

    Cao Yu; Li Xiangyou; Zeng Xiaoyan

    2008-01-01

    With rapid development of the electronic industry, how to respond the market requests quickly, shorten R and D prototyping fabrication period, and reduce the cost of the electronic devices have become a challenge work, which need flexible manufacturing methods. In this work, two direct write processing methods, direct material deposition by microPen and Nd:YAG laser micro-cladding, are integrated with CAD/CAM technology for the hybrid fabrication of passive electronic components. Especially, the metal-insulator-metal (MIM) type thick film capacitors are fabricated on ceramic substrates by this method. A basic two-step procedure of laser micro-cladding electronic pastes (LMCEPs) process for the thick film pattern preparation is presented. For a better understanding of the MIM thick film capacitor characterization, equivalent circuit models at low-frequency and high-frequency domains are introduced, respectively. The frequency characteristics tests up to 1.8 GHz of capacitance stability, equivalent series resistance (ESR), equivalent series inductance (ESL) and impendence are performed, and the results show good DC voltage stability (<2.48%), good frequency stability (<2.6%) and low dissipation factor (<0.6%) of the MIM thick film capacitors, which may get application to megahertz regions. The further developments of the LMCEP process for fabricating MIM thick film capacitors are also investigated

  10. Contact problems of a rectangular block on an elastic layer of finite thickness: Part II: The thick layer

    NARCIS (Netherlands)

    Alblas, J.B.; Kuipers, M.

    1970-01-01

    We consider a layer of finite thickness loaded in plane strain by a stamp with a straight horizontal base, which is smooth and rigid. The stamp is pressed vertically into the layer and is slightly rotated by an external moment load subsequently. Two cases are considered successively: the lower side

  11. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    Science.gov (United States)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  12. Forward two-photon exchange in elastic lepton-proton scattering and hyperfine-splitting correction

    Energy Technology Data Exchange (ETDEWEB)

    Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2017-08-15

    We relate the forward two-photon exchange (TPE) amplitudes to integrals of the inclusive lepton-proton scattering cross sections. These relations yield an alternative way for the evaluation of the TPE correction to hyperfine-splitting (HFS) in the hydrogen-like atoms with an equivalent to the standard approach (Iddings, Drell and Sullivan) result implying the Burkhardt-Cottingham sum rule. For evaluation of the individual effects (e.g., elastic contribution) our approach yields a distinct result. We compare both methods numerically on examples of the elastic contribution and the full TPE correction to HFS in electronic and muonic hydrogen. (orig.)

  13. A hierarchy of high-order theories for modes in an elastic layer

    DEFF Research Database (Denmark)

    Sorokin, Sergey V.; Chapman, C. John

    2015-01-01

    A hierarchy of high-order theories for symmetric and skew-symmetric modes in an infinitely long elastic layer of the constant thickness is derived. For each member of the hierarchy, boundary conditions for layers of the finite length are formulated. The forcing problems at several approximation...

  14. Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution

    International Nuclear Information System (INIS)

    Baltacioglu, A.K.; Civalek, O.; Akgoez, B.; Demir, F.

    2011-01-01

    This paper presents nonlinear static analysis of a rectangular laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic nonlinearity. The plate formulation is based on first-order shear deformation theory (FSDT). The governing equation of motion for a rectangular laminated composite thick plate is derived by using the von Karman equation. The nonlinear static deflections of laminated plates on elastic foundation are investigated using the discrete singular convolution method. The effects of foundation and geometric parameters of plates on nonlinear deflections are investigated. The validity of the present method is demonstrated by comparing the present results with those available in the literature. - Highlights: → Large deflection analysis of laminated composite plates are investigated. → As foundation, nonlinear elastic models have been used firstly. → The effects of three-parameter foundation are investigated in detail.

  15. Influence of ceramic dental crown coating substrate thickness ratio on strain energy release rate

    Science.gov (United States)

    Khasnulhadi, K.; Daud, R.; Mat, F.; Noor, S. N. F. M.; Basaruddin, K. S.; Sulaiman, M. H.

    2017-10-01

    This paper presents the analysis of coating substrate thickness ratio effect on the crown coating fracture behaviour. The bi-layer material is examined under four point bending with pre-crack at the bottom of the core material by using finite element. Three different coating thickness of core/substrate was tested which is 1:1, 1:2 and 2:1. The fracture parameters are analysed based on bilayer and homogenous elastic interaction. The result shows that the ratio thickness of core/veneer provided a significant effect on energy release rate.

  16. Numerical modeling of the thickness dependence of zinc die-cast materials

    Science.gov (United States)

    Page, Maria Angeles Martinez; Ruf, Matthias; Hartmann, Stefan

    2017-11-01

    Zinc die casting alloys show varying material properties over the thickness in their final solid state, which causes a change in the mechanical response for specimens with different thicknesses. In this article, we propose a modeling concept to account for the varying porosity in the constitutive modeling. The material properties are effectively incorporated by combining a partial differential equation describing the distribution of the pores by a structural parameter with the Mori-Tanaka approach for linear elasticity. The distribution of the porosity is determined by polished cut images, for which the procedure is explained in detail. Finite element simulations of the coupled system incorporating the thickness dependence show the applicability of this approach.

  17. Measurements of the Stiffness and Thickness of the Pavement Asphalt Layer Using the Enhanced Resonance Search Method

    Directory of Open Access Journals (Sweden)

    Nur Mustakiza Zakaria

    2014-01-01

    Full Text Available Enhanced resonance search (ERS is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner. This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard.

  18. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  19. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution

    Directory of Open Access Journals (Sweden)

    Wenzhi Wang

    2016-07-01

    Full Text Available Modeling the random fiber distribution of a fiber-reinforced composite is of great importance for studying the progressive failure behavior of the material on the micro scale. In this paper, we develop a new algorithm for generating random representative volume elements (RVEs with statistical equivalent fiber distribution against the actual material microstructure. The realistic statistical data is utilized as inputs of the new method, which is archived through implementation of the probability equations. Extensive statistical analysis is conducted to examine the capability of the proposed method and to compare it with existing methods. It is found that the proposed method presents a good match with experimental results in all aspects including the nearest neighbor distance, nearest neighbor orientation, Ripley’s K function, and the radial distribution function. Finite element analysis is presented to predict the effective elastic properties of a carbon/epoxy composite, to validate the generated random representative volume elements, and to provide insights of the effect of fiber distribution on the elastic properties. The present algorithm is shown to be highly accurate and can be used to generate statistically equivalent RVEs for not only fiber-reinforced composites but also other materials such as foam materials and particle-reinforced composites.

  20. The Use of Deconstructed Tires as Elastic Elements in Railway Tracks

    Science.gov (United States)

    Sol-Sánchez, Miguel; Moreno-Navarro, Fernando; Rubio-Gámez, Mª Carmen

    2014-01-01

    Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of elastic elements. In addition, an innovator technique allows deconstructing tire layers without grinding up the material, reducing production costs at the same time that tire properties are remained. This research is focused on the study of the viability of developing elastic components from used tire layers by evaluating the influence of thickness, the resistance capacity of the elements and their behavior in a ballast box. Results indicate the ability of tire pads to manufacture elastic elements (rail pads, under sleeper pads and under ballast mats) to be used in railway tracks. PMID:28788168

  1. The Use of Deconstructed Tires as Elastic Elements in Railway Tracks

    Directory of Open Access Journals (Sweden)

    Miguel Sol-Sánchez

    2014-08-01

    Full Text Available Elastic elements such as rail pads, under sleeper pads and under ballast mats are railway components that allow for a reduction in track deterioration and vibrations. And they are furthermore commonly used to obtain an optimal vertical stiffness of the infrastructure. However, the use of elastomeric materials can increase construction costs and the consumption of raw materials. Thus, the utilization of used tire layers offers an alternative to reuse an abundant waste reducing the cost of elastic elements. In addition, an innovator technique allows deconstructing tire layers without grinding up the material, reducing production costs at the same time that tire properties are remained. This research is focused on the study of the viability of developing elastic components from used tire layers by evaluating the influence of thickness, the resistance capacity of the elements and their behavior in a ballast box. Results indicate the ability of tire pads to manufacture elastic elements (rail pads, under sleeper pads and under ballast mats to be used in railway tracks.

  2. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  3. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.

    2013-03-06

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.

  4. Coherent Population Trapping Resonances in Cs Atomic Vapor Layers of Micrometric Thickness

    Directory of Open Access Journals (Sweden)

    A. Krasteva

    2011-01-01

    Full Text Available We report on a novel behavior of the electromagnetically induced absorption (EIA resonance observed on the D2 line of Cs for atoms confined in cells with micrometric thickness. With the enhancement of light intensity, the EIA resonance amplitude suffers from fast reduction, and even at very low intensity (W < 1 mW/cm2, resonance sign reversal takes place and electromagnetically induced transparency (EIT resonance is observed. Similar EIA resonance transformation to EIT one is not observed in conventional cm-size cells. A theoretical model is proposed to analyze the physical processes behind the EIA resonance sign reversal with light intensity. The model involves elastic interactions between Cs atoms as well as elastic interaction of atom micrometric-cell windows, both resulting in depolarization of excited state which can lead to the new observations. The effect of excited state depolarization is confirmed also by the fluorescence (absorption spectra measurement in micrometric cells with different thicknesses.

  5. Elastic dynamic research of high speed multi-link precision press considering structural stiffness of rotation joints

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Feng Feng; Sun, Yu; Peng, Bin Bin [School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing (China)

    2016-10-15

    An elastic dynamic model of high-speed multi-link precision press considering structural stiffness of rotation joints was established by the finite element method. In the finite element model, rotation joint was established by four bar elements with equivalent stiffness, and connected link was established by beam element. Then, the elastic dynamics equation of the system was established, and modal superposition method was used to solve the dynamic response. Compared with the traditional elastic dynamic model with perfect constraint of the rotation joints, the elastic dynamic response value of the improved model is larger. To validate the presented new method of elastic dynamics analysis with stiffness of rotation joints, a related test of slider Bottom dead center (BDC) position in different speed was designed. The test shows that the model with stiffness of rotation joints is more reasonable. So it provides a reasonable theory and method for dynamic characteristics research of such a multi-link machine.

  6. Fatigue assessment by the RCC-MR design rules: remarks on the elastic analysis

    International Nuclear Information System (INIS)

    Taleb, L.; Sidoroff, F.

    1999-01-01

    According to RCC--MR (French rules for mechanical engineering design of FBR), fatigue life assessment is based on the evaluation of the equivalent elastoplastic strain range resulting from a given cyclic loading. Two methods can be used according to whether an elastoplastic or an elastic structure analysis is performed. The elastic analysis is of course more attractive for it avoids a heavy iterative elastoplastic analysis and an expensive identification of the material behavior from mechanical tests. On the other hand it relies on some empirical extrapolation rules from the elastic to the real case. The purpose of the present paper is to draw attention to some limitations of this procedure. In particular attention will be focused on two points: 1, the classification of the applied stress into primary and secondary parts is essential and it is shown that the thermal stresses which are often considered as secondary may in some cases play a primary role; 2. the Neuber's rule which is used to evaluate the plastic strain from the elastic stress will be shown to be significantly wrong for some special configurations. This is in fact essentially related to situations where the elastic follow up effect is important. (authors)

  7. Analysis of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners

    Energy Technology Data Exchange (ETDEWEB)

    Modak, Partha; Hossain, M. Jamil, E-mail: jamil917@gmail.com; Ahmed, S. Reaz [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle of individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.

  8. Study of a Piezo-Thermo-Elastic Materials Console

    Directory of Open Access Journals (Sweden)

    hamza madjid berrabah

    2015-09-01

    Full Text Available In the first part of this work, analytical expressions were determined for the stresses through the thickness of a composite beam submitted to electrical excitation. In the second part of this study we are interested in the theory of elasticity, which is used to obtain exact solutions of piezo-thermo-elastic consoles gradually coupled evaluated under different loads. These solutions are used to identify the piezoelectric parameter and thermal coefficients of the materials. In addition, numerical results are obtained for the analysis of the loaded console by two different types of loading. In this study we show also that changing the linear thermal parameters of the material does not affect the distribution of the stress and the induction of the beam. However it affetcs the components of the deformation, electric field, the displacement and the electric potential of the console.

  9. Dose determination algorithms for a nearly tissue equivalent multi-element thermoluminescent dosimeter

    International Nuclear Information System (INIS)

    Moscovitch, M.; Chamberlain, J.; Velbeck, K.J.

    1988-01-01

    In a continuing effort to develop dosimetric systems that will enable reliable interpretation of dosimeter readings in terms of the absorbed dose or dose-equivalent, a new multi-element TL dosimeter assembly for Beta and Gamma dose monitoring has been designed. The radiation-sensitive volumes are four LiF-TLD elements, each covered by its own unique filter. For media-matching, care has been taken to employ nearly tissue equivalent filters of thicknesses of 1000 mg/cm 2 and 300 mg/cm 2 for deep dose and dose to the lens-of-the-eye measurements respectively. Only one metal filter (Cu) is employed to provide low energy photon discrimination. A Thin TL element (0.09 mm thick) is located behind an open window designed to improve the energy under-response to low energy beta rays and to provide closer estimate of the shallow dose equivalent. The deep and shallow dose equivalents are derived from the correlation of the response of the various TL elements to the above quantities through computations based on previously defined relationships obtained from experimental results. The theoretical formalization for the dose calculation algorithms is described in detail, and provides a useful methodology which can be applied to different tissue-equivalent dosimeter assemblies. Experimental data has been obtained by performing irradiation according to the specifications established by DOELAP, using 27 types of pure and mixed radiation fields including Cs-137 gamma rays, low energy photons down to 20 keV, Sr/Y-90, Uranium, and Tl-204 beta particles

  10. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  11. ELSHIM: Program to simulate elastic processes of heavy ions

    International Nuclear Information System (INIS)

    Van Ginneken, A.

    1992-05-01

    The Monte Carlo code ELSIM simulates elastic and quasi-elastic, i.e., of limited energy loss, processes of high energy hadrons in a thick target with particular attention to scattering off edges and the like. Its main applications concern accelerator beam loss, beam scraping, etc. Particles which only participate in elastic processes and are then reflected back into the aperture may cause problems elsewhere in the accelerator lattice -- often far removed from where the beam loss occurs. Therefore ELSIM is often run in conjunction with an accelerator tracking program. It can also be used as the first stage in energy deposition studies. For example, when beam is lost in a superconducting magnet ELSIM can provide energy deposition by the incident particles along with a file specifying coordinates and momenta of the inelastic interactions. The latter can then be processed by a program such as CASIM to complete the energy deposition simulation. A new version of this program, called ELSHIM is introduced here which extends ELSIM to include heavy ions as projectiles

  12. Energy based methods for determining elastic plastic fracture

    International Nuclear Information System (INIS)

    Witt, F.J.

    1979-01-01

    Several methods are currently in use or under study for calculating various conditions of fracturing for varying degrees of plasticity. Among these are innovations on the J-integral concept, crack opening displacement or angle, the two parameter concept and the equivalent energy method. Methods involving crack arrest and ductile tearing also fall in this category. Each of these methods have many salient points and some efforts are underway to establish the underlying relationship between them. In this paper, the current research directions of J-integral and equivalent energy methodologies are reviewed with a broader discussion presented for the equivalent energy methodology. The fundamental basis of equivalent energy methodology rests with the volumetric energy ratio. For fractures governed by linear elastic fracture mechanics, the volumetric energy ratio is independent of flaw size and geometry and depends only on the scale factor between model and prototype and temperature. The behavioral aspects of the volumetric energy ratios have been investigated throughout the temperature range from brittle fracture to fully ductile fracture. For five different specimen and structural configurations it has been shown experimentally that the volumetric energy ratio retains its basic properties. That is, the volumetric energy ratio while changing in actual value, maintains its independence of geometry and flaw size while retaining a unique dependence on scale factor and temperature. This property interpreted in terms of fracture mechanics leads to the equivalent energy method. (orig.)

  13. Elastic Properties and Stability of Physisorbed Graphene

    Directory of Open Access Journals (Sweden)

    Philippe Lambin

    2014-05-01

    Full Text Available Graphene is an ultimate membrane that mixes both flexibility and mechanical strength, together with many other remarkable properties. A good knowledge of the elastic properties of graphene is prerequisite to any practical application of it in nanoscopic devices. Although this two-dimensional material is only one atom thick, continuous-medium elasticity can be applied as long as the deformations vary slowly on the atomic scale and provided suitable parameters are used. The present paper aims to be a critical review on this topic that does not assume a specific pre-knowledge of graphene physics. The basis for the paper is the classical Kirchhoff-Love plate theory. It demands a few parameters that can be addressed from many points of view and fitted to independent experimental data. The parameters can also be estimated by electronic structure calculations. Although coming from diverse backgrounds, most of the available data provide a rather coherent picture that gives a good degree of confidence in the classical description of graphene elasticity. The theory can than be used to estimate, e.g., the buckling limit of graphene bound to a substrate. It can also predict the size above which a scrolled graphene sheet will never spontaneously unroll in free space.

  14. Improvement of the equivalent sphere model for better estimates of skin or eye dose in space radiation environments

    International Nuclear Information System (INIS)

    Lin, Z.W.

    2011-01-01

    It is often useful to get a quick estimate of the dose or dose equivalent of an organ, such as blood-forming organs, the eye or the skin, in a radiation field. Sometimes an equivalent sphere is used to represent the organ for this purpose. For space radiation environments, recently it has been shown that the equivalent sphere model does not work for the eye or the skin in solar particle event environments. In this study, we improve the representation of the eye and the skin using a two-component equivalent sphere model. Motivated by the two-peak structure of the body organ shielding distribution for the eye and the skin, we use an equivalent sphere with two radius parameters, for example a partial spherical shell of a smaller thickness over a proper fraction of the full solid angle combined with a concentric partial spherical shell of a larger thickness over the rest of the full solid angle, to represent the eye or the skin. We find that using an equivalent sphere with two radius parameters instead of one drastically improves the accuracy of the estimates of dose and dose equivalent in space radiation environments. For example, in solar particle event environments the average error in the estimate of the skin dose equivalent using an equivalent sphere with two radius parameters is about 8%, while the average error of the conventional equivalent sphere model using one radius parameter is around 100%.

  15. Numerical calculations of effective elastic properties of two cellular structures

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    Young's moduli of regular two-dimensional truss-like and eye-shaped structures are simulated using the finite element method. The structures are idealizations of soft polymeric materials used in ferro-electret applications. In the simulations, the length scales of the smallest representative units are varied, which changes the dimensions of the cell walls in the structures. A power-law expression with a quadratic as the exponent term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data are divided into three regions with respect to the volume fraction: low, intermediate and high. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, the unit-cell dimensions. The expression presented can be used to predict a structure/property relationship in materials with similar cellular structures. The contribution of the cell-wall thickness to the elastic properties becomes significant at concentrations >0.15. The cell-wall thickness is the most significant factor in predicting the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, the eye-shaped structure yields a lower Young's modulus than a truss-like structure with similar anisotropy. Comparison of the numerical results with those of experimental data for poly(propylene) show good agreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films

  16. Impact loads on beams on elastic foundations

    International Nuclear Information System (INIS)

    Kameswara Rao, N.S.V.; Prasad, B.B.

    1975-01-01

    Quite often, complex structural components are idealised as beams in engineering analysis and design. Also, equations governing the responses of shallow shells are mathematically equivalent to the equations governing the responses of beams on elastic foundations. Hence with possible applications in several technical disciplines, the behaviour of beams on elastic foundations subjected to impact loads is studied in detail in the present investigation both analytically and experimentally. The analytical methods include analysis and energy method. The effect of foundation parameters (stiffness, and damping constants) on the dynamic responses of the beam-foundation system has been analysed. In modal analysis, the free-vibration equation has been solved by replacing the applied impulse by suitable initial conditions and the solution has been obtained as the linear combination of an infinite sequence of discrete eigen-vectors. In the energy method, the beam-foundation system is treated to be under forced vibrations and the forcing function has been obtained using the Hertz's law of impact. In the case of free-free end conditions of the beam, the rigid body modes and the elastic modes have been superposed to obtain the total response. The responses predicted using modal analysis are higher than those obtained using energy method. From the present study it is observed that model analysis is preferable to energy method. (Auth.)

  17. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang

    2016-09-06

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  18. A nonlinear approach of elastic reflection waveform inversion

    KAUST Repository

    Guo, Qiang; Alkhalifah, Tariq Ali

    2016-01-01

    Elastic full waveform inversion (EFWI) embodies the original intention of waveform inversion at its inception as it is a better representation of the mostly solid Earth. However, compared with the acoustic P-wave assumption, EFWI for P- and S-wave velocities using multi-component data admitted mixed results. Full waveform inversion (FWI) is a highly nonlinear problem and this nonlinearity only increases under the elastic assumption. Reflection waveform inversion (RWI) can mitigate the nonlinearity by relying on transmissions from reflections focused on inverting low wavenumber components of the model. In our elastic endeavor, we split the P- and S-wave velocities into low wavenumber and perturbation components and propose a nonlinear approach to invert for both of them. The new optimization problem is built on an objective function that depends on both background and perturbation models. We utilize an equivalent stress source based on the model perturbation to generate reflection instead of demigrating from an image, which is applied in conventional RWI. Application on a slice of an ocean-bottom data shows that our method can efficiently update the low wavenumber parts of the model, but more so, obtain perturbations that can be added to the low wavenumbers for a high resolution output.

  19. Ultrasound Elasticity Imaging Predicts Therapeutic Outcomes of Patients With Crohn's Disease Treated With Anti-Tumour Necrosis Factor Antibodies.

    Science.gov (United States)

    Orlando, Stefania; Fraquelli, Mirella; Coletta, Marina; Branchi, Federica; Magarotto, Andrea; Conti, Clara Benedetta; Mazza, Stefano; Conte, Dario; Basilisco, Guido; Caprioli, Flavio

    2018-01-05

    Ultrasound elasticity imaging is a non-invasive technique developed to evaluate fibrosis. Measuring tissue strain by ultrasound elasticity imaging can reliably detect severe ileal fibrosis in patients with Crohn's disease [CD]. We have hypothesised that a more severe range of fibrosis might influence the therapeutic response to anti-tumour necrosis factor [TNF] treatment. The aim of this study was to assess the ability of ultrasound elasticity imaging to predict the therapeutic outcome for CD patients. Consecutive patients with ileal/ileocolonic CD, starting anti-TNF treatment, were enrolled for the study. These patients underwent bowel ultrasound and ultrasound elasticity imaging at baseline and at 14 and 52 weeks after anti-TNF treatment. Bowel wall stiffness was quantified by calculating the strain ratio between the mesenteric tissue and the bowel wall. Strain ratio ≥ 2 was used to identify severe ileal fibrosis. Transmural healing at 14 and 52 weeks was defined as bowel wall thickness ≤ 3 mm. Thirty patients with CD were enrolled. Five patients underwent surgery for bowel obstruction. The frequency of surgeries was significantly greater in patients with a strain ratio ≥ 2 at baseline [p = 0.003]. A significant reduction of the bowel thickness was observed after 14 and 52 weeks of anti-TNF treatment [p < 0.005]. A significant inverse correlation was observed between the strain ratio values at baseline and the thickness variations following anti-TNF therapy [p = 0.007]; 27% of patients achieved transmural healing at 14 weeks. The baseline strain ratio was significantly lower in patients with transmural healing [p < 0.05]. This study shows that ultrasound elasticity imaging predicts therapeutic outcomes for CD patients treated with anti-TNF. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  20. Spin asymmetry in resonant electron-hydrogen elastic scattering

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Shang, Bo.

    1993-02-01

    Differential cross sections and asymmetries at 90 deg. and 30 deg are calculated for electron-hydrogen elastic scattering over the energies of the lowest 1 S and 3 P resonances using a nine-state coupled-channels calculation with and without continuum effects, which are represented by an equivalent-local polarization potential. The polarization potential improves agreement with experiment in general for the spin-averaged cross sections. It is suggested that continuum effects would be critically tested by asymmetry measurement at 30 deg over the 1 S resonance. 7 refs., 4 figs

  1. Differential cross sections in a thick brane world scenario

    Science.gov (United States)

    Pedraza, Omar; Arceo, R.; López, L. A.; Cerón, V. E.

    2018-04-01

    The elastic differential cross section is calculated at low energies for the elements He and Ne using an effective 4D electromagnetic potential coming from the contribution of the massive Kaluza-Klein modes of the 5D vector field in a thick brane scenario. The length scale is adjusted in the potential to compare with known experimental data and to set bounds for the parameter of the model.

  2. Standard test method for determining the effective elastic parameter for X-ray diffraction measurements of residual stress

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1998-01-01

    1.1 This test method covers a procedure for experimentally determining the effective elastic parameter, Eeff, for the evaluation of residual and applied stresses by X-ray diffraction techniques. The effective elastic parameter relates macroscopic stress to the strain measured in a particular crystallographic direction in polycrystalline samples. Eeff should not be confused with E, the modulus of elasticity. Rather, it is nominally equivalent to E/(1 + ν) for the particular crystallographic direction, where ν is Poisson's ratio. The effective elastic parameter is influenced by elastic anisotropy and preferred orientation of the sample material. 1.2 This test method is applicable to all X-ray diffraction instruments intended for measurements of macroscopic residual stress that use measurements of the positions of the diffraction peaks in the high back-reflection region to determine changes in lattice spacing. 1.3 This test method is applicable to all X-ray diffraction techniques for residual stress measurem...

  3. Microtruss structures with enhanced elasticity fabricated through visible light photocuring

    Directory of Open Access Journals (Sweden)

    Hari Nanthakumar

    Full Text Available We report on the fabrication of an open cellular solid structure using visible light photocuring in combination with light-induced self-writing. A visible light sensitive photopolymer is irradiated with multiple arrays of microscale optical beams, which are generated from LEDs. These beams undergo self-trapping and elicit the inscription of microscale, solid struts into the medium. This process creates a structure consisting of multiple, intersecting struts that form a microtruss structure. Such structures retain their elasticity at higher temperatures as compared to a bulk film of the same thickness. This is the first demonstration of visible light photocuring of photopolymers into a microtruss structure, as well as investigation into their elastic properties under tension. Keywords: Polymers, Self-trapping, Microstructures, Cellular solids

  4. Instabilities in dynamic anti-plane sliding of an elastic layer on a dissimilar elastic half-space

    Science.gov (United States)

    Kunnath, R.

    2012-12-01

    The stability of dynamic anti-plane sliding at an interface between an elastic layer and an elastic half-space with dissimilar elastic properties is studied. Friction at the interface is assumed to follow a rate- and state-dependent law, with a positive instantaneous dependence on slip velocity and a rate weakening behavior in the steady state. The perturbations are of the form exp(ikx+pt), where k is the wavenumber, x is the coordinate along the interface, p is the time response to the perturbation and t is time. The results of the stability analysis are shown in Figs. 1 and 2 with the velocity weakening parameter b/a=5, shear wave speed ratio cs'/cs=1.2, shear modulus ratio μ'/μ=1.2 and non-dimensional layer thickness H=100. The normalized instability growth rate and normalized phase velocity are plotted as a function of wavenumber. Fig.1 is for a non-dimensional unperturbed slip velocity ɛ=5 (rapid sliding) while Fig. 2 is for ɛ=0.05 (slow sliding). The results show the destabilization of interfacial waves. For slow sliding, destabilization of interfacial waves is still seen, indicating that the quasi-static approximation to slow sliding is not valid. This is in agreement with the result of Ranjith (Int. J. Solids and Struct., 2009, 46, 3086-3092) who predicted an instability of long-wavelength Love waves in slow sliding.

  5. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  6. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  7. Damage Identification of Trusses with Elastic Supports Using FEM and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nam-Il Kim

    2013-01-01

    Full Text Available The computationally efficient damage identification technique for truss structures with elastic supports is proposed based on the force method. To transform the truss with supports into the equivalent free-standing model without supports, the novel zero-length dummy members are employed. General equilibrium equations and kinematic relations, in which the reaction forces and the displacements at the elastic supports are taken into account, are clearly formulated. The compatibility equations, in terms of forces in which the flexibilities of elastic supports are considered, are explicitly presented using the singular value decomposition (SVD technique. Both member and reaction forces are simultaneously and directly obtained. Then, all nodal displacements including constrained nodes are back calculated from the member and reaction forces. Next, the microgenetic algorithm (MGA is used to properly identify the site and the extent of multiple damages in truss structures. In order to verify the superiority of the current study, the numerical solutions are presented for the planar and space truss models with and without elastic supports. The numerical results indicate that the computational effort required by this study is found to be significantly lower than that of the displacement method.

  8. Personal finance and life insurance under separation of risk aversion and elasticity of substitution

    DEFF Research Database (Denmark)

    Jensen, Ninna Reitzel; Steffensen, Mogens

    2015-01-01

    aversion from elasticity of inter-temporal substitution, we introduce certainty equivalents. We propose a time-inconsistent global optimization problem, and we present a verification theorem for an equilibrium control. In the special case without mortality risk, we discover that our optimization approach...... is equivalent to recursive utility optimization with Epstein–Zin preferences in the sense that the two approaches lead to the same result. We find this interesting since our optimization problem has an intuitive interpretation as a global maximization of certainty equivalents and since recursive utility......, in contrast to our approach, gives rise to severe differentiability problems. Also, our optimization approach can there be seen as a generalization of recursive utility optimization with Epstein–Zin preferences to include mortality risk and life insurance....

  9. Discerning the neutron density distribution of 208Pb from nucleon elastic scattering

    International Nuclear Information System (INIS)

    Karataglidis, S.; Amos, K.; University of Melbourne, VIC; Brown, B.A.; Deb, P.K.

    2001-01-01

    We seek a measure of the neutron density of 208 Pb from analyses of intermediate energy nucleon elastic scattering. The pertinent model for such analyses is based on coordinate space nonlocal optical potentials obtained from model nuclear ground state densities. As a calibration of the use of Skyrme-Hartree-Fock models the elastic scattering from 40 Cawas considered as well. Those potentials give predictions of integral observables and of angular distributions which show sensitivity to the neutron density. When compared with experiment, and correlated with analyses of electron scattering data, the results suggest that 208 Pb has a neutron skin thickness ∼ 0.17 fm

  10. Load-Displacement Curves of Spot Welded, Bonded, and Weld-Bonded Joints for Dissimilar Materials and Thickness

    Directory of Open Access Journals (Sweden)

    E.A. Al-Bahkali

    2011-12-01

    Full Text Available Three-dimensional finite element models of spot welded, bonded and weld-bonded joints are developed using ABAQUS software. Each model consists of two strips with dissimilar materials and thickness and is subjected to an axial loading. The bonded and weld-bonded joints have specific adhesive thickness. A detailed experimental plan to define many properties and quantities such as, the elastic - plastic properties, modulus of elasticity, fracture limit, and properties of the nugget and heat affected zones are carried out. Experiments include standard testing of the base metal, the adhesive, the nugget and heat affected zone. They also include employing the indentation techniques, and ductile fracture limits criteria, using the special notch tests. Complete load-displacement curves are obtained for all joining models and a comparison is made to determine the best combination.

  11. Variations in local elastic modulus along the length of the aorta as observed by use of a scanning haptic microscope (SHM).

    Science.gov (United States)

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Kanda, Keiichi; Nakayama, Yasuhide

    2011-12-01

    Variations in microscopic elastic structures along the entire length of canine aorta were evaluated by use of a scanning haptic microscope (SHM). The total aorta from the aortic arch to the abdominal aorta was divided into 6 approximately equal segments. After embedding the aorta in agar, it was cut into horizontal circumferential segments to obtain disk-like agar portions containing ring-like samples of aorta with flat surfaces (thickness, approximately 1 mm). The elastic modulus and topography of the samples under no-load conditions were simultaneously measured along the entire thickness of the wall by SHM by using a probe with a diameter of 5 μm and a spatial resolution of 2 μm at a rate of 0.3 s/point. The elastic modulus of the wall was the highest on the side of the luminal surface and decreased gradually toward the adventitial side. This tendency was similar to that of the change in the elastin fiber content. During the evaluation of the mid-portion of each tunica media segment, the highest elastic modulus (40.8 ± 3.5 kPa) was identified at the thoracic section of the aorta that had the highest density of elastic fibers. Under no-load conditions, portions of the aorta with high elastin density have a high elastic modulus.

  12. Laser-ultrasound spectroscopy apparatus and method with detection of shear resonances for measuring anisotropy, thickness, and other properties

    Science.gov (United States)

    Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian

    2000-01-01

    Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.

  13. Classical and modern optimization methods in minimum weight design of elastic rotating disk with variable thickness and density

    International Nuclear Information System (INIS)

    Jafari, S.; Hojjati, M.H.; Fathi, A.

    2012-01-01

    Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk profiles for minimum weight design using the Karush-Kuhn-Tucker method (KKT) as a classical optimization method, simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. Some semi-analytical solutions for the elastic stress distribution in a rotating annular disk with uniform and variable thickness and density proposed by the authors in the previous works have been used. The von Mises failure criterion of optimum disk is used as an inequality constraint to make sure that the rotating disk does not fail. The results show that the minimum weight obtained for all three methods is almost identical. The KKT method gives a profile with slightly less weight (6% less than SA and 1% less than PSO) while the implementation of PSO and SA methods are easier and provide more flexibility compared with those of the KKT method. The effectiveness of the proposed optimization methods is shown. - Highlights: ► Karush-Kuhn-Tucker, simulated annealing and particle swarm methods are used. ► The KKT gives slightly less weight (6% less than SA and 1% less than PSO). ► Implementation of PSO and SA methods are easier and provide more flexibility. ► The effectiveness of the proposed optimization methods is shown.

  14. Classical and modern optimization methods in minimum weight design of elastic rotating disk with variable thickness and density

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, S. [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Hojjati, M.H., E-mail: Hojjati@nit.ac.ir [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Fathi, A. [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of)

    2012-04-15

    Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk profiles for minimum weight design using the Karush-Kuhn-Tucker method (KKT) as a classical optimization method, simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. Some semi-analytical solutions for the elastic stress distribution in a rotating annular disk with uniform and variable thickness and density proposed by the authors in the previous works have been used. The von Mises failure criterion of optimum disk is used as an inequality constraint to make sure that the rotating disk does not fail. The results show that the minimum weight obtained for all three methods is almost identical. The KKT method gives a profile with slightly less weight (6% less than SA and 1% less than PSO) while the implementation of PSO and SA methods are easier and provide more flexibility compared with those of the KKT method. The effectiveness of the proposed optimization methods is shown. - Highlights: Black-Right-Pointing-Pointer Karush-Kuhn-Tucker, simulated annealing and particle swarm methods are used. Black-Right-Pointing-Pointer The KKT gives slightly less weight (6% less than SA and 1% less than PSO). Black-Right-Pointing-Pointer Implementation of PSO and SA methods are easier and provide more flexibility. Black-Right-Pointing-Pointer The effectiveness of the proposed optimization methods is shown.

  15. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  16. Pharmaceutical equivalence of gabapentin tablets with various extragranular binders Pharmaceutical equivalence of gabapentin tablets with various extragranular binders

    Directory of Open Access Journals (Sweden)

    SWATI C. JAGDALE

    2010-06-01

    Full Text Available Gabapentin is a high-dose drug widely used as an oral anti-epilepticagent. Due to high crystalline and has poor compaction properties it is difficult to form tablets by direct compression. The aim of this study was to develop gabapentin tablets, pharmaceutically equivalent to the reference product Neurontin (marketed in USA. Gabapentin 800mg tablets were produced by wet granulation by keeping intragranular binder as well as its concentration constant and by changing with various extragranular binders with its concentration (A = PVPK 30, B = HPMC 15 cps, C = Kollidon VA 64, D =Klucel EXF.The tablet having no weight, thickness and hardness variation and having appropriate, friability as well as disintegration profile were coated with a 3% film coating solution .Seven formulations F1 (A in lower concentration F2 (A in higher concentration, F3 (B in lower concentration and F4 (B in higher concentration, F5 (C in lower concentration, F6 (C in higher concentration, F7 (D in lower concentration were formulated. Among them F6 demonstrated adequate hardness, friability, disintegration, uniformity of content, and total drug dissolution after 45minutes. The dissimilarity factor (f1 is 5.93 and the similarity factor (f2 is 67.85. So F6 was found to be equivalent to Neurontin.Gabapentin is widely used as an oral anti-epileptic agent. However, owing to its high crystallinity and poor compaction properties, it is difficult to form tablets of this drug by direct compression. The aim of this study was to develop gabapentin tablets, pharmaceutically equivalent to the brand-name pioneer product Neurontin® (marketed in USA. Gabapentin 800mg tablets were produced by wet granulation with a constant concentration of intragranular binder and a varying concentration of extragranular binders (A = polyvinylpyrrolidone K30, B = hydroxypropylmethylcellulose 15 cps, C = Kollidon VA64, D =Klucel EXF. The tablets that did not vary in weight, thickness or hardness and had

  17. Limitations to depth resolution in high-energy, heavy-ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Elliman, R.G.; Palmer, G.R.; Ophel, T.R.; Timmers, H.

    1998-01-01

    The depth resolution of heavy-ion elastic recoil detection analysis was examined for Al and Co thin films ranging in thickness from 100 to 400 nm. Measurements were performed with 154 MeV Au ions as the incident beam, and recoils were detected using a gas ionisation detector. Energy spectra were extracted for the Al and Co recoils and the depth resolution determined as a function of film thickness from the width of the high- and low- energy edges. These results were compared with theoretical estimates calculated using the computer program DEPTH. (authors)

  18. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei; Azdoud, Yan; Lubineau, Gilles

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics

  19. A New Equivalent Statistical Damage Constitutive Model on Rock Block Mixed Up with Fluid Inclusions

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2018-01-01

    Full Text Available So far, there are few studies concerning the effect of closed “fluid inclusions” on the macroscopic constitutive relation of deep rock. Fluid-matrix element (FME is defined based on rock element in statistical damage model. The properties of FME are related to the size of inclusions, fluid properties, and pore pressure. Using FME, the equivalent elastic modulus of rock block containing fluid inclusions is obtained with Eshelby inclusion theory and the double M-T homogenization method. The new statistical damage model of rock is established on the equivalent elastic modulus. Besides, the porosity and confining pressure are important influencing factors of the model. The model reflects the initial damage (void and fluid inclusion and the macroscopic deformation law of rock, which is an improvement of the traditional statistical damage model. Additionally, the model can not only be consistent with the rock damage experiment date and three-axis compression experiment date of rock containing pore water but also describe the locked-in stress experiment in rock-like material. It is a new fundamental study of the constitutive relation of locked-in stress in deep rock mass.

  20. Elastic scattering study of three 4n nuclei systems above the Coulomb barrier

    International Nuclear Information System (INIS)

    Ashok Kumar; Sarita Kumar; Sunita Kumar

    2000-01-01

    A comprehensive study of elastic scattering of 4n nuclei, namely 16 O + 40 Ca, 24 Mg + 24 Mg and 32 S + 28 Si is carried out at various incident energies near and above the Coulomb barrier using a semi microscopic approach. In the present work real part of the nucleus-nucleus interaction is microscopically calculated using equivalence relation between RGM and GCM

  1. Modeling, Analysis, and Control of a Hypersonic Vehicle with Significant Aero-Thermo-Elastic-Propulsion Interactions: Elastic, Thermal and Mass Uncertainty

    Science.gov (United States)

    Khatri, Jaidev

    This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.

  2. Steady-state, elastic-plastic growth of slanted cracks in symmetrically loaded plates

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Hutchinson, J. W.

    2017-01-01

    parameter through the plate in the plastic zone at the crack tip. The distribution of the mode I and mode III stress intensity factors along the crack front are obtained for the elastic problem. The out-of-plane bending constraint imposed on the plate significantly influences the mixed mode behavior along......Elastic and elastic-plastic results are obtained for a semi-infinite slanted through-crack propagating in a symmetrically loaded plate strip with the aim of providing theoretical background to commonly observed plate tearing behavior. Were it is not for the slant of the crack through the thickness...... of the plate, the problem would be mode I, but due to the slant the local conditions along the crack front are a combination of mode I and mode III. A three-dimensional formulation for steady-state crack propagation is employed to generate distributions of effective stress, stress triaxiality and Lode...

  3. Autonomic Vertical Elasticity of Docker Containers with ElasticDocker

    OpenAIRE

    Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe

    2017-01-01

    International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...

  4. Elastic torsional buckling of thin-walled composite cylinders

    Science.gov (United States)

    Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.

    1974-01-01

    The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.

  5. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  6. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  7. The impact of lateral variations in lithospheric thickness on glacial isostatic adjustment in West Antarctica

    Science.gov (United States)

    Nield, Grace A.; Whitehouse, Pippa L.; van der Wal, Wouter; Blank, Bas; O'Donnell, John Paul; Stuart, Graham W.

    2018-04-01

    Differences in predictions of Glacial Isostatic Adjustment (GIA) for Antarctica persist due to uncertainties in deglacial history and Earth rheology. The Earth models adopted in many GIA studies are defined by parameters that vary in the radial direction only and represent a global average Earth structure (referred to as 1D Earth models). Over-simplifying actual Earth structure leads to bias in model predictions in regions where Earth parameters differ significantly from the global average, such as West Antarctica. We investigate the impact of lateral variations in lithospheric thickness on GIA in Antarctica by carrying out two experiments that use different rheological approaches to define 3D Earth models that include spatial variations in lithospheric thickness. The first experiment defines an elastic lithosphere with spatial variations in thickness inferred from seismic studies. We compare the results from this 3D model with results derived from a 1D Earth model that has a uniform lithospheric thickness defined as the average of the 3D lithospheric thickness. Irrespective of deglacial history and sub-lithospheric mantle viscosity, we find higher gradients of present-day uplift rates (i.e. higher amplitude and shorter wavelength) in West Antarctica when using the 3D models, due to the thinner-than-1D-average lithosphere prevalent in this region. The second experiment uses seismically-inferred temperature as input to a power-law rheology thereby allowing the lithosphere to have a viscosity structure. Modelling the lithosphere with a power-law rheology results in behaviour that is equivalent to a thinner-lithosphere model, and it leads to higher amplitude and shorter wavelength deformation compared with the first experiment. We conclude that neglecting spatial variations in lithospheric thickness in GIA models will result in predictions of peak uplift and subsidence that are biased low in West Antarctica. This has important implications for ice-sheet modelling

  8. Elastic properties of liquid and solid argon in nanopores

    International Nuclear Information System (INIS)

    Schappert, Klaus; Pelster, Rolf

    2013-01-01

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β Ar,ads of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β Ar,surf increases with the thickness of the solid layers reaching the bulk value β Ar,liquid only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid–solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research. (paper)

  9. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Directory of Open Access Journals (Sweden)

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  10. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali

    2016-11-01

    The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.

  11. Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Tao, K.; Takezono, S.

    1989-01-01

    An analytical method for the elasto/visco-plastic problems of general, orthotropic moderately thick shells of revolution subjected to asymmetrical loads is developed in consideration of the effect of shear deformations. The Reissner-Naghdi theory for elastic moderately thick shells is extended in this analysis. As the constitutive equation, Hooke's law for orthotropic materials is used in the elastic region, and equations based on the orthotropic visco-plastic theory derived from the orthotropic plastic theory by Hill are employed in the plastic range. The visco-plastic strain rates are related to the stresses by Perzyna's equation. The fundamental equations for the increment are numerically solved by a finite difference method and the solutions are obtained by summation of the incremental values. In order to check the adequacy of the numerical analysis, experiments are performed on the elasto/visco-plastic deformation of a titanium cylindrical shell subjected to locally distributed loads. Good agreement is obtained between the experimental results and analytical solutions

  12. [Features associated with retinal thickness extension in diabetic macular oedema].

    Science.gov (United States)

    Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio; García-Rubio, Yatzul Zuhaila

    2015-01-01

    Clinically significant macular edema has features that are associated with a major risk of visual loss, with thickening that involves the centre of the macula, field 7 or visual deficiency, although it is unknown if these features are related to retinal thickness extension. An observational, analytical, prospective, cross-sectional and open study was conducted. The sample was divided into initial visual acuity ≥0.5, central field thickness, center point thickness, field 7 and macular volume more than the reported 2 standard deviation mean value in eyes without retinopathy. The extension was determined by the number of the central field area equivalent thickening and these features were compared with by Student's t test for independent samples. A total of 199 eyes were included. In eyes with visual acuity of ≥0.5, the mean extension was 2.88±1.68 and 3.2±1.63 in area equivalent in eyes with visual acuity 0.5 (p=0.12). The mean extension in eyes with less than 2 standard deviation of central field thickness, center point thickness, field 7 and macular volume was significantly lower than in eyes with more than 2 standard deviations (1.9±0.93 vs. 4.07±1.49, 2.44±1.47 vs. 3.94±1.52, 1.79±1.07 vs. 3.61±1.57 and 1.6±0.9 vs. 3.9±1.4, respectively, p<0.001). The extension of retinal thickness is related with the anatomical features reported with a greater risk of visual loss, but is not related to initial visual deficiency. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  13. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    Science.gov (United States)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  14. Three-dimensional vibrations of cylindrical elastic solids with V-notches and sharp radial cracks

    Science.gov (United States)

    McGee, O. G.; Kim, J. W.

    2010-02-01

    This paper provides free vibration data for cylindrical elastic solids, specifically thick circular plates and cylinders with V-notches and sharp radial cracks, for which no extensive previously published database is known to exist. Bending moment and shear force singularities are known to exist at the sharp reentrant corner of a thick V-notched plate under transverse vibratory motion, and three-dimensional (3-D) normal and transverse shear stresses are known to exist at the sharp reentrant terminus edge of a V-notched cylindrical elastic solid under 3-D free vibration. A theoretical analysis is done in this work utilizing a variational Ritz procedure including these essential singularity effects. The procedure incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction with an admissible set of " edge functions" that explicitly model the 3-D stress singularities which exist along a reentrant terminus edge (i.e., α>180°) of the V-notch. The first set of polynomials guarantees convergence to exact frequencies, as sufficient terms are retained. The second set of edge functions—in addition to representing the corner stress singularities—substantially accelerates the convergence of frequency solutions. This is demonstrated through extensive convergence studies that have been carried out by the investigators. Numerical analysis has been carried out and the results have been given for cylindrical elastic solids with various V-notch angles and depths. The relative depth of the V-notch is defined as (1- c/ a), and the notch angle is defined as (360°- α). For a very small notch angle (1° or less), the notch may be regarded as a "sharp radial crack." Accurate (four significant figure) frequencies are presented for a wide spectrum of notch angles (360°- α), depths (1- c/ a), and thickness ratios ( a/ h for plates and h/ a for cylinders). An extended database of frequencies for completely free thick sectorial, semi-circular, and

  15. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  16. Code conforming determination of cumulative usage factors for general elastic-plastic finite element analyses

    International Nuclear Information System (INIS)

    Rudolph, Juergen; Goetz, Andreas; Hilpert, Roland

    2012-01-01

    The procedures of fatigue analyses of several relevant nuclear and conventional design codes (ASME, KTA, EN, AD) for power plant components differentiate between an elastic, simplified elastic-plastic and elastic-plastic fatigue check. As a rule, operational load levels will exclude the purely elastic fatigue check. The application of the code procedure of the simplified elastic-plastic fatigue check is common practice. Nevertheless, resulting cumulative usage factors may be overly conservative mainly due to high code based plastification penalty factors Ke. As a consequence, the more complex and still code conforming general elastic-plastic fatigue analysis methodology based on non-linear finite element analysis (FEA) is applied for fatigue design as an alternative. The requirements of the FEA and the material law to be applied have to be clarified in a first step. Current design codes only give rough guidelines on these relevant items. While the procedure for the simplified elastic-plastic fatigue analysis and the associated code passages are based on stress related cycle counting and the determination of pseudo elastic equivalent stress ranges, an adaptation to elastic-plastic strains and strain ranges is required for the elastic-plastic fatigue check. The associated requirements are explained in detail in the paper. If the established and implemented evaluation mechanism (cycle counting according to the peak and valley respectively the rainflow method, calculation of stress ranges from arbitrary load-time histories and determination of cumulative usage factors based on all load events) is to be retained, a conversion of elastic-plastic strains and strain ranges into pseudo elastic stress ranges is required. The algorithm to be applied is described in the paper. It has to be implemented in the sense of an extended post processing operation of FEA e.g. by APDL scripts in ANSYS registered . Variations of principal stress (strain) directions during the loading

  17. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  18. Elastic interactions between hydrogen atoms in metals. II. Elastic interaction energies

    International Nuclear Information System (INIS)

    Shirley, A.I.; Hall, C.K.

    1986-01-01

    The fully harmonic lattice approximation derived in a previous paper is used to calculate the elastic interaction energies in the niobium-hydrogen system. The permanent-direct, permanent-indirect, induced-direct, and induced-indirect forces calculated previously each give rise to a corresponding elastic interaction between hydrogen atoms. The latter three interactions have three- and four-body terms in addition to the usual two-body terms. These quantities are calculated and compared with the corresponding two-body permanent elastic interactions obtained in the harmonic-approximation treatment of Horner and Wagner. The results show that the total induced elastic energy is approximately (1/3) the size of the total permanent elastic energy and opposite to it in sign. The total elastic energy due to three-body interactions is approximately (1/4) the size of the total two-body elastic energy, while the total four-body elastic energy is approximately 5% of the total two-body energy. These additional elastic energies are expected to have a profound effect on the thermodynamic and phase-change behavior of a metal hydride

  19. Thickness and nanomechanical properties of protective layer formed by TiF4 varnish on enamel after erosion

    Directory of Open Access Journals (Sweden)

    Maria Isabel Dantas de MEDEIROS

    2016-01-01

    Full Text Available Abstract The layer formed by fluoride compounds on tooth surface is important to protect the underlying enamel from erosion. However, there is no investigation into the properties of protective layer formed by NaF and TiF4 varnishes on eroded enamel. This study aimed to evaluate the thickness, topography, nanohardness, and elastic modulus of the protective layer formed by NaF and TiF4 varnishes on enamel after erosion using nanoindentation and atomic force microscopy (AFM. Human enamel specimens were sorted into control, NaF, and TiF4 varnish groups (n = 10. The initial nanohardness and elastic modulus values were obtained and varnishes were applied to the enamel and submitted to erosive challenge (10 cycles: 5 s cola drink/5 s artificial saliva. Thereafter, nanohardness and elastic modulus were measured. Both topography and thickness were evaluated by AFM. The data were subjected to ANOVA, Tukey’s test and Student’s t test (α = 0.05. After erosion, TiF4 showed a thicker protective layer compared to the NaF group and nanohardness and elastic modulus values were significantly lower than those of the control group. It was not possible to measure nanohardness and elastic modulus in the NaF group due to the thin protective layer formed. AFM showed globular deposits, which completely covered the eroded surface in the TiF4 group. After erosive challenge, the protective layer formed by TiF4 varnish showed significant properties and it was thicker than the layer formed by NaF varnish.

  20. Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall.

    Science.gov (United States)

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  1. Elasticity problems in domains with nonsmooth boundaries

    International Nuclear Information System (INIS)

    Esparza, David

    2001-01-01

    In the present work we study the behaviour of elastic stress fields in domains with non-regular boundaries. We consider three-dimensional problems in elastic media with thin conical defects (inclusions or cavities) and analyse the stress singularity at their vertices. To construct asymptotic expansions for the stress and displacement fields in terms of a small parameter ε related to the 'thickness' of the defect, we employ a technique based on the work by Kondrat'ev, Maz'ya, Nazarov and Plamenevskii. We first study the stress distribution in an elastic body with a thin conical notch. We derive an asymptotic representation for the stress singularity exponent by reducing the original problem to a spectral problem for a 9x9 matrix. The elements of this matrix are found to depend upon the geometry of the cross-section of the notch and the elastic properties of the medium. We specify the sets of eigenvalues and the corresponding eigenvectors for a circular, elliptical, 'triangular' and 'square' cross-section, and show that the strongest singularity is associated with the 'triangular' cross-section, and is generated by a non-axisymmetric load. We then analyse the stress distribution near a thin conical inclusion which is allowed to slide freely along its axis. We derive the representation for the stress singularity exponent for the case of a circular conical inclusion whose elastic properties differ from those of the medium. In the last chapter we study the stress distribution in the vicinity of a thin 'coated' conical inclusion. We show that a soft thin coating (perfectly bonded to the inclusion and the surrounding material) can be replaced by a so-called linear interface at which the normal displacement is discontinuous, and the stresses are proportional to the 'jump' in the normal displacement across the coating. We analyse the effect of the properties of the coating on the stress singularity exponent and compare the results with those for a perfectly bonded

  2. Conductivity studies on commercially available proton-conducting membranes with different equivalent weight

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J; Buechi, F N; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Two perfluorosulfonic acid membranes, Nafion{sup R} 105 and Nafion{sup R} 115 with the same thickness but different equivalent weights (EW = 1000 g/eq. resp. 1100 g/eq.) were characterised by conductivity measurements at different water vapour activities in the temperature range of 25-70{sup o}C. The results demonstrate that a lower membrane equivalent weight opens the possibility to obtain the needed proton conductivity at lower water vapour activity. This is especially important for those fuel cell applications, in which the cell is operated without external humidification of the fuel gases. (author) 5 figs., 5 refs.

  3. Strain localization and elastic-plastic coupling during deformation of porous sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Issen, Kathleen A. [Clarkson Univ., Potsdam, NY (United States). Mechanical and Aeronautical Engineering; Holcomb, David J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Olsson, William A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Ingraham, Mathew D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.

    2017-09-12

    Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli, C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.

  4. Water equivalent thickness of immobilization devices in proton therapy planning - Modelling at treatment planning and validation by measurements with a multi-layer ionization chamber.

    Science.gov (United States)

    Fellin, Francesco; Righetto, Roberto; Fava, Giovanni; Trevisan, Diego; Amelio, Dante; Farace, Paolo

    2017-03-01

    To investigate the range errors made in treatment planning due to the presence of the immobilization devices along the proton beam path. The measured water equivalent thickness (WET) of selected devices was measured by a high-energy spot and a multi-layer ionization chamber and compared with that predicted by treatment planning system (TPS). Two treatment couches, two thermoplastic masks (both un-stretched and stretched) and one headrest were selected. At TPS, every immobilization device was modelled as being part of the patient. The following parameters were assessed: CT acquisition protocol, dose-calculation grid-sizes (1.5 and 3.0mm) and beam-entrance with respect to the devices (coplanar and non-coplanar). Finally, the potential errors produced by a wrong manual separation between treatment couch and the CT table (not present during treatment) were investigated. In the thermoplastic mask, there was a clear effect due to beam entrance, a moderate effect due to the CT protocols and almost no effect due to TPS grid-size, with 1mm errors observed only when thick un-stretched portions were crossed by non-coplanar beams. In the treatment couches the WET errors were negligible (0.5mm with a 3.0mm grid-size. In the headrest, WET errors were negligible (0.2mm). With only one exception (un-stretched mask, non-coplanar beams), the WET of all the immobilization devices was properly modelled by the TPS. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  6. Effective elastic thickness along the conjugate passive margins of India, Madagascar and Antarctica: A re-evaluation using the Hermite multitaper Bouguer coherence application

    Science.gov (United States)

    Ratheesh-Kumar, R. T.; Xiao, Wenjiao

    2018-05-01

    Gondwana correlation studies had rationally positioned the western continental margin of India (WCMI) against the eastern continental margin of Madagascar (ECMM), and the eastern continental margin of India (ECMI) against the eastern Antarctica continental margin (EACM). This contribution computes the effective elastic thickness (Te) of the lithospheres of these once-conjugated continental margins using the multitaper Bouguer coherence method. The results reveal significantly low strength values (Te ∼ 2 km) in the central segment of the WCMI that correlate with consistently low Te values (2-3 km) obtained throughout the entire marginal length of the ECMM. This result is consistent with the previous Te estimates of these margins, and confirms the idea that the low-Te segments in the central part of the WCMI and along the ECMM represents paleo-rift inception points of the lithospheric margins that was thermally and mechanically weakened by the combined action of the Marion hotspot and lithospheric extension during the rifting. The uniformly low-Te value (∼2 km) along the EACM indicates a mechanically weak lithospheric margin, probably due to considerable stretching of the lithosphere, considering the fact that this margin remained almost stationary throughout its rift history. In contrast, the ECMI has comparatively high-Te variations (5-11 km) that lack any correlation with the regional tectonic setting. Using gravity forward and inversion applications, we find a leading order of influence of sediment load on the flexural properties of this marginal lithosphere. The study concludes that the thick pile of the Bengal Fan sediments in the ECMI masks and has erased the signal of the original load-induced topography, and its gravity effect has biased the long-wavelength part of the observed gravity signal. The hence uncorrelated flat topography and deep lithospheric flexure together contribute a bias in the flexure modeling, which likely accounts a relatively high Te

  7. Application of generalized function to dynamic analysis of elasto-plastic thick plates

    International Nuclear Information System (INIS)

    Zheng, D.; Weng, Z.

    1987-01-01

    The elasto-plastic dynamic analysis of thick plates is of great significance to the research and the design on an anti-seismic structure and an anti-explosive structure. In this paper, the derivative of δ-function is handled by using the generalized function. The dynamic influence coefficient of thick plates in deduced. A dynamic response of elasto-plastic thick plates its material has hardening behaviour considered, is analysed by using known elastic solutions. The general expressions for the dynamic response of elasto-plastic rectangular thick plates subjected arbitrary loads are given. Detailed computations are performed for the square plates of various height-span ratios. The results are compared with those obtained from the improved theory and the classical theory of plates. The modification of the classical deflection theory for plates is employed. The increment analysis is used for calculations. The yield function is considered as a function of inplane and transverse shear stresses. (orig./GL)

  8. Cracking of a layered medium on an elastic foundation under thermal shock

    Science.gov (United States)

    Rizk, Abd El-Fattah A.; Erdogan, Fazil

    1988-01-01

    The cladded pressure vessel under thermal shock conditions which is simulated by using two simpler models was studied. The first model (Model 1) assumes that, if the crack size is very small compared to the vessel thickness, the problem can be treated as a semi-infinite elastic medium bonded to a very thin layer of different material. However, if the crack size is of the same order as the vessel thickness, the curvature effects may not be negligible. In this case it is assumed that the relatively thin walled hollow cylinder with cladding can be treated as a composite beam on an elastic foundation (Model 2). In both models, the effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. The calculated results include the transient temperature, thermal stresses in the uncracked medium and stress intensity factors which are presented as a function of time, and the duration of cooling ramp. The stress intensity factors are also presented as a function of the size and the location of the crack. The problem is solved for two bonded materials of different thermal and mechanical properties. The mathematical formulation results in two singular integral equations which are solved numerically. The results are given for two material pairs, namely an austenitic steel layer welded on a ferritic steel substrate, and a ceramic coating on ferritic steel. In the case of the yielded clad, the stress intensity factors for a crack under the clad are determined by using a plastic strip model and are compared with elastic clad results.

  9. Influence of wood moisture content on the modulus of elasticity in compression parallel to the grain

    Directory of Open Access Journals (Sweden)

    Diogo Aparecido Lopes Silva

    2012-04-01

    Full Text Available Brazilian Standard ABNT NBR7190:1997 for timber structures design, adopts a first degree equation to describe the influence of wood moisture content. Periodically, when necessary, the referred standard is revised in order to analyze inconsistencies and to adopt considerations according new realities verified. So, the present paper aims to examine the adequacy of its equation which corrects to 12% of moisture the values of rigidity properties obtained on experimental tests. To quantify the moisture influence on modulus of elasticity, it was applied tests of compression parallel to the grain for six specimens of different strength classes, considering nominal moisture of 12; 20; 25; 30%. As results, modulus of elasticity in the moisture range 25-30% showed statistically equivalents, and was obtained a first degree equation to correlate the studied variables which leads to statically equivalent estimations when compared with results by ABNT NBR7190:1997 equation. However, it was indicated to maintain the current expression for the next text of the referred document review, without prejudice to statistical significance of the estimates.

  10. The propagation of nonlinear rayleigh waves in layered elastic half-space

    International Nuclear Information System (INIS)

    Ahmetolan, S.

    2004-01-01

    In this work, the propagation of small but finite amplitude generalized Rayleigh waves in an elastic half-space covered by a different elastic layer of uniform and finite thickness is considered. The constituent materials are assumed to be homogeneous, isotropic, compressible hyperelastic. Excluding the harmonic resonance phenomena, it is shown that the nonlinear self modulation of generalized Rayleigh waves is governed asymptotically by a nonlinear Schrodinger (NLS) equation. The stability of the solutions and the existence of solitary wave-type solutions a NLS are strongly depend on the sign of the product of the coefficients of the nonlinear and dipersion terms of the equation.Therefore the analysis continues with the examination of dependence of these coefficients on the nonlinear material parameters. Three different models have been considered which are nonlinear layer-nonlinear half space, linear layer-nonlinear half space and nonlinear layer-linear half space. The behavior of the coefficients of the NLS equation was also analyzed the limit as h(thickness of the layer) goes to zero and k(the wave number) is constant. Then conclusions are drawn about the effect of nonlinear material parameters on the wave modulation. In the numerical investigations both hypothetical and real material models are used

  11. Measurement of the thickness of a target deposited in a substrate

    International Nuclear Information System (INIS)

    Martinez Q, E.; Aguilera, E.F.

    1990-12-01

    Being based on the Elastic scattering and in the Energy losses that suffer a projectile to the interacting with the matter, a method that allows to determine the thickness of a target deposited in a more heavy substrate is presented. The obtained results are consistent with that waited and the derived errors of the method are small. The used technique allows to reduce in considerable form the systematic errors coming from the calibration of the equipment. It is considered that this method is applicable in an interval of thickness quite wide and for many materials since it is only necessary to choose the projectile type and the energy of the same one appropriately. (Author)

  12. Examination of optimal radiation quality in the lead equivalent examination of x-ray protective clothing

    International Nuclear Information System (INIS)

    Inoue, Shinichi; Matsuzawa, Rie; Matsumoto, Mitsuhiro

    2004-01-01

    The objective of this study was to determine the effective lead thickness of the apron for radiation protective clothing, i.e., the lead equivalent, a method of performing the lead equivalent examination is provided in the Japanese Industrial Standards (JIS). We proposed a method of computation using an attenuation coefficient, and examined the measurement accuracy and optimal radiation quality using both. We were able to compute the lead equivalent with sufficient accuracy when using radiation quality of about 60 keV in the range of radiation quality examined. This technique was also examined in the measurement used for the marketing of radiation protective clothing. (author)

  13. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations

    International Nuclear Information System (INIS)

    Civalek, Omer; Acar, Mustafa Hilmi

    2007-01-01

    The method of discrete singular convolution (DSC) is used for the bending analysis of Mindlin plates on two-parameter elastic foundations for the first time. Two different realizations of singular kernels, such as the regularized Shannon's delta (RSD) kernel and Lagrange delta sequence (LDS) kernel, are selected as singular convolution to illustrate the present algorithm. The methodology and procedures are presented and bending problems of thick plates on elastic foundations are studied for different boundary conditions. The influence of foundation parameters and shear deformation on the stress resultants and deflections of the plate have been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results

  14. Elastic-plastic analysis of part-through crack propagation in piping and pressure vessels

    International Nuclear Information System (INIS)

    Souza, L.A. de; Ebecken, N.F.F.

    1986-01-01

    The shell structures, often used in the construction of reservoirs, pipings, pressure vessels, nuclear power plants, etc, with part-through crack along its thickness, are analysed, using a computer system developed by the finite element method. The surface is discretized with three-dimensional quadratic elements, degenerated in its mid-surface, such the fracture is simulated by scalar elements (non linear springs). The results are analysed by the stress intensity factor K Sub(I) and the strain energy release rate, which is known as J-integral. The analysis is performed in the elastic and elastic-plastic regime. The basic hipothesis and the formulation adopted in the derivation of the scalar elements are also shown. (Author) [pt

  15. Decreased Thickness and Integrity of the Macular Elastic Layer of Bruch’s Membrane Correspond to the Distribution of Lesions Associated with Age-Related Macular Degeneration

    Science.gov (United States)

    Chong, N.H. Victor; Keonin, Jason; Luthert, Phil J.; Frennesson, Christina I.; Weingeist, David M.; Wolf, Rachel L.; Mullins, Robert F.; Hageman, Gregory S.

    2005-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly. In its severest form, choroidal neovessels breach the macular Bruch’s membrane, an extracellular matrix compartment comprised of elastin and collagen laminae, and grow into the retina. We sought to determine whether structural properties of the elastic lamina (EL) correspond to the region of the macula that is predilected toward degeneration in AMD. Morphometric assessment of the macular and extramacular regions of 121 human donor eyes, with and without AMD, revealed a statistically significant difference in both the integrity (P macula than in the periphery. The integrity of the macular EL was significantly lower in donors with early-stage AMD (P = 0.028), active choroidal neovascularization (P = 0.020), and disciform scars (P = 0.003), as compared to unaffected, age-matched controls. EL thickness was significantly lower only in individuals with disciform scars (P = 0.008). The largest gaps in macular EL integrity were significantly larger in all categories of AMD (each P macula is more susceptible to degenerative events that occur in this disease. PMID:15632016

  16. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method

    International Nuclear Information System (INIS)

    Anjomshoa, Amin; Tahani, Masoud

    2016-01-01

    In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.

  17. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  18. FEM simulation of the die compaction of pharmaceutical products: influence of visco-elastic phenomena and comparison with experiments.

    Science.gov (United States)

    Diarra, Harona; Mazel, Vincent; Busignies, Virginie; Tchoreloff, Pierre

    2013-09-10

    This work studies the influence of visco-elastic behavior in the finite element method (FEM) modeling of die compaction of pharmaceutical products and how such a visco-elastic behavior may improve the agreement between experimental and simulated compression curves. The modeling of the process was conducted on a pharmaceutical excipient, microcrystalline cellulose (MCC), by using Drucker-Prager cap model coupled with creep behavior in Abaqus(®) software. The experimental data were obtained on a compaction simulator (STYLCAM 200R). The elastic deformation of the press was determined by performing experimental tests on a calibration disk and was introduced in the simulation. Numerical optimization was performed to characterize creep parameters. The use of creep behavior in the simulations clearly improved the agreement between the numerical and experimental compression curves (stresses, thickness), mainly during the unloading part of the compaction cycle. For the first time, it was possible to reproduce numerically the fact that the minimum tablet thickness is not obtained at the maximum compression stress. This study proves that creep behavior must be taken into account when modeling the compaction of pharmaceutical products using FEM methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A calculational method of photon dose equivalent based on the revised technical standards of radiological protection law

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Suzuki, Tomoo

    1991-03-01

    The effective conversion factor for photons from 0.03 to 10 MeV were calculated to convert the absorbed dose in air to the 1 cm, 3 mm, and 70 μm depth dose equivalents behind iron, lead, concrete, and water shields up to 30 mfp thickness. The effective conversion factor changes slightly with thickness of the shields and becomes nearly constant at 5 to 10 mfp. The difference of the effective conversion factor was less than 2% between plane normal and point isotropic geometries. It is suggested that the present method, making the data base of the exposure buildup factors useful, would be very effective as compared to a new evaluation of the dose equivalent buildup factors. 5 refs., 7 figs., 22 tabs

  20. Effects of corrugation shape on frequency band-gaps for longitudinal wave motion in a periodic elastic layer

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2016-01-01

    The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band-gaps are det......The paper concerns determining frequency band-gaps for longitudinal wave motion in a periodic waveguide. The waveguide may be considered either as an elastic layer with variable thickness or as a rod with variable cross section. As a result, widths and locations of all frequency band......, harmonic in the corrugation series. The revealed insights into the mechanism of band-gap formation can be used to predict locations and widths of all frequency band-gaps featured by any corrugation shape. These insights are general and can be valid also for other types of wave motion in periodic structures...

  1. Critical study of some soft-tissue equivalent material. Sensitivity to neutrons of 1 keV to 14 MeV

    International Nuclear Information System (INIS)

    Kerviler, H. de; Pages, L.; Tardy-Joubert, Ph.

    1965-01-01

    Authors have studied the elastic and inelastic reactions on various elements contribution to kerma in standard soft tissue and as a function of neutron energy from 1 keV to 14 MeV the ratio of kerma in tissue equivalent material to kerma in soft tissue. The results of calculations are made for materials without hydrogen in view to state exactly their neutron sensitivity and for the following hydrogenous materials: Rossi and Failla plastic, MixD, pure polyethylene and a new CEA tissue equivalent (a magnesium fluoride and polyethylene compound). Results for γ-rays are given. (authors) [fr

  2. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study

    DEFF Research Database (Denmark)

    Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E.

    2013-01-01

    Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity...... is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine...... heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load...

  3. Blocky inversion of multichannel elastic impedance for elastic parameters

    Science.gov (United States)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  4. High-throughput measurement of polymer film thickness using optical dyes

    Science.gov (United States)

    Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien

    2005-01-01

    Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.

  5. Politico-economic equivalence

    DEFF Research Database (Denmark)

    Gonzalez Eiras, Martin; Niepelt, Dirk

    2015-01-01

    Traditional "economic equivalence'' results, like the Ricardian equivalence proposition, define equivalence classes over exogenous policies. We derive "politico-economic equivalence" conditions that apply in environments where policy is endogenous and chosen sequentially. A policy regime and a st......Traditional "economic equivalence'' results, like the Ricardian equivalence proposition, define equivalence classes over exogenous policies. We derive "politico-economic equivalence" conditions that apply in environments where policy is endogenous and chosen sequentially. A policy regime...... their use in the context of several applications, relating to social security reform, tax-smoothing policies and measures to correct externalities....

  6. Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation

    International Nuclear Information System (INIS)

    Mohanty, S.C.; Dash, R.R.; Rout, T.

    2011-01-01

    Highlights: → Winkler's elastic foundation enhances the stability of both FGO and FGSW beams with material properties distribution along the thickness as per power law and exponential law. → FGO beam with steel-rich bottom is more stable than a beam with aluminium-rich bottom for both the types of property distribution. → FGSW beam with the properties in FGM core varying as per power law becomes less stable with increase in core thickness. → Exponential variation of core properties enhances its stability with the increase in core thickness. - Abstract: This article presents an investigation of the dynamic stability of functionally graded ordinary (FGO) beam and functionally graded sandwich (FGSW) beam on Winkler's elastic foundation using finite element method. The material properties are assumed to follow both exponential and power law. It is found that the foundation enhances stability of the FGO beam for first three modes. The effect of distributions of material properties of the FGO beam on its parametric instability is investigated. It is found that the FGO beam with steel-rich bottom is more stable as compared to that with Al-rich bottom for all the three modes and for both the types of property distributions. The effect of property distribution on stability of FGSW beam with steel as bottom skin and alumina as top skin is also investigated. It is observed that the beam having properties in core according to exponential law is the most stable beam while the beam having properties in core as per power law with index 2.5 is the least stable beam. For an FGSW beam it is found that the increase in the thickness of FGM core makes the beam less stable when the properties in FGM vary as per power law whereas the stability of beam enhances with the increase of thickness of FGM core when the properties vary according to exponential law.

  7. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-01-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects

  8. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    International Nuclear Information System (INIS)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-01-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO 3 film grown on (La 0.3 Sr 0.7 )(Al 0.65 Ta 0.35 )O 3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ∼12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness

  9. Finite element elastic-plastic analysis of LMFBR components

    International Nuclear Information System (INIS)

    Levy, A.; Pifko, A.; Armen, H. Jr.

    1978-01-01

    The present effort involves the development of computationally efficient finite element methods for accurately predicting the isothermal elastic-plastic three-dimensional response of thick and thin shell structures subjected to mechanical and thermal loads. This work will be used as the basis for further development of analytical tools to be used to verify the structural integrity of liquid metal fast breeder reactor (LMFBR) components. The methods presented here have been implemented into the three-dimensional solid element module (HEX) of the Grumman PLANS finite element program. These methods include the use of optimal stress points as well as a variable number of stress points within an element. This allows monitoring the stress history at many points within an element and hence provides an accurate representation of the elastic-plastic boundary using a minimum number of degrees of freedom. Also included is an improved thermal stress analysis capability in which the temperature variation and corresponding thermal strain variation are represented by the same functional form as the displacement variation. Various problems are used to demonstrate these improved capabilities. (Auth.)

  10. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  11. Pavement system with rubber tire chips in subgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ashtakala, B.; Hoque, A.K.M.M. [Concordia Univ., Montreal, PQ (Canada). Dept. of Civil Engineering

    1995-12-31

    A pavement design method was developed in which shredded rubber tire chips mixed with sand were used as a material for pavement subgrade. Rubber tire chips are highly compressible and produce both elastic and plastic deformations under the application of loads. Sand was added to fill the void between the tire chips and make the mixture a strong material. The design method considered the vertical compressive strain produced by the design life traffic load 18k (80 KN) repetitions. The equivalent thicknesses of the layers above the subgrade corresponding to this vertical compressive strain were determined using contour charts. From this equivalent thickness, the thicknesses for asphalt pavement, base, and sub-base were determined by Odemark`s method. 3 refs., 1 tab., 3 figs.

  12. Calculation of Reaction Forces in the Boiler Supports Using the Method of Equivalent Stiffness of Membrane Wall

    Directory of Open Access Journals (Sweden)

    Josip Sertić

    2014-01-01

    Full Text Available The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  13. Environmental Controls on Snow Cover Thickness and Water Equivalent in Two Sub-Arctic Mountain Catchments

    OpenAIRE

    Cosgrove, Christopher

    2015-01-01

    The spatial variability of snow cover characteristics (depth, density, and snow water equivalent [SWE]) has paramount importance for the management of water resources in mountain environments. Passive microwave (PM) inference of SWE from space-borne instrumentation is increasingly used but the reliability of this technique remains limited in mountainous areas. Complex topography and the transition between forest and alpine tundra vegetation zones create large spatial heterogeneities in the sn...

  14. What is correct: equivalent dose or dose equivalent

    International Nuclear Information System (INIS)

    Franic, Z.

    1994-01-01

    In Croatian language some physical quantities in radiation protection dosimetry have not precise names. Consequently, in practice either terms in English or mathematical formulas are used. The situation is even worse since the Croatian language only a limited number of textbooks, reference books and other papers are available. This paper compares the concept of ''dose equivalent'' as outlined in International Commission on Radiological Protection (ICRP) recommendations No. 26 and newest, conceptually different concept of ''equivalent dose'' which is introduced in ICRP 60. It was found out that Croatian terminology is both not uniform and unprecise. For the term ''dose equivalent'' was, under influence of Russian and Serbian languages, often used as term ''equivalent dose'' even from the point of view of ICRP 26 recommendations, which was not justified. Unfortunately, even now, in Croatia the legal unit still ''dose equivalent'' defined as in ICRP 26, but the term used for it is ''equivalent dose''. Therefore, in Croatian legislation a modified set of quantities introduced in ICRP 60, should be incorporated as soon as possible

  15. Modeling and characterization of through-the-thickness properties of 3D woven composites

    Science.gov (United States)

    Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei

    1995-01-01

    The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.

  16. Equivalence between Born–Infeld tachyon and effective real scalar field theories for brane structures in warped geometry

    International Nuclear Information System (INIS)

    Bernardini, A.E.; Bertolami, O.

    2013-01-01

    An equivalence between Born–Infeld and effective real scalar field theories for brane structures is built in some specific warped space–time scenarios. Once the equations of motion for tachyon fields related to the Born–Infeld action are written as first-order equations, a simple analytical connection with a particular class of real scalar field superpotentials can be found. This equivalence leads to the conclusion that, for a certain class of superpotentials, both systems can support identical thick brane solutions as well as brane structures described through localized energy densities, T 00 (y), in the 5th dimension, y. Our results indicate that thick brane solutions realized by the Born–Infeld cosmology can be connected to real scalar field brane scenarios which can be used to effectively map the tachyon condensation mechanism

  17. Why aortic elasticity differs among classical and non-classical mitral valve prolapsed?

    Science.gov (United States)

    Unlu, Murat; Demirkol, Sait; Aparci, Mustafa; Arslan, Zekeriya; Balta, Sevket; Dogan, Umuttan; Kilicarslan, Baris; Ozeke, Ozcan; Celik, Turgay; Iyisoy, Atila

    2014-01-01

    Mitral valve prolapse (MVP) is the most common valvular heart disease and characterized by the displacement of an abnormally thickened mitral valve leaflet into the left atrium during systole. There are two types of MVP, broadly classified as classic (thickness ≥5 mm) and non-classic (thickness elastic properties of the aorta in young male patients with classical and non-classical MVP. In the present study, 63 young adult males (mean age: 22.7 ± 4.2) were included. Patients were divided into classic MVP (n = 27) and non-classic MVP (n = 36) groups. Aortic strain, aortic distensibility and aortic stiffness index were calculated by using aortic diameters obtained by echocardiography and blood pressures measured by sphygmomanometer. There was no significant difference between the groups in terms of age, body mass index, left ventricular mass and ejection fraction. When comparing the MVP group it was found that aortic strain and aortic distensibility were increased (p = 0.0027, p = 0.016, respectively) whereas the aortic stiffness index was decreased (p = 0.06) in the classical MVP group. We concluded that the elastic properties of the aorta is increased in patients with classic MVP. Further large scale studies should be performed to understand of morphological and physiological properties of the aorta in patients with MVP.

  18. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    Science.gov (United States)

    Jandaghian, A. A.; Rahmani, O.

    2016-03-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials.

  19. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    International Nuclear Information System (INIS)

    Jandaghian, A A; Rahmani, O

    2016-01-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials. (paper)

  20. Calculation of equivalent dose index for electrons from 5,0 to 22,0 MeV by the Monte Carlo method

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1979-01-01

    The index of equivalent dose in depth and in a sphere surface of a soft tissue equivalent material were determined by Monte Carlo method for electron irradiations from 5,0 to 22.00 MeV. The effect of different irradiation geometries which simulate the incidence of onedirectional opposite rotational and isotropic beams was studied. It is also shown that the detector of wall thickness with 0.5g/cm 2 and isotropic response com be used to measure index of equivalent dose for fast electrons. The alternative concept of average equivalent dose for radiation protection is discussed. (M.C.K.) [pt

  1. Effect of thermoplastic appliance thickness on initial stress distribution in periodontal ligament

    Directory of Open Access Journals (Sweden)

    De-Shin Liu

    2015-04-01

    Full Text Available A numerical investigation into the initial stress distribution induced within the periodontal ligament by thermoplastic appliances with different thicknesses is performed. Based on the plaster model of a 25-year-old male patient, a finite element model of the maxillary lateral incisors and their supporting structures is constructed. In addition, four finite element models of thermoplastic appliances with different thicknesses in the range of 0.5–1.25 mm are also constructed based on the same plaster model. Finite element analysis simulations are performed to examine the effects of the force delivered by the thermoplastic appliances on the stress response of the periodontal ligament during the elastic recovery process. The results show that the stress induced in the periodontal ligament increases with an increasing appliance thickness. For example, the stress triples from 0.0012 to 0.0038 MPa as the appliance thickness is increased from 0.75 to 1.25 mm. The results presented in this study provide a useful insight into as a result of the compressive and tensile stresses induced by thermoplastic appliances of different thicknesses. Moreover, the results enable the periodontal ligament stress levels produced by thermoplastic appliances of different thicknesses to be reliably estimated.

  2. The impact of ice I rheology on interior models of Ganymede: The elastic vs. the visco-elastic case

    Science.gov (United States)

    Steinbrügge, Gregor; Hussmann, Hauke; Sohl, Frank; Oberst, Jürgen

    2015-04-01

    Many investigations on key processes of icy satellites are driven by the rheological behavior of planetary ices. Future missions to Jupiter's icy moons (e.g. JUICE / Europa clipper) aimed at constraining the thickness of the outer ice shell using radio science and/or laser altimetry will have to address this problem. We investigate for the case of Ganymede under which conditions the ice I viscosity could be constrained by measuring the phase-lag of the tidal response using laser altimetry. In the absence of seismic data, interior structure models are constrained by the satellite's mean density and mean moment-of-inertia factor. One key observable to reduce the ambiguity of the corresponding structural models is the measurement of the dynamic response of the satellite's outer ice shells to tidal forces exerted by Jupiter and characterized by the body tide surface Love numbers h2 and k2. The Love number k2 measures the variation of the gravitational potential due to tidally induced internal redistribution of mass and can be inferred from radio science experiments. The Love number h2 is a measure for the tide-induced radial displacement of the satellite's surface. It is an advantage that Ganymede's surface displacement Love number h2 can be expected to be measured with a high accuracy using laser altimetry (Steinbrügge et al., 2014). However, the determination of the resulting ice thickness further depends on the possible existence of a liquid subsurface water ocean and on the tidally effective rheology of the outer ice shell (Moore and Schubert, 2003). Here, we distinguish between an elastic, visco-elastic or even fluid behavior in the sense of the Maxwell model and alternative rheological models. In the case of Ganymede the fluid case would imply high ice temperatures which are at odds with thermal equilibrium models calculated by Spohn and Schubert (2003). However the visco-elastic case is still possible. Laboratory measurements of ice I (e.g. Sotin et al., 1998

  3. Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.

    Science.gov (United States)

    Park, Jung-Hoon; Choi, Nak-Sam

    2017-02-01

    For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Stressed-deformed state of mountain rocks in elastic stage and between elasticity

    Directory of Open Access Journals (Sweden)

    Samedov A.M.

    2017-12-01

    Full Text Available The problems of the stress-strain state of rocks in the elastic stage and beyond the elastic limits, and the ways of schematizing the tension and compression diagrams were reviewed in the article. To simplify calculations outside the elastic range, the tension (compression diagrams are usually schematized, i.e. are replaced by curved smooth lines having a fairly simple mathematical expression and at the same time well coinciding with the experimentally obtained diagrams. When diagram is to be schematized, it is necessary to take a constant temperature of superheated water steam if a rock test is planned in a relaxed form. Note that when the diagram is schematizing, the difference between the limits of proportionality and fluidity is erased. This allows the limit of proportionality to be considered the limit of fluidity. Schematicization can be carried out in the area where the tensile strength (compression is planned to be destroyed with the established weakening of rocks by exposure to water steam or chemical reagents. Samples of rocks in natural form were tested and weakened by means of superheated water steam (220 °C and more and chemical reagents for tension and compression. The data are obtained, the diagrams of deformation are constructed and schematized in the elastic stage and beyond the elastic limit. Based on the schematic diagrams of deformation, the components of stress and strain were composed in the elastic stage and beyond the elastic limit. It is established in the publication that rocks under compression and stretching deform, both within the elastic stage, and beyond the limits of elasticity. This could be seen when the samples, both in natural and in weakened state, with superheated water steam (more than 220 °C or chemical reagents were tested. In their natural form, they are mainly deformed within the elastic stage and are destroyed as a brittle material, and in a weakened form they can deform beyond the elastic stage and

  5. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    International Nuclear Information System (INIS)

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  6. Equivalent pore radius and velocity of elastic waves in shale. Skjold Flank-1 Well, Danish North Sea

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Oji, Collins O.

    2013-01-01

    and BET specific surface were obtained from these samples using kaolinite and smectite as reference. The cuttings samples were also characterized with respect to mineralogical composition, content of organic carbon and cation exchange capacity.Equivalent pore radius was calculated from porosity and BET...

  7. Scattering of elastic waves by thin inclusions

    International Nuclear Information System (INIS)

    Simons, D.A.

    1980-01-01

    A solution is derived for the elastic waves scattered by a thin inclusion. The solution is asymptotically valid as inclusion thickness tends to zero with the other dimensions and the frequency fixed. The method entails first approximating the total field in the inclusion in terms of the incident wave by enforcing the appropriate continuity conditions on traction and displacement across the interface, then using these displacements and strains in the volume integral that gives the scattered field. Expressions are derived for the far-field angular distributions of P and S waves due to an incident plane P wave, and plots are given for normalized differential cross sections of an oblate spheroidal tungsten carbide inclusion in a titanium matrix

  8. Development of Equivalent Material Properties of Microbump for Simulating Chip Stacking Packaging

    Directory of Open Access Journals (Sweden)

    Chang-Chun Lee

    2015-08-01

    Full Text Available three-dimensional integrated circuit (3D-IC structure with a significant scale mismatch causes difficulty in analytic model construction. This paper proposes a simulation technique to introduce an equivalent material composed of microbumps and their surrounding wafer level underfill (WLUF. The mechanical properties of this equivalent material, including Young’s modulus (E, Poisson’s ratio, shear modulus, and coefficient of thermal expansion (CTE, are directly obtained by applying either a tensile load or a constant displacement, and by increasing the temperature during simulations, respectively. Analytic results indicate that at least eight microbumps at the outermost region of the chip stacking structure need to be considered as an accurate stress/strain contour in the concerned region. In addition, a factorial experimental design with analysis of variance is proposed to optimize chip stacking structure reliability with four factors: chip thickness, substrate thickness, CTE, and E-value. Analytic results show that the most significant factor is CTE of WLUF. This factor affects microbump reliability and structural warpage under a temperature cycling load and high-temperature bonding process. WLUF with low CTE and high E-value are recommended to enhance the assembly reliability of the 3D-IC architecture.

  9. Elastic scattering and quasi-elastic transfers

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1978-01-01

    Experiments are presented which it will be possible to carry out at GANIL on the elastic scattering of heavy ions: diffraction phenomena if the absorption is great, refraction phenomena if absorption is low. The determination of the optical parameters can be performed. The study of the quasi-elastic transfer reactions will make it possible to know the dynamics of the nuclear reactions, form exotic nuclei and study their energy excitation spectrum, and analyse the scattering and reaction cross sections [fr

  10. Estimation of critical thickness of Stranski-Krastanow transition in GeSi/Sn/Si system

    Science.gov (United States)

    Lozovoy, K. A.; Pishchagin, A. A.; Kokhanenko, A. P.; Voitsekhovskii, A. V.

    2017-11-01

    In this paper Stranski-Krastanow growth of Ge x Si1-x epitaxial layers on the Si(001) surface with pre-deposited tin layer with the thickness less than 1 ML is considered. For the calculations of critical thickness of transition from 2D to 3D growth in this paper a theoretical model based on general nucleation theory is used. This model is specified by taking into account dependencies of elastic modulus, lattices mismatch and surface energy of side facet on the composition x, as well as change in the adatoms diffusion coefficient and surface energy of the substrate in the presence of tin. As a result, dependencies of critical thickness of Stranski-Krastanow transition on compositon x and temperature are obtained. The simulated results are in a good agreement with experimentally observed results.

  11. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    Science.gov (United States)

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  12. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  13. Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations.

    Directory of Open Access Journals (Sweden)

    Schanila Nawaz

    Full Text Available The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.

  14. Development of a lower extremity wearable exoskeleton with double compact elastic module: preliminary experiments

    Directory of Open Access Journals (Sweden)

    Y. Long

    2017-08-01

    Full Text Available In this paper, a double compact elastic module is designed and implemented in the lower extremity exoskeleton. The double compact elastic module is composed of two parts, i.e., physical human robot interaction (pHRI measurement and the elastic actuation system (EAS, which are called proximal elastic module (PEM and distal elastic module (DEM respectively. The PEM is used as the pHRI information collection device while the DEM is used as the compliance device. A novel compact parallelogram-like structure based torsional spring is designed and developed. An iterative finite element analysis (FEA based optimization process was conducted to find the optimal parameters in the search space. In the PEM, the designed torsional spring has an outer circle with a diameter of 60 mm and an inner hole with a diameter of 12 mm, while in the DEM, the torsional spring has the outer circle with a diameter of 80 mm and the inner circle with a diameter of 16 mm. The torsional spring in the PEM has a thickness of 5 mm and a weight of 60 g, while that in the DEM has a thickness of 10 mm and a weight of 80 g. The double compact elastic module prototype is embedded in the mechanical joint directly. Calibration experiments were conducted on those two elastic modules to obtain the linear torque versus angle characteristic. The calibration experimental results show that this torsional spring in the PEM has a stiffness of 60.2 Nm rad−1, which is capable of withstanding a maximum torque of 4 Nm, while that in the DEM has a stiffness of 80.2 Nm rad−1, which is capable of withstanding a maximum torque of 30 Nm. The experimental results and the simulation data show that the maximum resultant errors are 6 % for the PEM and 4 % for the DEM respectively. In this paper, an assumed regression algorithm is used to learn the human motion intent (HMI based on the pHRI collection. The HMI is defined as the angular position of the human limb joint. A

  15. Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium.

    Science.gov (United States)

    Manosroi, A; Jantrawut, P; Manosroi, J

    2008-08-06

    The objective of this study was to develop a novel elastic bilayer vesicle entrapped with the non-steroidal anti-inflammatory drug (NSAID), diclofenac diethylammonium (DCFD) for topical use. Eighteen bilayer vesicular formulations composing of DPPC or Tween 61 or Span 60 mixed with cholesterol (at 1:1, 3:7 and 1:1 molar ratios, respectively) and ethanol at 0-25% (v/v), by chloroform film method with sonication were developed. The elastic Tween 61 niosomes which gave no sedimentation, no layer separation, unchanged particle sizes (about 200 nm) were selected to entrap DCFD. The entrapment efficiency of the drug in the conventional and elastic Tween 61 niosomes was 65 and 93%, respectively. At least 87% of DCFD determined by HPLC remained in elastic Tween 61 niosomes when kept at 4, 27 and 45 degrees C for 3 months. The deformability index values of the elastic niosomes were 13.76 and 3.44 times higher than the conventional niosomes entrapped and not entrapped with the drug, respectively, indicating the higher flexibility of the elastic vesicle especially, when entrapped with the drug. Transdermal absorption through excised rat skin was performed by vertical Franz diffusion cell at 32+/-2 degrees C for 6h. Gel containing elastic niosomes exhibited fluxes of DCFD in the stratum corneum (SC), deeper skin layer (viable epidermis and dermis, VED) and receiver chamber at 191.27+/-9.52, 16.97+/-2.77 and 3.76+/-0.54 microg/(cm2 h), whereas the commercial emulgel, containing an equivalent DCFD, gave 60.84+/-13.63, 7.33+/-1.70 and 0.14+/-0.01 microg/(cm2 h), respectively. The in vivo anti-inflammatory activity was evaluated by ethyl phenylpropiolate (EPP)-induced rat ear edema (n=3). DCFD entrapped in the developed elastic niosomes and incorporated in gel gave the same ear edema inhibition percentages of 23.81% at 30 min, but 2 and 9 times more inhibition percentages at 45 and 60 min than the commercial emulgel, respectively. This result has not only demonstrated the

  16. The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells

    International Nuclear Information System (INIS)

    Ke, Liao-Liang; Wang, Yue-Sheng; Yang, Jie; Kitipornchai, Sritawat

    2014-01-01

    Based on the nonlocal Love’s shell theory, this paper develops an embedded magneto-electro-elastic (MEE) cylindrical nanoshell model. This model incorporates effects of the small scale parameter and thermo-electro-magnetic loadings. The surrounding elastic medium is described as the Winkler model characterized by the spring. By using this model and the Hamilton principle, the governing equations and boundary conditions are derived for free vibration of the embedded MEE cylindrical nanoshells. The Navier’s method is first utilized to obtain the analytical solution for the simply supported MEE nanoshell. Then, numerical solutions for MEE nanoshells under various boundary conditions are obtained by using the differential quadrature (DQ) method. A detailed parametric study is conducted to highlight the influences of the nonlocal parameter, temperature rise, external electric potential, external magnetic potential, spring constant, radius-to-thickness ratio and length-to-radius ratio on natural frequencies of MEE nanoshells. (paper)

  17. Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability

    Science.gov (United States)

    Wei, Lai; Zeng, Jing; Chi, Maoru; Wang, Jianbin

    2017-09-01

    In particular locations of the high-speed track, the worn wheel profile matched up with the worn rail profile will lead to an extremely high-conicity wheel-rail contact. Consequently, the bogie hunting instability arises, which further results in the so-called carbody shaking phenomenon. In this paper, the carbody elastic vibrations of a high-speed vehicle in service are firstly introduced. Modal tests are conducted to identity the elastic modes of the carbody. The ride comfort and running safety indices for the tested vehicle are evaluated. The rigid-flexible coupling dynamic model for the high-speed passenger car is then developed by using the FE and MBS coupling approach. The rail profiles in those particular locations are measured and further integrated into the simulation model to reproduce the bogie hunting and carbody elastic vibrations. The effects of wheel and rail wear on the vehicle system response, e.g. wheelset bifurcation graph and carbody vibrations, are studied. Two improvement measures, including the wheel profile modification and rail grinding, are proposed to provide possible solutions. It is found that the wheel-rail contact conicity can be lowered by decreasing wheel flange thickness or grinding rail corner, which is expected to improve the bogie hunting stability under worn rail and worn wheel conditions. The carbody elastic vibrations caused by bogie hunting instability can be further restrained.

  18. CLASSICAL AREAS OF PHENOMENOLOGY: First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    Science.gov (United States)

    Wang, Yun-Jiang; Wang, Chong-Yu

    2009-10-01

    A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.

  19. An examination of mass thickness measurements with X-ray sources

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    A method using X-rays to measure mass thickness is discussed. The method utilizes a filter to absorb low energy and characteristic photons so that the hardened X-ray spectra have a peaked energy distribution. An equivalent X-ray energy, which defines the attenuation in a material of interest can be used. The effect on the X-ray spectra of different filters is examined with Monte Carlo simulation using the EGSnrc package. A theoretical model for X-ray absorption that shows that the method can achieve good precision for a certain range of mass thicknesses is advanced. Experimental results agree well with the theoretical analysis. It is found that for a certain range of mass thicknesses, the relative error can be less than 1% for the aluminum alloy sample at the tube voltage of 30 or 45 kV

  20. An examination of mass thickness measurements with X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Chen Mincong; Li Hongmei; Chen Ziyu [Department of Modern Physics, University of Science and Technology of China, Jin Zhai Road, Hefei 230026 (China); Shen Ji [Department of Modern Physics, University of Science and Technology of China, Jin Zhai Road, Hefei 230026 (China)], E-mail: shenji@ustc.edu.cn

    2008-10-15

    A method using X-rays to measure mass thickness is discussed. The method utilizes a filter to absorb low energy and characteristic photons so that the hardened X-ray spectra have a peaked energy distribution. An equivalent X-ray energy, which defines the attenuation in a material of interest can be used. The effect on the X-ray spectra of different filters is examined with Monte Carlo simulation using the EGSnrc package. A theoretical model for X-ray absorption that shows that the method can achieve good precision for a certain range of mass thicknesses is advanced. Experimental results agree well with the theoretical analysis. It is found that for a certain range of mass thicknesses, the relative error can be less than 1% for the aluminum alloy sample at the tube voltage of 30 or 45 kV.

  1. Surrounding rock abutment pressure distribution and thickness effect of dynamic catastrophic in fully mechanized sublevel mining stope

    Energy Technology Data Exchange (ETDEWEB)

    Xie, G.; Yang, K.; Chang, J.; Wang, L. [Anhui University of Science and Technology, Huainan (China)

    2006-12-15

    Numerical simulation was carried out to analyse the distribution of surrounding rock stress with coal seams of different thickness (3.0, 5.4, 8.0, 12.0 m) based on engineering geology and exploitation technology of the 151(3) fully mechanized sublevel caving face in Xieqiao colliery. The research indicates that the variation of abutment pressure has obvious difference in coal seams of different thickness. The effect of abutment pressure distribution in seams of different thickness on coal-methane outbursts was analysed. With an increase in thickness of the caving seam, the research illustrates that the elastic energy resilience is reduced and the capability of resisting damage and deformation is strengthened in coal around the stope. The results show that fully mechanized sublevel caving slows down dynamic catastrophes. 7 refs., 4 figs.

  2. In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Hattel, Jesper Henri

    2012-01-01

    For large composite structures, such as wind turbine blades, thick laminates are required to withstand large in-service loads. During the manufacture of thick laminates, one of the challenges met is avoiding process-induced shape distortions and residual stresses. In this paper, embedded fibre...... Bragg grating sensors are used to monitor process-induced strains during vacuum infusion of a thick glass/epoxy laminate. The measured strains are compared with predictions from a cure hardening instantaneous linear elastic (CHILE) thermomechanical numerical model where different mechanical boundary...... conditions are employed. The accuracy of the CHILE model in predicting process-induced internal strains, in what is essentially a viscoelastic boundary value problem, is investigated. A parametric study is furthermore performed to reveal the effect of increasing the laminate thickness. The numerical model...

  3. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang Chenli; Shen Huishen

    2008-01-01

    Molecular dynamics simulation is performed on a double-walled carbon nanotube (DWCNT) to predict its elastic properties based on a double-walled shear deformable shell model. By direct buckling measurement, we present here a method for uniquely determining the effective wall thickness for the shell model. Accounting for two different kinds of DWCNTs by adding an inner or outer tube to a fiducial tube, the mechanical properties of DWCNTs are carefully investigated as compared with those of the fiducial tube. It is found that the predicted values of Young's and shear moduli depend strongly on the construction and helicity of DWCNTs, while the dependence on nanotube length is relatively small. The results also confirm that the temperature variation has a significant effect on the elastic properties of DWCNTs

  4. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Science.gov (United States)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  5. Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration

    International Nuclear Information System (INIS)

    Lin Shuyu; Tian Hua

    2008-01-01

    A sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is studied. The transducer consists of front and back metal masses, and coaxially segmented, thickness polarized piezoelectric ceramic thin rings. For this kind of sandwich piezoelectric transducers in thickness vibration, it is required that the lateral dimension of the transducer is sufficiently large compared with its longitudinal dimension so that no lateral displacements in the transducer can occur (laterally clamped). In this paper, the thickness vibration of the piezoelectric ceramic stack consisting of a number of identical piezoelectric ceramic thin rings is analysed and its electro-mechanical equivalent circuit is obtained. The resonance frequency equation for the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration is derived. Based on the frequency equation, two sandwich piezoelectric ceramic ultrasonic transducers are designed and manufactured, and their resonance frequencies are measured. It is shown that the measured resonance frequencies are in good agreement with the theoretical results. This kind of sandwich piezoelectric ultrasonic transducer is expected to be used in megasonic ultrasonic cleaning and sonochemistry where high power and high frequency ultrasound is needed

  6. Radiation beans characterization and implantation for study of lead equivalent individual protection device used in radiodiagnostic practices

    International Nuclear Information System (INIS)

    Pereira, Leslie Silva

    2004-01-01

    The protective shielding (IPC) must be used by occupationally exposed professionals, patients and volunteers, in order to optimize the doses who receive due to radiological practices. International and national norms establish the methodology to be adopted for determination of the IPC attenuation. In this work, the IPC had been submitted to X-rays beams with known characteristics, standardized for determination of their attenuation equivalent thickness by comparison to an experimental lead attenuation slope. This comparison technique allowed insurance estimative of the IPC attenuation equivalent thickness in mm of lead. Thus, it was possible to verify the conformity of the attenuation equivalent thickness determined experimentally and the value of the thickness indicated by the manufacturer. To carry out this work, it was necessary the implementation of experimental setups stated in the specifics norms, the study of the X-rays beams original features and the determination of combined additional filters, in order to allow the X-ray equipment used operates in compliance with Norm IEC 61331-1 IEC. The radiation quality selected is characterized by a 100 kV voltage and a 0.25 mm of copper overall filtration. The implementation of this radiation quality it was carried through of its first and second HVL (Half Value Layer). Thus, a methodology according to the international Norms has been implemented in the laboratory. The results of the present work provide suitable and useful information about radiation beams features related to the determination techniques of the attenuation properties. Once implemented the procedures for conformity evaluation of the protection devices, it will be possible to carry out specific quality control tests, which will be helpful to manufacturers, customers, as well as authorities in the radiological protection and health areas. (author)

  7. Motion of an elastic capsule in a square microfluidic channel.

    Science.gov (United States)

    Kuriakose, S; Dimitrakopoulos, P

    2011-07-01

    In the present study we investigate computationally the steady-state motion of an elastic capsule along the centerline of a square microfluidic channel and compare it with that in a cylindrical tube. In particular, we consider a slightly over-inflated elastic capsule made of a strain-hardening membrane with comparable shearing and area-dilatation resistance. Under the conditions studied in this paper (i.e., small, moderate, and large capsules at low and moderate flow rates), the capsule motion in a square channel is similar to and thus governed by the same scaling laws with the capsule motion in a cylindrical tube, even though in the channel the cross section in the upstream portion of large capsules is nonaxisymmetric (i.e., square-like with rounded corners). When the hydrodynamic forces on the membrane increase, the capsule develops a pointed downstream edge and a flattened rear (possibly with a negative curvature) so that the restoring tension forces are increased as also happens with droplets. Membrane tensions increase significantly with the capsule size while the area near the downstream tip is the most probable to rupture when a capsule flows in a microchannel. Because the membrane tensions increase with the interfacial deformation, a suitable Landau-Levich-Derjaguin-Bretherton analysis reveals that the lubrication film thickness h for large capsules depends on both the capillary number Ca and the capsule size a; our computations determine the latter dependence to be (in dimensionless form) h ~ a(-2) for the large capsules studied in this work. For small and moderate capsule sizes a, the capsule velocity Ux and additional pressure drop ΔP+ are governed by the same scaling laws as for high-viscosity droplets. The velocity and additional pressure drop of large thick capsules also follow the dynamics of high-viscosity droplets, and are affected by the lubrication film thickness. The motion of our large thick capsules is characterized by a Ux-U ~ h ~ a(-2

  8. Equivalent Lagrangians

    International Nuclear Information System (INIS)

    Hojman, S.

    1982-01-01

    We present a review of the inverse problem of the Calculus of Variations, emphasizing the ambiguities which appear due to the existence of equivalent Lagrangians for a given classical system. In particular, we analyze the properties of equivalent Lagrangians in the multidimensional case, we study the conditions for the existence of a variational principle for (second as well as first order) equations of motion and their solutions, we consider the inverse problem of the Calculus of Variations for singular systems, we state the ambiguities which emerge in the relationship between symmetries and conserved quantities in the case of equivalent Lagrangians, we discuss the problems which appear in trying to quantize classical systems which have different equivalent Lagrangians, we describe the situation which arises in the study of equivalent Lagrangians in field theory and finally, we present some unsolved problems and discussion topics related to the content of this article. (author)

  9. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2013-01-01

    Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java

  10. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  11. The creep of multi-layered moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Takezono, S.; Migita, K.

    1987-01-01

    In the present paper the authors study the creep deformation of the multi-layered thick shells of revolution under asymmetrical loads. The equations of equilibrium and the strain-displacement relations are derived from the Reissner-Naghdi theory (1941, 1957) for elastic shells where a consideration on the effect of shear deformation is given. In the theory of creep it is assumed that in a given increment of time the total strain increments are composed of an elastic part and a part due to creep. The elastic strains are proportional to the stresses by Hooke's law. For the constitutive equations in the creep range, McVetty's equation modified by Arrhenius' equation for thermal effect is employed. The basic differential equations on the creep problems derived for the incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by summation of the incremental values. Resultant forces and resultant moments are given from numerical integration of the stresses by Simpson's 1/3 rules. (orig./GL)

  12. General analytical approach for sound transmission loss analysis through a thick metamaterial plate

    International Nuclear Information System (INIS)

    Oudich, Mourad; Zhou, Xiaoming; Badreddine Assouar, M.

    2014-01-01

    We report theoretically and numerically on the sound transmission loss performance through a thick plate-type acoustic metamaterial made of spring-mass resonators attached to the surface of a homogeneous elastic plate. Two general analytical approaches based on plane wave expansion were developed to calculate both the sound transmission loss through the metamaterial plate (thick and thin) and its band structure. The first one can be applied to thick plate systems to study the sound transmission for any normal or oblique incident sound pressure. The second approach gives the metamaterial dispersion behavior to describe the vibrational motions of the plate, which helps to understand the physics behind sound radiation through air by the structure. Computed results show that high sound transmission loss up to 72 dB at 2 kHz is reached with a thick metamaterial plate while only 23 dB can be obtained for a simple homogeneous plate with the same thickness. Such plate-type acoustic metamaterial can be a very effective solution for high performance sound insulation and structural vibration shielding in the very low-frequency range

  13. General analytical approach for sound transmission loss analysis through a thick metamaterial plate

    Energy Technology Data Exchange (ETDEWEB)

    Oudich, Mourad; Zhou, Xiaoming; Badreddine Assouar, M., E-mail: Badreddine.Assouar@univ-lorraine.fr [CNRS, Institut Jean Lamour, Vandoeuvre-lès-Nancy F-54506 (France); Institut Jean Lamour, University of Lorraine, Boulevard des Aiguillettes, BP: 70239, 54506 Vandoeuvre-lès-Nancy (France)

    2014-11-21

    We report theoretically and numerically on the sound transmission loss performance through a thick plate-type acoustic metamaterial made of spring-mass resonators attached to the surface of a homogeneous elastic plate. Two general analytical approaches based on plane wave expansion were developed to calculate both the sound transmission loss through the metamaterial plate (thick and thin) and its band structure. The first one can be applied to thick plate systems to study the sound transmission for any normal or oblique incident sound pressure. The second approach gives the metamaterial dispersion behavior to describe the vibrational motions of the plate, which helps to understand the physics behind sound radiation through air by the structure. Computed results show that high sound transmission loss up to 72 dB at 2 kHz is reached with a thick metamaterial plate while only 23 dB can be obtained for a simple homogeneous plate with the same thickness. Such plate-type acoustic metamaterial can be a very effective solution for high performance sound insulation and structural vibration shielding in the very low-frequency range.

  14. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  15. Addressing preservation of elastic contrast in energy-filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G.; D' Alfonso, A.J.; Forbes, B.D.; Allen, L.J., E-mail: lja@unimelb.edu.au

    2016-01-15

    Energy-filtered transmission electron microscopy (EFTEM) images with resolutions of the order of an Ångström can be obtained using modern microscopes corrected for chromatic aberration. However, the delocalized nature of the transition potentials for atomic ionization often confounds direct interpretation of EFTEM images, leading to what is known as “preservation of elastic contrast”. In this paper we demonstrate how more interpretable images might be obtained by scanning with a focused coherent probe and incoherently averaging the energy-filtered images over probe position. We dub this new imaging technique energy-filtered imaging scanning transmission electron microscopy (EFISTEM). We develop a theoretical framework for EFISTEM and show that it is in fact equivalent to precession EFTEM, where the plane wave illumination is precessed through a range of tilts spanning the same range of angles as the probe forming aperture in EFISTEM. It is demonstrated that EFISTEM delivers similar results to scanning transmission electron microscopy with an electron energy-loss spectrometer but has the advantage that it is immune to coherent aberrations and spatial incoherence of the probe and is also more resilient to scan distortions. - Highlights: • Interpretation of EFTEM images is complicated by preservation of elastic contrast. • More direct images obtained by scanning with a focused coherent probe and averaging. • This is equivalent to precession EFTEM through the solid angle defined by the probe. • Also yields similar results to energy-loss scanning transmission electron microscopy. • Scanning approach immune to probe aberrations and resilient to scan distortions.

  16. Elasto/visco-plastic analysis of moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Tao, K.; Takezono, S.

    1987-01-01

    In the present paper the analytical formulation for the elasto/visco-plastic problems of general, moderately thick shells of revolution subjected to asymmetrical loads is developed in consideration of the effect of shear deformation. The equations of equilibrium and the relations between the strains and displacements are derived by extending the Reissner-Naghdi theory (1941, 1957) for elastic shells with given consideration to the effect of shear deformation. As the constitutive relation, Hooke's law is used in the liner elastic range, and the elasto/visco-plastic equations by Perzyna (1966) are employed in the plastic range. The fundamental equations on the elasto/visco-plastic problems derived for incremental values are numerically solved by a finite difference method and the solutions are obtained by summation of the incremental values. (orig./GL)

  17. Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled

    International Nuclear Information System (INIS)

    Akbari Alashti, R.; Khorsand, M.

    2012-01-01

    Three-dimensional elastic analysis is carried out for functionally graded cylindrical shells bonded with piezoelectric layers subjected to dynamic and thermal loads. Material properties are assumed to be graded in the radial direction obeying a simple power law with constant Poisson's ratio. Two versions of differential quadrature (DQ) method coupled with the finite difference (FD) method are employed to discretize the governing differential equations in space and time domains. The convergence is studied and results of the axisymmetric loadings are verified with reported results. Effects of the grading index of material properties, thermal gradient, boundary conditions, thickness of piezoelectric layers and electric excitation on stress, displacement, electric and temperature fields are presented. Highlights: ► Dynamo-thermo-elastic analysis of an FGM shell with piezoelectric layer is carried out. ► Governing equations are solved by DQ-FD coupled. ► Effects of grading index, temperature difference and piezoelectric thickness are presented.

  18. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  19. Effective radiation attenuation calibration for breast density: compression thickness influences and correction

    Directory of Open Access Journals (Sweden)

    Thomas Jerry A

    2010-11-01

    Full Text Available Abstract Background Calibrating mammograms to produce a standardized breast density measurement for breast cancer risk analysis requires an accurate spatial measure of the compressed breast thickness. Thickness inaccuracies due to the nominal system readout value and compression paddle orientation induce unacceptable errors in the calibration. Method A thickness correction was developed and evaluated using a fully specified two-component surrogate breast model. A previously developed calibration approach based on effective radiation attenuation coefficient measurements was used in the analysis. Water and oil were used to construct phantoms to replicate the deformable properties of the breast. Phantoms consisting of measured proportions of water and oil were used to estimate calibration errors without correction, evaluate the thickness correction, and investigate the reproducibility of the various calibration representations under compression thickness variations. Results The average thickness uncertainty due to compression paddle warp was characterized to within 0.5 mm. The relative calibration error was reduced to 7% from 48-68% with the correction. The normalized effective radiation attenuation coefficient (planar representation was reproducible under intra-sample compression thickness variations compared with calibrated volume measures. Conclusion Incorporating this thickness correction into the rigid breast tissue equivalent calibration method should improve the calibration accuracy of mammograms for risk assessments using the reproducible planar calibration measure.

  20. Independency of Elasticity on Residual Stress of Room Temperature Rolled Stainless Steel 304 Plates for Structure Materials

    Directory of Open Access Journals (Sweden)

    Parikin Parikin

    2015-12-01

    Full Text Available Mechanical strengths of materials are widely expected in general constructions of any building. These properties depend on its formation (cold/hot forming during fabrication. This research was carried out on cold-rolled stainless steel (SS 304 plates, which were deformed to 0, 34, 84, and 152% reduction in thickness. The tests were conducted using Vickers method. Ultra micro indentation system (UMIS 2000 was used to determine the mechanical properties of the material, i.e.: hardness, modulus elasticity, and residual stresses. The microstructures showed lengthening outcropping due to stress corrosion cracking for all specimens. It was found that the tensile residual stress in a specimen was maximum, reaching 442 MPa, for a sample reducing 34% in thickness and minimum; and about 10 MPa for a 196% sample. The quantities showed that the biggest residual stress caused lowering of the proportional limit of material in stress-strain curves. The proportional modulus elasticity varied between 187 GPa and of about 215 GPa and was free from residual stresses.

  1. The analysis for energy distribution and biological effects of the clusters from electrons in the tissue equivalent material

    International Nuclear Information System (INIS)

    Zhang Wenzhong; Guo Yong; Luo Yisheng; Wang Yong

    2004-01-01

    Objective: To study energy distribution of the clusters from electrons in the tissue equivalent material, and discuss the important aspects of these clusters on inducing biological effects. Methods: Based on the physical mechanism for electrons interacting with tissue equivalent material, the Monte Carlo (MC) method was used. The electron tracks were lively simulated on an event-by-event (ionization, excitation, elastic scattering, Auger electron emission) basis in the material. The relevant conclusions were drawn from the statistic analysis of these events. Results: The electrons will deposit their energy in the form (30%) of cluster in passing through tissue equivalent material, and most clusters (80%) have the energy amount of more than 50 eV. The cluster density depends on its diameter and energy of electrons, and the deposited energy in the cluster depends on the type and energy of radiation. Conclusion: The deposited energy in cluster is the most important factor in inducing all sort of lesions on DNA molecules in tissue cells

  2. Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation

    Science.gov (United States)

    Deng, Wubing; Morozov, Igor B.

    2017-10-01

    The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the

  3. Influence of colorant and film thickness on thermal aging characteristics of oxo-biodegradable plastic bags

    Science.gov (United States)

    Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.

    2016-05-01

    Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.

  4. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  5. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T R.H.; Whitlow, H J [Lund Univ. (Sweden); Bubb, I F; Short, R; Johnston, P N [Royal Melbourne Inst. of Tech., VIC (Australia)

    1997-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  6. Form finding in elastic gridshells

    Science.gov (United States)

    Baek, Changyeob; Sageman-Furnas, Andrew O.; Jawed, Mohammad K.; Reis, Pedro M.

    2018-01-01

    Elastic gridshells comprise an initially planar network of elastic rods that are actuated into a shell-like structure by loading their extremities. The resulting actuated form derives from the elastic buckling of the rods subjected to inextensibility. We study elastic gridshells with a focus on the rational design of the final shapes. Our precision desktop experiments exhibit complex geometries, even from seemingly simple initial configurations and actuation processes. The numerical simulations capture this nonintuitive behavior with excellent quantitative agreement, allowing for an exploration of parameter space that reveals multistable states. We then turn to the theory of smooth Chebyshev nets to address the inverse design of hemispherical elastic gridshells. The results suggest that rod inextensibility, not elastic response, dictates the zeroth-order shape of an actuated elastic gridshell. As it turns out, this is the shape of a common household strainer. Therefore, the geometry of Chebyshev nets can be further used to understand elastic gridshells. In particular, we introduce a way to quantify the intrinsic shape of the empty, but enclosed regions, which we then use to rationalize the nonlocal deformation of elastic gridshells to point loading. This justifies the observed difficulty in form finding. Nevertheless, we close with an exploration of concatenating multiple elastic gridshell building blocks.

  7. Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali; Reza Barati, Mohammad

    2016-12-01

    The analysis of the wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanoplate is carried out in the framework of a refined higher-order plate theory. In order to take into account the small-scale influence, the nonlocal elasticity theory of Eringen is employed. Furthermore, the material properties of the nanoplate are considered to be variable through the thickness based on the power-law form. Nonlocal governing equations of the MEE-FG nanoplate have been derived using Hamilton's principle. The results of the present study have been validated by comparing them with previous researches. An analytical solution of governing equations is performed to obtain wave frequencies, phase velocities and escape frequencies. The effect of different parameters, such as wave number, nonlocal parameter, gradient index, magnetic potential and electric voltage on the wave dispersion characteristics of MEE-FG nanoscale plates is studied in detail.

  8. Influence of the Elastic Dilatation of Mining-Induced Unloading Rock Mass on the Development of Bed Separation

    Directory of Open Access Journals (Sweden)

    Weibing Zhu

    2018-03-01

    Full Text Available Understanding how mining-induced strata movement, fractures, bed separation, and ground subsidence evolve is an area of great importance for the underground coal mining industry, particularly for disaster control and sustainable mining. Based on the rules of mining-induced strata movement and stress evolution, accumulative dilatation of mining-induced unloading rock mass is first proposed in this paper. Triaxial unloading tests and theoretical calculation were used to investigate the influence of elastic dilatation of mining-induced unloading rock mass on the development of bed separation in the context of district No. 102 where a layer of super-thick igneous sill exists in the Haizi colliery. It is shown that the elastic dilatation coefficient of mining-induced unloading hard rocks and coal were 0.9~1.0‰ and 2.63‰ respectively under the axial load of 16 MPa, which increased to 1.30~1.59‰ and 4.88‰ when the axial load was 32 MPa. After successively excavating working faces No. 1022 and No. 1024, the elastic dilatation of unloading rock mass was 157.9 mm, which represented approximately 6.3% of the mining height, indicating the elastic dilatation of mining-induced unloading rock mass has a moderate influence on the development of bed separation. Drill hole detection results after grouting, showed that only 0.33 m of the total grouting filling thickness (1.67 m was located in the fracture zone and bending zone, which verified the result from previous drill hole detection that only small bed separation developed beneath the igneous sill. Therefore, it was concluded that the influences of elastic dilatation of mining-induced unloading rock mass and bulking of caved rock mass jointly contributed to the small bed separation space beneath the igneous sill. Since the accurate calculation of the unloading dilatation of rock mass is the fundamental basis for quantitative calculation of bed separation and surface subsidence, this paper is expected

  9. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    Science.gov (United States)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  10. Accuracy improvement in measurement of arterial wall elasticity by applying pulse inversion to phased-tracking method

    Science.gov (United States)

    Miyachi, Yukiya; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    In our studies on ultrasonic elasticity assessment, minute change in the thickness of the arterial wall was measured by the phased-tracking method. However, most images in carotid artery examinations contain multiple-reflection noise, making it difficult to evaluate arterial wall elasticity precisely. In the present study, a modified phased-tracking method using the pulse inversion method was examined to reduce the influence of the multiple-reflection noise. Moreover, aliasing in the harmonic components was corrected by the fundamental components. The conventional and proposed methods were applied to a pulsated tube phantom mimicking the arterial wall. For the conventional method, the elasticity was 298 kPa without multiple-reflection noise and 353 kPa with multiple-reflection noise on the posterior wall. That of the proposed method was 302 kPa without multiple-reflection noise and 297 kPa with multiple-reflection noise on the posterior wall. Therefore, the proposed method was very robust against multiple-reflection noise.

  11. Elasticity theory of ultrathin nanofilms

    International Nuclear Information System (INIS)

    Li, Jiangang; Yun, Guohong; Narsu, B; Yao, Haiyan

    2015-01-01

    A self-consistent theoretical scheme for describing the elastic behavior of ultrathin nanofilms (UTNFs) was proposed. Taking into account the lower symmetry of an UTNF compared to its bulk counterpart, additional elastic and magnetoelastic parameters were introduced to model the elasticity rigorously. The applications of current theory to several elastic and magnetoelastic systems gave excellent agreement with experiments. More importantly, the surface elastic and magnetoelastic parameters used to fit the experimental results are physically reasonable and in close agreement with those obtained from experiment and simulation. This fact suggests that the additional elastic (magnetoelastic) constants due to symmetry breaking are of great importance in theoretical description of the mechanical properties of UTNFs. And we proved that the elasticity of UTNFs should be described by a three-dimensional model just including the intrinsic surface and bulk parameters, but not the effective surface parameters. It is believed that the theory reported here is a universal strategy for elasticity and magnetoelasticity of ultrathin films. (paper)

  12. The Use of Matriderm and Autologous Skin Graft in the Treatment of Full Thickness Skin Defects

    Directory of Open Access Journals (Sweden)

    Jang Hwan Min

    2014-07-01

    Full Text Available Background For patients with full thickness skin defects, autologous Split-thickness skin grafts (STSG are generally regarded as the mainstay of treatment. However, skin grafts have some limitations, including undesirable outcomes resulting from scars, poor elasticity, and limitations in joint movement due to contractures. In this study, we present outcomes of Matriderm grafts used for various skin tissue defects whether it improves on these drawbacks. Methods From January 2010 to March 2012, a retrospective review of patients who had undergone autologous STSG with Matriderm was performed. We assessed graft survival to evaluate the effectiveness of Matriderm. We also evaluated skin quality using a Cutometer, Corneometer, Tewameter, or Mexameter, approximately 12 months after surgery. Results A total of 31 patients underwent STSG with Matriderm during the study period. The success rate of skin grafting was 96.7%. The elasticity value of the portion on which Matriderm was applied was 0.765 (range, 0.635-0.800, the value of the trans-epidermal water loss (TEWL was 10.0 (range, 8.15-11.00 g/hr/m2, and the humidification value was 24.0 (range, 15.5-30.0. The levels of erythema and melanin were 352.0 arbitrary unit (AU (range, 299.25-402.75 AU and 211.0 AU (range, 158.25-297.00 AU, respectively. When comparing the values of elasticity and TEWL of the skin treated with Matriderm to the values of the surrounding skin, there was no statistically significant difference between the groups. Conclusions The results of this study demonstrate that a dermal substitute (Matriderm with STSG was adopted stably and with minimal complications. Furthermore, comparing Matriderm grafted skin to normal skin using Cutometer, Matriderm proved valuable in restoring skin elasticity and the skin barrier.

  13. Elastic buckling of ellipsoids of revolution

    International Nuclear Information System (INIS)

    Solal, Roger; Hoffmann, Alain; Roche, Roland.

    1976-02-01

    The CEASEMT system of calculation by finite elements is used to determine critical internal pressures on a flattened ellipsoid of revolution. This case resembles that of an ellipsoidal head of a thin pressure vessel fitted onto a flexible colla. The calculations are performed assuming the geometry perfect, the deformations slight and the behaviour of the material perfectly elastic. The results obtained are presented favourably by plotting a reduced pressure p* against the geometry. A good definition of p* would be: p*=pπ 2 E/1-μ 2 .e 2 b 2 /a 4 (p* critical pressure, E Young's modulus, μ Poisson's coefficient, e thickness, a half large axis, b half small axis). When a/b is above 2 the p value remains close to 1. For lower a/b values the p value rises considerably with a/b [fr

  14. Determination of the longitudinal modulus of elasticity in structural sawn wooden beams by the least squares method

    Directory of Open Access Journals (Sweden)

    André Luis Christoforo

    2012-12-01

    Full Text Available This paper proposes an alternative method of calculation based on the Least Squares Method to determine the longitudinal modulus of elasticity in structural-sized wooden beams. The developed equations require knowledge of three points of displacements, allowing greater reliability on the dependent variable when using the static four-point bending test. Using the Jatobá (Hymenaea sp wood in the study, the methodology proposed here was used in combination with a simplified one, requiring knowledge of displacement only at the midpoint of the beam in order to compare the results among them. Results show statistical equivalence between the models, indicating a good approximation of the simplified model for calculating the modulus of elasticity in wooden structural bending here evaluated.

  15. A preliminary investigation of finite-element modeling for composite rotor blades

    Science.gov (United States)

    Lake, Renee C.; Nixon, Mark W.

    1988-01-01

    The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness.

  16. Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution

    International Nuclear Information System (INIS)

    Takezono, S.; Tao, K.

    1985-01-01

    This paper describes an analytical formulation and a numerical analysis on the elasto/visco-plastic problems of orthotropic moderately thick shells of revolution under axi-symmetrical loads with applications to a cylindrical shell, and with comparison to experimental results. The analytical formulation is developed by extension of the Reissner-Naghdi theory in elastic shells where a consideration on the effect of shear deformation is given. As the constitutive equation, Hooke's law for orthotropic materials is used in the elastic range, and equations based on the orthotropic visco-plastic theory derived from the orthotropic plastic theory by Hill are employed in the plastic range. The visco-plastic strain rates are related to the stresses by Perzyna's equation. In order to check up the adequacy of the numerical analysis, experiments on elasto/visco-plastic deformation of a titanium cylindrical shell subject to internal axi-symmetrical loads are performed. Good agreement is obtained between experimental results and analytical solution. (orig.)

  17. Micro-CT based finite element models for elastic properties of glass-ceramic scaffolds.

    Science.gov (United States)

    Tagliabue, Stefano; Rossi, Erica; Baino, Francesco; Vitale-Brovarone, Chiara; Gastaldi, Dario; Vena, Pasquale

    2017-01-01

    In this study, the mechanical properties of porous glass-ceramic scaffolds are investigated by means of three-dimensional finite element models based on micro-computed tomography (micro-CT) scan data. In particular, the quantitative relationship between the morpho-architectural features of the obtained scaffolds, such as macroscopic porosity and strut thickness, and elastic properties, is sought. The macroscopic elastic properties of the scaffolds have been obtained through numerical homogenization approaches using the mechanical characteristics of the solid walls of the scaffolds (assessed through nanoindentation) as input parameters for the numerical simulations. Anisotropic mechanical properties of the produced scaffolds have also been investigated by defining a suitable anisotropy index. A comparison with morphological data obtained through the micro-CT scans is also presented. The proposed study shows that the produced glass-ceramic scaffolds exhibited a macroscopic porosity ranging between 29% and 97% which corresponds to an average stiffness ranging between 42.4GPa and 36MPa. A quantitative estimation of the isotropy of the macroscopic elastic properties has been performed showing that the samples with higher solid fractions were those closest to an isotropic material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Entropic vs. elastic models of fragility of glass-forming liquids: Two sides of the same coin?

    Science.gov (United States)

    Sen, Sabyasachi

    2012-10-01

    The two most influential atomistic models that have been proposed in the literature to explain the temperature dependent activation energy of viscous flow of a glass-forming liquid, i.e., its fragility, are the configurational entropy model of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965), 10.1063/1.1696442] and the elastic "shoving" model of Dyre et al. [J. Non-Cryst. Solids 352, 4635 (2006), 10.1016/j.jnoncrysol.2006.02.173]. Here we demonstrate a qualitative equivalence between these two models starting from the well-established general relationships between the interatomic potentials, elastic constants, structural rearrangement, and entropy in amorphous materials. The unification of these two models provides important predictions that are consistent with experimental observations and shed new light into the problem of glass transition.

  19. On Elasticity Measurement in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Wei Ai

    2016-01-01

    Full Text Available Elasticity is the foundation of cloud performance and can be considered as a great advantage and a key benefit of cloud computing. However, there is no clear, concise, and formal definition of elasticity measurement, and thus no effective approach to elasticity quantification has been developed so far. Existing work on elasticity lack of solid and technical way of defining elasticity measurement and definitions of elasticity metrics have not been accurate enough to capture the essence of elasticity measurement. In this paper, we present a new definition of elasticity measurement and propose a quantifying and measuring method using a continuous-time Markov chain (CTMC model, which is easy to use for precise calculation of elasticity value of a cloud computing platform. Our numerical results demonstrate the basic parameters affecting elasticity as measured by the proposed measurement approach. Furthermore, our simulation and experimental results validate that the proposed measurement approach is not only correct but also robust and is effective in computing and comparing the elasticity of cloud platforms. Our research in this paper makes significant contribution to quantitative measurement of elasticity in cloud computing.

  20. Intra-Ocular Pressure Measurement in a Patient with a Thin, Thick or Abnormal Cornea.

    Science.gov (United States)

    Clement, Colin I; Parker, Douglas G A; Goldberg, Ivan

    2016-01-01

    Accurate measurement of intra-ocular pressure is a fundamental component of the ocular examination. The most common method of measuring IOP is by Goldmann applanation tonometry, the accuracy of which is influenced by the thickness and biomechanical properties of the cornea. Algorithms devised to correct for corneal thickness to estimate IOP oversimplify the effects of corneal biomechanics. The viscous and elastic properties of the cornea influence IOP measurements in unpredictable ways, a finding borne out in studies of patients with inherently abnormal and surgically altered corneal biomechanics. Dynamic contour tonometry, rebound tonometry and the ocular response analyzer provide useful alternatives to GAT in patients with abnormal corneas, such as those who have undergone laser vision correction or keratoplasty. This article reviews the various methods of intra-ocular pressure measurement available to the clinician and the ways in which their utility is influenced by variations in corneal thickness and biomechanics.

  1. Flexural modeling of the elastic lithosphere at an ocean trench: A parameter sensitivity analysis using analytical solutions

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Garay, Jeremías

    2018-01-01

    The outer rise is a topographic bulge seaward of the trench at a subduction zone that is caused by bending and flexure of the oceanic lithosphere as subduction commences. The classic model of the flexure of oceanic lithosphere w (x) is a hydrostatic restoring force acting upon an elastic plate at the trench axis. The governing parameters are elastic thickness Te, shear force V0, and bending moment M0. V0 and M0 are unknown variables that are typically replaced by other quantities such as the height of the fore-bulge, wb, and the half-width of the fore-bulge, (xb - xo). However, this method is difficult to implement with the presence of excessive topographic noise around the bulge of the outer rise. Here, we present an alternative method to the classic model, in which lithospheric flexure w (x) is a function of the flexure at the trench axis w0, the initial dip angle of subduction β0, and the elastic thickness Te. In this investigation, we apply a sensitivity analysis to both methods in order to determine the impact of the differing parameters on the solution, w (x). The parametric sensitivity analysis suggests that stable solutions for the alternative approach requires relatively low β0 values (rise bulge. The alternative method is a more suitable approach, assuming that accurate geometric information at the trench axis (i.e., w0 and β0) is available.

  2. Money flexibility, price elasticity, and elasticity of marginal utility of consumption

    OpenAIRE

    Malakhov, Sergey

    2014-01-01

    The development of G.Stigler’s original model of search describes the mathematical relationship between the elasticity of the marginal utility of consumption, the price elasticity, and the elasticity of the marginal utility of money income with respect to increase in the price of living and/or to inflation. This relationship can be used not only in economics of well-being but also in microeconomics where the increase in the price of living, i.e., in purchase price, can make consumption “bad” ...

  3. Diffraction stress analysis of thin films; investigating elastic grain interaction

    International Nuclear Information System (INIS)

    Kumar, A.

    2005-12-01

    information depths has been developed and from such stress measurements at fixed information depths employing a laboratory diffractometer and a diffractometer at a synchrotron source, the stress gradients and gradients in the elastic grain-interaction constraints of Nickel layers (layer thicknesses 2 micron and 4 micron) have been successfully deduced. Thereby the first evidence ever for the depth-dependence of the so-called surface anisotropy has been obtained. (Orig.)

  4. Skin thickness effects on in vivo LXRF

    International Nuclear Information System (INIS)

    Preiss, I.L.; Washington, W. II

    1995-01-01

    The analysis of lead concentration in bone utilizing LXRF can be adversely effected by overlying issue. A quantitative measure of the attenuation of the 10.5 keV Pb L a x-ray signal by skin and skin equivalent plastic has been conducted. Concentration ranges in plaster of Paris and goat bone from 7 to 90 ppm with attenuators of Lucite reg-sign and pig skin were examined. It is concluded that no quantitative or semi quantitative analysis can be achieved if overlying sue thickness exceeds 3 mm for Ph concentrations of less than 30 porn Ph in bone

  5. On the geometrically nonlinear elastic response of class θ = 1 tensegrity prisms

    Science.gov (United States)

    Mascolo, Ida; Amendola, Ada; Zuccaro, Giulio; Feo, Luciano; Fraternali, Fernando

    2018-03-01

    The present work studies the geometrically nonlinear response of class ϑ=1 tensegrity prisms modeled as a collection of elastic springs reacting in tension (strings or cables) or compression (bars), under uniform uniaxial loading. The incremental equilibrium equations of the structure are numerically solved through a path-following procedure, with the aim of modeling the mechanical behavior of the structure in the large displacement regime. Several numerical results are presented with reference to a variety of physical models, which use two different materials for the cables and the bars, and show different aspect ratios associated with either 'standard' or 'expanded' configurations. An experimental validation of the predicted constitutive response is conducted with reference to a 'thick' and a 'slender' model, observing rather good theory vs. experiment matching. The given numerical and experimental results highlight that the elastic response of the examined structures may switch from stiffening to softening, depending on the geometry of the system, the magnitude of the external load, and the applied prestress. The outcomes of the current study confirm previous literature results on the elastic response of minimal tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring units forming tunable mechanical metamaterials.

  6. Corneal Biomechanical Properties after FS-LASIK with Residual Bed Thickness Less Than 50% of the Original Corneal Thickness

    Directory of Open Access Journals (Sweden)

    Haixia Zhang

    2018-01-01

    Full Text Available Background. The changes in corneal biomechanical properties after LASIK remain an unknown but important topic for surgical design and prognostic evaluation. This study aims to observe the postoperative corneal biomechanical properties one month after LASIK with amount of corneal cutting (ACC greater than 50% of the central corneal thickness (CCT. Methods. FS-LASIK was performed in 10 left rabbit eyes with ACC being 60% (L60 and 65% (L65 of the CCT, while the right eyes (R were the control. After 4 weeks, rabbits were executed and corneal strip samples were prepared for uniaxial tensile tests. Results. At the same strain, the stresses of L65 and L60 were larger than those of R. The elastic moduli of L60 and L65 were larger than those of R when the stress was 0.02 MPa, while they began to be less than those of R when stress exceeds the low-stress region. After 10 s relaxation, the stress of specimens L65, L60, and R increased in turn. Conclusion. The elastic moduli of the cornea after FS-LASIK with ACC greater than 50% of the CCT do not become less under normal rabbit IOP. The limit stress grows with the rise of ACC when relaxation becomes stable.

  7. Motivation and compliance with intraoral elastics.

    Science.gov (United States)

    Veeroo, Helen J; Cunningham, Susan J; Newton, Jonathon Timothy; Travess, Helen C

    2014-07-01

    Intraoral elastics are commonly used in orthodontics and require regular changing to be effective. Unfortunately, poor compliance with elastics is often encountered, especially in adolescents. Intention for an action and its implementation can be improved using "if-then" plans that spell out when, where, and how a set goal, such as elastic wear, can be put into action. Our aim was to determine the effect of if-then plans on compliance with elastics. To identify common barriers to compliance with recommendations concerning elastic wear, semistructured interviews were carried out with 14 adolescent orthodontic patients wearing intraoral elastics full time. Emerging themes were used to develop if-then plans to improve compliance with elastic wear. A prospective pilot study assessed the effectiveness of if-then planning aimed at overcoming the identified barriers on compliance with elastic wear. Twelve participants were randomized equally into study and control groups; the study group received information about if-then planning. The participants were asked to collect used elastics, and counts of these were used to assess compliance. A wide range of motivational and volitional factors were described by the interviewed participants, including the perceived benefits of elastics, cues to remember, pain, eating, social situations, sports, loss of elastics, and breakages. Compliance with elastic wear was highly variable among patients. The study group returned more used elastics, suggesting increased compliance, but the difference was not significant. The use of if-then plans might improve compliance with elastic wear when compared with routine clinical instructions. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. The relationship between 3D bone architectural parameters and elastic moduli of three orthogonal directions predicted from finite elements analysis

    International Nuclear Information System (INIS)

    Park, Kwan Soo; Lee, Sam Sun; Huh, Kyung Hoe; Yi, Wan Jin; Heo, Min Suk; Choi, Soon Chul

    2008-01-01

    To investigate the relationship between 3D bone architectural parameters and direction-related elastic moduli of cancellous bone of mandibular condyle. Two micro-pigs (Micro-pigR, PWG Genetics Korea) were used. Each pig was about 12 months old and weighing around 44 kg. 31 cylindrical bone specimen were obtained from cancellous bone of condyles for 3D analysis and measured by micro-computed tomography. Six parameters were trabecular thickness (Tb.Th), bone specific surface (BS/BV), percent bone volume (BV/TV), structure model index (SMI), degree of anisotropy (DA) and 3-dimensional fractal dimension (3DFD). Elastic moduli of three orthogonal directions (superiorinferior (SI), medial-lateral (ML), andterior-posterior (AP) direction) were calculated through finite element analysis. Elastic modulus of superior-inferior direction was higher than those of other directions. Elastic moduli of 3 orthogonal directions showed different correlation with 3D architectural parameters. Elastic moduli of SI and ML directions showed significant strong to moderate correlation with BV/TV, SMI and 3DFD. Elastic modulus of cancellous bone of pig mandibular condyle was highest in the SI direction and it was supposed that the change into plate-like structure of trabeculae was mainly affected by increase of trabeculae of SI and ML directions.

  9. Korn inequalities for elastic junctions of massive bodies, thin plates, and rods

    International Nuclear Information System (INIS)

    Nazarov, S A

    2008-01-01

    Korn inequalities have been obtained for junctions of massive elastic bodies, thin plates, and rods in many different combinations. These inequalities are asymptotically sharp thanks to the introduction of various weight factors in the L 2 -norms of the displacements and their derivatives. Since thin bodies display different reactions to stretching and bending, such Korn inequalities are necessarily anisotropic. Junctions of elastic bodies with contrasting stiffness are allowed, but the constants in the inequalities obtained are independent of both the relative thickness h element of (0,1] and the relative rigidity μ element of (0,+∞). The norms corresponding to rigidly clamped elements of a structure are essentially different from the norms corresponding to hard-movable or movable elements that are not fastened directly, but only by means of neighbouring elements; therefore, an adequate structure of the weighted anisotropic norms is determined by the geometry of the whole junction. Each variant of Korn inequality is supplied with an example confirming the optimal choice of the weight factors

  10. Optimizing Thermal-Elastic Properties of C/C–SiC Composites Using a Hybrid Approach and PSO Algorithm

    Science.gov (United States)

    Xu, Yingjie; Gao, Tian

    2016-01-01

    Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343

  11. Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads

    International Nuclear Information System (INIS)

    Bayat, Mehdi; Saleem, M.; Sahari, B.B.; Hamouda, A.M.S.; Mahdi, E.

    2009-01-01

    Rotating disks have many applications in the aerospace industry such as gas turbines and gears. These disks normally work under thermo mechanical loads. Minimizing the weight of such components can help reduce the overall payload in aerospace industry. For this purpose, a rotating functionally graded (FG) disk with variable thickness under a steady temperature field is considered in this paper. Thermo elastic solutions and the weight of the disk are related to the material grading index and the geometry of the disk. It is found that a disk with parabolic or hyperbolic convergent thickness profile has smaller stresses and displacements compared to a uniform thickness disk. Maximum radial stress due to centrifugal load in the solid disk with parabolic thickness profile may not be at the center unlike uniform thickness disk. Functionally graded disk with variable thickness has smaller stresses due to thermal load compared to those with uniform thickness. It is seen that for a given value of grading index, the FG disk having concave thickness profile is the lightest in weight whereas the FG disk with uniform thickness profile is the heaviest. Also for any given thickness profile, the weight of the FG disk lies in between the weights of the all-metal and the all-ceramic disks.

  12. Equivalent circuit and optimum design of a multilayer laminated piezoelectric transformer.

    Science.gov (United States)

    Dong, Shuxiang; Carazo, Alfredo Vazquez; Park, Seung Ho

    2011-12-01

    A multilayer laminated piezoelectric Pb(Zr(1-x)Ti(x))O(3) (PZT) ceramic transformer, operating in a half- wavelength longitudinal resonant mode (λ/2 mode), has been analyzed. This piezoelectric transformer is composed of one thickness-polarized section (T-section) for exciting the longitudinal mechanical vibrations, two longitudinally polarized sections (L-section) for generating high-voltage output, and two insulating layers laminated between the T-section and L-section layers to provide insulation between the input and output sections. Based on the piezoelectric constitutive and motion equations, an electro-elasto-electric (EEE) equivalent circuit has been developed, and correspondingly, an effective EEE coupling coefficient was proposed for optimum design of this multilayer transformer. Commercial finite element analysis software is used to determine the validity of the developed equivalent circuit. Finally, a prototype sample was manufactured and experimental data was collected to verify the model's validity.

  13. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  14. Immunohistochemical study of extracellular matrices and elastic fibers in a human sternoclavicular joint.

    Science.gov (United States)

    Shimada, K; Takeshige, N; Moriyama, H; Miyauchi, Y; Shimada, S; Fujimaki, E

    1997-12-01

    In this study, we clarified the distribution of elastic and oxytalan fibers in a human sternoclavicular joint (SCJ) using a color image system and in extracellular matrices using immunoperoxidase staining. Fine elastic fibers (EFs) were scattered in the fibrous layer of the sternoclavicular disk. This articular disk was composed of a collagenous bundle on the sternum side of the articular disk in the SCJ and cellular components including connective tissue on the clavicular side of the articular disk. The thickness of the disk gradually increased from the inferior to superior portion. Collagen fibers type I, III and V and other extracellular matrices (ECMs) were detected in the hypertrophic zone in the clavicular and sternum side of the SCJ and in the connective tissue of the articulatio condylar. On the cervical surface of the articular disk, cellular activity was higher than on the sternum surface.

  15. Retinal vessel diameters decrease with macular ganglion cell layer thickness in autosomal dominant optic atrophy and in healthy subjects

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Grønskov, Karen; Larsen, Michael

    2014-01-01

    diameters (central retinal artery equivalent, CRAE, and central retinal vein equivalent, CRVE). Statistical analysis was corrected for age, gender, spherical equivalent refraction, axial length and mean arterial blood pressure (MABP) in a mixed model analysis. RESULTS: Retinal arteries and veins were...... ganglion cell-inner plexiform layer (GC-IPL) thickness (p = 0.0017 and p = 0.0057, respectively). CONCLUSION: Narrow retinal arteries and veins were associated not only with the severity of ADOA but with ganglion cell volume in patients with ADOA and in healthy subjects. This suggests that narrow vessels...

  16. Calcium binding to an elastic portion of connectin/titin filaments.

    Science.gov (United States)

    Tatsumi, R; Maeda, K; Hattori, A; Takahashi, K

    2001-01-01

    Alpha-connectin/titin-1 exists as an elastic filament that links a thick filament with the Z-disk, keeping thick filaments centered within the sarcomere during force generation. We have shown that the connectin filament has an affinity for calcium ions and its binding site(s) is restricted to the beta-connectin/titin-2 portion. We now report the localization and the characterization of calcium-binding sites on beta-connectin. Purified beta-connectin was digested by trypsin into 1700- and 400-kDa fragments. which were then subjected to fluorescence calcium-binding assays. The 400-kDa fragment possesses calcium-binding activity; the binding constant was 1.0 x 10(7) M(-1) and the molar ratio of bound calcium ions to the 400-kDa fragment reached a maximum of 12 at a free calcium ion concentration of approximately 1.0 microM. Antibodies against the 400-kDa fragment formed a sharp dense stripe at the boundary of the A and the I bands, indicating that the calcium-binding domain constitutes the N-terminal region of beta-connectin, that is, the elastic portion of connectin filaments. Furthermore, we estimated the N-terminal location of beta-connectin of various origins (n = 26). Myofibrils were treated with a solution containing 0.1 mM CaCl2 and 70 microM leupeptin to split connectin filaments into beta-connectin and a subfragment, and chain weights of these polypeptides were estimated according to their mobility in 2% polyacrylamide slab gels. The subfragment exhibited a similar chain weight of 1200+/-33 kDa (mean+/-SD), while alpha- and beta-connectins were variable in size according to their origin. These results suggest that the apparent length of the 1200-kDa subfragment portion is almost constant in all instances, about 0.34 microm at the slack condition, therefore that the C-terminus of the 1200-kDa subfragment, that is, the N-terminus of the calcium-binding domain, is at the N2 line region of parent filaments in situ. Because the secondary structure of the 400-k

  17. On the use of elastic-plastic material characteristics for linear-elastic component assessments

    International Nuclear Information System (INIS)

    Kussmaul, K.; Silcher, H.; Eisele, U.

    1995-01-01

    In this paper the procedure of safety assessment of components by fracture mechanics analysis as recommended in TECDOC 717 is applied to two standard specimens of ductile cast iron. It is shown that the use of a pseudo-elastic K IJ -value in linear elastic safety analysis may lead to non-conservative results, when elastic-plastic material behaviour can be expected. (author)

  18. Study on the application of 50 mm thick welded joints without PWHT for containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nozomu; Sakai, Yoshiyuki; Hayashi, Kazutoshi; Higashikubo, Tomohiro (Mitsubishi Heavy Industries. Ltd., Kobe Shipyard and Machinery Works (Japan)); Iida, Kunihiro (Shibaura Inst. of Tech., Dept. of Mechanical Engineering, Tokyo (Japan)); Satou, Masanobu (Mitsubishi Heavy Industries. Ltd., Tkasago Research and Development Center (Japan))

    1992-01-01

    In order to investigate the propriety of the use of 50 mm thick SGV480 carbon steel which is equivalent to ASTM A516 Gr. 70 without post weld heat treatment for containment vessels, the authors have certified the basic properties of base metal and welded joints of 50 mm thick SGV480 steel plates. The results showed that fracture thoughness of welded joints is high without PWHT and the steel is safe enough without PWHT against embrittlement fracture under the operating conditions. (orig.).

  19. Study on the application of 50 mm thick welded joints without PWHT for containment vessels

    International Nuclear Information System (INIS)

    Watanabe, Nozomu; Sakai, Yoshiyuki; Hayashi, Kazutoshi; Higashikubo, Tomohiro; Iida, Kunihiro; Satou, Masanobu

    1992-01-01

    In order to investigate the propriety of the use of 50 mm thick SGV480 carbon steel which is equivalent to ASTM A516 Gr. 70 without post weld heat treatment for containment vessels, the authors have certified the basic properties of base metal and welded joints of 50 mm thick SGV480 steel plates. The results showed that fracture thoughness of welded joints is high without PWHT and the steel is safe enough without PWHT against embrittlement fracture under the operating conditions. (orig.)

  20. Elastic and piezoelectric fields around a quantum wire of zincblende heterostructures with interface elasticity effect

    Science.gov (United States)

    Ye, Wei; Liu, Yifei

    2018-04-01

    This work formulates the solutions to the elastic and piezoelectric fields around a quantum wire (QWR) with interface elasticity effect. Closed-form solutions to the piezoelectric potential field of zincblende QWR/matrix heterostructures grown along [111] crystallographic orientation are found and numerical results of InAs/InP heterostructures are provided as an example. The piezoelectric potential in the matrix depends on the interface elasticity, the radius and stiffness of the QWR. Our results indicate that interface elasticity can significantly alter the elastic and piezoelectric fields near the interface. Additionally, when the elastic property of the QWR is considered to be anisotropic in contrary to the common isotropic assumption, piezoelectric potentials are found to be distinct near the interface, but the deviations are negligible at positions far away from the interface.

  1. Fracton-Elasticity Duality

    Science.gov (United States)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  2. Mathematical methods in elasticity imaging

    CERN Document Server

    Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul

    2015-01-01

    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...

  3. Elasticity theory and applications

    CERN Document Server

    Saada, Adel S; Hartnett, James P; Hughes, William F

    2013-01-01

    Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, ...

  4. Determination of dose equivalent with tissue-equivalent proportional counters

    International Nuclear Information System (INIS)

    Dietze, G.; Schuhmacher, H.; Menzel, H.G.

    1989-01-01

    Low pressure tissue-equivalent proportional counters (TEPC) are instruments based on the cavity chamber principle and provide spectral information on the energy loss of single charged particles crossing the cavity. Hence such detectors measure absorbed dose or kerma and are able to provide estimates on radiation quality. During recent years TEPC based instruments have been developed for radiation protection applications in photon and neutron fields. This was mainly based on the expectation that the energy dependence of their dose equivalent response is smaller than that of other instruments in use. Recently, such instruments have been investigated by intercomparison measurements in various neutron and photon fields. Although their principles of measurements are more closely related to the definition of dose equivalent quantities than those of other existing dosemeters, there are distinct differences and limitations with respect to the irradiation geometry and the determination of the quality factor. The application of such instruments for measuring ambient dose equivalent is discussed. (author)

  5. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    Science.gov (United States)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-06-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  6. An Assessment on Cu-Equivalent Image of Digital Intraoral Radiography

    International Nuclear Information System (INIS)

    Kim, Jae Duk

    1999-01-01

    Geometrically standardized dental radiographs were taken. We prepared Digital Cu-Equivalent Image Analyzing System for quantitative assessment of mandible bone. Images of radiographs were digitized by means of Quick scanner and personal Mcquintosh computer. NIH image as software was used for analyzing images. A step wedge composed of 10 steps of 0.1 mm copper foil in thickness was used for reference material. This study evaluated the effects of step numbers of copper wedge adopted for calculating equation, kVp and exposure time on the coefficient of determination (r2)of the equation for conversion to Cu-equivalent image and the coefficient of variation and Cu-Eq value (mm) measured at each copper step and alveolar bone of mandible. The results were as follows: 1. The coefficients of determination (r2) of 10 conversion equations ranged from 0.9996 to 0.9973 (mean=0.9988) under 70 kVp and 0.16 sec. exposure. The equation showed the highest r2 was Y=4.75614612-0.06300524x +0.00032367x 2 -0.00000060x 3 . 2. The value of r 2 became lower when the equation was calculated from the copper step wedge including 1.0 mm step. In case of including 0 mm step for calculation, the value of r 2 showed variability. 3. The coefficient of variation showed 0.11, 0.20 respectively at each copper step of 0.2, 0.1 mm in thickness. Those of the other steps to 0.9 mm ranged from 0.06 to 0.09 in mean value. 4. The mean Cu-Eq value of alveolar bone was 0.14 ± 0.02 mm under optimal exposure. The values were lower than the mean under the exposures over 0.20 sec. in 60 kVp and over 0.16 sec. in 70 kVp . 5. Under the exposure condition of 60 kVp 0.16 sec., the coefficient of variation showed 0.03, 0.05 respectively at each copper-step of 0.3, 0.2 mm in thickness. The value of r 2 showed over 0.9991 from both 9 and 10 steps of copper. The Cu-Eq value and the coefficient of variation was 0.14 ± 0.01 mm and 0.07 at alveolar bone respectively. In summary, A clinical application of this system

  7. Vibration of an Elastic Circular Plate on an Elastic Half Space

    DEFF Research Database (Denmark)

    Krenk, Steen; Schmidt, H.

    1981-01-01

    The axisymmetric problem of a vibrating elastic plate on an elastic half space is solved by a direct method, in which the contact stresses and the normal displacements of the plate are taken as the unknown functions. First, the influence functions that give the displacements in terms...

  8. Morphology, surface roughness, electron inelastic and quasi-elastic scattering in elastic peak electron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Lesiak, B.; Kosinski, A.; Nowakowski, R.; Koever, L.; Toth, J.; Varga, D.; Cserny, I.; Sulyok, A.; Gergely, G.

    2006-01-01

    Complete text of publication follows. Elastic peak electron spectroscopy (EPES) deals with the interaction of electrons with atoms of a solid surface, studying the distribution of electrons backscattered elastically. The nearest vicinity of the elastic peak, (low kinetic energy region) reflects both, electron inelastic and quasi-elastic processes. The incident electrons produce surface excitations, inducing surface plasmons with the corresponding loss peaks separated by 1 - 20 eV energy from the elastic peak. Quasi-elastic losses result from the recoil of scattering atoms of different atomic number, Z. The respective energy shift and Doppler broadening of the elastic peak depend on Z, the primary electron energy, E, and the measurement geometry. Quantitative surface analytical application of EPES, such as determination of parameters describing electron transport, requires a comparison of experimental data with corresponding data derived from Monte Carlo (MC) simulation. Several problems occur in EPES studies of polymers. The intensity of elastic peak, considered in quantitative surface analysis, is influenced by both, the inelastic and quasi-elastic scattering processes (especially for hydrogen scattering atoms and primary electron energy above 1000 eV). An additional factor affecting the elastic peak intensity is the surface morphology and roughness. The present work compares the effect of these factors on the elastic peak intensity for selected polymers (polyethylene, polyaniline and polythiophenes). X-ray photoelectron spectroscopy (XPS) and helium pycnometry are applied for deriving the surface atomic composition and the bulk density, while scanning electron microscopy (SEM) and atomic force microscopy (AFM) for determining surface morphology and roughness. According to presented results, the influence of surface morphology and roughness is larger than those of surface excitations or recoil of hydrogen atoms. The component due to recoil of hydrogen atoms can be

  9. Designing interactively with elastic splines

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Fisker, Ann-Sofie

    2018-01-01

    We present an algorithm for designing interactively with C1 elastic splines. The idea is to design the elastic spline using a C1 cubic polynomial spline where each polynomial segment is so close to satisfying the Euler-Lagrange equation for elastic curves that the visual difference becomes neglig...... negligible. Using a database of cubic Bézier curves we are able to interactively modify the cubic spline such that it remains visually close to an elastic spline....

  10. Greater Reduction of Balance as a Result of Increased Plantar Fascia Elasticity at Ovulation during the Menstrual Cycle.

    Science.gov (United States)

    Petrofsky, Jerrold; Lee, Haneul

    2015-11-01

    One of the sexual hormones, estrogen, increases elasticity of human connective tissue such as the anterior cruciate ligament during the menstrual cycle in women. In the present investigation, the plantar fascia was investigated to see if there is a difference in elasticity with the menstrual cycle. Fifteen young healthy females in the age range of 18-35 years old with a regular menstrual cycle were tested twice throughout one full menstrual cycle; once during the early follicular phases and once at ovulation. Foot length, while standing on both feet and one foot were used to assess plantar fascia elasticity, ultrasound measured plantar fascia thickness while lying and standing, and posture sway and tremor using a balance platform during 8 different balance tests were assessed to see the impact of elasticity changes. Foot length increased significantly at ovulation compared to menstruation when standing on two feet (p = 0.03) and standing on one foot (p plantar fascia in thinning per kilogram weight applied to the foot at ovulation compared to menstruation (p = 0.014). Associated with this increase in elasticity at ovulation, there was a reduction in balance in the most difficult balance tasks and an increase in tremor during ovulation (p Plantar fascia elasticity change during the menstrual cycle might have effects on posture sway and tremor, which could have a potential risk of falling. Therefore, healthy professionals working with young female adults should recognize these physiological effects.

  11. An examination of the potential for 9%Cr1%Mo steel as thick section tubeplates in fast reactors

    International Nuclear Information System (INIS)

    Orr, J.; Sanderson, S.J.

    1984-01-01

    The steam generator units of future commercial demonstration fast reactors are likely to have a requirement for heavy section tubeplates (up to 500mm thick) with good elevated temperature strength and creep-fatigue resistance. A comparison of the mechanical properties available for ferritic steels has suggested that 9%Cr1%Mo steel would be a strong candidate material for this application. Although this steel is covered in some national specifications for tubes, pipes, plates and forgings and is also well established in the UK nuclear industry, international experience to date is confined to sections less than ca 150mm. The potential of 9%Cr1%Mo steel for use in thick sections has therefore been assessed in the present study by using simulation heat treatments. The work reported here involved the laboratory-scale cooling of bar samples to simulate water-quenching rates in cylindrical sections up to 720mm diameter (ie: equivalent to 500mm thick plate). The tensile properties at ambient and 525 0 C and impact fracture appearance transition temperatures were determined for material tempered after cooling at simulated thick section rates; the transformation characteristics as influenced by the net chromium equivalent were also established. The results of this work show that 9%Cr1%Mo steel may be fully hardened in the equivalent of the section sizes examined,and the mechanical properties of tempered material show only a small reduction from those of thin section normalised and tempered 9%Cr1%Mo steel. These findings support the potential usage of heavy section 9%Cr1%Mo steel envisaged for fast reactor steam generator tubeplates

  12. The Morishima Gross elasticity of substitution

    OpenAIRE

    Blackorby, Charles; Primont, Daniel; Russell, R. Robert

    2007-01-01

    We show that the Hotelling-Lau elasticity of substitution, an extension of the Allen-Uzawa elasticity to allow for optimal output-quantity (or utility) responses to changes in factor prices, inherits all of the failings of the Allen-Uzawa elasticity identified by Blackorby and Russell [1989 AER]. An analogous extension of the Morishima elasticity of substitution to allow for output quantity changes preserves the salient properties of the original Hicksian notion of elasticity of substitution.

  13. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai

    2017-03-08

    We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.

  14. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai; Schuster, Gerard T.

    2017-01-01

    We use elastic least-squares reverse time migration (LSRTM) to invert for the reflectivity images of P- and S-wave impedances. Elastic LSRTMsolves the linearized elastic-wave equations for forward modeling and the adjoint equations for backpropagating the residual wavefield at each iteration. Numerical tests on synthetic data and field data reveal the advantages of elastic LSRTM over elastic reverse time migration (RTM) and acoustic LSRTM. For our examples, the elastic LSRTM images have better resolution and amplitude balancing, fewer artifacts, and less crosstalk compared with the elastic RTM images. The images are also better focused and have better reflector continuity for steeply dipping events compared to the acoustic LSRTM images. Similar to conventional leastsquares migration, elastic LSRTM also requires an accurate estimation of the P- and S-wave migration velocity models. However, the problem remains that, when there are moderate errors in the velocity model and strong multiples, LSRTMwill produce migration noise stronger than that seen in the RTM images.

  15. The equivalent thermal conductivity of lattice core sandwich structure: A predictive model

    International Nuclear Information System (INIS)

    Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining

    2016-01-01

    Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.

  16. Study of TEC, slab-thickness and neutral temperature of the thermosphere in the Indian low latitude sector

    Directory of Open Access Journals (Sweden)

    K. Venkatesh

    2011-09-01

    Full Text Available The ionospheric equivalent slab-thickness is an important parameter which measures the skewness of the electron density profile of the ionosphere. In this paper, the diurnal, seasonal, day-to-day and latitudinal variations of ionospheric parameters namely total electron content (TEC, the peak ionization density of F-layer (NmF2, equivalent slab-thickness (τ and neutral temperature (Tn are presented. The simultaneous data of GPS-TEC and NmF2 from Trivandrum (8.47° N, 76.91° E, Waltair (17.7° N, 83.3° E and Delhi (28.58° N, 77.21° E are used to compute the slab-thickness (τ = TEC/NmF2 of the low sunspot period, 2004–2005. The day-time TEC values at Waltair are found to be greater than those at Trivandrum, while at Delhi the day-time TEC values are much lower compared to those at Trivandrum and Waltair. The trends of variation in the monthly mean diurnal variation of TEC and NmF2 are similar at Delhi, while they are different at Trivandrum and Waltair during the day-time. The slab-thickness (τ has shown a pre-sunrise peak around 05:00 LT at all the three stations, except during the summer months over Delhi. A consistent secondary peak in slab-thickness around noon hours has also been observed at Trivandrum and Waltair. During equinox and winter months a large night-time enhancement in the slab-thickness (comparable to the early morning peak in slab-thickness is observed at Delhi. The latitudinal variation of slab-thickness has shown a decrease from the equatorial station, Trivandrum to the low-mid latitude station, Delhi. The neutral temperatures (Tn computed from the slab-thickness (τ has shown a sharp increase around 05:00 LT over Trivandrum and Waltair. Whereas at Delhi, a double peaking around 05:00 and 23:00 LT is observed during winter and equinoctial months. The neutral temperatures computed are compare well with those of the MSIS-90 model derived temperatures.

  17. Experimental research and numerical optimisation of multi-point sheet metal forming implementation using a solid elastic cushion system

    Science.gov (United States)

    Tolipov, A. A.; Elghawail, A.; Shushing, S.; Pham, D.; Essa, K.

    2017-09-01

    There is a growing demand for flexible manufacturing techniques that meet the rapid changes in customer needs. A finite element analysis numerical optimisation technique was used to optimise the multi-point sheet forming process. Multi-point forming (MPF) is a flexible sheet metal forming technique where the same tool can be readily changed to produce different parts. The process suffers from some geometrical defects such as wrinkling and dimpling, which have been found to be the cause of the major surface quality problems. This study investigated the influence of parameters such as the elastic cushion hardness, blank holder force, coefficient of friction, cushion thickness and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. For those reasons, in this investigation, a multipoint forming stamping process using a blank holder was carried out in order to study the effects of the wrinkling, dimpling, thickness variation and forming force. The aim was to determine the optimum values of these parameters. Finite element modelling (FEM) was employed to simulate the multi-point forming of hemispherical shapes. Using the response surface method, the effects of process parameters on wrinkling, maximum deviation from the target shape and thickness variation were investigated. The results show that elastic cushion with proper thickness and polyurethane with the hardness of Shore A90. It has also been found that the application of lubrication cans improve the shape accuracy of the formed workpiece. These final results were compared with the numerical simulation results of the multi-point forming for hemispherical shapes using a blank-holder and it was found that using cushion hardness realistic to reduce wrinkling and maximum deviation.

  18. Wave motion in a thick cylindrical rod undergoing longitudinal impact

    Czech Academy of Sciences Publication Activity Database

    Červ, Jan; Adámek, V.; Valeš, František; Gabriel, Dušan; Plešek, Jiří

    2016-01-01

    Roč. 66, November (2016), s. 88-105 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GAP101/12/2315; GA TA ČR(CZ) TH01010772 Institutional support: RVO:61388998 Keywords : elastic waves * impact * thick cylindrical rod * analytical solution * semi-analytical solution Subject RIV: BI - Acoustics Impact factor: 1.575, year: 2016 http://ac.els-cdn.com/S0165212516300427/1-s2.0-S0165212516300427-main.pdf?_tid=d91eee02-7a55-11e6-8c02-00000aab0f6c&acdnat=1473842161_c56543aaec31b7e091ab47d3fb38f361

  19. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  20. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2015-01-01

    If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.

  1. Multipurpose hooks for elastic attachment

    Directory of Open Access Journals (Sweden)

    Siddharth Shashidhar Revankar

    2014-01-01

    Full Text Available As certain bracket systems do not include hooks on premolar brackets for elastic attachment, Kobayashi or custom made ligature hooks have proven as an alternative. However, these hooks tend to bend labially when used with heavy elastics and these elastics can even pop loose from the hooks on mouth opening. The following article describes an innovative multipurpose hook which is simple, stiff and inexpensive and can be used for engagement of class II elastics on premolars in case of missing molars as well as engagement of intermaxillary elastics for settling of occlusion in finishing stages. As the hooks can be prefabricated, this saves a lot of chair side time and is more practical for use in day-to-day orthodontic practice.

  2. Spectral dimension of elastic Sierpinski gaskets with general elastic forces

    International Nuclear Information System (INIS)

    Liu, S.H.; Liu, A.J.

    1985-01-01

    The spectral dimension is calculated for a Sierpinski gasket with the most general elastic restoring forces allowed by symmetry. The elastic forces consist of bond-stretching and angle-bending components. The spectral dimension is the same as that for the bond-stretching-force (central-force) model. This demonstrates that on the Sierpinski gasket the two types of forces belong to the same universality class

  3. Operation and Equivalent Loads of Wind Turbines in Large Wind Farms

    Science.gov (United States)

    Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming

    2017-11-01

    Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.

  4. Thermodynamics and elastic moduli of fluids with steeply repulsive potentials

    Science.gov (United States)

    Heyes, D. M.

    1997-08-01

    Analytic expressions for the thermodynamic properties and elastic moduli of molecular fluids interacting with steeply repulsive potentials are derived using Rowlinson's hard-sphere perturbation treatment which employs a softness parameter, λ specifying the deviation from the hard-sphere potential. Generic potentials of this form might be used to represent the interactions between near-hard-sphere stabilized colloids. Analytic expressions for the equivalent hard-sphere diameter of inverse power [ɛ(σ/r)n where ɛ sets the energy scale and σ the distance scale] exponential and logarithmic potential forms are derived using the Barker-Henderson formula. The internal energies in the hard-sphere limit are predicted essentially exactly by the perturbation approach when compared against molecular dynamics simulation data using the same potentials. The elastic moduli are similarly accurately predicted in the hard-sphere limit, as they are trivially related to the internal energy. The compressibility factors from the perturbation expansion do not compare as favorably with simulation data, and in this case the Carnahan-Starling equation of state prediction using the analytic effective hard-sphere diameter would appear to be a preferable route for this thermodynamic property. A more refined state point dependent definition for the effective hard-sphere diameter is probably required for this property.

  5. Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity

    Science.gov (United States)

    Reza Barati, Mohammad

    2017-09-01

    For the first time, a vibrating porous double-nanoplate system under in-plane periodic loads is modeled via the generalized nonlocal strain gradient theory (NSGT). Based on the proposed theory, one can examine both stiffness-softening and stiffness-hardening effects for a more accurate analysis of nanoplates. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture. Modeling of porous double-layered nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, nonlocal parameter, strain gradient parameter, material gradation, interlayer stiffness, elastic foundation, side-to-thickness and aspect ratios have a notable impact on the vibration behavior of nanoporous materials.

  6. Three-Dimensional Vibration Analysis of Rectangular Thick Plates on Pasternak Foundation with Arbitrary Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Huimin Liu

    2017-01-01

    Full Text Available This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.

  7. On the aero-elastic design of the DTU 10MW wind turbine blade for the LIFES50+ wind tunnel scale model

    DEFF Research Database (Denmark)

    Bayati, I.; Belloli, M.; Bernini, L.

    2016-01-01

    and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD...

  8. Neutrons production in thick targets of Be and {sup 238}U bombarded by 100 MeV/u deuterons and in a thick target of C bombarded by 95 MeV/u {sup 36}Ar. Attenuation in concrete and dose equivalent rate of the activated uranium; Neutrons produits dans des cibles epaisses de Be et {sup 238}U irradiees par des deutons de 100 MeV/u et dans une cible epaisse de C irradiee par des {sup 36}Ar de 95 MeV/u. Longueurs d'attenuation dans du beton et debit d'equivalent de dose resultant de l'activation de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, N.; Proust, J.; Clapier, F.; Gara, P.; Obert, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Mirea, M. [Institute of Physics and Nuclear Engineering, Bucharest (Romania); Belier, G.; Ethvignot, T.; Granier, T. [CEA/DAM-Ile de France, 91 - Bruyeres-Le-Chatel (France). Service de Physique Nucleaire; Liang, C.F. [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse; Bajard, M.; Leroy, R.; Villari, A.C.C. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    1999-09-01

    Neutrons production in thick targets of Be and {sup 238}U bombarded by 100 MeV/u deuterons and in a thick target of C bombarded by 95 MeV/u {sup 36}Ar. Attenuation in concrete and dose equivalent rate of the activated uranium. The yields of secondary neutrons produced by the interaction of a beam with thick target were determined with activation detectors. Three projectile-target couples have been studied: deuterons (100 MeV/u)+{sup 238}U, deuterons (100 MeV/u)+{sup 9}Be and {sup 36}Ar (95 MeV/u)+{sup 12}C. At 0 deg.. the yields were also measured after a piece of concrete and the corresponding attenuation length evaluated. The dose rate of the uranium target was monitored during several days after the end of the irradiation. (author)

  9. Characterization of Films with Thickness Less than 10 nm by Sensitivity-Enhanced Atomic Force Acoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Muraoka Mikio

    2011-01-01

    Full Text Available Abstract We present a method for characterizing ultrathin films using sensitivity-enhanced atomic force acoustic microscopy, where a concentrated-mass cantilever having a flat tip was used as a sensitive oscillator. Evaluation was aimed at 6-nm-thick and 10-nm-thick diamond-like carbon (DLC films deposited, using different methods, on a hard disk for the effective Young's modulus defined as E/(1 - ν2, where E is the Young's modulus, and ν is the Poisson's ratio. The resonant frequency of the cantilever was affected not only by the film's elasticity but also by the substrate even at an indentation depth of about 0.6 nm. The substrate effect was removed by employing a theoretical formula on the indentation of a layered half-space, together with a hard disk without DLC coating. The moduli of the 6-nm-thick and 10-nm-thick DLC films were 392 and 345 GPa, respectively. The error analysis showed the standard deviation less than 5% in the moduli.

  10. Cell Elasticity Determines Macrophage Function

    Science.gov (United States)

    Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry

    2012-01-01

    Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423

  11. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  12. Transient Vibrations of an Elastic Cylinder Inserted in the Elastic Medium

    Directory of Open Access Journals (Sweden)

    Sulym Heorgij

    2016-06-01

    Full Text Available Using method of Laguerre polynomials we have obtained the solution of the dynamic problem of the theory of elasticity for elastic cylinder inserted into massive body modeled as a space. The source of non-stationary processes in composite is high intensity force load of the inner surface of the cylinder. On the surface separation of materials of space and cylinder the conditions of ideal mechanical contact are satisfied. The solution is obtained as series of Laguerre polynomials, which coefficients are found from recurrent relations. The results of numerical analysis of transient stress-strain state in elastic space with cylindrical insertion might be used for the technological process of hydraulic fracturing during shale gas extraction.

  13. A method of detection to the grinding wheel layer thickness based on computer vision

    Science.gov (United States)

    Ji, Yuchen; Fu, Luhua; Yang, Dujuan; Wang, Lei; Liu, Changjie; Wang, Zhong

    2018-01-01

    This paper proposed a method of detection to the grinding wheel layer thickness based on computer vision. A camera is used to capture images of grinding wheel layer on the whole circle. Forward lighting and back lighting are used to enables a clear image to be acquired. Image processing is then executed on the images captured, which consists of image preprocessing, binarization and subpixel subdivision. The aim of binarization is to help the location of a chord and the corresponding ring width. After subpixel subdivision, the thickness of the grinding layer can be calculated finally. Compared with methods usually used to detect grinding wheel wear, method in this paper can directly and quickly get the information of thickness. Also, the eccentric error and the error of pixel equivalent are discussed in this paper.

  14. CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES

    OpenAIRE

    Tadeu Mascia,Nilson

    2003-01-01

    Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...

  15. Elastic and Viscoelastic Stresses of Nonlinear Rotating Functionally Graded Solid and Annular Disks with Gradually Varying Thickness

    Directory of Open Access Journals (Sweden)

    Allam M. N. M.

    2017-12-01

    Full Text Available Analytical and numerical nonlinear solutions for rotating variable-thickness functionally graded solid and annular disks with viscoelastic orthotropic material properties are presented by using the method of successive approximations.Variable material properties such as Young’s moduli, density and thickness of the disk, are first introduced to obtain the governing equation. As a second step, the method of successive approximations is proposed to get the nonlinear solution of the problem. In the third step, the method of effective moduli is deduced to reduce the problem to the corresponding one of a homogeneous but anisotropic material. The results of viscoelastic stresses and radial displacement are obtained for annular and solid disks of different profiles and graphically illustrated. The calculated results are compared and the effects due to many parameters are discussed.

  16. Nanomechanical properties of thick porous silicon layers grown on p- and p+-type bulk crystalline Si

    International Nuclear Information System (INIS)

    Charitidis, C.A.; Skarmoutsou, A.; Nassiopoulou, A.G.; Dragoneas, A.

    2011-01-01

    Highlights: → The nanomechanical properties of bulk crystalline Si. → The nanomechanical properties of porous Si. → The elastic-plastic deformation of porous Si compared to bulk crystalline quantified by nanoindentation data analysis. - Abstract: The nanomechanical properties and the nanoscale deformation of thick porous Si (PSi) layers of two different morphologies, grown electrochemically on p-type and p+-type Si wafers were investigated by the depth-sensing nanoindentation technique over a small range of loads using a Berkovich indenter and were compared with those of bulk crystalline Si. The microstructure of the thick PSi layers was characterized by field emission scanning electron microscopy. PSi layers on p+-type Si show an anisotropic mesoporous structure with straight vertical pores of diameter in the range of 30-50 nm, while those on p-type Si show a sponge like mesoporous structure. The effect of the microstructure on the mechanical properties of the layers is discussed. It is shown that the hardness and Young's modulus of the PSi layers exhibit a strong dependence on their microstructure. In particular, PSi layers with the anisotropic straight vertical pores show higher hardness and elastic modulus values than sponge-like layers. However, sponge-like PSi layers reveal less plastic deformation and higher wear resistance compared with layers with straight vertical pores.

  17. Transient waves in visco-elastic media

    CERN Document Server

    Ricker, Norman

    1977-01-01

    Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave

  18. Simultaneous determination of the residual stress, elastic modulus, density and thickness of ultrathin film utilizing vibrating doubly clamped micro-/nanobeams

    Czech Academy of Sciences Publication Activity Database

    Stachiv, Ivo; Kuo, Ch.-Y.; Fang, T.-H.; Mortet, Vincent

    2016-01-01

    Roč. 6, č. 4 (2016), 1-8, č. článku 045005. ISSN 2158-3226 R&D Projects: GA ČR GC15-13174J Institutional support: RVO:68378271 Keywords : elastic moduli * thin film structure * vibration resonance * error analysis * materials properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.568, year: 2016

  19. Surface excess elasticity of gold: Ab initio coefficients and impact on the effective elastic response of nanowires

    International Nuclear Information System (INIS)

    Elsner, B.A.M.; Müller, S.; Bargmann, S.; Weissmüller, J.

    2017-01-01

    Predicting the influence of the surface on the effective elastic properties of nanoscale structures and nanomaterials remains a challenge, which we here address on both levels, continuum and atomic. Density Functional Theory (DFT) computation at the atomic level yields the first reliable surface excess elastic parameters for the (111) and (001) surfaces of gold. At the continuum level, we derive closed-form expressions for the effective elastic behavior that can be combined with the DFT-derived excess elastic parameters to obtain the effective axial, torsion, and bending stiffness of circular nanowires with surface excess elasticity. The two approaches use different reference frames, and we emphasize the need for consistent stress definitions and for conversion between the separate stress measures when transferring results between the approaches. We present excess elastic parameters separately for Cauchy and 2 nd Piola-Kirchhoff stresses, demonstrating that the conversion substantially modifies their numerical value and may even invert their sign. The results afford an assessment of the contribution of the surface excess elastic parameters to the effective elastic response of nanoscale beams or wires. This assessment sheds doubt on earlier suggestions relating experimental observations of an effective stiffening or softening at small size to the excess elasticity of clean surfaces.

  20. Surface elastic properties in silicon nanoparticles

    Science.gov (United States)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  1. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  2. Equivalent Dynamic Models.

    Science.gov (United States)

    Molenaar, Peter C M

    2017-01-01

    Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.

  3. Asymmetric Vibrations of a Circular Elastic Plate on an Elastic Half Space

    DEFF Research Database (Denmark)

    Schmidt, H.; Krenk, Steen

    1982-01-01

    The asymmetric problem of a vibrating circular elastic plate in frictionless contact with an elastic half space is solved by an integral equation method, where the contact stress appears as the unknown function. By a trigonometric expansion, the problem is reduced to a number of uncoupled two...

  4. Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics

    Science.gov (United States)

    Haney, Matthew M.; Matoza, Robin S.; Fee, David; Aldridge, David F.

    2018-04-01

    We establish analogies between equivalent source theory in seismology (moment-tensor and single-force sources) and acoustics (monopoles, dipoles and quadrupoles) in the context of volcanic eruption signals. Although infrasound (acoustic waves volcanic eruptions may be more complex than a simple monopole, dipole or quadrupole assumption, these elementary acoustic sources are a logical place to begin exploring relations with seismic sources. By considering the radiated power of a harmonic force source at the surface of an elastic half-space, we show that a volcanic jet or plume modelled as a seismic force has similar scaling with respect to eruption parameters (e.g. exit velocity and vent area) as an acoustic dipole. We support this by demonstrating, from first principles, a fundamental relationship that ties together explosion, torque and force sources in seismology and highlights the underlying dipole nature of seismic forces. This forges a connection between the multipole expansion of equivalent sources in acoustics and the use of forces and moments as equivalent sources in seismology. We further show that volcanic infrasound monopole and quadrupole sources exhibit scalings similar to seismicity radiated by volume injection and moment sources, respectively. We describe a scaling theory for seismic tremor during volcanic eruptions that agrees with observations showing a linear relation between radiated power of tremor and eruption rate. Volcanic tremor over the first 17 hr of the 2016 eruption at Pavlof Volcano, Alaska, obeyed the linear relation. Subsequent tremor during the main phase of the eruption did not obey the linear relation and demonstrates that volcanic eruption tremor can exhibit other scalings even during the same eruption.

  5. Non-linear buckling of an FGM truncated conical shell surrounded by an elastic medium

    International Nuclear Information System (INIS)

    Sofiyev, A.H.; Kuruoglu, N.

    2013-01-01

    In this paper, the non-linear buckling of the truncated conical shell made of functionally graded materials (FGMs) surrounded by an elastic medium has been studied using the large deformation theory with von Karman–Donnell-type of kinematic non-linearity. A two-parameter foundation model (Pasternak-type) is used to describe the shell–foundation interaction. The FGM properties are assumed to vary continuously through the thickness direction. The fundamental relations, the modified Donnell type non-linear stability and compatibility equations of the FGM truncated conical shell resting on the Pasternak-type elastic foundation are derived. By using the Superposition and Galerkin methods, the non-linear stability equations for the FGM truncated conical shell is solved. Finally, influences of variations of Winkler foundation stiffness and shear subgrade modulus of the foundation, compositional profiles and shell characteristics on the dimensionless critical non-linear axial load are investigated. The present results are compared with the available data for a special case. -- Highlights: • Nonlinear buckling of FGM conical shell surrounded by elastic medium is studied. • Pasternak foundation model is used to describe the shell–foundation interaction. • Nonlinear basic equations are derived. • Problem is solved by using Superposition and Galerkin methods. • Influences of various parameters on the nonlinear critical load are investigated

  6. The study of Widmanstätten ferrite in Fe–C alloys by a phase field model coupled with anisotropic elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shen, Yao, E-mail: yaoshen@sjtu.edu.cn [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wan, Haibo [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Power Equipment Research Institute, Shanghai 200240 (China); Xiong, Xiaochuan [General Motors Global Research & Development, China Science Laboratory, Shanghai 201206 (China); Zhang, Lanting [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-25

    A phase field model accounting for anisotropic elastic energy has been formulated to investigate the morphology and growth kinetics of a Widmanstätten microstructure during the isothermal austenite to ferrite transformation in binary Fe–C. Physically realistic parameters are employed, for which the thermodynamic functions and the diffusional mobilities are from the literatures that were assessed via the Calphad technique and from experimental results respectively. The simulation results suggest that the anisotropy of elastic energy, resulting from the lattice distortion between the ferrite precipitate and the austenite matrix in the phase transformation, is sufficient to generate a plate-like Widmanstätten structure. The growth of the ferrite precipitate follows completely different dynamic laws in different directions, i.e., parabolic thickening in the direction of the plate thickness and linear lengthening in the direction toward the plate tip. The chief reason for the former is that the moving of the plate broad sides may be regarded as a migration of straight interfaces in the diffusion-controlled phase transformation; the latter is because that the plate tip can maintain a constant radius of curvature during the phase transition after a transient initial stage. Furthermore, the aspect ratio and the lengthening rate of the Widmanstätten ferrite plate simulated by our analyses are in good agreement with the experimental observations. - Highlights: • A model assuming elastic anisotropy for the growth of ferrites is formulated. • The elastic anisotropy is sufficient to generate acicular Widmanstätten ferrites. • The direction of the plate thickness features a parabolic thickening. • The direction of the plate tip characterizes a linear lengthening. • The calculated aspect ratio and growth rate are in good agreement with experiments.

  7. Optimization of Si–C reaction temperature and Ge thickness in C-mediated Ge dot formation

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yuhki, E-mail: yu-ki@ecei.tohoku.ac.jp; Itoh, Yuhki; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    To form Ge dots on a Si substrate, the effect of thermal reaction temperature of sub-monolayer C with Si (100) was investigated and the deposited Ge thickness was optimized. The samples were prepared by solid-source molecular beam epitaxy with an electron-beam gun for C sublimation and a Knudsen cell for Ge evaporation. C of 0.25 ML was deposited on Si (100) at a substrate temperature of 200 °C, followed by a high-temperature treatment at the reaction temperature (T{sub R}) of 650–1000 °C to create Si–C bonds. Ge equivalent to 2 to 5 nm thick was subsequently deposited at 550 °C. Small and dense dots were obtained for T{sub R} = 750 °C but the dot density decreased and the dot diameter varied widely in the case of lower and higher T{sub R}. A dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge deposition equivalent to 3 to 5 nm thick and a standard deviation of dot diameter was the lowest of 10 nm for 5 nm thick Ge. These results mean that C-mediated Ge dot formation was strongly influenced not only by the c(4 × 4) reconstruction condition through the Si–C reaction but also the relationship between the Ge deposition thickness and the exposed Si (100)-(2 × 1) surface area. - Highlights: • The effect of Si–C reaction temperature on Ge dot formation was investigated. • Small and dense dots were obtained for T{sub R} = 750 °C. • The dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge = 3 to 5 nm. • The standard deviation of dot diameter was the lowest of 10 nm at Ge = 5 nm.

  8. Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?

    International Nuclear Information System (INIS)

    Webster, Mort; Paltsev, Sergey; Reilly, John

    2008-01-01

    Observations of historical energy consumption, energy prices, and income growth in industrial economies exhibit a trend in improving energy efficiency even when prices are constant or falling. Two alternative explanations of this phenomenon are: a productivity change that uses less energy and a structural change in the economy in response to rising income. It is not possible to distinguish among these from aggregate data, and economic energy models for forecasting emissions simulate one, as an exogenous time trend, or the other, as energy demand elasticity with respect to income, or both processes for projecting energy demand into the future. In this paper, we ask whether and how it matters which process one uses for projecting energy demand and carbon emissions. We compare two versions of the MIT Emissions Prediction and Policy Analysis (EPPA) model, one using a conventional efficiency time trend approach and the other using an income elasticity approach. We demonstrate that while these two versions yield equivalent projections in the near-term, that they diverge in two important ways: long-run projections and under uncertainty in future productivity growth. We suggest that an income dependent approach may be preferable to the exogenous approach

  9. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai; Schuster, Gerard T.

    2016-01-01

    Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.

  10. Elastic least-squares reverse time migration

    KAUST Repository

    Feng, Zongcai

    2016-09-06

    Elastic least-squares reverse time migration (LSRTM) is used to invert synthetic particle-velocity data and crosswell pressure field data. The migration images consist of both the P- and Svelocity perturbation images. Numerical tests on synthetic and field data illustrate the advantages of elastic LSRTM over elastic reverse time migration (RTM). In addition, elastic LSRTM images are better focused and have better reflector continuity than do the acoustic LSRTM images.

  11. Three-Dimensional Elasticity Solutions for Sound Radiation of Functionally Graded Materials Plates considering State Space Method

    Directory of Open Access Journals (Sweden)

    Tieliang Yang

    2016-01-01

    Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.

  12. The multiple V-shaped double peeling of elastic thin films from elastic soft substrates

    Science.gov (United States)

    Menga, N.; Afferrante, L.; Pugno, N. M.; Carbone, G.

    2018-04-01

    In this paper, a periodic configuration of V-shaped double peeling process is investigated. Specifically, an elastic thin film is detached from a soft elastic material by applying multiple concentrated loads periodically distributed with spatial periodicity λ. The original Kendall's idea is extended to take into account the change in elastic energy occurring in the substrate when the detachment fronts propagate. The symmetric configuration typical of a V-peeling process causes the energy release rate to be sensitive to variations of the elastic energy stored in the soft substrate. This results in an enhancement of the adhesion strength because part of the external work required to trigger the peeling mechanism is converted in substrate elastic energy. A key role is played by both spatial periodicity λ and elasticity ratio E/Eh, between tape and substrate elastic moduli, in determining the conditions of stable adhesion. Indeed, the presence of multiple peeling fronts determines a modification of the mechanism of interaction, because deformations close to each peeling front are also affected by the stresses related to the other fronts. Results show that the energy release rate depends on the detached length of the tape so that conditions can be established which lead to an increase of the supported load compared to the classical peeling on rigid substrates. Finally, we also find that for any given value of the load per unit length, an optimum value of the wavelength λ exists that maximizes the tolerance of the system, before unstable propagation of the peeling front can occur.

  13. Quasi-experimental taxation elasticities of US gasoline demand

    International Nuclear Information System (INIS)

    Goel, R.K.

    1994-01-01

    Taxation elasticities provide inputs in public policy aimed at raising revenues. Using the quasi-experimental method, this paper calculates gasoline taxation elasticities for the USA over 1952-86. The medium (mean) elasticity over this period is found to be -0.075 (-0.122). However, the elasticity following the oil shock of 1973 is found to be statistically different from the pre-shock elasticity. Reasons for this change in elasticity are discussed. The implication of this analysis is that tax policies based on price elasticities, rather than on tax elasticities, might be using an inappropriate elasticity estimate and consequently misinterpreting the government's ability to raise tax revenues. (author)

  14. Relationship between the Uncompensated Price Elasticity and the Income Elasticity of Demand under Conditions of Additive Preferences.

    Science.gov (United States)

    Sabatelli, Lorenzo

    2016-01-01

    Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences), mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand.

  15. Thermo-elastic optical coherence tomography.

    Science.gov (United States)

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  16. Measurement of resonances in 12 C + 4 He through inverse kinematics with thick targets

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Lizcano, D.; Martinez Q, E.; Fernandez, M.C.; Murillo, G.; Goldberg, V.; Skorodumov, B.B.; Rogachev, G.

    2003-01-01

    The excitation function of elastic scattering for the system 12 C + 4 He to energy from 0.5 to 3.5 MeV in the center of mass system (c.m.) was measured. We use a gassy thick target and the technique of inverse kinematics which allows to make measurements at 180 degrees in c.m. Using the R matrix theory those was deduced parameters of the resonances and the results were compared with measurements reported in the literature made with other techniques. (Author)

  17. Derivation of elastic stiffness formula for leaf type HDS and conceptual design of leaf type HDS of SMART FA

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kang, Heung Seok; Yoon, Kyung Ho; Suh, Jung Min; Lee, Jin Seok

    1997-12-01

    Based on the strain energy method and Euler beam theory, an elastic stiffness formula for the leaf type HDS, now widely used as the holddown spring for the FA of Westinghouse type PWRs, has been derived. Through comparisons with the characteristic test results of the test produced HDSs, it has been found that the derived formula is useful to reliably estimate an elastic stiffness with material properties and the geometric data of an HDS. Through sensitivity analysis of HDS`s elastic stiffness, the elastic stiffness sensitivity with respect to different design variables was identified, as well as the design variables having remarkable sensitivity. In addition, finite element analysis using surface-to-surface contact elements on the contact surface between the leaves shows that the analysis results are in good agreement with the elastic stiffness determined from the derived formula. It is therefore expected that the finite element model and the analysis method will be useful in the analysis of the elasto-plastic behavior of the leaf type HDS in the future. To both reduce the cobalt content, which is considered to be the source of radioactive contamination in the reactor core, and to design the HDS to meet the holddown requirements of the SMART FA, a conceptual design for the HDS of the SMART FA has been performed through two analyses of the elastic characteristics of the HDS : the possibility of substitution of the leaf spring`s material from Inconel 718 to Zircaloy and the effects on the HDS`s elastic characteristics according to the variation of leaf thickness and the number of leaves composing the HDS. (author). 34 refs., 33 tabs., 37 figs.

  18. Equivalence of Stress and Energy Calculations of Mean Stress

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L. M.

    1977-01-01

    Calculations of the mean stress in a plastically deformed matrix containing randomly distributed elastic inclusions are considered. The mean stress for an elastically homogeneous material is calculated on the basis of an energy consideration which completely accounts for elastic interactions....... The result is shown to be identical to that obtained from a stress calculation. The possibility of including elastic interactions in the case of elastic inhomogeneity is discussed....

  19. Teaching nonlinear dynamics through elastic cords

    International Nuclear Information System (INIS)

    Chacon, R; Galan, C A; Sanchez-Bajo, F

    2011-01-01

    We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.

  20. Elastic Beanstalk

    CERN Document Server

    Vliet, Jurg; Wel, Steven; Dowd, Dara

    2011-01-01

    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  1. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    International Nuclear Information System (INIS)

    Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco

    2014-01-01

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions

  2. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers.

    Science.gov (United States)

    Lefevre, F; Jenot, F; Ouaftouh, M; Duquennoy, M; Ourak, M

    2010-03-01

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 microm has been determined with a +/-5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of +/-2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 microm.

  3. Examination of the X-ray piping diagnostic system using EGS4 (measuring the thickness of a steel pipe with rust)

    International Nuclear Information System (INIS)

    Kajiwara, G.

    2001-01-01

    In a series of papers entitled 'Examination of the X-ray piping diagnostic system using EGS4' presented the proceedings of the EGS4 users' meetings, I discussed the possibility of measuring the thickness of piping walls with rust. In the present paper, I describe, based on our earlier results, how the thickness of steel pipes with rust can be measured. I conducted EGS4 simulation to measure the thickness of a combination of steel and rust and made an energy absorption diagram for this combination. The equivalent thickness of steel was obtained through experiments and the system operation. The thickness of the steel determined by using the diagram agreed well with the actual steel thickness obtained by the experiments. In the future, we will focus on how to automate this measurement procedure and how to use the same procedure to measure the thickness of pipes filled with water. (author)

  4. Relationship between the Uncompensated Price Elasticity and the Income Elasticity of Demand under Conditions of Additive Preferences.

    Directory of Open Access Journals (Sweden)

    Lorenzo Sabatelli

    Full Text Available Income and price elasticity of demand quantify the responsiveness of markets to changes in income and in prices, respectively. Under the assumptions of utility maximization and preference independence (additive preferences, mathematical relationships between income elasticity values and the uncompensated own and cross price elasticity of demand are here derived using the differential approach to demand analysis. Key parameters are: the elasticity of the marginal utility of income, and the average budget share. The proposed method can be used to forecast the direct and indirect impact of price changes and of financial instruments of policy using available estimates of the income elasticity of demand.

  5. Plastic incompatibility stresses and stored elastic energy in plastically deformed copper

    Energy Technology Data Exchange (ETDEWEB)

    Baczmanski, A. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)], E-mail: baczman@ftj.agh.edu.pl; Hfaiedh, N.; Francois, M. [LASMIS, Universite de Technologie de Troyes, 11 rue Marie Curie, B.P. 2060, 10010 Troyes (France); Wierzbanowski, K. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)

    2009-02-15

    The X-ray diffraction method and theoretical model of elastoplastic deformation were used to examine the residual stresses in polycrystalline copper. To this end, the {l_brace}2 2 0{r_brace} strain pole figures were determined for samples subjected to different magnitudes of tensile deformation. Using diffraction data and the self-consistent model, the tensor of plastic incompatibility stress was found for each orientation of a polycrystalline grain. Crystallographic textures, macroscopic and second-order residual stresses were considered in the analysis. As a result, the distributions of elastic stored energy and von Mises equivalent stress were presented in Euler space and correlated with the preferred orientations of grains. Moreover, using the model prediction, the variation of the critical resolved shear stress with grain orientation was determined.

  6. EQUIVALENCE VERSUS NON-EQUIVALENCE IN ECONOMIC TRANSLATION

    Directory of Open Access Journals (Sweden)

    Cristina, Chifane

    2012-01-01

    Full Text Available This paper aims at highlighting the fact that “equivalence” represents a concept worth revisiting and detailing upon when tackling the translation process of economic texts both from English into Romanian and from Romanian into English. Far from being exhaustive, our analysis will focus upon the problems arising from the lack of equivalence at the word level. Consequently, relevant examples from the economic field will be provided to account for the following types of non-equivalence at word level: culturespecific concepts; the source language concept is not lexicalised in the target language; the source language word is semantically complex; differences in physical and interpersonal perspective; differences in expressive meaning; differences in form; differences in frequency and purpose of using specific forms and the use of loan words in the source text. Likewise, we shall illustrate a number of translation strategies necessary to deal with the afore-mentioned cases of non-equivalence: translation by a more general word (superordinate; translation by a more neutral/less expressive word; translation by cultural substitution; translation using a loan word or loan word plus explanation; translation by paraphrase using a related word; translation by paraphrase using unrelated words; translation by omission and translation by illustration.

  7. Full reflector thickness and isolation thickness on neutron transport

    International Nuclear Information System (INIS)

    Sakai, Tomohiro; Naito, Yoshitaka; Komuro, Yuichi.

    1988-08-01

    A method to determine ''full reflector thickness'' and ''isolation thickness'', which is utilized for criticality safety evaluation on nuclear fuel facilities, was proposed in this paper. Firstly, a calculation was tryed to obtain the two kinds of thicknesses from the result of criticality calculations for a specific case. Then, two simple equations which calculates the two kinds of thicknesses were made from the relation between reflector (or isolator) thickness and k eff , and one-group diffusion theory. Finally, we proposed a new method to determine the thicknesses. From the method we proposed, ''full reflector thickness'' and ''isolation thickness'' can be obtain using the equations and migration length of the reflector (or isolator) and infinite and effective multiplication factor of the fuel. (author)

  8. Investigation of the Section Thickness Measurement in Tomosynthesis by Thin Metal Plate Edge Method.

    Science.gov (United States)

    Ikeno, Kaoru; Akita, Tsunemichi; Hanai, Kozo; Muramatsu, Yoshihisa

    When performing tomosynthesis, the section thickness needs to be set depending on a radiographic part and its diagnostic purpose. However, the section thickness in tomosynthesis has not been clearly defined and its measurement method has not been established yet. In this study, we devised the alternative measurement method to diagnose the section thickness using an edge of thin metal plate, and compared with the simulation results, the wire and bead method reported in the previous papers. The tomographic image of the thin metal plate positioned on the table top inclining 30 degrees, which showed the edge spread function (ESF) of each tomographic height, was taken, and then the line spread function (LSF) was obtained by differentiating the ESF image. For the next, a profile curve was plotted by maximum values of LSF of each tomographic height, and a section thickness was calculated using the full width at half maximum (FWHM) of the profile curve. The edge method derived the section thickness close to the simulation results than the other methods. Further, the section thickness depends on the thickness of the metal plate and not the material. The thickness of the metal plate suitable for the evaluation of section thickness is 0.3 mm that is equivalent to pixel size of the flat panel detector (FPD). We conducted quantitative verification to establish the measurement method of the section thickness. The edge method is a useful technique as well as the wire and bead method for grasping basic characteristics of an imaging system.

  9. Determination of the elastic constants of portlandite by Brillouin spectroscopy

    KAUST Repository

    Speziale, S.; Reichmann, H.J.; Schilling, F.R.; Wenk, H.R.; Monteiro, P.J.M.

    2008-01-01

    The single crystal elastic constants Cij and the shear and adiabatic bulk modulus of a natural portlandite (Ca(OH)2) crystal were determined by Brillouin spectroscopy at ambient conditions. The elastic constants, expressed in GPa, are: C11 = 102.0(± 2.0), C12 = 32.1(± 1.0), C13 = 8.4(± 0.4), C14 = 4.5(± 0.2), C33 = 33.6(± 0.7), C44 = 12.0(± 0.3), C66 = (C11-C12)/2 = 35.0(± 1.1), where the numbers in parentheses are 1σ standard deviations. The Reuss bounds of the adiabatic bulk and shear moduli are K0S = 26.0(± 0.3) GPa and G0 = 17.5(± 0.4) GPa, respectively, while the Voigt bounds of these moduli are K0S = 37.3(± 0.4) GPa and G0 = 24.4(± 0.3) GPa. The Reuss and Voigt bounds for the aggregate Young's modulus are 42.8(± 1.0) GPa and 60.0(± 0.8) GPa respectively, while the aggregate Poisson's ratio is equal to 0.23(± 0.01). Portlandite exhibits both large compressional elastic anisotropy with C11/C33 = 3.03(± 0.09) equivalent to that of the isostructural hydroxide brucite (Mg(OH)2), and large shear anisotropy with C66/C44 = 2.92(± 0.12) which is 11% larger than brucite. The comparison between the bulk modulus of portlandite and that of lime (CaO) confirms a systematic linear relationship between the bulk moduli of brucite-type simple hydroxides and the corresponding NaCl-type oxides. © 2008 Elsevier Ltd. All rights reserved.

  10. Determination of the elastic constants of portlandite by Brillouin spectroscopy

    KAUST Repository

    Speziale, S.

    2008-10-01

    The single crystal elastic constants Cij and the shear and adiabatic bulk modulus of a natural portlandite (Ca(OH)2) crystal were determined by Brillouin spectroscopy at ambient conditions. The elastic constants, expressed in GPa, are: C11 = 102.0(± 2.0), C12 = 32.1(± 1.0), C13 = 8.4(± 0.4), C14 = 4.5(± 0.2), C33 = 33.6(± 0.7), C44 = 12.0(± 0.3), C66 = (C11-C12)/2 = 35.0(± 1.1), where the numbers in parentheses are 1σ standard deviations. The Reuss bounds of the adiabatic bulk and shear moduli are K0S = 26.0(± 0.3) GPa and G0 = 17.5(± 0.4) GPa, respectively, while the Voigt bounds of these moduli are K0S = 37.3(± 0.4) GPa and G0 = 24.4(± 0.3) GPa. The Reuss and Voigt bounds for the aggregate Young\\'s modulus are 42.8(± 1.0) GPa and 60.0(± 0.8) GPa respectively, while the aggregate Poisson\\'s ratio is equal to 0.23(± 0.01). Portlandite exhibits both large compressional elastic anisotropy with C11/C33 = 3.03(± 0.09) equivalent to that of the isostructural hydroxide brucite (Mg(OH)2), and large shear anisotropy with C66/C44 = 2.92(± 0.12) which is 11% larger than brucite. The comparison between the bulk modulus of portlandite and that of lime (CaO) confirms a systematic linear relationship between the bulk moduli of brucite-type simple hydroxides and the corresponding NaCl-type oxides. © 2008 Elsevier Ltd. All rights reserved.

  11. Radioactive waste equivalence

    International Nuclear Information System (INIS)

    Orlowski, S.; Schaller, K.H.

    1990-01-01

    The report reviews, for the Member States of the European Community, possible situations in which an equivalence concept for radioactive waste may be used, analyses the various factors involved, and suggests guidelines for the implementation of such a concept. Only safety and technical aspects are covered. Other aspects such as commercial ones are excluded. Situations where the need for an equivalence concept has been identified are processes where impurities are added as a consequence of the treatment and conditioning process, the substitution of wastes from similar waste streams due to the treatment process, and exchange of waste belonging to different waste categories. The analysis of factors involved and possible ways for equivalence evaluation, taking into account in particular the chemical, physical and radiological characteristics of the waste package, and the potential risks of the waste form, shows that no simple all-encompassing equivalence formula may be derived. Consequently, a step-by-step approach is suggested, which avoids complex evaluations in the case of simple exchanges

  12. The effect of step thickness on the surface diffusion of a Pt adatom

    International Nuclear Information System (INIS)

    Yang, Jianyu; Deng, Yonghe; Xiao, Gang; Hu, Wangyu; Chen, Shuguang

    2009-01-01

    The diffusion of a single Pt adatom on the Pt(1 1 1) surface with {1 1 1}-faceted steps is studied using a combination of molecular dynamics and the nudged elastic band method. The interatomic interactions are described with the analytic embedded atom method. The simulation indicates that before diffusion across the descending step, the adatom becomes trapped at the step edge, and has to overcome an energy barrier to return the plane's center. The energy barrier for adatom migration to the step edge is almost independent of step thickness. In addition, the step thickness dependence of the diffusion energy barrier for the adatom over descending and ascending steps edge is obtained. For a monolayer step, the upward diffusion of the adatom to the {1 1 1}-faceted steps is very rare as compared with the downward diffusion. However, the probability of the adatom to ascend the {1 1 1}-faceted steps increases with increasing step thickness. The calculated character temperatures indicate the three-dimensional pyramidal island on the clean Pt(1 1 1) surface can be formed at higher temperature

  13. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  14. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  15. Strength Estimation of Die Cast Beams Considering Equivalent Porous Defects

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Shik [Hannam Univ., Daejeon (Korea, Republic of)

    2017-05-15

    As a shop practice, a strength estimation method for die cast parts is suggested, in which various defects such as pores can be allowed. The equivalent porosity is evaluated by combining the stiffness data from a simple elastic test at the part level during the shop practice and the theoretical stiffness data, which are defect free. A porosity equation is derived from Eshelby's inclusion theory. Then, using the Mori-Tanaka method, the porosity value is used to draw a stress-strain curve for the porous material. In this paper, the Hollomon equation is used to capture the strain hardening effect. This stress-strain curve can be used to estimate the strength of a die cast part with porous defects. An elastoplastic theoretical solution is derived for the three-point bending of a die cast beam by using the plastic hinge method as a reference solution for a part with porous defects.

  16. New recommendations for dose equivalent

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1985-01-01

    In its report 39, the International Commission on Radiation Units and Measurements (ICRU), has defined four new quantities for the determination of dose equivalents from external sources: the ambient dose equivalent, the directional dose equivalent, the individual dose equivalent, penetrating and the individual dose equivalent, superficial. The rationale behind these concepts and their practical application are discussed. Reference is made to numerical values of these quantities which will be the subject of a coming publication from the International Commission on Radiological Protection, ICRP. (Author)

  17. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  18. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    Science.gov (United States)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  19. Elastic interaction of hydrogen atoms on graphene: A multiscale approach from first principles to continuum elasticity

    Science.gov (United States)

    Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.

    2016-10-01

    The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.

  20. DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: A new package (ortho-elastic)

    International Nuclear Information System (INIS)

    Reshak, Ali H.; Jamal, Morteza

    2012-01-01

    Highlights: ► A new package for calculating elastic constants of orthorhombic structure is released. ► The package called ortho-elastic. ► It is compatible with [FP-(L)APW+lo] method implemented in WIEN2k code. ► Several orthorhombic structure compounds were used to test the new package. ► Elastic constants calculated using this package show good agreement with experiment. - Abstract: A new package for calculating the elastic constants of orthorhombic structure is released. The package called ortho-elastic. The formalism of calculating the ortho-elastic constants is described in details. The package is compatible with the highly accurate all-electron full-potential (linearized) augmented plane-wave plus local orbital [FP-(L)APW+lo] method implemented in WIEN2k code. Several orthorhombic structure compounds were used to test the new package. We found that the calculated elastic constants using the new package show better agreement with the available experimental data than the previous theoretical results used different methods. In this package the second-order derivative E ″ (ε) of polynomial fit E=E(ε) of energy vs strains at zero strain (ε=0), used to calculate the orthorhombic elastic constants.

  1. Elastic properties of suspended multilayer WSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rui, E-mail: rui.zhang@ed.ac.uk; Cheung, Rebecca [Scottish Microelectronics Centre, Alexander Crum Brown Road, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FF (United Kingdom); Koutsos, Vasileios [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FB (United Kingdom)

    2016-01-25

    We report the experimental determination of the elastic properties of suspended multilayer WSe{sub 2}, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe{sub 2} membranes have been fabricated by mechanical exfoliation of bulk WSe{sub 2} and transfer of the exfoliated multilayer WSe{sub 2} flakes onto SiO{sub 2}/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe{sub 2} membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe{sub 2} has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe{sub 2} (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS{sub 2} and WS{sub 2}. Moreover, the multilayer WSe{sub 2} can endure ∼12.4 GPa stress and ∼7.3% strain without fracture or mechanical degradation. The 2D WSe{sub 2} can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  2. Initial magnetic susceptibility of the diluted magnetopolymer elastic composites

    International Nuclear Information System (INIS)

    Borin, D.Yu.; Odenbach, S.

    2017-01-01

    In this work diluted magnetopolymer elastic composites based on magnetic microparticles are experimentally studied. Considered samples have varied concentration of the magnetic powder and different structural anisotropy. Experimental data on magnetic properties are accomplished by microstructural observations performed using X-Ray tomography. Influence of the particles amount and structuring effects on the initial magnetic susceptibility of the composites as well as the applicability of the Maxwell-Garnett approximation, which is widely used in considerations of magnetopolymer elastic composites, are evaluated. It is demonstrated that the approximation works well for diluted samples containing randomly distributed magnetic particles and for the diluted samples with chain-like structures oriented perpendicular to an externally applied field, while it fails to predict the susceptibility of the samples with structures oriented parallel to the field. Moreover, it is shown, that variation of the chains morphology does not significantly change the composite initial magnetic susceptibility. - Highlights: • The Maxwell-Garnet prediction works well for the diluted isotropic composites. • The Maxwell-Garnet prediction can be used for composites with structures oriented perpendicular to an applied field. • Chains oriented parallel to an applied field significantly increase the composite initial magnetic susceptibility. • The number and thickness of chains is not of the highest importance for the diluted composites. • The crucial reason of the observed effect is expected to be the demagnetisation factor of the chains.

  3. On the estimation of ice thickness from scattering observations

    Science.gov (United States)

    Williams, T. D.; Squire, V. A.

    2010-04-01

    This paper is inspired by the proposition that it may be possible to extract descriptive physical parameters - in particular the ice thickness, of a sea-ice field from ocean wave information. The motivation is that mathematical theory describing wave propagation in such media has reached a point where the inherent heterogeneity, expressed as pressure ridge keels and sails, leads, thickness variations and changes of material property and draught, can be fully assimilated exactly or through approximations whose limitations are understood. On the basis that leads have the major wave scattering effect for most sea-ice [Williams, T.D., Squire, V.A., 2004. Oblique scattering of plane flexural-gravity waves by heterogeneities in sea ice. Proc. R. Soc. Lon. Ser.-A 460 (2052), 3469-3497], a model two dimensional sea-ice sheet composed of a large number of such features, randomly dispersed, is constructed. The wide spacing approximation is used to predict how wave trains of different period will be affected, after first establishing that this produces results that are very close to the exact solution. Like Kohout and Meylan [Kohout, A.L., Meylan, M.H., 2008. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res. 113, C09016, doi:10.1029/2007JC004434], we find that on average the magnitude of a wave transmitted by a field of leads decays exponentially with the number of leads. Then, by fitting a curve based on this assumption to the data, the thickness of the ice sheet is obtained. The attenuation coefficient can always be calculated numerically by ensemble averaging but in some cases more rapidly computed approximations work extremely well. Moreover, it is found that the underlying thickness can be determined to good accuracy by the method as long as Archimedean draught is correctly provided for, suggesting that waves can indeed be effective as a remote sensing agent to measure ice thickness in areas where pressure ridges

  4. Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Hill, R.F.; Brown, S.; Baldock, C.

    2008-01-01

    Gamma ray transmission measurements have been used to evaluate the water equivalence of solid phantoms. Technetium-99m was used in narrow beam geometry and the transmission of photons measured, using a gamma camera, through varying thickness of the solid phantom material and water. Measured transmission values were compared with Monte Carlo calculated transmission data using the EGSnrc Monte Carlo code to score fluence in a geometry similar to that of the measurements. The results indicate that the RMI457 Solid Water, CMNC Plastic Water and PTW RW3 solid phantoms had similar transmission values as compared to water to within ±1.5%. However, Perspex had a greater deviation in the transmission values up to ±4%. The agreement between the measured and EGSnrc calculated transmission values agreed to within ±1% over the range of phantom thickness studied. The linear attenuation coefficients at the gamma ray energy of 140.5 keV were determined from the measured and EGSnrc calculated transmission data and compared with predicted values derived from data provided by the National Institute of Standards and Technology (NIST) using the XCOM program. The coefficients derived from the measured data were up to 6% lower than those predicted by the XCOM program, while the coefficients determined from the Monte Carlo calculations were between measured and XCOM values. The results indicate that a similar process can be followed to determine the water equivalency of other solid phantoms and at other photon energies

  5. Temperature dependence of elastic properties of paratellurite

    International Nuclear Information System (INIS)

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  6. In situ determination of layer thickness and elastic moduli of asphalt pavement systems by spectral analysis of surface waves (SASW) method

    International Nuclear Information System (INIS)

    Mohd Azmi Ismail; Sri Atmaja Rosyidi; Abdul Rahim Samsudin; Abdul Ghani Rafek; Khairul Anuar Mohd Nayan

    2003-01-01

    Spectral analysis of surface waves (SASW) is a non-destructive and in situ method for determining the stiffness profile of soil and pavement sites. The method consists of generation, measurement, and processing of dispersive elastic waves in layered systems. The test is performed on the pavement surface at strain level below 0.001%, where the elastic properties are considered independent of strain amplitude. During an SASW test, the surface of the medium under investigation is subject to an impact to generate energy at various frequencies. Two vertical acceleration transducers are set up near the impact source to detect the energy transmitted through the testing media. By recording signals in digitised form using a data acquisition system and processing them, surface wave velocities can be determined by constructing a dispersion curve. Through forward modeling, the shear wave velocities can be obtained, which can be related to the variation of stiffness with depth. This paper presents the results of two case studies for near?surface profiling of two different asphalt pavement sites. (Author)

  7. Numerical estimate of fracture parameters under elastic and elastic-plastic conditions

    International Nuclear Information System (INIS)

    Soba, Alejandro; Denis, Alicia C.

    2003-01-01

    The importance of the stress intensity factor K in the elastic fracture analysis is well known. In this work three methods are developed to estimate the parameter K I , corresponding to the normal loading mode, employing the finite elements method. The elastic-plastic condition is also analyzed, where the line integral J is the relevant parameter. Two cases of interest are studied: sample with a crack in its center and tubes with internal pressure. (author)

  8. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.

    Science.gov (United States)

    Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei

    2012-12-01

    In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.

  9. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.

    Science.gov (United States)

    Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji

    2016-04-01

    This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mastering ElasticSearch

    CERN Document Server

    Kuc, Rafal

    2013-01-01

    A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.

  11. Effects of an elastic membrane on tube waves in permeable formations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H; Johnson, D

    1996-10-01

    In this paper, the modified properties were calculated for tube wave propagation in a fluid-filled borehole penetrating a permeable rock due to the presence of a mudcake which forms on the borehole wall. The mudcake was characterized by an impermeable elastic layer. The mudcake partial sealing mechanism was simulated using a finite membrane stiffness. Consequently, it was shown that the mudcake can reduce, but not eliminate, the permeability effects on the tube wave slowness and attenuation. Moreover, this paper discusses a variety of values for the relevant parameters especially the mudcake thickness and membrane stiffness. The important combinations of mudcake parameters were clarified by using an analytic expression for the low-frequency limit.

  12. Design guidance for elastic followup

    International Nuclear Information System (INIS)

    Naugle, F.V.

    1983-01-01

    The basic mechanism of elastic followup is discussed in relation to piping design. It is shown how mechanistic insight gained from solutions for a two-bar problem can be used to identify dominant design parameters and to determine appropriate modifications where elastic followup is a potential problem. It is generally recognized that quantitative criteria are needed for elastic followup in the creep range where badly unbalanced lines can pose potential problems. Approaches for criteria development are discussed

  13. Income Elasticity of Environmental Amenities

    OpenAIRE

    Daniel Miles; Andrés Pereyra; Máximo Rossi

    2000-01-01

    In this paper we are concerned with the estimation of income elasticities of environmental amenities. The novelty is the application of econometric methods that take into account the problem of measurement errors when estimating these elasticities, which are common in microeconomic data and are not usually considered in the applied literature related with this issue. Our aim is to discuss whether the measurement error has signi…cant e¤ects on the elasticities. Data from the Expenditure Budget...

  14. Critical study of some soft-tissue equivalent material. Sensitivity to neutrons of 1 keV to 14 MeV; Etude critique de quelques materiaux equivalents aux tissus mous. Sensibilite aux neutrons de 1 keV a 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kerviler, H de; Pages, L; Tardy-Joubert, Ph [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Authors have studied the elastic and inelastic reactions on various elements contribution to kerma in standard soft tissue and as a function of neutron energy from 1 keV to 14 MeV the ratio of kerma in tissue equivalent material to kerma in soft tissue. The results of calculations are made for materials without hydrogen in view to state exactly their neutron sensitivity and for the following hydrogenous materials: Rossi and Failla plastic, MixD, pure polyethylene and a new CEA tissue equivalent (a magnesium fluoride and polyethylene compound). Results for {gamma}-rays are given. (authors) [French] Les auteurs ont etudie la contribution au kerma total des reactions elastiques et inelastiques sur les divers composants du tissu mou standard et la variation, en fonction de l'energie des neutrons de 1 keV a 14 MeV, du rapport des kermas dans differents materiaux equivalents au tissu au kerma dans les tissus mous. Les materiaux etudies sont des materiaux sans hydrogene afin de preciser leur sensibilite aux neutrons et les materiaux hydrogenes suivants: plastique de Rossi et Failla, polyethylene pur, MixD, nouveau plastique CEA a base de polyethylene et de fluorure de magnesium. Les resultats pour les photons sont egalement rappeles. (auteurs)

  15. In Situ elastic property sensors

    International Nuclear Information System (INIS)

    Olness, D.; Hirschfeld, T.; Kishiyama, K.; Steinhaus, R.

    1987-01-01

    Elasticity is an important property of many materials. Loss of elasticity can have serious consequences, such as when a gasket deteriorates and permits leakage of an expensive or hazardous material, or when a damping system begins to go awry. Loss of elasticity can also provide information related to an ancillary activity such as degradation of electrical insulation, loss of plasticizer in a plastic, or changes in permeability of a thin film. In fact, the mechanical properties of most organic compounds are altered when the compound degrades. Thus, a sensor for the mechanical properties can be used to monitor associated characteristics as well. A piezoelectric material in contact with an elastomer forms an oscillating system that can provide real-time elasticity monitoring. This combination constitutes a forced harmonic oscillator with damping provided by the elastomer. A ceramic oscillator with a total volume of a few mm 3 was used as an elasticity sensor. It was placed in intimate contact with an elastomer and then monitored remotely with a simple oscillator circuit and standard frequency counting electronics. Resonant frequency shifts and changes in Q value were observed corresponding to changes in ambient temperature and/or changes in pressure applied to the sample. Elastomer samples pretreated with ozone (to simulate aging) showed changes in Q value and frequency response, even though there were no visible changes in the elastic samples

  16. High-energy elastic and quasi-elastic deuteron-nucleus scattering

    International Nuclear Information System (INIS)

    Tekou, Amouzou

    1974-01-01

    A study is made of deuteron-nucleus elastic and quasi-elastic scattering and the connection between the opaque nucleus model and the Glauber model is pointed out. The contributions to different cross-sections of the collisions in which the nucleus, excited by one of the nucleons of the deuteron, is brought back to the ground state by the other nucleon is analysed. Coherent deuteron disintegration is found to be highly improbable when the target nucleus is heavy and incoherent disintegration accounts for nearly all the deuteron disintegration. Thus a correct comparison between theoretical and experimental data on proton stripping must take the incoherent deuteron disintegration into consideration

  17. Microstructural evolution in inhomogeneous elastic media

    International Nuclear Information System (INIS)

    Jou, H.J.; Leo, P.H.; Lowengrub, J.S.

    1997-01-01

    We simulate the diffusional evolution of microstructures produced by solid state diffusional transformations in elastically stressed binary alloys in two dimensions. The microstructure consists of arbitrarily shaped precipitates embedded coherently in an infinite matrix. The precipitate and matrix are taken to be elastically isotropic, although they may have different elastic constants (elastically inhomogeneous). Both far-field applied strains and mismatch strains between the phases are considered. The diffusion and elastic fields are calculated using the boundary integral method, together with a small scale preconditioner to remove ill-conditioning. The precipitate-matrix interfaces are tracked using a nonstiff time updating method. The numerical method is spectrally accurate and efficient. Simulations of a single precipitate indicate that precipitate shapes depend strongly on the mass flux into the system as well as on the elastic fields. Growing shapes (positive mass flux) are dendritic while equilibrium shapes (zero mass flux) are squarish. Simulations of multiparticle systems show complicated interactions between precipitate morphology and the overall development of microstructure (i.e., precipitate alignment, translation, merging, and coarsening). In both single and multiple particle simulations, the details of the microstructural evolution depend strongly o the elastic inhomogeneity, misfit strain, and applied fields. 57 refs., 24 figs

  18. Reconstruction of full-thickness defects with bovine-derived collagen/elastin matrix: a series of challenging cases and the first reported post-burn facial reconstruction.

    Science.gov (United States)

    Haik, Josef; Weissman, Oren; Hundeshagen, Gabriel; Farber, Nimrod; Harats, Moti; Rozenblatt, Shira M; Kamolz, Lars Peter; Winkler, Eyal; Zilinsky, Isaac

    2012-07-01

    Reconstruction of full-thickness defects may benefit from integration of dermal substitutes, which serve as a foundation for split-thickness skin grafts, thus enhancing short and long-term results. We present a series of 7 patients who were treated between 2010 and 2012 for complicated full-thickness defects by the second-generation collagen/elastin matrix Matriderm® covered by a split-thickness skin graft. The defects resulted from malignancy resection, trauma, and post-burn scar reconstruction. Overall graft take was excellent and no complications were noted regarding the dermal substitute. Graft quality was close to normal skin in terms of elasticity, pliability, texture, and color. Good contour and cushioning of defects in weight bearing areas was also achieved. Matriderm was found to be a useful adjunct to full-thickness defect reconstruction, especially in difficult areas where the desired result is a scar of the highest quality possible.

  19. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    International Nuclear Information System (INIS)

    Qiu, S.; Clausen, B.; Padula, S.A.; Noebe, R.D.; Vaidyanathan, R.

    2011-01-01

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  20. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  1. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    Science.gov (United States)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  2. Sliding behaviors of elastic cylindrical tanks under seismic loading

    International Nuclear Information System (INIS)

    Kobayashi, N.

    1993-01-01

    There is a paper that reports on the occurrence of sliding in several oil tanks on Alaskan earthquake of 1964. This incident appears to be in need of further investigation for the following reasons: First, in usual seismic designing of cylindrical tanks ('tanks'), sliding is considered to occur when the lateral inertial force exceeds the static friction force. When the tank in question can be taken as a rigid body, this rule is known to hold true. If the tank is capable of undergoing a considerable amount of elastic deformation, however, its applicability has not been proved. Second, although several studies have been done on the critical conditions for static sliding the present author is unaware of like ones made on the dynamic sliding, except for the pioneering work of Sogabe, in which they have empirically indicated possibility of sliding to occur under the force of sloshing. Third, this author has shown earlier on that tanks, if not anchored properly, will start rocking, inducing uplifting of the base plate, even at a relatively small seismic acceleration of 10 gal or so. The present study has been conducted with these observations for the background. Namely, based on a notion that elastic deformation given rise to by rocking oscillation should be incorporated as an important factor in any set of critical conditions for the onset of sliding, a series of shaking table experiments were performed for rigid steel block to represent the rigid tanks ('rigid model') and a model tank having a same sort of plate thickness-to-diameter ratio as industrial tanks to represent the elastic cylindrical tanks ('elastic model'). Following observations have been obtained for the critical condition of the onset of sliding: (1) sliding of rigid tanks will occur when the lateral force given rise to by oscillation exceeds the static, or the Coulombic, friction force. (2) if vertical oscillation is imposed on the lateral oscillation, the lateral force needed to induce sliding of a

  3. Astronomical optics and elasticity theory

    CERN Document Server

    Lemaitre, Gerard Rene

    2008-01-01

    Astronomical Optics and Elasticity Theory provides a very thorough and comprehensive account of what is known in this field. After an extensive introduction to optics and elasticity, the book discusses variable curvature and multimode deformable mirrors, as well as, in depth, active optics, its theory and applications. Further, optical design utilizing the Schmidt concept and various types of Schmidt correctors, as well as the elasticity theory of thin plates and shells are elaborated upon. Several active optics methods are developed for obtaining aberration corrected diffraction gratings. Further, a weakly conical shell theory of elasticity is elaborated for the aspherization of grazing incidence telescope mirrors. The very didactic and fairly easy-to-read presentation of the topic will enable PhD students and young researchers to actively participate in challenging astronomical optics and instrumentation projects.

  4. Indicial lift response function: an empirical relation for finite‐thickness airfoils, and effects on aeroelastic simulations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac; Heinz, Joachim Christian

    2013-01-01

    The aeroelastic response of wind turbines is often simulated in the time domain by using indicial response techniques. Unsteady aerodynamics in attached flow are usually based on Jones's approximation of the flat plate indicial response, although the response for finite‐thickness airfoils differs...... from the flat plate one. The indicial lift response of finite‐thickness airfoils is simulated with a panel code, and an empirical relation is outlined connecting the airfoil indicial response to its geometric characteristics. The effects of different indicial approximations are evaluated on a 2D...... of equivalent fatigue loads, ultimate loads, and stability limits. The agreement with CFD computations of a 2D profile in harmonic motion is improved by the indicial function accounting for the finite‐thickness of the airfoil. Concerning the full wind turbine aeroelastic behavior, the differences between...

  5. The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc.

    Science.gov (United States)

    Tavakoli, J; Elliott, D M; Costi, J J

    2017-08-01

    The inter-lamellar matrix (ILM)-located between adjacent lamellae of the annulus fibrosus-consists of a complex structure of elastic fibers, while elastic fibers of the intra-lamellar region are aligned predominantly parallel to the collagen fibers. The organization of elastic fibers under low magnification, in both inter- and intra-lamellar regions, was studied by light microscopic analysis of histologically prepared samples; however, little is known about their ultrastructure. An ultrastructural visualization of elastic fibers in the inter-lamellar matrix is crucial for describing their contribution to structural integrity, as well as mechanical properties of the annulus fibrosus. The aims of this study were twofold: first, to present an ultrastructural analysis of the elastic fiber network in the ILM and intra-lamellar region, including cross section (CS) and in-plane (IP) lamellae, of the AF using Scanning Electron Microscopy (SEM) and second, to -compare the elastic fiber orientation between the ILM and intra-lamellar region. Four samples (lumbar sheep discs) from adjacent sections (30μm thickness) of anterior annulus were partially digested by a developed NaOH-sonication method for visualization of elastic fibers by SEM. Elastic fiber orientation and distribution were quantified relative to the tangential to circumferential reference axis. Visualization of the ILM under high magnification revealed a dense network of elastic fibers that has not been previously described. Within the ILM, elastic fibers form a complex network, consisting of different size and shape fibers, which differed to those located in the intra-lamellar region. For both regions, the majority of fibers were oriented near 0° with respect to tangential to circumferential (TCD) direction and two minor symmetrical orientations of approximately±45°. Statistically, the orientation of elastic fibers between the ILM and intra-lamellar region was not different (p=0.171). The present study used

  6. The region of influence of significant defects and the mechanical vibrations of linear elastic solids

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2004-12-01

    The presence of cracks, voids or fields of pores, and their growth under applied forces or environmental actions, can produce a meaningful lowering in the proper frequencies of normal modes of mechanical vibration in machines and structures. A quite general expression for the square of modes proper frequency as a functional of displacement field, density field and elastic moduli fields is used as a starting point. The effect of defects on frequency are modeled as equivalent changes in density and elastic moduli fields, introducing the concept of region of influence of each defect. This region of influence is derived from the relation between the stress field of flawed components in machines or structures, and the elastic energy released from a suitable reference state, due to the presence of significant defects in the above mentioned mechanical components. An approximate analytical expression is obtained, which relates the relative variation in the square of mode s proper frequency with position, size, shape and orientation of defects in mode displacement field. Some simple mathematical models of machine and structural elements with cracks or fields of pores are considered as examples. The connections between the relative lowering in the square of mode s proper frequency and the stress intensity factor of a defect are discussed : the concept of region of influence of a defect is used as a bridge between (low frequency and low amplitude) vibration dynamics and linear elastic fracture mechanics. Some limitations of the present approach are discussed as well as the possibility of applying the region of influence of defects to the damping of normal modes of vibration

  7. Correspondences. Equivalence relations

    International Nuclear Information System (INIS)

    Bouligand, G.M.

    1978-03-01

    We comment on sections paragraph 3 'Correspondences' and paragraph 6 'Equivalence Relations' in chapter II of 'Elements de mathematique' by N. Bourbaki in order to simplify their comprehension. Paragraph 3 exposes the ideas of a graph, correspondence and map or of function, and their composition laws. We draw attention to the following points: 1) Adopting the convention of writting from left to right, the composition law for two correspondences (A,F,B), (U,G,V) of graphs F, G is written in full generality (A,F,B)o(U,G,V) = (A,FoG,V). It is not therefore assumed that the co-domain B of the first correspondence is identical to the domain U of the second (EII.13 D.7), (1970). 2) The axiom of choice consists of creating the Hilbert terms from the only relations admitting a graph. 3) The statement of the existence theorem of a function h such that f = goh, where f and g are two given maps having the same domain (of definition), is completed if h is more precisely an injection. Paragraph 6 considers the generalisation of equality: First, by 'the equivalence relation associated with a map f of a set E identical to (x is a member of the set E and y is a member of the set E and x:f = y:f). Consequently, every relation R(x,y) which is equivalent to this is an equivalence relation in E (symmetrical, transitive, reflexive); then R admits a graph included in E x E, etc. Secondly, by means of the Hilbert term of a relation R submitted to the equivalence. In this last case, if R(x,y) is separately collectivizing in x and y, theta(x) is not the class of objects equivalent to x for R (EII.47.9), (1970). The interest of bringing together these two subjects, apart from this logical order, resides also in the fact that the theorem mentioned in 3) can be expressed by means of the equivalence relations associated with the functions f and g. The solutions of the examples proposed reveal their simplicity [fr

  8. Derivation of capture and reaction cross sections from experimental quasi-elastic and elastic backscattering probabilities

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.

    2014-01-01

    We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)

  9. Experimental study on the response of very large floating structures (VLFS) in wave; Choogata futaishiki kaiyo kozobutsu no harochu oto ni kansuru jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ota, M; Ikegami, H; Yamaguchi, Y [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1997-10-01

    The elastic response of VLFS of 1200m long in wave was studied experimentally using a water tank and integral elastic model of 1/80 scale. As offshore airport, a ultra- thin box type floating structure of 5km long, 1km wide and several meter thick is used, and the effect of elasticity is not negligible for such a structure. The experiment used a water tank of 160m long, 30m wide and 3.1m deep. Supposing a water depth of 20m for real VLFSs, the experiment was carried out mainly in a local shallow water area prepared with a temporary bottom together with that in a deep water area. A simple mooring equipment with a linear spring equivalent to real VLFSs was used. The integral floating model was prepared by not mechanical but welded junction to obtain uniform elasticity. The response in wave showed a complicated 3-D behavior, offering useful data for verification of a behavior estimation method. The response was nearly equal between shallow and deep water areas at the same wave length, and the response amplitude in regular waves was equivalent to the significant amplitude in long and short crested irregular waves. 7 refs., 8 figs., 3 tabs.

  10. TiN films by Atomic Layer Deposition: Growth and electrical characterization down to sub-nm thickness

    NARCIS (Netherlands)

    Van Hao, B.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.

    2012-01-01

    This study reports on the growth and characterization of TiN thib films obtained by atomic layer deposition at 350-425 ◦C. We observe a growth of the continuous layers from the very beginning of the process, i.e. for a thickness of 0.65 nm, which is equivalent to 3 monolayers of TiN. The film growth

  11. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part I: Micro-structural characterization and geometric modeling

    KAUST Repository

    Han, Fei

    2014-01-01

    A computational strategy to predict the elastic properties of carbon nanotube-reinforced polymer composites is proposed in this two-part paper. In Part I, the micro-structural characteristics of these nano-composites are discerned. These characteristics include networks/agglomerations of carbon nanotubes and thick polymer interphase regions between the nanotubes and the surrounding matrix. An algorithm is presented to construct three-dimensional geometric models with large amounts of randomly dispersed and aggregated nanotubes. The effects of the distribution of the nanotubes and the thickness of the interphase regions on the concentration of the interphase regions are demonstrated with numerical results. © 2013 Elsevier B.V. All rights reserved.

  12. WE-E-9A-01: Ultrasound Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Emelianov, S [University of Texas at Austin, Austin, TX (United States); Hall, T [University of WI-Madison, Madison, WI (United States); Bouchard, R [UT MD Anderson Cancer Center and UTHSC at Houston Graduate School of Biomed, Houston, TX (United States)

    2014-06-15

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement

  13. WE-E-9A-01: Ultrasound Elasticity

    International Nuclear Information System (INIS)

    Emelianov, S; Hall, T; Bouchard, R

    2014-01-01

    Principles and techniques of ultrasound-based elasticity imaging will be presented, including quasistatic strain imaging, shear wave elasticity imaging, and their implementations in available systems. Deeper exploration of quasistatic methods, including elastic relaxation, and their applications, advantages, artifacts and limitations will be discussed. Transient elastography based on progressive and standing shear waves will be explained in more depth, along with applications, advantages, artifacts and limitations, as will measurement of complex elastic moduli. Comparisons will be made between ultrasound radiation force techniques, MR elastography, and the simple A mode plus mechanical plunger technique. Progress in efforts, such as that by the Quantitative Imaging Biomarkers Alliance, to reduce the differences in the elastic modulus reported by different commercial systems will be explained. Dr. Hall is on an Advisory Board for Siemens Ultrasound and has a research collaboration with them, including joint funding by R01CA140271 for nonlinear elasticity imaging. Learning Objectives: Be reminded of the long history of palpation of tissue elasticity for critical medical diagnosis and the relatively recent advances to be able to image tissue strain in response to an applied force. Understand the differences between shear wave speed elasticity measurement and imaging and understand the factors affecting measurement and image frame repletion rates. Understand shear wave propagation effects that can affect measurements, such as essentially lack of propagation in fluids and boundary effects, so important in thin layers. Know characteristics of available elasticity imaging phantoms, their uses and limitations. Understand thermal and cavitational limitations affecting radiation force-based shear wave imaging. Have learning and references adequate to for you to use in teaching elasticity imaging to residents and technologists. Be able to explain how elasticity measurement

  14. Elastic interaction between surface and spherical pore

    International Nuclear Information System (INIS)

    Ganeev, G.Z.; Kadyrzhanov, K.K.; Kislitsyn, S.B.; Turkebaev, T.Eh.

    2000-01-01

    The energy of elastic interaction of a gas-filled spherical cavity with a boundary of an elastic isotropic half-space is determined. The elastic field of a system of a spherical cavity - boundary is represented as an expansion in series of potential functions. The factors of expansions are determined by boundary conditions on a free surface of an elastic half-space and on a spherical surface of a cavity with pressure of gas P. Function of a Tresca-Miesesa on a surface of elastic surface is defined additionally with purpose creep condition determination caused by gas pressure in the cavity. (author)

  15. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    Science.gov (United States)

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  16. ElasticSearch server

    CERN Document Server

    Rogozinski, Marek

    2014-01-01

    This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.

  17. Calculation methods for determining dose equivalent

    International Nuclear Information System (INIS)

    Endres, G.W.R.; Tanner, J.E.; Scherpelz, R.I.; Hadlock, D.E.

    1987-11-01

    A series of calculations of neutron fluence as a function of energy in an anthropomorphic phantom was performed to develop a system for determining effective dose equivalent for external radiation sources. Critical organ dose equivalents are calculated and effective dose equivalents are determined using ICRP-26 [1] methods. Quality factors based on both present definitions and ICRP-40 definitions are used in the analysis. The results of these calculations are presented and discussed. The effective dose equivalent determined using ICRP-26 methods is significantly smaller than the dose equivalent determined by traditional methods. No existing personnel dosimeter or health physics instrument can determine effective dose equivalent. At the present time, the conversion of dosimeter response to dose equivalent is based on calculations for maximal or ''cap'' values using homogeneous spherical or cylindrical phantoms. The evaluated dose equivalent is, therefore, a poor approximation of the effective dose equivalent as defined by ICRP Publication 26. 3 refs., 2 figs., 1 tab

  18. Effective dose equivalent

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Passchier, W.F.

    1988-01-01

    The effective dose equivalent is a quantity which is used in the daily practice of radiation protection as well as in the radiation hygienic rules as measure for the health risks. In this contribution it is worked out upon which assumptions this quantity is based and in which cases the effective dose equivalent can be used more or less well. (H.W.)

  19. Development of a tissue-engineered human oral mucosa equivalent based on an acellular allogeneic dermal matrix: a preliminary report of clinical application to burn wounds.

    Science.gov (United States)

    Iida, Takuya; Takami, Yoshihiro; Yamaguchi, Ryo; Shimazaki, Shuji; Harii, Kiyonori

    2005-01-01

    Tissue-engineered skin equivalents composed of epidermal and dermal components have been widely investigated for coverage of full-thickness skin defects. We developed a tissue-engineered oral mucosa equivalent based on an acellular allogeneic dermal matrix and investigated its characteristics. We also tried and assessed its preliminary clinical application. Human oral mucosal keratinocytes were separated from a piece of oral mucosa and cultured in a chemically-defined medium. The keratinocytes were seeded on to the acellular allogeneic dermal matrix and cultured. Histologically, the mucosa equivalent had a well-stratified epithelial layer. Immunohistochemical study showed that it was similar to normal oral mucosa. We applied this equivalent in one case with an extensive burn wound. The equivalent was transplanted three weeks after the harvest of the patient's oral mucosa and about 30% of the graft finally survived. We conclude that this new oral mucosa equivalent could become a therapeutic option for the treatment of extensive burns.

  20. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-08-15

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.