The gauge principle vs. the equivalence principle
International Nuclear Information System (INIS)
Gates, S.J. Jr.
1984-01-01
Within the context of field theory, it is argued that the role of the equivalence principle may be replaced by the principle of gauge invariance to provide a logical framework for theories of gravitation
Relativity and equivalence principles in the gauge theory of gravitation
International Nuclear Information System (INIS)
Ivanenko, D.; Sardanashvili, G.
1981-01-01
Roles of relativity (RP) and equivalence principles (EP) in the gauge theory of gravity are shown. RP in the gravitational theory in formalism of laminations can be formulated as requirement of covariance of equations relative to the GL + (4, R)(X) gauge group. In such case RP turns out to be identical to the gauge principle in the gauge theory of a group of outer symmetries, and the gravitational theory can be directly constructed as the gauge theory. In general relativity theory the equivalence theory adds RP and is intended for description of transition to a special relativity theory in some system of reference. The approach described takes into account that in the gauge theory, besides gauge fields under conditions of spontaneous symmetry breaking, the Goldstone and Higgs fields can also arise, to which the gravitational metric field is related, what is the sequence of taking account of RP in the gauge theory of gravitation [ru
Rotating artificial gauge magnetic and electric fields
Lembessis, V. E.; Alqarni, A.; Alshamari, S.; Siddig, A.; Aldossary, O. M.
2016-01-01
We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed
Equivalence between bumblebee models and electrodynamics in a nonlinear gauge
Escobar, C. A.; Martín-Ruiz, A.
2017-05-01
Bumblebee models are effective field theories describing a vector field with a nonzero vacuum expectation value that spontaneously breaks Lorentz invariance. They provide an alternative way of exploring the similarities between theories with spontaneous Lorentz symmetry breaking and gauge theories. The equivalence between bumblebee models with suitable conditions and standard electrodynamics in a nonlinear gauge AμAμ+b2=0 is taken for granted; however, this point is very subtle and has not yet been fully addressed. The main goal of this paper is to fill in this gap. More precisely, here we study the relation between a bumblebee model, with a smooth potential of the form V (Bμ)=V (BμBμ+b2), and standard electrodynamics in the nonlinear gauge AμAμ+b2=0 , both at the classical and quantum levels. Using Dirac's method we show that after introducing Dirac brackets with suitable initial conditions, the classical dynamics of the bumblebee model corresponds to that of standard electrodynamics in the aforementioned nonlinear gauge. In the quantum case we demonstrate that perturbative calculations of Feynman amplitudes to any physical process in each model are indistinguishable. To do this, we show that the Feynman rules and propagators of standard electrodynamics in the nonlinear gauge and those describing the bumblebee model are the same.
International Nuclear Information System (INIS)
Namgung, W.
1991-01-01
The well known requirement that physical theories should be gauge independent is not so apparent in the actual calculation of gauge theories, especially in the perturbative approach. In this paper the authors show that the Weyl, Coulomb, and unitary gauges of the scalar QED are manifestly equivalent in the context of the functional Schrodinger picture. Further, the three gauge conditions are shown equivalent to the covariant gauge in the way that they correspond to some specific cases of the latter
Principle of natural and artificial radioactive series equivalency
International Nuclear Information System (INIS)
Vasilyeva, A.N.; Starkov, O.V.
2001-01-01
In the present paper one approach used under development of radioactive waste management conception is under consideration. This approach is based on the principle of natural and artificial radioactive series radiotoxic equivalency. The radioactivity of natural and artificial radioactive series has been calculated for 10 9 - years period. The toxicity evaluation for natural and artificial series has also been made. The correlation between natural radioactive series and their predecessors - actinides produced in thermal and fast reactors - has been considered. It has been shown that systematized reactor series data had great scientific significance and the principle of differential calculation of radiotoxicity was necessary to realize long-lived radioactive waste and uranium and thorium ore radiotoxicity equivalency conception. The calculations show that the execution of equivalency principle is possible for uranium series (4n+2, 4n+1). It is a problem for thorium. series. This principle is impracticable for neptunium series. (author)
Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.
Ma, Li-Yuan; Zhu, Zuo-Nong
2014-09-01
In this paper, we investigate nonintegrable semidiscrete Hirota equations, including the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation. We focus on the topics on gauge-equivalent structures and dynamical behaviors for the two nonintegrable semidiscrete equations. By using the concept of the prescribed discrete curvature, we show that, under the discrete gauge transformations, the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation are, respectively, gauge equivalent to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We prove that the two discrete gauge transformations are reversible. We study the dynamical properties for the two nonintegrable semidiscrete Hirota equations. The exact spatial period solutions of the two nonintegrable semidiscrete Hirota equations are obtained through the constructions of period orbits of the stationary discrete Hirota equations. We discuss the topic regarding whether the spatial period property of the solution to the nonintegrable semidiscrete Hirota equation is preserved to that of the corresponding gauge-equivalent nonintegrable semidiscrete equations under the action of discrete gauge transformation. By using the gauge equivalent, we obtain the exact solutions to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We also give the numerical simulations for the stationary discrete Hirota equations. We find that their dynamics are much richer than the ones of stationary discrete nonlinear Schrödinger equations.
Bosons on the Kagome lattice with artificial gauge fields
Petrescu, Alexandru; Girvin, S. M.; Le Hur, Karyn
2013-03-01
We investigate bosons on the Kagome lattice subject to artificial gauge fields such that no net flux is applied on a unit cell. This allows for example the existence of quantized and non-quantized anomalous Hall effects on the Kagome lattice. If two layers or two-component bosons are introduced, the topological phase is robust to inter-species interactions of moderate strength. We study the conditions under which the total density degree of freedom undergoes a Mott transition, while the pseudo-spin, or charge difference between layers, is in a superfluid phase with topological properties. Similar results can be obtained for two-component bosons on the honeycomb lattice. Such systems could work as a template for the realization of interacting topological phases in cold atom or cavity QED systems.
Validation of artificial skin equivalents as in vitro testing systems
Schmitt, Robert; Marx, Ulrich; Walles, Heike; Schober, Lena
2011-03-01
With the increasing complexity of the chemical composition of pharmaceuticals, cosmetics and everyday substances, the awareness of potential health issues and long term damages for humanoid organs is shifting into focus. Artificial in vitro testing systems play an important role in providing reliable test conditions and replacing precarious animal testing. Especially artificial skin equivalents ASEs are used for a broad spectrum of studies like penetration, irritation and corrosion of substances. One major challenge in tissue engineering is the qualification of each individual ASE as in vitro testing system. Due to biological fluctuations, the stratum corneum hornified layer of some ASEs may not fully develop or other defects might occur. For monitoring these effects we developed an fully automated Optical Coherence Tomography device. Here, we present different methods to characterize and evaluate the quality of the ASEs based on image and data processing of OCT B-scans. By analysing the surface structure, defects, like cuts or tears, are detectable. A further indicator for the quality of the ASE is the morphology of the tissue. This allows to determine if the skin model has reached the final growth state. We found, that OCT is a well suited technology for automatically characterizing artificial skin equivalents and validating the application as testing system.
On the relativity and equivalence principles in the gauge theory of gravitation
International Nuclear Information System (INIS)
Ivanenko, D.; Sardanashvily, G.
1981-01-01
One sees the basic ideas of the gauge gravitation theory still not generally accepted in spite of more than twenty years of its history. The chief reason lies in the fact that the gauge character of gravity is connected with the whole complex of problems of Einstein General Relativity: about the reference system definition, on the (3+1)-splitting, on the presence (or absence) of symmetries in GR, on the necessity (or triviality) of general covariance, on the meaning of equivalence principle, which led Einstein from Special to General Relativity |1|. The real actuality of this complex of interconnected problems is demonstrated by the well-known work of V. Fock, who saw no symmetries in General Relativity, declared the unnecessary Equivalence principle and proposed even to substitute the designation ''chronogeometry'' instead of ''general relativity'' (see also P. Havas). Developing this line, H. Bondi quite recently also expressed doubts about the ''relativity'' in Einstein theory of gravitation. All proposed versions of the gauge gravitation theory must clarify the discrepancy between Einstein gravitational field being a pseudo-Riemannian metric field, and the gauge potentials representing connections on some fiber bundles and there exists no group, whose gauging would lead to the purely gravitational part of connection (Christoffel symbols or Fock-Ivenenko-Weyl spinorial coefficients). (author)
On the equivalence among stress tensors in a gauge-fluid system
Mitra, Arpan Krishna; Banerjee, Rabin; Ghosh, Subir
2017-12-01
In this paper, we bring out the subtleties involved in the study of a first-order relativistic field theory with auxiliary field variables playing an essential role. In particular, we discuss the nonisentropic Eulerian (or Hamiltonian) fluid model. Interactions are introduced by coupling the fluid to a dynamical Maxwell (U(1)) gauge field. This dynamical nature of the gauge field is crucial in showing the equivalence, on the physical subspace, of the stress tensor derived from two definitions, i.e. the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the space-time transformations obtained from these two definitions agree modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently, we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.
Parity violating superfluidity in ultra-cold atoms with artificial non-Abelian gauge fields
Han, Li; Seo, Kangjun; Sá de Melo, Carlos
2013-04-01
We discuss the creation of parity violating Fermi superfluids in the presence of non-Abelian gauge fields realized by artificial spin-orbit coupling and crossed Zeeman fields. Unlike the case in particle physics where the parity violation is driven by weak interaction, the parity breaking is due to the effects of non-Abelian gauge fields on the kinetic energy in our system. We analyze the signatures of parity violation on the excitation spectrum of the system in normal and superfluid phases, as well as ground state properties such as the spin-resolved momentum distribution, and excitation properties such as the spin-dependent spectral function and density of states.
Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields
Struck, J.; Weinberg, M.; Ölschläger, C.; Windpassinger, P.; Simonet, J.; Sengstock, K.; Höppner, R.; Hauke, P.; Eckardt, A.; Lewenstein, M.; Mathey, L.
2013-11-01
Magnetism plays a key role in modern science and technology, but still many open questions arise from the interplay of magnetic many-body interactions. Deeper insight into complex magnetic behaviour and the nature of magnetic phase transitions can be obtained from, for example, model systems of coupled XY and Ising spins. Here, we report on the experimental realization of such a coupled system with ultracold atoms in triangular optical lattices. This is accomplished by imposing an artificial gauge field on the neutral atoms, which acts on them as a magnetic field does on charged particles. As a result, the atoms show persistent circular currents, the direction of which provides an Ising variable. On this, the tunable staggered gauge field, generated by a periodic driving of the lattice, acts as a longitudinal field. Further, the superfluid ground state presents strong analogies with the paradigm example of the fully frustrated XY model on a triangular lattice.
Morales Hurtado, Marina; Peppelman, P.; Zeng, Xiangqiong; van Erp, P.E.J.; van der Heide, Emile
2016-01-01
This research aims to analyse the interaction of three artificial skin equivalents and human skin against the main material components of artificial turf. The tribological performance of Lorica, Silicone Skin L7350 and a recently developed Epidermal Skin Equivalent (ESE) were studied and compared to
Equivalence between the Lovelock-Cartan action and a constrained gauge theory
Energy Technology Data Exchange (ETDEWEB)
Junqueira, O.C.; Sadovski, G.; Santos, T.R.S.; Sobreiro, R.F. [UFF-Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Pereira, A.D. [UERJ-Universidade Estadual do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil); Tomaz, A.A. [UFF-Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); CBPF-Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil)
2017-04-15
We show that the four-dimensional Lovelock-Cartan action can be derived from a massless gauge theory for the SO(1, 3) group with an additional BRST trivial part. The model is originally composed of a topological sector and a BRST exact piece and has no explicit dependence on the metric, the vierbein or a mass parameter. The vierbein is introduced together with a mass parameter through some BRST trivial constraints. The effect of the constraints is to identify the vierbein with some of the additional fields, transforming the original action into the Lovelock-Cartan one. In this scenario, the mass parameter is identified with Newton's constant, while the gauge field is identified with the spin connection. The symmetries of the model are also explored. Moreover, the extension of the model to a quantum version is qualitatively discussed. (orig.)
Modularity and 4D-2D spectral equivalences for large- N gauge theories with adjoint matter
Basar, Gökçe; Cherman, Aleksey; Dienes, Keith R.; McGady, David A.
2016-06-01
In recent work, we demonstrated that the confined-phase spectrum of non-supersymmetric pure Yang-Mills theory coincides with the spectrum of the chiral sector of a two-dimensional conformal field theory in the large- N limit. This was done within the tractable setting in which the gauge theory is compactified on a three-sphere whose radius is small compared to the strong length scale. In this paper, we generalize these observations by demonstrating that similar results continue to hold even when massless adjoint matter fields are introduced. These results hold for both thermal and (-1) F -twisted partition functions, and collectively suggest that the spectra of large- N confining gauge theories are organized by the symmetries of two-dimensional conformal field theories.
International Nuclear Information System (INIS)
Aratyn, H.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.
1994-01-01
The gauge equivalence between basic KP hierarchies is discussed. The first two Hamiltonian structures for KP hierarchies leading to the linear and non-linear W ∞ algebras are derived. The realization of the corresponding generators in terms of two boson currents is presented and it is shown to be related to many integrable models which are bi-Hamiltonian. We can also realize those generators by adding extra currents, coupled in a particular way allowing for instance a description of multi-layered Benney equations or multi- component non-linear Schroedinger equation. In this case we can have a second Hamiltonian bracket structure which violates Jacobi identity. We consider the reduction to one-boson systems leading to KdV and mKdV hierarchies. A Miura transformation relating these two hierarchies is obtained by restricting gauge transformation between corresponding two-boson hierarchies. Connection to Drinfeld-Sokolov approach is also discussed in the SL (2, IR) gauge theory. (author)
I.I. Rabi Prize Talk: Artificial gauge fields in multi-level atoms
Spielman, Ian
2015-05-01
We used Raman lasers to induce artificial gauge fields or spin-orbit coupling in the three-level system formed by the f=1 electronic ground state manifold of rubidium-87. In this colloquium I will report on two effects of this laser-coupling. I will explore the itinerant magnetic phases present in a spin-1 spin-orbit coupled atomic Bose-Einstein condensate (BEC); in this system, itinerant ferromagnetic order is stabilized by the spin-orbit coupling, vanishing in its absence. We first located a second-order phase transition that continuously stiffens until, at a tricritical point, it transforms into a first-order transition. These measurements are all in agreement with theory. We engineered a two-dimensional magnetic lattice in an elongated strip geometry, with effective per-plaquette flux about 4/3 times the flux quanta. We imaged the localized edge and bulk states of atomic Bose-Einstein condensates in this strip, with single lattice-site resolution along the narrow direction. Further, we observed both the skipping orbits of excited atoms traveling down our system's edges, analogues to edge magnetoplasmons in 2-D electron systems. Our lattice's long direction consisted of the sites of an optical lattice and its narrow direction consisted of the internal atomic spin states: a synthetic dimension.
Directory of Open Access Journals (Sweden)
Krivtchik Guillaume
2017-01-01
Full Text Available Scenario studies simulate the whole fuel cycle over a period of time, from extraction of natural resources to geological storage. Through the comparison of different reactor fleet evolutions and fuel management options, they constitute a decision-making support. Consequently uncertainty propagation studies, which are necessary to assess the robustness of the studies, are strategic. Among numerous types of physical model in scenario computation that generate uncertainty, the equivalence models, built for calculating fresh fuel enrichment (for instance plutonium content in PWR MOX so as to be representative of nominal fuel behavior, are very important. The equivalence condition is generally formulated in terms of end-of-cycle mean core reactivity. As this results from a physical computation, it is therefore associated with an uncertainty. A state-of-the-art of equivalence models is exposed and discussed. It is shown that the existing equivalent models implemented in scenario codes, such as COSI6, are not suited to uncertainty propagation computation, for the following reasons: (i existing analytical models neglect irradiation, which has a strong impact on the result and its uncertainty; (ii current black-box models are not suited to cross-section perturbations management; and (iii models based on transport and depletion codes are too time-consuming for stochastic uncertainty propagation. A new type of equivalence model based on Artificial Neural Networks (ANN has been developed, constructed with data calculated with neutron transport and depletion codes. The model inputs are the fresh fuel isotopy, the irradiation parameters (burnup, core fractionation, etc., cross-sections perturbations and the equivalence criterion (for instance the core target reactivity in pcm at the end of the irradiation cycle. The model output is the fresh fuel content such that target reactivity is reached at the end of the irradiation cycle. Those models are built and
Exact equivalence of the D=4 gauged Wess-Zumino-Witten term and the D=5 Yang-Mills Chern-Simons term
International Nuclear Information System (INIS)
Hill, Christopher T.
2006-01-01
We derive the full Wess-Zumino-Witten term of a gauged chiral Lagrangian in D=4 by starting from a pure Yang-Mills theory of gauged quark flavor in a flat, compactified D=5. The theory is compactified such that there exists a B 5 zero mode, and supplemented with quarks that are 'chirally delocalized' with q L (q R ) on the left (right) boundary (brane). The theory then necessarily contains a Chern-Simons term (anomaly flux) to cancel the fermionic anomalies on the boundaries. The constituent quark mass represents chiral symmetry breaking and is a bilocal operator in D=5 of the form: q L Wq R +h.c, where W is the Wilson line spanning the bulk, 0≤x 5 ≤R, and is interpreted as a chiral meson field, W=exp(2iπ-tilde/f π ), where f π ∼1/R. The quarks are integrated out, yielding a Dirac determinant which takes the form of a 'boundary term' (anomaly flux return), and is equivalent to Bardeen's counterterm that connects consistent and covariant anomalies. The Wess-Zumino-Witten term then emerges straightforwardly, from the Yang-Mills Chern-Simons term, plus boundary term. The method is systematic and allows generalization of the Wess-Zumino-Witten term to theories of extra dimensions, and to express it in alternative and more compact forms. We give a novel form appropriate to the case of (unintegrated) massless fermions
International Nuclear Information System (INIS)
Reyes A, A.; Ortiz R, J. M.; Reyes H, A.; Castaneda M, R.; Solis S, L. O.; Vega C, H. R.
2014-08-01
In this work was used the robust design methodology of artificial neural networks to determine a good topology of net able to solve with efficiency the problems of neutrons spectrometry and dosimetry. For the design of the topology of optimized net 36 different net architectures based on an orthogonal arrangement with a configuration L 9 (3 4 ), L 4 (3 2 ) were trained. For the training of the neural networks, was used a computer code developed in the ambient of Mat lab programming, which automates the process and analysis of the information, reducing the time used in this activity considerably for the investigator. For the training of the propagation nets forward was utilized a neutrons spectrum compendium published by the International Atomic Energy Agency, where of the total 80% was used for the training and 20% for the test, it trained with an inverse propagation algorithm being the entrance data the count rates corresponding to the 7 spheres of the spectrometric system of Bonner spheres, as exit data, the neural network obtains the neutrons spectrum expressed in 60 energy groups and are calculated of simultaneous way 15 dosimetric quantities. (Author)
Directory of Open Access Journals (Sweden)
Changqing Liu
2013-01-01
Full Text Available Bacterial artificial chromosome (BAC libraries have been invaluable tools for the genome-wide genetic dissection of complex organisms. Here, we report the construction and characterization of a high-redundancy BAC library from a very valuable pig breed in China, Wuzhishan miniature pig (Sus scrofa, using its blood cells and fibroblasts, respectively. The library contains approximately 153,600 clones ordered in 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 152.3 kb, representing approximately 7.68 genome equivalents of the porcine haploid genome and a 99.93% statistical probability of obtaining at least one clone containing a unique DNA sequence in the library. 19 pairs of microsatellite marker primers covering porcine chromosomes were used for screening the BAC library, which showed that each of these markers was positive in the library; the positive clone number was 2 to 9, and the average number was 7.89, which was consistent with 7.68-fold coverage of the porcine genome. And there were no significant differences of genomic BAC library from blood cells and fibroblast cells. Therefore, we identified 19 microsatellite markers that could potentially be used as genetic markers. As a result, this BAC library will serve as a valuable resource for gene identification, physical mapping, and comparative genomics and large-scale genome sequencing in the porcine.
Directory of Open Access Journals (Sweden)
Changqing Liu
2014-03-01
Full Text Available Bacterial artificial chromosome (BAC libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12, consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger.
Liu, Changqing; Bai, Chunyu; Guo, Yu; Liu, Dan; Lu, Taofeng; Li, Xiangchen; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun
2014-01-01
Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12), consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger. PMID:24608928
Betts, Robert E.; Crawford, John F.
1989-01-01
An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.
On the dynamics of gauge potential
International Nuclear Information System (INIS)
Tao Jiafu; Li Yuanjie; Zhang Jinru
1992-01-01
The gauge potential is resolved into gauge potential of strength and gauge potential of phase. The phase gauge potential can be described with an equivalent potential of inertial force. A Lagrangian density with phase gauge potential is given and some examples are discussed. The method proposed has been extended to the case of the non-Abelian group
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Canonical transformations and the gauge dependence in general gauge theories
International Nuclear Information System (INIS)
Voronov, B.L.; Tyutin, I.V.
1982-01-01
Gauge-invariant renormalizability is proven for a general gauge theory with an arbitrary gauge condition. It is shown that a canonical change of the variables in the initial effective action generates just a canonical change of the variables in the renormalized action and in the vertex generating functional. It is noted that the gauge condition enters the effective action as a canonical transformation. As a consequence, a change of the gauge condition is equivalent to the canonical transformation of the renormalized action and the vertex generating functional and this fact, in turn, leads to the gauge invariance of the renormalized S matrix
Directory of Open Access Journals (Sweden)
A. A. Volchek
2016-01-01
Full Text Available Using of the Chang model for calculation of the snow water equivalent on the basis of measurements of the Earth thermo-microwave radiation by means of scanning polarimeters (SMMR, SSM/I, AMSR-E from board of orbital satellites does not allow obtaining the accuracy needed hydrological purposes. Low accuracy of the calculations is caused by both simplified character of the mathematical model, and due to significant influence of the surface characteristics (relief, vegetation and complex structure of snow thickness upon the microwave radiation propagation. This work was aimed at finding a way to increase accuracy of calculations of the snow water equivalent on the Russian Federation territory with its different climate conditions by means of application the neural network approach for processing of results of the passive microwave scanning of the Earth surface. Feed-forward multi-layer artificial neural network was trained by back-propagation algorithm using SSM/I data and results of snow water equivalent in situ measurements obtained at 117 meteorological stations during the period from January 1st, 1988 till December 31st, 1988. Validation was performed using data from the same sources collected during 7 years (1992–1998. Results of performed numerical experiments and obtained values of rootmean-square error (σ = 24.9 мм; r = 0.39±0,01 allow coming to conclusion that the best estimation of water equivalent of a snow cover is provided by artificial neural network using as the input data a set of the SSM/I channels 19.35, 37.0, 85.5 GHz of horizontal and vertical polarizations with meteorological data differentiated by types of the snow survey route.It is shown that low correlation coefficients (< 0.5 as compared with similar studies on small areas is not caused by the chosen mathematical model and its realization but it is due to a strong diversity of climatic conditions and low density of meteorological stations on the land areas
International Nuclear Information System (INIS)
Sowerby, B.D.
1982-01-01
Techniques employed in nuclear gauges for the measurement of level, thickness, density and moisture are described. The gauges include both transmission and backscatter gauges and utilize alpha particles, beta particles, neutrons or gamma radiation
Yu, Hao; Rossi, Giammarco; Braglia, Andrea; Perrone, Guido
2016-08-10
The paper presents the development of a tool based on a back-propagation artificial neural network to assist in the accurate positioning of the lenses used to collimate the beam from semiconductor laser diodes along the so-called fast axis. After training using a Gaussian beam ray-equivalent model, the network is capable of indicating the tilt, decenter, and defocus of such lenses from the measured field distribution, so the operator can determine the errors with respect to the actual lens position and optimize the diode assembly procedure. An experimental validation using a typical configuration exploited in multi-emitter diode module assembly and fast axis collimating lenses with different focal lengths and numerical apertures is reported.
A gauge principle yielding consistent chiral theories
International Nuclear Information System (INIS)
Thompson, G.; Zhang, R.
1987-02-01
We propose a new principle in gauge theories: namely that in a given action, fields should be replaced by gauge invariant equivalents. Using this principle we study anomalous gauge theories and find that the resulting models are anomaly free, unitary and power counting renormalizable. (author). 8 refs
International Nuclear Information System (INIS)
Kenyon, I.R.
1986-01-01
Modern theories of the interactions between fundamental particles are all gauge theories. In the case of gravitation, application of this principle to space-time leads to Einstein's theory of general relativity. All the other interactions involve the application of the gauge principle to internal spaces. Electromagnetism serves to introduce the idea of a gauge field, in this case the electromagnetic field. The next example, the strong force, shows unique features at long and short range which have their origin in the self-coupling of the gauge fields. Finally the unification of the description of the superficially dissimilar electromagnetic and weak nuclear forces completes the picture of successes of the gauge principle. (author)
International Nuclear Information System (INIS)
Mills, R.
1989-01-01
This article is a survey of the history and ideas of gauge theory. Described here are the gradual emergence of symmetry as a driving force in the shaping of physical theory; the elevation of Noether's theorem, relating symmetries to conservation laws, to a fundamental principle of nature; and the force of the idea (''the gauge principle'') that the symmetries of nature, like the interactions themselves, should be local in character. The fundamental role of gauge fields in mediating the interactions of physics springs from Noether's theorem and the gauge principle in a remarkably clean and elegant way, leaving, however, some tantalizing loose ends that might prove to be the clue to a future deeper level of understanding. The example of the electromagnetic field as the prototype gauge theory is discussed in some detail and serves as the basis for examining the similarities and differences that emerge in generalizing to non-Abelian gauge theories. The article concludes with a brief examination of the dream of total unification: all the forces of nature in a single unified gauge theory, with the differences among the forces due to the specific way in which the fundamental symmetries are broken in the local environment
Equivalences of coisotropic submanifolds
DEFF Research Database (Denmark)
Schaetz, Florian; Zambon, Marco
We study the role that Hamiltonian and symplectic diffeomorphisms play in the deformation problem of coisotropic submanifolds. We prove that the action by Hamiltonian diffeomorphisms corresponds to the gauge-action of the $L_\\infty$-algebra of Oh and Park. Moreover we introduce the notion of exte...... of extended gauge-equivalence and show that in the case of Oh and Park's $L_\\infty$-algebra one recovers the action of symplectic isotopies on coisotropic submanifolds. Finally, we consider the transversally integrable case in detail....
International Nuclear Information System (INIS)
Jarlskog, C.
An introduction to the unified gauge theories of weak and electromagnetic interactions is given. The ingredients of gauge theories and symmetries and conservation laws lead to discussion of local gauge invariance and QED, followed by weak interactions and quantum flavor dynamics. The construction of the standard SU(2)xU(1) model precedes discussion of the unification of weak and electromagnetic interactions and weak neutral current couplings in this model. Presentation of spontaneous symmetry breaking and spontaneous breaking of a local symmetry leads to a spontaneous breaking scheme for the standard SU(2)xU(1) model. Consideration of quarks, leptons, masses and the Cabibbo angles, of the four quark and six quark models and CP violation lead finally to grand unification, followed by discussion of mixing angles in the Georgi-Glashow model, the Higgses of the SU(5) model and proton/ neutron decay in SU(5). (JIW)
Samoilenka, A.; Shnir, Ya.
2018-02-01
We construct a new class of regular soliton solutions of the gauged planar Skyrme model on the target space S2 with fractional topological charges in the scalar sector. These field configurations represent Skyrmed vortices; they have finite energy and carry topologically quantized magnetic flux Φ =2 π n , where n is an integer. Using a special version of the product ansatz as a guide, we obtain by numerical relaxation various multimeron solutions and investigate the pattern of interaction between the fractionally charged solitons. We show that, unlike the vortices in the Abelian Higgs model, the gauged merons may combine short-range repulsion and long-range attraction. Considering the strong gauge coupling limit, we demonstrate that the topological quantization of the magnetic flux is determined by the Poincaré index of the planar components ϕ⊥=ϕ1+i ϕ2 of the Skyrme field.
Indian Academy of Sciences (India)
Abstract. Painlevé test (Jimbo et al [1]) for integrability for the Yang's self-dual equa- tions for SU(2) gauge fields has been revisited. Jimbo et al analysed the complex form of the equations with a rather restricted form of singularity manifold. They did not discuss exact solutions in that context. Here the analysis has been done ...
Problem of changing gauge in Polyakov's theory: Relation between light-cone and conformal gauges
International Nuclear Information System (INIS)
Tzani, R.
1989-01-01
The problem of the change of gauge in string theory is discussed in the context of the functional-integral formulation of the theory. The equivalence between the light-cone and conformal gauges is shown. By performing a proper change of variables in commuting and ghost fields in the functional integral of Polykov's theory, the string theory in the conformal gauge is obtained from the light-cone gauge-fixed theory. Finally, the problem of changing gauge has been generalized to the higher-genus surfaces. It has been shown that string theory in the conformal gauge is equivalent to the light-cone gauge-fixed theory of strings, for surfaces with an arbitrary number of handles
Some physico-geometrical remarks on gauge fields
International Nuclear Information System (INIS)
Ikeda, S.
1976-01-01
The gauge fields introduced to accomplish gauge invariance under Poincare and Weyl gauge transformations in general relativity are found a new to be absorbed into the covariant derivative operators. Some torsional properties associated with them are also discussed in connection with the principle of minimally coupling and the equivalence principle
Introduction to gauge theories
International Nuclear Information System (INIS)
Wit, B. de
1983-01-01
In these lectures we present the key ingredients of theories with local gauge invariance. We introduce gauge invariance as a starting point for the construction of a certain class of field theories, both for abelian and nonabelian gauge groups. General implications of gauge invariance are discussed, and we outline in detail how gauge fields can acquire masses in a spontaneous fashion. (orig./HSI)
The light-cone gauge in Polyakov's theory of strings and its relation to the conformal gauge
International Nuclear Information System (INIS)
Tzani, R.
1989-01-01
The author studies the string theory as a gauge theory. The analysis includes the formulation of the interacting bosonic string by fixing the Gervais-Sakita light-cone gauge in Polyakov's path-integral formulation of the theory and the study of the problem of changing gauge in string theory in the context of the functional formulation of the theory. The main results are the following: Mandelstam's picture is obtained from the light-cone gauge fixed Polyakov's theory. Due to the off-diagonal nature of the gauge, the calculation of the determinants differs from the usual (conformal gauge) case. The regularization of the functional integrals associated with these determinants is done by using the conformal-invariance principle. He then shows that the conformal anomaly associated with this new gauge fixing is canceled at dimensions of space-time d = 26. Studying the problem of changing gauge in string theory, he shows the equivalence between the light-cone and conformal gauge in the path-integral formulation of the theory. In particular, by performing a proper change of variables in the commuting and ghost fields in the Polyakov path-integral, the string theory in the conformal gauge is obtained from the light-cone gauge fixed expression. Finally, the problem of changing gauge is generalized to the higher genus surfaces. It is shown that the string theory in the conformal gauge is equivalent to the light-cone gauge fixed theory for surface with arbitrary number of handles
Equivalence of geometric engineering and Hanany-Witten constructions
International Nuclear Information System (INIS)
Smith, D.J.
2000-01-01
We show the equivalence of three different realisations of gauge theory in string theory. These are the Hanany-Witten brane constructions, the use of branes as probes and geometric engineering. We illustrate the equivalence via T- and S-dualities with the simplest non-trivial examples in four dimensions: N=2 SYM with gauge groups ΠSU(N i ). (orig.)
Global gauge fixing in lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Fachin, S.; Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York (USA))
1991-10-15
We propose a covariant, nonperturbative gauge-fixing procedure for lattice gauge theories that avoids the problem of Gribov copies. This is closely related to a recent proposal for a gauge fixing in the continuum that we review. The lattice gauge-fixed model allows both analytical and numerical investigations: on the analytical side, explicit nonperturbative calculations of gauge-dependent quantities can be easily performed in the framework of a generalized strong-coupling expansion, while on the numerical side a stochastic gauge-fixing algorithm is very naturally associated with the scheme. In both applications one can study the gauge dependence of the results, since the model actually provides a smooth'' family of gauge-fixing conditions.
International Nuclear Information System (INIS)
Wilkens, P.H.
1978-01-01
This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator
Nucleonic gauges in Poland and new approach to their calibration
International Nuclear Information System (INIS)
Urbanski, P.
2000-01-01
The current status of manufacturing and application of radioisotope gauges in Poland is presented. Metrological performance of the gauges is briefly described and their expected future prospects on the market of the industrial measuring instruments are discussed. Progress in electronic engineering and common use of the microprocessor systems in the radioisotope gauges made possible application of the sophisticated methods of signal processing and data treatment, as for example statistical multivariate analysis. Some examples of the multivariate calibration of nucleonic gauges are presented. Application of the partial least square regression (PLS) and artificial neural network (ANN) for calibration of the gauges has been shown. (author)
International Nuclear Information System (INIS)
Parra, Felix I; Catto, Peter J
2009-01-01
We compare two different derivations of the gyrokinetic equation: the Hamiltonian approach in Dubin D H E et al (1983 Phys. Fluids 26 3524) and the recursive methodology in Parra F I and Catto P J (2008 Plasma Phys. Control. Fusion 50 065014). We prove that both approaches yield the same result at least to second order in a Larmor radius over macroscopic length expansion. There are subtle differences in the definitions of some of the functions that need to be taken into account to prove the equivalence.
Gyrocenter-gauge kinetic theory
International Nuclear Information System (INIS)
Qin, H.; Tang, W.M.; Lee, W.W.
2000-01-01
Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is
SU(3) lattice gauge fixing with overrelaxation and Gribov copies
Energy Technology Data Exchange (ETDEWEB)
Paciello, M.L.; Taglienti, B. (INFN La Sapienza, Rome (Italy)); Parrinello, C. (Physics Dept., New York Univ., NY (United States)); Petrarca, S. (Theory Div., CERN, Geneva (Switzerland)); Vladikas, A. (Dipt. di Fisica, Univ. Tor Vergata, Rome (Italy) INFN Tor Vergata, Rome (Italy))
1992-02-06
We report on the phenomenology of SU(3) lattice Landau gauge fixing as obtained by using an overrelaxation algorithm. An interesting result obtained using this very efficient algorithm is that distinct Gribov copies are generated by simply modifying the value {omega} of the overrelaxation parameter for a fixed starting configuration. By generating random gauge equivalent configurations, we study the variation of the number of copies with the lattice volume and gauge coupling. (orig.).
The chiral bosonization in non-Abelian gauge theories
International Nuclear Information System (INIS)
Andrianov, A.A.; Novozhilov, Y.
1985-01-01
The chiral bosonization in non-Abelian gauge theories is described starting directly from the QCD functional. For a given mass scale Λ, the QCD may be equivalently represented by colour chiral fields, gauge fields and high energy fermions. The effective action for colour chiral fields may admit the existence of a colour Skyrmion-boson with the baryon number 2/3. (author)
Thermistor Pressure Gauge Design
Flanick, A. P.; Ainsworth, J. E.
1961-01-01
Thermistor pressure gauges are characterized by large pressure range, good accuracy and stability, fast measurement, insensitivity to over-pressure, negligible out-gassing, ease in cleaning, and physical and electrical simplicity and ruggedness. A number of excellent papers have been published describing these gauges. However, a detailed account of design procedure and characteristics for a specific gauge would eliminate much of the trial and error encountered in designing a gauge having prescribed range, sensitivity, and stability.
Strong gauge boson scattering at the LHC
Rindani, S.D.
2009-01-01
In the standard model with electroweak symmetry breaking through the Higgs mechanism, electroweak gauge-boson scattering amplitudes are large if the Higgs boson is heavy, and electroweak gauge interactions become strong. In theories with electroweak symmetry breaking through alternative mechanisms, there could be a strongly interacting gauge sector, possibly with resonances in an accessible energy region. In general, the scattering of longitudinally polarized massive gauge bosons can give information on the mechanism of spontaneous symmetry breaking. At energies below the symmetry breaking scale, the equivalence theorem relates the scattering amplitudes to those of the "would-be" Goldstone modes. In the absence of Higgs bosons, unitarity would be restored by some new physics which can be studied through WW scattering. Some representatives models are discussed. Isolating WW scattering at a hadron collider from other contributions involving W emission from parton lines needs a good understanding of the backgrou...
Gravitation as Gauge theory of Poincare Group
International Nuclear Information System (INIS)
Stedile, E.
1982-08-01
The geometrical approach to gauge theories, based on fiber-bundles, is shown in detail. Several gauge formalisms for gravitation are examined. In particular, it is shown how to build gauge theories for non-semisimple groups. A gravitational theory for the Poincare group, with all the essential characteristics of a Yang-Mills theory is proposed. Inonu-Wigner contractions of gauge theories are introduced, which provide a Lagrangian formalism, equivalent to a Lagrangian de Sitter theory supplemented by weak constraints. Yang and Einstein theories for gravitation become particular cases of a Yang-Mills theory. The classical limit of the proposed formalism leads to the Poisson equation, for the static case. (Author) [pt
Gauge covariances and nonlinear optical responses
Ventura, G. B.; Passos, D. J.; Lopes dos Santos, J. M. B.; Viana Parente Lopes, J. M.; Peres, N. M. R.
2017-07-01
The formalism of the reduced density matrix is pursued in both length and velocity gauges of the perturbation to the crystal Hamiltonian. The covariant derivative is introduced as a convenient representation of the position operator. This allow us to write compact expressions for the reduced density matrix in any order of the perturbation which simplifies the calculations of nonlinear optical responses; as an example, we compute the first- and third-order contributions of the monolayer graphene. Expressions obtained in both gauges share the same formal structure, allowing a comparison of the effects of truncation to a finite set of bands. This truncation breaks the equivalence between the two approaches: its proper implementation can be done directly in the expressions derived in the length gauge, but requires a revision of the equations of motion of the reduced density matrix in the velocity gauge.
Gauge Theories on the Light-Front
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.
2003-02-11
The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wave function representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions. In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions, as well as the Goldstone boson equivalence theorem.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
Superstring field theory equivalence: Ramond sector
International Nuclear Information System (INIS)
Kroyter, Michael
2009-01-01
We prove that the finite gauge transformation of the Ramond sector of the modified cubic superstring field theory is ill-defined due to collisions of picture changing operators. Despite this problem we study to what extent could a bijective classical correspondence between this theory and the (presumably consistent) non-polynomial theory exist. We find that the classical equivalence between these two theories can almost be extended to the Ramond sector: We construct mappings between the string fields (NS and Ramond, including Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to solutions in a way that respects the linearized gauge symmetries in both sides and keeps the action of the solutions invariant. The perturbative spectrum around equivalent solutions is also isomorphic. The problem with the cubic theory implies that the correspondence of the linearized gauge symmetries cannot be extended to a correspondence of the finite gauge symmetries. Hence, our equivalence is only formal, since it relates a consistent theory to an inconsistent one. Nonetheless, we believe that the fact that the equivalence formally works suggests that a consistent modification of the cubic theory exists. We construct a theory that can be considered as a first step towards a consistent RNS cubic theory.
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
International Nuclear Information System (INIS)
Lassig, C.C.; Joshi, G.C.
1995-01-01
The nonassociativity of the octonion algebra makes necessitates a bimodule representation, in which each element is represented by a left and a right multiplier. This representation can then be used to generate gauge transformations for the purpose of constructing a field theory symmetric under a gauged octonion algebra, the nonassociativity of which appears as a failure of the representation to close, and hence produces new interactions in the gauge field kinetic term of the symmetric Lagrangian. 5 refs., 1 tab
High temperature pressure gauge
Echtler, J. Paul; Scandrol, Roy O.
1981-01-01
A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.
Introduction to gauge theories
International Nuclear Information System (INIS)
Okun, L.B.
1984-01-01
These lecture notes contain the text of five lectures and a Supplement. The lectures were given at the JINR-CERN School of Physics, Tabor, Czechoslovakia, 5-18 June 1983. The subgect of the lecinvariancetures: gauge of electromagnetic and weak interactions, higgs and supersymmetric particles. The Supplement contains reprints (or excerpts) of some classical papers on gauge invariance by V. Fock, F. London, O. Klein and H. Weyl, in which the concept of gauge invariance was introduced and developed
International Nuclear Information System (INIS)
Partovi, M.H.
1982-01-01
From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories
Gauge freedom in path integrals in Abelian gauge theory
Saito, Teijiro; Endo, Ryusuke; Miura, Hikaru
2016-01-01
We extend the gauge symmetry of an Abelian gauge field to incorporate quantum gauge degrees of freedom. We twice apply the Harada–Tsutsui gauge recovery procedure to gauge-fixed theories. First, starting from the Faddeev–Popov path integral in the Landau gauge, we recover the gauge symmetry by introducing an additional field as an extended gauge degree of freedom. Fixing the extended gauge symmetry by the usual Faddeev–Popov procedure, we obtain the theory of Type I gaugeon formalism. Next, a...
Implementing general gauge mediation
International Nuclear Information System (INIS)
Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.
2009-01-01
Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
the progress in experimental studies of artificial Abelian and non-Abelian gauge fields in recent years has been simply spectacular. Multiple leading groups are working on this subject and have already obtained a lot of seminal results. The papers in the special issue are ordered according to the date of acceptance. The issue opens with a review article by Zhou et al [1] on unconventional states of bosons with synthetic spin-orbit coupling. Next, the paper by Maldonado-Mundo et al [2] studies ultracold Fermi gases with artificial Rashba spin-orbit coupling in a 2D gas. Anderson and Charles [3], in contrast, discuss a three-dimensional spin-orbit coupling in a trap. Orth et al [4] investigate correlated topological phases and exotic magnetism with ultracold fermions, again in the presence of artificial gauge fields. The paper of Nascimbène [5] does not address the synthetic gauge fields directly, but describes an experimental proposal for realizing one-dimensional topological superfluids with ultracold atomic gases; obviously, this problem is well situated in the general and growing field of topological superfluids, in particular those realized in the presence of non-Abelian gauge fields/spin-orbit coupling. Graß et al [6] consider in their paper fractional quantum Hall states of a Bose gas with spin-orbit coupling induced by a laser. Particular attention is drawn here to the possibility of realizing states with non-Abelian anyonic excitations. Zheng et al [7] study properties of Bose gases with Raman-induced spin-orbit coupling. Kiffner et al [8] in their paper touch on another kind of system, namely ultracold Rydberg atoms. In particular they study the generation of Abelian and non-Abelian gauge fields in dipole-dipole interacting Rydberg atoms. The behaviour of fermions in synthetic non-Abelian gauge potentials is discussed by Shenoy and Vyasanakere [9]. The paper starts with the study of Rashbon condensates (i.e. Bose condensates in the presence of Rashba
Chiral gauge theories on the lattice with exact gauge invariance
Lüscher, Martin
1999-01-01
A recently proposed formulation of chiral lattice gauge theories is reviewed, in which the locality and gauge invariance of the theory can be preserved if the fermion representation of the gauge group is anomaly-free.
Non-abelian gauge fields in the Poincare gauge
International Nuclear Information System (INIS)
Galvao, C.A.P.; Pimentel, B.M.
1988-01-01
The canonical structure of non-Abelian gauge fields is analysed in the (non-covariant) Poincare gauge. General aspects of the gauge conditions and quantization prescriptions are discussed. (author) [pt
Osawa, Shunsuke; Oshima, Yusuke
2014-01-01
Ten years or more have passed since the current concept of 25-gauge transconjunctival sutureless vitrectomy with a trocar-cannula system emerged. There is no doubt that current microincision vitrectomy surgery with 25- or 23-gauge instrumentation has simplified the vitrectomy procedure and has provided numerous potential advantages over traditional 20-gauge surgery. The established theory regarding surgical wounds is that 'much smaller is better'. Along with the development of new-generation vitrectomy machines with ergonomic instruments, surgeons have been shifting dramatically from 20-gauge systems to 23- and 25-gauge systems over the last years. Thanks to recent innovations and improvements in high-end multifunctional vitrectomy machines and ultrahigh-speed cutters, the development of powerful light sources, and wide-angle viewing systems, several new techniques have also encouraged us to launch the development of a 27-gauge vitrectomy system over the past several years. Similar to the recent evolution in 23- and 25-gauge systems, further development and refinement of the functionality of instruments with a gauge of 27 or more are under way and will continue over the coming years, which in the future will allow us to establish this system for ultra-minimally invasive surgery for the full spectrum of vitreoretinal pathologies. © 2014 S. Karger AG, Basel.
DEFF Research Database (Denmark)
2017-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... relates to a method for manufacturing a strain gauge as mentioned above....
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-01-01
To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).
The Relationship of the Laplacian Gauge to the Landau Gauge
Mandula, Jeffrey E.
2001-01-01
The Laplacian gauge for gauge group SU(N) is discussed in perturbation theory. It is shown that to the lowest non-trivial order, O(g^1), configurations in the Laplacian gauge automatically satisfy the (finite difference) Landau gauge condition. Laplacian gauge fixed configurations are examined numerically and it is seen that to O(g^2) they do not remain in the Landau gauge.
International Nuclear Information System (INIS)
Linauskas, S.H.
1988-08-01
Field studies to measure actual radiation exposures of operators of commercial moisture-density gauges were undertaken in several regions of Canada. Newly developed bubble detector dosimeter technology and conventional dosimetry such as thermoluminescent dosimeters (TLDs), integrating electronic dosimeters (DRDs), and CR-39 neutron track-etch detectors were used to estimate the doses received by 23 moisture-density gauge operators and maintenance staff. These radiation dose estimates were supported by mapping radiation fields and accounting for the time an operator was near a gauge. Major findings indicate that gauge maintenance and servicing workers were more likely than gauge operators to receive exposures above the level of 5 mSv, and that neutron doses were roughly the same as gamma doses. Gauge operators receive approximately 75% of their dose when transporting and carrying the gauge. Dose to their hands is similar to the dose to their trunks, but the dose to their feet area is 6 to 30 times higher. Gamma radiation is the primary source of radiation contributing to operator dose
Fried-Yennie gauge in dimensionally regularized QED
International Nuclear Information System (INIS)
Adkins, G.S.
1993-01-01
The Fried-Yennie gauge in QED is a covariant gauge with agreeable infrared properties. That is, the mass-shell renormalization scheme can be implemented without introducing artificial infrared divergences, and terms having spuriously low orders in α disappear in certain bound-state calculations. The photon propagator in the Fried-Yennie gauge has the form D β μν (k)=(-1/k 2 )[g μν +βk μ kν/k 2 ], where β is the gauge parameter. In this work, I show that the Fried-Yennie gauge parameter is β=2/(1-2ε) when dimensional regularization (with n=4-2ε dimensions of spacetime) is used to regulate the theory
Aschieri, Paolo; Dimitrijević, Marija; Meyer, Frank; Schraml, Stefan; Wess, Julius
2006-10-01
Gauge theories on a space-time that is deformed by the Moyal-Weyl product are constructed by twisting the coproduct for gauge transformations. This way a deformed Leibniz rule is obtained, which is used to construct gauge invariant quantities. The connection will be enveloping algebra valued in a particular representation of the Lie algebra. This gives rise to additional fields, which couple only weakly via the deformation parameter θ and reduce in the commutative limit to free fields. Consistent field equations that lead to conservation laws are derived and some properties of such theories are discussed.
International Nuclear Information System (INIS)
Krejci, M.; Pilat, M.; Stulik, P.
1977-01-01
Equipment was developed measuring the heavy water level in the TR-0 reactor core within an accuracy of several hundredths of a millimeter in a range of around 3.5 m and at a temperature of up to 90 degC. The equipment uses a vibrating needle contact as a high sensitivity level gauge and a servomechanical system with a motion screw carrying the gauge for monitoring and measuring the level in the desired range. The advantage of the unique level gauge consists in that that the transducer converts the measured level position to an electric signal, ie., pulse width, with high sensitivity and without hysteresis. (Kr)
Microcomputerized neutron moisture gauge
International Nuclear Information System (INIS)
Liu Shengkang; Mei Yu
1987-01-01
A microcomputerized neutron moisture gauge is introduced. This gauge consists of a neutron moisture sensor and instruments. It is developed from the neutron moisture gauge for concrete mixer. A TECH-81 single card microcomputer is used for count, computation and display. It has the function of computing compensated quantity of sand. It can acquire the data from several neutron sensors by the multichanneling sampling, therefore it can measure moisture values of sand in several hoppers simultaneously. The precision of the static state calibration curve is 0.24% wt. The error limits of the dynamic state check is < 0.50% wt
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
We compute the nonzero temperature free energy up to the order g^6 \\ln(1/g) in the coupling constant for vector like SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged...... of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i...
Energy Technology Data Exchange (ETDEWEB)
Bacvinskas, W.S.; Bayer, J.E.; Davis, W.W.; Fodor, G.; Kikta, T.J.; Matchett, R.L.; Nilsen, R.J.; Wilczynski, R.
1991-12-31
The present invention is directed to a semi-automatic rod examination gauge for performing a large number of exacting measurements on radioactive fuel rods. The rod examination gauge performs various measurements underwater with remote controlled machinery of high reliability. The rod examination gauge includes instruments and a closed circuit television camera for measuring fuel rod length, free hanging bow measurement, diameter measurement, oxide thickness measurement, cladding defect examination, rod ovality measurement, wear mark depth and volume measurement, as well as visual examination. A control system is provided including a programmable logic controller and a computer for providing a programmed sequence of operations for the rod examination and collection of data.
International Nuclear Information System (INIS)
Meade, Patrick; Seiberg, Nathan; Shih, David
2009-01-01
We give a general definition of gauge mediated supersymmetry breaking which encompasses all the known gauge mediation models. In particular, it includes both models with messengers as well as direct mediation models. A formalism for computing the soft terms in the generic model is presented. Such a formalism is necessary in strongly-coupled direct mediation models where perturbation theory cannot be used. It allows us to identify features of the entire class of gauge mediation models and to distinguish them from specific signatures of various subclasses. (author)
A gauge-theoretic approach to gravity.
Krasnov, Kirill
2012-08-08
Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.
A gauge-theoretic approach to gravity
Krasnov, Kirill
2012-01-01
Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040
Holography as a gauge phenomenon in Higher Spin duality
Energy Technology Data Exchange (ETDEWEB)
Koch, Robert de Mello [National Institute for Theoretical Physics, School of Physics and Centre for Theoretical Physics,University of the Witwatersrand,Wits, 2050 (South Africa); Jevicki, Antal [Department of Physics, Brown University,Providence, RI 02912 (United States); Rodrigues, João P. [National Institute for Theoretical Physics, School of Physics and Centre for Theoretical Physics,University of the Witwatersrand,Wits, 2050 (South Africa); Yoon, Junggi [Department of Physics, Brown University,Providence, RI 02912 (United States)
2015-01-13
Employing the world line spinning particle picture. We discuss the appearance of several different ‘gauges’ which we use to gain a deeper explanation of the Collective/Gravity identification. We discuss transformations and algebraic equivalences between them. For a bulk identification we develop a ‘gauge independent’ representation where all gauge constraints are eliminated. This ‘gauge reduction’ of Higher Spin Gravity demonstrates that the physical content of 4D AdS HS theory is represented by the dynamics of an unconstrained scalar field in 6d. It is in this gauge reduced form that HS Theory can be seen to be equivalent to a 3+3 dimensional bi-local collective representation of CFT{sub 3}.
Gauge stability of 3+1 formulations of general relativity
International Nuclear Information System (INIS)
Khokhlov, A M; Novikov, I D
2002-01-01
We present a general approach to the analysis of gauge stability of 3+1 formulations of general relativity (GR). Evolution of coordinate perturbations and the corresponding perturbations of lapse and shift can be described by a system of eight quasi-linear partial differential equations. Stability with respect to gauge perturbations depends on the choice of gauge and a background metric, but it does not depend on a particular form of a 3+1 system if its constrained solutions are equivalent to those of the Einstein equations. Stability of a number of known gauges is investigated in the limit of short-wavelength perturbations. All fixed gauges except a synchronous gauge are found to be ill posed. A maximal slicing gauge and its parabolic extension are shown to be ill posed as well. A necessary condition is derived for well-posedness of metric-dependent algebraic gauges. Well-posed metric-dependent gauges are found, however, to be generally unstable. Both instability and ill-posedness are associated with the existence of growing modes of coordinate perturbations related to perturbations of physical accelerations of reference frames
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1979-01-01
The construction of field strength copies without any gauge constraint is discussed. Several examples are given, one of which is not only a field strength copy but also (at the same time) a 'current copy'. (author) [pt
International Nuclear Information System (INIS)
Cabibbo, N.
1983-01-01
This chapter attempts to present some of the fundamental geometrical ideas at the basis of gauge theories. Describes Dirac Monopoles and discusses those ideas that are not usually found in more ''utilitarian'' presentations which concentrate on QCD or on the Glashow-Salam-Weinberg model. This topic was chosen because of the announcement of the possible detection of a Dirac monopole. The existence of monopoles depends on topological features of gauge theories (i.e., on global properties of field configurations which are unique to gauge theories). Discusses global symmetry-local symmetry; the connection; path dependence and the gauge fields; topology and monopoles; the case of SU(3) x U(1); and the 't Hooft-Polyakov monopole
International Nuclear Information System (INIS)
Nielsen, H.B.; Bennett, D.L.
1987-08-01
Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
Gauge engineering and propagators
Directory of Open Access Journals (Sweden)
Maas Axel
2017-01-01
The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
Gaugings of N = 4 three dimensional gauged supergravity with exceptional coset manifolds
Karndumri, Parinya
2012-08-01
Some admissible gauge groups of N = 4 Chern-Simons gauged supergravity in three dimensions with exceptional scalar manifolds G 2(2) /SO(4), F 4(4) /USp(6) × SU(2), E 6(2) /SU(6) × SU(2), E 7(-5) /SO(12) × SU(2) and E 8(-24) /E 7 × SU(2) are identified. In particular, a complete list of all possible gauge groups is given for the theory with G 2(2) /SO(4) coset space. We also study scalar potentials for all of these gauge groups and find some critical points. In the case of F 4(4) /USp(6) × SU(2) target space, we give some semisimple gauge groups which are maximal subgroups of F 4(4). Most importantly, we construct the SO(4) ⋉ T 6 gauged supergravity which is equivalent to N = 4 SO(4) Yang-Mills gauged supergravity. The latter is proposed to be obtained from an S 3 reduction of (1 , 0) six dimensional supergravity coupled to two vector and two tensor multiplets. The scalar potential of this theory on the scalar fields which are invariant under SO(4) is explicitly computed. Depending on the value of the coupling constants, the theory admits both dS and AdS vacua when all of the 28 scalars vanish. The maximal N = 4 supersymmetric AdS 3 should correspond to the AdS 3 × S 3 solution of the (1 , 0) six dimensional theory. Finally, some gauge groups of the theories with E 6(2) /SU(6) × SU(2), E 7(-5) /SO(12) × SU(2) and E 8(-24) /E 7 × SU(2) scalar manifolds are identified.
Quantum and classical gauge symmetries
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Terashima, Hiroaki
2001-01-01
The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)
Renormalizable Non-Covariant Gauges and Coulomb Gauge Limit
Baulieu, L
1999-01-01
To study ``physical'' gauges such as the Coulomb, light-cone, axial or temporal gauge, we consider ``interpolating'' gauges which interpolate linearly between a covariant gauge, such as the Feynman or Landau gauge, and a physical gauge. Lorentz breaking by the gauge-fixing term of interpolating gauges is controlled by extending the BRST method to include not only the local gauge group, but also the global Lorentz group. We enumerate the possible divergences of interpolating gauges, and show that they are renormalizable, and we show that the expectation value of physical observables is the same as in a covariant gauge. In the second part of the article we study the Coulomb-gauge as the singular limit of the Landau-Coulomb interpolating gauge. We find that unrenormalized and renormalized correlation functions are finite in this limit. We also find that there are finite two-loop diagrams of ``unphysical'' particles that are not present in formal canonical quantization in the Coulomb gauge. We verify that in the ...
Equivalence of Lagrangian and Hamiltonian BRST quantizations
International Nuclear Information System (INIS)
Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.
1992-01-01
Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
International Nuclear Information System (INIS)
Stora, R.
1976-09-01
The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed
Wess, Julius
Gauge theories are studied on a space of functions with the Moyal product. The development of these ideas follows the differential geometry of the usual gauge theories, but several changes are forced upon us. The Leibniz rule has to be changed such that the theory is now based on a twisted Hopf algebra. Nevertheless, this twisted symmetry structure leads to conservation laws. The symmetry has to be extended from Lie algebra valued to enveloping algebra valued and new vector potentials have to be introduced. As usual, field equations are subjected to consistency conditions that restrict the possible models. Some examples are studied.
Accelerating abelian gauge dynamics
Adler, Stephen Louis
1991-01-01
In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.
International Nuclear Information System (INIS)
Ebata, Takeshi
1982-01-01
The global iso-spin invariance of the hadronic interaction, which is a reflection of the SU(2) x U(1) QFD and QCD, as well as the U(1) invariance related to the charge of the hadrons, is formulated as an effective gauge theory. The pseudo-gauge fields in this theory are the vector mesons, and these composite fields become massive when the Higgs field at the quark-lepton level and the anti qq pair states acquire the vacuum expectation value. The formulation gives a theoretical basis for the vector dominance model and gives some insights to the possible composite structure of quarks and leptons. (author)
1994-01-01
This volume is a compilation of works which, taken together, give a complete and consistent presentation of instanton calculus in non-Abelian gauge theories, as it exists now. Some of the papers reproduced are instanton classics. Among other things, they show from a historical perspective how the instanton solution has been found, the motivation behind it and how the physical meaning of instantons has been revealed. Other papers are devoted to different aspects of instanton formalism including instantons in supersymmetric gauge theories. A few unsolved problems associated with instantons are d
Energy Technology Data Exchange (ETDEWEB)
Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study
2009-06-19
We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition defining term. We show that the boundary condition needed to maintain gauge- invariance as the interpolating ...
Marrani, Alessio; Shih, Sheng-Yu Darren; Tagliaferro, Anthony; Zumino, Bruno
2013-01-01
We present a novel gauge field theory, based on the Freudenthal Triple System (FTS), a ternary algebra with mixed symmetry (not completely symmetric) structure constants. The theory, named Freudenthal Gauge Theory (FGT), is invariant under two (off-shell) symmetries: the gauge Lie algebra constructed from the FTS triple product and a novel global non-polynomial symmetry, the so-called Freudenthal duality. Interestingly, a broad class of FGT gauge algebras is provided by the Lie algebras "of type e7" which occur as conformal symmetries of Euclidean Jordan algebras of rank 3, and as U-duality algebras of the corresponding (super)gravity theories in D = 4. We prove a No-Go Theorem, stating the incompatibility of the invariance under Freudenthal duality and the coupling to space-time vector and/or spinor fields, thus forbidding non-trivial supersymmetric extensions of FGT. We also briefly discuss the relation between FTS and the triple systems occurring in BLG-type theories, in particular focusing on superconform...
Indian Academy of Sciences (India)
activities in non-perturbative QCD. Keywords. Deflation; overlap operator; GPU; CUDA. PACS Nos 11.15.Ha; 12.38.-t. 1. Introduction. The lattice gauge theory subgroup of the working group in non-perturbative QCD consisted of Mridupavan Deka, Sourendu Gupta, N D Hari Dass, Rajarshi Roy, Sayantan Sharma and.
International Nuclear Information System (INIS)
Bennerstedt, T.
1986-01-01
A great number of industrial nuclear gauges are used in Sweden. The administrative routines for testing, approval and licensing are briefly described. Safety standards, including basic ICRP criteria, are summarized and a theoretical background to the various measuring techniques is given. Numerous practical examples are given. (author)
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
DEFF Research Database (Denmark)
Gonzalez Eiras, Martin; Niepelt, Dirk
2015-01-01
Traditional "economic equivalence'' results, like the Ricardian equivalence proposition, define equivalence classes over exogenous policies. We derive "politico-economic equivalence" conditions that apply in environments where policy is endogenous and chosen sequentially. A policy regime...... and a state are equivalent to another such pair if both pairs give rise to the same allocation in politico-economic equilibrium. The equivalence conditions help to identify factors that render institutional change non-neutral and to construct politico-economic equilibria in new policy regimes. We exemplify...
Solution of the gauge identities in the axial gauge
International Nuclear Information System (INIS)
Delbourgo, R.
1981-01-01
Starting from the spectral representation of the two-point functions in the axial gauge, the gauge identities are solved so as to express the higher-point Green functions linearly in terms of the two-point spectral function. The four-point functions are an important input for investigations of scalar electrodynamics and vector chromodynamics based on the gauge technique. (author)
Gauge symmetry breaking in gauge theories -- in search of clarification
Friederich, Simon
2013-01-01
The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
We discuss the viability of using interpolating gauges to deﬁne the non-covariant gauges starting from the covariant ones. We draw attention to the need for a very careful treatment of boundary condition deﬁning term. We show that the boundary condition needed to maintain gauge-invariance as the interpolating parameter ...
Exterior gauging of an internal supersymmetry and SU(2/1) quantum asthenodynamics.
Thierry-Mieg, J; Ne'eman, Y
1982-11-01
A formally unitary Lagrangian model gauging an internal supersymmetry is proposed. The even subalgebra is gauged as a Yang-Mills theory, while the odd generators are gauged-according to Freedman's method-by skew tensor fields, equivalent dynamically to scalar Higgs fields. Chiral fermions are incorporated by following Townsend's construction and form irreducible supermultiplets graded by their helicity. The application to quantum asthenodynamics is discussed.
The equivalence theorem and the production of gravitinos after inflation
Maroto, A L; Maroto, Antonio L.; Pelaez, Jose R.
2000-01-01
We study the application of the high-energy equivalence between helicity $\\pm 1/2$ gravitinos and goldstinos in order to calculate the production of helicity derive this equivalence for equations of motion, paying attention to several subtleties that appear in this context and are not present in the standard derivations of the theorem, mainly because of the presence of external sources. We also propose the Landau gauge as an alternative to the usual gauge choices given in the standard proofs at the Lagrangian level.
Weighing Rain Gauge Recording Charts
National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...
Hypotony after 25-gauge vitrectomy
Bamonte, Giulio; Mura, Marco; Stevie Tan, H.
2011-01-01
To describe the incidence of hypotony after 25-gauge vitrectomy and to identify preoperative and intraoperative factors that influence the occurrence of hypotony. Retrospective, nonrandomized, interventional case series. We reviewed 122 consecutive cases of 25-gauge vitrectomy for all surgical
Volume independence in large Nc QCD-like gauge theories
International Nuclear Information System (INIS)
Kovtun, Pavel; Uensal, Mithat; Yaffe, Laurence G.
2007-01-01
Volume independence in large N c gauge theories may be viewed as a generalized orbifold equivalence. The reduction to zero volume (or Eguchi-Kawai reduction) is a special case of this equivalence. So is temperature independence in confining phases. A natural generalization concerns volume independence in 'theory space' of quiver gauge theories. In pure Yang-Mills theory, the failure of volume independence for sufficiently small volumes (at weak coupling) due to spontaneous breaking of center symmetry, together with its validity above a critical size, nicely illustrate the symmetry realization conditions which are both necessary and sufficient for large N c orbifold equivalence. The existence of a minimal size below which volume independence fails also applies to Yang-Mills theory with antisymmetric representation fermions [QCD(AS)]. However, in Yang-Mills theory with adjoint representation fermions [QCD(Adj)], endowed with periodic boundary conditions, volume independence remains valid down to arbitrarily small size. In sufficiently large volumes, QCD(Adj) and QCD(AS) have a large N c ''orientifold'' equivalence, provided charge conjugation symmetry is unbroken in the latter theory. Therefore, via a combined orbifold-orientifold mapping, a well-defined large N c equivalence exists between QCD(AS) in large, or infinite, volume and QCD(Adj) in arbitrarily small volume. Since asymptotically free gauge theories, such as QCD(Adj), are much easier to study (analytically or numerically) in small volume, this equivalence should allow greater understanding of large N c QCD in infinite volume
More on generalized gauge hierarchies
International Nuclear Information System (INIS)
Ozer, M.
1982-05-01
We point out that the generalized gauge hierarchy evolution equation of Dawson and Georgi for the gauge coupling constants of the subgroups of a unifying group should be modified in order to make it applicable to all the unifying groups. We modify their formula, and in the process derive a formula relating the gauge couplings of the subgroups and the gauge coupling of the unifying group at the unification mass scale. (author)
High-energy scatterings of many electroweak gauge bosons
International Nuclear Information System (INIS)
Dunn, C.; Yan, T.M.
1991-01-01
We present an application of the equivalence theorem and the multispinor representation of gauge fields to the standard model of electroweak interactions at very high energies. The equivalence theorem allows us to efficiently treat the longitudinal vector bosons while the multispinor formalism makes the transverse vector bosons easy to handle. We generalize the work of Berends and Giele to derive a recursion relation for a current consisting of a pair of longitudinal vector bosons plus any number of transverse vector bosons. It is shown that for longitudinal vector bosons plus any number of transverse vector bosons. Consideration of a U(N), rather than an SU(N), gauge theory enables us to incorporate the mixing in the SU(2)xU(1) electroweak theory and to derive certain sum rules for the currents for transverse gauge bosons. We also give explicit expressions for four-particle and five-particle scattering amplitudes involving a pair of longitudinal vector bosons. (orig.)
Renormalisation group flows for gauge theories in axial gauges
Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.
2002-01-01
Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.
Equivalence principles and electromagnetism
Ni, W.-T.
1977-01-01
The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.
Gauge fixing and operator ordering
International Nuclear Information System (INIS)
Tudron, T.N.
1980-01-01
In a large class of gauges, including the Coulomb gauge, in non-Abelian gauge theories, an operator-ordering ambiguity exists in the canonically quantized Hamiltonian. In this paper, a method is described for resolving this ambiguity. It gives rise to an extra potential-like term of order h 2
Safety of hydrogen pressure gauges.
Voth, R. O.
1972-01-01
Study of the relative safety afforded an operator by various hydrogen-pressure gauge case designs. It is shown that assurance of personnel safety, should a failure occur, requires careful selection of available gauge designs, together with proper mounting. Specific gauge case features and mounting requirements are recommended.
The renaissance of gauge theory
International Nuclear Information System (INIS)
Moriyasu, K.
1982-01-01
Gauge theory is a classic example of a good idea proposed before its time. A brief historical review of gauge theory is presented to see why it required over 50 years for gauge invariance to be rediscovered as the basic principle governing the fundamental forces of Nature. (author)
Difference of observability between classical electromagnetic and gravitational gauge fields
International Nuclear Information System (INIS)
Asorey, M.; Boya, L.J.
1979-01-01
An analysis of the observability of the classical electromagnetic gauge field based in its quantum effects shows that this is physically determined up to equivalences. By contrast a similar analysis of the gravitational gauge field from Einstein's General Relativity theory shows that this field is univocally determined by the trajectories of material particles provided they feel only that gravitational field, and its proper gravitational and quantum effects are negligible. This difference of observability in both kinds of gauge fields is caused by the attachment of the gravitational field in the Einstein theory to the space-time, and this difference must be taken into account to formulate unified gauge theories with both kinds of fields. (author)
Hunt, Earl B
1975-01-01
Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet
The string unification of gauge couplings and gauge kinetic mixings
International Nuclear Information System (INIS)
Hattori, Chuichiro; Matsuda, Masahisa; Matsuoka, Takeo; Mochinaga, Daizo.
1993-01-01
In the superstring models we have not only the complete 27 multiplets of E 6 but also extra incomplete (27+27-bar) chiral supermultiplets being alive at low energies. Associated with these additional multiplets, when the gauge symmetry contains more than one U(1) gauge group, there may exist gauge kinetic mixings among these U(1) gauge groups. In such cases the effect of gauge kinetic mixings should be incorporated into the study of unification of gauge couplings. We study these interesting effects systematically in these models. The string threshold effect is also taken into account. It is found that in the four-generation models we do not have an advisable solution of string unification of gauge couplings consistent with experimental values at the electroweak scale. We also discuss the possible scenarios to solve this problem. (author)
Koseki, M.; Kuriki, R.
1995-01-01
The massless Schwinger model without the kinetic term of gauge field has gauge anomaly. We quantize the model as an anomalous gauge theory in the most general class of gauge conditions. We show that the gauge field becomes a dynamical variable because of gauge anomaly.
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Radioactive thickness gauge (1962)
International Nuclear Information System (INIS)
Guizerix, J.
1962-01-01
The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr
Graudenz, Dirk
1996-01-01
We consider the evolution of quantum fields on a classical background space-time, formulated in the language of differential geometry. Time evolution along the worldlines of observers is described by parallel transport operators in an infinite-dimensional vector bundle over the space-time manifold. The time evolution equation and the dynamical equations for the matter fields are invariant under an arbitrary local change of frames along the restriction of the bundle to the worldline of an observer, thus implementing a ``quantum gauge principle''. We derive dynamical equations for the connection and a complex scalar quantum field based on a gauge field action. In the limit of vanishing curvature of the vector bundle, we recover the standard equation of motion of a scalar field in a curved background space-time.
Semistrict higher gauge theory
Energy Technology Data Exchange (ETDEWEB)
Jurčo, Branislav [Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague,Prague 186 75 (Czech Republic); Sämann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics,Heriot-Watt University,Edinburgh EH14 4AS (United Kingdom); Wolf, Martin [Department of Mathematics, University of Surrey,Guildford GU2 7XH (United Kingdom)
2015-04-20
We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian N=(2,0) tensor multiplet taking values in a semistrict Lie 2-algebra.
International Nuclear Information System (INIS)
Arodz, H.
1987-01-01
The two formulations of quantum theory of the free electromagnetic field are presented. In the Coulomb gauge approach the independent dynamical variables have been identified and then, in order to quantize the theory, it has been sufficient to apply the straightforward canonical quantization. In the Gupta-Bleuler approach the auxilliary theory is first considered. The straightforward canonical quantization of it leads to the quantum theory defined in the space G with indefinite norm. 15 refs. (author)
Gounaris, George J; Zeppenfeld, Dieter; Ajaltouni, Ziad J; Arhrib, A; Bella, G; Berends, F A; Bilenky, S M; Blondel, A; Busenitz, J K; Choudhury, D; Clarke, P; Conboy, J E; Diehl, M; Fassouliotis, D; Frère, J M; Georgiopoulos, C H; Gibbs, M; Grünewald, M W; Hansen, J B; Hartmann, C; Jin, B N; Jousset, J; Kalinowski, Jan; Kocian, M L; Lahanas, Athanasios B; Layssac, J; Lieb, E H; Markou, C; Matteuzzi, C; Mättig, P; Moreno, J M; Moultaka, G; Nippe, A; Orloff, J; Papadopoulos, C G; Paschalis, J; Petridou, C; Phillips, H; Podlyski, F; Pohl, M; Renard, F M; Rossignol, J M; Rylko, R; Sekulin, R L; Van Sighem, A; Simopoulou, Errietta; Skillman, A; Spanos, V C; Tonazzo, A; Tytgat, M H G; Tzamarias, S; Verzegnassi, Claudio; Vlachos, N D; Zevgolatakos, E
1996-01-01
We present the results obtained by the "Triple Gauge Couplings" working group during the LEP2 Workshop (1994-1995). The report concentrates on the measurement of WW\\gamma and WWZ couplings in e^-e^+\\to W^-W^+ or, more generally, four-fermion production at LEP2. In addition the detection of new interactions in the bosonic sector via other production channels is discussed.
International Nuclear Information System (INIS)
Waldron, A.K.; Joshi, G.C.
1992-01-01
By considering representation theory for non-associative algebras the fundamental adjoint representations of the octonion algebra is constructed. It is then shown how these representations by associative matrices allow a consistent octonionic gauge theory to be realized. It was found that non-associativity implies the existence of new terms in the transformation laws of fields and the kinetic term of an octonionic Lagrangian. 13 refs
DEFF Research Database (Denmark)
Bombin Palomo, Hector
2015-01-01
Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow t...... the transversal implementation of a universal set of gates by gauge fixing, while error-dectecting measurements involve only four or six qubits....
Equivalence between Aharonov-Bohm and Aharonov-Casher effects, and motive forces
Oh, Sangchul; Ryu, Chang-Mo; Suck Salk, Sung-Ho
1994-12-01
Based on a gauge-theoretic approach, an equivalence between the Aharonov-Bohm effect of a solenoid and the Aharonov-Casher effect of a charged rod is explicitly demonstrated. It is shown that a time-dependent Aharonov-Casher phase can induce a motive force via the SU(2)spin gauge field. The intrinsic non-Abelian nature of the SU(2)spin gauge field predicts the non-Abelian Faraday law, subject to further experimental verification.
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)
2017-05-25
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.
De Simone, Andrea; Giudice, Gian Francesco; Pappadopulo, Duccio; Rattazzi, Riccardo
2011-01-01
It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called $\\mu$-$B_\\mu$ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of $B_\\mu$ and of the other Higgs-sector soft masses, as predicted in models where both $\\mu$ and $B_\\mu$ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of $\\tan\\beta$. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of ne...
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
Premetric equivalent of general relativity: Teleparallelism
Itin, Yakov; Hehl, Friedrich W.; Obukhov, Yuri N.
2017-04-01
In general relativity (GR), the metric tensor of spacetime is essential since it represents the gravitational potential. In other gauge theories (such as electromagnetism), the so-called premetric approach succeeds in separating the purely topological field equation from the metric-dependent constitutive law. We show here that GR allows for a premetric formulation, too. For this purpose, we apply the teleparallel approach of gravity, which represents GR as a gauge theory based on the translation group. We formulate the metric-free topological field equation and a general linear constitutive law between the basic field variables. The requirement of local Lorentz invariance turns the model into a full equivalent of GR. Our approach opens a way for a natural extension of GR to diverse geometrical structures of spacetime.
Light-Front Quantization of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.
2003-03-25
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
Light-Front Quantization of Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Brodskey, Stanley
2002-12-01
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
Energy Technology Data Exchange (ETDEWEB)
Reyes A, A.; Ortiz R, J. M.; Reyes H, A.; Castaneda M, R.; Solis S, L. O.; Vega C, H. R., E-mail: art8291@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Lopez Velarde No. 801, Col. Centro, 98000 Zacatecas (Mexico)
2014-08-15
In this work was used the robust design methodology of artificial neural networks to determine a good topology of net able to solve with efficiency the problems of neutrons spectrometry and dosimetry. For the design of the topology of optimized net 36 different net architectures based on an orthogonal arrangement with a configuration L{sub 9}(3{sup 4}), L{sub 4}(3{sup 2}) were trained. For the training of the neural networks, was used a computer code developed in the ambient of Mat lab programming, which automates the process and analysis of the information, reducing the time used in this activity considerably for the investigator. For the training of the propagation nets forward was utilized a neutrons spectrum compendium published by the International Atomic Energy Agency, where of the total 80% was used for the training and 20% for the test, it trained with an inverse propagation algorithm being the entrance data the count rates corresponding to the 7 spheres of the spectrometric system of Bonner spheres, as exit data, the neural network obtains the neutrons spectrum expressed in 60 energy groups and are calculated of simultaneous way 15 dosimetric quantities. (Author)
Fourier acceleration in lattice gauge theories. I. Landau gauge fixing
International Nuclear Information System (INIS)
Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.
1988-01-01
Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations
Conformal anomaly from gauge fields without gauge fixing
Falls, Kevin; Morris, Tim R.
2018-03-01
We show how the Weyl anomaly generated by gauge fields, can be computed from manifestly gauge invariant and diffeomorphism invariant exact renormalization group equations, without having to fix the gauge at any stage. Regularization is provided by covariant higher derivatives and by embedding the Maxwell field into a spontaneously broken U (1 |1 ) supergauge theory. We first provide a realization that leaves behind two versions of the original U (1 ) gauge field, and then construct a manifestly U (1 |1 ) supergauge invariant flow equation which leaves behind only the original Maxwell field in the spontaneously broken regime.
Equivalent circuit analysis of terahertz metamaterial filters
Zhang, Xueqian
2011-01-01
An equivalent circuit model for the analysis and design of terahertz (THz) metamaterial filters is presented. The proposed model, derived based on LMC equivalent circuits, takes into account the detailed geometrical parameters and the presence of a dielectric substrate with the existing analytic expressions for self-inductance, mutual inductance, and capacitance. The model is in good agreement with the experimental measurements and full-wave simulations. Exploiting the circuit model has made it possible to predict accurately the resonance frequency of the proposed structures and thus, quick and accurate process of designing THz device from artificial metamaterials is offered. ©2011 Chinese Optics Letters.
Search for new heavy charged gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Magass, Carsten Martin
2007-11-02
The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron
Search for new heavy charged gauge bosons
International Nuclear Information System (INIS)
Magass, Carsten Martin
2007-01-01
The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of √(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about ∫Ldt=1 fb -1 . Using this dataset, a search for a new heavy charged gauge boson W ' and its subsequent decay into an electron and a neutrino is performed: p anti p→W ' +X→eν+X. Additional gauge bosons (including the equivalent to the Z, the Z ' ) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W ' has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W ' is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W ' signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1±2.1(stat) +6.0 -3.7 (sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron and neutrino, σ W ' x Br(W ' →eν). Using this limit, a lower bound on the mass of the new gauge
Comments on general gauge mediation
International Nuclear Information System (INIS)
Intriligator, Kenneth; Sudano, Matthew
2008-01-01
There has been interest in generalizing models of gauge mediation of supersymmetry breaking. As shown by Meade, Seiberg, and Shih (MSS), the soft masses of general gauge mediation can be expressed in terms of the current two-point functions of the susy-breaking sector. We here give a simple extension of their result which provides, for general gauge mediation, the full effective potential for squark pseudo-D-flat directions. The effective potential reduces to the sfermion soft masses near the origin, and the full potential, away from the origin, can be useful for cosmological applications. We also generalize the soft masses and effective potential to allow for general gauge mediation by Higgsed gauge groups. Finally, we discuss general gauge mediation in the limit of small F-terms, and how the results of MSS connect with the analytic continuation in superspace results, based on a spurion analysis.
Characterization of revenue equivalence
Heydenreich, B.; Müller, R.; Uetz, Marc Jochen; Vohra, R.
2009-01-01
The property of an allocation rule to be implementable in dominant strategies by a unique payment scheme is called revenue equivalence. We give a characterization of revenue equivalence based on a graph theoretic interpretation of the incentive compatibility constraints. The characterization holds
Characterization of Revenue Equivalence
Heydenreich, Birgit; Müller, Rudolf; Uetz, Marc Jochen; Vohra, Rakesh
2008-01-01
The property of an allocation rule to be implementable in dominant strategies by a unique payment scheme is called \\emph{revenue equivalence}. In this paper we give a characterization of revenue equivalence based on a graph theoretic interpretation of the incentive compatibility constraints. The
International Nuclear Information System (INIS)
Grenet, G.; Kibler, M.
1978-06-01
A closed polynomial formula for the qth component of the diagonal operator equivalent of order k is derived in terms of angular momentum operators. The interest in various fields of molecular and solid state physics of using such a formula in connection with symmetry adapted operator equivalents is outlined
A natural Poincare gauge model
International Nuclear Information System (INIS)
Aldrovandi, R.; Pereira, J.G.
1985-01-01
A natural candidate model for a gauge theory for the Poincare group is discussed. It satisfies the usual electric-magnetic symmetry of gauge models and is a contraction of a gauge model for the De Sitter group. Its field equations are just the Yang-Mills equations for the Poincare group. It is shown that these equations do not follow from a Lagrangean. (Author) [pt
Stochastic quantization and gauge theories
International Nuclear Information System (INIS)
Kolck, U. van.
1987-01-01
Stochastic quantization is presented taking the Flutuation-Dissipation Theorem as a guide. It is shown that the original approach of Parisi and Wu to gauge theories fails to give the right results to gauge invariant quantities when dimensional regularization is used. Although there is a simple solution in an abelian theory, in the non-abelian case it is probably necessary to start from a BRST invariant action instead of a gauge invariant one. Stochastic regularizations are also discussed. (author) [pt
Comments on General Gauge Mediation
Intriligator, Kenneth; Sudano, Matthew
2008-01-01
There has been interest in generalizing models of gauge mediation of supersymmetry breaking. As shown by Meade, Seiberg, and Shih (MSS), the soft masses of general gauge mediation can be expressed in terms of the current two-point functions of the susy-breaking sector. We here give a simple extension of their result which provides, for general gauge mediation, the full effective potential for squark pseudo-D-flat directions. The effective potential reduces to the sfermion soft masses near the...
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
Gauges for fine and high vacuum
Jousten, K
2007-01-01
Vacuum gauges for use in accelerators have to cover about 17 decades of pressure, from 10–12 Pa to 105 Pa. In this article we describe the history, measurement mode, design, accuracy and calibration of the gauges used down to 10–5 Pa. We focus on commercially available types of gauges, i.e., mechanical gauges, piezoresistive and capacitance diaphragm gauges, thermal conductivity gauges, and spinning rotor gauges.
The quantum-optics Hamiltonian in the Multipolar gauge.
Rousseau, Emmanuel; Felbacq, Didier
2017-09-11
This article deals with the fundamental problem of light-matter interaction in the quantum theory. Although it is described through the vector potential in quantum electrodynamics, it is believed by some that a hamiltonian involving only the electric and the magnetic fields is preferable. In the literature this hamiltonian is known as the Power-Zienau-Woolley hamiltonian. We question its validity and show that it is not equivalent to the minimal-coupling hamiltonian. In this article, we show that these two hamiltonians are not connected through a gauge transformation. We find that the gauge is not fixed in the Power-Zienau-Woolley hamiltonian. The interaction term is written in one gauge whereas the rest of the hamiltonian is written in another gauge. The Power-Zienau-Woolley hamiltonian and the minimal-coupling one are related through a unitary transformation that does not fulfill the gauge fixing constraints. Consequently, they predict different physical results. In this letter, we provide the correct quantum theory in the multipolar gauge with a hamiltonian involving only the physical fields.
Varieties of vacua in classical supersymmetric gauge theories
International Nuclear Information System (INIS)
Luty, M.A.; Taylor, W. IV
1996-01-01
We give a simple description of the classical moduli space of vacua for supersymmetric gauge theories with or without a superpotential. The key ingredient in our analysis is the observation that the Lagrangian is invariant under the action of the complexified gauge group G c . From this point of view the usual D-flatness conditions are an artifact of the Wess-Zumino gauge. By using a gauge that preserves G c invariance we show that every constant matter field configuration that extremizes the superpotential is G c gauge equivalent (in a sense that we make precise) to a unique classical vacuum. This result is used to prove that in the absence of a superpotential the classical moduli space is the algebraic variety described by the set of all holomorphic gauge-invariant polynomials. When a superpotential is present, we show that the classical moduli space is a variety defined by imposing additional relations on the holomorphic polynomials. Many of these points are already contained in the existing literature. The main contribution of the present work is that we give a careful and self-contained treatment of limit points and singularities. copyright 1996 The American Physical Society
Lee, Hyun Min
2018-03-01
We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.
Holledge gauge failure testing using concurrent information processing algorithm
International Nuclear Information System (INIS)
Weeks, G.E.; Daniel, W.E.; Edwards, R.E.; Jannarone, R.J.; Joshi, S.N.; Palakodety, S.S.; Qian, D.
1996-01-01
For several decades, computerized information processing systems and human information processing models have developed with a good deal of mutual influence. Any comprehensive psychology text in this decade uses terms that originated in the computer industry, such as ''cache'' and ''memory'', to describe human information processing. Likewise, many engineers today are using ''artificial intelligence''and ''artificial neural network'' computing tools that originated as models of human thought to solve industrial problems. This paper concerns a recently developed human information processing model, called ''concurrent information processing'' (CIP), and a related set of computing tools for solving industrial problems. The problem of focus is adaptive gauge monitoring; the application is pneumatic pressure repeaters (Holledge gauges) used to measure liquid level and density in the Defense Waste Processing Facility and the Integrated DWPF Melter System
Residual gauge invariance of Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Ryang, S.; Saito, T.; Shigemoto, K.
1984-01-01
The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)
Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.
2016-12-22
The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.
So, How Much of the Earth's Surface Is Covered by Rain Gauges?
Kidd, Chris; Becker, Andreas; Huffman, George J.; Muller, Catherine L.; Joe, Paul; Jackson, Gail; Kirschbaum, Dalia
2017-01-01
The measurement of global precipitation, both rainfall and snowfall, is critical to a wide range of users and applications. Rain gauges are indispensable in the measurement of precipitation, remaining the de facto standard for precipitation information across Earths surface for hydrometeorological purposes. However, their distribution across the globe is limited: over land their distribution and density is variable, while over oceans very few gauges exist and where measurements are made, they may not adequately reflect the rainfall amounts of the broader area. Critically, the number of gauges available, or appropriate for a particular study, varies greatly across the Earth owing to temporal sampling resolutions, periods of operation, data latency, and data access. Numbers of gauges range from a few thousand available in nearreal time to about 100,000 for all official gauges, and to possibly hundreds of thousands if all possible gauges are included. Gauges routinely used in the generation of global precipitation products cover an equivalent area of between about 250 and 3,000 m2. For comparison, the center circle of a soccer pitch or tennis court is about 260 m2. Although each gauge should represent more than just the gauge orifice, autocorrelation distances of precipitation vary greatly with regime and the integration period. Assuming each Global Precipitation Climatology Centre (GPCC)available gauge is independent and represents a surrounding area of 5-km radius, this represents only about 1 of Earths surface. The situation is further confounded for snowfall, which has a greater measurement uncertainty.
Physics from multidimensional gauge theories
International Nuclear Information System (INIS)
Forgacs, P.; Lust, D.; Zoupanos, G.
1986-01-01
The authors motivate high dimensional theories by recalling the original Kaluza-Klein proposal. They review the dimensional reduction of symmetric gauge theories and they present the results of the attempts to obtain realistic description of elementary particles interactions starting from symmetric gauge theories in high dimensions
Krishnan, Chethan; Raju, Avinash
2017-08-01
We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
Kechris, Alexander S
2004-01-01
This volume provides a self-contained introduction to some topics in orbit equivalence theory, a branch of ergodic theory. The first two chapters focus on hyperfiniteness and amenability. Included here are proofs of Dye's theorem that probability measure-preserving, ergodic actions of the integers are orbit equivalent and of the theorem of Connes-Feldman-Weiss identifying amenability and hyperfiniteness for non-singular equivalence relations. The presentation here is often influenced by descriptive set theory, and Borel and generic analogs of various results are discussed. The final chapter is a detailed account of Gaboriau's recent results on the theory of costs for equivalence relations and groups and its applications to proving rigidity theorems for actions of free groups.
Gauge and supergauge field theories
International Nuclear Information System (INIS)
Slavnov, A.
1977-01-01
The most actual problems concerning gauge fields are reviwed. Theoretical investigations conducted since as early as 1954 are enclosed. Present status of gauge theories is summarized, including intermediate vector mesons, heavy leptons, weak interactions of hadrons, V-A structure, universal interaction, infrared divergences in perturbation theory, particle-like solutions in gauge theories, spontaneous symmetry breaking. Special emphasis is placed on strong interactions, or more precisely, on the alleged unobservability of ''color'' objects (quark confinement). Problems dealing with the supersymmetric theories invariant under gauge transformations and spontaneous breaking of supersymmetry are also discussed. Gauge theories are concluded to provide self-consistent apparatus for weak and electromagnetic interactions. As to strong interactions such models are still to be discovered
Gauge field improvement, form-scalar duality and conformal invariance
Deser, Stanley
1994-01-01
The problem of maintaining scale and conformal invariance in Maxwell and general N-form gauge theories away from their critical dimension d=2(N+1) is analyzed.We first exhibit the underlying group-theoretical clash between locality,gauge,Lorentz and conformal invariance require- ments. "Improved" traceless stress tensors are then constructed;each violates one of the above criteria.However,when d=N+2,there is a duality equivalence between N-form models and massless scalars.Here we show that conformal invariance is not lost,by constructing a quasilocal gauge invariant improved stress tensor.The correlators of the scalar theory are then reproduced including the latter's trace anomaly.
46 CFR 154.1370 - Pressure gauge and vacuum gauge marking.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Pressure gauge and vacuum gauge marking. 154.1370... Equipment Instrumentation § 154.1370 Pressure gauge and vacuum gauge marking. Each pressure gauge and vacuum gauge under § 154.1335(a) must be marked with the maximum and minimum pressures that are specified on...
Directory of Open Access Journals (Sweden)
Nikos Irges
2017-11-01
Full Text Available We perform an old school, one-loop renormalization of the Abelian–Higgs model in the Unitary and Rξ gauges, focused on the scalar potential and the gauge boson mass. Our goal is to demonstrate in this simple context the validity of the Unitary gauge at the quantum level, which could open the way for an until now (mostly avoided framework for loop computations. We indeed find that the Unitary gauge is consistent and equivalent to the Rξ gauge at the level of β-functions. Then we compare the renormalized, finite, one-loop Higgs potential in the two gauges and we again find equivalence. This equivalence needs not only a complete cancellation of the gauge fixing parameter ξ from the Rξ gauge potential but also requires its ξ-independent part to be equal to the Unitary gauge result. We follow the quantum behavior of the system by plotting Renormalization Group trajectories and Lines of Constant Physics, with the former the well known curves and with the latter, determined by the finite parts of the counter-terms, particularly well suited for a comparison with non-perturbative studies.
What's wrong with anomalous chiral gauge theory?
International Nuclear Information System (INIS)
Kieu, T.D.
1994-05-01
It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs
Artificial Consciousness or Artificial Intelligence
Spanache Florin
2017-01-01
Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...
Defect melting as an SO(3) lattice gauge theory
International Nuclear Information System (INIS)
Kleinert, H.
1982-01-01
We show that defect melting is closely related to SO(3) lattice gauge theory. The phase transition of this system corresponds to a Lindemann melting parameter L approx. equal to 50 γ where γ approx. equal to 2 is a parameter characterizing the unharmonic content in the elastic forces. This in rough agreement with experiment. The equivalence may help in visualizing the crucial role of defects in quark confinement. (orig.)
Chiral rings and phases of supersymmetric gauge theories
International Nuclear Information System (INIS)
Cachazo, Freddy; Witten, Edward; Seiberg, Nathan
2003-01-01
We solve for the expectation values of chiral operators in supersymmetric U(N) gauge theories with matter in the adjoint, fundamental and anti-fundamental representations. A simple geometric picture emerges involving a description by a meromorphic one-form on a Riemann surface. The equations of motion are equivalent to a condition on the integrality of periods of this form. The solution indicates that all semiclassical phases with the same number of U(1) factors are continuously connected. (author)
Gauge and non-gauge curvature tensor copies
International Nuclear Information System (INIS)
Srivastava, P.P.
1982-10-01
A procedure for constructing curvature tensor copies is discussed using the anholonomic geometrical framework. The corresponding geometries are compared and the notion of gauge copy is elucidated. An explicit calculation is also made. (author)
Energy Technology Data Exchange (ETDEWEB)
Bharucha, Aoife [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Technische Univ. Muenchen, Garching (Germany). Physik-Dept. T31; Goudelis, Andreas [Savoie Univ., CNRS, Annecy-le-Vieux (France). LAPTh; McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-10-15
The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space statisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
Gauge theories in particle physics
International Nuclear Information System (INIS)
Taylor, J.
1993-01-01
Forces and the background theory, special relativity, space-time and quantum theory are first reviewed and linked in particles physics (relativity plus quantum theory); spin in quantum mechanics is then detailed and electromagnetism is explained with the view of the generalization of the gauge aspect of electromagnetism; gauge fields interacting with leptons and quarks, short-range forces from gauge theories, the high-energy limit, strong interactions, electric and magnetic properties of matter, vacuum polarization and asymptotic freedom, confinement, are also discussed. 29 figs
BRST gauge fixing and regularization
International Nuclear Information System (INIS)
Damgaard, P.H.; Jonghe, F. de; Sollacher, R.
1995-05-01
In the presence of consistent regulators, the standard procedure of BRST gauge fixing (or moving from one gauge to another) can require non-trivial modifications. These modifications occur at the quantum level, and gauges exist which are only well-defined when quantum mechanical modifications are correctly taken into account. We illustrate how this phenomenon manifests itself in the solvable case of two-dimensional bosonization in the path-integral formalism. As a by-product, we show how to derive smooth bosonization in Batalin-Vilkovisky Lagrangian BRST quantization. (orig.)
Uniqueness of the gauge invariant action for cosmological perturbations
Energy Technology Data Exchange (ETDEWEB)
Prokopec, Tomislav; Weenink, Jan, E-mail: t.prokopec@uu.nl, E-mail: j.g.weenink@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, 3585 CE Utrecht (Netherlands)
2012-12-01
In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cubic action for one choice of gauge invariant variables is unique in the following sense: the action for any other, non-linearly related variable can be brought to the same bulk action, plus additional boundary terms. These boundary terms correspond to the choice of hypersurface and generate extra, disconnected contributions to the bispectrum. We also discuss uniqueness of the action with respect to conformal frames. When expressed in terms of the gauge invariant curvature perturbation on uniform field hypersurfaces the action for cosmological perturbations has a unique form, independent of the original Einstein or Jordan frame. Crucial is that the gauge invariant comoving curvature perturbation is frame independent, which makes it extremely helpful in showing the quantum equivalence of the two frames, and therefore in calculating quantum effects in nonminimally coupled theories such as Higgs inflation.
Non(anti)commutative gauge theories in harmonic superspace
International Nuclear Information System (INIS)
Quevedo Z., L.E.
2006-01-01
In this work we study the properties of non-singlet Q-deformed N=2 supersymmetric gauge theories, from a field-theoretical point of view. Starting from the supersymmetry breaking pattern induced by a general deformation matrix, we embark on the construction of the non-singlet deformed gauge transformation laws for all vector multiplet fields and their corresponding minimal Seiberg-Witten map. Several deformes super-Yang-Mills actions in components corresponding to different choices of the non-singlet deformation tensor are built. For a particular decomposition ansats of such tensor, we obtain exact actions describing the bosonic sector of the deformed N=(1,0) and the full action for enhances N=(1,1/2) residual supersymmetry. A tuned supersymmetry breaking of this enhanced action down to the N=(1,0) case is found by weakly restoring some discarded degrees of freedom of the deformation. Finally we find the associated residual supersymmetry transformations for the cases studied. The first part of this work, gives an overview of noncommutativity in quantum field theory and of harmonic superspace as needed to define noncommutative generalizations of extended gauge field theories. A study of general properties of non(anti)commutative structures in N=2 euclidean superspace and the (super)symmetry breaking pattern induced by Q-deformations follows. in addition, singlet-deformed super-Yang-Mills is given as an example. The second part deals with non-singlet Q-deformations of gauge theories. We introduce a decomposition ansatz for the deformation matrix, allowing an exact study of the deformed gauge transformations, and develop a general algorithm to solve the harmonic equations associated to this decomposition. A close expression for the gauge transformations of component fields is derived, along with the corresponding minimal Seiberg-Witten map to an equivalent commutative gauge theory. Finally we build deformed super-Yang-Mills actions and their corresponding
Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method
Directory of Open Access Journals (Sweden)
Takeshi Sato
2018-03-01
Full Text Available We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS method [Phys. Rev. A, 74, 043420 (2006], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs in the velocity gauge using gauge-transformed time-dependent, not fixed, orbitals that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows us to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g., a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, which is relevant, e.g., in simulating high-harmonic generation.
National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...
Technical data on nucleonic gauges
International Nuclear Information System (INIS)
2005-07-01
This nucleonic gauge manual and directory provides a reference database of nucleonic control systems available to potential users in the fields of exploration, exploitation and processing of natural resources and in the manufacturing industries. It starts with background information an the general principals of nucleonic gauges, followed by portable nuclear analysis systems (PNAS), computer tomography, cost-benefit on NCS (Nucleonic Control Systems) applications and trends and transfer of NCS technology. It continues with radiation protection and safety, discusses nucleonic gauges with low radioactivity sources and ends with typical models of nucleonic gauges. The basic principles of the most popular techniques are reviewed and reference data links to suppliers are provided. Information sheets on many typical commercial devices are also included. It will help end-users to select the most suitable alternative to solve a particular problem or to measure a certain parameter in a specific process
A Propellant Mass Gauge Project
National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Liquid-Oxygen Mass Gauge, (LMG) for In-Space cryogenic storage capable of continuous monitoring of...
Spectroscopy of family gauge bosons
Directory of Open Access Journals (Sweden)
Yoshio Koide
2014-09-01
Full Text Available Spectroscopy of family gauge bosons is investigated based on a U(3 family gauge boson model proposed by Sumino. In his model, the family gauge bosons are in mass eigenstates in a diagonal basis of the charged lepton mass matrix. Therefore, the family numbers are defined by (e1,e2,e3=(e,μ,τ, while the assignment for quark sector are free. For possible family-number assignments (q1,q2,q3, under a constraint from K0–K¯0 mixing, we investigate possibilities of new physics, e.g. production of the lightest family gauge boson at the LHC, μ−N→e−N, rare K and B decays, and so on.
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
Radiative processes in gauge theories
International Nuclear Information System (INIS)
Berends, F.A.; Kleiss, R.; Danckaert, D.; Causmaecker, P. De; Gastmans, R.; Troost, W.; Tai Tsun Wu
1982-01-01
It is shown how the introduction of explicit polarization vectors of the radiated gauge particles leads to great simplifications in the calculation of bremsstrahlung processes at high energies. (author)
Gauge theories in particle physics
International Nuclear Information System (INIS)
Aitchison, I.J.R.; Hey, A.J.G.
1982-01-01
The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)
How Many Equivalent Resistances?
Indian Academy of Sciences (India)
It is straightforward to construct the set of equiv- alent resistance for circuits constructed from a bunch of four or five equal resistors. But as the bunch size increases it becomes difficult to find the order of the set of equivalent resistances. Even the computer programs runs out of mem- ory. Here we present an analytical result ...
How Many Equivalent Resistances?
Indian Academy of Sciences (India)
http://www.prenhall.com/boylestad/. [3]. Antoni Amengual, The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel, American Journal of Physics, Vol.68, No.2, pp.175–179, 2000. DOI: http://dx.doi.org/. 10.1119/1.19396. [4]. Neil J A Sloane (Ed.), The On-Line Encyclopedia ...
International Nuclear Information System (INIS)
Orlowski, S.; Schaller, K.H.
1990-01-01
The report reviews, for the Member States of the European Community, possible situations in which an equivalence concept for radioactive waste may be used, analyses the various factors involved, and suggests guidelines for the implementation of such a concept. Only safety and technical aspects are covered. Other aspects such as commercial ones are excluded. Situations where the need for an equivalence concept has been identified are processes where impurities are added as a consequence of the treatment and conditioning process, the substitution of wastes from similar waste streams due to the treatment process, and exchange of waste belonging to different waste categories. The analysis of factors involved and possible ways for equivalence evaluation, taking into account in particular the chemical, physical and radiological characteristics of the waste package, and the potential risks of the waste form, shows that no simple all-encompassing equivalence formula may be derived. Consequently, a step-by-step approach is suggested, which avoids complex evaluations in the case of simple exchanges
International Nuclear Information System (INIS)
Unnikrishnan, C.S.
1994-01-01
Principle of equivalence was the fundamental guiding principle in the formulation of the general theory of relativity. What are its key elements? What are the empirical observations which establish it? What is its relevance to some new experiments? These questions are discussed in this article. (author). 11 refs., 5 figs
van der Wijk, V.; Bai, Shaoping; Ceccarelli, Marco
2015-01-01
In this paper it is shown how a general 2-DoF dyad can be designed mass equivalent to a general (1-DoF) link element. This is useful in the synthesis of balanced mechanisms, for instance to increase or reduce the number of DoFs of a balanced mechanism maintaining its balance. Also it can be used as
Correspondences. Equivalence relations
International Nuclear Information System (INIS)
Bouligand, G.M.
1978-03-01
We comment on sections paragraph 3 'Correspondences' and paragraph 6 'Equivalence Relations' in chapter II of 'Elements de mathematique' by N. Bourbaki in order to simplify their comprehension. Paragraph 3 exposes the ideas of a graph, correspondence and map or of function, and their composition laws. We draw attention to the following points: 1) Adopting the convention of writting from left to right, the composition law for two correspondences (A,F,B), (U,G,V) of graphs F, G is written in full generality (A,F,B)o(U,G,V) = (A,FoG,V). It is not therefore assumed that the co-domain B of the first correspondence is identical to the domain U of the second (EII.13 D.7), (1970). 2) The axiom of choice consists of creating the Hilbert terms from the only relations admitting a graph. 3) The statement of the existence theorem of a function h such that f = goh, where f and g are two given maps having the same domain (of definition), is completed if h is more precisely an injection. Paragraph 6 considers the generalisation of equality: First, by 'the equivalence relation associated with a map f of a set E identical to (x is a member of the set E and y is a member of the set E and x:f = y:f). Consequently, every relation R(x,y) which is equivalent to this is an equivalence relation in E (symmetrical, transitive, reflexive); then R admits a graph included in E x E, etc. Secondly, by means of the Hilbert term of a relation R submitted to the equivalence. In this last case, if R(x,y) is separately collectivizing in x and y, theta(x) is not the class of objects equivalent to x for R (EII.47.9), (1970). The interest of bringing together these two subjects, apart from this logical order, resides also in the fact that the theorem mentioned in 3) can be expressed by means of the equivalence relations associated with the functions f and g. The solutions of the examples proposed reveal their simplicity [fr
Optical Rain Gauge Instrument Handbook
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-04-01
To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).
International Nuclear Information System (INIS)
Leite Lopes, J.
1998-04-01
In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author)
Conformal Field Theories on K3 and Three-Dimensional Gauge Theories
Mayr, Peter
2000-01-01
According to a recent conjecture, the moduli space of the heterotic conformal field theory on a $G\\subset$ ADE singularity of an ALE space is equivalent to the moduli space of a pure $\\cx N=4$ supersymmetric three-dimensional gauge theory with gauge group G. We establish this relation using geometric engineering of heterotic strings and generalize it to theories with non-trivial matter content.
The metric-affine gravitational theory as the gauge theory of the affine group
International Nuclear Information System (INIS)
Lord, E.A.
1978-01-01
The metric-affine gravitational theory is shown to be the gauge theory of the affine group, or equivalently, the gauge theory of the group GL(4,R) of tetrad deformations in a space-time with a locally Minkowskian metric. The identities of the metric-affine theory, and the relationship between them and those of general relativity and Sciama-Kibble theory, are derived. (Auth.)
Ennals, J R
1987-01-01
Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Gauge siphon. 230.43 Section 230.43 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent...
49 CFR 229.107 - Pressure gauge.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Pressure gauge. 229.107 Section 229.107....107 Pressure gauge. (a) Each steam generator shall have an illuminated steam gauge that correctly indicates the pressure. The steam pressure gauge shall be graduated to not less than one and one-half times...
Current algebra for chiral gauge theories
Energy Technology Data Exchange (ETDEWEB)
Manias, M.V.; von Reichenbach, M.C.; Schaposnik, F.A.; Trobo, M.
1987-07-01
Chiral gauge theories are studied with a special emphasis on the treatment of gauge degrees of freedom so as to obtain a gauge-invariant effective action from which current commutators can be evaluated. It is explicitly shown in a simple example that these commutators are those to be expected in a gauge-invariant theory.
Nonequilibrium formulation of abelian gauge theories
Energy Technology Data Exchange (ETDEWEB)
Zoeller, Thorsten
2013-09-01
This work is about a formulation of abelian gauge theories out-of-equilibrium. In contrast to thermal equilibrium, systems out-of-equilibrium are not constant in time, and the interesting questions in such systems refer to time evolution problems. After a short introduction to quantum electrodynamics (QED), the two-particle irreducible (2PI) effective action is introduced as an essential technique for the study of quantum field theories out-of-equilibrium. The equations of motion (EOMs) for the propagators of the theory are then derived from it. It follows a discussion of the physical degrees of freedom (DOFs) of the theory, in particular with respect to the photons, since in covariant formulations of gauge theories unphysical DOFs are necessarily contained. After that the EOMs for the photon propagator are examined more closely. It turns out that they are structurally complicated, and a reformulation of the equations is presented which for the untruncated theory leads to an essential structural simplification of the EOMs. After providing the initial conditions which are necessary in order to solve the EOMs, the free photon EOMs are solved with the help of the reformulated equations. It turns out that the solutions diverge in time, i.e. they are secular. This is a manifestation of the fact that gauge theories contain unphysical DOFs. It is reasoned that these secularities exist only in the free case and are therefore ''artificial''. It is however emphasized that they may not be a problem in principle, but certainly are in practice, in particular for the numerical solution of the EOMs. Further, the origin of the secularities, for which there exists an illustrative explanation, is discussed in more detail. Another characteristic feature of 2PI formulations of gauge theories is the fact that quantities calculated from approximations of the 2PI effective action, which are gauge invariant in the exact theory as well as in an approximated theory at
International Nuclear Information System (INIS)
Neves, A.G.M.
1988-01-01
The renormalization transformation e sup(-S 1) sup((B)) const. ζ e sup(-S o (A) - V(A)) δ (B-C sub(1) A) δ sub(Ax) (A)DA for the U(1) lattice gauge theory, where S sub(o) (A) is the gaussian fixed point of the transformation, V(A) is a gauge invariant perturbation, C sub(1) is the averaging operator and δ sub(Ax) (A) fixes the local axial gauge is studied via an equivalent renormalization transformation on the 2-forms F = dA. The transformation is linearized in the neighborhood of the fixed point and then diagonalized. (author)
National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...
Rosati, Fiora; Roelfes, Gerard
Artificial metalloenzymes have emerged as a promising approach to merge the attractive properties of homogeneous catalysis and biocatalysis. The activity and selectivity, including enantioselectivity, of natural metalloenzymes are due to the second coordination sphere interactions provided by the
DEFF Research Database (Denmark)
Raben, Anne Birgitte; Richelsen, Bjørn
2012-01-01
Artificial sweeteners can be a helpful tool to reduce energy intake and body weight and thereby risk for diabetes and cardiovascular diseases (CVD). Considering the prevailing diabesity (obesity and diabetes) epidemic, this can, therefore, be an important alternative to natural, calorie......-containing sweeteners. The purpose of this review is to summarize the current evidence on the effect of artificial sweeteners on body weight, appetite, and risk markers for diabetes and CVD in humans....
Gravitino production during preheating and the equivalence theorem
Maroto, A L
2001-01-01
We review our results on the calculation of helicity 1/2 gravitino production during preheating. The method we present is based on the equivalence between goldstinos and longitudinal gravitinos at high energies. The problem is thus reduced to the standard (Majorana) fermion production after inflation. Comparison between helicity 3/2 and 1/2 production and with the results obtained in the unitary gauge is also presented.
Equivalent equations of motion for gravity and entropy
International Nuclear Information System (INIS)
Czech, Bartłomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin; Sully, James
2017-01-01
We demonstrate an equivalence between the wave equation obeyed by the entanglement entropy of CFT subregions and the linearized bulk Einstein equation in Anti-de Sitter space. In doing so, we make use of the formalism of kinematic space https://www.doi.org/10.1007/JHEP10(2015)175 and fields on this space, introduced in https://www.doi.org/10.1007/JHEP07(2016)129. We show that the gravitational dynamics are equivalent to a gauge invariant wave-equation on kinematic space and that this equation arises in natural correspondence to the conformal Casimir equation in the CFT.
From equivalence to adaptation
Directory of Open Access Journals (Sweden)
Paulina Borowczyk
2009-01-01
Full Text Available The aim of this paper is to illustrate in which cases the translators use the adaptation when they are confronted with a term related to sociocultural aspects. We will discuss the notions of equivalence and adaptation and their limits in the translation. Some samples from Arte TV news and from the American film Shrek translated into Polish, German and French will be provided as a support for this article.
Czech Academy of Sciences Publication Activity Database
Zapletal, Jindřich
2011-01-01
Roč. 18, č. 3 (2011), s. 559-564 ISSN 1073-2780 R&D Projects: GA AV ČR IAA100190902; GA MŠk MEB060909; GA MŠk MEB051006 Institutional research plan: CEZ:AV0Z10190503 Keywords : equivalence relations Subject RIV: BA - General Mathematics Impact factor: 0.743, year: 2011 http://intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0018/0003/a015/index.html
Correction of Gauge Factor for Strain Gauges Used in Polymer Composite Testing
DEFF Research Database (Denmark)
Zike, Sanita; Mikkelsen, Lars Pilgaard
2014-01-01
Strain gauges are used together with the corresponding gauge factor to relate the relative electrical resistance change of the strain gauge with the strain of the underlying material. The gauge factor is found from a calibration on a stiff material - steel. Nevertheless, the gauge factor depends ...... ranging from 1 GPa to 200 GPa....
The photon propagator in the Poincare gauge
Energy Technology Data Exchange (ETDEWEB)
Barcelos-Neto, J. (Univ. Federal do Rio de Janeiro, Inst. de Fisica (Brazil)); Galvao, C.A.P.; Gaete, P. (Centro Brasileiro de Pesquisas Fisicas, CBPF/CNPq, Rio de Janeiro (Brazil))
1991-07-22
After a brief analysis of the covariant gauge condition known as the Fock-Schwinger gauge, we establish its corresponding non-covariant version which we call the Poincare gauge. Using the path integral formalism, within the Senjanovic framework, we calculate the photon propagator in this gauge. Some formal similarities between our results and the expressions for the photon propagator in the Coulomb gauge are pointed out. (orig.).
String field theory in the Siegel gauge
International Nuclear Information System (INIS)
Bochicchio, M.
1987-01-01
We specialize the gauge-fixing procedure for the Witten action of the open bosonic string, given in a preceding paper, choosing the Siegel gauge. We find that the BRST-invariant gauge-fixed action is the gauge invariant one with ghost number unrestricted plus a gauge-fixing term. The BRST invariance of the measure in the functional integral is briefly discussed. As a technical tool the Hodge dual of a string functional is defined. (orig.)
Invariance, symmetry and periodicity in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Jackiw, R
1980-02-01
The interplay between gauge transformations and coordinate transformations is discussed; the theory will aid in understanding the mixing of space-time and internal degrees of freedom. The subject is presented under the following headings: coordinate transformation laws for arbitrary fields, coordinate transformation laws for gauge fields, properties of symmetric gauge fields, construction of symmetric gauge fields, physical significance of gauge transformations, and magnetic monopole topology without Higgs fields. The paper ends with conclusions and suggestions for further research. (RWR)
Tracking frequency laser distance gauge
International Nuclear Information System (INIS)
Phillips, J.D.; Reasenberg, R.D.
2005-01-01
Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components
Small gauge vitrectomy: Recent update
Khanduja, Sumeet; Kakkar, Ashish; Majumdar, Saptrishi; Vohra, Rajpal; Garg, Satpal
2013-01-01
Small gauge vitrectomy, also known as minimally invasive vitreous surgery (MIVS), is a classic example of progress in biomedical engineering. Disparity in conjunctival and scleral wound location and reduction in wound diameter are its core principles. Fluidic changes include increased pressure head loss with consequent reduction in infusional flow rate and use of higher aspiration vacuum at the cutter port. Increase An increase in port open/port closed time maintains an adequate rate of vitreous removal. High Intensity Discharge (HID) lamps maintain adequate illumination in spite of a decrease in the number of fiberoptic fibers. The advantages of MIVS are, a shorter surgical time, minimal conjunctival damage, and early postoperative recovery. Most complications are centered on wound stability and risk of postoperative hypotony, endophthalmitis, and port site retinal break formation. MIVS is suited in most cases, however, it can cause dehiscence of recent cataract wounds. Retraction of the infusion cannula in the suprachoroidal space may occur in eyes with scleral thinning. As a lot has been published and discussed about sutureless vitrectomy a review of this subject is necessary. A PubMed search was performed in December 2011 with terms small gauge vitrectomy, 23-gauge vitrectomy, 25-gauge vitrectomy, and 27 gauge vitrectomy, which were revised in August 2012. There were no restrictions on the date of publication but it was restricted to articles in English or other languages, if there abstracts were available in English. PMID:23772118
Small gauge vitrectomy: Recent update
Directory of Open Access Journals (Sweden)
Sumeet Khanduja
2013-01-01
Full Text Available Small gauge vitrectomy, also known as minimally invasive vitreous surgery (MIVS, is a classic example of progress in biomedical engineering. Disparity in conjunctival and scleral wound location and reduction in wound diameter are its core principles. Fluidic changes include increased pressure head loss with consequent reduction in infusional flow rate and use of higher aspiration vacuum at the cutter port. Increase An increase in port open/port closed time maintains an adequate rate of vitreous removal. High Intensity Discharge (HID lamps maintain adequate illumination in spite of a decrease in the number of fiberoptic fibers. The advantages of MIVS are, a shorter surgical time, minimal conjunctival damage, and early postoperative recovery. Most complications are centered on wound stability and risk of postoperative hypotony, endophthalmitis, and port site retinal break formation. MIVS is suited in most cases, however, it can cause dehiscence of recent cataract wounds. Retraction of the infusion cannula in the suprachoroidal space may occur in eyes with scleral thinning. As a lot has been published and discussed about sutureless vitrectomy a review of this subject is necessary. A PubMed search was performed in December 2011 with terms small gauge vitrectomy, 23-gauge vitrectomy, 25-gauge vitrectomy, and 27 gauge vitrectomy, which were revised in August 2012. There were no restrictions on the date of publication but it was restricted to articles in English or other languages, if there abstracts were available in English.
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Introduzione alle teorie di gauge
Cabibbo, Nicola; Benhar, Omar
2016-01-01
"Introduzione alle Teorie di Gauge" completa la serie di tre volumi basati sulle lezioni dei corsi di Meccanica Quantistica Relativistica, Interazioni Elettrodeboli e Teorie di Gauge, impartite dagli autori agli studenti delle Lauree Magistrali in Fisica e Astronomia & Astrofisica dell'Universita "La Sapienza" di Roma, nell'arco di qualche decennio. L'obiettivo principale del volume è di introdurre i concetti di base della rinormalizzazione nella teoria quantistica dei campi e i fondamenti delle moderne teorie di Gauge. Anche se collegato ai volumi precedenti, il libro si presta ad una lettura indipendente, che presume solo conoscenze generali di relativita speciale, della seconda quantizzazione e della fenomenologia delle interazioni elettrodeboli. Lo strumento di base è l'integrale sui cammini di Feynman, introdotto nei capitoli iniziali e sistematicamente impiegato nel seguito. L'esposizione segue un percorso pedagogico, che parte dal caso semplice dell'ampiezza di transizione in meccanica quantistic...
Self-modulating pressure gauge
Edwards, D. Jr.; Lanni, C.P.
1979-08-07
An ion gauge is disclosed having a reduced x-ray limit and means for measuring that limit. The gauge comprises an ion gauge of the Bayard-Alpert type having a short collector and having means for varying the grid-collector voltage. The x-ray limit (i.e. the collector current resulting from x-rays striking the collector) may then be determined by the formula: I/sub x/ = ..cap alpha..I/sub l/ - I/sub h//..cap alpha.. - l where: I/sub x/ = x-ray limit, I/sub l/ and I/sub h/ = the collector current at the lower and higher grid voltage respectively; and, ..cap alpha.. = the ratio of the collector current due to positive ions at the higher voltage to that at the lower voltage.
Carbon nanotubes based vacuum gauge
Rudyk, N. N.; Il’in, O. I.; Il’ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.
2017-11-01
We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.
Energy Technology Data Exchange (ETDEWEB)
Cooper, P.W.
1994-07-01
The term ``TNT Equivalence`` is used throughout the explosives and related industries to compare the effects of the output of a given explosive to that of TNT. This is done for technical design reasons in scaling calculation such as for the prediction of blast waves, craters, and structural response, and is also used as a basis for government regulations controlling the shipping, handling and storage of explosive materials, as well as for the siting and design of explosive facilities. TNT equivalence is determined experimentally by several different types of tests, the most common of which include: plate dent, ballistic mortar, trauzl, sand crush, and air blast. All of these tests do not necessarily measure the same output property of the sample explosive. As examples of this, some tests depend simply upon the CJ pressure, some depend upon the PV work in the CJ zone and in the Taylor wave behind the CJ plane, some are functions of the total work which includes that from secondary combustion in the air mixing region of the fireball and are acutely effected by the shape of the pressure-time profile of the wave. Some of the tests incorporate systematic errors which are not readily apparent, and which have a profound effect upon skewing the resultant data. Further, some of the tests produce different TNT Equivalents for the same explosive which are a function of the conditions at which the test is run. This paper describes the various tests used, discusses the results of each test and makes detailed commentary on what the test is actually measuring, how the results may be interpreted, and if and how these results can be predicted by first principals based calculations. Extensive data bases are referred to throughout the paper and used in examples for each point in the commentaries.
Translational groups as generators of gauge transformations
International Nuclear Information System (INIS)
Scaria, Tomy
2003-01-01
We examine the gauge generating nature of the translational subgroup of Wigner's little group for the case of massless tensor gauge theories and show that the gauge transformations generated by the translational group are only a subset of the complete set of gauge transformations. We also show that, just as in the case of topologically massive gauge theories, translational groups act as generators of gauge transformations in gauge theories obtained by extending massive gauge noninvariant theories by a Stueckelberg mechanism. The representations of the translational groups that generate gauge transformations in such Stueckelberg extended theories can be obtained by the method of dimensional descent. We illustrate these results with the examples of Stueckelberg extended first class versions of Proca, Einstein-Pauli-Fierz, and massive Kalb-Ramond theories in 3+1 dimensions. A detailed analysis of the partial gauge generation in massive and massless second rank symmetric gauge theories is provided. The gauge transformations generated by the translational group in two-form gauge theories are shown to explicitly manifest the reducibility of gauge transformations in these theories
Witten, Edward
2008-01-01
I sketch what it is supposed to mean to quantize gauge theory, and how this can be made more concrete in perturbation theory and also by starting with a finite-dimensional lattice approximation. Based on real experiments and computer simulations, quantum gauge theory in four dimensions is believed to have a mass gap. This is one of the most fundamental facts that makes the Universe the way it is. This article is the written form of a lecture presented at the conference "Geometric Analysis: Past and Future" (Harvard University, August 27-September 1, 2008), in honor of the 60th birthday of S.-T. Yau.
Renormalization of gauge fields models
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1974-01-01
A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr
Dark coupling and gauge invariance
International Nuclear Information System (INIS)
Gavela, M.B.; Honorez, L. Lopez; Mena, O.; Rigolin, S.
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data
An introduction to gauge theories
Cabibbo, Nicola; Benhar, Omar
2017-01-01
Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.
Gauge theories, tessellations & Riemann surfaces
International Nuclear Information System (INIS)
He, Yang-Hui; Loon, Mark van
2014-01-01
We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.
Low Scale Flavor Gauge Symmetries
Grinstein, Benjamín; Villadoro, Giovanni
2010-01-01
We study the possibility of gauging the Standard Model flavor group. Anomaly cancellation leads to the addition of fermions whose mass is inversely proportional to the known fermion masses. In this case all flavor violating effects turn out to be controlled roughly by the Standard Model Yukawa, suppressing transitions for the light generations. Due to the inverted hierarchy the scale of new gauge flavor bosons could be as low as the electroweak scale without violating any existing bound but accessible at the Tevatron and the LHC. The mechanism of flavor protection potentially provides an alternative to Minimal Flavor Violation, with flavor violating effects suppressed by hierarchy of scales rather than couplings.
Gauged baryon and lepton numbers
International Nuclear Information System (INIS)
Foot, R.; Joshi, G.C.; Lew, H.
1989-01-01
A possible extension of the Standard Model can be defined by gauging the global baryon and lepton number U(1) symmetries. Gauging baryon and lepton numbers provide a natural framework for the see-saw mechanism in the lepton sector, and the Peccei-Quinn mechanism in the quark sector. Another consequence of this extension is that the usual three generations of fermions are not anomaly free. However the authors consider a wider framework involving the existence of generations with exotic SU(2) L tensor product U(1) Y quantum numbers. This allows them to derive a minimal spectrum of fermions which contain the known quarks and leptons. 12 refs
Stream Gauges and Satellite Measurements
Alsdorf, D. E.
2010-12-01
Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries
Machines for lattice gauge theory
International Nuclear Information System (INIS)
Mackenzie, P.B.
1989-05-01
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig
Gauge theory and variational principles
Bleecker, David
2005-01-01
This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas.Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
tion that are not normally taken into account in the BRST formalism that ignores the ε-term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable. Keywords. Non-covariant gauges; interpolating ...
International Nuclear Information System (INIS)
Perret-Galix, D.
1992-01-01
A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990
Warwick, Kevin
2011-01-01
if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory
Quantum gauge freedom in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal (India)
2017-02-15
We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.
False vacuum decay in gauge theory
Endo, Motoi; Moroi, Takeo; Nojiri, Mihoko M.; Shoji, Yutaro
2017-11-01
The decay rate of a false vacuum is studied in gauge theory, paying particular attention to its gauge invariance. Although the decay rate should not depend on the gauge parameter ξ according to the Nielsen identity, the gauge invariance of the result of a perturbative calculation has not been clearly shown. We give a prescription to perform a one-loop calculation of the decay rate, with which a manifestly gauge-invariant expression of the decay rate is obtained. We also discuss the renormalization necessary to make the result finite, and show that the decay rate is independent of the gauge parameter even after the renormalization.
Gauge unification of fundamental forces
International Nuclear Information System (INIS)
Salam, A.
1980-02-01
After having reviewed briefly the last twenty years' progress in the theory of unification, with the twin aspects of development of a gauge theory of basic interactions linked with internal symmetry and the spontaneous breaking of these symmetries, the Nobel prize winners have summarized the present situation and the immediate problems. At the end, an extrapolation of the future is also given
Supersymmetric gauge invariant interaction revisited
International Nuclear Information System (INIS)
Smith, A.W.; Pontificia Univ. Catolica do Rio de Janeiro; Barcelos Neto, J.
1983-01-01
A supersymmetric Lagrangian invariant under local U(1) gauge transformations is written in terms of a non-chiral superfield which substitute the usual vector supermultiplet together with chiral and anti-chiral superfields. The Euler equations allow us to obtain the off-shell version of the usual Lagrangian for supersymmetric quantum-electrodynamics (SQED). (Author) [pt
Singlets of fermionic gauge symmetries
Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.
1989-01-01
We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and Îº-symmetry and
Gauge symmetries, topology, and quantisation
International Nuclear Information System (INIS)
Balachandran, A.P.
1994-01-01
The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem
Antoniadis, Ignatios; Delgado, A; Quirós, Mariano
2006-01-01
We propose a class of models with gauge mediation of supersymmetry breaking, inspired by simple brane constructions, where R-symmetry is very weakly broken. The gauge sector has an extended N=2 supersymmetry and the two electroweak Higgses form an N=2 hypermultiplet, while quarks and leptons remain in N=1 chiral multiplets. Supersymmetry is broken via the D-term expectation value of a secluded U(1) and it is transmitted to the Standard Model via gauge interactions of messengers in N=2 hypermultiplets: gauginos thus receive Dirac masses. The model has several distinct experimental signatures with respect to ordinary models of gauge or gravity mediation realizations of the Minimal Supersymmetric Standard Model (MSSM). First, it predicts extra states as a third chargino that can be observed at collider experiments. Second, the absence of a D-flat direction in the Higgs sector implies a lightest Higgs behaving exactly as the Standard Model one and thus a reduction of the `little' fine-tuning in the low tan(beta) ...
Spacetime Metrics from Gauge Potentials
Directory of Open Access Journals (Sweden)
Ettore Minguzzi
2014-03-01
Full Text Available I present an approach to gravity in which the spacetime metric is constructed from a non-Abelian gauge potential with values in the Lie algebra of the group U(2 (or the Lie algebra of quaternions. If the curvature of this potential vanishes, the metric reduces to a canonical curved background form reminiscent of the Friedmann S3 cosmological metric.
Lattice gauge theory: Present status
International Nuclear Information System (INIS)
Creutz, M.
1993-09-01
Lattice gauge theory is our primary tool for the study of non- perturbative phenomena in hadronic physics. In addition to giving quantitative information on confinement, the approach is yielding first principles calculations of hadronic spectra and matrix elements. After years of confusion, there has been significant recent progress in understanding issues of chiral symmetry on the lattice
Wash, Darrel Patrick
1989-01-01
Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)
Measurement of gravity and gauge fields using quantum mechanical probes
International Nuclear Information System (INIS)
Anandan, J.
1986-01-01
The author considers the question of which quantities are observed when the gravitational and gauge fields are measured by a quantum mechanical probe. The motion of a quantum mechanical particle can be constructed, via Huyghens' principle, by the interference of secondary wavelets. Three types of interference phenomena are considered: interference of two coherent beams separated in space-time during part of their motion; interference of two coherent beams which are in the same region in spacetime but differ in energy or mass; and the Josphson effect and its generalization. The author shows how to determine the gravitational field by means of quantum interference. The corresponding problem for gauge fields is treated and a simple proof of the previously proved theorem for the reconstruction of the connection from the holonomy transformations is presented. A heuristic principle for the gravitational interaction of two quantum mechanical particles is formulated which implies the equivalence of inertial and active gravitational masses
Localizability and local gauge symmetry in quantum theory
International Nuclear Information System (INIS)
Leveille, J.P.
1976-01-01
An attempt is made to generalize a theorem of Jauch on the equivalence of local gauge symmetry and Galilean symmetry to relativistic theories. One first proves a converse to Jauch's theorem deriving the Galilei algebra from a locality postulate. When generalized to the relativistic case the locality postulate leads one to the relativistic dynamical group g 5 . A possible physical interpretation of g 5 as a relativistic dynamical group is given. An attempt to describe the dynamics solely in Minkowski space-time leads, in conjunction with the locality postulate, to a new relativistic dynamical algebra. We found that this new algebra is realized by field theoretical examples which exclude quantum electrodynamics, however, and other known gauge theories. This latter development forces one to seriously question the validity of the locality postulate. One concludes by proving a general theorem about the nonimplementability of local transformations by global operators independent of space-time in field theory
Teleparallel gravity and dimensional reductions of noncommutative gauge theory
Langmann, Edwin; Szabo, Richard J.
2001-11-01
We study dimensional reductions of noncommutative electrodynamics on flat space, which lead to gauge theories of gravitation. For a general class of such reductions, we show that the noncommutative gauge fields naturally yield a Weitzenböck geometry on spacetime and that the induced diffeomorphism invariant field theory can be made equivalent to a teleparallel formulation of gravity which macroscopically describes general relativity. The Planck length is determined in this setting by the Yang-Mills coupling constant and the noncommutativity scale. The effective field theory can also contain higher curvature and non-local terms which are characteristic of string theory. Some applications to D-brane dynamics and generalizations to include the coupling of ordinary Yang-Mills theory to gravity are also described.
Unidirectional zero reflection as gauged parity-time symmetry
Gear, James; Sun, Yong; Xiao, Shiyi; Zhang, Liwen; Fitzgerald, Richard; Rotter, Stefan; Chen, Hong; Li, Jensen
2017-12-01
We introduce here the concept of establishing parity-time (PT)-symmetry through a gauge transformation involving a shift of the mirror plane for the parity operation. The corresponding unitary transformation on the system’s constitutive matrix allows us to generate and explore a family of equivalent PT-symmetric systems. We further derive that unidirectional zero reflection for a reciprocal two-port system can always be associated with a passively gauged PT-symmetry. We demonstrate this experimentally using a microstrip transmission-line with magnetoelectric coupling. This study allows us to use bianisotropy as a practical route to realise and explore exceptional point behaviour of PT-symmetric or generally non-Hermitian systems.
Establishing Substantial Equivalence: Proteomics
Lovegrove, Alison; Salt, Louise; Shewry, Peter R.
Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.
Miwa, Takashi; Itoh, Rokuro; Kobayashi, Takaaki; Tanabe, Takashi; Shikuma, Junpei; Takahashi, Tomono; Odawara, Masato
2012-12-01
This study was designed to evaluate two pen needles (PNs) with the same diameter but different lengths (4 mm and 6 mm) and different needle tip shapes (straight and tapered) to compare their effects on glycemic control, perceived pain, safety, patients' ease of use and preferences, and visual impression. In this prospective, open-label, controlled crossover study, 41 insulin-treated patients with type 1 or type 2 diabetes were randomized into either Group 1 (the 32-gauge × 4-mm PN was used during Study Period 1, then the 32-gauge × 6-mm PN was used during Study Period 2) or Group 2 (the order for using the PNs was reversed). The 32-gauge × 4-mm PN provided an equivalent glycemic control in diabetes patients as the 32-gauge × 6-mm PN, with an equivalent occurrence rate of adverse events. The 32-gauge × 4-mm PN was perceived as significantly less painful and rated as significantly more favorable than the 32-gauge × 6-mm PN according to the survey results on patients' ease of use and preferences and on their visual impressions. The 32-gauge × 4-mm PN was not only as safe and efficacious as the 32-gauge × 6-mm PN, but also was perceived as less painful, easier to use, and more favorable to Japanese adult patients with diabetes.
On magnetohydrodynamic gauge field theory
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
Stuttering Equivalence for Parity Games
Cranen, Sjoerd; Keiren, Jeroen J. A.; Willemse, Tim A. C.
2011-01-01
We study the process theoretic notion of stuttering equivalence in the setting of parity games. We demonstrate that stuttering equivalent vertices have the same winner in the parity game. This means that solving a parity game can be accelerated by minimising the game graph with respect to stuttering equivalence. While, at the outset, it might not be clear that this strategy should pay off, our experiments using typical verification problems illustrate that stuttering equivalence speeds up sol...
Cellular gauge symmetry and the Li organization principle: General considerations.
Tozzi, Arturo; Peters, James F; Navarro, Jorge; Kun, Wu; Lin, Bi; Marijuán, Pedro C
2017-12-01
Based on novel topological considerations, we postulate a gauge symmetry for living cells and proceed to interpret it from a consistent Eastern perspective: the li organization principle. In our framework, the reference system is the living cell, equipped with general symmetries and energetic constraints standing for the intertwined biochemical, metabolic and signaling pathways that allow the global homeostasis of the system. Environmental stimuli stand for forces able to locally break the symmetry of metabolic/signaling pathways, while the species-specific DNA is the gauge field that restores the global homeostasis after external perturbations. We apply the Borsuk-Ulam Theorem (BUT) to operationalize a methodology in terms of topology/gauge fields and subsequently inquire about the evolution from inorganic to organic structures and to the prokaryotic and eukaryotic modes of organization. We converge on the strategic role that second messengers have played regarding the emergence of a unitary gauge field with profound evolutionary implications. A new avenue for a deeper investigation of biological complexity looms. Philosophically, we might be reminded of the duality between two essential concepts proposed by the great Chinese synthesizer Zhu Xi (in the XIII Century). On the one side the li organization principle, equivalent to the dynamic interplay between symmetry and information; and on the other side the qi principle, equivalent to the energy participating in the process-both always interlinked with each other. In contemporary terms, it would mean the required interconnection between information and energy, and the necessity to revise essential principles of information philosophy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Notes on gauge theory and gravitation
International Nuclear Information System (INIS)
Wallner, R.P.
1981-01-01
In order to investigate whether Einstein's general relativity theory (GRT) fits into the general scheme of a gauge theory, first the concept of a (classical) gauge theory is outlined in an introductionary spacetime approach. Having thus fixed the notation and the main properties of gauge fields, GRT is examined to find out what the gauge potentials and the corresponding gauge group might be. In this way the possibility of interpreting GRT as a gauge theory of the 4-dimensional translation group T(4) = (R 4 , +), and where the gauge potentials are incorporated in a T(4)-invariant way via orthonormal anholonomic basis 1-forms is considered. To include also the spin aspect a natural extension of GRT is given by gauging also the Lorentz group, whereby a Riemann-Cartan spacetime (U 4 -spacetime) comes into play. (Auth.)
NAMMA SENEGAL RAIN GAUGE NETWORK V1
National Aeronautics and Space Administration — The NAMMA Senegal Rain Gauge Network consisted of 40 rain gauge sites (AMMA 1-40) located in various places throughout Senegal, West Africa. These data files were...
Remarks on gauge variables and singular Lagrangians
International Nuclear Information System (INIS)
Chela-Flores, J.; Janica-de-la-Torre, R.; Kalnay, A.J.; Rodriguez-Gomez, J.; Rodriguez-Nunez, J.; Tascon, R.
1977-01-01
The relevance is discussed of gauge theory, based on a singular Lagrangian density, to the foundations of field theory. The idea that gauge transformations could change the physics of systems where the Lagrangian is singular is examined. (author)
Calibration of pressure gauge for Cherenkov detector
Saponjic, Nevena
2013-01-01
Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.
Artificial anisotropy and polarizing filters.
Flory, François; Escoubas, Ludovic; Lazaridès, Basile
2002-06-01
The calculated spectral transmittance of a multilayer laser mirror is used to determine the effective index of the single layer equivalent to the multilayer stack. We measure the artificial anisotropy of photoresist thin films whose structure is a one-dimensional, subwavelength grating obtained from interference fringes. The limitation of the theory of the first-order effective index homogenization is discussed. We designed normal-incidence, polarizing coating and a polarization rotator by embedding anisotropic films in simple multilayer structures.
Tunable gauge potential for spinless particles in driven lattices
Simonet, J.; Struck, J.; Weinberg, M.; Ölschläger, C.; Hauke, P.; Eckardt, A.; Lewenstein, M.; Sengstock, K.; Windpassinger, P.
2013-08-01
We present a universal method to create a tunable, artificial vector gauge potential for neutral particles trapped in an optical lattice. A suitable periodic shaking of the lattice allows to engineer a Peierls phase for the hopping parameters. This scheme thus allows one to address the atomic internal degrees of freedom independently. We experimentally demonstrate the realisation of such artificial potentials in a 1D lattice, which generate ground state superfluids at arbitrary non-zero quasimomentum [4]. This scheme offers fascinating possibilities to emulate synthetic magnetic fields in 2D lattices. In a triangular lattice, continuously tunable staggered fluxes are realised. Spontaneous symmetry breaking has recently been observed for a π-flux [23]. With the presented scheme, we are now able to study the influence of a small symmetry breaking perturbation.
Multi-step contrast sensitivity gauge
Quintana, Enrico C; Thompson, Kyle R; Moore, David G; Heister, Jack D; Poland, Richard W; Ellegood, John P; Hodges, George K; Prindville, James E
2014-10-14
An X-ray contrast sensitivity gauge is described herein. The contrast sensitivity gauge comprises a plurality of steps of varying thicknesses. Each step in the gauge includes a plurality of recesses of differing depths, wherein the depths are a function of the thickness of their respective step. An X-ray image of the gauge is analyzed to determine a contrast-to-noise ratio of a detector employed to generate the image.
Dimensional Reduction of Nonlinear Gauge Theories
Ikeda, Noriaki; Izawa, K.-I.
2004-09-01
We extend 2D nonlinear gauge theory from the Poisson sigma model based on Lie algebroid to a model with additional two-form gauge fields. Dimensional reduction of 3D nonlinear gauge theory yields an example of such a model, which provides a realization of Courant algebroid by 2D nonlinear gauge theory. We see that the reduction of the base structure generically results in a modification of the target (algebroid) structure.
Parameter space of general gauge mediation
International Nuclear Information System (INIS)
Rajaraman, Arvind; Shirman, Yuri; Smidt, Joseph; Yu, Felix
2009-01-01
We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.
Yang-Mills theories in axial and light-cone gauges, analytic regularization and Ward identities
International Nuclear Information System (INIS)
Lee, H.C.
1984-12-01
The application of the principles of generalization and analytic continuation to the regularization of divergent Feynman integrals is discussed. The technique, or analytic regularization, which is a generalization of dimensional regularization, is used to derive analytic representations for two classes of massless two-point integrals. The first class is based on the principal-value prescription and includes integrals encountered in quantum field theories in the ghost-free axial gauge (n.A=0), reducing in a special case to integrals in the light-cone gauge (n.A=0,n 2 =0). The second class is based on the Mandelstam prescription devised espcially for the light-cone gauge. For some light-cone gauge integrals the two representations are not equivalent. Both classes include as a subclass integrals in the Lorentz covariant 'zeta-gauges'. The representations are used to compute one-loop corrections to the self-energy and the three-vertex in Yang-Mills theories in the axial and light-cone gauges, showing that the two- and three-point Ward identities are satisfied; to illustrate that ultraviolet and infrared singularities, indistinguishable in dimensional regularization, can be separated analytically; and to show that certain tadpole integrals vanish because of an exact cancellation between ultraviolet and infrared singularities. In the axial gauge, the wavefunction and vertex renormalization constants, Z 3 and Z 1 , are identical, so that the β-function can be directly derived from Z 3 the result being the same as that computed in the covariant zeta-gauges. Preliminary results suggest that the light-cone gauge in the Mandelstam prescription, but not in the principal value prescription, has the same renormalization property of the axial gauge
Gaugings at angles from orientifold reductions
International Nuclear Information System (INIS)
Roest, Diederik
2009-01-01
We consider orientifold reductions to N= 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter vacua. We show how such gaugings at angles generically arise in orientifold reductions.
2010-04-01
... calendar or fiscal year; (b) Reason for making the gauge: (1) Production gauge and entry for deposit in the storage or processing account at the plant where produced; (2) Packaging of spirits or wine filled from a... gauge details, proof, and wine gallons; (2) Cooperage identification (“C” for charred, “REC” for...
27 CFR 19.483 - Recording gauge.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Recording gauge. 19.483... gauge. (a) When packages of spirits are received from customs custody in the storage account, the proprietor shall use the last official gauge to compute and record on the deposit records prescribed in § 19...
77 FR 31894 - Portable Gauge Licenses
2012-05-30
... COMMISSION Portable Gauge Licenses AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for... guidance for portable gauge licensees. The NRC is requesting public comment on NUREG-1556, Volume 1... Gauge Licenses.'' The document has been updated to include safety culture, security of radioactive...
The gauge technique in supersymmetric QED2
Roo, M. de; Steringa, J.J.
1988-01-01
We construct an extension of the gauge technique to two-dimensional supersymmetric gauge theories. This involves a derivation of the spectral representation of a scalar superpropagator in two dimensions. We apply the method to the massive supersymmetric Schwinger model. In the case that the gauge
Super p-Branes as Gauge Theories of Volume Preserving Diffeomorphisms
Bergshoeff, E.; Sezgin, E.; Tanii, Y.; Townsend, P.K.
1990-01-01
We obtain the light-cone gauge-fixed action for a super p-brane. For p = 2 it is known that the action is equivalent to that of a one-dimensional super-Yang-Mills theory of the (infinite dimensional) area preserving diffeomorphism group of the membrane. We show that for p > 2 the action is that of a
New recommendations for dose equivalent
International Nuclear Information System (INIS)
Bengtsson, G.
1985-01-01
In its report 39, the International Commission on Radiation Units and Measurements (ICRU), has defined four new quantities for the determination of dose equivalents from external sources: the ambient dose equivalent, the directional dose equivalent, the individual dose equivalent, penetrating and the individual dose equivalent, superficial. The rationale behind these concepts and their practical application are discussed. Reference is made to numerical values of these quantities which will be the subject of a coming publication from the International Commission on Radiological Protection, ICRP. (Author)
Lawrence, David R; Palacios-González, César; Harris, John
2016-04-01
It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.
Duda, Antonín
2009-01-01
Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.
Kirillov, A. A.; Savelova, E. P.
2012-01-01
It is shown that recently reported result by the OPERA Collaboration (arXive:1109.4897) of an early arrival time of muon neutrinos with respect to the speed of light in vacuum does not violate standard physical laws. We show that vacuum polarization effects in intensive external fields may form a wormhole-like object. The simplest theory of such an effect is presented and basic principles of formation of an artificial wormhole are also considered.
Zarbin, M; Montemagno, C; Leary, J; Ritch, R
2011-09-01
A number treatment options are emerging for patients with retinal degenerative disease, including gene therapy, trophic factor therapy, visual cycle inhibitors (e.g., for patients with Stargardt disease and allied conditions), and cell transplantation. A radically different approach, which will augment but not replace these options, is termed neural prosthetics ("artificial vision"). Although rewiring of inner retinal circuits and inner retinal neuronal degeneration occur in association with photoreceptor degeneration in retinitis pigmentosa (RP), it is possible to create visually useful percepts by stimulating retinal ganglion cells electrically. This fact has lead to the development of techniques to induce photosensitivity in cells that are not light sensitive normally as well as to the development of the bionic retina. Advances in artificial vision continue at a robust pace. These advances are based on the use of molecular engineering and nanotechnology to render cells light-sensitive, to target ion channels to the appropriate cell type (e.g., bipolar cell) and/or cell region (e.g., dendritic tree vs. soma), and on sophisticated image processing algorithms that take advantage of our knowledge of signal processing in the retina. Combined with advances in gene therapy, pathway-based therapy, and cell-based therapy, "artificial vision" technologies create a powerful armamentarium with which ophthalmologists will be able to treat blindness in patients who have a variety of degenerative retinal diseases.
Perturbative calculations with the first order form of gauge theories
Brandt, F. T.; McKeon, D. G. C.
2015-05-01
The first- and second-order forms of gauge theories are classically equivalent; we consider the consequence of quantizing the first-order form using the Faddeev-Popov approach. Both the Yang-Mills and the Einstein-Hilbert actions are considered. An advantage of this approach is that the interaction vertices are quite simple, being independent of momenta. However, it is necessary to consider the propagator for two fields (including a mixed propagator). We derive the Feynman rules for both models and consider the one-loop correction for the thermal energy momentum tensor.
Gauge theory of glass transition
International Nuclear Information System (INIS)
Vasin, Mikhail
2011-01-01
A new analytical approach for the description of the glass transition in a frustrated system is suggested. The theory is based on the non-equilibrium dynamics technique, and takes into account the interaction of the local order field with the massive gauge field, which describes frustration-induced plastic deformation. The glass transition is regarded as a phase transition interrupted because of the premature critical slowing-down of one of the degrees of freedom caused by the frustrations. It is shown that freezing of the system appears when the correlation length and relaxation time of the gauge field diverge. The Vogel–Fulcher–Tammann relation for the transition kinetics and the critical exponent for the nonlinear susceptibility, 2.5∼ t correlation function dependence on time, and explains the boson peak appearance on this curve. In addition, the function of the glass transition temperature value with cooling rate is derived; this dependence fully conforms with known experimental data
Towards a Neuronal Gauge Theory
Sengupta, Biswa; Tozzi, Arturo; Cooray, Gerald K.; Douglas, Pamela K.; Friston, Karl J.
2016-01-01
Given the amount of knowledge and data accruing in the neurosciences, is it time to formulate a general principle for neuronal dynamics that holds at evolutionary, developmental, and perceptual timescales? In this paper, we propose that the brain (and other self-organised biological systems) can be characterised via the mathematical apparatus of a gauge theory. The picture that emerges from this approach suggests that any biological system (from a neuron to an organism) can be cast as resolving uncertainty about its external milieu, either by changing its internal states or its relationship to the environment. Using formal arguments, we show that a gauge theory for neuronal dynamics—based on approximate Bayesian inference—has the potential to shed new light on phenomena that have thus far eluded a formal description, such as attention and the link between action and perception. PMID:26953636
Weak interactions and gauge theories
International Nuclear Information System (INIS)
Gaillard, M.K.
1979-12-01
The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and √(5/3)g' of SU(3)/sub c/ x SU(2) 2 x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and it takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures
Gauge invariant fractional electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)
2011-09-26
Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.
Cohen, Timothy; Craig, Nathaniel; Knapen, Simon
2016-03-01
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Energy Technology Data Exchange (ETDEWEB)
Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-03-15
We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.
Gauge invariance and Nielsen identities
International Nuclear Information System (INIS)
Lima, A.F. de; Bazaia, D.
1989-01-01
The one-loop contribution to the effective potential and mass are computed within the context of scalar electrodynamics for the class of general R gauges in the MS scheme. These calculations are performed in order to construct a non-trivial verification of the corresponding Nielsen identities within the context of the Higgs model. Some brief comments on the Coleman-Weinberg model are also included. (author) [pt
Stochastic quantization and gauge invariance
International Nuclear Information System (INIS)
Viana, R.L.
1987-01-01
A survey of the fundamental ideas about Parisi-Wu's Stochastic Quantization Method, with applications to Scalar, Gauge and Fermionic theories, is done. In particular, the Analytic Stochastic Regularization Scheme is used to calculate the polarization tensor for Quantum Electrodynamics with Dirac bosons or Fermions. The regularization influence is studied for both theories and an extension of this method for some supersymmetrical models is suggested. (author)
Differential renormalization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)
1998-10-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
Hotplate precipitation gauge calibrations and field measurements
Zelasko, Nicholas; Wettlaufer, Adam; Borkhuu, Bujidmaa; Burkhart, Matthew; Campbell, Leah S.; Steenburgh, W. James; Snider, Jefferson R.
2018-01-01
First introduced in 2003, approximately 70 Yankee Environmental Systems (YES) hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11). Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance) are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall), and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations). In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.
Hotplate precipitation gauge calibrations and field measurements
Directory of Open Access Journals (Sweden)
N. Zelasko
2018-01-01
Full Text Available First introduced in 2003, approximately 70 Yankee Environmental Systems (YES hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11. Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall, and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations. In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.
4D topological mass by gauging spin
Choudhury, I. D.; Diamantini, M. Cristina; Guarnaccia, Giuseppe; Lahiri, A.; Trugenberger, Carlo A.
2015-06-01
We propose a spin gauge field theory in which the curl of a Dirac fermion current density plays the role of the pseudovector charge density. In this field-theoretic model, spin interactions are mediated by a single scalar gauge boson in its antisymmetric tensor formulation. We show that these long range spin interactions induce a gauge invariant photon mass in the one-loop effective action. The fermion loop generates a coupling between photons and the spin gauge boson, which acquires thus charge. This coupling represents also an induced, gauge invariant, topological mass for the photons, leading to the Meissner effect. The one-loop effective equations of motion for the charged spin gauge boson are the London equations. We propose thus spin gauge interactions as an alternative, topological mechanism for superconductivity in which no spontaneous symmetry breaking is involved.
4D topological mass by gauging spin
Energy Technology Data Exchange (ETDEWEB)
Choudhury, I.D. [S.N. Bose National Centre for Basic Sciences,Block JD, Sector III, Salt Lake, Kolkata, 700098 (India); Diamantini, M. Cristina [NiPS Laboratory, INFN and Dipartimento di Fisica, University of Perugia,via A. Pascoli, Perugia, I-06100 (Italy); Guarnaccia, Giuseppe [Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno,via Giovanni Paolo II, Fisciano, Salerno, I-84084 (Italy); Lahiri, A. [S.N. Bose National Centre for Basic Sciences,Block JD, Sector III, Salt Lake, Kolkata, 700098 (India); Trugenberger, Carlo A. [SwissScientific,chemin Diodati 10, Cologny, CH-1223 (Switzerland)
2015-06-12
We propose a spin gauge field theory in which the curl of a Dirac fermion current density plays the role of the pseudovector charge density. In this field-theoretic model, spin interactions are mediated by a single scalar gauge boson in its antisymmetric tensor formulation. We show that these long range spin interactions induce a gauge invariant photon mass in the one-loop effective action. The fermion loop generates a coupling between photons and the spin gauge boson, which acquires thus charge. This coupling represents also an induced, gauge invariant, topological mass for the photons, leading to the Meissner effect. The one-loop effective equations of motion for the charged spin gauge boson are the London equations. We propose thus spin gauge interactions as an alternative, topological mechanism for superconductivity in which no spontaneous symmetry breaking is involved.
4D topological mass by gauging spin
International Nuclear Information System (INIS)
Choudhury, I.D.; Diamantini, M. Cristina; Guarnaccia, Giuseppe; Lahiri, A.; Trugenberger, Carlo A.
2015-01-01
We propose a spin gauge field theory in which the curl of a Dirac fermion current density plays the role of the pseudovector charge density. In this field-theoretic model, spin interactions are mediated by a single scalar gauge boson in its antisymmetric tensor formulation. We show that these long range spin interactions induce a gauge invariant photon mass in the one-loop effective action. The fermion loop generates a coupling between photons and the spin gauge boson, which acquires thus charge. This coupling represents also an induced, gauge invariant, topological mass for the photons, leading to the Meissner effect. The one-loop effective equations of motion for the charged spin gauge boson are the London equations. We propose thus spin gauge interactions as an alternative, topological mechanism for superconductivity in which no spontaneous symmetry breaking is involved.
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Clément, Gilles
2007-01-01
Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term reduced gravity during surface operations will require effective, multi-system countermeasures. Artificial gravity, which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by short-radius human centrifuge devices within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient
International Nuclear Information System (INIS)
Maire, J.
1984-01-01
Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr
Equivalence principle and gravitational redshift.
Hohensee, Michael A; Chu, Steven; Peters, Achim; Müller, Holger
2011-04-15
We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalent to one another. Consideration of torsion balance tests, along with matter-wave, microwave, optical, and Mössbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the 10(-6) level.
Testing statistical hypotheses of equivalence
Wellek, Stefan
2010-01-01
Equivalence testing has grown significantly in importance over the last two decades, especially as its relevance to a variety of applications has become understood. Yet published work on the general methodology remains scattered in specialists' journals, and for the most part, it focuses on the relatively narrow topic of bioequivalence assessment.With a far broader perspective, Testing Statistical Hypotheses of Equivalence provides the first comprehensive treatment of statistical equivalence testing. The author addresses a spectrum of specific, two-sided equivalence testing problems, from the
Use of artificial neural network for spatial rainfall analysis
Indian Academy of Sciences (India)
In the present study, the precipitation data measured at 23 rain gauge stations over the Achaia County,. Greece, were used to estimate the spatial distribution of the mean annual precipitation values over a specific catchment area. The objective of this work was achieved by programming an Artificial Neural. Network (ANN) ...
On gauged maximal d = 8 supergravities
Lasso Andino, Óscar; Ortín, Tomás
2018-04-01
We study the gauging of maximal d = 8 supergravity using the embedding tensor formalism. We focus on SO(3) gaugings, study all the possible choices of gauge fields and construct explicitly the bosonic actions (including the complicated Chern–Simons terms) for all these choices, which are parametrized by a parameter associated to the 8-dimensional SL(2, {R}) duality group that relates all the possible choices which are, ultimately, equivalent from the purely 8-dimensional point of view. Our result proves that the theory constructed by Salam and Sezgin by Scherk–Schwarz compactification of d = 11 supergravity and the theory constructed in Alonso-Alberca (2001 Nucl. Phys. B 602 329) by dimensional reduction of the so called ‘massive 11-dimensional supergravity’ proposed by Meessen and Ortín in (1999 Nucl. Phys. B 541 195) are indeed related by an SL(2, {R}) duality even though they have two completely different 11-dimensional origins.
A combinatorial approach to diffeomorphism invariant quantum gauge theories
International Nuclear Information System (INIS)
Zapata, J.A.
1997-01-01
Quantum gauge theory in the connection representation uses functions of holonomies as configuration observables. Physical observables (gauge and diffeomorphism invariant) are represented in the Hilbert space of physical states; physical states are gauge and diffeomorphism invariant distributions on the space of functions of the holonomies of the edges of a certain family of graphs. Then a family of graphs embedded in the space manifold (satisfying certain properties) induces a representation of the algebra of physical observables. We construct a quantum model from the set of piecewise linear graphs on a piecewise linear manifold, and another manifestly combinatorial model from graphs defined on a sequence of increasingly refined simplicial complexes. Even though the two models are different at the kinematical level, they provide unitarily equivalent representations of the algebra of physical observables in separable Hilbert spaces of physical states (their s-knot basis is countable). Hence, the combinatorial framework is compatible with the usual interpretation of quantum field theory. copyright 1997 American Institute of Physics
2010-10-01
... § 52.01-110 Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure... 46 Shipping 2 2010-10-01 2010-10-01 false Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST...
Gauge-Higgs unification with broken flavour symmetry
Energy Technology Data Exchange (ETDEWEB)
Olschewsky, M.
2007-05-15
} gauge bosons much above the compactification scale. Such a behaviour has no counterpart within the customary approximation scheme of an ordinary orbifold theory. This way tree-level flavour-changing-neutral-currents are naturally suppressed. In a second step the electroweak gauge group SU(2){sub L} x U(1){sub Y} is broken to U(1){sub em} by VEVs for the unitary factors e{sup A{sub y}} at the electroweak scale. This breaking is equivalent to a Wilson line breaking. Making some simplifying assumptions we also calculate fermion masses and CKM mixing angles. As for the gauge bosons an exponential fermion mass splitting occurs naturally. Fermion masses and mixing angles are determined by the VEVs for e{sup {eta}} and e{sup A{sub y}} of PTs for quarks and leptons. The model predicts a large Higgs sector consisting of altogether 30 Higgs particles. The model in its simplest form also predicts the (too small) weak mixing angle {theta}{sub W}=0.125. (orig.)
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
International Nuclear Information System (INIS)
Jacob, Maurice
1976-01-01
The charm is a new elementary constituent introduced in the SU(4) framework to explain the properties of the psi particles; its introduction definites the essential properties of the four quarks, u, d, s, c in the SU(4) framework. The discovery of charmed particles (two mesons four quarks u,d,s,c in the SU(4) framework. The discovery of charmed particles (two mesons and one baryons) confirms a series of previsions that derive from the introduction of gauge theories: weak neutral currents, W meson, unification of weak interactions and electrodynamics. Beyonds charm the introduction of colored quarks and gluon exchanges gives to strong interactions the simplicity of electrodynamics [fr
Scalar formalism for non-Abelian gauge theory
International Nuclear Information System (INIS)
Hostler, L.C.
1986-01-01
The gauge field theory of an N-dimensional multiplet of spin- 1/2 particles is investigated using the Klein--Gordon-type wave equation ]Pi x (1+isigma) x Pi+m 2 ]Phi = 0, Pi/sub μ/equivalentpartial/partialix/sub μ/-eA/sub μ/, investigated before by a number of authors, to describe the fermions. Here Phi is a 2 x 1 Pauli spinor, and sigma repesents a Lorentz spin tensor whose components sigma/sub μ//sub ν/ are ordinary 2 x 2 Pauli spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are derived starting from the conventional field theory of the multiplet and converting it to the new description. The equivalence of the new and the old formalism for arbitrary radiative processes is thereby established. The conversion to the scalar formalism is accomplished in a novel way by working in terms of the path integral representation of the generating functional of the vacuum tau-functions, tau(2,1, xxx 3 xxx)equivalent , where Psi/sub in/ is a Heisenberg operator belonging to a 4N x 1 Dirac wave function of the multiplet. The Feynman rules obtained generalize earlier results for the Abelian case of quantum electrodynamics
Unitary equivalence of quantum walks
International Nuclear Information System (INIS)
Goyal, Sandeep K.; Konrad, Thomas; Diósi, Lajos
2015-01-01
Highlights: • We have found unitary equivalent classes in coined quantum walks. • A single parameter family of coin operators is sufficient to realize all simple one-dimensional quantum walks. • Electric quantum walks are unitarily equivalent to time dependent quantum walks. - Abstract: A simple coined quantum walk in one dimension can be characterized by a SU(2) operator with three parameters which represents the coin toss. However, different such coin toss operators lead to equivalent dynamics of the quantum walker. In this manuscript we present the unitary equivalence classes of quantum walks and show that all the nonequivalent quantum walks can be distinguished by a single parameter. Moreover, we argue that the electric quantum walks are equivalent to quantum walks with time dependent coin toss operator
Gauge coupling unification in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Lee, H.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Physics
2006-11-15
We compute the one-loop gauge couplings in six-dimensional non-Abelian gauge theories on the T{sup 2}/Z{sub 2} orbifold with general GUT breaking boundary conditions. For concreteness, we apply the obtained general formulae to the gauge coupling running in a 6D SO(10) orbifold GUT where the GUT group is broken down to the standard model gauge group up to an extra U(1). We find that the one-loop corrections depend on the parity matrices encoding the orbifold boundary conditions as well as the volume and shape moduli of extra dimensions. When the U(1) is broken by the VEV of bulk singlets, the accompanying extra color triplets also affect the unification of the gauge couplings. In this case, the B-L breaking scale is closely linked to the compactification scales for maintaining a success of the gauge coupling unification. (orig.)
Factorization in QCD in Feynman gauge
International Nuclear Information System (INIS)
Tucci, R.R.
1985-01-01
We present a mass divergence power counting technique for QCD in the Feynman gauge. For the process γ/sup */ → qq, we find the leading regions of integration and show that single diagrams are at worst logarithmically divergent. Using the Weyl representation facilities the γ matrix manipulations necessary for power counting and adds much physical insight. We prove Ward type identities which are needed in the proof of factorization of the Drill Yan process. Previous treatments prove them only for an axial gauge, and the proofs are diagrammatic in nature. We, on the other hand, establish the identities for the Feynman gauge and through symmetry considerations at the Lagrangian level. The strategy is to first derive exact results in a background field gauge and then to show that to leading order in the mass divergences the background field gauge results can be used in the Feynman gauge
Hidden QCD in Chiral Gauge Theories
DEFF Research Database (Denmark)
Ryttov, Thomas; Sannino, Francesco
2005-01-01
The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...
Gauge field condensation in geometric quantum chromodynamics
International Nuclear Information System (INIS)
Guendelman, E.I.
1991-09-01
In odd number of dimensions, it is possible to construct general covariant gauge theories, where the metric is not an independent variable, but local function of the gauge fields. Starting from standardly defined gauge theory, upon functional integration of some variables, we could end up with such moodels. For models with SU(2) and SU(3) symmetry in three dimensions, gauge field condensation take place in the vacuum, which is nevertheless homogeneous and isotropic up to a gauge transformation, provided the space is flat. Introducing Higgs fields that spontaneously break the gauge symmetry, we get a breakdown of the homogenity and isotropy of the vacuum. Finally, we discuss how some of this ideas can be generalized to four and other even dimensions. (author)
Recursive relations for a quiver gauge theory
International Nuclear Information System (INIS)
Park, Jaemo; Sim, Woojoo
2006-01-01
We study the recursive relations for a quiver gauge theory with the gauge group SU(N 1 ) x SU(N 2 ) with bifundamental fermions transforming as (N 1 , N-bar 2 ). We work out the recursive relation for the amplitudes involving a pair of quark and antiquark and gluons of each gauge group. We realize directly in the recursive relations the invariance under the order preserving permutations of the gluons of the first and the second gauge group. We check the proposed relations for MHV, 6-point and 7-point amplitudes and find the agreements with the known results and the known relations with the single gauge group amplitudes. The proposed recursive relation is much more efficient in calculating the amplitudes than using the known relations with the amplitudes of the single gauge group
Noncommutative induced gauge theories on Moyal spaces
International Nuclear Information System (INIS)
Wallet, J-C
2008-01-01
Noncommutative field theories on Moyal spaces can be conveniently handled within a framework of noncommutative geometry. Several renormalisable matter field theories that are now identified are briefly reviewed. The construction of renormalisable gauge theories on these noncommutative Moyal spaces, which remains so far a challenging problem, is then closely examined. The computation in 4-D of the one-loop effective gauge theory generated from the integration over a scalar field appearing in a renormalisable theory minimally coupled to an external gauge potential is presented. The gauge invariant effective action is found to involve, beyond the expected noncommutative version of the pure Yang-Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic term, which for the noncommutative ψ 4 -theory on Moyal space ensures renormalisability. A class of possible candidates for renormalisable gauge theory actions defined on Moyal space is presented and discussed
Palacci, Jérémie; Sacanna, Stefano; Abramian, Anaïs; Barral, Jérémie; Hanson, Kasey; Grosberg, Alexander Y; Pine, David J; Chaikin, Paul M
2015-05-01
Motility is a basic feature of living microorganisms, and how it works is often determined by environmental cues. Recent efforts have focused on developing artificial systems that can mimic microorganisms, in particular their self-propulsion. We report on the design and characterization of synthetic self-propelled particles that migrate upstream, known as positive rheotaxis. This phenomenon results from a purely physical mechanism involving the interplay between the polarity of the particles and their alignment by a viscous torque. We show quantitative agreement between experimental data and a simple model of an overdamped Brownian pendulum. The model notably predicts the existence of a stagnation point in a diverging flow. We take advantage of this property to demonstrate that our active particles can sense and predictably organize in an imposed flow. Our colloidal system represents an important step toward the realization of biomimetic microsystems with the ability to sense and respond to environmental changes.
Noncommutative duality of Gelfand-Naimark and applications in gauge theory and spinc structure
International Nuclear Information System (INIS)
RATSIMBARISON, H.M.
2004-01-01
We use the GN (Gelfand-Naimark) duality and its generalizations in order to describe some physical constructions, our main tool is the categorical formalism. We start with the first GN theorem, a duality between a category of commutative unital C*-algebras and a category of compact Hausdorff spaces, which we interpret as equivalence between classical observables and classical states. Then, we give the GNS construction providing the 'Fock space' in Quantum Field Theory, and which is the constructive proof of the second GN theorem. A particular formulation of this latter, the Serre-Swan theorem introduces vector bundle structure, a new kind of classical states space. And this lead to K-theory, which we show compatible with a noncommutative concept : the Morita equivalence. From these ideas of Noncommutative geometry, we meet two important applications in QFT : Gauge theory and Spin c structure.The first application begin with the origin of gauge theory: it permit to obtain the interaction lagrangian term from the gauge non invariance of the free lagrangian of matter. Thanks to theories of principal bundles, the gauge potential and the gauge transformation are represented by connection and bundle G-automorphism on the identity of a principal bundle over the spacetime manifold. Finally, the Serre-Swan theorem gives the step of Connes's generalization to noncommutative case. In the second application, we show that the construction of Dirac operator lead to the definitions of Clifford algebra and spinor space. A categorical equivalent definition, similar to those of the Grothendieck group, is done. At the end, we make use of the structure of Clifford algebra and the Morita equivalence to reconstruct Plymen's definition of the spin c structure [fr
Gauge independence of the Ao-condensate
International Nuclear Information System (INIS)
Skalozub, V.V.
1992-01-01
The problem of gauge dependence of the zero gauge field component condensate. A o =const, in the framework of finite temperature SU(2) gluodynamics is investigated. In straight-forward calculations it is shown that the two-loop effective action W(A o ,ζ) satisfies the generalized Nielsen identity. Thus, the gauge invariance of the A o -condensation is proved. 12 refs. (author)
Gauge and parametrization ambiguity in quantum gravity
Gonçalves, Jeferson D.; Netto, Tibério de Paula; Shapiro, Ilya L.
2018-01-01
The gauge and parametrization dependence is discussed in quantum gravity in an arbitrary dimension D . Explicit one-loop calculations are performed within the most general parametrization of quantum metric with seven arbitrary parameters. On the other hand, some of the gauge fixing parameters are fixed to make the calculations relatively simple. We confirm the general theorem stating that the on shell local terms in the one-loop effective action are independent of the gauge and parametrization ambiguity.
Alpha-particle Gas Pressure Gauge
Buehler, M. G.; Bell, L. D.; Hecht, M. H.
1995-01-01
Described are preliminary results obtained on a novel gas pressure gauge that operates between 0.1 and 1000 mb. This gauge uses a 1- micron Ci alpha particle source to ionize the gas in a small chamber with an electric field imposed between anode and cathode electrodes that drives positive ions to the cathode where they are collected electronically. This gauge could make Martian pressure measurements.
Electroweak Measurements with Multiple Gauge Boson Interactions
Sood, A; The ATLAS collaboration
2014-01-01
This talk presents measurements from ATLAS and CMS that are sensitive interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW $Z$ production, and $VV^{\\prime}$ cross sections where $V=W/Z$ and $V^{\\prime}=W/Z/\\gamma$, while $\\gamma\\gamma\\rightarrow WW$, $WV\\gamma$ where $V=W/Z$, and $W^{\\pm}W^{\\pm}jj$ production are present as probes of quartic gauge couplings.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
3D gauged supergravity from SU(2) reduction of N = 1 6D supergravity
Gava, Edi; Karndumri, Parinya; Narain, K. S.
2010-09-01
We obtain Yang-Mills SU(2) × G gauged supergravity in three dimensions from SU(2) group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of G. The reduced theory is consistently truncated to N = 4 3D supergravity coupled to 4(1+dim G) bosonic and 4(1 + dim G) fermionic propagating degrees of freedom. This is in contrast to the reduction in which there are also massive vector fields. The scalar manifold is R × {{text{SO}}left( {3, dim G} right)}/{{text{SO}(3) × {text{SO}}left( {dim G} right)}} , and there is a SU(2)× G gauge group. We then construct N = 4 Chern-Simons (SO(3) ⋉ R 3) (G ⋉ R dim G ) three dimensional gauged supergravity with scalar manifold {{text{SO}}left( {4,1 + dim G} right)}/{{text{SO}(4) × {text{SO}}left( {1 + dim G} right)}} and explicitly show that this theory is on-shell equivalent to the Yang-Mills SO(3)× G gauged supergravity theory obtained from the SU(2) reduction, after integrating out the scalars and gauge fields corresponding to the translational symmetries R 3 × R dim G .
Focus point supersymmetry in extended gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Ding, Ran [School of Physics, Nankai University,Tianjin 300071 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics (KITPC),Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Staub, Florian [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nußallee 12, 53115 Bonn (Germany); Zhu, Bin [School of Physics, Nankai University,Tianjin 300071 (China)
2014-03-27
We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural.
Focus point supersymmetry in extended gauge mediation
International Nuclear Information System (INIS)
Ding, Ran; Li, Tianjun; Staub, Florian; Zhu, Bin
2014-01-01
We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural
Anomalous gauge theories as constrained Hamiltonian systems
International Nuclear Information System (INIS)
Fujiwara, T.
1989-01-01
Anomalous gauge theories considered as constrained systems are investigated. The effects of chiral anomaly on the canonical structure are examined first for nonlinear σ-model and later for fermionic theory. The breakdown of the Gauss law constraints and the anomalous commutators among them are studied in a systematic way. An intrinsic mass term for gauge fields makes it possible to solve the Gauss law relations as second class constraints. Dirac brackets between the time components of gauge fields are shown to involve anomalous terms. Based upon the Ward-Takahashi identities for gauge symmetry, we investigate anomalous fermionic theory within the framework of path integral approach. (orig.)
Current status of nucleonic gauges in Portugal
International Nuclear Information System (INIS)
Salgado, J.; Carvalho, F.G.; Manteigas, J.; Oliveira, C.; Goncalves, I.F.; Neves, J.; Cruz, C.
2000-01-01
The nucleonic gauges are largely used in Portugal industry, despite the fact that design and manufacturing of prototypes of nucleonic gauges is rather limited. The modernization of some industrial sectors (cement, paper and civil engineering) has enhanced applications of nucleonic gauges and has created local capability but new legislation tends to restrict further spread of them. The Institute of Nuclear Technology is the only applied research institution developing nucleonic gauges for moisture, thickness and density, and elemental analysis, as well as providing assistance in calibration, safe operation and maintenance of them. (author)
Inflatable artificial sphincter
... procedures to treat urine leakage and incontinence include: Anterior vaginal wall repair Urethral bulking with artificial material ... urinary incontinence Images Inflatable artificial sphincter Anal sphincter anatomy Inflatable artificial sphincter - series References Adams MC, Joseph ...
Regularization of the light-cone gauge gluon propagator singularities using sub-gauge conditions
Chirilli, Giovanni A.; Kovchegov, Yuri V.; Wertepny, Douglas E.
2015-12-01
Perturbative QCD calculations in the light-cone gauge have long suffered from the ambiguity associated with the regularization of the poles in the gluon propagator. In this work we study sub-gauge conditions within the light-cone gauge corresponding to several known ways of regulating the gluon propagator. Using the functional integral calculation of the gluon propagator, we rederive the known sub-gauge conditions for the θ-function gauges and identify the sub-gauge condition for the principal value (PV) regularization of the gluon propagator's light-cone poles. The obtained sub-gauge condition for the PV case is further verified by a sample calculation of the classical Yang-Mills field of two collinear ultrarelativistic point color charges. Our method does not allow one to construct a sub-gauge condition corresponding to the well-known Mandelstam-Leibbrandt prescription for regulating the gluon propagator poles.
Electromagnetic velocity gauge: use of multiple gauges, time response, and flow perturbations
International Nuclear Information System (INIS)
Erickson, L.M.; Johnson, C.B.; Parker, N.L.; Vantine, H.C.; Weingart, R.C.; Lee, R.S.
1981-01-01
We have developed an in-situ electromagnetic velocity (EMV) gauge system for use in multiple-gauge studies of initiating and detonating explosives. We have also investigated the risetime of the gauge and the manner in which it perturbs a reactive flow. We report on the special precautions that are necessary in multiple gauge experiments to reduce lead spreading, simplify target fabrication problems and minimize cross talk through the conducting explosive. Agreement between measured stress records and calculations from multiple velocity gauge data give us confidence that our velocity gauges are recording properly. We have used laser velocity interferometry to measure the gauge risetime in polymethyl methacrylate (PMMA). To resolve the difference in the two methods, we have examined hydrodynamic and material rate effects. In addition, we considered the effects of shock tilt, electronic response and magntic diffusion on the gauge's response time
Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.
2015-01-01
This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...
Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials
International Nuclear Information System (INIS)
Satija, Indubala I.; Dakin, Daniel C.; Clark, Charles W.
2006-01-01
We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. For Abelian gauges, such transitions occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum. Other key characteristics of the non-Abelian case include the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta
Extended gauge sectors at future colliders: Report of the New Gauge Boson Subgroup
International Nuclear Information System (INIS)
Rizzo, T.G.
1996-12-01
The author summarizes the results of the New Gauge Boson Subgroup on the physics of extended gauge sectors at future colliders as presented at the 1996 Snowmass workshop. He discusses the direct and indirect search reaches for new gauge bosons at both hadron and lepton colliders as well as the ability of such machines to extract detailed information on the couplings of these particles to the fermions and gauge bosons of the Standard Model. 41 refs., 18 figs., 5 tabs
Flat epithelial atypia: comparison between 9-gauge and 11-gauge devices.
Villa, Alessandro; Chiesa, Fabio; Massa, Tiberio; Friedman, Daniele; Canavese, Giuseppe; Baccini, Paola; Calabrese, Massimo; Tagliafico, Alberto
2013-12-01
This study aimed to establish if women with a diagnosis of flat epithelial atypia (FEA) without residual microcalcifications at stereotactic vacuum-assisted breast biopsy (VABB) could be managed with mammographic follow-up (FU) instead of surgery and to compare 9-gauge and 11-gauge devices. From October 2003 to January 2011, 2382 VABB procedures were performed (1373 with 11-gauge and 1009 with 9-gauge). We found 121 cases of pure FEA that were surgically treated: 57 with a 9-gauge device (group 1) and 64 with an 11-gauge device (group 2). The underestimation rate (UR) of malignancy for patients without and those with residual microcalcifications for each VABB device was calculated. Differences between groups were analyzed with the Fischer exact test. The overall UR of FEA was 4% (2 of 57) with the 9-gauge device and 8% (5 of 64) with the 11-gauge device. With a 9-gauge device, the UR for patients without residual microcalcifications was 0% (0 of 46), and the UR for patients with residual microcalcifications was 18% (2 of 11). With an 11-gauge device, the UR for patients without residual microcalcifications was 0% (0 of 39), the UR for patients with residual microcalcifications at post-biopsy mammograms was 16% (5 of 25). With a 9-gauge device, 80% (46 of 57) of patients did not have residual microcalcifications after VABB. With an 11-gauge device, 60% (39 of 64) of patients had no residual microcalcifications after VABB. Differences between the 9-gauge and 11-gauge devices were statistically significant (P gauge VABB is associated with a lower percentage of residual microcalcifications compared with an 11-gauge device, but it is safe to follow patients with FEA if all calcifications are removed with the core biopsy. Copyright © 2013 Elsevier Inc. All rights reserved.
Tunable Gauge Potential for Neutral and Spinless Particles in Driven Optical Lattices
Struck, J.; Ölschläger, C.; Weinberg, M.; Hauke, P.; Simonet, J.; Eckardt, A.; Lewenstein, M.; Sengstock, K.; Windpassinger, P.
2012-06-01
We present a universal method to create a tunable, artificial vector gauge potential for neutral particles trapped in an optical lattice. The necessary Peierls phase of the hopping parameters between neighboring lattice sites is generated by applying a suitable periodic inertial force such that the method does not rely on any internal structure of the particles. We experimentally demonstrate the realization of such artificial potentials, which generate ground-state superfluids at arbitrary nonzero quasimomentum. We furthermore investigate possible implementations of this scheme to create tunable magnetic fluxes, going towards model systems for strong-field physics.
46 CFR 154.1320 - Sighting ports, tubular gauge glasses, and flat plate type gauge glasses.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Sighting ports, tubular gauge glasses, and flat plate type gauge glasses. 154.1320 Section 154.1320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1320 Sighting ports, tubular gauge...
A Prospective Comparison of EUS-Guided FNA Using 25-Gauge and 22-Gauge Needles
Imazu, Hiroo; Uchiyama, Yujiro; Kakutani, Hiroshi; Ikeda, kei-ichi; Sumiyama, Kazuki; Kaise, Mitsuru; Omar, Salem; Ang, Tiing Leong; Tajiri, Hisao
2009-01-01
Background and Aims. There are limited data on the differences in diagnostic yield between 25-gauge and 22-gauge EUS-FNA needles. This prospective study compared the difference in diagnostic yield between a 22-gauge and a 25-gauge needle when performing EUS-FNA. Methods. Forty-three patients with intraluminal or extraluminal mass lesions and/or lymphadenopathy were enrolled prospectively. EUS-FNA was performed for each mass lesion using both 25- and 22-gauge needles. The differences in accuracy rate, scoring of needle visibility, ease of puncture and quantity of obtained specimen were evaluated. Results. The overall accuracy of 22- and 25-gauge needle was similar at 81% and 76% respectively (N.S). Likewise the visibility scores of both needles were also similar. Overall the quantity of specimen obtained higher with the 22-gauge needle (score: 1.64 vs. P < .001). However the 25-gauge needle was significantly superior to the 22-gauge needle in terms of ease of puncture (score: 1.9 vs. 1.29, P < .001) and in the quantity of specimen in the context of pancreatic mass EUS-FNA (score: 1.8 vs. 1.58, P < .05). Conclusion. The 22-gauge and 25-gauge needles have similar overall diagnostic yield. The 25-gauge needle appeared superior in the subset of patients with hard lesions and pancreatic masses. PMID:19997511
A Prospective Comparison of EUS-Guided FNA Using 25-Gauge and 22-Gauge Needles
Directory of Open Access Journals (Sweden)
Hiroo Imazu
2009-01-01
Full Text Available Background and Aims. There are limited data on the differences in diagnostic yield between 25-gauge and 22-gauge EUS-FNA needles. This prospective study compared the difference in diagnostic yield between a 22-gauge and a 25-gauge needle when performing EUS-FNA. Methods. Forty-three patients with intraluminal or extraluminal mass lesions and/or lymphadenopathy were enrolled prospectively. EUS-FNA was performed for each mass lesion using both 25- and 22-gauge needles. The differences in accuracy rate, scoring of needle visibility, ease of puncture and quantity of obtained specimen were evaluated. Results. The overall accuracy of 22- and 25-gauge needle was similar at 81% and 76% respectively (N.S. Likewise the visibility scores of both needles were also similar. Overall the quantity of specimen obtained higher with the 22-gauge needle (score: 1.64 vs. P<.001. However the 25-gauge needle was significantly superior to the 22-gauge needle in terms of ease of puncture (score: 1.9 vs. 1.29, P<.001 and in the quantity of specimen in the context of pancreatic mass EUS-FNA (score: 1.8 vs. 1.58, P<.05. Conclusion. The 22-gauge and 25-gauge needles have similar overall diagnostic yield. The 25-gauge needle appeared superior in the subset of patients with hard lesions and pancreatic masses.
Gauge-fixing parameter dependence of two-point gauge-variant correlation functions
International Nuclear Information System (INIS)
Zhai, C.
1996-01-01
The gauge-fixing parameter ξ dependence of two-point gauge-variant correlation functions is studied for QED and QCD. We show that, in three Euclidean dimensions, or for four-dimensional thermal gauge theories, the usual procedure of getting a general covariant gauge-fixing term by averaging over a class of covariant gauge-fixing conditions leads to a nontrivial gauge-fixing parameter dependence in gauge-variant two-point correlation functions (e.g., fermion propagators). This nontrivial gauge-fixing parameter dependence modifies the large-distance behavior of the two-point correlation functions by introducing additional exponentially decaying factors. These factors are the origin of the gauge dependence encountered in some perturbative evaluations of the damping rates and the static chromoelectric screening length in a general covariant gauge. To avoid this modification of the long-distance behavior introduced by performing the average over a class of covariant gauge-fixing conditions, one can either choose a vanishing gauge-fixing parameter or apply an unphysical infrared cutoff. copyright 1996 The American Physical Society
27 CFR 30.45 - Withdrawal gauge for packages.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Withdrawal gauge for... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS GAUGING MANUAL Gauging Procedures Determination of Quantity by Weight § 30.45 Withdrawal gauge for packages. When wooden packages are to be individually gauged for...
Gauge Trimming of Neutrino Masses
Energy Technology Data Exchange (ETDEWEB)
Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab
2006-12-01
We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.
Gauge-symmetry hierarchies revisited
International Nuclear Information System (INIS)
Gildener, E.
1979-01-01
It was shown by the author in a previous paper that in each order of perturbation theory there is an upper bound on the range of validity of a gauge hierarchy. Thus constructing a large hierarchy requires a fine-tuning of the scalar-field parameters. It was stated that the possibility of an inherent bound on the hierarchy exists, but the question of the actual existence of such a bound was left completely open. Since then several authors have addressed this problem. Some of what the author asserted was misunderstood, and incorrect conclusions have been drawn from recent computations. It has been claimed that the existence of large hierarchies has been demonstrated. It is the purpose of this paper to refute this claim, to help clarify the situation, and to explain why the status of this problem has in fact not really changed in recent years (author)
An introduction to gauge theories
International Nuclear Information System (INIS)
Iliopoulos, J.
1977-01-01
The CERN-JINR School of Physics is meant to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. This paper presents an introduction to gauge theories: the systematics of Yang-Mills theories, spontaneous symmetry breaking, and Higgs mechanism. The treatment is simple, stressing the general principles rather than detailed calculations. The author presents the Weinberg-Salam model as an example of a renormalizable theory of weak and electromagnetic interactions of leptons, and it is shown that the extension of these ideas into the hadronic world requires the introduction of charm and colour. Finally, an attempt is made to include strong interactions into the scheme, guided by the experimental results of deep-inelastic lepton-nucleon scattering. The Callan-Symanzik equation, and the concepts of asymptotic freedom and quark confinement are introduced. (Auth.)
An introduction to gauge theories
International Nuclear Information System (INIS)
Iliopoulos, J.
1976-01-01
These lecture notes present an introduction to gauge theories: the systematics of Yang-Mills theories, spontaneous symmetry breaking, and Higgs mechanism. The treatment is simple, stressing the general principles rather than detailed calculations. We present the Weinberg-Salam model as an example of a renormalizable theory of weak and electromagnetic interactions of leptons, and we show that the extension of these ideas into the hadronic world requires the introduction of charm and colour. Finally, we try to include strong interactions into the scheme, guided by the experimental results of deep-inelastic lepton-nucleon scattering. We derive and solve the Callan-Symanzik equation, and we introduce the concepts of asymptotic freedom and quark confinement. (Author)
Contemporary status of gauge fields
International Nuclear Information System (INIS)
Slavnov, A.A.
1979-01-01
A successive and a self-consistent scheme of calculation is developed for the Yang-Mills theory. Boundary conditions related to the problem on the physical vacuum are predetermined for solving the field theory equations. It is noted that the principal problem for the Yang-Mills theory consists in finding the actual ground state. The role of instantons in constructing the gauge field ground state and of the dynamic mechanism of quark confinement are also discussed. An assumption has been made that the Yang-Mills theory can be solved exactly. This assumption is based on analogy between the Yang-Mills theory and the two-dimensional nonlinear σ-model. An exceptionality of the Yang-Mills theory is stressed which consists in the fact that it is a unique massless vector field theory in which no patologies are observed connected with nonpositive determination of energy
Simple scheme for gauge mediation
International Nuclear Information System (INIS)
Murayama, Hitoshi; Nomura, Yasunori
2007-01-01
We present a simple scheme for constructing models that achieve successful gauge mediation of supersymmetry breaking. In addition to our previous work [H. Murayama and Y. Nomura, Phys. Rev. Lett. 98, 151803 (2007)] that proposed drastically simplified models using metastable vacua of supersymmetry breaking in vectorlike theories, we show there are many other successful models using various types of supersymmetry-breaking mechanisms that rely on enhanced low-energy U(1) R symmetries. In models where supersymmetry is broken by elementary singlets, one needs to assume U(1) R violating effects are accidentally small, while in models where composite fields break supersymmetry, emergence of approximate low-energy U(1) R symmetries can be understood simply on dimensional grounds. Even though the scheme still requires somewhat small parameters to sufficiently suppress gravity mediation, we discuss their possible origins due to dimensional transmutation. The scheme accommodates a wide range of the gravitino mass to avoid cosmological problems
Towards the natural gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Ding, Ran [Center for High-Energy Physics, Peking University,Beijing, 100871 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics andKavli Institute for Theoretical Physics, China (KITPC), Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Wang, Liucheng [Bartol Research Institute, Department of Physics and Astronomy,University of Delaware, Newark, DE 19716 (United States); Zhu, Bin [State Key Laboratory of Theoretical Physics andKavli Institute for Theoretical Physics, China (KITPC), Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); Institute of Physics Chinese Academy of sciences,Beijing 100190 (China)
2015-10-23
The sweet spot supersymmetry (SUSY) solves the μ/B{sub μ} problem in the Minimal Supersymmetric Standard Model (MSSM) with gauge mediated SUSY breaking (GMSB) via the generalized Giudice-Masiero (GM) mechanism where only the μ-term and soft Higgs masses are generated at the unification scale of the Grand Unified Theory (GUT) due to the approximate PQ symmetry. Because all the other SUSY breaking soft terms are generated via the GMSB below the GUT scale, there exists SUSY electroweak (EW) fine-tuning problem to explain the 125 GeV Higgs boson mass due to small trilinear soft term. Thus, to explain the Higgs boson mass, we propose the GMSB with both the generalized GM mechanism and Higgs-messenger interactions. The renormalization group equations are runnings from the GUT scale down to EW scale. So the EW symmetry breaking can be realized easier. We can keep the gauge coupling unification and solution to the flavor problem in the GMSB, as well as solve the μ/B{sub μ}-problem. Moreover, there are only five free parameters in our model. So we can determine the characteristic low energy spectra and explore its distinct phenomenology. The fine-tuning measure can be as low as 100. For some benchmark points, the stop mass can be as low as 1.7 TeV while the glunio mass is around 2.5 TeV. The gravitino dark matter can come from a thermal production with the correct relic density and be consistent with the thermal leptogenesis. Because gluino and stop can be relatively light in our model, how to search for such GMSB at the upcoming run II of the LHC experiment could be very interesting.
Gaugings at angles from orientifold reductions
Roest, D.
2009-01-01
We consider orientifold reductions to N = 4 gauged supergravity in four dimensions. A special feature of this theory is that different factors of the gauge group can have relative angles with respect to the electro-magnetic SL(2) symmetry. These are crucial for moduli stabilization and de Sitter
Dualiy for Z(N) gauge theories
International Nuclear Information System (INIS)
Korthals Altes, C.P.
1978-04-01
The duality properties of simple Z(N) gauge theories are discussed. For N 4 these systems are not self dual. Also the order parameter is discussed. The general Z(N) gauge theory is found to be self dual for all N
Effective Lagrangian density in gauge supersymmetry
International Nuclear Information System (INIS)
Chang, S.S.
1976-01-01
In the framework of gauge supersymmetry proposed by Arnowitt and Nath, an effective Lagrangian density is formally rewritten in terms of a spontaneously broken vacuum metric and the remaining perturbative part in the gauge metric tensor. Tensor notations in the superspace are revised so that all sign factors of Grassmann parities appear more systematically
Milne boost from Galilean gauge theory
Banerjee, Rabin; Mukherjee, Pradip
2018-03-01
Physical origin of Milne boost invariance of the Newton Cartan spacetime is traced to the effect of local Galilean boosts in its metric structure, using Galilean gauge theory. Specifically, we do not require any gauge field to understand Milne boost invariance.
Flux compactifications, gauge algebras and De Sitter
Dibitetto, Giuseppe; Linares, Roman; Roest, Diederik
2010-01-01
The introduction of (non-)geometric fluxes allows for N = 1 moduli stabilisation in a De Sitter vacuum. The aim of this Letter is to assess to what extent this is true in N = 4 compactifications. First we identify the correct gauge algebra in terms of gauge and (non-)geometric fluxes. We then show
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Air gauges. 230.73 Section 230.73 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Brake and Signal Equipment § 230.73 Air gauges....
Н(1) Gauge theory as quantum hydrodynamics
Indian Academy of Sciences (India)
The path inte- gral approach is used to compute the partition function. When gauge fields are included, the constraint brought about by gauge invariance simply means .... (7). A¼ = A + ∇A. (8). In order to find an action invariant under these transformations, we replace deriva- tives by covariant derivatives (minimal coupling).
Transforming to Lorentz gauge on de Sitter
Miao, S. P.; Tsamis, N.C.; Woodard, R.P.
2009-01-01
We demonstrate that certain gauge fixing functionals cannot be added to the action on backgrounds such as de Sitter, in which a linearization instability is present. We also construct the field-dependent gauge transformation that carries the electromagnetic vector potential from a convenient, non-de
Lectures on quantization of gauge systems
Reshetikhin, N.; Booß-Bavnbek, B.; Esposito, G.; Lesch, M.
2010-01-01
A gauge system is a classical field theory where among the fields there are connections in a principal G-bundle over the space - time manifold and the classical action is either invariant or transforms appropriately with respect to the action of the gauge group. The lectures are focused on the path
Infrared behaviors of SU(2 gauge theory
Directory of Open Access Journals (Sweden)
Tuominen Kimmo
2017-01-01
Full Text Available We will discuss some recent results in the determination of the location of the conformal window in SU(2 gauge theory with Nf fermions in the fundamental representation of the gauge group. In particular, we will demonstrate that the long distance behavior of the continuum theory with Nf = 6 is governed by an infrared stable fixed point.
Abelian gauge potentials on cubic lattices
DEFF Research Database (Denmark)
Burrello, M.; Lepori, L.; Paganelli, S.
2017-01-01
fields in a system of ultracold atoms in optical lattices. After reviewing two of the main experimental schemes for the physical realization of synthetic gauge potentials in ultracold setups, we study cubic lattice tight-bindingmodels with commensurate flux.We finally discuss applications of gauge...
Class of integrable metrics and gauge fields
Almeida, Gabriel Luz; Batista, Carlos
2017-10-01
Starting with the most general four-dimensional spacetime possessing two commuting Killing vectors and a nontrivial Killing tensor, we analytically integrate Einstein-Yang-Mills equations for a completely arbitrary gauge group. It is assumed that the gauge field inherits the symmetries of the background and is aligned with the principal null directions of the spacetime.
Soft covariant gauges on the lattice
Energy Technology Data Exchange (ETDEWEB)
Henty, D.S.; Oliveira, O.; Parrinello, C.; Ryan, S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (UKQCD Collaboration)
1996-12-01
We present an exploratory study of a one-parameter family of covariant, nonperturbative lattice gauge-fixing conditions that can be implemented through a simple Monte Carlo algorithm. We demonstrate that at the numerical level the procedure is feasible, and as a first application we examine the gauge dependence of the gluon propagator. {copyright} {ital 1996 The American Physical Society.}
Generalized Coulomb gauge without Gribov ambiguity
Energy Technology Data Exchange (ETDEWEB)
Fachin, S.; Parrinello, C. (New York Univ., NY (United States). Physics Dept.)
1992-05-01
We discuss a global gauge-fixing prescription that is free of the Gribov problem, preserves reflection positivity and contains as a limiting case the (maximal) Coulomb gauge. In such a formalism it is very easy to check that only color singlet states propagate in Euclidean time, for any value of [beta]. (orig.).
Are ghosts necessary in planar gauges?
International Nuclear Information System (INIS)
Kummer, W.
1988-01-01
The introduction of Faddeev-Popov ghosts in axial gauges and especially in the ones of the planar type is not a technical necessity for the general proof of renormalization and gauge independence. It is shown that all necessary identities for Green's functions and for one-particle-irreducible vertices arise in a completely ghost-free formulation as well
Nonlocal hidden variables and nonlocal gauge theories
International Nuclear Information System (INIS)
Boiteux, M.
1984-01-01
A possible unification of classical fundamental interactions together with quantum interactions is proposed, based on an extension of the concept of local gauge invariance to a nonlocal gauge invariance. As an example this new concept is developed for the particular case of the electromagnetic field. (Auth.)
Family gauge symmetry from a composite model
International Nuclear Information System (INIS)
Zhou, B.R.; Chang, C.H.; Princeton Univ., NJ
1983-01-01
A family gauge symmetry SUsup(F)(2) could emerge from a composite model of quarks and leptons under some assumptions of chiral hyperflavor symmetry-breaking pattern. Possible dynamical mechanisms which break the family and electroweak gauge group and produce quark-lepton masses are indicated and their phenomenologies are discussed qualitatively. (orig.)
Unified gauge theories with spontaneous symmetry breaking
International Nuclear Information System (INIS)
MacDowell, S.W.
1975-01-01
Unified gauge theories with spontaneous symmetry breaking are studied with a view to renormalize quantum field theory. Georgi-Glashow and Weinberg-Salam models to unify weak and electromagnetic interactions are discussed in detail. Gauge theories of strong interactions are also considered [pt
On the gauge dependence of spontaneous symmetry breaking in gauge theories
International Nuclear Information System (INIS)
Nielsen, N.K.
1975-01-01
The Ward-Takahashi identities for scalar electrodynamics in Fermi gauges are shown to imply a homogeneous first-order partial differential equation for the effective potential involving only the gauge parameter and the external scalar field. Spontaneous symmetry breaking is consequently a gauge-invariant phenomenon. Also observable quantities, including masses, physical coupling constants, and S-matrix elements, of a theory with spontaneous symmetry breaking are found to be invariant, if a change in the gauge parameter is accompanied by a suitable change in the ground-state expectation value of the scalar field. The generalization to a non-Abelian gauge theory is briefly indicated. (Auth.)
Weyl gravity as a gauge theory
Trujillo, Juan Teancum
In 1920, Rudolf Bach proposed an action based on the square of the Weyl tensor or CabcdCabcd where the Weyl tensor is an invariant under a scaling of the metric. A variation of the metric leads to the field equation known as the Bach equation. In this dissertation, the same action is analyzed, but as a conformal gauge theory. It is shown that this action is a result of a particular gauging of this group. By treating it as a gauge theory, it is natural to vary all of the gauge fields independently, rather than performing the usual fourth-order metric variation only. We show that solutions of the resulting vacuum field equations are all solutions to the vacuum Einstein equation, up to a conformal factor---a result consistent with local scale freedom. We also show how solutions for the gauge fields imply there is no gravitational self energy.
Convexity, gauge-dependence and tunneling rates
Energy Technology Data Exchange (ETDEWEB)
Plascencia, Alexis D.; Tamarit, Carlos [Institute for Particle Physics Phenomenology, Durham University,South Road, DH1 3LE (United Kingdom)
2016-10-19
We clarify issues of convexity, gauge-dependence and radiative corrections in relation to tunneling rates. Despite the gauge dependence of the effective action at zero and finite temperature, it is shown that tunneling and nucleation rates remain independent of the choice of gauge-fixing. Taking as a starting point the functional that defines the transition amplitude from a false vacuum onto itself, it is shown that decay rates are exactly determined by a non-convex, false vacuum effective action evaluated at an extremum. The latter can be viewed as a generalized bounce configuration, and gauge-independence follows from the appropriate Nielsen identities. This holds for any election of gauge-fixing that leads to an invertible Faddeev-Popov matrix.
Quartz gauge response in ion radiation
International Nuclear Information System (INIS)
Taylor, P.E.; Gilbert, P.H.; Kernthaler, C.; Anderson, M.U.
1995-01-01
This paper describes recent work to make high quality quartz gauge (temporal and spatial) shock wave measurements in a pulsed ion beam environment. Intense ion beam radiation, nominally 1 MeV protons, was deposited into material samples instrumented with shunted quartz gauges adjacent to the ion deposition zone. Fluence levels were chosen to excite three fundamentally different material response modes (1) strong vapor, (2) combined vapor and melt phase and (3) thermoelastic material response. A unique quartz gauge design was utilized that employed printed circuit board (PCB) technology to facilitate electrical shielding, ruggedness, and fabrication at sign e meeting the essential one dimensional requirements of the characterized Sandia shunted quartz gauge. Shock loading and unloading experiments were conducted to evaluate the piezoelectric response of the coupled quartz gauge/PCB transducer. High fidelity shock wave profiles were recorded at the three ion fluence levels providing dynamic material response data for vapor, melt and solid material phases
A gauge/gravity relation in the one-loop effective action
International Nuclear Information System (INIS)
Basar, Goekce; Dunne, Gerald V
2010-01-01
We identify an unusual new gauge/gravity relation: the one-loop effective action for a massive spinor in 2n-dimensional AdS space is expressed in terms of precisely the same function (a certain multiple gamma function) as the one-loop effective action for a massive charged scalar in 4n dimensions in a maximally symmetric background electromagnetic field (one for which the eigenvalues of F μν are maximally degenerate, corresponding in four dimensions to a self-dual field, equivalently to a field of definite helicity), subject to the identification F 2 ↔Λ, where Λ is the gravitational curvature. Since these effective actions generate the low energy limit of all one-loop multi-leg graviton or gauge amplitudes, this implies a nontrivial gauge/gravity relation at the non-perturbative level and at the amplitude level. (fast track communication)
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
GPM GROUND VALIDATION RAIN GAUGES NASA ACHIEVE IPHEX V1
National Aeronautics and Space Administration — The GPM Ground Validation Rain Gauges NASA ACHIEVE IPHEx dataset includes data from the OSi Optical Rain Gauge (ORG815), and a standard tipping bucket rain gauge....
Matching of equivalent field regions
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen; Rengarajan, S.B.
2005-01-01
In aperture problems, integral equations for equivalent currents are often found by enforcing matching of equivalent fields. The enforcement is made in the aperture surface region adjoining the two volumes on each side of the aperture. In the case of an aperture in a planar perfectly conducting...... screen, having the same homogeneous medium on both sides and an impressed current on one aide, an alternative procedure is relevant. We make use of the fact that in the aperture the tangential component of the magnetic field due to the induced currents in the screen is zero. The use of such a procedure...... shows that equivalent currents can be found by a consideration of only one of the two volumes into which the aperture plane divides the space. Furthermore, from a consideration of an automatic matching at the aperture, additional information about tangential as well as normal field components...
Equivalent linearization of nonlinear forces
Meng, Guang; Xue, Zhongqing
1987-07-01
A method used for equivalent linearization of the two orthogonal squeeze-film forces is extended here to the general case of n degrees of freedom and n components of nonlinear forces, and the expressions for equivalent linear coefficients are derived. Nonlinear forces can be linearized by the methods of Fourier expansion, active and reactive powers, or mean-square error. The n components of nonlinear forces can all be expressed formally as the sum of an average force, a linear spring force, and a linear damping force. This paper also gives a flow chart for calculating the steady-state responses of a nonlinear system with many degrees of freedom, using the method of equivalent linearization. The resulting saving in computation time is demonstrated by a numerical example of a flexible rotor-bearing system with a noncentralized squeeze-film damper.
Takashina, Hirotsugu; Watanabe, Akira; Tsuneoka, Hiroshi
2015-01-01
The purpose of this study was to investigate postoperative intraocular pressure (IOP) in cases of silicone oil (SO) removal when using 25-gauge transconjunctival sutureless vitrectomy (TSV) with oblique incisions. We enrolled ten consecutive eyes with SO removal (SO group) and eleven consecutive eyes with idiopathic epiretinal membrane (ERM) as the initial vitrectomy (ERM group) in cases using 25-gauge TSV with oblique incisions. Postoperative IOPs were compared between the two groups at each of the four examination periods. No significant differences were identified in any of the periods examined. The use of 25-gauge TSV with oblique incisions resulted in almost equivalent postoperative IOPs between cases with SO removal and idiopathic ERM as the initial operation. Self-sealing sclerotomy in 25-gauge TSV with oblique incisions may primarily involve the valve architecture, and be complemented by vitreous incarceration.
Gauge field entanglement in Kitaev's honeycomb model
Dóra, Balázs; Moessner, Roderich
2018-01-01
A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.
Electronic design of air dust concentration gauge
International Nuclear Information System (INIS)
Machaj, B.; Strzalkowski, J.; Krawczynska, B.
1993-01-01
A new version of isotope dust concentration gauge for monitoring airborne dust pollution of air employs a ready made personal computer as the control and processing unit in the gauge instead of specialized electronics. That solution of the gauge reduces the needed specialized electronics to a simple computer interface coupling the computer to the measuring head. This also reduced electronics of the measuring head itself, i.e. GM detector circuit, power supplies and electronic circuits to switch on/off driving motors. The functioning and operation of the gauge is controlled by the computer program that can be easily modified if needed. The computer program for the gauge enables automatic measurements of dust concentration. Up to fifty measuring cycles can be easily programmed for a day. The results of measurements are presented in the form of data collection, diagram of dust concentration distribution during one day, diagram of dust distribution during 30 successive days or diagram of average dust concentration distribution during a day which may be computed by combining data of the selected number of measurements. Recalibration of the gauge and checking up of the gauge are also carried out under the program control. (author). 6 refs, 9 figs
Holographic gauge mediation via strongly coupled messengers
International Nuclear Information System (INIS)
McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske
2010-01-01
We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.
Attainment of radiation equivalency principle
International Nuclear Information System (INIS)
Shmelev, A.N.; Apseh, V.A.
2004-01-01
Problems connected with the prospects for long-term development of the nuclear energetics are discussed. Basic principles of the future large-scale nuclear energetics are listed, primary attention is the safety of radioactive waste management of nuclear energetics. The radiation equivalence principle means close of fuel cycle and management of nuclear materials transportation with low losses on spent fuel and waste processing. Two aspects are considered: radiation equivalence in global and local aspects. The necessity of looking for other strategies of fuel cycle management in full-scale nuclear energy on radioactive waste management is supported [ru
Analogue of the Witten effect in the Poincare gauge theory of gravity
International Nuclear Information System (INIS)
Mielke, E.W.
1985-03-01
The gravitational contribution to the chiral anomaly is analysed in the framework of the Poincare gauge theory. It is shown that an additional CP-violating term 8*RR in the effective Lagrangian is equivalent to a shift in the mass of the Taub-NUT metric as felt by fermions. This analogue of the Witten effect is discussed in conjunction with the appearance of torsion in recently found exact solutions. (author)
Vortices and monopole distributions in Z(2) x SO(3) lattice gauge theory
Energy Technology Data Exchange (ETDEWEB)
Alexandru, Andrei; Haymaker, Richard W
2001-03-01
We examine the occurrence of Z(2) and SO(3) vorticies and monopole distributions in the neighborhood of Wilson loops. We use the Tomboulis formulation, equivalent to the Wilson action, in which the links are invariant under Z(2) transformations and new plaquette variables carry the Z(2) degrees of freedom. This gives new gauge invariant observables to help gain insight into the area law and structure of the flux tube.
A thin-collector Bayard-Alpert gauge for 10-12 Torr vacuum
International Nuclear Information System (INIS)
Hseuh, H.C.; Lanni, C.
1986-01-01
The changes in the sensitivity (S) and the equivalent X-ray limit (P/sub x/) of several Bayard-Alpert gauges (BAGs) were studied when the size of the collectors was reduced from 125 μ to 50 μ and when different mounting envelopes were used. Based on this study, 400 custom BAGs with 50 μ collector were purchased from a vendor. The S and the P/sub x/ of these thin-collector BAGs were also measured
Gauge theory of phase and scale
PAW\\LOWSKI, Marek
1999-01-01
Old Weyl's the idea of scale recalibration freedom and Infeld's and van der Waerden's (IW) ideas concerning geometrical interpretation of natural spinor phase gauge symmetry are discussed in the context of modern models of fundamental particle interactions. It is argued that (IW) gauge symmetry can be naturaly identified with the U(1) symmetry of the Weinberg-Salam model. It is also argued that there are no serious reasons to reject Weyl's gauge the...
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Models and mechanisms in gauge theories
International Nuclear Information System (INIS)
Polyakov, A.M.
1979-01-01
Several pieces of information concerning the dynamics of gauge theories are presented. Gauge fields are used for the construction of QCD and QFD. In both cases the most important question is what phases are realized if the gauge group is given. Different possibilities are known: confinement, total spontaneous breakdown, partial spontaneous breakdown and their combinations. Some unknown options also are not excluded. At the moment we have some superficial understanding of the qualitative features of different phases, but we do not know under what circumstances this or that phase is realized
Supersymmetric quiver gauge theories on the lattice
International Nuclear Information System (INIS)
Joseph, Anosh
2013-12-01
In this paper we detail the lattice constructions of several classes of supersymmetric quiver gauge theories in two and three Euclidean spacetime dimensions possessing exact supersymmetry at finite lattice spacing. Such constructions are obtained through the methods of topological twisting and geometric discretization of Euclidean Yang-Mills theories with eight and sixteen supercharges in two and three dimensions. We detail the lattice constructions of two-dimensional quiver gauge theories possessing four and eight supercharges and three-dimensional quiver gauge theories possessing eight supercharges.
Design of control system for profile gauge
International Nuclear Information System (INIS)
Huang Yibin; Zhang Yu'ai
2013-01-01
The profile gauge can on-line get the cross section in the steel strip, so it has been widely used in hot continuous rolling production-line. The structure of profile gauge and its distributed hardware structure based on PLC and software design of its control subsystem were introduced. The method of temperature and humidity measurement was analyzed. The time response of X-ray machine control based on RS232 communication was researched. It is proved that the control system meets the requirements of the profile gauge system. (authors)
Expanding the Bethe/Gauge dictionary
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
Quantum Geometry and Quiver Gauge Theories
Nekrasov, Nikita; Pestun, Vasily; Shatashvili, Samson
2018-01-01
We study macroscopically two dimensional N}=(2,2)} supersymmetric gauge theories constructed by compactifying the quiver gauge theories with eight supercharges on a product T}d × R2_{ɛ of a d-dimensional torus and a two dimensional cigar with {Ω} -deformation. We compute the universal part of the effective twisted superpotential. In doing so we establish the correspondence between the gauge theories and the Yangian Y_{ɛ}(g_{Γ}), quantum affine algebra U^{aff_q(g_{Γ}), or the quantum elliptic algebra U^{ell}_{q,p}(g_{Γ}) associated to Kac-Moody algebra g_{Γ} for quiver Γ.
Constraints on Gauge Field Production during Inflation
DEFF Research Database (Denmark)
Nurmi, Sami; Sloth, Martin Snoager
2014-01-01
In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum...... of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton...
Gauge Fields as Composite Boundary Excitations
Ferrara, Sergio; Ferrara, Sergio; Fronsdal, Christian
1998-01-01
We investigate representations of the conformal group that describe "massless" particles in the interior and at the boundary of anti-de Sitter space. It turns out that massless gauge excitations in anti-de Sitter are gauge "current" operators at the boundary. Conversely, massless excitations at the boundary are topological singletons in the interior. These representations lie at the threshold of two "unitary bounds" that apply to any conformally invariant field theory. Gravity and Yang-Mills gauge symmetry in anti-De Sitter is translated to global translational symmetry and continuous R-symmetry of the boundary superconformal field theory.
Electroweak Measurements with Multiple Gauge Boson Interactions
Sood, Alexander; The ATLAS collaboration
2014-01-01
These proceedings present measurements from ATLAS and CMS using proton-proton collisions with center-of-mass energies of 7 TeV and 8 TeV at the LHC that are sensitive to interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW Z production, and $VV^{\\prime}$ cross sections where $V=W,Z$ and $V^{\\prime}=W,Z,γ$, while $\\gamma\\gamma \\rightarrow WW$, $WV\\gamma$ where $V=W,Z$, and $W^{\\pm}W^{\\pm}jj$ production are presented as probes of quartic gauge couplings.
Group theory and lattice gauge fields
International Nuclear Information System (INIS)
Creutz, M.
1988-09-01
Lattice gauge theory, formulated in terms of invariant integrals over group elements on lattice bonds, benefits from many group theoretical notions. Gauge invariance provides an enormous symmetry and powerful constraints on expectation values. Strong coupling expansions require invariant integrals over polynomials in group elements, all of which can be evaluated by symmetry considerations. Numerical simulations involve random walks over the group. These walks automatically generate the invariant group measure, avoiding explicit parameterization. A recently proposed overrelaxation algorithm is particularly efficient at exploring the group manifold. These and other applications of group theory to lattice gauge fields are reviewed in this talk. 17 refs
The static quark potential from the gauge independent Abelian decomposition
Cundy, Nigel; Cho, Y. M.; Lee, Weonjong; Leem, Jaehoon
2015-06-01
We investigate the relationship between colour confinement and the gauge independent Cho-Duan-Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are responsible for
Large gauge symmetries and asymptotic states in QED
Energy Technology Data Exchange (ETDEWEB)
Gabai, Barak; Sever, Amit [School of Physics and Astronomy, Tel Aviv University,Ramat Aviv 69978 (Israel)
2016-12-19
Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles’ momenta and may be associated to the vacuum. The soft theorem’s manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.
Comments on field equivalence principles
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen
1987-01-01
It is pointed Out that often-used arguments based on a short-circuit concept in presentations of field equivalence principles are not correct. An alternative presentation based on the uniqueness theorem is given. It does not contradict the results obtained by using the short-circuit concept...
On the Einstein equivalence principle
International Nuclear Information System (INIS)
Gabriel, M.D.
1989-01-01
The Einstein equivalence principle, the cornerstone of our present day understanding of gravity, is used to explore a deeper connection between the deflection of starlight by a spinning object and the Lense-Thirring dragging of inertial frames. It is also noted that experiment has not established that the gravitomagnetic coupling to currents of particle rest-mass energy, to currents of electromagnetic energy, and to currents of all other types of energy are identical as predicted by the Einstein equivalence principle. The detailed analysis of how atomic physics experiments originated by Hughes and by Drever can constrain such possible violations of the Einstein equivalence principle is given. Atomic clocks are also important tools used to test local Lorentz invariance and hence one important aspect of Einstein equivalence principle. The sensitivity of atomic clocks to preferred-frame effects is studied here for the first time, and the behavior of the hydrogen-maser clocks of the Gravity Probe A experiment is analyzed to illustrate use of the techniques involved
Evolution of water equivalent phantoms
International Nuclear Information System (INIS)
Yabutani, Toshimine; Ida, Yoshihiro; Sawada, Takeshi
1998-01-01
In radiation therapy, the dose absorbed by the target tissue needs to be extremely accurate. In order to obtain the target absorbed dose, radiation dose measurements are performed using a phantom instead of the patient's body, because the target absorbed dose cannot be directly measured. Although water is the best human muscle equivalent phantom, it is not useful for this purpose. Therefore, water equivalent solid phantoms are usually used for the measurements. We compared the following water equivalent solid phantoms for water: Tough water phantom, 457 Solid water phantom, RW-3, Mix-DP, polystyrene resin, polyethylene resin, and acrylic resin. The measurements obtained were ionization current in the phantoms as determined by ionization chamber, tissue-maximum ratio, transmission measurements in water with and without the phantoms, Hounsfield units of the phantoms for uniformity of inside phantoms as determined by computed tomography, and accuracy of the phantoms. Results showed the phantoms to be almost equivalent to water, except for the acrylic resin phantom. However, the phantoms had various characteristics that affected accuracy, and the phantoms underwent change with time. Measurement error was caused by the characteristics of the phantoms. Therefore, it is important to measure the calibration coefficient of phantoms for water, regardless of what is stated on paper. (author)
Gauge copies in the Landau-DeWitt gauge: A background invariant restriction
Dudal, David; Vercauteren, David
2018-04-01
The Landau background gauge, also known as the Landau-DeWitt gauge, has found renewed interest during the past decade given its usefulness in accessing the confinement-deconfinement transition via the vacuum expectation value of the Polyakov loop, describable via an appropriate background. In this Letter, we revisit this gauge from the viewpoint of it displaying gauge (Gribov) copies. We generalize the Gribov-Zwanziger effective action in a BRST and background invariant way; this action leads to a restriction on the allowed gauge fluctuations, thereby eliminating the infinitesimal background gauge copies. The explicit background invariance of our action is in contrast with earlier attempts to write down and use an effective Gribov-Zwanziger action. It allows to address certain subtleties arising in these earlier works, such as a spontaneous and thus spurious Lorentz symmetry breaking, something which is now averted.
Cha, Dong Min; Woo, Se Joon; Park, Kyu Hyung; Chung, Hum
2013-06-01
To compare the incidence of intraoperative iatrogenic peripheral retinal breaks (IPRBs) during 23-gauge transconjunctival sutureless vitrectomy (TSV) and conventional 20-gauge vitrectomy for various indications. This was a single-center, comparative, retrospective, interventional case series of 973 23-gauge TSVs and 402 conventional 20-gauge vitrectomies done by two surgeons between January 2004 and December 2009. The incidence rate of intraoperative IPRBs and risk factors were analyzed in association with various clinical and surgical factors. IPRBs occurred significantly less often during 23-gauge TSV (16 of 973 cases, 1.6 %) than during conventional vitrectomy (25 of 402 cases, 6.2 %, Pgauge TSV procedure with the trocar system has a lower incidence of intraoperative IPRBs than conventional 20-gauge vitrectomy. Longer operation time and induction of PVD are also independent risk factors of the complication.
Gauge/string duality in confining theories
International Nuclear Information System (INIS)
Edelstein, J.D.; Portugues, R.
2006-01-01
This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Constraints on gauge field production during inflation
International Nuclear Information System (INIS)
Nurmi, Sami; 3-Origins, Centre for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark))" data-affiliation=" (CP3-Origins, Centre for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark))" >Sloth, Martin S.
2014-01-01
In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton and the magnetic field defined by the gauge field. We then demonstrate that in a very general class of models, the bispectrum induced by the cross correlation between the inflaton and the magnetic field can be dominating compared with the non-Gaussianity induced by magnetic fields when the cross correlation between the magnetic field and the inflaton is ignored
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Muon number nonconservation in gauge theories
International Nuclear Information System (INIS)
Cheng, T.P.; Li, L.F.
1977-01-01
The question of separate conservation of muon and electron number is considered in the context of unified gauge theories of weak and electromagnetic interactions. Theories with heavy neutral leptons, Higgs scalars, and doubly charged heavy leptons are discussed. 28 references
Gauge/string duality and hadronic physics
Boschi-Filho, Henrique; Braga, Nelson R. F.
2006-01-01
We review some recent results on phenomenological approaches to strong interactions inspired in gauge/string duality. In particular, we discuss how such models lead to very good estimates for hadronic masses.
Pyrolytic graphite gauge for measuring heat flux
Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)
2002-01-01
A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.
Analytic stochastic regularization in fermionic gauge theories
International Nuclear Information System (INIS)
Abdalla, E.; Viana, R.L.
1987-11-01
We analyse the influence of the Analytic Stochastic Regularization method in gauge symmetry, evaluating the 1-loop photon propagator correction for spinor QED. Consequences in the non-abelian case are discussed. (author) [pt
Gauge/string duality in confining theories
Energy Technology Data Exchange (ETDEWEB)
Edelstein, J.D. [Departamento de Fi sica de Particulas, Universidade de Santiago de Compostela and Instituto Galego de Fisica de Altas Enerxias (IGFAE), 15782 Santiago de Compostela (Spain); Instituto de Fisica de La Plata (IFLP), Universidad Nacional de La Plata, La Plata (Argentina); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Portugues, R. [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)
2006-07-03
This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Quantum Critical Behaviour of Semisimple Gauge Theories
DEFF Research Database (Denmark)
Kamuk Esbensen, Jacob; Ryttov, Thomas A.; Sannino, Francesco
2016-01-01
We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU......(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...
Gauge invariance and Weyl-polymer quantization
Strocchi, Franco
2016-01-01
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...
Development of unified gauge theories: retrospect
International Nuclear Information System (INIS)
Lee, B.W.
1977-01-01
The construction and development of unified gauge theory of weak, electromagnetic, and strong interactions is reviewed. The Weinberg and Lee contributions to this study are mainly considered as personal recollections
Algebraic formulation of higher gauge theory
Zucchini, Roberto
2017-06-01
In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.
Radiation protection programme for nuclear gauges
International Nuclear Information System (INIS)
Muzongomerwa, A.
2014-04-01
Ionizing radiation including the use of nuclear gauges can be very hazardous to humans and steps must be taken to minimize the risks so as to prevent deterministic effects and limiting chances for stochastic effects. The availability of a Radiation Protection Programme and its effective implementation ensures appropriate safety and security provisions for sealed radiation sources and promotes a safety culture within a facility that utilizes these sources. This study aims at establishing a guide on the radiation protection programme in nuclear gauges that comply with national requirements derived from current international recommendations. Elements that form part of a radiation protection programme are covered in detail as well as recommendations. The overall objective is to protect people (operators and the public) and the environment from the harmful effects of these sources if they are not properly controlled. Nuclear gauges for well logging and X-ray based gauges are outside the scope of this study. (au)
The gauge invariance of macroscopic electrodynamics
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
It is shown that the group of gauge transformations in electrodynamics is larger than that described in textbooks and literature. The proof rests on new representation of electromagnetic fields in terms of potentials. (author)
Monopoles, Abelian projection, and gauge invariance
International Nuclear Information System (INIS)
Bonati, Claudio; Di Giacomo, Adriano; Lepori, Luca; Pucci, Fabrizio
2010-01-01
A direct connection is proved between the non-Abelian Bianchi Identities (NABI's) and the Abelian Bianchi identities for the 't Hooft tensor. As a consequence, the existence of a nonzero magnetic current is related to the violation of the NABI's and is a gauge-invariant property. The construction allows us to show that not all Abelian projections can be used to expose monopoles in lattice configurations: each field configuration with nonzero magnetic charge identifies its natural projection, up to gauge transformations which tend to unity at large distances. It is shown that the so-called maximal-Abelian gauge is a legitimate choice. It is also proven, starting from the NABI, that monopole condensation is a physical gauge-invariant phenomenon, independent of the choice of the Abelian projection.
Higher spin gauge theories in any dimension
International Nuclear Information System (INIS)
Vasiliev, M.A.
2004-01-01
Some general properties of higher spin (HS) gauge theories are summarized, with the emphasize on the nonlinear theories in any dimension. The main conclusion is that nonlinear HS theories exist in any dimension. Note that HS gauge symmetries in the nonlinear HS theory differ from the Yang-Mills gauging of the global HS symmetry of a free theory one starts with by HS field strength dependent nonlinear corrections resulting from the partial gauge fixing of spontaneously broken HS symmetries in the extended non-commutative space. The HS geometry is that of the fuzzy hyperboloid in the auxiliary (fiber) non-commutative space. Its radius depends on the Weyl 0-forms which take values in the infinitive-dimensional module dual to the space of single-particle states in the system
Phil Anderson and Gauge Symmetry Breaking
Witten, Edward
In this article, I describe the celebrated paper that Phil Anderson wrote in 1962 with early contributions to the idea of gauge symmetry breaking in particle physics. To set the stage, I describe the work of Julian Schwinger to which Anderson was responding, and also some of Anderson's own work on superconductivity that provided part of the context. After describing Anderson's work I describe the later work of others, leading to the modern understanding of gauge symmetry breaking in weak interactions...
Gauge choice in Witten's energy expression
International Nuclear Information System (INIS)
Parker, T.H.
1985-01-01
Witten's equation Dpsi=0 can be interpreted as a gauge fixing condition for classical supergravity. We rigorously prove the existence of asymptotically constant solutions of the more general gauge condition Dpsi=Apsi for almost all endomorphisms A of the spin bundle. Each gives an expression for the gravitational energy similar to Witten's. These include the choice A=√R, which yields the particularly elegant energy expression first noticed by Deser. (orig.)
Semiconductor Laser Tracking Frequency Distance Gauge
Phillips, James D.; Reasenberg, Robert D.
2009-01-01
Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require a spaceworthy laser distance gauge of substantially improved performance. The Tracking Frequency Gauge (TFG) uses a single beam, locking a laser to the measurement interferometer. We have demonstrated this technique with pm (10(exp -12) m) performance. We report on the version we are now developing based on space-qualifiable, fiber-coupled distributed-feedback semiconductor lasers.
Gauge Theory on a Quantum Phase Space
Alvarez-Gaumé, Luís; Alvarez-Gaume, Luis; Wadia, Spenta R.
2001-01-01
In this note we present a operator formulation of gauge theories in a quantum phase space which is specified by a operator algebra. For simplicity we work with the Heisenberg algebra. We introduce the notion of the derivative (transport) and Wilson line (parallel transport) which enables us to construct a gauge theory in a simple way. We illustrate the formulation by a discussion of the Higgs mechanism and comment on the large N masterfield.
Gauge structures induced on curved manifolds
International Nuclear Information System (INIS)
Fujii, K.; Chepilko, N.M.
1997-01-01
The purpose of the present talk are i) to summarize the features of the induced gauge structure appearing in CPA to one-particle motion on M n embedded in R p with p ≥n+2, ii) to show concretely the relation of the induced gauge field in CPA with that generated on S p-1 [is implied by R p ], and iii) ti give some remarks on some extension as well as possible applications
Parity Violation by a Dark Gauge Boson
Lee, Hye-Sung
2014-01-01
We overview the dark parity violation, which means the parity violation induced by a dark gauge boson of very small mass and coupling. When a dark gauge boson has an axial coupling, as in dark Z model, it can change the effective Weinberg angle in the low-energy experiments such as the atomic parity violation and the low-Q^2 polarized electron scatterings. Such low-energy parity tests are an excellent probe of the dark force.
Quantum communication, reference frames, and gauge theory
International Nuclear Information System (INIS)
Enk, S. J. van
2006-01-01
We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model
Gauge field theories: various mathematical approaches
Jordan, François; Serge, Lazzarini; Thierry, Masson
2014-01-01
This paper presents relevant modern mathematical formulations for (classical) gauge field theories, namely, ordinary differential geometry, noncommutative geometry, and transitive Lie algebroids. They provide rigorous frameworks to describe Yang-Mills-Higgs theories or gravitation theories, and each of them improves the paradigm of gauge field theories. A brief comparison between them is carried out, essentially due to the various notions of connection. However they reveal a compelling common...
Gauged supergravities in various spacetime dimensions
Energy Technology Data Exchange (ETDEWEB)
Weidner, M.
2006-12-15
In this thesis we study the gaugings of extended supergravity theories in various space-time dimensions. These theories describe the low-energy limit of non-trivial string compactifications. For each theory under consideration we work out all possible gaugings that are compatible with supersymmetry. They are parameterized by the so-called embedding tensor which is a group theoretical object that has to satisfy certain representation constraints. This embedding tensor determines all couplings in the gauged theory that are necessary to preserve gauge invariance and supersymmetry. The concept of the embedding tensor and the general structure of the gauged supergravities are explained in detail. The methods are then applied to the half-maximal (N=4) supergravities in d=4 and d=5 and to the maximal supergravities in d=2 and d=7. Examples of particular gaugings are given. Whenever possible, the higher-dimensional origin of these theories is identified and it is shown how the compactification parameters like fluxes and torsion are contained in the embedding tensor. (orig.)
International Nuclear Information System (INIS)
Lee, Kanghoon; Strickland-Constable, Charles; Waldram, Daniel
2017-01-01
We discuss the possible realisation in string/M theory of the recently discovered family of four-dimensional maximal SO(8) gauged supergravities, and of an analogous family of seven-dimensional half-maximal SO(4) gauged supergravities. We first prove a no-go theorem that neither class of gaugings can be realised via a compactification that is locally described by ten- or eleven-dimensional supergravity. In the language of Double Field Theory and its M theory analogue, this implies that the section condition must be violated. Introducing the minimal number of additional coordinates possible, we then show that the standard S 3 and S 7 compactifications of ten- and eleven-dimensional supergravity admit a new class of section-violating generalised frames with a generalised Lie derivative algebra that reproduces the embedding tensor of the SO(4) and SO(8) gaugings respectively. The physical meaning, if any, of these constructions is unclear. They highlight a number of the issues that arise when attempting to apply the formalism of Double Field Theory to non-toroidal backgrounds. Using a naive brane charge quantisation to determine the periodicities of the additional coordinates restricts the SO(4) gaugings to an infinite discrete set and excludes all the SO(8) gaugings other than the standard one. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Lee, Kanghoon [Quantum Universe Center, Korea Institute for Advanced Study, Seoul (Korea, Republic of); Strickland-Constable, Charles [Institut de Physique Theorique, Universite Paris Saclay, CEA, CNRS, Gif-sur-Yvette (France); Waldram, Daniel [Department of Physics, Imperial College London (United Kingdom); Berkeley Center for Theoretical Physics, University of California, Berkeley, CA (United States)
2017-10-15
We discuss the possible realisation in string/M theory of the recently discovered family of four-dimensional maximal SO(8) gauged supergravities, and of an analogous family of seven-dimensional half-maximal SO(4) gauged supergravities. We first prove a no-go theorem that neither class of gaugings can be realised via a compactification that is locally described by ten- or eleven-dimensional supergravity. In the language of Double Field Theory and its M theory analogue, this implies that the section condition must be violated. Introducing the minimal number of additional coordinates possible, we then show that the standard S{sup 3} and S{sup 7} compactifications of ten- and eleven-dimensional supergravity admit a new class of section-violating generalised frames with a generalised Lie derivative algebra that reproduces the embedding tensor of the SO(4) and SO(8) gaugings respectively. The physical meaning, if any, of these constructions is unclear. They highlight a number of the issues that arise when attempting to apply the formalism of Double Field Theory to non-toroidal backgrounds. Using a naive brane charge quantisation to determine the periodicities of the additional coordinates restricts the SO(4) gaugings to an infinite discrete set and excludes all the SO(8) gaugings other than the standard one. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Gauge theory loop operators and Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-10-15
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Compactification of gauge theories and the gauge invariance of massive modes
Energy Technology Data Exchange (ETDEWEB)
Amorim, R.; Barcelos-Neto, J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
2002-03-01
We study the gauge invariance of the massive modes in the compactification of gauge theories from D = 5 to D = 4. We deal with Abelian gauge theories of rank one and two, and with non-Abelian ones of rank one. We show that Stueckelberg fields naturally appear in the compactification mechanism, contrarily to what usually occurs in literature where they are introduced by hand, as a trick, to render gauge invariance for massive theories. We also show that in the non-Abelian case they appear in a very different way when compared with their usual implementation in the non-Abelian Proca model. (author)
Comparing the Rξ gauge and the unitary gauge for the standard model: An example
Directory of Open Access Journals (Sweden)
Tai Tsun Wu
2017-01-01
Full Text Available For gauge theory, the matrix element for any physical process is independent of the gauge used. However, since this is a formal statement, it does not guarantee this gauge independence in every case. An example is given here where, for a physical process in the standard model, the matrix elements calculated with two different gauge – the Rξ gauge and the unitary gauge – are explicitly verified to be different. This is accomplished by subtracting one matrix element from the other. This non-zero difference turns out to have a subtle origin. Two simple operators are found not to commute with each other: in one gauge these two operations are carried out in one order, while in the other gauge these same two operations are carried out in the opposite order. Because of this result, a series of question are raised such that the answers to these question may lead to a deeper understanding of the Yang–Mills non-Abelian gauge theory in general and the standard model in particular.
... Spondylolisthesis BLOG FIND A SPECIALIST Treatments Artificial Disc Replacement (ADR) Patient Education Committee Jamie Baisden The disc ... Disc An artificial disc (also called a disc replacement, disc prosthesis or spine arthroplasty device) is a ...
Trends in Artificial Intelligence.
Hayes, Patrick
1978-01-01
Discusses the foundations of artificial intelligence as a science and the types of answers that may be given to the question, "What is intelligence?" The paradigms of artificial intelligence and general systems theory are compared. (Author/VT)
Artificial Hydration and Nutrition
... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...
27 CFR 19.454 - Gauge for denaturation.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gauge for denaturation. 19... Denaturation § 19.454 Gauge for denaturation. The proprietor shall gauge spirits before denaturation and after denaturation and record each gauge on the record of denaturation as prescribed in § 19.752(b). However, spirits...
27 CFR 19.517 - Gauge for tax determination.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gauge for tax... on Determination and Payment of Tax § 19.517 Gauge for tax determination. (a) Packages. When spirits... individual package gauge, each package shall be gauged unless the tax is to be determined on the production...
46 CFR 154.1315 - Restricted gauge excess flow valve.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Restricted gauge excess flow valve. 154.1315 Section 154... Equipment Instrumentation § 154.1315 Restricted gauge excess flow valve. Each restricted gauge that penetrates a cargo tank must have an excess flow valve unless the gauge meets § 154.536. ...
27 CFR 19.769 - Package gauge record.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Package gauge record. 19... Package gauge record. When required by this part and Part 28, a record shall be prepared to document the gauge of packages of spirits and to convey information on package gauges. The following information...
27 CFR 26.302 - Gauge and certification.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gauge and certification... Custody to Internal Revenue Bond § 26.302 Gauge and certification. (a) Gauge. If Virgin Islands spirits to... gauged by an insular gauger at the time of their withdrawal from an insular bonded warehouse, as provided...
27 CFR 19.92 - When gauges are required.
2010-04-01
... Gauging of Spirits, Wines Or Alcoholic Flavoring Materials § 19.92 When gauges are required. (a) Initial proof. Except for a gauge required by § 19.383 or § 19.517 or in any case where the proof changes as a..., wine, or eligible flavors may be used whenever a subsequent gauge is required by this part to be made...
49 CFR 230.42 - Location of gauges.
2010-10-01
..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.42 Location of gauges. Every boiler shall have at least one steam gauge which will correctly indicate the working pressure. The gauge shall be positioned so that it will be kept reasonably...
Equivalence of quantum field theories related by the θ -exact Seiberg-Witten map
Martin, Carmelo P.; Trampetić, Josip; You, Jiangyang
2016-08-01
The equivalence of the noncommutative U(N) quantum field theories related by the θ -exact Seiberg-Witten maps is, in this paper, proven to all orders in the perturbation theory with respect to the coupling constant. We show that this holds for super Yang-Mills theories with N =0 , 1, 2, 4 supersymmetry. A direct check of this equivalence relation is performed by computing the one-loop quantum corrections to the quadratic part of the effective action in the noncommutative U(1) gauge theory with N =0 , 1, 2, 4 supersymmetry.
The Source Equivalence Acceleration Method
International Nuclear Information System (INIS)
Everson, Matthew S.; Forget, Benoit
2015-01-01
Highlights: • We present a new acceleration method, the Source Equivalence Acceleration Method. • SEAM forms an equivalent coarse group problem for any spatial method. • Equivalence is also formed across different spatial methods and angular quadratures. • Testing is conducted using OpenMOC and performance is compared with CMFD. • Results show that SEAM is preferable for very expensive transport calculations. - Abstract: Fine-group whole-core reactor analysis remains one of the long sought goals of the reactor physics community. Such a detailed analysis is typically too computationally expensive to be realized on anything except the largest of supercomputers. Recondensation using the Discrete Generalized Multigroup (DGM) method, though, offers a relatively cheap alternative to solving the fine group transport problem. DGM, however, suffered from inconsistencies when applied to high-order spatial methods. While an exact spatial recondensation method was developed and provided full spatial consistency with the fine group problem, this approach substantially increased memory requirements for realistic problems. The method described in this paper, called the Source Equivalence Acceleration Method (SEAM), forms a coarse-group problem which preserves the fine-group problem even when using higher order spatial methods. SEAM allows recondensation to converge to the fine-group solution with minimal memory requirements and little additional overhead. This method also provides for consistency when using different spatial methods and angular quadratures between the coarse group and fine group problems. SEAM was implemented in OpenMOC, a 2D MOC code developed at MIT, and its performance tested against Coarse Mesh Finite Difference (CMFD) acceleration on the C5G7 benchmark problem and on a 361 group version of the problem. For extremely expensive transport calculations, SEAM was able to outperform CMFD, resulting in speed-ups of 20–45 relative to the normal power
Mueller, Ulrich; Grobman, K H.
2003-04-01
Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.
Equivalent statistics and data interpretation.
Francis, Gregory
2017-08-01
Recent reform efforts in psychological science have led to a plethora of choices for scientists to analyze their data. A scientist making an inference about their data must now decide whether to report a p value, summarize the data with a standardized effect size and its confidence interval, report a Bayes Factor, or use other model comparison methods. To make good choices among these options, it is necessary for researchers to understand the characteristics of the various statistics used by the different analysis frameworks. Toward that end, this paper makes two contributions. First, it shows that for the case of a two-sample t test with known sample sizes, many different summary statistics are mathematically equivalent in the sense that they are based on the very same information in the data set. When the sample sizes are known, the p value provides as much information about a data set as the confidence interval of Cohen's d or a JZS Bayes factor. Second, this equivalence means that different analysis methods differ only in their interpretation of the empirical data. At first glance, it might seem that mathematical equivalence of the statistics suggests that it does not matter much which statistic is reported, but the opposite is true because the appropriateness of a reported statistic is relative to the inference it promotes. Accordingly, scientists should choose an analysis method appropriate for their scientific investigation. A direct comparison of the different inferential frameworks provides some guidance for scientists to make good choices and improve scientific practice.
Absence of the Gribov ambiguity in a special algebraic gauge
Directory of Open Access Journals (Sweden)
Raval Haresh
2016-01-01
Full Text Available The Gribov ambiguity exists in various gauges except algebraic gauges. However in general, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We show that nontrivial copies can not occur in this gauge. We then provide an example of spherically symmetric gauge field configuration and prove that with a proper boundary condition on the configuration, this gauge removes the ambiguity on a compact manifold S3${{\\mathbb S}^3}$.
Absence of the Gribov ambiguity in a quadratic gauge
Energy Technology Data Exchange (ETDEWEB)
Raval, Haresh [Indian Institute of Technology, Bombay, Department of Physics, Mumbai (India)
2016-05-15
The Gribov ambiguity exists in various gauges. Algebraic gauges are likely to be ambiguity free. However, algebraic gauges are not Lorentz invariant, which is their fundamental flaw. In addition, they are not generally compatible with the boundary conditions on the gauge fields, which are needed to compactify the space i.e., the ambiguity continues to exist on a compact manifold. Here we discuss a quadratic gauge fixing, which is Lorentz invariant. We consider an example of a spherically symmetric gauge field configuration in which we prove that this Lorentz invariant gauge removes the ambiguity on a compact manifold S{sup 3}, when a proper boundary condition on the gauge configuration is taken into account. Thus, we provide one example where the ambiguity is absent on a compact manifold in the algebraic gauge. We also show that the BRST invariance is preserved in this gauge. (orig.)
Gauss decomposition, Wakimoto realisation and gauged WZNW models
International Nuclear Information System (INIS)
Arfaei, H.; Mohammedi, N.
1993-10-01
The implications of gauging the Wess-Zumino-Novikov-Witten (WZNW) model using the Gauss decomposition of the group elements are explored. We show that, contrary to standard gauging of WZNW models, this gauging is carried out by minimally coupling the gauge fields. We find that this gauging, in the case of gauging an abelian vector subgroup, differs from the standard one by terms proportional to the field strength of the gauge fields. We prove that gauging an abelian vector subgroup does not have a nonlinear sigma model interpretation. This is because the target-space metric resulting from the integration over the gauge fields is degenerate. We demonstrate, however, that this kind of gauging has a natural interpretation in terms of Wakimoto variables. (orig.)
artificial neural network (ann)
African Journals Online (AJOL)
2004-08-18
Aug 18, 2004 ... forecasting models and artificial intelligence techniques and have become one of the major research fields (Kher and Joshin, 2003). (a) Artificial Neural Network and Electrical Load. Prediction. Neural network analysis is an Artificial Intelligence. (AI) approach to mathematical modeling. Neural. Networks ...
International Nuclear Information System (INIS)
Kovtun, Pavel; Uensal, Mithat; Yaffe, Laurence G.
2005-01-01
In previous work, we found that necessary and sufficient conditions for large N c equivalence between parent and daughter theories, for a wide class of orbifold projections of U(N c ) gauge theories, are just the natural requirements that the discrete symmetry used to define the projection not be spontaneously broken in the parent theory, and the discrete symmetry permuting equivalent gauge group factors not be spontaneously broken in the daughter theory. In this paper, we discuss the application of this result to Z k projections of N=1 supersymmetric Yang-Mills theory in four dimensions, as well as various multiflavor generalizations. Z k projections with k>2 yielding chiral gauge theories violate the symmetry realization conditions needed for large N c equivalence, due to the spontaneous symmetry breaking of discrete chiral symmetry in the parent super-Yang-Mills theory. But for Z 2 projections, we show that previous assertions of large N c inequivalence, in infinite volume, between the parent and daughter theories were based on incorrect mappings of vacuum energies, theta angles, or connected correlators between the two theories. With the correct identifications, there is no sign of any inconsistency. A subtle but essential feature of the connection between parent and daughter theories involves multivaluedness in the mapping of theta parameters from parent to daughter
Equivalence relations of AF-algebra extensions
Indian Academy of Sciences (India)
In this paper, we consider equivalence relations of *-algebra extensions and describe the relationship between the isomorphism equivalence and the unitary equivalence. We also show that a certain group homomorphism is the obstruction for these equivalence relations to be the same.
Equivalence in bilingual lexicography: criticism and suggestions ...
African Journals Online (AJOL)
A reminder of general problems in the formation of terminology, as illustrated by the German Äquivalence (Eng. equivalence) and äquivalent (Eng. equivalent), is followed by a critical discussion of the concept of equivalence in contrastive lexicology. It is shown that especially the concept of partial equivalence is ...
21 CFR 26.9 - Equivalence determination.
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Equivalence determination. 26.9 Section 26.9 Food... Specific Sector Provisions for Pharmaceutical Good Manufacturing Practices § 26.9 Equivalence determination... document insufficient evidence of equivalence, lack of opportunity to assess equivalence or a determination...
Wijsman Orlicz Asymptotically Ideal -Statistical Equivalent Sequences
Directory of Open Access Journals (Sweden)
Bipan Hazarika
2013-01-01
in Wijsman sense and present some definitions which are the natural combination of the definition of asymptotic equivalence, statistical equivalent, -statistical equivalent sequences in Wijsman sense. Finally, we introduce the notion of Cesaro Orlicz asymptotically -equivalent sequences in Wijsman sense and establish their relationship with other classes.
Gauge-invariant fields and flow equations for Yang-Mills theories
Wetterich, C.
2017-01-01
We discuss the concept of gauge-invariant fields for non-abelian gauge theories. Infinitesimal fluctuations around a given gauge field can be split into physical and gauge fluctuations. Starting from some reference field the gauge-invariant fields are constructed by consecutively adding physical fluctuations. An effective action that depends on gauge-invariant fields becomes a gauge-invariant functional of arbitrary gauge fields by associating to every gauge field the corresponding gauge-inva...
Schwinger mechanism in linear covariant gauges
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2017-02-01
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of technical complexity. The kernel of this equation consists of fully dressed gluon propagators, for which recent lattice data are used as input, and of three-gluon vertices dressed by a single form factor, which is modeled by means of certain physically motivated Ansätze. The gauge-dependent terms contributing to this kernel impose considerable restrictions on the infrared behavior of the vertex form factor; specifically, only infrared finite Ansätze are compatible with the existence of nontrivial solutions. When such Ansätze are employed, the numerical study of the integral equation reveals a continuity in the type of solutions as one varies the gauge-fixing parameter, indicating a smooth departure from the Landau gauge. Instead, the logarithmically divergent form factor displaying the characteristic "zero crossing," while perfectly consistent in the Landau gauge, has to undergo a dramatic qualitative transformation away from it, in order to yield acceptable solutions. The possible implications of these results are briefly discussed.
General treatment of a non-linear gauge condition
International Nuclear Information System (INIS)
Malleville, C.
1982-06-01
A non linear gauge condition is presented in the frame of a non abelian gauge theory broken with the Higgs mechanism. It is shown that this condition already introduced for the standard SU(2) x U(1) model can be generalized for any gauge model with the same type of simplification, namely the suppression of any coupling of the form: massless gauge boson, massive gauge boson, unphysical Higgs [fr
Kim, Jee Taek; Eom, Youngsub; Ahn, Jaemoon; Kim, Seong-Woo; Huh, Kuhl
2014-01-01
To evaluate the usefulness of a 20-gauge cannula to maintain a self-sealing sclerotomy wound after 23-gauge phacofragmentation. This retrospective study compared the suture rates after 23-gauge phacofragmentation when the 23-gauge cannula was temporarily replaced with a 20-gauge valved metal cannula versus when the 23-gauge fragmatome was inserted at the sclerotomy site without a cannula. Whereas a sclerotomy was sutured in all 31 eyes in the without-cannula group, only one eye of 14 in the cannula group required a sclerotomy suture (P gauge metal cannula, but fragmatome tip fracture can occur during fragmentation. Copyright 2014, SLACK Incorporated.
Evaluation of 25-gauge Quincke and 24 — gauge Gertie Marx ...
African Journals Online (AJOL)
Objective: To compare the insertion characteristics and rate of complications between 25-gauge Quincke and 24-gauge Gertie Marx needles. Design: Prospective, randomized. Setting: University of Benin Teaching Hospital; a university-affiliated tertiary centre. Subjects: Parturients (ASA 1 and 2) scheduled for elective ...
Physical meaning of gauge and super-gauge in general-relativistic field theories
Energy Technology Data Exchange (ETDEWEB)
Treder, H.
1985-05-01
The physical meaning of gauge groups in bimetrical, Riemannian, and Hermitian theories of gravitation is discussed. In Hermitian relativity, Einstein's A-invariance means a super-gauge group which characterizes the Einstein-Schroedinger equations as the only nondegenerate general-relativistic field theory.
S-duality in N = 4 supersymmetric gauge theories with arbitrary gauge group
International Nuclear Information System (INIS)
Dorey, Nicholas; Fraser, Christophe; Hollowood, Timothy J.; Kneipp, Marco A.C.
1996-12-01
The Goddard, Nuyts and Olive conjecture for electric-magnetic duality in the Yang-Mills theory with an arbitrary gauge group G is extended by including a non-vanishing vacuum angle θ. This extended S-duality conjecture includes the case when the unbroken gauge group in non-Abelian and a definite prediction for the spectrum of dyons results. (author)
Topologically massive gauge theories and their dual factorized gauge-invariant formulation
International Nuclear Information System (INIS)
Bertrand, Bruno; Govaerts, Jan
2007-01-01
There exists a well-known duality between the Maxwell-Chern-Simons theory and the 'self-dual' massive model in (2 + 1) dimensions. This dual description may be extended to topologically massive gauge theories (TMGT) for forms of arbitrary rank and in any dimension. This communication introduces the construction of this type of duality through a reparametrization of the 'master' theory action. The dual action thereby obtained preserves the full gauge symmetry structure of the original theory. Furthermore, the dual action is factorized into a propagating sector of massive gauge-invariant variables and a decoupled sector of gauge-variant variables defining a pure topological field theory. Combining the results obtained within the Lagrangian and Hamiltonian formulations, a completed structure for a gauge-invariant dual factorization of TMGT is thus achieved. (fast track communication)
Entanglement entropy and nonabelian gauge symmetry
International Nuclear Information System (INIS)
Donnelly, William
2014-01-01
Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang–Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity. (paper)
Noncommutative gauge fields coupled to noncommutative gravity
Aschieri, Paolo; Castellani, Leonardo
2013-03-01
We present a noncommutative (NC) version of the action for vielbein gravity coupled to gauge fields. Noncommutativity is encoded in a twisted star -product between forms, with a set of commuting background vector fields defining the (abelian) twist. A first order action for the gauge fields avoids the use of the Hodge dual. The NC action is invariant under diffeomorphisms and star -gauge transformations. The Seiberg-Witten map, adapted to our geometric setting and generalized for an arbitrary abelian twist, allows to re-express the NC action in terms of classical fields: the result is a deformed action, invariant under diffeomorphisms and usual gauge transformations. This deformed action is a particular higher derivative extension of the Einstein-Hilbert action coupled to Yang-Mills fields, and to the background vector fields defining the twist. Here noncommutativity of the original NC action dictates the precise form of this extension. We explicitly compute the first order correction in the NC parameter of the deformed action, and find that it is proportional to cubic products of the gauge field strength and to the symmetric anomaly tensor D_{IJK}.
Entanglement entropy and nonabelian gauge symmetry
Donnelly, William
2014-11-01
Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang-Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity.
Gauge threshold corrections for local orientifolds
International Nuclear Information System (INIS)
Conlon, Joseph P.; Palti, Eran
2009-01-01
We study gauge threshold corrections for systems of fractional branes at local orientifold singularities and compare with the general Kaplunovsky-Louis expression for locally supersymmetric N = 1 gauge theories. We focus on branes at orientifolds of the C 3 /Z 4 , C 3 /Z 6 and C 3 /Z 6 ' singularities. We provide a CFT construction of these theories and compute the threshold corrections. Gauge coupling running undergoes two phases: one phase running from the bulk winding scale to the string scale, and a second phase running from the string scale to the infrared. The first phase is associated to the contribution of N = 2 sectors to the IR β functions and the second phase to the contribution of both N = 1 and N = 2 sectors. In contrast, naive application of the Kaplunovsky-Louis formula gives single running from the bulk winding mode scale. The discrepancy is resolved through 1-loop non-universality of the holomorphic gauge couplings at the singularity, induced by a 1-loop redefinition of the twisted blow-up moduli which couple differently to different gauge nodes. We also study the physics of anomalous and non-anomalous U(1)s and give a CFT description of how masses for non-anomalous U(1)s depend on the global properties of cycles.
Abelian 2-form gauge theory: special features
International Nuclear Information System (INIS)
Malik, R P
2003-01-01
It is shown that the four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theory provides an example of (i) a class of field theoretical models for the Hodge theory, and (ii) a possible candidate for the quasi-topological field theory (q-TFT). Despite many striking similarities with some of the key topological features of the two (1 + 1)-dimensional (2D) free Abelian (and self-interacting non-Abelian) gauge theories, it turns out that the 4D free Abelian 2-form gauge theory is not an exact TFT. To corroborate this conclusion, some of the key issues are discussed. In particular, it is shown that the (anti-)BRST and (anti-)co-BRST invariant quantities of the 4D 2-form Abelian gauge theory obey recursion relations that are reminiscent of the exact TFTs but the Lagrangian density of this theory is not found to be able to be expressed as the sum of (anti-)BRST and (anti-)co-BRST exact quantities as is the case with the topological 2D free Abelian (and self-interacting non-Abelian) gauge theories
Dynamical gauge coupling unification from moduli stabilization
International Nuclear Information System (INIS)
Choi, Kiwoon
2006-01-01
In D-brane models, different part of the 4-dimensional gauge group might originate from D-branes wrapping different cycles in the internal space, and then the standard model gauge couplings at the compactification scale are determined by different cycle-volume moduli. We point out that those cycle-volume moduli can naturally have universal vacuum expectation values up to small deviations suppressed by 1/8π 2 if they are stabilized by KKLT-type non-perturbative superpotential with properly chosen discrete parameters. This dynamical unification of gauge couplings is independent of the detailed form of the moduli Kahler potential, but relies crucially on the existence of low energy supersymmetry. If supersymmetry is broken by an uplifting brane as in KKLT compactification, again independently of the detailed form of the moduli Kahler potential, the moduli-mediated gaugino masses at the compactification scale are universal also, and are comparable to the anomaly-mediated gaugino masses. As a result, both the gauge coupling unification at high energy scale and the mirage mediation pattern of soft supersymmetry breaking masses are achieved naturally even when the different sets of the standard model gauge bosons originate from D-branes wrapping different cycles in the internal space
International Nuclear Information System (INIS)
Lee, H.C.; Milgram, M.S.
1984-07-01
A hybrid of dimensional and analytic regularization is used to regulate and uncover a Meijer's G-function representation for a class of massless, divergent Feynman integrals in an axial gauge. Integrals in the covariant gauge belong to a subclass and those in the light-cone gauge are reached by analytic continuation. The method decouples the physical ultraviolet and infrared singularities from the spurious axial gauge singularity but regulates all three simultaneously. For the axial gauge singularity, the new analytic method is more powerful and elegant than the old principal value prescription, but the two methods yield identical infinite as well as regular parts. It is shown that dimensional and analytic regularization can be made equivalent, implying that the former method is free from spurious γ5-anomalies and the latter preserves gauge invariance. The hybrid method permits the evaluation of integrals containing arbritrary integer powers of logarithms in the integrand by differentiation with respect to exponents. Such 'exponent derivatives' generate the same set of 'polylogs' as that generated in multi-loop integrals in perturbation theories and may be useful for solving equations in nonperturbation theories. The close relation between the method of exponent derivatives and the prescription of 't Hooft and Veltman for treating overlapping divergencies is pointed out. It is demonstrated that both methods generate functions that are free from unrecognizable logarithmic infinite parts. Nonperturbation theories expressed in terms of exponent derivatives are thus renormalizable. Some intriguing connections between nonperturbation theories and nonintegral exponents are pointed out
Nocera, Daniel G
2012-05-15
To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP(+) reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm(2)) illumination. This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H(2)O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn(3)CaO(4)-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a
Derived equivalences for group rings
König, Steffen
1998-01-01
A self-contained introduction is given to J. Rickard's Morita theory for derived module categories and its recent applications in representation theory of finite groups. In particular, Broué's conjecture is discussed, giving a structural explanation for relations between the p-modular character table of a finite group and that of its "p-local structure". The book is addressed to researchers or graduate students and can serve as material for a seminar. It surveys the current state of the field, and it also provides a "user's guide" to derived equivalences and tilting complexes. Results and proofs are presented in the generality needed for group theoretic applications.
International Nuclear Information System (INIS)
Sharma, P.; Zhang, X.
2006-01-01
The failure of classical elasticity to address dislocation behavior spatially close to its core and (in Lorentz-type fashion) near the speed of sound is well known. In gauge field theory of defects, the latter are not postulated a priori in an ad hoc fashion rather defects such as dislocations arise naturally as a consequence of broken translational symmetry exhibiting solutions that are physically meaningful (e.g., removal of divergence of stress and the natural emergence of a core making redundant the artificial cut-off radius). In the present work we present the gauge field theoretic solution to the problem of a uniformly moving screw dislocation. Apart from the formal derivations, we show that stress divergence at the core of the dislocation is removed at all time and (consistent with atomistic simulations), supersonic states are found to be admissible
Gauge fields and infinite chains of dualities
Energy Technology Data Exchange (ETDEWEB)
Boulanger, Nicolas [Service de Mécanique et Gravitation, Université de Mons - UMONS,20 place du Parc, B-7000 Mons (Belgium); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello - UNAB,Av. República 252, Santiago (Chile); West, Peter [Department of Mathematics, King’s College,London WC2R 2LS (United Kingdom)
2015-09-28
We show that the particle states of Maxwell’s theory, in D dimensions, can be represented in an infinite number of ways by using different gauge fields. Using this result we formulate the dynamics in terms of an infinite set of duality relations which are first order in space-time derivatives. We derive a similar result for the three form in eleven dimensions where such a possibility was first observed in the context of E{sub 11}. We also give an action formulation for some of the gauge fields. In this paper we give a pedagogical account of the Lorentz and gauge covariant formulation of the irreducible representations of the Poincaré group, used previously in higher spin theories, as this plays a key role in our constructions. It is clear that our results can be generalised to any particle.
Renormalization of gauge theories without cohomology
International Nuclear Information System (INIS)
Anselmi, Damiano
2013-01-01
We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem. (orig.)
Constrained gauge fields from spontaneous Lorentz violation
DEFF Research Database (Denmark)
Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical Lorentz violation due to the simultaneously generated gauge invariance. Udgivelsesdato: June 11...
Light higgsino for gauge coupling unification
Directory of Open Access Journals (Sweden)
Kwang Sik Jeong
2017-06-01
Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.
Gauge field vacuum structure in geometrical aspect
International Nuclear Information System (INIS)
Konopleva, N.P.
2003-01-01
Vacuum conception is one of the main conceptions of quantum field theory. Its meaning in classical field theory is also very profound. In this case the vacuum conception is closely connected with ideas of the space-time geometry. The global and local geometrical space-time conceptions lead to different vacuum definitions and therefore to different ways of physical theory construction. Some aspects of the gauge field vacuum structure are analyzed. It is shown that in the gauge field theory the vacuum Einstein equation solutions describe the relativistic vacuum as common vacuum of all gauge fields and its sources. Instantons (both usual and hyperbolical) are regarded as nongravitating matter, because they have zero energy-momentum tensors and correspond to vacuum Einstein equations
Gauge-invariant variables and entanglement entropy
Agarwal, Abhishek; Karabali, Dimitra; Nair, V. P.
2017-12-01
The entanglement entropy (EE) of gauge theories in three spacetime dimensions is analyzed using manifestly gauge-invariant variables defined directly in the continuum. Specifically, we focus on the Maxwell, Maxwell-Chern-Simons (MCS), and non-Abelian Yang-Mills theories. Special attention is paid to the analysis of edge modes and their contribution to EE. The contact term is derived without invoking the replica method and its physical origin is traced to the phase space volume measure for the edge modes. The topological contribution to the EE for the MCS case is calculated. For all the Abelian cases, the EE presented in this paper agrees with known results in the literature. The EE for the non-Abelian theory is computed in a gauge-invariant Gaussian approximation, which incorporates the dynamically generated mass gap. A formulation of the contact term for the non-Abelian case is also presented.
Topological charge of (lattice) gauge fields
International Nuclear Information System (INIS)
Goeckeler, M.; Schierholz, G.; Wiese, U.J.
1985-12-01
Using recently derived explicit formulae for the 2- and 3-cochains in SU(2) gauge theory, we are able to integrate the Chern-Simons density analytically. We arrive - in SU(2) - at a local algebraic expression for the topological charge, which is the sum of local winding numbers associated with the corners (lattice points) of the cells covering the manifold plus contributions from possible isolated gauge singularities which manifest themselves as 'vortices' in the 1-, 2- or 3-cochains. Among others we consider hypercubic geometry - i.e. covering the manifold by hypercubes - which is of particular interest to lattice Monte Carlo applications. Finally, we extend our results to SU(3) gauge theory. (orig.)
Light higgsino for gauge coupling unification
Energy Technology Data Exchange (ETDEWEB)
Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr
2017-06-10
We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.
Revisiting R-invariant direct gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Chiang, Cheng-Wei [Center for Mathematics and Theoretical Physics andDepartment of Physics, National Central University,Taoyuan, Taiwan 32001, R.O.C. (China); Institute of Physics, Academia Sinica,Taipei, Taiwan 11529, R.O.C. (China); Physics Division, National Center for Theoretical Sciences,Hsinchu, Taiwan 30013, R.O.C. (China); Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); Harigaya, Keisuke [Department of Physics, University of California,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); ICRR, University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Ibe, Masahiro [Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan); ICRR, University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Yanagida, Tsutomu T. [Kavli IPMU (WPI), UTIAS, University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)
2016-03-21
We revisit a special model of gauge mediated supersymmetry breaking, the “R-invariant direct gauge mediation.” We pay particular attention to whether the model is consistent with the minimal model of the μ-term, i.e., a simple mass term of the Higgs doublets in the superpotential. Although the incompatibility is highlighted in view of the current experimental constraints on the superparticle masses and the observed Higgs boson mass, the minimal μ-term can be consistent with the R-invariant gauge mediation model via a careful choice of model parameters. We derive an upper limit on the gluino mass from the observed Higgs boson mass. We also discuss whether the model can explain the 3σ excess of the Z+jets+E{sub T}{sup miss} events reported by the ATLAS collaboration.
Maximal Abelian gauge and a generalized BRST transformation
Directory of Open Access Journals (Sweden)
Shinichi Deguchi
2016-05-01
Full Text Available We apply a generalized Becchi–Rouet–Stora–Tyutin (BRST formulation to establish a connection between the gauge-fixed SU(2 Yang–Mills (YM theories formulated in the Lorenz gauge and in the Maximal Abelian (MA gauge. It is shown that the generating functional corresponding to the Faddeev–Popov (FP effective action in the MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate finite and field-dependent BRST (FFBRST transformation. In this procedure, the FP effective action in the MA gauge is found from that in the Lorenz gauge by incorporating the contribution of non-trivial Jacobian due to the FFBRST transformation of the path integral measure. The present FFBRST formulation might be useful to see how Abelian dominance in the MA gauge is realized in the Lorenz gauge.
QCD plasma parameters in axial gauge
Energy Technology Data Exchange (ETDEWEB)
Nachbagauer, H. (Technische Univ., Vienna (Austria). Inst. fuer Theoretische Physik)
1992-11-01
Within the framework of imaginary time formalism we investigate the structure of the gluon polarization tensor and relate its structure functions to the dispersion relation of plasma eigenmodes. To one loop order, we calculate the transversal structure function to leading order in the high temperature expansion as well as the first subleading order contribution in the long wavelength limit. The result is used to express the dynamical mass and the damping constant for transversal plasma eigenmodes. The aim of our present paper is a systematic discussion of the gauge fixing vector dependence of the damping constant. In the limit of temporal axial gauge we encounter a negative damping constant contradicting previous results. (orig.).
QCD plasma parameters in axial gauge
Nachbagauer, Herbert
1992-09-01
Within the framework of imaginary time formalism we investigate the structure of the gluon polarization tensor and relate its structure functions to the dispersion relation of plasma eigenmodes. To one loop order, we calculate the transversal structure function to leading order in the high temperature expansion as well as the first subleading order contribution in the long wavelength limit. The result is used to express the dynamical mass and the damping constant for transversal plasma eigenmodes. The aim of our present paper is a systematic discussion of the gauge fixing vector dependence of the damping constant. In the limit of temporal axial gauge we encounter a negative damping constant contradicting previous results.
A new 2 D bracket positioning gauge
Directory of Open Access Journals (Sweden)
Bhuwan Saklecha
2017-01-01
Full Text Available Bracket positioning is the basic premise of pre-adjusted system, which allows the teeth to be placed with a straight wire into an occlusal contact with an excellent mesiodistal inclination (tip and excellent faciolingual inclination (torque. Improper bracket placement may lead to poorly placed teeth and necessitate bracket repositioning and archwire adjustments. This can lead to an increased treatment time or poor occlusion. Therefore, a bracket positioning gauge has been designed using both the planes and evaluated for its accuracy in bonding of brackets. It was found that the gauge not only helped in the placement of brackets accurately, but also reduced chairside time.
Localizing gauge theories on S d
Minahan, Joseph A.
2016-04-01
We conjecture the form of the one-loop determinants for localized gauge theories with eight supersymmetries on d-dimensional spheres. Combining this with results for the localized action, we investigate the strong coupling behavior in the large N limit for a continuous range of d. In particular, we find the N dependence of the free energy for supersymmetric Yang-Mills with only a vector multiplet in 3 effective way to regularize divergences after localization in d = 4 for {N}=2 gauge theories and d = 6 for the maximally supersymmetric case.
Dirac gauginos, gauge mediation and unification
Energy Technology Data Exchange (ETDEWEB)
Benakli, K. [UPMC Univ. Paris 06 (France). Laboratoire de Physique Theorique et Hautes Energies, CNRS; Goodsell, M.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-03-15
We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)
Dirac gauginos, gauge mediation and unification
International Nuclear Information System (INIS)
Benakli, K.
2010-03-01
We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings. (orig.)
On the stochastic quantization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Jona-Lasinio, G.; Parrinello, C.
1988-11-03
The non-gradient stochastic quantization scheme for gauge theories proposed by Zwanziger is analyzed in the semiclassical limit. Using ideas from the theory of small random perturbations of dynamical systems we derive a lower bound for the equilibrium distribution in a neighbourhood of a stable critical point of the drift. In this approach the calculation of the equilibrium distribution is reduced to the problem of finding a minimum for the large fluctuation functional associated to the Langevin equation. Our estimate follows from a simple upper bound for this minimum; in addition to the Yang-Mills action a gauge-fixing term which tends to suppress Gribov copies appears.
Gauge invariant actions for string models
International Nuclear Information System (INIS)
Banks, T.
1986-06-01
String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs
Extended tree-level gauge mediation
DEFF Research Database (Denmark)
Monaco, M.; Nardecchia, M.; Romanino, A.
2011-01-01
Tree-level gauge mediation (TGM) is a scenario of SUSY breaking in which the tree-level exchange of heavy (possibly GUT) vector fields generates flavor-universal sfermion masses. In this work we extend this framework to the case of E(6) that is the natural extension of the minimal case studied so...... if the gauge group does not contain SU(5). If SUSY breaking is mediated purely by the U(1) generator that commutes with SO(10) we obtain universal sfermion masses and thus can derive the CMSSM boundary conditions in a novel scenario....
Recursion equations in gauge field theories
International Nuclear Information System (INIS)
Migdal, A.A.
1975-01-01
An approximate recursive equation describing scale transformation of the effective action of a gauging field has been formulated. The equation becomes exact in the two-dimensional space-time. In the four-dimensional theory it reproduces the asymptotic freedom with an accuracy of 30% in β-function coefficients. In the region of strong coupling β-function remains negative, that leads to an asymptotic ''prison'' in the infrared range. Some possible generalizations and appendices to the colour quark-gluon gauging theory are being discussed
Refined algebraic quantisation in a system with nonconstant gauge invariant structure functions
International Nuclear Information System (INIS)
Martínez-Pascual, Eric
2013-01-01
In a previous work [J. Louko and E. Martínez-Pascual, “Constraint rescaling in refined algebraic quantisation: Momentum constraint,” J. Math. Phys. 52, 123504 (2011)], refined algebraic quantisation (RAQ) within a family of classically equivalent constrained Hamiltonian systems that are related to each other by rescaling one momentum-type constraint was investigated. In the present work, the first steps to generalise this analysis to cases where more constraints occur are developed. The system under consideration contains two momentum-type constraints, originally abelian, where rescalings of these constraints by a non-vanishing function of the coordinates are allowed. These rescalings induce structure functions at the level of the gauge algebra. Providing a specific parametrised family of real-valued scaling functions, the implementation of the corresponding rescaled quantum momentum-type constraints is performed using RAQ when the gauge algebra: (i) remains abelian and (ii) undergoes into an algebra of a nonunimodular group with nonconstant gauge invariant structure functions. Case (ii) becomes the first example known to the author where an open algebra is handled in refined algebraic quantisation. Challenging issues that arise in the presence of non-gauge invariant structure functions are also addressed
Editorial: New operational dose equivalent quantities
International Nuclear Information System (INIS)
Harvey, J.R.
1985-01-01
The ICRU Report 39 entitled ''Determination of Dose Equivalents Resulting from External Radiation Sources'' is briefly discussed. Four new operational dose equivalent quantities have been recommended in ICRU 39. The 'ambient dose equivalent' and the 'directional dose equivalent' are applicable to environmental monitoring and the 'individual dose equivalent, penetrating' and the 'individual dose equivalent, superficial' are applicable to individual monitoring. The quantities should meet the needs of day-to-day operational practice, while being acceptable to those concerned with metrological precision, and at the same time be used to give effective control consistent with current perceptions of the risks associated with exposure to ionizing radiations. (U.K.)
Güler, Mete; Bilgin, Burak; Çapkın, Musa; Şimşek, Ali; Bilak, Şemsettin
2015-06-01
To compare pain scores of patients during intravitreal 27-gauge bevacizumab and 30-gauge ranibizumab injection procedures. Seventy eyes of 70 patients who had not previously undergone intravitreal anti-vascular endothelial growth factor therapy were included in this study. Thirty-five patients received ranibizumab and 35 patients received bevacizumab. The diagnoses of the patients were: 27 age related macular degeneration, 15 diabetic macular edema, 9 diabetic vitreous hemorrhage, 6 central retinal vein occlusion, 11 branch retinal vein occlusion and 2 central serous chorioretinopathy. Bevacizumab (1.25 mg/0.05 mL) was injected into the vitreous cavity using a 27-gauge needle, and ranibizumab (0.5 mg/0.05 mL) was injected with 30-gauge needle. Patients were asked just after the injection to rate their perceived pain during the injection using the visual analogue scale (VAS) of 0 (no pain) to 10 (unbearable/worst pain). The average of these scores was used as the primary outcome. The VAS pain scores in the ranibizumab and bevacizumab groups were 1.06 ± 0.91 (range, 0 to 3) and 1.94 ± 1.55 (range, 0 to 7), respectively, a significant difference (p = 0.005). Patients gauge intravitreal injection is more comfortable than 27-gauge injection. Injection of bevacizumab with 30-gauge needle syringes may be more tolerable for patients.
Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory.
Cucchieri, Attilio; Mendes, Tereza
2017-05-12
By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994)NUPBBO0550-321310.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.
Energy Technology Data Exchange (ETDEWEB)
Toniolo, Giuliano R.; Fargnoli, H.G.; Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Caixa Postal 3037, Lavras, Minas Gerais (Brazil); Scarpelli, A.P.B. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Sao Paulo (Brazil)
2017-02-15
S-matrix amplitudes for the electron-electron scattering are calculated in order to verify the physical equivalence between two Lorentz-breaking dual models. We begin with an extended Quantum Electrodynamics which incorporates CPT-even Lorentz-violating kinetic and mass terms. Then, in a process of gauge embedding, its gauge-invariant dual model is obtained. The physical equivalence of the two models is established at tree level in the electron-electron scattering and the unpolarized cross section is calculated up to second order in the Lorentz-violating parameter. (orig.)
Some new applications of nucleonic gauges in Russia
International Nuclear Information System (INIS)
Fedorkov, V.G.
2000-01-01
Russia has been a big producer of nucleonic gauges for many years. There are still some institutions that design and manufacture nucleonic gauges for industry, like level gauges, density gauges and thickness gauges. Industrial demands for NCS (especially after the Chernobyl accident) have been decreasing. Examples of recent development are given in this paper. Substantial improvements in the hardware, source and detectors system, are being undertaken. The potential for new applications is large, also, there is a good capability of local researchers for increasing the quality and quantity of nucleonic gauges in industry to meet local needs and to compete better in the international scale and market. (author)
Ahn, S J; Woo, S J; Ahn, J; Park, K H
2012-01-01
Purpose To compare the intraocular pressure (IOP) after 23-gauge transconjunctival sutureless vitrectomy (TSV) and conventional 20-gauge vitrectomy for various vitreoretinal diseases. Methods This was a retrospective interventional case series including 338 cases of 23-gauge TSV and 476 cases of 20-gauge vitrectomy with minimum follow-up period of 1 month. Postoperative 1 day, 1 week and 1 month IOPs were compared. Multiple regression analysis to assess the actual effect of gauge of vitrectomy on postoperative IOP was performed including intraoperative and postoperative factors influencing postoperative IOP as covariates. Results The mean IOP of 20-gauge vitrectomy was significantly higher than that of 23-gauge TSV (20.6±8.02 mm Hg vs12.8±4.48 mm Hg, Pgauge TSV demonstrated more stable course than that of 20-gauge vitrectomy. At 1 day post vitrectomy, the incidence of hypertony was higher in 20-gauge, whereas that of hypotony was higher in 23-gauge. Among risk factors, the 20-gauge vitrectomy showed the strongest association with postoperative 1 day IOP rise. Conclusion Twenty-three-gauge TSV has stable and lower IOP in the early postoperative period than the 20-gauge vitrectomy. In patients whose retina and optic nerves are vulnerable to higher or fluctuating IOP, 23-gauge TSV may be more beneficial. PMID:22388595
Ahn, S J; Woo, S J; Ahn, J; Park, K H
2012-06-01
To compare the intraocular pressure (IOP) after 23-gauge transconjunctival sutureless vitrectomy (TSV) and conventional 20-gauge vitrectomy for various vitreoretinal diseases. This was a retrospective interventional case series including 338 cases of 23-gauge TSV and 476 cases of 20-gauge vitrectomy with minimum follow-up period of 1 month. Postoperative 1 day, 1 week and 1 month IOPs were compared. Multiple regression analysis to assess the actual effect of gauge of vitrectomy on postoperative IOP was performed including intraoperative and postoperative factors influencing postoperative IOP as covariates. The mean IOP of 20-gauge vitrectomy was significantly higher than that of 23-gauge TSV (20.6 ± 8.02 mm Hg vs 12.8 ± 4.48 mm Hg, Pgauge TSV demonstrated more stable course than that of 20-gauge vitrectomy. At 1 day post vitrectomy, the incidence of hypertony was higher in 20-gauge, whereas that of hypotony was higher in 23-gauge. Among risk factors, the 20-gauge vitrectomy showed the strongest association with postoperative 1 day IOP rise. Twenty-three-gauge TSV has stable and lower IOP in the early postoperative period than the 20-gauge vitrectomy. In patients whose retina and optic nerves are vulnerable to higher or fluctuating IOP, 23-gauge TSV may be more beneficial.