WorldWideScience

Sample records for equilibrium molecular dynamics

  1. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bresme, F.; Armstrong, J.

    2014-01-01

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation

  2. Molecular sieving through a graphene nanopore: non-equilibrium molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    Chengzhen Sun; Bofeng Bai

    2017-01-01

    Two-dimensional graphene nanopores have shown great promise as ultra-permeable molecular sieves based on their size-sieving effects.We design a nitrogen/hydrogen modified graphene nanopore and conduct a transient non-equilibrium molecular dynamics simulation on its molecular sieving effects.The distinct time-varying molecular crossing numbers show that this special nanopore can efficiently sieve CO2 and H2S molecules from CH4 molecules with high selectivity.By analyzing the molecular structure and pore functionalization-related molecular orientation and permeable zone in the nanopore,density distribution in the molecular adsorption layer on the graphene surface,as well as other features,the molecular sieving mechanisms of graphene nanopores are revealed.Finally,several implications on the design of highly-efficient graphene nanopores,especially for determining the porosity and chemical functionalization,as gas separation membranes are summarized based on the identified phenomena and mechanisms.

  3. Molecular dynamics simulation of equilibrium configurations of plasmas containing multi-species dusts

    International Nuclear Information System (INIS)

    Liu, Yanhong; Chew, Lock Yue

    2007-01-01

    Equilibrium configurations of dusty plasmas with grains of different sizes, which interact through a screened Coulomb force field and confined by a two-dimensional quadratic potential, are studied using molecular dynamics simulation. The system configuration depends on the sizes, masses and charges of the grain species as well as the screening strength of the background plasma. The consideration of the grain size has established a different equilibrium configuration relative to that of point grains. In the new configurations, grains of different species separate into different shells, with the grains of larger mass and charge located away from the system center, forming a shell that surrounds the grains of smaller mass and charge at the system center. This configuration occurs beyond a critical grain radius, and its structure and size are determined by the competing effects between the inter-grain electrostatic repulsive force, the screening effect of the plasma and the mass-dependent confinement force of the quadratic potential

  4. Shear Viscosity of Benzene, Toluene, and p-Xylene by Non-equilibrium Molecular Dynamics Simulations

    International Nuclear Information System (INIS)

    Lee, Song Hi

    2004-01-01

    Green and Kubo showed that the phenomenological coefficients describing many transport processes and time dependent phenomena in general could be written as integrals over a certain type of function called a time correlation function. The Green-Kubo formulas are the formal expressions for hydrodynamic field variables and some of the thermodynamic properties in terms of the microscopic variables of an N-particle system. The identification of microscopic expressions for macroscopic variables is made by a process of comparison of the conservation equations of hydrodynamics with the microscopic equations of change for conserved densities. The importance of these formulas is three-fold: they provide an obvious method for calculating transport coefficients using computer simulation, a convenient starting point for constructing analytic theories for non-equilibrium processes, and an essential information for designing non-equilibrium molecular dynamics (NEMD) algorithm.

  5. First principles calculations of thermal conductivity with out of equilibrium molecular dynamics simulations

    Science.gov (United States)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.

  6. Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics-Monte Carlo propagator

    Science.gov (United States)

    Suh, Donghyuk; Radak, Brian K.; Chipot, Christophe; Roux, Benoît

    2018-01-01

    Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield

  7. Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis.

    Science.gov (United States)

    English, Niall J; Clarke, Elaine T

    2013-09-07

    Equilibrium and non-equilibrium molecular dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar CO2 hydrate interfaces in liquid water at 300-320 K. Different guest compositions, at 85%, 95%, and 100% of maximum theoretical occupation, led to statistically-significant differences in the observed initial dissociation rates. The melting temperatures of each interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model developed previously was applied to fit the observed dissociation profiles, and this helps to identify clearly two distinct régimes of break-up; a second well-defined region is essentially independent of composition and temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. From equilibrium MD of the two-phase systems at their melting point, the relaxation times of the auto-correlation functions of fluctuations in number of enclathrated guest molecules were used as a basis for comparison of the variation in the underlying, non-equilibrium, thermal-driven dissociation rates via Onsager's hypothesis, and statistically significant differences were found, confirming the value of a fluctuation-dissipation approach in this case.

  8. Reaction Ensemble Molecular Dynamics: Direct Simulation of the Dynamic Equilibrium Properties of Chemically Reacting Mixtures

    Czech Academy of Sciences Publication Activity Database

    Brennan, J.K.; Lísal, Martin; Gubbins, K.E.; Rice, B.M.

    2004-01-01

    Roč. 70, č. 6 (2004), 0611031-0611034 ISSN 1063-651X R&D Projects: GA ČR GA203/03/1588 Grant - others:NSF(US) CTS-0211792 Institutional research plan: CEZ:AV0Z4072921 Keywords : reacting systems * simulation * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.352, year: 2004

  9. Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal.

    Science.gov (United States)

    Chen, Yunjie; Roux, Benoît

    2014-09-21

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  10. Efficient hybrid non-equilibrium molecular dynamics - Monte Carlo simulations with symmetric momentum reversal

    Science.gov (United States)

    Chen, Yunjie; Roux, Benoît

    2014-09-01

    Hybrid schemes combining the strength of molecular dynamics (MD) and Metropolis Monte Carlo (MC) offer a promising avenue to improve the sampling efficiency of computer simulations of complex systems. A number of recently proposed hybrid methods consider new configurations generated by driving the system via a non-equilibrium MD (neMD) trajectory, which are subsequently treated as putative candidates for Metropolis MC acceptance or rejection. To obey microscopic detailed balance, it is necessary to alter the momentum of the system at the beginning and/or the end of the neMD trajectory. This strict rule then guarantees that the random walk in configurational space generated by such hybrid neMD-MC algorithm will yield the proper equilibrium Boltzmann distribution. While a number of different constructs are possible, the most commonly used prescription has been to simply reverse the momenta of all the particles at the end of the neMD trajectory ("one-end momentum reversal"). Surprisingly, it is shown here that the choice of momentum reversal prescription can have a considerable effect on the rate of convergence of the hybrid neMD-MC algorithm, with the simple one-end momentum reversal encountering particularly acute problems. In these neMD-MC simulations, different regions of configurational space end up being essentially isolated from one another due to a very small transition rate between regions. In the worst-case scenario, it is almost as if the configurational space does not constitute a single communicating class that can be sampled efficiently by the algorithm, and extremely long neMD-MC simulations are needed to obtain proper equilibrium probability distributions. To address this issue, a novel momentum reversal prescription, symmetrized with respect to both the beginning and the end of the neMD trajectory ("symmetric two-ends momentum reversal"), is introduced. Illustrative simulations demonstrate that the hybrid neMD-MC algorithm robustly yields a correct

  11. NON-EQUILIBRIUM MOLECULAR DYNAMICS USED TO OBTAIN SORET COEFFICIENTS OF BINARY HYDROCARBON MIXTURES

    Directory of Open Access Journals (Sweden)

    F. A. Furtado

    2015-09-01

    Full Text Available AbstractThe Boundary Driven Non-Equilibrium Molecular Dynamics (BD-NEMD method is employed to evaluate Soret coefficients of binary mixtures. Using a n-decane/n-pentane mixture at 298 K, we study several parameters and conditions of the simulation procedure such as system size, time step size, frequency of perturbation, and the undesired warming up of the system during the simulation. The Soret coefficients obtained here deviated around 20% when comparing with experimental data and with simulated results from the literature. We showed that fluctuations in composition gradients and the consequent deviations of the Soret coefficient may be due to characteristic fluctuations of the composition gradient. Best results were obtained with the smallest time steps and without using a thermostat, which shows that there is room for improvement and/or development of new BD-NEMD algorithms.

  12. Temperature control in molecular dynamic simulations of non-equilibrium processes

    International Nuclear Information System (INIS)

    Toton, Dawid; Lorenz, Christian D; Rompotis, Nikolaos; Martsinovich, Natalia; Kantorovich, Lev

    2010-01-01

    Thermostats are often used in various condensed matter problems, e.g. when a biological molecule undergoes a transformation in a solution, a crystal surface is irradiated with energetic particles, a crack propagates in a solid upon applied stress, two surfaces slide with respect to each other, an excited local phonon dissipates its energy into a crystal bulk, and so on. In all of these problems, as well as in many others, there is an energy transfer between different local parts of the entire system kept at a constant temperature. Very often, when modelling such processes using molecular dynamics simulations, thermostatting is done using strictly equilibrium approaches serving to describe the NVT ensemble. In this paper we critically discuss the applicability of such approaches to non-equilibrium problems, including those mentioned above, and stress that the correct temperature control can only be achieved if the method is based on the generalized Langevin equation (GLE). Specifically, we emphasize that a meaningful compromise between computational efficiency and a physically appropriate implementation of the NVT thermostat can be achieved, at least for solid state and surface problems, if the so-called stochastic boundary conditions (SBC), recently derived from the GLE (Kantorovich and Rompotis 2008 Phys. Rev. B 78 094305), are used. For SBC, the Langevin thermostat is only applied to the outer part of the simulated fragment of the entire system which borders the surrounding environment (not considered explicitly) serving as a heat bath. This point is illustrated by comparing the performance of the SBC and some of the equilibrium thermostats in two problems: (i) irradiation of the Si(001) surface with an energetic CaF 2 molecule using an ab initio density functional theory based method, and (ii) the tribology of two amorphous SiO 2 surfaces coated with self-assembled monolayers of methyl-terminated hydrocarbon alkoxylsilane molecules using a classical atomistic

  13. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto; Shimojo, Fuyuki

    2015-01-01

    The dynamic properties of liquid B 2 O 3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B 2 O 3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)

  14. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations

    Science.gov (United States)

    Yuhara, Daisuke; Brumby, Paul E.; Wu, David T.; Sum, Amadeu K.; Yasuoka, Kenji

    2018-05-01

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  15. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations.

    Science.gov (United States)

    Yuhara, Daisuke; Brumby, Paul E; Wu, David T; Sum, Amadeu K; Yasuoka, Kenji

    2018-05-14

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  16. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  17. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  18. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Science.gov (United States)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  19. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.

    Science.gov (United States)

    Zhang, Yong; Otani, Akihito; Maginn, Edward J

    2015-08-11

    Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.

  20. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    Science.gov (United States)

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  1. Kapitza thermal conductance at the interface between Lennard-Jones crystals using non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Merabia, Samy; Termentzidis, Konstantinos

    2012-01-01

    We characterize the thermal Kapitza conductance between Lennard-Jones solids using non-equilibrium molecular dynamics simulations. We consider a series of perfect interfaces between mass-mismatched solids. We show that both the acoustic mismatch model (AMM) and the diffuse mismatch model (DMM) fail to predict the interfacial conductance even for large acoustic mismatched solids. This poor agreement may be explained by the use of equilibrium distributions of phonons in the expression of the conductance. On the other hand, we show that an extension of AMM taking into account the out-of-equilibrium phonon distribution on both sides of the interface leads to a good agreement with the simulation results, even for interfaces between almost similar materials. This opens the way to understand interfacial heat transport across real semi-conductors and dielectrics.

  2. Calculation of the mutual diffusion coefficient by equilibrium and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Erpenbeck, J.J.; Kincaid, J.M.

    1985-01-01

    A nonequilibrium molecular dynamics method for the calculation of the mutual diffusion coefficient for a mixture of hard spheres is described. The method is applied to a 50-50 mixture of equidiameter particles having a mass ratio of 0.1 for the two species, at a volume of three times close-packing. By extrapolating the results to the limit of vanishing concentration gradient and infinite system size, we obtain a value in statistical agreement with the result obtained using a Green-Kubo molecular dynamics procedure which is also described. The nonequilibrium calculation yields a mutual diffusion coefficient which decreases slightly with increasing concentration gradient. The Green-Kubo time correlation function for mutual diffusion displays a slow decay with time, qualitatively similar to the long-time tail which has been predicted by the hydrodynamic theory of Pomeau

  3. Calculation of the mutual diffusion coefficient by equilibrium and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Erpenbeck, J.J.; Kincaid, J.M.

    1986-01-01

    A nonequilibrium molecular dynamics method for the calculation of the mutual diffusion coefficient for a mixture of hard spheres is described. The method is applied to a 50-50 mixture of equidiameter particles having a mass ratio of 0.1 for the two species, at a volume of three times close-packing. By extrapolating the results to the limit of vanishing concentration gradient and infinite system size, we obtain a value in statistical agreement with the result obtained using a Green-Kubo molecular dynamics procedure, which is also described. The nonequilibrium calculation yields a mutual diffusion coefficient which decreases slightly with increasing concentration gradient. The Green-Kubo timecorrelation function for mutual diffusion displays a slow decay with time, qualitatively similar to the long-time tail which has been predicted by the hydrodynamic theory of Pomeau

  4. Molecular-dynamics study of propane-hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis.

    Science.gov (United States)

    Ghaani, Mohammad Reza; English, Niall J

    2018-03-21

    Equilibrium and non-equilibrium molecular-dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar propane-hydrate interfaces in contact with liquid water over the 260-320 K range. Two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water, for comparison: a 001-direct surface cleavage and one with completed cages. Statistically significant differences in melting temperatures and initial break-up rates were observed between both interface types. Dissociation rates were observed to be strongly dependent on temperature, with higher rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model, developed previously, was applied to fit the observed dissociation profiles, and this helps us to identify clearly two distinct hydrate-decomposition régimes; following a highly temperature-dependent break-up phase, a second well-defined stage is essentially independent of temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. Further equilibrium MD-analysis of the two-phase systems at their melting point, with consideration of the relaxation times gleaned from the auto-correlation functions of fluctuations in a number of enclathrated guest molecules, led to statistically significant differences between the two surface-termination cases; a consistent correlation emerged in both cases between the underlying, non-equilibrium, thermal-driven dissociation rates sampled directly from melting with that from an equilibrium-MD fluctuation-dissipation approach.

  5. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  6. Collision frequency of Lennard-Jones fluids at high densities by equilibrium molecular dynamics simulation

    International Nuclear Information System (INIS)

    Adebayo, G.A.; Anusionwu, B.C.; Njah, A.N.; Adeniran, O.J.; Mathew, B.; Sunmonu, R.S.

    2009-01-01

    Arising from the inability of theoretical calculations to give accurate descriptions of (shear) viscosity in rare gases at high densities, we investigated the likely cause of discrepancy between theory and experiments. Molecular Dynamics simulations were performed to calculate transport coefficients and collision frequency of rare gases at high densities and different temperatures using a Lennard-Jones modelled pair potential. The results, when compared with experiments show an underestimation of the viscosity calculated through the Green-Kubo formalism, but in agreement with some other calculations performed by other groups. In the present work the origin of the underestimation is considered. Analyses of the transport coefficients show a very high collision frequency which suggests an atom may spend much less time in the neighbourhood of the fields of force of another atom and that the distribution in the systems studied adjusts itself to a nearly Maxwellian type which resulted in a locally and temporarily slowly varying temperature. We show that the time spent in the fields of force is so small compared with relaxation time thereby leading to a possible reduction in local velocity auto-correlation between atoms. (author)

  7. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation.

    Science.gov (United States)

    Halonen, Roope; Zapadinsky, Evgeni; Vehkamäki, Hanna

    2018-04-28

    We present a comparison between Monte Carlo (MC) results for homogeneous vapour-liquid nucleation of Lennard-Jones clusters and previously published values from molecular dynamics (MD) simulations. Both the MC and MD methods sample real cluster configuration distributions. In the MD simulations, the extent of the temperature fluctuation is usually controlled with an artificial thermostat rather than with more realistic carrier gas. In this study, not only a primarily velocity scaling thermostat is considered, but also Nosé-Hoover, Berendsen, and stochastic Langevin thermostat methods are covered. The nucleation rates based on a kinetic scheme and the canonical MC calculation serve as a point of reference since they by definition describe an equilibrated system. The studied temperature range is from T = 0.3 to 0.65 ϵ/k. The kinetic scheme reproduces well the isothermal nucleation rates obtained by Wedekind et al. [J. Chem. Phys. 127, 064501 (2007)] using MD simulations with carrier gas. The nucleation rates obtained by artificially thermostatted MD simulations are consistently lower than the reference nucleation rates based on MC calculations. The discrepancy increases up to several orders of magnitude when the density of the nucleating vapour decreases. At low temperatures, the difference to the MC-based reference nucleation rates in some cases exceeds the maximal nonisothermal effect predicted by classical theory of Feder et al. [Adv. Phys. 15, 111 (1966)].

  8. Calculation of inter-plane thermal resistance of few-layer graphene from equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ni, Y; Chalopin, Y; Volz, S

    2012-01-01

    Inter-plane thermal resistance in 5-layer graphene is calculated from equilibrium molecular dynamics (EMD) by calculating the autocorrelation function of temperature difference. Our simulated inter-plane resistance for 5-layer graphene is 4.83 × 10 −9 m 2 K/W. This data is in the same order of magnitude with the reported values from NEMD simulations and Debye model calculations, and the possible reasons for the slight differences are discussed in details. The inter-plane resistance is not dependent on temperature, according to the results of the EMD simulation. Phonon density of states (DOSs) were plotted to better understand the mechanism behind the obtained values. These results provide a better insight in the heat transfer across a few layer graphene and yield useful information on the design of graphene based thermal materials.

  9. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.

    Science.gov (United States)

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-28

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact

  10. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    Science.gov (United States)

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.

  11. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics

    Science.gov (United States)

    Futera, Zdenek; English, Niall J.

    2017-07-01

    The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.

  12. Equivalence of the equilibrium and the nonequilibrium molecular dynamics methods for thermal conductivity calculations: From bulk to nanowire silicon

    Science.gov (United States)

    Dong, Haikuan; Fan, Zheyong; Shi, Libin; Harju, Ari; Ala-Nissila, Tapio

    2018-03-01

    Molecular dynamics (MD) simulations play an important role in studying heat transport in complex materials. The lattice thermal conductivity can be computed either using the Green-Kubo formula in equilibrium MD (EMD) simulations or using Fourier's law in nonequilibrium MD (NEMD) simulations. These two methods have not been systematically compared for materials with different dimensions and inconsistencies between them have been occasionally reported in the literature. Here we give an in-depth comparison of them in terms of heat transport in three allotropes of Si: three-dimensional bulk silicon, two-dimensional silicene, and quasi-one-dimensional silicon nanowire. By multiplying the correlation time in the Green-Kubo formula with an appropriate effective group velocity, we can express the running thermal conductivity in the EMD method as a function of an effective length and directly compare it to the length-dependent thermal conductivity in the NEMD method. We find that the two methods quantitatively agree with each other for all the systems studied, firmly establishing their equivalence in computing thermal conductivity.

  13. Use of the McQuarrie equation for the computation of shear viscosity via equilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Chialvo, A.A.; Debenedetti, P.G.

    1991-01-01

    To date, the calculation of shear viscosity for soft-core fluids via equilibrium molecular dynamics has been done almost exclusively using the Green-Kubo formalism. The alternative mean-squared displacement approach has not been used, except for hard-sphere fluids, in which case the expression proposed by Helfand [Phys. Rev. 119, 1 (1960)] has invariably been selected. When written in the form given by McQuarrie [Statistical Mechanics (Harper ampersand Row, New York, 1976), Chap. 21], however, the mean-squared displacement approach offers significant computational advantages over both its Green-Kubo and Helfand counterparts. In order to achieve comparable statistical significance, the number of experiments needed when using the Green-Kubo or Helfand formalisms is more than an order of magnitude higher than for the McQuarrie expression. For pairwise-additive systems with zero linear momentum, the McQuarrie method yields frame-independent shear viscosities. The hitherto unexplored McQuarrie implementation of the mean-squared displacement approach to shear-viscosity calculation thus appears superior to alternative methods currently in use

  14. Impact of tensile strain on the thermal transport of zigzag hexagonal boron nitride nanoribbon: An equilibrium molecular dynamics study

    Science.gov (United States)

    Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia

    2018-02-01

    The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.

  15. Equilibrium Molecular Dynamics (MD Simulation Study of Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD Potentials

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2015-12-01

    Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.

  16. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics

    Science.gov (United States)

    Nandi, Prithwish K.; Futera, Zdenek; English, Niall J.

    2016-11-01

    Given the fundamental role of water in governing the biochemistry of enzymes, and in regulating their wider biological activity (e.g., by local water concentration surrounding biomolecules), the influence of extraneous electric and electromagnetic (e/m) fields thereon is of central relevance to biophysics and, more widely, biology. With the increase in levels of local and atmospheric microwave-frequency radiation present in modern life, as well as other electric-field exposure, the impact upon hydration-water layers surrounding proteins, and biomolecules generally, becomes a particularly pertinent issue. Here, we present a (non-equilibrium) molecular-dynamics-simulation study on a model protein (hen egg-white lysozyme) hydrated in water, in which we determine, inter alia, translational self-diffusivities for both hen egg-white lysozyme and its hydration layer together with relaxation dynamics of the hydrogen-bond network between the protein and its hydration-layer water molecules on a residue-per-residue basis. Crucially, we perform this analysis both above and below the dynamical-transition temperature (at ˜220 K), at 300 and 200 K, respectively, and we compare the effects of external static-electric and e/m fields with linear-response-régime (r.m.s.) intensities of 0.02 V/Å. It was found that the translational self-diffusivity of hen egg-white lysozyme and its hydration-water layer are increased substantially in static fields, primarily due to the induced electrophoretic motion, whilst the water-protein hydrogen-bond-network-rearrangement kinetics can also undergo rather striking accelerations, primarily due to the enhancement of a larger-amplitude local translational and rotational motion by charged and dipolar residues, which serves to promote hydrogen-bond breakage and re-formation kinetics. These external-field effects are particularly evident at 200 K, where they serve to induce the protein- and solvation-layer-response effects redolent of dynamical

  17. Consequences of Molecular-Scale Non-Equilibrium Activity on the Dynamics and Mechanics of Self-Assembled Actin-Based Structures and Materials

    Science.gov (United States)

    Marshall Mccall, Patrick

    Living cells are hierarchically self-organized forms of active soft matter: molecules on the nanometer scale form functional structures and organelles on the micron scale, which then compose cells on the scale of 10s of microns. While the biological functions of intracellular organelles are defined by the composition and properties of the structures themselves, how those bulk properties emerge from the properties and interactions of individual molecules remains poorly understood. Actin, a globular protein which self-assembles into dynamic semi-flexible polymers, is the basic structural material of cells and the major component of many functional organelles. In this thesis, I have used purified actin as a model system to explore the interplay between molecular-scale dynamics and organelle-scale functionality, with particular focus on the role of molecular-scale non-equilibrium activity. One of the most canonical forms of molecular-scale non-equilibrium activity is that of mechanoenzymes, also called motor proteins. These proteins utilized the free energy liberated by hydrolysis of ATP to perform mechanical work, thereby introducing non-equilibrium "active" stresses on the molecular scale. Combining experiments with mathematical modeling, we demonstrate in this thesis that non-equilibrium motor activity is sufficient to drive self-organization and pattern formation of the multimeric actin-binding motor protein Myosin II on 1D reconstituted actomyosin bundles. Like myosin, actin is itself an ATPase. However, nono-equilibrium ATP hydrolysis on actin is known to regulate the stability and assembly kinetics of actin filaments rather than generate active stresses per se. At the level of single actin filaments, the inhomogeneous nucleotide composition generated along the filament length by hydrolysis directs binding of regulatory proteins like cofilin, which mediate filament disassembly and thereby accelerate actin filament turnover. The concequences of this non-equilibrium

  18. Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments.

    Science.gov (United States)

    Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I; Karmakar, Shilpi; Biniwale, Rajesh; Papadopoulos, George K

    2013-01-21

    The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses.

  19. Pre-equilibrium plasma dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, U.

    1986-01-01

    Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs. (LEW)

  20. Pre-equilibrium plasma dynamics

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs

  1. Quantum dynamical semigroups and approach to equilibrium

    International Nuclear Information System (INIS)

    Frigerio, A.

    1977-01-01

    For a quantum dynamical semigroup possessing a faithful normal stationary state, some conditions are discussed, which ensure the uniqueness of the equilibrium state and/or the approach to equilibrium for arbitrary initial condition. (Auth.)

  2. Non-equilibrium dynamics from RPMD and CMD.

    Science.gov (United States)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  3. Molecular Dynamics of Equilibrium and Pressure-Driven Transport Properties of Water through LTA-Type Zeolites

    KAUST Repository

    Turgman-Cohen, Salomon; Araque, Juan C.; Hoek, Eric M. V.; Escobedo, Fernando A.

    2013-01-01

    We consider an atomistic model to investigate the flux of water through thin Linde type A (LTA) zeolite membranes with differing surface chemistries. Using molecular dynamics, we have studied the flow of water under hydrostatic pressure through a fully hydrated LTA zeolite film (∼2.5 nm thick) capped with hydrophilic and hydrophobic moieties. Pressure drops in the 50-400 MPa range were applied across the membrane, and the flux of water was monitored for at least 15 ns of simulation time. For hydrophilic membranes, water molecules adsorb at the zeolite surface, creating a highly structured fluid layer. For hydrophobic membranes, a depletion of water molecules occurs near the water/zeolite interface. For both types of membranes, the water structure is independent of the pressure drop established in the system and the flux through the membranes is lower than that observed for the bulk zeolitic material; the latter allows an estimation of surface barrier effects to pressure-driven water transport. Mechanistically, it is observed that (i) bottlenecks form at the windows of the zeolite structure, preventing the free flow of water through the porous membrane, (ii) water molecules do not move through a cage in a single-file fashion but rather exhibit a broad range of residence times and pronounced mixing, and (iii) a periodic buildup of a pressure difference between inlet and outlet cages takes place which leads to the preferential flow of water molecules toward the low-pressure cages. © 2013 American Chemical Society.

  4. Molecular Dynamics of Equilibrium and Pressure-Driven Transport Properties of Water through LTA-Type Zeolites

    KAUST Repository

    Turgman-Cohen, Salomon

    2013-10-08

    We consider an atomistic model to investigate the flux of water through thin Linde type A (LTA) zeolite membranes with differing surface chemistries. Using molecular dynamics, we have studied the flow of water under hydrostatic pressure through a fully hydrated LTA zeolite film (∼2.5 nm thick) capped with hydrophilic and hydrophobic moieties. Pressure drops in the 50-400 MPa range were applied across the membrane, and the flux of water was monitored for at least 15 ns of simulation time. For hydrophilic membranes, water molecules adsorb at the zeolite surface, creating a highly structured fluid layer. For hydrophobic membranes, a depletion of water molecules occurs near the water/zeolite interface. For both types of membranes, the water structure is independent of the pressure drop established in the system and the flux through the membranes is lower than that observed for the bulk zeolitic material; the latter allows an estimation of surface barrier effects to pressure-driven water transport. Mechanistically, it is observed that (i) bottlenecks form at the windows of the zeolite structure, preventing the free flow of water through the porous membrane, (ii) water molecules do not move through a cage in a single-file fashion but rather exhibit a broad range of residence times and pronounced mixing, and (iii) a periodic buildup of a pressure difference between inlet and outlet cages takes place which leads to the preferential flow of water molecules toward the low-pressure cages. © 2013 American Chemical Society.

  5. Transport coefficients of dense fluids composed of globular molecules. Equilibrium molecular dynamics investigations using more-center Lennard-Jones potentials

    Science.gov (United States)

    Hoheisel, C.

    1988-09-01

    Equilibrium molecular dynamics calculations with constraints have been performed for model liquids SF6 and CF4. The computations were carried out with four- and six-center Lennard-Jones potentials and up to 2×105 integration steps. Shear, bulk viscosity and the thermal conductivity have been calculated with use of Green-Kubo relations in the formulation of ``molecule variables.'' Various thermodynamic states were investigated. For SF6, a detailed comparison with experimental data was possible. For CF4, the MD results could only be compared with experiment for one liquid state. For the latter liquid, a complementary comparison was performed using MD results obtained with a one-center Lennard-Jones potential. A limited test of the particle number dependence of the results is presented. Partial and total correlations functions are shown and discussed with respect to findings obtained for the one-center Lennard-Jones liquid.

  6. Entropy equilibrium equation and dynamic entropy production in environment liquid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  7. Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor-Solvent Interfaces.

    Science.gov (United States)

    Hannah, Daniel C; Gezelter, J Daniel; Schaller, Richard D; Schatz, George C

    2015-06-23

    We examine the role played by surface structure and passivation in thermal transport at semiconductor/organic interfaces. Such interfaces dominate thermal transport in semiconductor nanomaterials owing to material dimensions much smaller than the bulk phonon mean free path. Utilizing reverse nonequilibrium molecular dynamics simulations, we calculate the interfacial thermal conductance (G) between a hexane solvent and chemically passivated wurtzite CdSe surfaces. In particular, we examine the dependence of G on the CdSe slab thickness, the particular exposed crystal facet, and the extent of surface passivation. Our results indicate a nonmonotonic dependence of G on ligand-grafting density, with interfaces generally exhibiting higher thermal conductance for increasing surface coverage up to ∼0.08 ligands/Å(2) (75-100% of a monolayer, depending on the particular exposed facet) and decreasing for still higher coverages. By analyzing orientational ordering and solvent penetration into the ligand layer, we show that a balance of competing effects is responsible for this nonmonotonic dependence. Although the various unpassivated CdSe surfaces exhibit similar G values, the crystal structure of an exposed facet nevertheless plays an important role in determining the interfacial thermal conductance of passivated surfaces, as the density of binding sites on a surface determines the ligand-grafting densities that may ultimately be achieved. We demonstrate that surface passivation can increase G relative to a bare surface by roughly 1 order of magnitude and that, for a given extent of passivation, thermal conductance can vary by up to a factor of ∼2 between different surfaces, suggesting that appropriately tailored nanostructures may direct heat flow in an anisotropic fashion for interface-limited thermal transport.

  8. Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer.

    Science.gov (United States)

    Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L

    2010-05-07

    Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.

  9. Determination of the distance-dependent viscosity of mixtures in parallel slabs using non-equilibrium molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Pařez, Stanislav; Předota, M.

    2012-01-01

    Roč. 14, č. 10 (2012), s. 3640-3650 ISSN 1463-9076 R&D Projects: GA ČR GA203/08/0094 Institutional support: RVO:67985858 Keywords : interface * viscosity * molecular simulatiion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.829, year: 2012

  10. Intermittent many-body dynamics at equilibrium

    Science.gov (United States)

    Danieli, C.; Campbell, D. K.; Flach, S.

    2017-06-01

    The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.

  11. Equilibrium Molecular Thermodynamics from Kirkwood Sampling

    OpenAIRE

    Somani, Sandeep; Okamoto, Yuko; Ballard, Andrew J.; Wales, David J.

    2015-01-01

    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, wher...

  12. Relativistic Fluid Dynamics Far From Local Equilibrium

    Science.gov (United States)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  13. Quasi-equilibrium interpretation of aging dynamics

    International Nuclear Information System (INIS)

    Franz, S.; Virasoro, M.A.

    2000-04-01

    We develop an interpretation of the off-equilibrium dynamical solution of mean-field glassy models in terms of quasi-equilibrium concepts. We show that the relaxation of the 'thermoremanent magnetization' follows a generalized version of the Onsager regression postulate of induced fluctuations. We then find the rationale for the equality between the fluctuation-dissipation ratio and the rate of growth of the configurational entropy close to the asymptotic state, found empirically in mean-field solutions. (author)

  14. Instability of quantum equilibrium in Bohm's dynamics.

    Science.gov (United States)

    Colin, Samuel; Valentini, Antony

    2014-11-08

    We consider Bohm's second-order dynamics for arbitrary initial conditions in phase space. In principle, Bohm's dynamics allows for 'extended' non-equilibrium, with initial momenta not equal to the gradient of phase of the wave function (as well as initial positions whose distribution departs from the Born rule). We show that extended non-equilibrium does not relax in general and is in fact unstable. This is in sharp contrast with de Broglie's first-order dynamics, for which non-standard momenta are not allowed and which shows an efficient relaxation to the Born rule for positions. On this basis, we argue that, while de Broglie's dynamics is a tenable physical theory, Bohm's dynamics is not. In a world governed by Bohm's dynamics, there would be no reason to expect to see an effective quantum theory today (even approximately), in contradiction with observation.

  15. The nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1992-03-01

    MOLECULAR DYNAMICS has been generalized in order to simulate a variety of NONEQUILIBRIUM systems. This generalization has been achieved by adopting microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress. Some of the problems already treated include rapid plastic deformation, intense heat conduction, strong shockwaves simulation, and far-from-equilibrium phase transformations. Continuing advances in technique and in the modeling of interatomic forces, coupled with qualitative improvements in computer hardware, are enabling such simulations to approximate real-world microscale and nanoscale experiments

  16. Are the Concepts of Dynamic Equilibrium and the Thermodynamic Criteria for Spontaneity, Nonspontaneity, and Equilibrium Compatible?

    Science.gov (United States)

    Silverberg, Lee J.; Raff, Lionel M.

    2015-01-01

    Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…

  17. On the definition of equilibrium and non-equilibrium states in dynamical systems

    OpenAIRE

    Akimoto, Takuma

    2008-01-01

    We propose a definition of equilibrium and non-equilibrium states in dynamical systems on the basis of the time average. We show numerically that there exists a non-equilibrium non-stationary state in the coupled modified Bernoulli map lattice.

  18. Non equilibrium effects in nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Papa, M.; Arena, N.; Cardella, G.; Lanzano, G.; Filippo, E. de; Lanzalone, G.; Pagano, A.; Pirrone, S.; Politi, G. [Catania Univ., INFN Catania and Dipartimento di Fisica e Astronomia (Italy); Amorini, F.; Anzalone, A.; Bonasera, A.; Cavallaro, S.; Di Pietro, A.; Figuera, P.; Giustolisi, F.; Iacono Manno, M.; La Guidara, E.; Maiolino, C.; Porto, F.; Rizzo, F.; Sperduto, M.L. [Catania Univ., INFN-LNS and Dipartimento di Fisica e Astronomia (Italy); Auditore, L.; Trifiro, A.; Trimarchi, M. [Messina Univ., INFN and Dipartimento di Fisica (Italy)

    2003-07-01

    A Constraint Molecular Dynamics (CoMD) approach is used to study dynamical effects related to both the average dynamics and the fluctuations around it. Data obtained in the REVERSE and in TRASMARAD experiments were compared with the theoretical simulations. The concept of temperature, as derived from a fully dynamical description of the GDR (giant dipole resonance) mode, is also discussed. In this contribution we have discussed the comparison between the CoMD model and two classes of phenomena, induced by heavy ion collisions. The first one is related to the IMF (intermediate mass fragment) production in semi-peripheral collisions for the {sup 124}Sn + {sup 64}Ni system at 35 MeV/nucleon. The comparison put in evidence clear preequilibrium effects in the fragment production mechanism which are essentially related to the behavior of the average dynamics. The second one concerns the high {gamma}-ray productions, due to dipolar resonant mechanisms, in the {sup 40}Ca + {sup 48}Ca system at 25 MeV/nucleon. In this case the comparisons with the model allows to put in evidence preequilibrium effects related both to the average dynamics and to the fluctuating one.

  19. Exploration of bulk and interface behavior of gas molecules and 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid using equilibrium and nonequilibrium molecular dynamics simulation and quantum chemical calculation.

    Science.gov (United States)

    Yang, Quan; Achenie, Luke E K

    2018-04-18

    Ionic liquids (ILs) show brilliant performance in separating gas impurities, but few researchers have performed an in-depth exploration of the bulk and interface behavior of penetrants and ILs thoroughly. In this research, we have performed a study on both molecular dynamics (MD) simulation and quantum chemical (QC) calculation to explore the transport of acetylene and ethylene in the bulk and interface regions of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-[BF4]). The diffusivity, solubility and permeability of gas molecules in the bulk were researched with MD simulation first. The subdiffusion behavior of gas molecules is induced by coupling between the motion of gas molecules and the ions, and the relaxation processes of the ions after the disturbance caused by gas molecules. Then, QC calculation was performed to explore the optical geometry of ions, ion pairs and complexes of ions and penetrants, and interaction potential for pairs and complexes. Finally, nonequilibrium MD simulation was performed to explore the interface structure and properties of the IL-gas system and gas molecule behavior in the interface region. The research results may be used in the design of IL separation media.

  20. Linking Equilibrium and Nonequilibrium Dynamics in Glass-Forming Systems

    DEFF Research Database (Denmark)

    Mauro, John C.; Guo, Xiaoju; Smedskjær, Morten Mattrup

    , we show that the nonequilibrium glassy dynamics are intimately connected with the equilibrium liquid dynamics. This is accomplished by deriving a new functional form for the thermal history dependence of nonequilibrium viscosity, which is validated against experimental measurements of industrial...

  1. Rheology via nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1982-10-01

    The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference

  2. Molecular dynamics of liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1997-02-01

    We derive Green-Kubo relations for the viscosities of a nematic liquid crystal. The derivation is based on the application of a Gaussian constraint algorithm that makes the director angular velocity of a liquid crystal a constant of motion. Setting this velocity equal to zero means that a director-based coordinate system becomes an inertial frame and that the constraint torques do not do any work on the system. The system consequently remains in equilibrium. However, one generates a different equilibrium ensemble. The great advantage of this ensemble is that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals, whereas they are complicated rational functions in the conventional canonical ensemble. This facilitates the numerical evaluation of the viscosities by molecular dynamics simulations.

  3. Molecular dynamics study of silver

    International Nuclear Information System (INIS)

    Akhter, J.I.; Yaldram, K.; Ahmad, W.; Khan, M.K.; Rehman, T.S.

    1995-03-01

    We present results of molecular dynamics study using the embedded atom potential to examine the equilibrium bulk properties of Ag. We calculate the total energy and the lattice parameters as a function of temperature. From these we determine the specific heat and linear coefficient of thermal expansion. The comparison with experimental results of these two quantities is found to be excellent. We have also calculated the mean square displacement of the atoms in the three directions. As expected because of symmetry the displacements in the three directions are comparable and increase with increasing temperature. (author) 5 figs

  4. A concurrent multiscale micromorphic molecular dynamics

    International Nuclear Information System (INIS)

    Li, Shaofan; Tong, Qi

    2015-01-01

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation

  5. Quasivariational Inequalities for a Dynamic Competitive Economic Equilibrium Problem

    Directory of Open Access Journals (Sweden)

    Carmela Vitanza

    2009-01-01

    Full Text Available The aim of this paper is to consider a dynamic competitive economic equilibrium problem in terms of maximization of utility functions and of excess demand functions. This equilibrium problem is studied by means of a time-dependent quasivariational inequality which is set in the Lebesgue space L2([0,T],ℝ. This approach allows us to obtain an existence result of time-dependent equilibrium solutions.

  6. Partial chemical equilibrium in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1980-01-01

    An analysis is given for the flow of a multicomponent fluid in which an arbitrary number of chemical reactions may occur, some of which are in equilibrium while the others proceed kinetically. The primitive equations describing this situation are inconvenient to use because the progress rates omega-dot/sub s/ for the equilibrium reactions are determined implicitly by the associated equilibrium constraint conditions. Two alternative equivalent equation systems that are more pleasant to deal with are derived. In the first system, the omega-dot/sub s/ are eliminated by replacing the transport equations for the chemical species involved in the equilibrium reactions with transport equations for the basic components of which these species are composed. The second system retains the usual species transport equations, but eliminates the nonlinear algebraic equilibrium constraint conditions by deriving an explicit expression for the omega-dot/sub s/. Both systems are specialized to the case of an ideal gas mixture. Considerations involved in solving these equation systems numerically are discussed briefly

  7. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  8. Stochastic linearization of turbulent dynamics of dispersive waves in equilibrium and non-equilibrium state

    International Nuclear Information System (INIS)

    Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David

    2016-01-01

    Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)

  9. Molecular dynamics for dense matter

    International Nuclear Information System (INIS)

    Maruyama, Toshiki; Chiba, Satoshi; Watanabe, Gentaro

    2012-01-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear “pasta”, i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid–gas phase transition is not plausible at lower temperatures. (author)

  10. Molecular dynamics for dense matter

    Science.gov (United States)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  11. Substructured multibody molecular dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  12. Intermittent Fermi-Pasta-Ulam Dynamics at Equilibrium

    Science.gov (United States)

    Campbell, David; Danieli, Carlo; Flach, Sergej

    The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body syste. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. We show that previously obtained scaling laws for equipartition times are modified at low energy density due to an unexpected slowing down of the relaxation. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. The long excursions arise from sticky dynamics close to regular orbits in the phase space. Our method is generalizable to large classes of many-body systems. The authors acknowledge financial support from IBS (Project Code IBS-R024-D1).

  13. Equilibrium and nonequilibrium dynamics of soft sphere fluids.

    Science.gov (United States)

    Ding, Yajun; Mittal, Jeetain

    2015-07-14

    We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation

  14. Molecular dynamics for fermions

    International Nuclear Information System (INIS)

    Feldmeier, H.; Schnack, J.

    2000-02-01

    The time-dependent variational principle for many-body trial states is used to discuss the relation between the approaches of different molecular dynamics models to describe indistinguishable fermions. Early attempts to include effects of the Pauli principle by means of nonlocal potentials as well as more recent models which work with antisymmetrized many-body states are reviewed under these premises. (orig.)

  15. Non-equilibrium many body dynamics

    International Nuclear Information System (INIS)

    Creutz, M.; Gyulassy, M.

    1997-01-01

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop

  16. Shear viscosity and out of equilibrium dynamics

    International Nuclear Information System (INIS)

    El, Andrej; Xu Zhe; Greiner, Carsten; Muronga, Azwinndini

    2009-01-01

    Using Grad's method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling α s ∼0.3 (with η/s≅0.18) and is a factor of 2-3 larger at a small coupling α s ∼0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small α s . On the other hand, we demonstrate that for such small α s , the gluon system is far from kinetic and chemical equilibrium, which indicates the break down of second-order hydrodynamics because of the strong nonequilibrium evolution. In addition, for large α s (0.3-0.6), the Israel-Stewart hydrodynamics formally breaks down at large momentum p T > or approx. 3 GeV but is still a reasonably good approximation.

  17. Non-equilibrium many body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.; Gyulassy, M.

    1997-09-22

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  18. Diffusion in Liquids : Equilibrium Molecular Simulations and Predictive Engineering Models

    NARCIS (Netherlands)

    Liu, X.

    2013-01-01

    The aim of this thesis is to study multicomponent diffusion in liquids using Molecular Dynamics (MD) simulations. Diffusion plays an important role in mass transport processes. In binary systems, mass transfer processes have been studied extensively using both experiments and molecular simulations.

  19. Termination of Dynamic Contracts in an Equilibrium Labor Market Model

    OpenAIRE

    Wang, Cheng

    2005-01-01

    I construct an equilibrium model of the labor market where workers and firms enter into dyamic contracts that can potentially last forever, but are subject to optimal terminations. Upon a termination, the firm hires a new worker, and the worker who is terminated receives a termination compensation from the firm and is then free to go back to the labor market to seek new employment opportunities and enter into new dynamic contracts. The model permits only two types of equilibrium terminations ...

  20. Step-wise pulling protocols for non-equilibrium dynamics

    Science.gov (United States)

    Ngo, Van Anh

    ensembles, which can be used to characterize non-equilibrium dynamics. Furthermore, we have applied the stepwise pulling protocols and Jarzynski's Equality to investigate the ion selectivity of potassium channels via molecular dynamics simulations. The mechanism of the potassium ion selectivity has remained poorly understood for over fifty years, although a Nobel Prize was awarded to the discovery of the molecular structure of a potassium-selective channel in 2003. In one year of performing simulations, we were able to reproduce the major results of ion selectivity accumulated in fifty years. We have been even boldly going further to propose a new model for ion selectivity based on the structural rearrangement of the selectivity filter of potassium-selective KcsA channels. This structural rearrangement has never been shown to play such a pivotal role in selecting and conducting potassium ions, but effectively rejecting sodium ions. Using the stepwise pulling protocols, we are also able to estimate conductance for ion channels, which remains elusive by using other methods. In the light of ion channels, we have also investigated how a synthetic channel of telemeric G-quadruplex conducts different types of ions. These two studies on ion selectivity not only constitute an interesting part of this dissertation, but also will enable us to further explore a new set of ion-selectivity principles. Beside the focus of my dissertation, I used million-atom molecular dynamics simulations to investigate the mechanical properties of body-centered-cubic (BCCS) and face-centered-cubic (FCCS) supercrystals of DNA-functionalized gold nanoparticles. These properties are valuable for examining whether these supercrystals can be used in gene delivery and gene therapy. The formation of such ordered supercrystals is useful to protect DNAs or RNAs from being attacked and destroyed by enzymes in cells. I also performed all-atom molecular dynamics simulations to study a pure oleic acid (OA) membrane

  1. Shear viscosity and out of equilibrium dynamics

    CERN Document Server

    El, Andrej; Xu, Zhe; Greiner, Carsten

    2009-01-01

    Using Grad’s method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling αs ∼ 0.3 (with η/s ≈ 0.18) and is a factor of 2–3 larger at a small coupling αs ∼ 0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small αs . On the other hand, we demonstrate that for such small αs , the gluon syst...

  2. Shear viscosity and out of equilibrium dynamics

    CERN Document Server

    El, Andrej; Xu, Zhe; Greiner, Carsten

    2009-01-01

    Using the Grad's method we calculate the entropy production and derive a formula for the second order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance the shear tensor and the shear viscosity to entropy density ratio $\\eta/s$ are numerically calculated by an iterative and self-consistent prescription within the second order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with $\\eta/s$ obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling $\\alpha_s \\sim 0.3$(with $\\eta/s\\approx 0.18$) and is a factor of 2-3 larger at a small coupling $\\alpha_s \\sim 0.01$. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on $\\eta/s$, except when employing a small $\\alpha_s$. On the other hand, we demonstrate th...

  3. Critical dynamics a field theory approach to equilibrium and non-equilibrium scaling behavior

    CERN Document Server

    Täuber, Uwe C

    2014-01-01

    Introducing a unified framework for describing and understanding complex interacting systems common in physics, chemistry, biology, ecology, and the social sciences, this comprehensive overview of dynamic critical phenomena covers the description of systems at thermal equilibrium, quantum systems, and non-equilibrium systems. Powerful mathematical techniques for dealing with complex dynamic systems are carefully introduced, including field-theoretic tools and the perturbative dynamical renormalization group approach, rapidly building up a mathematical toolbox of relevant skills. Heuristic and qualitative arguments outlining the essential theory behind each type of system are introduced at the start of each chapter, alongside real-world numerical and experimental data, firmly linking new mathematical techniques to their practical applications. Each chapter is supported by carefully tailored problems for solution, and comprehensive suggestions for further reading, making this an excellent introduction to critic...

  4. Quasi-equilibrium in glassy dynamics: an algebraic view

    International Nuclear Information System (INIS)

    Franz, Silvio; Parisi, Giorgio

    2013-01-01

    We study a chain of identical glassy systems in a constrained equilibrium, where each bond of the chain is forced to remain at a preassigned distance to the previous one. We apply this description to mean-field glassy systems in the limit of a long chain where each bond is close to the previous one. We show that this construction defines a pseudo-dynamic process that in specific conditions can formally describe real relaxational dynamics for long times. In particular, in mean-field spin glass models we can recover in this way the equations of Langevin dynamics in the long time limit at the dynamical transition temperature and below. We interpret the formal identity as evidence that in these situations the configuration space is explored in a quasi-equilibrium fashion. Our general formalism, which relates dynamics to equilibrium, puts slow dynamics in a new perspective and opens the way to the computation of new dynamical quantities in glassy systems. (paper)

  5. Pricing decisions in an experimental dynamic stochastic general equilibrium economy

    NARCIS (Netherlands)

    Noussair, C.N.; Pfajfar, D.; Zsiros, J.

    We construct experimental economies, populated with human subjects, with a structure based on a nonlinear version of the New Keynesian dynamic stochastic general equilibrium (DSGE) model. We analyze the behavior of firms’ pricing decisions in four different experimental economies. We consider how

  6. Estimating Dynamic Equilibrium Models using Macro and Financial Data

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Posch, Olaf; van der Wel, Michel

    We show that including financial market data at daily frequency, along with macro series at standard lower frequency, facilitates statistical inference on structural parameters in dynamic equilibrium models. Our continuous-time formulation conveniently accounts for the difference in observation...... of the estimators and estimate the model using 20 years of U.S. macro and financial data....

  7. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan

    Indian Academy of Sciences (India)

    Unknown

    Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan. G KARTHIKEYAN*, K ANBALAGAN and N MUTHULAKSHMI ANDAL. Department of Chemistry, Gandhigram Rural Institute – Deemed University, Gandhigram 624 302, India e-mail: drg_karthikeyan@rediffmail.com. MS received 3 June 2003; revised 12 ...

  8. Numerical solution of dynamic equilibrium models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    2013-01-01

    We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....

  9. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition

    NARCIS (Netherlands)

    Brambilla, G.; al Masri, J.H.M.; Pierno, M.; Berthier, L.; Cipelletti, L.

    2010-01-01

    We use dynamic light scattering and computer simulations to study equilibrium dynamics and dynamic heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an unprecedented density range and spans seven decades in structural relaxation time, , including equilibrium

  10. Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands.

    Science.gov (United States)

    Valente, Luis M; Phillimore, Albert B; Etienne, Rampal S

    2015-08-01

    Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  11. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  12. Multiscale measures of equilibrium on finite dynamic systems

    International Nuclear Information System (INIS)

    Bigerelle, M.; Iost, A.

    2004-01-01

    This article presents a new method for the study of the evolution of dynamic systems based on the notion of quantity of information. The system is divided into elementary cells and the quantity of information is studied with respect to the cell size. We have introduced an analogy between quantity of information and entropy, and defined the intrinsic entropy as the entropy of the whole system independent of the size of the cells. It is shown that the intrinsic entropy follows a Gaussian probability density function (PDF) and thereafter, the time needed by the system to reach equilibrium is a random variable. For a finite system, statistical analyses show that this entropy converges to a state of equilibrium and an algorithmic method is proposed to quantify the time needed to reach equilibrium for a given confidence interval level. A Monte-Carlo simulation of diffusion of A* atoms in A is then provided to illustrate the proposed simulation. It follows that the time to reach equilibrium for a constant error probability, t e , depends on the number, n, of elementary cells as: t e ∝n 2.22 ±0.06 . For an infinite system size (n infinite), the intrinsic entropy obtained by statistical modelling is a pertinent characteristic number of the system at the equilibrium

  13. Feasibility of a single-parameter description of equilibrium viscous liquid dynamics

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Christensen, Tage Emil; Schrøder, Thomas

    2008-01-01

    Molecular dynamics results for the dynamic Prigogine-Defay ratio are presented for two glass-forming liquids, thus evaluating the experimentally relevant quantity for testing whether metastable-equilibrium liquid dynamics is described by a single parameter to a good approximation. For the Kob......-Andersen binary Lennard-Jones mixture as well as for an asymmetric dumbbell model liquid, a single-parameter description works quite well. This is confirmed by time-domain results where it is found that energy and pressure fluctuations are strongly correlated on the alpha time scale in the constant...

  14. Molecular dynamics simulations

    International Nuclear Information System (INIS)

    Alder, B.J.

    1985-07-01

    The molecular dynamics computer simulation discovery of the slow decay of the velocity autocorrelation function in fluids is briefly reviewed in order to contrast that long time tail with those observed for the stress autocorrelation function in fluids and the velocity autocorrelation function in the Lorentz gas. For a non-localized particle in the Lorentz gas it is made plausible that even if it behaved quantum mechanically its long time tail would be the same as the classical one. The generalization of Fick's law for diffusion for the Lorentz gas, necessary to avoid divergences due to the slow decay of correlations, is presented. For fluids, that generalization has not yet been established, but the region of validity of generalized hydrodynamics is discussed. 20 refs., 5 figs

  15. Dynamics of chemical equilibrium of hadronic matter close to Tc

    International Nuclear Information System (INIS)

    Noronha-Hostler, J.; Beitel, M.; Greiner, C.; Shovkovy, I.

    2010-01-01

    Quick chemical equilibration times of hadrons (specifically, pp-bar, KK-bar, ΛΛ-bar, and ΩΩ-bar pairs) within a hadron gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. We compare our model to recent lattice results and find that for both T c =176 MeV and T c =196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states. Furthermore, the ratios p/π, K/π, Λ/π, and Ω/π match experimental values well in our dynamical scenario.

  16. Broken detailed balance and non-equilibrium dynamics in living systems: a review

    Science.gov (United States)

    Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  17. Broken detailed balance and non-equilibrium dynamics in living systems: a review.

    Science.gov (United States)

    Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P

    2018-03-05

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  18. Kinetics from Replica Exchange Molecular Dynamics Simulations.

    Science.gov (United States)

    Stelzl, Lukas S; Hummer, Gerhard

    2017-08-08

    Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.

  19. Non-equilibrium dynamics of one-dimensional Bose gases

    International Nuclear Information System (INIS)

    Langen, T.

    2013-01-01

    Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom

  20. Molecular dynamics of bacteriorhodopsin.

    Science.gov (United States)

    Lupo, J A; Pachter, R

    1997-02-01

    A model of bacteriorhodopsin (bR), with a retinal chromophore attached, has been derived for a molecular dynamics simulation. A method for determining atomic coordinates of several ill-defined strands was developed using a structure prediction algorithm based on a sequential Kalman filter technique. The completed structure was minimized using the GROMOS force field. The structure was then heated to 293 K and run for 500 ps at constant temperature. A comparison with the energy-minimized structure showed a slow increase in the all-atom RMS deviation over the first 200 ps, leveling off to approximately 2.4 A relative to the starting structure. The final structure yielded a backbone-atom RMS deviation from the crystallographic structure of 2.8 A. The residue neighbors of the chromophore atoms were followed as a function of time. The set of persistent near-residue neighbors supports the theory that differences in pKa values control access to the Schiff base proton, rather than formation of a counterion complex.

  1. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia; Chazirakis, A.; Tsourtis, A.; Katsoulakis, M. A.; Plechá č, P.; Harmandaris, V.

    2016-01-01

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  2. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia

    2016-10-18

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  3. Equilibrium flavor dynamics during the cosmic confinement transition

    International Nuclear Information System (INIS)

    Kaempfer, B.

    1988-10-01

    The dynamics of the flavor composition of strongly interacting matter during the cosmic confinement transition is followed up in a simplified thermodynamical model. Relying on thermal, mechanical and chemical equilibrium the strangeness fraction of strongly interacting matter is analyzed. Due to equilibrium with respect to ΔS=0 and ΔS=1 weak interactions the relations between different flavors depend strongly on the poorly known lepton excess. In a universe where the lepton (antilepton) excess is in the same order of magnitude as the baryon excess, the strange quark abundancies are suppressed (enhanced). In the hadron phase the strange baryons carry up to a half of the baryon excess. (author) 22 refs.; 9 figs

  4. Fluid dynamics of out of equilibrium boost invariant plasmas

    Science.gov (United States)

    Blaizot, Jean-Paul; Yan, Li

    2018-05-01

    By solving a simple kinetic equation, in the relaxation time approximation, and for a particular set of moments of the distribution function, we establish a set of equations which, on the one hand, capture exactly the dynamics of the kinetic equation, and, on the other hand, coincide with the hierarchy of equations of viscous hydrodynamics, to arbitrary order in the viscous corrections. This correspondence sheds light on the underlying mechanism responsible for the apparent success of hydrodynamics in regimes that are far from local equilibrium.

  5. A Local Probe for Universal Non-equilibrium Dynamics

    Science.gov (United States)

    2015-06-01

    shown are polarizing beam splitters . About 700µW are superimposed with a reference laser on a glass plate and coupled into an optical fiber to detect...A Local Probe for Universal Non -equilibrium Dynamics We report on the results obtained across a nine-month ARO-sponsored project, whose purpose was...to implement a local probe for a gas of ultracold atoms. We used a phase plate with a spiral phase gradient to create a hollow-core laser beam . This

  6. Molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1982-01-01

    This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed

  7. Physical adsorption and molecular dynamics

    International Nuclear Information System (INIS)

    Cohan, N.V.

    1981-01-01

    Some aspects of noble gases adsorption (except He) on graphite substracts are reviewed. Experimental results from this adsorption are analyzed and compared with molecular dynamics calculations. (L.C.) [pt

  8. Equilibrium Analysis of a Yellow Fever Dynamical Model with Vaccination

    Directory of Open Access Journals (Sweden)

    Silvia Martorano Raimundo

    2015-01-01

    Full Text Available We propose an equilibrium analysis of a dynamical model of yellow fever transmission in the presence of a vaccine. The model considers both human and vector populations. We found thresholds parameters that affect the development of the disease and the infectious status of the human population in the presence of a vaccine whose protection may wane over time. In particular, we derived a threshold vaccination rate, above which the disease would be eradicated from the human population. We show that if the mortality rate of the mosquitoes is greater than a given threshold, then the disease is naturally (without intervention eradicated from the population. In contrast, if the mortality rate of the mosquitoes is less than that threshold, then the disease is eradicated from the populations only when the growing rate of humans is less than another threshold; otherwise, the disease is eradicated only if the reproduction number of the infection after vaccination is less than 1. When this reproduction number is greater than 1, the disease will be eradicated from the human population if the vaccination rate is greater than a given threshold; otherwise, the disease will establish itself among humans, reaching a stable endemic equilibrium. The analysis presented in this paper can be useful, both to the better understanding of the disease dynamics and also for the planning of vaccination strategies.

  9. Molecular finite-size effects in stochastic models of equilibrium chemical systems.

    Science.gov (United States)

    Cianci, Claudia; Smith, Stephen; Grima, Ramon

    2016-02-28

    The reaction-diffusion master equation (RDME) is a standard modelling approach for understanding stochastic and spatial chemical kinetics. An inherent assumption is that molecules are point-like. Here, we introduce the excluded volume reaction-diffusion master equation (vRDME) which takes into account volume exclusion effects on stochastic kinetics due to a finite molecular radius. We obtain an exact closed form solution of the RDME and of the vRDME for a general chemical system in equilibrium conditions. The difference between the two solutions increases with the ratio of molecular diameter to the compartment length scale. We show that an increase in the fraction of excluded space can (i) lead to deviations from the classical inverse square root law for the noise-strength, (ii) flip the skewness of the probability distribution from right to left-skewed, (iii) shift the equilibrium of bimolecular reactions so that more product molecules are formed, and (iv) strongly modulate the Fano factors and coefficients of variation. These volume exclusion effects are found to be particularly pronounced for chemical species not involved in chemical conservation laws. Finally, we show that statistics obtained using the vRDME are in good agreement with those obtained from Brownian dynamics with excluded volume interactions.

  10. Hydration dynamics in water clusters via quantum molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, Budapest 112, P. O. Box 32, H-1518 (Hungary)

    2014-05-28

    We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of

  11. Free energy from molecular dynamics with multiple constraints

    NARCIS (Netherlands)

    den Otter, Wouter K.; Briels, Willem J.

    2000-01-01

    In molecular dynamics simulations of reacting systems, the key step to determining the equilibrium constant and the reaction rate is the calculation of the free energy as a function of the reaction coordinate. Intuitively the derivative of the free energy is equal to the average force needed to

  12. Non-equilibrium dynamics near a quantum multicritical point

    International Nuclear Information System (INIS)

    Patra, Ayoti; Mukherjee, Victor; Dutta, Amit

    2011-01-01

    We study the non-equilibrium dynamics of a quantum system close to a quantum multi-critical point (MCP) using the example of a one-dimensional spin-1/2 transverse XY spin chain. We summarize earlier results of defect generenation and fidelity susceptibility for quenching through MCP and close to the MCP, respectively. For a quenching scheme which enables the system to hit the MCP along different paths, we emphasize the role of path on exponents associated with quasicritical points which appear in the scaling relations. Finally, we explicitly derive the scaling of concurrence and negativity for two spin entanglement generated following a slow quenching across the MCP and enlist the results for different quenching schemes. We explicity show the dependence of the scaling on the quenching path and dicuss the limiting situations.

  13. Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature

    Science.gov (United States)

    Chung, Pil Seung; Song, Wonyup; Biegler, Lorenz T.; Jhon, Myung S.

    2017-05-01

    During the operation of hard disk drive (HDD), the perfluoropolyether (PFPE) lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic) and loss (viscous) moduli (G' and G″) by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.

  14. Non-equilibrium responses of PFPE lubricants with various atomistic/molecular architecture at elevated temperature

    Directory of Open Access Journals (Sweden)

    Pil Seung Chung

    2017-05-01

    Full Text Available During the operation of hard disk drive (HDD, the perfluoropolyether (PFPE lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic and loss (viscous moduli (G′ and G″ by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.

  15. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-05

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9724 Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and Absorption...and electronic excited-state absorption spectra for eqilibrium structures of SixOy molecular clusters using density function theory (DFT) and time

  16. Strong magnetic fields and non equilibrium dynamics in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Niklas

    2017-06-21

    and topology is intriguing and often mysterious, yet central to many of the fundamental mechanisms of nature. As the anomalous violation of classical symmetries in the earliest stages of the universe is conjectured to be responsible for the dominance of matter over anti-matter, researchers attempt to recreate the dynamics of matter under extreme conditions at heavy ion collider experiments and thus understand these challenging mechanisms. In the early universe as well as in present day experiments the emergence of quantum anomalies is tied to out-of-equilibrium systems. In this thesis we focus on a comprehensive attempt at establishing the theoretical foundations of the non-equilibrium description of anomalous and topological dynamics. To this end we present a selection of different techniques and approximation schemes, which are motivated by the properties of the space-time evolution of QCD matter in ultra-relativistic heavy ion collisions. Most importantly we aim to illustrate that the techniques, which are presented here, are applicable to a number of systems in nature, starting from strong-field laser physics to cosmology. The nature of topological effects is much richer in out-of-equilibrium systems and in accord with present progress in the experimental study of anomalous effects, we hope to contribute to the establishment of a novel view on anomalies and topology beyond the previous equilibrium paradigm.

  17. Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2013-12-01

    Full Text Available We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition, as well as the accuracy of TRBOMD for computing physical properties, such as the phonon frequency obtained from the molecular dynamics simulation. We connect and compare TRBOMD with Car-Parrinello molecular dynamics in terms of accuracy and stability. We further discuss the accuracy of TRBOMD beyond the linear response regime for non-equilibrium dynamics of nuclei. Our results are demonstrated through numerical experiments using a simplified one-dimensional model for Kohn-Sham density functional theory.

  18. Integration of molecular machines into supramolecular materials: actuation between equilibrium polymers and crystal-like gels.

    Science.gov (United States)

    Mariani, Giacomo; Goujon, Antoine; Moulin, Emilie; Rawiso, Michel; Giuseppone, Nicolas; Buhler, Eric

    2017-11-30

    In this article, the dynamic structure of complex supramolecular polymers composed of bistable [c2]daisy chain rotaxanes as molecular machines that are linked by ureidopyrimidinones (Upy) as recognition moieties was studied. pH actuation of the integrated mechanically active rotaxanes controls the contraction/extension of the polymer chains as well as their physical reticulation. Small-angle neutron and X-ray scattering were used to study in-depth the nanostructure of the contracted and extended polymer aggregates in toluene solution. The supramolecular polymers comprising contracted nanomachines were found to be equilibrium polymers with a mass that is concentration dependent in dilute and semidilute regimes. Surprisingly, the extended polymers form a gel network with a crystal-like internal structure that is independent of concentration and reminiscent of a pearl-necklace network.

  19. Non-equilibrium dynamics due to moving deflagration front at RDX/HTPB interface

    Science.gov (United States)

    Chaudhuri, Santanu; Joshi, Kaushik; Lacevic, Naida

    Reactive dissipative particle dynamics (DPD-RX), a promising tool in characterizing the sensitivity and performance of heterogeneous solid propellants like polymer bonded explosives (PSXs), requires further testing for non-equilibrium dynamics. It is important to understand detailed atomistic chemistry for developing coarse grain reactive models needed for the DPD-RX. In order to obtain insights into combustion chemistry of RDX/HTPB binder, we used reactive molecular dynamics (RMD) to obtain energy up-pumping and reaction mechanisms at RDX/HTPB interface when exposed to a self-sustaining deflagration front. Hot spots are ignited near and away from the heterogeneous interface using the thermal pulse. The results show that the hot spot near interface significantly delays the transition from ignition to deflagration. We will present the mechanical response and the combustion chemistry of HTPB when the propagating deflagration front hits the polymer binder. We will discuss our efforts to incorporate this RMD based chemistry into the DPD-RX which will enable us to perform such non-equilibrium dynamics simulations on large-length scale with microstructural heterogeneities. Funding from DTRA Grant Number HDTRA1-15-1-0034 is acknowledged.

  20. Gas Phase Molecular Dynamics

    International Nuclear Information System (INIS)

    Hall, G.E.; Prrese, J.M.; Sears, T.J.; Weston, R.E.

    1999-01-01

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution high-sensitivity laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular flee radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wave packet calculations that provide insights into energy flow between the vibrational modes of the molecule

  1. Examining the mechanical equilibrium of microscopic stresses in molecular simulations

    OpenAIRE

    Torres Sánchez, Alejandro; Vanegas, Juan Manuel; Arroyo Balaguer, Marino

    2015-01-01

    The microscopic stress field provides a unique connection between atomistic simulations and mechanics at the nanoscale. However, its definition remains ambiguous. Rather than a mere theoretical preoccupation, we show that this fact acutely manifests itself in local stress calculations of defective graphene, lipid bilayers, and fibrous proteins. We find that popular definitions of the microscopic stress violate the continuum statements of mechanical equilibrium, and we propose an unambiguous a...

  2. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng; Yin, Guangyao; Lee, Yi-Kuen; Wong, Joseph T.Y.; Zhang, Tong-Yi

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium

  3. Molecular dynamics of a proguanil derivative

    African Journals Online (AJOL)

    pc

    Proguanil is a prophylactic antimalarial drug t .... presence of resistance to individual component. ... This is the mathematical ... predicting equilibrium structures of molecular systems ..... for the modeling and subsequent development of.

  4. Static and dynamic control of plasma equilibrium in a Tokamak

    International Nuclear Information System (INIS)

    Blum, J.; Dei Cas, R.

    1979-01-01

    We are dealing here with the problem of controlling the plasma boundary and its displacements. Static control consists in determining the currents in the external coils of the Tokamak so that the plasma boundary has certain fixed characteristics: radial position, vertical elongation, desired shape. A self-consistent method is proposed here, considering a free plasma boundary, and using the techniques of optimal control of distributed parameter systems to solve the problem. The dynamic control problem considered in the second part of the paper is the control of the plasma radial displacements. An elaborate system of preprogramming and feedback control has been developed to ensure equilibrium and stability of the horizontal plasma motions. Optimal control techniques have been used to calculate the optimal primary coils configuration, the preprogramming voltages and the feedback gains. A new stability diagrams has been obtained which takes into account the erosion of the plasma by the limiter. All these calculations have been applied successfully to TFR 600 where thin liner and the presence of an iron core make the problem of stabilization of the radial displacements very difficult

  5. Nonequilibrium molecular dynamics: The first 25 years

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments

  6. Equilibrium partitioning of macromolecules in confining geometries: Improved universality with a new molecular size parameter

    DEFF Research Database (Denmark)

    Wang, Yanwei; Peters, Günther H.J.; Hansen, Flemming Yssing

    2008-01-01

    structures (CABS), allows the computation of equilibrium partition coefficients as a function of confinement size solely based on a single sampling of the configuration space of a macromolecule in bulk. Superior in computational speed to previous computational methods, CABS is capable of handling slits...... parameter for characterization of spatial confinement effects on macromolecules. Results for the equilibrium partition coefficient in the weak confinement regime depend only on the ratio ofR-s to the confinement size regardless of molecular details....

  7. Thomas-Fermi molecular dynamics

    International Nuclear Information System (INIS)

    Clerouin, J.; Pollock, E.L.; Zerah, G.

    1992-01-01

    A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)], the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker [Phys. Rev. A 38, 2205 (1988)]. As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated

  8. Symmetry of quantum molecular dynamics

    International Nuclear Information System (INIS)

    Burenin, A.V.

    2002-01-01

    The paper reviews the current state-of-art in describing quantum molecular dynamics based on symmetry principles alone. This qualitative approach is of particular interest as the only method currently available for a broad and topical class of problems in the internal dynamics of molecules. Besides, a molecule is a physical system whose collective internal motions are geometrically structured, and its perturbation theory description requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed [ru

  9. Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics

    International Nuclear Information System (INIS)

    Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.

    1992-09-01

    Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs

  10. NMR investigations of molecular dynamics

    Science.gov (United States)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  11. Molecular dynamics in high electric fields

    International Nuclear Information System (INIS)

    Apostol, M.; Cune, L.C.

    2016-01-01

    Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  12. Introduction to Molecular Dynamics and Accelerated Molecular Dynamics

    International Nuclear Information System (INIS)

    Perez, Danny

    2012-01-01

    We first introduce classical molecular dynamics (MD) simulations. We discuss their main constituents - the interatomic potentials, the boundary conditions, and the integrators - and the discuss the various ensembles that can be sampled. We discuss the strengths and weaknesses of MD, specifically in terms of time and length-scales. We then move on to discuss accelerated MD (AMD) methods, techniques that were designed to circumvent the timescale limitations of MD for rare event systems. The different methods are introduced and examples of use given.

  13. Non-equilibrium dynamics of open systems and fluctuation-dissipation theorems

    Czech Academy of Sciences Publication Activity Database

    Špička, Václav; Velický, B.; Kalvová, Anděla

    2017-01-01

    Roč. 65, 6-8 (2017), s. 1-23, č. článku 1700032. ISSN 0015-8208 Institutional support: RVO:68378271 Keywords : non-equilibrium * fluctuation-dissipation theorems * non-equilibrium Greens function * transient and steady state magnetic current * molecular bridge Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.434, year: 2016

  14. Molecular dynamics simulation of bubble nucleation in explosive boiling

    International Nuclear Information System (INIS)

    Zou Yu; Chinese Academy of Sciences, Beijing; Huai Xiulan; Liang Shiqiang

    2009-01-01

    Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range. (authors)

  15. Incorporation of quantum statistical features in molecular dynamics

    International Nuclear Information System (INIS)

    Ohnishi, Akira; Randrup, J.

    1995-01-01

    We formulate a method for incorporating quantum fluctuations into molecular-dynamics simulations of many-body systems, such as those employed for energetic nuclear collision processes. Based on Fermi's Golden Rule, we allow spontaneous transitions to occur between the wave packets which are not energy eigenstates. The ensuing diffusive evolution in the space of the wave packet parameters exhibits appealing physical properties, including relaxation towards quantum-statistical equilibrium. (author)

  16. Thermal conductivity of ZnTe investigated by molecular dynamics

    International Nuclear Information System (INIS)

    Wang Hanfu; Chu Weiguo

    2009-01-01

    The thermal conductivity of ZnTe with zinc-blende structure has been computed by equilibrium molecular dynamics method based on Green-Kubo formalism. A Tersoff's potential is adopted in the simulation to model the atomic interactions. The calculations are performed as a function of temperature up to 800 K. The calculated thermal conductivities are in agreement with the experimental values between 150 K and 300 K, while the results above the room temperature are comparable with the Slack's equation.

  17. Laser Controlled Molecular Orientation Dynamics

    International Nuclear Information System (INIS)

    Atabek, O.

    2004-01-01

    Molecular orientation is a challenging control issue covering a wide range of applications from reactive collisions, high order harmonic generation, surface processing and catalysis, to nanotechnologies. The laser control scenario rests on the following three steps: (i) depict some basic mechanisms producing dynamical orientation; (ii) use them both as computational and interpretative tools in optimal control schemes involving genetic algorithms; (iii) apply what is learnt from optimal control to improve the basic mechanisms. The existence of a target molecular rotational state combining the advantages of efficient and post-pulse long duration orientation is shown. A strategy is developed for reaching such a target in terms of a train of successive short laser pulses applied at predicted time intervals. Each individual pulse imparts a kick to the molecule which orients. Transposition of such strategies to generic systems is now under investigation

  18. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    Science.gov (United States)

    Culver, Adrian; Andrei, Natan

    We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.

  19. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  20. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-01-01

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10 5 cm –3 for magnetic models and 10 6 cm –3 in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of –0.6 and a normalization which depends on the cosmic-ray ionization rate ζ and the temperature T as (ζT) 1/2 . The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H + 3 ion. This significantly lower value implies that ambipolar diffusion operates faster.

  1. Molecular potentials and relaxation dynamics

    International Nuclear Information System (INIS)

    Karo, A.M.

    1981-01-01

    The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. Recent calculations of the X 1 Σ + and a 3 Σ + states of LiH, NaH, KH, RbH, and CsH and the X 2 Σ + states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, higly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm -1 over most of the potential curves) with the difference curves being considerably more accurate. In the method of computer molecular dynamics, the force acting on each particle is the resultant of all interactions with other atoms in the neighborhood and is obtained as the derivative of an effective many-body potential. Exploiting the pseudopotential approach, in obtaining the appropriate potentials may be very fruitful in the future. In the molecular dynamics example considered here, the conventional sum-of-pairwise-interatomic-potentials (SPP) approximation is used with the potentials derived either from experimental spectroscopic data or from Hartree-Fock calculations. The problem is the collisional de-excitation of vibrationally excited molecular hydrogen at an Fe surface. The calculations have been carried out for an initial vibrotational state v = 8, J = 1 and a translational temperature corresponding to a gas temperature of 500 0 K. Different angles of approach and different initial random impact points on the surface have been selected. For any given collision with the wall, the molecule may pick up or lose vibrotatonal and translational energy

  2. Equilibrium and Transport Properties of Primary, Secondary and Tertiary Amines by Molecular Simulation

    International Nuclear Information System (INIS)

    Orozco, Gustavo A.; Nieto-Draghi, Carlos; Lachet, Veronique; Mackie, Allan D.

    2014-01-01

    Using molecular simulation techniques such as Monte Carlo (MC) and molecular dynamics (MD), we present several simulation results of thermodynamic and transport properties for primary, secondary and tertiary amines. These calculations are based on a recently proposed force field for amines that follows the Anisotropic United Atom approach (AUA). Different amine molecules have been studied, including n-Butylamine, di-n-Butylamine, tri-n-Butylamine and 1,4-Butanediamine for primary, secondary, tertiary and multi-functional amines respectively. For the transport properties, we have calculated the viscosity coefficients as a function of temperature using the isothermal-isobaric (NPT) ensemble. In the case of the pure components, we have investigated different thermodynamic properties using NVT Gibbs ensemble simulations such as liquid-vapor phase equilibrium diagrams, vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures and critical densities. We have also calculated the excess enthalpies for water-n-Butylamine and n-heptane-n-Butylamine mixtures using Monte Carlo simulations in the NPT ensemble. In addition, we present the calculation of liquid-vapor surface tensions of n-Butylamine using a two-phase NVT simulation as well as the radial distribution functions. Finally, we have investigated the physical Henry constants of nitrous oxide (N 2 O) and nitrogen (N 2 ) in an aqueous solutions of n-Butylamine. In general, we found a good agreement between the available experimental information and our simulation results for all the studied properties, ratifying the predictive capability of the AUA force field for amines. (authors)

  3. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time

    Science.gov (United States)

    Hu, Xiaohu; Hong, Liang; Dean Smith, Micholas; Neusius, Thomas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-02-01

    Internal motions of proteins are essential to their function. The time dependence of protein structural fluctuations is highly complex, manifesting subdiffusive, non-exponential behaviour with effective relaxation times existing over many decades in time, from ps up to ~102 s (refs ,,,). Here, using molecular dynamics simulations, we show that, on timescales from 10-12 to 10-5 s, motions in single proteins are self-similar, non-equilibrium and exhibit ageing. The characteristic relaxation time for a distance fluctuation, such as inter-domain motion, is observation-time-dependent, increasing in a simple, power-law fashion, arising from the fractal nature of the topology and geometry of the energy landscape explored. Diffusion over the energy landscape follows a non-ergodic continuous time random walk. Comparison with single-molecule experiments suggests that the non-equilibrium self-similar dynamical behaviour persists up to timescales approaching the in vivo lifespan of individual protein molecules.

  4. Color molecular dynamics for dense matter

    International Nuclear Information System (INIS)

    Maruyama, Toshiki; Hatsuda, Tetsuo

    2000-01-01

    We propose a microscopic approach for quark many-body system based on molecular dynamics. Using color confinement and one-gluon exchange potentials together with meson exchange potentials between quarks, we construct nucleons and nuclear/quark matter. Dynamical transition between confinement and deconfinement phases are studied at high baryon density with this molecular dynamics simulation. (author)

  5. Non-equilibrium Dynamics, Thermalization and Entropy Production

    International Nuclear Information System (INIS)

    Hinrichsen, Haye; Janotta, Peter; Gogolin, Christian

    2011-01-01

    This paper addresses fundamental aspects of statistical mechanics such as the motivation of a classical state space with spontaneous transitions, the meaning of non-equilibrium in the context of thermalization, and the justification of these concepts from the quantum-mechanical point of view. After an introductory part we focus on the problem of entropy production in non-equilibrium systems. In particular, the generally accepted formula for entropy production in the environment is analyzed from a critical perspective. It is shown that this formula is only valid in the limit of separated time scales of the system's and the environmental degrees of freedom. Finally, we present an alternative simple proof of the fluctuation theorem.

  6. Near equilibrium dynamics and one-dimensional spatial—temporal structures of polar active liquid crystals

    International Nuclear Information System (INIS)

    Yang Xiao-Gang; Wang Qi; Forest, M. Gregory

    2014-01-01

    We systematically explore near equilibrium, flow-driven, and flow-activity coupled dynamics of polar active liquid crystals using a continuum model. Firstly, we re-derive the hydrodynamic model to ensure the thermodynamic laws are obeyed and elastic stresses and forces are consistently accounted. We then carry out a linear stability analysis about constant steady states to study near equilibrium dynamics around the steady states, revealing long-wave instability inherent in this model system and how active parameters in the model affect the instability. We then study model predictions for one-dimensional (1D) spatial—temporal structures of active liquid crystals in a channel subject to physical boundary conditions. We discuss the model prediction in two selected regimes, one is the viscous stress dominated regime, also known as the flow-driven regime, while the other is the full regime, in which all active mechanisms are included. In the viscous stress dominated regime, the polarity vector is driven by the prescribed flow field. Dynamics depend sensitively on the physical boundary condition and the type of the driven flow field. Bulk-dominated temporal periodic states and spatially homogeneous states are possible under weak anchoring conditions while spatially inhomogeneous states exist under strong anchoring conditions. In the full model, flow-orientation interaction generates a host of planar as well as out-of-plane spatial—temporal structures related to the spontaneous flows due to the molecular self-propelled motion. These results provide contact with the recent literature on active nematic suspensions. In addition, symmetry breaking patterns emerge as the additional active viscous stress due to the polarity vector is included in the force balance. The inertia effect is found to limit the long-time survival of spatial structures to those with small wave numbers, i.e., an asymptotic coarsening to long wave structures. A rich set of mechanisms for generating

  7. Characterization of conformational dynamics of bistable RNA by equilibrium and non-equilibrium NMR.

    Science.gov (United States)

    Fürtig, Boris; Reining, Anke; Sochor, Florian; Oberhauser, Eva Marie; Heckel, Alexander; Schwalbe, Harald

    2014-12-19

    Unlike proteins, a given RNA sequence can adopt more than a single conformation. The two (or more) conformations are long-lived and have similar stabilities, but interconvert only slowly. Such bi- or multistability is often linked to the biological functions of the RNA. This unit describes how nuclear magnetic resonance (NMR) spectroscopy can be used to characterize the conformational dynamics of bistable RNAs. Copyright © 2014 John Wiley & Sons, Inc.

  8. Molecular equilibrium structures from experimental rotational constants and calculated vibration-rotation interaction constants

    DEFF Research Database (Denmark)

    Pawlowski, F; Jorgensen, P; Olsen, Jeppe

    2002-01-01

    A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...

  9. Preserving the Boltzmann ensemble in replica-exchange molecular dynamics.

    Science.gov (United States)

    Cooke, Ben; Schmidler, Scott C

    2008-10-28

    We consider the convergence behavior of replica-exchange molecular dynamics (REMD) [Sugita and Okamoto, Chem. Phys. Lett. 314, 141 (1999)] based on properties of the numerical integrators in the underlying isothermal molecular dynamics (MD) simulations. We show that a variety of deterministic algorithms favored by molecular dynamics practitioners for constant-temperature simulation of biomolecules fail either to be measure invariant or irreducible, and are therefore not ergodic. We then show that REMD using these algorithms also fails to be ergodic. As a result, the entire configuration space may not be explored even in an infinitely long simulation, and the simulation may not converge to the desired equilibrium Boltzmann ensemble. Moreover, our analysis shows that for initial configurations with unfavorable energy, it may be impossible for the system to reach a region surrounding the minimum energy configuration. We demonstrate these failures of REMD algorithms for three small systems: a Gaussian distribution (simple harmonic oscillator dynamics), a bimodal mixture of Gaussians distribution, and the alanine dipeptide. Examination of the resulting phase plots and equilibrium configuration densities indicates significant errors in the ensemble generated by REMD simulation. We describe a simple modification to address these failures based on a stochastic hybrid Monte Carlo correction, and prove that this is ergodic.

  10. Game equilibrium models I evolution and game dynamics

    CERN Document Server

    1991-01-01

    There are two main approaches towards the phenotypic analysis of frequency dependent natural selection. First, there is the approach of evolutionary game theory, which was introduced in 1973 by John Maynard Smith and George R. Price. In this theory, the dynamical process of natural selection is not modeled explicitly. Instead, the selective forces acting within a population are represented by a fitness function, which is then analysed according to the concept of an evolutionarily stable strategy or ESS. Later on, the static approach of evolutionary game theory has been complemented by a dynamic stability analysis of the replicator equations. Introduced by Peter D. Taylor and Leo B. Jonker in 1978, these equations specify a class of dynamical systems, which provide a simple dynamic description of a selection process. Usually, the investigation of the replicator dynamics centers around a stability analysis of their stationary solutions. Although evolutionary stability and dynamic stability both intend to charac...

  11. Theoretical Concepts in Molecular Photodissociation Dynamics

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm

    1995-01-01

    This chapter contains sections titled: Introduction Quantum Dynamics of Molecular Photofragmentation The Total Reaction Probability Final Product Distributions Time-Independent Approach, Stationary Scattering States Gaussian Wave Packet Dynamics Wigner Phase Space Representation The Diatomic...

  12. Remarks on the existence of non equilibrium dynamics

    International Nuclear Information System (INIS)

    Marchioro, C.; Pellegrinotti, A.; Pulvirenti, M.

    1981-01-01

    The authors give an existence theorem for the dynamics of an infinite system of anharmonic oscillators. They obtain another proof of the existence of the dynamics in the case of one-dimensional system of infinitely many particles interacting via a bounded potential. The case of very singular potential is also solved. (Auth.)

  13. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry.

    Science.gov (United States)

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2013-06-26

    Dynamic combinatorial chemistry (DCC) is a subset of combinatorial chemistry where the library members interconvert continuously by exchanging building blocks with each other. Dynamic combinatorial libraries (DCLs) are powerful tools for discovering the unexpected and have given rise to many fascinating molecules, ranging from interlocked structures to self-replicators. Furthermore, dynamic combinatorial molecular networks can produce emergent properties at systems level, which provide exciting new opportunities in systems chemistry. In this perspective we will highlight some new methodologies in this field and analyze selected examples of DCLs that are under thermodynamic control, leading to synthetic receptors, catalytic systems, and complex self-assembled supramolecular architectures. Also reviewed are extensions of the principles of DCC to systems that are not at equilibrium and may therefore harbor richer functional behavior. Examples include self-replication and molecular machines.

  14. Dynamics and feedback control of plasma equilibrium position in a tokamak

    International Nuclear Information System (INIS)

    Burenko, O.

    1983-01-01

    A brief history of the beginnings of nuclear fusion research involving toroidal closed-system magnetic plasma containment is presented. A tokamak machine is defined mathematically for the purposes of plasma equilibrium position perturbation analysis. The perturbation equations of a tokamak plasma equilibrium position are developed. Solution of the approximated perturbation equations is carried out. A unique, simple, and useful plasma displacement dynamics transfer function of a tokamak is developed. The dominant time constants of the dynamics transfer function are determined in a symbolic form. This symbolic form of the dynamics transfer function makes it possible to study the stability of a tokamak's plasma equilibrium position. Knowledge of the dynamics transfer function permits systematic syntheses of the required plasma displacement feedback control systems

  15. Molecular dynamics simulation of defect formation during energetic Cu deposition

    International Nuclear Information System (INIS)

    Gilmore, Charles M.; Sprague, James A.

    2002-01-01

    The deposition of energetic Cu atoms from 5 to 80 eV onto (0 0 1) Cu was simulated with molecular dynamics. The Cu-Cu interaction potential was a spline of the embedded atom potential developed from equilibrium data, and the universal scattering potential. Incident Cu atoms substituted for first layer substrate atoms by an exchange process at energies as low as 5 eV. Incident Cu atoms of 20 eV penetrated to the second substrate layer, and 20 eV was sufficient energy to produce interstitial defects. Incident atoms of 80 eV penetrated to the third atomic layer, produced interstitials 12 atomic layers into the substrate by focused replacement collision sequences, and produced sputtered atoms with a 16% yield. Interstitial clusters of up to 7 atoms were observed. The observed mechanisms of film growth included: the direct deposition of atoms into film equilibrium atom positions, the exchange of substrate atoms to equilibrium film atoms positions, and the migration of interstitials to equilibrium film atom positions. The relative frequency of each process was a function of incident energy. Since all observed growth mechanisms resulted in film atoms in equilibrium atomic positions, these simulations suggest that stresses in homoepitaxial Cu thin films are due to point defects. Vacancies would produce tensile strain and interstitial atoms would produce compressive strain in the films. It is proposed that immobile interstitial clusters could be responsible for retaining interstitial atoms and clusters in growing metal thin films

  16. Quantum gases finite temperature and non-equilibrium dynamics

    CERN Document Server

    Szymanska, Marzena; Davis, Matthew; Gardiner, Simon

    2013-01-01

    The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...

  17. Out-of-equilibrium dynamics in a Gaussian trap model

    International Nuclear Information System (INIS)

    Diezemann, Gregor

    2007-01-01

    The violations of the fluctuation-dissipation theorem are analysed for a trap model with a Gaussian density of states. In this model, the system reaches thermal equilibrium for long times after a quench to any finite temperature and therefore all ageing effect are of a transient nature. For not too long times after the quench it is found that the so-called fluctuation-dissipation ratio tends to a non-trivial limit, thus indicating the possibility for the definition of a timescale-dependent effective temperature. However, different definitions of the effective temperature yield distinct results. In particular, plots of the integrated response versus the correlation function strongly depend on the way they are constructed. Also the definition of effective temperatures in the frequency domain is not unique for the model considered. This may have some implications for the interpretation of results from computer simulations and experimental determinations of effective temperatures

  18. Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads

    Energy Technology Data Exchange (ETDEWEB)

    Valkass, R. A. J., E-mail: rajv202@ex.ac.uk; Yu, W.; Shelford, L. R.; Keatley, P. S.; Loughran, T. H. J.; Hicken, R. J. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cavill, S. A. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Laan, G. van der; Dhesi, S. S. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Bashir, M. A.; Gubbins, M. A. [Research and Development, Seagate Technology, 1 Disc Drive, Springtown Industrial Estate, Derry BT48 0BF (United Kingdom); Czoschke, P. J.; Lopusnik, R. [Recording Heads Operation, Seagate Technology, 7801 Computer Avenue South, Bloomington, Minnesota 55435 (United States)

    2015-06-08

    Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures were acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.

  19. One-loop calculation in time-dependent non-equilibrium thermo field dynamics

    International Nuclear Information System (INIS)

    Umezawa, H.; Yamanaka, Y.

    1989-01-01

    This paper is a review on the structure of thermo field dynamics (TFD) in which the basic concepts such as the thermal doublets, the quasi-particles and the self-consistent renormalization are presented in detail. A strong emphasis is put on the computational scheme. A detailed structure of this scheme is illustrated by the one-loop calculation in a non-equilibrium time-dependent process. A detailed account of the one-loop calculation has never been reported anywhere. The role of the self-consistent renormalization is explained. The equilibrium TFD is obtained as the long-time limit of non-equilibrium TFD. (author)

  20. Elements of non-equilibrium (ℎ, k)-dynamics at zero and finite temperatures

    International Nuclear Information System (INIS)

    Golubeva, O.N.; Sukhanov, A.D.

    2011-01-01

    We suggest a method which allows developing some elements of non-equilibrium (ℎ, k)-dynamics without use of Schroedinger equation. It is based on the generalization pf Fokker-Planck and Hamilton-Jacobi equations. Sequential considering of stochastic influence of vacuum is realized in the quantum heat bath model. We show that at the presence of quantum-thermal diffusion non-equilibrium wave functions describe the process of nearing to generalized state of thermal equilibrium at zero and finite temperatures. They can be used as a ground for universal description of transport phenomena

  1. Calculation Method for Equilibrium Points in Dynamical Systems Based on Adaptive Sinchronization

    Directory of Open Access Journals (Sweden)

    Manuel Prian Rodríguez

    2017-12-01

    Full Text Available In this work, a control system is proposed as an equivalent numerical procedure whose aim is to obtain the natural equilibrium points of a dynamical system. These equilibrium points may be employed later as setpoint signal for different control techniques. The proposed procedure is based on the adaptive synchronization between an oscillator and a reference model driven by the oscillator state variables. A stability analysis is carried out and a simplified algorithm is proposed. Finally, satisfactory simulation results are shown.

  2. Molecular dynamics for irradiation driven chemistry

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2016-01-01

    A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes...... that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package...... involving small molecules or molecular fragments. We advocate that the quantum transformations, such as molecular bond breaks, creation and annihilation of dangling bonds, electronic charge redistributions, changes in molecular topologies, etc., could be incorporated locally into the molecular force fields...

  3. Dynamical TAP equations for non-equilibrium Ising spin glasses

    DEFF Research Database (Denmark)

    Roudi, Yasser; Hertz, John

    2011-01-01

    We derive and study dynamical TAP equations for Ising spin glasses obeying both synchronous and asynchronous dynamics using a generating functional approach. The system can have an asymmetric coupling matrix, and the external fields can be time-dependent. In the synchronously updated model, the TAP...... equations take the form of self consistent equations for magnetizations at time t+1, given the magnetizations at time t. In the asynchronously updated model, the TAP equations determine the time derivatives of the magnetizations at each time, again via self consistent equations, given the current values...... of the magnetizations. Numerical simulations suggest that the TAP equations become exact for large systems....

  4. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.

    Science.gov (United States)

    Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele

    2014-09-23

    Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.

  5. Extremely far from equilibrium: the multiscale dynamics of streamers

    Science.gov (United States)

    Ebert, Ute

    2012-10-01

    Streamers can emerge when high voltages are applied to gases. At their tips, the electric field is strongly enhanced, and electron energies locally reach distributions very far from equilibrium, with long tails at high energies. These exotic electron energies create radiation and chemical excitations at very low energy input, as the gas stays cold while the ionization front passes. Applications are multiple: highly efficient O* radical production in air for disinfection, combustion gas cleaning, plasma assisted combustion, plasma bullets in medicine etc. In that sense, streamers can be considered as very efficient converters of pulsed electric into chemical energy, in particular, if the electric circuits are optimized for the application. Streamers are also ubiquitous in nature, e.g., in the streamer corona of lightning leaders, in sprite discharges high above the clouds; and streamers also seem to contribute to generating gamma-ray flashes and even to electron-positron beams in active thunderstorms. Unravelling the intrinsic mechanisms of streamers is challenging: they can move with up to one tenth of the speed of light, and they have an intricate nonlinear structure with a hierarchy of scales. I will review how theory and experiment deal with these structures, and I will discuss the basic differences between positive and negative streamers, electron acceleration at streamer tips and the consecutive radiation and chemical reactions, the propagation mechanism of positive streamers in different gases, streamer velocities and diameters varying over at least two orders of magnitude, streamer branching and interaction, and their three-dimensional tree structure. Both theory and experiment work with a patchwork of methods, and geophysics can provide movies that cannot be taken in the lab. I will sketch the state and outline open questions.

  6. Thermally driven molecular linear motors - A molecular dynamics study

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence

    2009-01-01

    We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled by th...

  7. Dynamical photo-induced electronic properties of molecular junctions

    Science.gov (United States)

    Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.

    2018-03-01

    Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.

  8. Dynamical behaviors of inter-out-of-equilibrium state intervals in Korean futures exchange markets

    Science.gov (United States)

    Lim, Gyuchang; Kim, SooYong; Kim, Kyungsik; Lee, Dong-In; Scalas, Enrico

    2008-05-01

    A recently discovered feature of financial markets, the two-phase phenomenon, is utilized to categorize a financial time series into two phases, namely equilibrium and out-of-equilibrium states. For out-of-equilibrium states, we analyze the time intervals at which the state is revisited. The power-law distribution of inter-out-of-equilibrium state intervals is shown and we present an analogy with discrete-time heat bath dynamics, similar to random Ising systems. In the mean-field approximation, this model reduces to a one-dimensional multiplicative process. By varying global and local model parameters, the relevance between volatilities in financial markets and the interaction strengths between agents in the Ising model are investigated and discussed.

  9. Non-equilibrium coherence dynamics in one-dimensional Bose gases.

    Science.gov (United States)

    Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J

    2007-09-20

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

  10. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.

    2006-01-01

    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...

  11. A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases

    OpenAIRE

    Holian B.L.

    2011-01-01

    From its inception in the mid-Fifties, the method of molecular-dynamics (MD) computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms). When direct me...

  12. A Molecular Dynamics Study of Lunasin | Singh | South African ...

    African Journals Online (AJOL)

    A Molecular Dynamics Study of Lunasin. ... profile of lunasin,using classical molecular dynamics (MD) simulations at the time scale of 300 ns. ... Keywords: Lunasin, molecular dynamics, amber, CLASICO, α-helix, β-turn, PTRAJ, RGD, RMSD ...

  13. Dynamical Cooper pairing in non-equilibrium electron-phonon systems

    Energy Technology Data Exchange (ETDEWEB)

    Knap, Michael [Technical University of Munich (Germany); Harvard University (United States); Babadi, Mehrtash; Refael, Gil [Caltech (United States); Martin, Ivar [Argonne National Laboratory (United States); Demler, Eugene [Harvard University (United States)

    2016-07-01

    Ultrafast laser pulses have been used to manipulate complex quantum materials and to induce dynamical phase transitions. One of the most striking examples is the transient enhancement of superconductivity in several classes of materials upon irradiating them with high intensity pulses of terahertz light. Motivated by these experiments we analyze the Cooper pairing instabilities in non-equilibrium electron-phonon systems. We demonstrate that the light induced non-equilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We analyze the competition between these effects and show that in a broad range of parameters the dynamic enhancement of Cooper pair formation dominates over the increase in the scattering rate. This opens the possibility of transient light induced superconductivity at temperatures that are considerably higher than the equilibrium transition temperatures. Our results pave new pathways for engineering high-temperature light-induced superconducting states.

  14. Non-equilibrium coherence dynamics in one-dimensional Bose gases

    DEFF Research Database (Denmark)

    Hofferberth, S.; Lesanovsky, Igor; Fischer, B.

    2007-01-01

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However......, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide...... range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena....

  15. Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.

    Science.gov (United States)

    Jia, Chen; Qian, Minping; Jiang, Daquan

    2014-08-01

    A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.

  16. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  17. Liquid-vapor coexistence by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Baranyai, Andras; Cummings, Peter T.

    2000-01-01

    We present a simple and consistent molecular dynamics algorithm for determining the equilibrium properties of a bulk liquid and its coexisting vapor phase. The simulation follows the dynamics of the two systems simultaneously while maintaining the volume and the number of particles of the composite system fixed. The thermostat can constrain either the total energy or the temperature at a desired value. Division of the extensive properties between the two phases is governed by the difference of the corresponding intensive state variables. Particle numbers are continuous variables and vary only in virtual sense, i.e., the real sizes of the two systems are the same and do not change during the course of the simulation. Calculation of the chemical potential is separate from the dynamics; thus, one can replace the particle exchange step with other method if it improves the efficiency of the code. (c) 2000 American Institute of Physics

  18. Frictions, Persistence, and Central Bank Policy in an Experimental Dynamic Stochastic General Equilibrium Economy

    NARCIS (Netherlands)

    Noussair, C.N.; Pfajfar, D.; Zsiros, J.

    2011-01-01

    New Keynesian dynamic stochastic general equilibrium models are the principal paradigm currently employed for central bank policymaking. In this paper, we construct experimental economies, populated with human subjects, with the structure of a New Keynesian DSGE model. We give individuals monetary

  19. A Simple System for Observing Dynamic Phase Equilibrium via an Inquiry-Based Laboratory or Demonstration

    Science.gov (United States)

    Cloonan, Carrie A.; Andrew, Julie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    This article describes an activity that can be used as an inquiry-based laboratory or demonstration for either high school or undergraduate chemistry students to provide a basis for understanding both vapor pressure and the concept of dynamic phase equilibrium. The activity includes a simple setup to create a closed system of only water liquid and…

  20. Future disability projections could be improved by connecting to the theory of a dynamic equilibrium

    NARCIS (Netherlands)

    Klijs, Bart; Mackenbach, Johan P.; Kunst, Anton E.

    2011-01-01

    Objective: Projections of future trends in the burden of disability could be guided by models linking disability to life expectancy, such as the dynamic equilibrium theory. This article tests the key assumption of this theory that severe disability is associated with proximity to death, whereas mild

  1. Future disability projections could be improved by connecting to the theory of a dynamic equilibrium

    NARCIS (Netherlands)

    B. Klijs (Bart); J.P. Mackenbach (Johan); A.E. Kunst (Anton)

    2009-01-01

    textabstractObjective Projections of future trends in the burden of disability could be guided by models linking disability to life expectancy, such as the dynamic equilibrium theory. This paper tests the key assumption of this theory that severe disability is associated to proximity to death

  2. Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory

    NARCIS (Netherlands)

    Hu, Z.; Wang, Z.B.; Zitman, T.J.; Stive, M.J.F.; Bouma, T.J.

    2015-01-01

    Dynamic equilibrium theory is a fruitful concept, which we use to systematically explain the tidal flat morphodynamic response to tidal currents, wind waves, sediment supply, and other sedimentological drivers. This theory stems from a simple analytical model that derives the tide- or wave-dominated

  3. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    NARCIS (Netherlands)

    Panja, D.; Barkema, G.T.; Kolomeisky, A.B.

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface

  4. Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium

    DEFF Research Database (Denmark)

    Aikawa, K.; Frisch, A.; Mark, M.

    2014-01-01

    We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in the lowest Zeeman sublevel. In this system, elastic...

  5. A general theory of non-equilibrium dynamics of lipid-protein fluid membranes

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Hansen, Per Lyngs; Miao, L.

    2005-01-01

    We present a general and systematic theory of non-equilibrium dynamics of multi-component fluid membranes, in general, and membranes containing transmembrane proteins, in particular. Developed based on a minimal number of principles of statistical physics and designed to be a meso...

  6. Molecular dynamics for reactions of heterogeneous catalysis

    NARCIS (Netherlands)

    Jansen, A.P.J.; Brongersma, H.H.; Santen, van R.A.

    1991-01-01

    An overview is given of Molecular Dynamics, and numerical integration techniques, system initialization, boundary conditions, force representation, statistics, system size, and simulations duration are discussed. Examples from surface science are used to illustrate the pros and cons of the method.

  7. molecular dynamics simulations and quantum chemical calculations

    African Journals Online (AJOL)

    ABSTRACT. The molecular dynamic (MD) simulation and quantum chemical calculations for the adsorption of [2-(2-Henicos-10- .... electronic properties of molecule clusters, surfaces and ... The local reactivity was analyzed by determining the.

  8. Molecular dynamics simulation of ribosome jam

    KAUST Repository

    Matsumoto, Shigenori; Takagi, Fumiko; Shimada, Takashi; Ito, Nobuyasu

    2011-01-01

    We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We

  9. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  10. Multiple Reserve Requirements, Exchange Rates, Sudden Stops and Equilibrium Dynamics in a Small Open Economy

    OpenAIRE

    Paula Hernandez-Verme; Wen-Yao Wang

    2009-01-01

    We model a typical Asian-crisis-economy using dynamic general equilibrium tech-niques. Exchange rates obtain from nontrivial fiat-currencies demands. Sudden stops/bank-panics are possible, and key for evaluating the merits of alternative ex-change rate regimes. Strategic complementarities contribute to the severe indetermi-nacy of the continuum of equilibria. The scope for existence and indeterminacy of equilibria and dynamic properties are associated with the underlying policy regime. Bindin...

  11. Visualizing Energy on Target: Molecular Dynamics Simulations

    Science.gov (United States)

    2017-12-01

    ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target

  12. Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.

    Science.gov (United States)

    O'Meara, Brian C; Smith, Stacey D; Armbruster, W Scott; Harder, Lawrence D; Hardy, Christopher R; Hileman, Lena C; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A; Stevens, Peter F; Fenster, Charles B; Diggle, Pamela K

    2016-05-11

    Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. © 2016 The Author(s).

  13. Molecular ions, Rydberg spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Jungen, Ch.

    2015-01-01

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering

  14. Pattern recognition in molecular dynamics. [FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, W H; Schieve, W C [Texas Univ., Austin (USA)

    1977-07-01

    An algorithm for the recognition of the formation of bound molecular states in the computer simulation of a dilute gas is presented. Applications to various related problems in physics and chemistry are pointed out. Data structure and decision processes are described. Performance of the FORTRAN program based on the algorithm in cooperation with the molecular dynamics program is described and the results are presented.

  15. Molecular ions, Rydberg spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  16. Lattice dynamics and molecular dynamics simulation of complex materials

    International Nuclear Information System (INIS)

    Chaplot, S.L.

    1997-01-01

    In this article we briefly review the lattice dynamics and molecular dynamics simulation techniques, as used for complex ionic and molecular solids, and demonstrate a number of applications through examples of our work. These computational studies, along with experiments, have provided microscopic insight into the structure and dynamics, phase transitions and thermodynamical properties of a variety of materials including fullerene, high temperature superconducting oxides and geological minerals as a function of pressure and temperature. The computational techniques also allow the study of the structures and dynamics associated with disorder, defects, surfaces, interfaces etc. (author)

  17. Mastering the non-equilibrium assembly and operation of molecular machines.

    Science.gov (United States)

    Pezzato, Cristian; Cheng, Chuyang; Stoddart, J Fraser; Astumian, R Dean

    2017-09-18

    In mechanically interlocked compounds, such as rotaxanes and catenanes, the molecules are held together by mechanical rather than chemical bonds. These compounds can be engineered to have several well-defined mechanical states by incorporating recognition sites between the different components. The rates of the transitions between the recognition sites can be controlled by introducing steric "speed bumps" or electrostatically switchable gates. A mechanism for the absorption of energy can also be included by adding photoactive, catalytically active, or redox-active recognition sites, or even charges and dipoles. At equilibrium, these Mechanically Interlocked Molecules (MIMs) undergo thermally activated transitions continuously between their different mechanical states where every transition is as likely as its microscopic reverse. External energy, for example, light, external modulation of the chemical and/or physical environment or catalysis of an exergonic reaction, drives the system away from equilibrium. The absorption of energy from these processes can be used to favour some, and suppress other, transitions so that completion of a mechanical cycle in a direction in which work is done on the environment - the requisite of a molecular machine - is more likely than completion in a direction in which work is absorbed from the environment. In this Tutorial Review, we discuss the different design principles by which molecular machines can be engineered to use different sources of energy to carry out self-organization and the performance of work in their environments.

  18. Kinetic equations within the formalism of non-equilibrium thermo field dynamics

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1988-01-01

    After reviewing the real-time formalism of dissipative quantum field theory, i.e. non-equilibrium thermo field dynamics (NETFD), a kinetic equation, a self-consistent equation for the dissipation coefficient and a ''mass'' or ''chemical potential'' renormalization equation for non-equilibrium transient situations are extracted out of the two-point Green's function of the Heisenberg field, in their most general forms upon the basic requirements of NETFD. The formulation is applied to the electron-phonon system, as an example, where the gradient expansion and the quasi-particle approximation are performed. The formalism of NETFD is reinvestigated in connection with the kinetic equations. (orig.)

  19. The new physics of non-equilibrium condensates: insights from classical dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, P R [Theory of Condensed Matter, Cavendish Laboratory, Cambridge CB3 0HE (United Kingdom)

    2007-07-25

    We discuss the dynamics of classical Dicke-type models, aiming to clarify the mechanisms by which coherent states could develop in potentially non-equilibrium systems such as semiconductor microcavities. We present simulations of an undamped model which show spontaneous coherent states with persistent oscillations in the magnitude of the order parameter. These states are generalizations of superradiant ringing to the case of inhomogeneous broadening. They correspond to the persistent gap oscillations proposed in fermionic atomic condensates, and arise from a variety of initial conditions. We show that introducing randomness into the couplings can suppress the oscillations, leading to a limiting dynamics with a time-independent order parameter. This demonstrates that non-equilibrium generalizations of polariton condensates can be created even without dissipation. We explain the dynamical origins of the coherence in terms of instabilities of the normal state, and consider how it can additionally develop through scattering and dissipation.

  20. The new physics of non-equilibrium condensates: insights from classical dynamics

    International Nuclear Information System (INIS)

    Eastham, P R

    2007-01-01

    We discuss the dynamics of classical Dicke-type models, aiming to clarify the mechanisms by which coherent states could develop in potentially non-equilibrium systems such as semiconductor microcavities. We present simulations of an undamped model which show spontaneous coherent states with persistent oscillations in the magnitude of the order parameter. These states are generalizations of superradiant ringing to the case of inhomogeneous broadening. They correspond to the persistent gap oscillations proposed in fermionic atomic condensates, and arise from a variety of initial conditions. We show that introducing randomness into the couplings can suppress the oscillations, leading to a limiting dynamics with a time-independent order parameter. This demonstrates that non-equilibrium generalizations of polariton condensates can be created even without dissipation. We explain the dynamical origins of the coherence in terms of instabilities of the normal state, and consider how it can additionally develop through scattering and dissipation

  1. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles

    International Nuclear Information System (INIS)

    Spruijt, E; Biesheuvel, P M

    2014-01-01

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation–diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL

  2. Mg/Ca partitioning between aqueous solution and aragonite mineral: a molecular dynamics study

    NARCIS (Netherlands)

    Ruiz-Hernandez, S.E.; Grau-Crespo, R.; Almora-Barrios, N.; Wolthers, M.; Ruiz-Salvador, A.R.; Fernandez, N.; Leeuw, N.H. de

    2012-01-01

    We have calculated the concentrations of Mg in the bulk and surfaces of aragonite CaCO3 in equilibrium with aqueous solution, based on molecular dynamics simulations and grand-canonical statistical mechanics. Mg is incorporated in the surfaces, in particular in the (001) terraces,

  3. Analysis of Serial and Parallel Algorithms for Use in Molecular Dynamics.. Review and Proposals

    Science.gov (United States)

    Mazzone, A. M.

    This work analyzes the stability and accuracy of multistep methods, either for serial or parallel calculations, applied to molecular dynamics simulations. Numerical testing is made by evaluating the equilibrium configurations of mono-elemental crystalline lattices of metallic and semiconducting type (Ag and Si, respectively) and of a cubic CuY compound.

  4. Wavelet Analysis for Molecular Dynamics

    Science.gov (United States)

    2015-06-01

    Our method takes as input the topology and sparsity of the bonding structure of a molecular system, and returns a hierarchical set of system-specific...problems, such as modeling crack initiation and propagation, or interfacial phenomena. In the present work, we introduce a wavelet-based approach to extend...Several functional forms are common for angle poten- tials complicating not only implementation but also choice of approximation. In all cases, the

  5. Evaluation of uranium dioxide thermal conductivity using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kim, Woongkee; Kaviany, Massoud; Shim, J. H.

    2014-01-01

    It can be extended to larger space, time scale and even real reactor situation with fission product as multi-scale formalism. Uranium dioxide is a fluorite structure with Fm3m space group. Since it is insulator, dominant heat carrier is phonon, rather than electrons. So, using equilibrium molecular dynamics (MD) simulation, we present the appropriate calculation parameters in MD simulation by calculating thermal conductivity and application of it to the thermal conductivity of polycrystal. In this work, we investigate thermal conductivity of uranium dioxide and optimize the parameters related to its process. In this process, called Green Kubo formula, there are two parameters i.e correlation length and sampling interval, which effect on ensemble integration in order to obtain thermal conductivity. Through several comparisons, long correlation length and short sampling interval give better results. Using this strategy, thermal conductivity of poly crystal is obtained and comparison with that of pure crystal is made. Thermal conductivity of poly crystal show lower value that that of pure crystal. In further study, we broaden the study to transport coefficient of radiation damaged structures using molecular dynamics. Although molecular dynamics is tools for treating microscopic scale, most macroscopic issues related to nuclear materials such as voids in fuel materials and weakened mechanical properties by radiation are based on microscopic basis. Thus, research on microscopic scale would be expanded in this field and many hidden mechanism in atomic scales will be revealed via both atomic scale simulations and experiments

  6. Dynamics and Thermodynamics of Molecular Machines

    DEFF Research Database (Denmark)

    Golubeva, Natalia

    2014-01-01

    to their microscopic size, molecular motors are governed by principles fundamentally different from those describing the operation of man-made motors such as car engines. In this dissertation the dynamic and thermodynamic properties of molecular machines are studied using the tools of nonequilibrium statistical......Molecular machines, or molecular motors, are small biophysical devices that perform a variety of essential metabolic processes such as DNA replication, protein synthesis and intracellular transport. Typically, these machines operate by converting chemical energy into motion and mechanical work. Due...... mechanics. The first part focuses on noninteracting molecular machines described by a paradigmatic continuum model with the aim of comparing and contrasting such a description to the one offered by the widely used discrete models. Many molecular motors, for example, kinesin involved in cellular cargo...

  7. Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations

    Science.gov (United States)

    Liang, Zhi; Hu, Ming

    2018-05-01

    Due to the high surface-to-volume ratio of nanostructured components in microelectronics and other advanced devices, the thermal resistance at material interfaces can strongly affect the overall thermal behavior in these devices. Therefore, the thermal boundary resistance, R, must be taken into account in the thermal analysis of nanoscale structures and devices. This article is a tutorial on the determination of R and the analysis of interfacial thermal transport via molecular dynamics (MD) simulations. In addition to reviewing the commonly used equilibrium and non-equilibrium MD models for the determination of R, we also discuss several MD simulation methods which can be used to understand interfacial thermal transport behavior. To illustrate how these MD models work for various interfaces, we will show several examples of MD simulation results on thermal transport across solid-solid, solid-liquid, and solid-gas interfaces. The advantages and drawbacks of a few other MD models such as approach-to-equilibrium MD and first-principles MD are also discussed.

  8. Advances in molecular vibrations and collision dynamics molecular clusters

    CERN Document Server

    Bacic, Zatko

    1998-01-01

    This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...

  9. Molecular dynamics and diffusion a compilation

    CERN Document Server

    Fisher, David

    2013-01-01

    The molecular dynamics technique was developed in the 1960s as the outgrowth of attempts to model complicated systems by using either a) direct physical simulation or (following the great success of Monte Carlo methods) by b) using computer techniques. Computer simulation soon won out over clumsy physical simulation, and the ever-increasing speed and sophistication of computers has naturally made molecular dynamics simulation into a more and more successful technique. One of its most popular applications is the study of diffusion, and some experts now even claim that molecular dynamics simulation is, in the case of situations involving well-characterised elements and structures, more accurate than experimental measurement. The present double volume includes a compilation (over 600 items) of predicted solid-state diffusion data, for all of the major materials groups, dating back nearly four decades. The double volume also includes some original papers: "Determination of the Activation Energy for Formation and ...

  10. Molecular Dynamics Studies of Nanofluidic Devices

    DEFF Research Database (Denmark)

    Zambrano Rodriguez, Harvey Alexander

    of such devices. Computational nanofluidics complements experimental studies by providing detailed spatial and temporal information of the nanosystem. In this thesis, we conduct molecular dynamics simulations to study basic nanoscale devices. We focus our studies on the understanding of transport mechanism...... to drive fluids and solids at the nanoscale. Specifically, we present the results of three different research projects. Throughout the first part of this thesis, we include a comprenhensive introduction to computational nanofluidics and to molecular simulations, and describe the molecular dynamics...... in opposite direction to the imposed thermal gradient also we measure higher velocities as higher thermal gradients are imposed. Secondly, we present an atomistic analysis of a molecular linear motor fabricated of coaxial carbon nanotubes and powered by thermal gradients. The MD simulation results indicate...

  11. Thermalization and out-of-equilibrium dynamics in open quantum many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Buchhold, Michael

    2015-06-30

    In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics. As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state. As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermis golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate σ{sup R}=ImΣ{sup R}, determined by the self-energy at equilibrium. However, for long times τ, it also reveals the presence of dynamical slow

  12. Molecular dynamics modeling of polymer flammability

    International Nuclear Information System (INIS)

    Nyden, M.R.; Brown, J.E.; Lomakin, S.M.

    1992-01-01

    Molecular dynamic simulations were used to identify factors which promote char formation during the thermal degradation of polymers. Computer movies based on these simulations, indicate that cross-linked model polymers tend to undergo further cross-linking when burned, eventually forming a high molecular weight, thermally stable char. This paper reports that the prediction was confirmed by char yield measurements made on γ and e - -irradiated polyethylene and chemically cross-linked poly(methyl methacrylate)

  13. First-principles molecular dynamics for metals

    International Nuclear Information System (INIS)

    Fernando, G.W.; Qian, G.; Weinert, M.; Davenport, J.W.

    1989-01-01

    A Car-Parrinello-type first-principles molecular-dynamics approach capable of treating the partial occupancy of electronic states that occurs at the Fermi level in a metal is presented. The algorithms used to study metals are both simple and computationally efficient. We also discuss the connection between ordinary electronic-structure calculations and molecular-dynamics simulations as well as the role of Brillouin-zone sampling. This extension should be useful not only for metallic solids but also for solids that become metals in their liquid and/or amorphous phases

  14. Scalable Molecular Dynamics for Large Biomolecular Systems

    Directory of Open Access Journals (Sweden)

    Robert K. Brunner

    2000-01-01

    Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.

  15. Theory and application of quantum molecular dynamics

    CERN Document Server

    Zeng Hui Zhang, John

    1999-01-01

    This book provides a detailed presentation of modern quantum theories for treating the reaction dynamics of small molecular systems. Its main focus is on the recent development of successful quantum dynamics theories and computational methods for studying the molecular reactive scattering process, with specific applications given in detail for a number of benchmark chemical reaction systems in the gas phase and the gas surface. In contrast to traditional books on collision in physics focusing on abstract theory for nonreactive scattering, this book deals with both the development and the appli

  16. Chemistry and Chemical Equilibrium Dynamics of BMAA and Its Carbamate Adducts.

    Science.gov (United States)

    Diaz-Parga, Pedro; Goto, Joy J; Krishnan, V V

    2018-01-01

    Beta-N-methylamino-L-alanine (BMAA) has been demonstrated to contribute to the onset of the ALS/Parkinsonism-dementia complex (ALS/PDC) and is implicated in the progression of other neurodegenerative diseases. While the role of BMAA in these diseases is still debated, one of the suggested mechanisms involves the activation of excitatory glutamate receptors. In particular, the excitatory effects of BMAA are shown to be dependent on the presence of bicarbonate ions, which in turn forms carbamate adducts in physiological conditions. The formation of carbamate adducts from BMAA and bicarbonate is similar to the formation of carbamate adducts from non-proteinogenic amino acids. Structural, chemical, and biological information related to non-proteinogenic amino acids provide insight into the formation of and possible neurological action of BMAA. This article reviews the carbamate formation of BMAA in the presence of bicarbonate ions, with a particular focus on how the chemical equilibrium of BMAA carbamate adducts may affect the molecular mechanism of its function. Highlights of nuclear magnetic resonance (NMR)-based studies on the equilibrium process between free BMAA and its adducts are presented. The role of divalent metals on the equilibrium process is also explored. The formation and the equilibrium process of carbamate adducts of BMAA may answer questions on their neuroactive potency and provide strong motivation for further investigations into other toxic mechanisms.

  17. Nonadiabatic electron wavepacket dynamics behind molecular autoionization

    Science.gov (United States)

    Matsuoka, Takahide; Takatsuka, Kazuo

    2018-01-01

    A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.

  18. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  19. Dynamic signature of molecular association in methanol

    International Nuclear Information System (INIS)

    Bertrand, C. E.; Copley, J. R. D.; Faraone, A.; Self, J. L.

    2016-01-01

    Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD 3 OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids.

  20. An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model

    Science.gov (United States)

    Gawron, C.

    An iterative algorithm to determine the dynamic user equilibrium with respect to link costs defined by a traffic simulation model is presented. Each driver's route choice is modeled by a discrete probability distribution which is used to select a route in the simulation. After each simulation run, the probability distribution is adapted to minimize the travel costs. Although the algorithm does not depend on the simulation model, a queuing model is used for performance reasons. The stability of the algorithm is analyzed for a simple example network. As an application example, a dynamic version of Braess's paradox is studied.

  1. Stability of the Supply Chain Using System Dynamics Simulation and the Accumulated Deviations from Equilibrium

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2011-01-01

    Full Text Available We propose and demonstrate a new methodology to stabilize systems with complex dynamics like the supply chain. This method is based on the accumulated deviations from equilibrium (ADE. It is most beneficial for controlling system dynamic models characterized by multiple types of delays, many interacting variables, and feedback processes. We employ the classical version of particle swarm optimization as the optimization approach due to its performance in multidimensional space, stochastic properties, and global reach. We demonstrate the effectiveness of our method based on ADE using a manufacturing-supply-chain case study.

  2. Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids

    Science.gov (United States)

    Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.

    2009-03-01

    Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics

  3. Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment

    International Nuclear Information System (INIS)

    Stapleton, M.W.; McKiernan, A.P.; Mosnier, J.-P.

    2005-01-01

    The gas dynamics and atomic kinetics of a laser ablation plume of lithium, expanding adiabatically in vacuum, are included in a numerical model, using isothermal and isentropic self-similar analytical solutions and steady-state collisional radiative equations, respectively. Measurements of plume expansion dynamics using ultrafast imaging for various laser wavelengths (266-1064 nm), fluences (2-6.5 J cm -2 ), and spot sizes (50-1000 μm) are performed to provide input parameters for the model and, thereby, study the influence of laser spot size, wavelength, and fluence, respectively, on both the plume expansion dynamics and atomic kinetics. Target recoil pressure, which clearly affects plume dynamics, is included in the model. The effects of laser wavelength and spot size on plume dynamics are discussed in terms of plasma absorption of laser light. A transition from isothermal to isentropic behavior for spot sizes greater than 50 μm is clearly evidenced. Equilibrium conditions are found to exist only up to 300 ns after the plume creation, while complete local thermodynamic equilibrium is found to be confined to the very early parts of the expansion

  4. Chaos in a dynamic model of urban transportation network flow based on user equilibrium states

    International Nuclear Information System (INIS)

    Xu Meng; Gao Ziyou

    2009-01-01

    In this study, we investigate the dynamical behavior of network traffic flow. We first build a two-stage mathematical model to analyze the complex behavior of network flow, a dynamical model, which is based on the dynamical gravity model proposed by Dendrinos and Sonis [Dendrinos DS, Sonis M. Chaos and social-spatial dynamic. Berlin: Springer-Verlag; 1990] is used to estimate the number of trips. Considering the fact that the Origin-Destination (O-D) trip cost in the traffic network is hard to express as a functional form, in the second stage, the user equilibrium network assignment model was used to estimate the trip cost, which is the minimum cost of used path when user equilibrium (UE) conditions are satisfied. It is important to use UE to estimate the O-D cost, since a connection is built among link flow, path flow, and O-D flow. The dynamical model describes the variations of O-D flows over discrete time periods, such as each day and each week. It is shown that even in a system with dimensions equal to two, chaos phenomenon still exists. A 'Chaos Propagation' phenomenon is found in the given model.

  5. Electron-nuclear corellations for photoinduced dynamics in molecular dimers

    Science.gov (United States)

    Kilin, Dmitri S.; Pereversev, Yuryi V.; Prezhdo, Oleg V.

    2003-03-01

    Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by dynamic reorganization of of inter- and intra- molecular nuclear configuration modelled by quantized nuclear degree of freedom [1]. The dynamics of the electronic population and nuclear coherence is analyzed with help of both numerical solution of the chain of coupled differential equations for mean coordinate, population inversion, electronic-vibrational correlation etc.[2] and by propagating the Gaussian wavepackets in relevant adiabatic potentials. Intriguing results were obtained in the approximation of small energy difference and small change of nuclear equilibrium configuration for excited electronic states. In the limiting case of resonance between electronic states energy difference and frequency of the nuclear mode these results have been justified by comparison to exactly solvable Jaynes-Cummings model. It has been found that the photoinduced processes in dimer are arranged according to their time scales:(i) fast scale of nuclear motion,(ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electronic -nuclear correlation,(iii) slow scale of electronic population approaching to the quasiequilibrium distribution, decay of electronic-nuclear correlation, and diminishing the amplitude of mean coordinate oscillations, accompanied by essential growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. Demonstrated quantum-relaxational features of photoinduced vibronic dinamical processess in molecular dimers are obtained by simple method, applicable to large biological systems with many degrees of freedom. [1] J. A. Cina, D. S. Kilin, T. S. Humble, J. Chem. Phys. (2003) in press. [2] O. V. Prezhdo, J. Chem. Phys. 117, 2995 (2002).

  6. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    International Nuclear Information System (INIS)

    Wu, Wei; Wang, Jin

    2014-01-01

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series

  7. Molecular dynamics simulation of impact test

    International Nuclear Information System (INIS)

    Akahoshi, Y.; Schmauder, S.; Ludwig, M.

    1998-01-01

    This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)

  8. Ab Initio molecular dynamics with excited electrons

    NARCIS (Netherlands)

    Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.

    1994-01-01

    A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.

  9. Molecular dynamics simulations of RNA motifs

    Czech Academy of Sciences Publication Activity Database

    Csaszar, K.; Špačková, Naďa; Šponer, Jiří; Leontis, N. B.

    2002-01-01

    Roč. 223, - (2002), s. 154 ISSN 0065-7727. [Annual Meeting of the American Chemistry Society /223./. 07.04.2002-11.04.2002, Orlando ] Institutional research plan: CEZ:AV0Z5004920 Keywords : molecular dynamics * RNA * hydration Subject RIV: BO - Biophysics

  10. Molecular dynamics simulation of impact test

    Energy Technology Data Exchange (ETDEWEB)

    Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-11-01

    This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)

  11. Molecular dynamics simulation of a phospholipid membrane

    NARCIS (Netherlands)

    Egberts, Egbert; Marrink, Siewert-Jan; Berendsen, Herman J.C.

    We present the results of molecular dynamics (MD) simulations of a phospholipid membrane in water, including full atomic detail. The goal of the simulations was twofold: first we wanted to set up a simulation system which is able to reproduce experimental results and can serve as a model membrane in

  12. Molecular dynamics simulations and quantum chemical calculations ...

    African Journals Online (AJOL)

    Molecular dynamic simulation results indicate that the imidazoline derivative molecules uses the imidazoline ring to effectively adsorb on the surface of iron, with the alkyl hydrophobic tail forming an n shape (canopy like covering) at geometry optimization and at 353 K. The n shape canopy like covering to a large extent may ...

  13. Nanotribology investigations with classical molecular dynamics

    NARCIS (Netherlands)

    Solhjoo, Soheil

    2017-01-01

    This thesis presents a number of nanotribological problems investigated by means of classical molecular dynamics (MD) simulations, within the context of the applicability of continuum mechanics contact theories at the atomic scale. Along these lines, three different themes can be recognized herein:

  14. Catalysis and communication in dynamic molecular networks

    NARCIS (Netherlands)

    Fanlo Virgos, Hugo

    2015-01-01

    The interactions of a Dynamic Combinatorial Library (DCL) of molecules with specific targets leads to composition changes of the library which can reveal potential guests and / or catalysts. In this thesis some chemical systems have been proposed to achieve a certain level of molecular complexity

  15. Reaction dynamics in polyatomic molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  16. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    Science.gov (United States)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  17. Stability of the thermodynamic equilibrium: A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    International Nuclear Information System (INIS)

    Faghihi, M.; Scheffel, J.; Spies, G.O.

    1988-01-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure

  18. Non-equilibrium trajectory dynamics and the kinematics of gliding in a flying snake

    International Nuclear Information System (INIS)

    Socha, John J; Jafari, Farid; Miklasz, Kevin; Vlachos, Pavlos P

    2010-01-01

    Given sufficient space, it is possible for gliding animals to reach an equilibrium state with no net forces acting on the body. In contrast, every gliding trajectory must begin with a non-steady component, and the relative importance of this phase is not well understood. Of any terrestrial animal glider, snakes exhibit the greatest active movements, which may affect their trajectory dynamics. Our primary aim was to determine the characteristics of snake gliding during the transition to equilibrium, quantifying changes in velocity, acceleration, and body orientation in the late phase of a glide sequence. We launched 'flying' snakes (Chrysopelea paradisi) from a 15 m tower and recorded the mid-to-end portion of trajectories with four videocameras to reconstruct the snake's body position with mm to cm accuracy. Additionally, we developed a simple analytical model of gliding assuming only steady-state forces of lift, drag and weight acting on the body and used it to explore effects of wing loading, lift-to-drag ratio, and initial velocity on trajectory dynamics. Despite the vertical space provided to transition to steady-state gliding, snakes did not exhibit equilibrium gliding and in fact displayed a net positive acceleration in the vertical axis, an effect also predicted by the analytical model.

  19. Non-equilibrium trajectory dynamics and the kinematics of gliding in a flying snake

    Energy Technology Data Exchange (ETDEWEB)

    Socha, John J; Jafari, Farid [Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061 (United States); Miklasz, Kevin [Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950 (United States); Vlachos, Pavlos P, E-mail: jjsocha@vt.ed [Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States)

    2010-12-15

    Given sufficient space, it is possible for gliding animals to reach an equilibrium state with no net forces acting on the body. In contrast, every gliding trajectory must begin with a non-steady component, and the relative importance of this phase is not well understood. Of any terrestrial animal glider, snakes exhibit the greatest active movements, which may affect their trajectory dynamics. Our primary aim was to determine the characteristics of snake gliding during the transition to equilibrium, quantifying changes in velocity, acceleration, and body orientation in the late phase of a glide sequence. We launched 'flying' snakes (Chrysopelea paradisi) from a 15 m tower and recorded the mid-to-end portion of trajectories with four videocameras to reconstruct the snake's body position with mm to cm accuracy. Additionally, we developed a simple analytical model of gliding assuming only steady-state forces of lift, drag and weight acting on the body and used it to explore effects of wing loading, lift-to-drag ratio, and initial velocity on trajectory dynamics. Despite the vertical space provided to transition to steady-state gliding, snakes did not exhibit equilibrium gliding and in fact displayed a net positive acceleration in the vertical axis, an effect also predicted by the analytical model.

  20. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Cawkwell, M. J., E-mail: cawkwell@lanl.gov; Niklasson, Anders M. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dattelbaum, Dana M. [Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  1. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N; Dattelbaum, Dana M

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  2. Impact of early stage non-equilibrium dynamics on photon production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Oliva, L; Plumari, S; Scardina, F; Greco, V; Ruggieri, M

    2017-01-01

    In this study we discuss our results on the spectrum of photons emitted from the quark-gluon plasma produced in heavy ion collisions at RHIC energies. Simulating the space-time evolution of the fireball by solving the relativistic Boltzmann transport equation and including two-particle scattering processes with photon emission allows us to make a first step in the description of thermal photons from the QGP as well as of those produced in the pre-equilibrium stage. Indeed, we consider not only a standard Glauber initial condition but also a model in which quarks and gluons are produced in the very early stage through the Schwinger mechanism by the decay of an initial color-electric field. In the latter approach relativistic kinetic equations are coupled in a self-consistent way to field equations. We aim at spotting the impact of early stage non-equilibrium dynamics on the photon production. (paper)

  3. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    Science.gov (United States)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  4. Out-of-equilibrium dynamics driven by localized time-dependent perturbations at quantum phase transitions

    Science.gov (United States)

    Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore

    2018-03-01

    We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.

  5. Dynamical quenching of tunneling in molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    José Santander, María, E-mail: maria.jose.noemi@gmail.com [Recursos Educativos Quántica, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Roldán-Molina, A. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile); Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile)

    2015-12-15

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation.

  6. Dynamical quenching of tunneling in molecular magnets

    International Nuclear Information System (INIS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-01-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation

  7. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    Science.gov (United States)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  8. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hanhui [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Collaborative Innovation Center of Advanced Aero-Engine, Hangzhou 310027 (China); Liu, Ningning [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Ku, Xiaoke, E-mail: xiaokeku@zju.edu.cn [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China); Fan, Jianren [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2017-05-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, the difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.

  9. A novel energy conversion based method for velocity correction in molecular dynamics simulations

    International Nuclear Information System (INIS)

    Jin, Hanhui; Liu, Ningning; Ku, Xiaoke; Fan, Jianren

    2017-01-01

    Molecular dynamics (MD) simulation has become an important tool for studying micro- or nano-scale dynamics and the statistical properties of fluids and solids. In MD simulations, there are mainly two approaches: equilibrium and non-equilibrium molecular dynamics (EMD and NEMD). In this paper, a new energy conversion based correction (ECBC) method for MD is developed. Unlike the traditional systematic correction based on macroscopic parameters, the ECBC method is developed strictly based on the physical interaction processes between the pair of molecules or atoms. The developed ECBC method can apply to EMD and NEMD directly. While using MD with this method, the difference between the EMD and NEMD is eliminated, and no macroscopic parameters such as external imposed potentials or coefficients are needed. With this method, many limits of using MD are lifted. The application scope of MD is greatly extended.

  10. Statistical properties of anti-symmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Ohnishi, A.; Randrup, J.

    1993-01-01

    We study the statistical equilibrium properties of the recently developed anti-symmetrized molecular dynamics model for heavy-ion reactions. We consider A non-interacting fermions in one dimension, either bound in a common harmonic potential or moving freely within an interval, and perform a Metropolis sampling of the corresponding parameter space. Generally the average excitation and the specific heat, considered as functions of the imposed temperature, behave in a classical manner when the canonical weight is calculated in the mean-field approximation. However, it is possible to obtain results that are much closer to the quantal behavior by modifying the weight to take approximate account of the energy fluctuations within the individual wave packets. (orig.)

  11. Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics

    International Nuclear Information System (INIS)

    Sarovar, Mohan; Young, Kevin C

    2013-01-01

    While adiabatic quantum computing (AQC) has some robustness to noise and decoherence, it is widely believed that encoding, error suppression and error correction will be required to scale AQC to large problem sizes. Previous works have established at least two different techniques for error suppression in AQC. In this paper we derive a model for describing the dynamics of encoded AQC and show that previous constructions for error suppression can be unified with this dynamical model. In addition, the model clarifies the mechanisms of error suppression and allows the identification of its weaknesses. In the second half of the paper, we utilize our description of non-equilibrium dynamics in encoded AQC to construct methods for error correction in AQC by cooling local degrees of freedom (qubits). While this is shown to be possible in principle, we also identify the key challenge to this approach: the requirement of high-weight Hamiltonians. Finally, we use our dynamical model to perform a simplified thermal stability analysis of concatenated-stabilizer-code encoded many-body systems for AQC or quantum memories. This work is a companion paper to ‘Error suppression and error correction in adiabatic quantum computation: techniques and challenges (2013 Phys. Rev. X 3 041013)’, which provides a quantum information perspective on the techniques and limitations of error suppression and correction in AQC. In this paper we couch the same results within a dynamical framework, which allows for a detailed analysis of the non-equilibrium dynamics of error suppression and correction in encoded AQC. (paper)

  12. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  13. Orthonormal Wavelet Bases for Quantum Molecular Dynamics

    International Nuclear Information System (INIS)

    Tymczak, C.; Wang, X.

    1997-01-01

    We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society

  14. Non-equilibrium QCD of high-energy multi-gluon dynamics

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A non-equilibrium QCD description of multiparticle dynamics in space-time is of both fundamental and phenomenological interest. Here the authors discusses an attempt to derive from first principles, a real-time formalism to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The ultimate goal (from which one is still far away) is to have a practically applicable description of the space-time evolution of a general initial system of gluons and quarks, characterized by some large energy or momentum scale, that expands, diffuses and dissipates according to the self- and mutual-interactions, and eventually converts dynamically into final state hadrons. For example, the evolution of parton showers in the mechanism of parton-hadron conversion in high-energy hadronic collisions, or, the description of formation, evolution and freezeout of a quark-gluon plasma, in ultra-relativistic heavy-ion collisions

  15. A dynamic general equilibrium analysis on fostering a hydrogen economy in Korea

    International Nuclear Information System (INIS)

    Bae, Jeong Hwan; Cho, Gyeong-Lyeob

    2010-01-01

    Hydrogen is anticipated to become one of the major alternative energy technologies for a sustainable energy system. This study analyzes the dynamic economic impacts of building a hydrogen economy in Korea employing a dynamic Computable General Equilibrium (CGE) model. As a frontier technology, hydrogen is featured as having a slow diffusion rate due to option value, positive externality, resistance of old technology, and complementary vintages. Without government intervention, hydrogen-derived energy will supply up to 6.5% of final energy demand by 2040. Simulation outcomes show that as price subsidy rates increase by 10%, 20%, and 30%, hydrogen demand will increase by 9.2%, 15.2%, and 37.7%, respectively, of final energy demand by 2040. The output of the transportation sector will increase significantly, while demands for oil and electricity will decline. Demands for coal and LNG will experience little change. Household consumption will decline because of the increase of income taxes. Overall GDP will increase because of the increase in exports and investments. CO 2 emission will decline for medium and high subsidy rate cases, but increase for low subsidy cases. Ultimately, subsidy policy on hydrogen will not be an effective measure for mitigating CO 2 emission in Korea when considering dynamic general equilibrium effects. (author)

  16. The case for an internal dynamics model versus equilibrium point control in human movement.

    Science.gov (United States)

    Hinder, Mark R; Milner, Theodore E

    2003-06-15

    The equilibrium point hypothesis (EPH) was conceived as a means whereby the central nervous system could control limb movements by a relatively simple shift in equilibrium position without the need to explicitly compensate for task dynamics. Many recent studies have questioned this view with results that suggest the formation of an internal dynamics model of the specific task. However, supporters of the EPH have argued that these results are not incompatible with the EPH and that there is no reason to abandon it. In this study, we have tested one of the fundamental predictions of the EPH, namely, equifinality. Subjects learned to perform goal-directed wrist flexion movements while a motor provided assistance in proportion to the instantaneous velocity. It was found that the subjects stopped short of the target on the trials where the magnitude of the assistance was randomly decreased, compared to the preceding control trials (P = 0.003), i.e. equifinality was not achieved. This is contrary to the EPH, which predicts that final position should not be affected by external loads that depend purely on velocity. However, such effects are entirely consistent with predictions based on the formation of an internal dynamics model.

  17. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics

    Science.gov (United States)

    Kretchmer, Joshua S.; Chan, Garnet Kin-Lic

    2018-02-01

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  18. Excited-state molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Pratt, S.T.

    1995-01-01

    This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)

  19. Out-of-equilibrium dynamical mean-field equations for the perceptron model

    Science.gov (United States)

    Agoritsas, Elisabeth; Biroli, Giulio; Urbani, Pierfrancesco; Zamponi, Francesco

    2018-02-01

    Perceptrons are the building blocks of many theoretical approaches to a wide range of complex systems, ranging from neural networks and deep learning machines, to constraint satisfaction problems, glasses and ecosystems. Despite their applicability and importance, a detailed study of their Langevin dynamics has never been performed yet. Here we derive the mean-field dynamical equations that describe the continuous random perceptron in the thermodynamic limit, in a very general setting with arbitrary noise and friction kernels, not necessarily related by equilibrium relations. We derive the equations in two ways: via a dynamical cavity method, and via a path-integral approach in its supersymmetric formulation. The end point of both approaches is the reduction of the dynamics of the system to an effective stochastic process for a representative dynamical variable. Because the perceptron is formally very close to a system of interacting particles in a high dimensional space, the methods we develop here can be transferred to the study of liquid and glasses in high dimensions. Potentially interesting applications are thus the study of the glass transition in active matter, the study of the dynamics around the jamming transition, and the calculation of rheological properties in driven systems.

  20. Towards the molecular bases of polymerase dynamics

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1991-03-01

    One aspect of the strong relationship that is known to exist between the processes of DNA replication and transcription is manifest in the coupling of the rates of movement of the replication fork (r f ) and RNA polymerase (r t ). We address two issues concerning the largely unexplored area of polymerase dynamics: (i) The validity of an approximate kinematic formula linking r f and r t suggested by experiments in which transcription is initiated in some prokaryotes with the antibiotic streptolydigin, and (ii) What are the molecular bases of the kinematic formula? An analysis of the available data suggests possible molecular bases for polymerase dynamics. In particular, we are led to a hypothesis: In active chromatin r t may depend on the length (λ t ) of the transcript of the primary messenger RNA (pre-mRNA). This new effect is subject to experimental verification. We discuss possible experiments that may be performed in order to test this prediction. (author). Refs, 6 tabs

  1. Electron-nuclear dynamics of molecular systems

    International Nuclear Information System (INIS)

    Diz, A.; Oehrn, Y.

    1994-01-01

    The content of an ab initio time-dependent theory of quantum molecular dynamics of electrons and atomic nuclei is presented. Employing the time-dependent variational principle and a family of approximate state vectors yields a set of dynamical equations approximating the time-dependent Schroedinger equation. These equations govern the time evolution of the relevant state vector parameters as molecular orbital coefficients, nuclear positions, and momenta. This approach does not impose the Born-Oppenheimer approximation, does not use potential energy surfaces, and takes into account electron-nuclear coupling. Basic conservation laws are fully obeyed. The simplest model of the theory employs a single determinantal state for the electrons and classical nuclei and is implemented in the computer code ENDyne. Results from this ab-initio theory are reported for ion-atom and ion-molecule collisions

  2. Molecular quantum dynamics. From theory to applications

    International Nuclear Information System (INIS)

    Gatti, Fabien

    2014-01-01

    An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible introduction. Although the

  3. Molecular quantum dynamics. From theory to applications

    Energy Technology Data Exchange (ETDEWEB)

    Gatti, Fabien (ed.) [Montpellier 2 Univ. (France). Inst. Charles Gerhardt - CNRS 5253

    2014-09-01

    An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible

  4. Molecular Dynamics with Helical Periodic Boundary Conditions

    Czech Academy of Sciences Publication Activity Database

    Kessler, Jiří; Bouř, Petr

    2014-01-01

    Roč. 35, č. 21 (2014), s. 1552-1559 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA AV ČR(CZ) M200551205; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : periodic boundary conditions * helical symmetry * molecular dynamics * protein structure * amyloid fibrils Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.589, year: 2014

  5. Molecular dynamics simulation of a chemical reaction

    International Nuclear Information System (INIS)

    Gorecki, J.; Gryko, J.

    1988-06-01

    Molecular dynamics is used to study the chemical reaction A+A→B+B. It is shown that the reaction rate constant follows the Arrhenius law both for Lennard-Jones and hard sphere interaction potentials between substrate particles. A. For the denser systems the reaction rate is proportional to the value of the radial distribution function at the contact point of two hard spheres. 10 refs, 4 figs

  6. Nonequilibrium molecular dynamics theory, algorithms and applications

    CERN Document Server

    Todd, Billy D

    2017-01-01

    Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...

  7. Extended Lagrangian Excited State Molecular Dynamics.

    Science.gov (United States)

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  8. Stresses and elastic constants of crystalline sodium, from molecular dynamics

    International Nuclear Information System (INIS)

    Schiferl, S.K.

    1985-02-01

    The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs

  9. Concentration gradient driven molecular dynamics: a new method for simulations of membrane permeation and separation.

    Science.gov (United States)

    Ozcan, Aydin; Perego, Claudio; Salvalaglio, Matteo; Parrinello, Michele; Yazaydin, Ozgur

    2017-05-01

    In this study, we introduce a new non-equilibrium molecular dynamics simulation method to perform simulations of concentration driven membrane permeation processes. The methodology is based on the application of a non-conservative bias force controlling the concentration of species at the inlet and outlet of a membrane. We demonstrate our method for pure methane, ethane and ethylene permeation and for ethane/ethylene separation through a flexible ZIF-8 membrane. Results show that a stationary concentration gradient is maintained across the membrane, realistically simulating an out-of-equilibrium diffusive process, and the computed permeabilities and selectivity are in good agreement with experimental results.

  10. Multiscale Modeling using Molecular Dynamics and Dual Domain Material Point Method

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division. Fluid Dynamics and Solid Mechanics Group, T-3; Rice Univ., Houston, TX (United States)

    2016-07-07

    For problems involving large material deformation rate, the material deformation time scale can be shorter than the material takes to reach a thermodynamical equilibrium. For such problems, it is difficult to obtain a constitutive relation. History dependency become important because of thermodynamic non-equilibrium. Our goal is to build a multi-scale numerical method which can bypass the need for a constitutive relation. In conclusion, multi-scale simulation method is developed based on the dual domain material point (DDMP). Molecular dynamics (MD) simulation is performed to calculate stress. Since the communication among material points is not necessary, the computation can be done embarrassingly parallel in CPU-GPU platform.

  11. Non-equilibrium relaxation and near-arrest dynamics in colloidal suspensions

    International Nuclear Information System (INIS)

    Medina-Noyola, M; RamIrez-Gonzalez, Pedro

    2009-01-01

    In this work we propose a theory to describe the irreversible diffusive relaxation of the local concentration of a colloidal dispersion that proceeds toward its stable thermodynamic equilibrium state, but which may in the process be trapped in metastable or dynamically arrested states. The central assumption of this theory is that the irreversible relaxation of the macroscopically observed mean value n-bar(r,t) of the local concentration of colloidal particles is described by a diffusion equation involving a local mobility b*(r,t) that depends not only on the mean value n-bar(r,t) but also on the covariance σ(r,r';t)≡δn(r,t)δn(r',t)-bar of the fluctuations δn(r,t)≡n(r,t)-n-bar(r,t). This diffusion equation must hence be solved simultaneously with the relaxation equation for the covariance σ(r,r';t), and here we also derive the corresponding relaxation equation. The dependence of the local mobility b*(r,t) on the mean value and the covariance is determined by a self-consistent set of equations involving now the spatially and temporally non-local time-dependent correlation functions, which in a uniform system in equilibrium reduces to the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics. The resulting general theory considers the possibility that these relaxation processes occur under the influence of external fields, such as gravitational forces acting in the process of sedimentation. In this paper, however, we describe a simpler application, in which the system remains spatially uniform during the irreversible relaxation process, and discuss the general features of the glass transition scenario predicted by this non-equilibrium theory.

  12. Coulomb interactions via local dynamics: a molecular-dynamics algorithm

    International Nuclear Information System (INIS)

    Pasichnyk, Igor; Duenweg, Burkhard

    2004-01-01

    We derive and describe in detail a recently proposed method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. We focus on the molecular dynamics version of the method and show that it is intimately related to the Car-Parrinello approach, while being equivalent to solving Maxwell's equations with a freely adjustable speed of light. Unphysical self-energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green function. The method can be straightforwardly parallelized using standard domain decomposition. Some preliminary benchmark results are presented

  13. New Chaotic Dynamical System with a Conic-Shaped Equilibrium Located on the Plane Structure

    Directory of Open Access Journals (Sweden)

    Jiri Petrzela

    2017-09-01

    Full Text Available This paper presents a new autonomous deterministic dynamical system with equilibrium degenerated into a plane-oriented hyperbolic geometrical structure. It is demonstrated via numerical analysis and laboratory experiments that the discovered system has both a structurally stable strange attractor and experimentally measurable chaotic behavior. It is shown that the evolution of complex dynamics can be associated with a single parameter of a mathematical model and, due to one-to-one correspondence, to a single circuit parameter. Two-dimensional high resolution plots of the largest Lyapunov exponent and basins of attraction expressed in terms of final state energy are calculated and put into the context of the discovered third-order mathematical model and real chaotic oscillator. Both voltage- and current-mode analog chaotic oscillators are presented and verified by visualization of the typical chaotic attractor in a different fashion.

  14. Phenotypic equilibrium as probabilistic convergence in multi-phenotype cell population dynamics.

    Directory of Open Access Journals (Sweden)

    Da-Quan Jiang

    Full Text Available We consider the cell population dynamics with n different phenotypes. Both the Markovian branching process model (stochastic model and the ordinary differential equation (ODE system model (deterministic model are presented, and exploited to investigate the dynamics of the phenotypic proportions. We will prove that in both models, these proportions will tend to constants regardless of initial population states ("phenotypic equilibrium" under weak conditions, which explains the experimental phenomenon in Gupta et al.'s paper. We also prove that Gupta et al.'s explanation is the ODE model under a special assumption. As an application, we will give sufficient and necessary conditions under which the proportion of one phenotype tends to 0 (die out or 1 (dominate. We also extend our results to non-Markovian cases.

  15. Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field

    Science.gov (United States)

    Feng, Jinglang; Hou, Xiyun

    2017-07-01

    Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.

  16. Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field

    International Nuclear Information System (INIS)

    Feng, Jinglang; Hou, Xiyun

    2017-01-01

    Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.

  17. Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jinglang; Hou, Xiyun, E-mail: jinglang@nju.edu.cn, E-mail: silence@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, 210093 (China)

    2017-07-01

    Using tools such as periodic orbits and invariant manifolds, the global dynamics around equilibrium points (EPs) in a rotating second-order and degree gravitational field are studied. For EPs on the long axis, planar and vertical periodic families are computed, and their stability properties are investigated. Invariant manifolds are also computed, and their relation to the first-order resonances is briefly discussed. For EPs on the short axis, planar and vertical periodic families are studied, with special emphasis on the genealogy of the planar periodic families. Our studies show that the global dynamics around EPs are highly similar to those around libration points in the circular restricted three-body problem, such as spatial halo orbits, invariant manifolds, and the genealogy of planar periodic families.

  18. Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose—Einstein Condensates

    International Nuclear Information System (INIS)

    Duan Ya-Fan; Xu Zhen; Qian Jun; Sun Jian-Fang; Jiang Bo-Nan; Hong Tao

    2011-01-01

    We numerically analyze the dynamic behavior of Bose—Einstein condensate (BEC) in a one-dimensional disordered potential before it completely loses spatial quantum coherence. We find that both the disorder statistics and the atom interactions produce remarkable effects on localization. We also find that the single phase of the initial condensate is broken into many small pieces while the system approaches localization, showing a counter-intuitive step-wise phase but not a thoroughly randomized phase. Although the condensates as a whole show less flow and expansion, the currents between adjacent phase steps retain strong time dependence. Thus we show explicitly that the localization of a finite size Bose—Einstein condensate is a dynamic equilibrium state. (general)

  19. Sustainable Strategies for the Dynamic Equilibrium of the Urban Stream, Cheonggyecheon

    Science.gov (United States)

    Seo, D.; Kwon, Y.

    2018-04-01

    Cheonggyecheon, which had been transformed into a 14-lane urban highway and a large underground sewer system, was finally converted back to an urban stream again. Its transformation has been praised as a successful example of urban downtown regeneration and beautification. It is, however, obvious that there have not been prudent ecological considerations since the project’s principal goals were to provide public recreational use and achieve maximum flood control capacity via the use of embankments. For a healthier and sustainable stream environment, Cheonggyecheon should be ecologically re-restored again, based on a dynamic equilibrium model. It must primarily establish a corridor of vegetation, an aquatic transitional zone, and install constructed wetlands nearby which support the water source. The upper streams of Cheonggyecheon should be further restored and supply natural waters. Furthermore, there ultimately needs to be de-channelization for hydrological sustainability. This would vary from merely increasing the sinuosity to thoroughly reconstruct a naturalized stream. Complete dynamic equilibrium of Cheonggyecheon can be accomplished through more fundamental sustainable strategies.

  20. Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dorchies, F., E-mail: dorchies@celia.u-bordeaux1.fr [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence (France); Recoules, V. [CEA-DAM-DIF, F-91297 Arpajon (France)

    2016-10-31

    The advent of femtosecond lasers has shed new light on non-equilibrium high energy density physics. The ultrafast energy absorption by electrons and the finite rate of their energy transfer to the lattice creates non-equilibrium states of matter, triggering a new class of non-thermal processes from the ambient solid up to extreme conditions of temperature and pressure, referred as the warm dense matter regime. The dynamical interplay between electron and atomic structures is the key issue that drives the ultrafast phase transitions dynamics. Bond weakening or bond hardening are predicted, but strongly depends on the material considered. Many studies have been conducted but this physics is still poorly understood. The experimental tools used up-to-now have provided an incomplete insight. Pure optical techniques measure only indirectly atomic motion through changes in the dielectric function whereas X-ray or electron diffraction only probes the average long-range order. This review is dedicated to recent developments in time-resolved X-ray absorption near-edge spectroscopy, which is expected to give a more complete picture by probing simultaneously the modifications of the near-continuum electron and local atomic structures. Results are reported for three different types of metals (simple, transition and noble metals) in which a confrontation has been carried out between measurements and ab initio simulations.

  1. Future disability projections could be improved by connecting to the theory of a dynamic equilibrium.

    Science.gov (United States)

    Klijs, Bart; Mackenbach, Johan P; Kunst, Anton E

    2011-04-01

    Projections of future trends in the burden of disability could be guided by models linking disability to life expectancy, such as the dynamic equilibrium theory. This article tests the key assumption of this theory that severe disability is associated with proximity to death, whereas mild disability is not. Using data from the GLOBE study (Gezondheid en Levensomstandigheden Bevolking Eindhoven en omstreken), the association of three levels of self-reported disabilities in activities of daily living with age and proximity to death was studied using logistic regression models. Regression estimates were used to estimate the number of life years with disability for life spans of 75 and 85 years. Odds ratios of 0.976 (not significant) for mild disability, 1.137 for moderate disability, and 1.231 for severe disability showed a stronger effect of proximity to death for more severe levels of disability. A 10-year increase of life span was estimated to result in a substantial expansion of mild disability (4.6 years) compared with a small expansion of moderate (0.7 years) and severe (0.9 years) disability. These findings support the theory of a dynamic equilibrium. Projections of the future burden of disability could be substantially improved by connecting to this theory and incorporating information on proximity to death. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Non-equilibrium dynamics of single polymer adsorption to solid surfaces

    International Nuclear Information System (INIS)

    Panja, Debabrata; Barkema, Gerard T; Kolomeisky, Anatoly B

    2009-01-01

    The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface in the absence of hydrodynamic interactions. We find that for weak adsorption energies the adsorption timescales ∼N (1+2ν)/(1+ν) , where ν is the Flory exponent for the polymer. We argue that in this regime the single chain adsorption is closely related to a field-driven polymer translocation through narrow pores. Surprisingly, for high adsorption energies the adsorption time becomes longer, as it scales as ∼N 1+ν , which is explained by strong stretching of the unadsorbed part of the polymer close to the adsorbing surface. These two dynamic regimes are separated by an energy scale that is characterized by non-equilibrium contributions during the adsorption process. (fast track communication)

  3. Molecular dynamics studies of superionic conductors

    International Nuclear Information System (INIS)

    Rahman, A.; Vashishta, P.

    1983-01-01

    Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. The model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input: in addition one uses notions of ionic size based on the known crystal structure. Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features that can be incorporated to expedite the MD calculations are also discussed. A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in superionic conductors. 68 references, 17 figures, 2 tables

  4. Dissociation of polycyclic aromatic hydrocarbons: molecular dynamics studies

    Science.gov (United States)

    Simon, A.; Rapacioli, M.; Rouaut, G.; Trinquier, G.; Gadéa, F. X.

    2017-03-01

    We present dynamical studies of the dissociation of polycyclic aromatic hydrocarbon (PAH) radical cations in their ground electronic states with significant internal energy. Molecular dynamics simulations are performed, the electronic structure being described on-the-fly at the self-consistent-charge density functional-based tight binding (SCC-DFTB) level of theory. The SCC-DFTB approach is first benchmarked against DFT results. Extensive simulations are achieved for naphthalene , pyrene and coronene at several energies. Such studies enable one to derive significant trends on branching ratios, kinetics, structures and hints on the formation mechanism of the ejected neutral fragments. In particular, dependence of branching ratios on PAH size and energy were retrieved. The losses of H and C2H2 (recognized as the ethyne molecule) were identified as major dissociation channels. The H/C2H2 ratio was found to increase with PAH size and to decrease with energy. For , which is the most interesting PAH from the astrophysical point of view, the loss of H was found as the quasi-only channel for an internal energy of 30 eV. Overall, in line with experimental trends, decreasing the internal energy or increasing the PAH size will favour the hydrogen loss channels with respect to carbonaceous fragments. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  5. THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS

    International Nuclear Information System (INIS)

    Mac Low, Mordecai-Mark; Glover, Simon C. O.

    2012-01-01

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H 2 from cold atomic gas. The formation timescale for H 2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H 2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H 2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H 2 . The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  6. The Abundance of Molecular Hydrogen and Its Correlation with Midplane Pressure in Galaxies: Non-equilibrium, Turbulent, Chemical Models

    Science.gov (United States)

    Mac Low, Mordecai-Mark; Glover, Simon C. O.

    2012-02-01

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H2 from cold atomic gas. The formation timescale for H2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H2. The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  7. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  8. Hydrogen Bond Dynamics in Aqueous Solutions: Ab initio Molecular ...

    Indian Academy of Sciences (India)

    Rate equation for the decay of CHB(t) · Definition of Hydrogen Bonds · Results of Molecular Dynamics · Dynamics of anion-water and water-water hydrogen bonds · Structural relaxation of anion-water & water-water H-bonds · Ab initio Molecular Dynamics : · Slide 14 · Dynamics of hydrogen bonds : CPMD results · Slide 16.

  9. Phases, periphases, and interphases equilibrium by molecular modeling. I. Mass equilibrium by the semianalytical stochastic perturbations method and application to a solution between (120) gypsum faces

    Science.gov (United States)

    Pedesseau, Laurent; Jouanna, Paul

    2004-12-01

    The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime

  10. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    Science.gov (United States)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  11. Resilience of traffic networks: From perturbation to recovery via a dynamic restricted equilibrium model

    International Nuclear Information System (INIS)

    Nogal, Maria; O'Connor, Alan; Caulfield, Brian; Martinez-Pastor, Beatriz

    2016-01-01

    When a disruptive event takes place in a traffic network some important questions arise, such as how stressed the traffic network is, whether the system is able to respond to this stressful situation, or how long the system needs to recover a new equilibrium position after suffering this perturbation. Quantifying these aspects allows the comparison of different systems, to scale the degree of damage, to identify traffic network weaknesses, and to analyse the effect of user knowledge about the traffic network state. The indicator that accounts for performance and recovery pattern under disruptive events is known as resilience. This paper presents a methodology to assess the resilience of a traffic network when a given perturbation occurs, from the beginning of the perturbation to the total system recovery. To consider the dynamic nature of the problem, a new dynamic equilibrium-restricted assignment model is presented to simulate the network performance evolution, which takes into consideration important aspects, such as the cost increment due to the perturbation, the system impedance to alter its previous state and the user stress level. Finally, this methodology is used to evaluate the resilience indices of a real network. - Highlights: • Method to assess the resilience of a traffic network suffering progressive impacts. • It simulates the dynamic response during the perturbation and system recovery. • The resilience index is based on the travel costs and the stress level of users. • It considers the capacity of adaptation of the system to the new situations. • The model evaluates redundancy, adaptability, ability to recover, etc.

  12. Molecular dynamics simulation of carbon molecular sieve preparation for air separation

    International Nuclear Information System (INIS)

    Yaghoobpour, Elham; Ahmadpour, Ali; Farhadian, Nafiseh; Shariaty-Niassar, Mojtaba

    2015-01-01

    Carbon deposition process on activated carbon (AC) in order to produce carbon molecular sieve (CMS) was simulated using molecular dynamics simulation. The proposed activated carbon for simulation includes micropores with different characteristic diameters and lengths. Three different temperatures of 773 K, 973 K, and 1,273 K were selected to investigate the optimum deposition temperature. Simulation results show that the carbon deposition process at 973 K creates the best adsorbent structure. While at lower temperature some micropore openings are blocked with carbon atoms, at higher temperature the number of deposited carbons on the micropores does not change significantly. Also, carbon deposition process confirms the pseudo-second-order kinetic model with an endothermic behavior. To evaluate the sieving property of adsorbent products, nitrogen and oxygen adsorption on the initial and final adsorbent products are examined. Results show that there is not any considerable difference between the equilibrium adsorption amounts of nitrogen and oxygen on the initial and final adsorbents especially at low pressure (P<10 atm). Although, adsorption kinetics curves of these gases change significantly after the carbon deposition process in comparison with the initial sample. These observations indicate that the final adsorbent has high selectivity towards oxygen compared with the nitrogen, so it can be called a carbon molecular sieve. All simulated results are in good agreement with experiments

  13. Molecular dynamics simulation of carbon molecular sieve preparation for air separation

    Energy Technology Data Exchange (ETDEWEB)

    Yaghoobpour, Elham; Ahmadpour, Ali; Farhadian, Nafiseh [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Shariaty-Niassar, Mojtaba [University of Tehran, Tehran(Iran, Islamic Republic of)

    2015-03-15

    Carbon deposition process on activated carbon (AC) in order to produce carbon molecular sieve (CMS) was simulated using molecular dynamics simulation. The proposed activated carbon for simulation includes micropores with different characteristic diameters and lengths. Three different temperatures of 773 K, 973 K, and 1,273 K were selected to investigate the optimum deposition temperature. Simulation results show that the carbon deposition process at 973 K creates the best adsorbent structure. While at lower temperature some micropore openings are blocked with carbon atoms, at higher temperature the number of deposited carbons on the micropores does not change significantly. Also, carbon deposition process confirms the pseudo-second-order kinetic model with an endothermic behavior. To evaluate the sieving property of adsorbent products, nitrogen and oxygen adsorption on the initial and final adsorbent products are examined. Results show that there is not any considerable difference between the equilibrium adsorption amounts of nitrogen and oxygen on the initial and final adsorbents especially at low pressure (P<10 atm). Although, adsorption kinetics curves of these gases change significantly after the carbon deposition process in comparison with the initial sample. These observations indicate that the final adsorbent has high selectivity towards oxygen compared with the nitrogen, so it can be called a carbon molecular sieve. All simulated results are in good agreement with experiments.

  14. The Art of Molecular Dynamics Simulation (by D. C. Rapaport)

    Science.gov (United States)

    Molner, Stephen P.

    1999-02-01

    complete program listing or a series of modifications or additions to a program from an earlier case study. The initial conditions of the model, organization of the input and output, accuracy, convergence, and efficiency are also addressed for each case and, of course, the results of the computation are given and discussed. The book begins with the simplest case of basic molecular dynamics, a sift-disk fluid. The development is discussed in considerable depth to set the tone of the work. Later chapters extend the basic model in various directions, deal with various types of measurements, improve the computational methods, and introduce new models for more complex problems. These chapters also discuss the methodology for simulating monatomic systems and focus on measuring the thermodynamic and structural properties of systems in equilibrium. Consideration is given to the dynamical properties of equilibrium systems, including transport coefficients and the correlation functions that characterize space- and time-dependent properties. Chapters are devoted to the study of systems under constant temperature and pressure and the dynamics of rigid systems. It is difficult to cover all aspects of such a broad topic as the subject of this book; and the author has not attempted an exhaustive or encyclopedic coverage, but has produced an excellent introduction to the subject. The publisher has made the implementation of the numerous programs essentially painless by making them available via browser and the World Wide Web. The easy availability of the software, written in C, was welcomed by this old Fortran programmer. It is to be hoped that this service is representative of a trend in technical publishing. Overall this work is a pleasure to read and study and would be a valuable addition to the library of both the beginner and the experienced practitioner of the art.

  15. A chaotic jerk system with non-hyperbolic equilibrium: Dynamics, effect of time delay and circuit realisation

    Science.gov (United States)

    Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad

    2018-04-01

    The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.

  16. Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results

    Science.gov (United States)

    Bertolini, Davide; Tani, Alessandro

    1997-10-01

    Equilibrium molecular dynamics simulations have been carried out in the microcanonical ensemble at 300 and 255 K on the extended simple point charge (SPC/E) model of water [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)]. In addition to a number of static and dynamic properties, thermal conductivity λ has been calculated via Green-Kubo integration of the heat current time correlation functions (CF's) in the atomic and molecular formalism, at wave number k=0. The calculated values (0.67+/-0.04 W/mK at 300 K and 0.52+/-0.03 W/mK at 255 K) are in good agreement with the experimental data (0.61 W/mK at 300 K and 0.49 W/mK at 255 K). A negative long-time tail of the heat current CF, more apparent at 255 K, is responsible for the anomalous decrease of λ with temperature. An analysis of the dynamical modes contributing to λ has shown that its value is due to two low-frequency exponential-like modes, a faster collisional mode, with positive contribution, and a slower one, which determines the negative long-time tail. A comparison of the molecular and atomic spectra of the heat current CF has suggested that higher-frequency modes should not contribute to λ in this temperature range. Generalized thermal diffusivity DT(k) decreases as a function of k, after an initial minor increase at k=kmin. The k dependence of the generalized thermodynamic properties has been calculated in the atomic and molecular formalisms. The observed differences have been traced back to intramolecular or intermolecular rotational effects and related to the partial structure functions. Finally, from the results we calculated it appears that the SPC/E model gives results in better agreement with experimental data than the transferable intermolecular potential with four points TIP4P water model [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)], with a larger improvement for, e.g., diffusion, viscosities, and dielectric properties and a smaller one for thermal conductivity. The SPC/E model shares

  17. Molecular Dynamics: New Frontier in Personalized Medicine.

    Science.gov (United States)

    Sneha, P; Doss, C George Priya

    2016-01-01

    The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine. © 2016 Elsevier Inc. All rights reserved.

  18. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  19. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    Science.gov (United States)

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  20. Parallelization of quantum molecular dynamics simulation code

    International Nuclear Information System (INIS)

    Kato, Kaori; Kunugi, Tomoaki; Shibahara, Masahiko; Kotake, Susumu

    1998-02-01

    A quantum molecular dynamics simulation code has been developed for the analysis of the thermalization of photon energies in the molecule or materials in Kansai Research Establishment. The simulation code is parallelized for both Scalar massively parallel computer (Intel Paragon XP/S75) and Vector parallel computer (Fujitsu VPP300/12). Scalable speed-up has been obtained with a distribution to processor units by division of particle group in both parallel computers. As a result of distribution to processor units not only by particle group but also by the particles calculation that is constructed with fine calculations, highly parallelization performance is achieved in Intel Paragon XP/S75. (author)

  1. Lipid Configurations from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Khandelia, Himanshu; Marsh, Derek

    2018-01-01

    of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force......The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution...

  2. Molecular dynamics studies of actinide nitrides

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke; Minato, Kazuo

    2004-01-01

    The molecular dynamics (MD) calculation was performed for actinide nitrides (UN, NpN, and PuN) in the temperature range from 300 to 2800 K to evaluate the physical properties viz., the lattice parameter, thermal expansion coefficient, compressibility, and heat capacity. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined by fitting to the experimental data of the lattice parameter. The usefulness and applicability of the MD method to evaluate the physical properties of actinide nitrides were studied. (author)

  3. Viscosity calculations at molecular dynamics simulations

    International Nuclear Information System (INIS)

    Kirova, E M; Norman, G E

    2015-01-01

    Viscosity and diffusion are chosen as an example to demonstrate the universality of diagnostics methods in the molecular dynamics method. To emphasize the universality, three diverse systems are investigated, which differ from each other drastically: liquids with embedded atom method and pairwise interatomic interaction potentials and dusty plasma with a unique multiparametric interparticle interaction potential. Both the Einstein-Helfand and Green-Kubo relations are used. Such a particular process as glass transition is analysed at the simulation of the aluminium melt. The effect of the dust particle charge fluctuation is considered. The results are compared with the experimental data. (paper)

  4. Molecular dynamics simulation of ribosome jam

    KAUST Repository

    Matsumoto, Shigenori

    2011-09-01

    We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We estimated the influence of the temperature and concentration of molecules on the hopping probability used in the ASEP model. Our model can also treat environmental effects on the translation process that cannot be explained by such cellular automaton models. © 2010 Elsevier B.V. All rights reserved.

  5. Molecular dynamics of surfactant protein C

    DEFF Research Database (Denmark)

    Ramírez, Eunice; Santana, Alberto; Cruz, Anthony

    2006-01-01

    Surfactant protein C (SP-C) is a membrane-associated protein essential for normal respiration. It has been found that the alpha-helix form of SP-C can undergo, under certain conditions, a transformation from an alpha-helix to a beta-strand conformation that closely resembles amyloid fibrils, which...... are possible contributors to the pathogenesis of pulmonary alveolar proteinosis. Molecular dynamics simulations using the NAMD2 package were performed for systems containing from one to seven SP-C molecules to study their behavior in water. The results of our simulations show that unfolding of the protein...

  6. Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Farzaneh [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ribeiro, Pedro [CeFEMA, Instituto Superior Tcnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area, 143025 (Russian Federation); Kirchner, Stefan, E-mail: stefan.kirchner@correlated-matter.com [Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2016-02-15

    Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points. - Highlights: • Critical Kondo destruction explains the unusual properties of quantum critical heavy fermion compounds. • We review the concept of effective temperatures in models of critical Kondo destruction. • We compare effective temperatures found near non-interacting and fully interacting fixed points. • A comparison with non-interacting quantum impurity models is presented.

  7. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  8. Role of attractive forces in determining the equilibrium structure and dynamics of simple liquids

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    Molecular Dynamics simulations of a Lennard-Jones system with different range of attraction show that the attractive forces modify the radial distribution of the particles. For condensed liquids only, the forces within the the first coordination shell (FCS) are important, but for gases and moderate...... condensed fluids, even the attractive forces outside the FCS play a role. The changes in the distribution caused by neglecting the attractive forces, lead to a too high pressure. The weak long-range attractions damp the dynamics and the diffusion of the particles in gas-, super critical fluid- and in liquid...

  9. Constant-pH molecular dynamics using stochastic titration

    Science.gov (United States)

    Baptista, António M.; Teixeira, Vitor H.; Soares, Cláudio M.

    2002-09-01

    A new method is proposed for performing constant-pH molecular dynamics (MD) simulations, that is, MD simulations where pH is one of the external thermodynamic parameters, like the temperature or the pressure. The protonation state of each titrable site in the solute is allowed to change during a molecular mechanics (MM) MD simulation, the new states being obtained from a combination of continuum electrostatics (CE) calculations and Monte Carlo (MC) simulation of protonation equilibrium. The coupling between the MM/MD and CE/MC algorithms is done in a way that ensures a proper Markov chain, sampling from the intended semigrand canonical distribution. This stochastic titration method is applied to succinic acid, aimed at illustrating the method and examining the choice of its adjustable parameters. The complete titration of succinic acid, using constant-pH MD simulations at different pH values, gives a clear picture of the coupling between the trans/gauche isomerization and the protonation process, making it possible to reconcile some apparently contradictory results of previous studies. The present constant-pH MD method is shown to require a moderate increase of computational cost when compared to the usual MD method.

  10. Anomalies in the equilibrium and nonequilibrium properties of correlated ions in complex molecular environments

    Science.gov (United States)

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2017-11-01

    Emergent statistical attributes, and therefore the equations of state, of an assembly of interacting charge carriers embedded within a complex molecular environment frequently exhibit a variety of anomalies, particularly in the high-density (equivalently, the concentration) regime, which are not well understood, because they do not fall under the low-concentration phenomenologies of Debye-Hückel-Onsager and Poisson-Nernst-Planck, including their variants. To go beyond, we here use physical concepts and mathematical tools from quantum scattering theory, transport theory with the Stosszahlansatz of Boltzmann, and classical electrodynamics (Lorentz gauge) and obtain analytical expressions both for the average and the frequency-wave vector-dependent longitudinal and transverse current densities, diffusion coefficient, and the charge density, and therefore the analytical expressions for (a) the chemical potential, activity coefficient, and the equivalent conductivity for strong electrolytes and (b) the current-voltage characteristics for ion-transport processes in complex molecular environments. Using a method analogous to the notion of Debye length and thence the electrical double layer, we here identify a pair of characteristic length scales (longitudinal and the transverse), which, being wave vector and frequency dependent, manifestly exhibit nontrivial fluctuations in space-time. As a unifying theme, we advance a quantity (inverse length dimension), gscat(a ), which embodies all dynamical interactions, through various quantum scattering lengths, relevant to molecular species a, and the analytical behavior which helps us to rationalize the properties of strong electrolytes, including anomalies, in all concentration regimes. As an example, the behavior of gscat(a ) in the high-concentration regime explains the anomalous increase of the Debye length with concentration, as seen in a recent experiment on electrolyte solutions. We also put forth an extension of the

  11. Tourism Contribution to Poverty Alleviation in Kenya: A Dynamic Computable General Equilibrium Analysis

    Science.gov (United States)

    Njoya, Eric Tchouamou; Seetaram, Neelu

    2017-01-01

    The aim of this article is to investigate the claim that tourism development can be the engine for poverty reduction in Kenya using a dynamic, microsimulation computable general equilibrium model. The article improves on the common practice in the literature by using the more comprehensive Foster-Greer-Thorbecke (FGT) index to measure poverty instead of headcount ratios only. Simulations results from previous studies confirm that expansion of the tourism industry will benefit different sectors unevenly and will only marginally improve poverty headcount. This is mainly due to the contraction of the agricultural sector caused the appreciation of the real exchange rates. This article demonstrates that the effect on poverty gap and poverty severity is, nevertheless, significant for both rural and urban areas with higher impact in the urban areas. Tourism expansion enables poorer households to move closer to the poverty line. It is concluded that the tourism industry is pro-poor. PMID:29595836

  12. Emission policies and the Nigerian economy. Simulations from a dynamic applied general equilibrium model

    International Nuclear Information System (INIS)

    Nwaobi, Godwin Chukwudum

    2004-01-01

    Recently, there has been growing concern that human activities may be affecting the global climate through growing atmospheric concentrations of greenhouse gases (GHG). Such warming could have major impacts on economic activity and society. For the Nigerian case, the study uses multisector dynamic applied general equilibrium model to quantify the economy-wide, distributional and environmental costs of policies to curb GHG emissions. The simulation results indicate effectiveness of carbon tax, tradable permit and backstop technology policies in curbing GHG emissions but with distorted economy-wide income distributional effects. However, the model was found to be sensitive to three key exogenous variable and parameters tested: lower GDP growth rate, changed interfuel substitution elasticity and autonomous energy efficiency factor. Unlike the first test, the last two tests only had improved environmental effect but stable economy wide effect. This then suggest that domestic energy conservation measures could be a second best alternative

  13. Assessing economic impacts of China's water pollution mitigation measures through a dynamic computable general equilibrium analysis

    International Nuclear Information System (INIS)

    Qin Changbo; Jia Yangwen; Wang Hao; Bressers, Hans T A; Su, Z

    2011-01-01

    In this letter, we apply an extended environmental dynamic computable general equilibrium model to assess the economic consequences of implementing a total emission control policy. On the basis of emission levels in 2007, we simulate different emission reduction scenarios, ranging from 20 to 50% emission reduction, up to the year 2020. The results indicate that a modest total emission reduction target in 2020 can be achieved at low macroeconomic cost. As the stringency of policy targets increases, the macroeconomic cost will increase at a rate faster than linear. Implementation of a tradable emission permit system can counterbalance the economic costs affecting the gross domestic product and welfare. We also find that a stringent environmental policy can lead to an important shift in production, consumption and trade patterns from dirty sectors to relatively clean sectors.

  14. Dynamic pricing in the spanish gasoline market. A tacit collusion equilibrium

    International Nuclear Information System (INIS)

    Perdiguero Garcia, Jordi

    2010-01-01

    During the last twenty years, the Spanish petrol market has undergone an intensive restructuration process; it has changed from being a state-owned monopoly to total liberalization and privatization. This liberalization process was accompanied by measures that facilitated the creation of a 'national champion', the Repsol Group, which is a huge, vertically integrated company with a high market share in all the industry's segments. Using a dynamic model, this paper analyses whether the prices established by companies in the Spanish gasoline market, after the restructuration process, fits with a tacit collusion equilibrium. The empirical results show that a strategic behaviour of companies occurs and is compatible with a tacit collusion price strategy. So, the restructuration process does not seem to have introduced effective competition into the Spanish gasoline market. (author)

  15. Equilibrium Model of Discrete Dynamic Supply Chain Network with Random Demand and Advertisement Strategy

    Directory of Open Access Journals (Sweden)

    Guitao Zhang

    2014-01-01

    Full Text Available The advertisement can increase the consumers demand; therefore it is one of the most important marketing strategies in the operations management of enterprises. This paper aims to analyze the impact of advertising investment on a discrete dynamic supply chain network which consists of suppliers, manufactures, retailers, and demand markets associated at different tiers under random demand. The impact of advertising investment will last several planning periods besides the current period due to delay effect. Based on noncooperative game theory, variational inequality, and Lagrange dual theory, the optimal economic behaviors of the suppliers, the manufactures, the retailers, and the consumers in the demand markets are modeled. In turn, the supply chain network equilibrium model is proposed and computed by modified project contraction algorithm with fixed step. The effectiveness of the model is illustrated by numerical examples, and managerial insights are obtained through the analysis of advertising investment in multiple periods and advertising delay effect among different periods.

  16. Tourism Contribution to Poverty Alleviation in Kenya: A Dynamic Computable General Equilibrium Analysis.

    Science.gov (United States)

    Njoya, Eric Tchouamou; Seetaram, Neelu

    2018-04-01

    The aim of this article is to investigate the claim that tourism development can be the engine for poverty reduction in Kenya using a dynamic, microsimulation computable general equilibrium model. The article improves on the common practice in the literature by using the more comprehensive Foster-Greer-Thorbecke (FGT) index to measure poverty instead of headcount ratios only. Simulations results from previous studies confirm that expansion of the tourism industry will benefit different sectors unevenly and will only marginally improve poverty headcount. This is mainly due to the contraction of the agricultural sector caused the appreciation of the real exchange rates. This article demonstrates that the effect on poverty gap and poverty severity is, nevertheless, significant for both rural and urban areas with higher impact in the urban areas. Tourism expansion enables poorer households to move closer to the poverty line. It is concluded that the tourism industry is pro-poor.

  17. Classical molecular dynamics simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Devanathan, R.; Krack, M.; Bertolus, M.

    2015-01-01

    Molecular dynamics simulation using forces calculated from empirical potentials, commonly called classical molecular dynamics, is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermomechanical properties. This enables one to obtain insights into fundamental mechanisms governing the behaviour of nuclear fuel, as well as parameters that can be used as inputs for mesoscale models. The interaction potentials used for the force calculations are generated by fitting properties of interest to experimental data and electronic structure calculations (see Chapter 12). We present here the different types of potentials currently available for UO 2 and illustrations of applications to the description of the behaviour of this material under irradiation. The results obtained from the present generation of potentials for UO 2 are qualitatively similar, but quantitatively different. There is a need to refine these existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, develop models that are equipped to handle deviations from stoichiometry, and validate the models and assumptions used. (authors)

  18. A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases

    Directory of Open Access Journals (Sweden)

    Holian B.L.

    2011-01-01

    Full Text Available From its inception in the mid-Fifties, the method of molecular-dynamics (MD computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms. When direct measurement of transport coefficients by non-equilibrium molecular dynamics (NEMD was proposed in the early Seventies, even greater resistance was encountered from the traditionalists – though evidence for convergence with the equilibrium fluctuation method gradually accumulated. In the late Seventies and early Eighties, shock-wave simulations by NEMD made it possible to test directly the principal continuum constitutive theory for fluids, namely, Navier-Stokes viscous flow and Fourier’s Law of heat conduction. To everyone’s surprise – and the consternation of many – NEMD, once again, demonstrated that continuum theory applies at embarrassingly small (atomistic time and length scales. We pursue this early line of work into the modern era, showing how NEMD shock-wave simulations can still provide surprising insights and improvements upon our understanding of constitutive modeling.

  19. Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation

    Science.gov (United States)

    Song, Yong-Shun; Zhou, Xin; Zheng, Wei-Mou; Wang, Yan-Ting

    2017-07-01

    To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD: DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters method are employed to analyze the data sampled from 2-μs equilibrium MD simulation trajectories. We find that seqA and seqB have more stable structures than their native structures which become metastable when cut out of the protein structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein folding dynamics. Supported by the National Basic Research Program of China under Grant No. 2013CB932804, the National Natural Science Foundation of China under Grant No. 11421063, and the CAS Biophysics Interdisciplinary Innovation Team Project

  20. The 2011 Dynamics of Molecular Collisions Conference

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [JILA, NIST

    2011-07-11

    The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor

  1. Computer experiments on dynamical cloud and space time fluctuations in one-dimensional meta-equilibrium plasmas

    International Nuclear Information System (INIS)

    Rouet, J.L.; Feix, M.R.

    1996-01-01

    The test particle picture is a central theory of weakly correlated plasma. While experiments and computer experiments have confirmed the validity of this theory at thermal equilibrium, the extension to meta-equilibrium distributions presents interesting and intriguing points connected to the under or over-population of the tail of these distributions (high velocity) which have not yet been tested. Moreover, the general dynamical Debye cloud (which is a generalization of the static Debye cloud supposing a plasma at thermal equilibrium and a test particle of zero velocity) for any test particle velocity and three typical velocity distributions (equilibrium plus two meta-equilibriums) are presented. The simulations deal with a one-dimensional two-component plasma and, moreover, the relevance of the check for real three-dimensional plasma is outlined. Two kinds of results are presented: the dynamical cloud itself and the more usual density (or energy) fluctuation spectrums. Special attention is paid to the behavior of long wavelengths which needs long systems with very small graininess effects and, consequently, sizable computation efforts. Finally, the divergence or absence of energy in the small wave numbers connected to the excess or lack of fast particles of the two above mentioned meta-equilibrium is exhibited. copyright 1996 American Institute of Physics

  2. Thermal Equilibrium Dynamic Control Based on DPWM Dual-Mode Modulation of High Power NPC Three-Level Inverter

    Directory of Open Access Journals (Sweden)

    Shi-Zhou Xu

    2016-01-01

    Full Text Available In some special applications of NPC three-level inverters, such as mine hoist, there exist special conditions of overloading during the whole hoisting process and large overload in starting stage, during which the power-loss calculation of power devices and thermal control are important factors affecting the thermal stability of inverters. The principles of SVPWM and DPWM were described in this paper firstly, based on which the dynamic power losses of the two modulations of hoist in single period were calculated. Secondly, a thermal equilibrium dynamic control based on DPMW dual-mode modulation was proposed, which can switch the modulation dynamically according to the change of dynamic power loss to realize dynamic control of power loss and thermal equilibrium of inverter. Finally, simulation and experiment prove the effectiveness of the proposed strategy.

  3. Molecular structures and intramolecular dynamics of pentahalides

    Science.gov (United States)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  4. CREATE-NL+: A robust control-oriented free boundary dynamic plasma equilibrium solver

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R. [Ass. EURATOM/ENEA/CREATE, Universita’ di Napoli “Federico II”, Naples (Italy); Ambrosino, R. [Ass. EURATOM/ENEA/CREATE, Universita’ di Napoli “Parthenope”, Naples (Italy); Mattei, M., E-mail: massimiliano.mattei@unina2.it [Ass. EURATOM/ENEA/CREATE, Seconda Universita’ di Napoli, Naples (Italy)

    2015-10-15

    CREATE-NL+ is a FEM (Finite Elements Method) solver of the free boundary dynamic plasma equilibrium problem, i.e. the MHD (Magneto Hydro Dynamics) time evolution of 2D axisymmetric plasmas in toroidal nuclear fusion devices, including eddy currents in the passive structures, and feedback control laws for current, position and shape control. This is an improved version of the CREATE-NL code developed in 2002 which was validated on JET and used for the design of the XSC (eXtreme Shape Controller), and for simulation studies on many existing and future tokamaks. A significant improvement was the use of a robust numerical scheme for the calculation of the Jacobian matrix within the Newton based scheme for the solution of the FEM nonlinear algebraic equations. The improved capability of interfacing with other codes, and a general decrease of the computational burden for the simulation of long pulses with small time steps makes this code a flexible tool for the design and testing of magnetic control in a tokamak.

  5. Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow

    Science.gov (United States)

    Behtash, Alireza; Cruz-Camacho, C. N.; Martinez, M.

    2018-02-01

    The nonequilibrium attractors of systems undergoing Gubser flow within relativistic kinetic theory are studied. In doing so we employ well-established methods of nonlinear dynamical systems which rely on finding the fixed points, investigating the structure of the flow diagrams of the evolution equations, and characterizing the basin of attraction using a Lyapunov function near the stable fixed points. We obtain the attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories and show that they are indeed nonplanar and the basin of attraction is essentially three dimensional. The attractors of each hydrodynamical model are compared with the one obtained from the exact Gubser solution of the Boltzmann equation within the relaxation time approximation. We observe that the anisotropic hydrodynamics is able to match up to high numerical accuracy the attractor of the exact solution while the second-order hydrodynamical theories fail to describe it. We show that the IS and DNMR asymptotic series expansions diverge and use resurgence techniques to perform the resummation of these divergences. We also comment on a possible link between the manifold of steepest descent paths in path integrals and the basin of attraction for the attractors via Lyapunov functions that opens a new horizon toward an effective field theory description of hydrodynamics. Our findings indicate that the reorganization of the expansion series carried out by anisotropic hydrodynamics resums the Knudsen and inverse Reynolds numbers to all orders and thus, it can be understood as an effective theory for the far-from-equilibrium fluid dynamics.

  6. CREATE-NL+: A robust control-oriented free boundary dynamic plasma equilibrium solver

    International Nuclear Information System (INIS)

    Albanese, R.; Ambrosino, R.; Mattei, M.

    2015-01-01

    CREATE-NL+ is a FEM (Finite Elements Method) solver of the free boundary dynamic plasma equilibrium problem, i.e. the MHD (Magneto Hydro Dynamics) time evolution of 2D axisymmetric plasmas in toroidal nuclear fusion devices, including eddy currents in the passive structures, and feedback control laws for current, position and shape control. This is an improved version of the CREATE-NL code developed in 2002 which was validated on JET and used for the design of the XSC (eXtreme Shape Controller), and for simulation studies on many existing and future tokamaks. A significant improvement was the use of a robust numerical scheme for the calculation of the Jacobian matrix within the Newton based scheme for the solution of the FEM nonlinear algebraic equations. The improved capability of interfacing with other codes, and a general decrease of the computational burden for the simulation of long pulses with small time steps makes this code a flexible tool for the design and testing of magnetic control in a tokamak.

  7. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp; Tchipev, Nikola

    2012-01-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm

  8. Equilibrium shift in solution: molecular shape recognition and precipitation of a synthetic double helix using helicene-grafted silica nanoparticles.

    Science.gov (United States)

    Miyagawa, Masamichi; Ichinose, Wataru; Yamaguchi, Masahiko

    2014-01-27

    Chiral silica nanoparticles (70 nm) grafted with (P)-helicene recognized the molecular shape of double helix and random coil (P)-ethynylhelicene oligomers in solution. A mixture of the (P)-nanoparticles and double helix precipitated much faster than a mixture of the (P)-nanoparticles and random coil, and the precipitate contained only the double helix. The mixture of the (P)-nanoparticles and (P)-ethynylhelicene pentamer reversibly dispersed in trifluoromethylbenzene upon heating at 70 °C and precipitated upon cooling at 25 °C. When a 10:90 equilibrium mixture of the double helix and random coil in solution was treated with the (P)-nanoparticles, the double helix was precipitated in 53% yield and was accompanied by equilibrium shift. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  10. Molecular dynamic simulation study of molten cesium

    Directory of Open Access Journals (Sweden)

    Yeganegi Saeid

    2017-01-01

    Full Text Available Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded caesium fluid. Internal pressure, radial distribution functions (RDFs, coordination numbers and diffusion coefficients have been calculated at temperature range 700–1600 K and pressure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature.

  11. Dynamics and Thermodynamics of Transthyretin Association from Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Cedrix J. Dongmo Foumthuim

    2018-01-01

    Full Text Available Molecular dynamics simulations are used in this work to probe the structural stability and the dynamics of engineered mutants of transthyretin (TTR, i.e., the double mutant F87M/L110M (MT-TTR and the triple mutant F87M/L110M/S117E (3M-TTR, in relation to wild-type. Free energy analysis from end-point simulations and statistical effective energy functions are used to analyze trajectories, revealing that mutations do not have major impact on protein structure but rather on protein association, shifting the equilibria towards dissociated species. The result is confirmed by the analysis of 3M-TTR which shows dissociation within the first 10 ns of the simulation, indicating that contacts are lost at the dimer-dimer interface, whereas dimers (formed by monomers which pair to form two extended β-sheets appear fairly stable. Overall the simulations provide a detailed view of the dynamics and thermodynamics of wild-type and mutant transthyretins and a rationale of the observed effects.

  12. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics.

    Science.gov (United States)

    Armen, Roger S; Chen, Jianhan; Brooks, Charles L

    2009-10-13

    Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.

  13. A corrected NEGF + DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration

    International Nuclear Information System (INIS)

    Li Rui; Zhang Jiaxing; Hou Shimin; Qian Zekan; Shen Ziyong; Zhao Xingyu; Xue Zengquan

    2007-01-01

    We discuss two problems in the conventional approach for studying charge transport in molecular electronic devices that is based on the non-equilibrium Green's function formalism and density functional theory, i.e., the bound states and the numerical integration of the non-equilibrium density matrix. A scheme of filling the bound states in the bias window and a method of patching the non-equilibrium integration are proposed, both of which are referred to as the non-equilibrium correction. The discussion is illustrated by means of calculations on a model system consisting of a 4,4 bipyridine molecule connected to two semi-infinite gold monatomic chains

  14. A molecular dynamics simulation study of chloroform

    Science.gov (United States)

    Tironi, Ilario G.; van Gunsteren, Wilfred F.

    Three different chloroform models have been investigated using molecular dynamics computer simulation. The thermodynamic, structural and dynamic properties of the various models were investigated in detail. In particular, the potential energies, diffusion coefficients and rotational correlation times obtained for each model are compared with experiment. It is found that the theory of rotational Brownian motion fails in describing the rotational diffusion of chloroform. The force field of Dietz and Heinzinger was found to give good overall agreement with experiment. An extended investigation of this chloroform model has been performed. Values are reported for the isothermal compressibility, the thermal expansion coefficient and the constant volume heat capacity. The values agree well with experiment. The static and frequency dependent dielectric permittivity were computed from a 1·2 ns simulation conducted under reaction field boundary conditions. Considering the fact that the model is rigid with fixed partial charges, the static dielectric constant and Debye relaxation time compare well with experiment. From the same simulation the shear viscosity was computed using the off-diagonal elements of the pressure tensor, both via an Einstein type relation and via a Green-Kubo equation. The calculated viscosities show good agreement with experimental values. The excess Helmholtz energy is calculated using the thermodynamic integration technique and simulations of 50 and 80 ps. The value obtained for the excess Helmholtz energy matches the theoretical value within a few per cent.

  15. Molecular beam studies of reaction dynamics

    International Nuclear Information System (INIS)

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation

  16. A molecular dynamics approach to barrodiffusion

    Science.gov (United States)

    Cooley, James; Marciante, Mathieu; Murillo, Michael

    2016-10-01

    Unexpected phenomena in the reaction rates for Inertial Confinement Fusion (ICF) capsules have led to a renewed interest in the thermo-dynamically driven diffusion process for the past 10 years, often described collectively as barodiffusion. In the current context, barodiffusion would manifest as a process that separates ions of differing mass and charge ratios due to pressure and temperature gradients set-up through shock structures in the capsule core. Barrodiffusion includes additional mass transfer terms that account for the irreversible transport of species due to gradients in the system, both thermodynamic and electric e.g, i = - ρD [ ∇c +kp ∇ln(pi) +kT(i) ∇ln(Ti) +kt(e) ∇ln(Te) +eke/Ti ∇ϕ ] . Several groups have attacked this phenomena using continuum scale models and supplemented with kinetic theory to derive coefficients for the different diffusion terms based on assumptions about the collisional processes. In contrast, we have applied a molecular dynamics (MD) simulation to this system to gain a first-principle understanding of the rate kinetics and to assess the accuracy of the differin

  17. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  18. Approximation of quantum observables by molecular dynamics simulations

    KAUST Repository

    Sandberg, Mattias

    2016-01-01

    In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.

  19. Approximation of quantum observables by molecular dynamics simulations

    KAUST Repository

    Sandberg, Mattias

    2016-01-06

    In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.

  20. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    International Nuclear Information System (INIS)

    Snezhko, Alexey

    2011-01-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. (topical review)

  1. Functional and physical molecular size of the chicken hepatic lectin determined by radiation inactivation and sedimentation equilibrium analysis

    International Nuclear Information System (INIS)

    Steer, C.J.; Osborne, J.C. Jr.; Kempner, E.S.

    1990-01-01

    Radiation inactivation and sedimentation equilibrium analysis were used to determine the functional and physical size of the chicken hepatic membrane receptor that binds N-acetylglucosamine-terminated glycoproteins. Purified plasma membranes from chicken liver were irradiated with high energy electrons and assayed for 125I-agalactoorosomucoid binding. Increasing the dose of ionizing radiation resulted in a monoexponential decay in binding activity due to a progressive loss of binding sites. The molecular mass of the chicken lectin, determined in situ by target analysis, was 69,000 +/- 9,000 Da. When the same irradiated membranes were solubilized in Brij 58 and assayed, the binding protein exhibited a target size of 62,000 +/- 4,000 Da; in Triton X-100, the functional size of the receptor was 85,000 +/- 10,000 Da. Sedimentation equilibrium measurements of the purified binding protein yielded a lower limit molecular weight of 79,000 +/- 7,000. However, the solubilized lectin was detected as a heterogeneous population of oligomers with molecular weights as high as 450,000. Addition of calcium or calcium plus N-acetylglucosamine decreased the higher molecular weight species, but the lower limit molecular weights remained invariant. Similar results were determined when the chicken lectin was solubilized in Brij 58, C12E9, or 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid (CHAPS). Results from the present study suggest that in the plasma membrane, the functional species of the chicken hepatic lectin exists as a trimer. However, in detergent solution, the purified receptor forms a heterogeneous population of irreversible oligomers that exhibit binding activity proportional to size

  2. Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping

    Science.gov (United States)

    Lu, Jianfeng; Zhou, Zhennan

    2018-02-01

    To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.

  3. Molecular Dynamics Simulations of Slip on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Ross D.A.

    2016-07-01

    Full Text Available We present Molecular Dynamics (MD simulations of liquid water confined within nanoscale geometries, including slit-like and cylindrical graphitic pores. These equilibrium results are used for calculating friction coefficients, which in turn can be used to calculate slip lengths. The slip length is a material property independent of the fluid flow rate. It is therefore a better quantity for study than the fluid velocity at the wall, also known as the slip velocity. Once the slip length has been found as a function of surface curvature, it can be used to parameterise Lattice Boltzmann (LB simulations. These larger scale simulations are able to tell us about how fluid transport is affected by slip in complex geometries; not just limited to single pores. Applications include flow and transport in nano-porous engine valve deposits and gas shales. The friction coefficient is found to be a function of curvature and is higher for fluid on convex surfaces and lower for concave surfaces. Both concave and convex surfaces approach the same value of the friction coefficient, which is constant above some critical radius of curvature, here found to be 7.4 ± 2.9 nm. The constant value of the friction coefficient is 10,000 ± 600 kg m−2 s−1, which is equivalent to a slip length of approximately 67 ± 4 nm.

  4. Molecular dynamics simulations of radon accumulation in water and oil

    Energy Technology Data Exchange (ETDEWEB)

    Pafong, Elvira; Drossel, Barbara [Institut fuer Festkoerperphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    Radon is a radioactive gas that can enter the human body from air or from ground water. Radon can accumulate to levels that considerably rise the risk of lung cancer while it is also known as a a treatment of various ailments, most notably rheumatoid arthritis. The accumulation of radon differs between tissues, with particularly high concentrations in fatty cells. In order to understand the mechanisms responsible for the different solubility of radon in water and fat, we perform molecular dynamics simulations of radon gas at ambient conditions in contact with a bulk material consisting either of water or oil. We evaluate the diffusion coefficient of radon in both media as well as the equilibrium concentration. The crucial point here is to understand the hydrophobic interaction between water and radon as compared to the dispersive interaction between radon and oil. Therefore, we artificially vary the water charges (i.e., the hydrophobicity) as well as the parameters of the van-der-Waals interaction.

  5. Iteration scheme for implicit calculations of kinetic and equilibrium chemical reactions in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1995-01-01

    An iteration scheme for the implicit treatment of equilibrium chemical reactions in partial equilibrium flow has previously been described. Here we generalize this scheme to kinetic reactions as well as equilibrium reactions. This extends the applicability of the scheme to problems with kinetic reactions that are fast in regions of the flow field but slow in others. The resulting scheme thereby provides a single unified framework for the implicit treatment of an arbitrary number of coupled equilibrium and kinetic reactions in chemically reacting fluid flow. 10 refs., 2 figs

  6. A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics.

    Science.gov (United States)

    Freeman, Walter J

    2008-01-01

    Computational models of brain dynamics fall short of performance in speed and robustness of pattern recognition in detecting minute but highly significant pattern fragments. A novel model employs the properties of thermodynamic systems operating far from equilibrium, which is analyzed by linearization near adaptive operating points using root locus techniques. Such systems construct order by dissipating energy. Reinforcement learning of conditioned stimuli creates a landscape of attractors and their basins in each sensory cortex by forming nerve cell assemblies in cortical connectivity. Retrieval of a selected category of stored knowledge is by a phase transition that is induced by a conditioned stimulus, and that leads to pattern self-organization. Near self-regulated criticality the cortical background activity displays aperiodic null spikes at which analytic amplitude nears zero, and which constitute a form of Rayleigh noise. Phase transitions in recognition and recall are initiated at null spikes in the presence of an input signal, owing to the high signal-to-noise ratio that facilitates capture of cortex by an attractor, even by very weak activity that is typically evoked by a conditioned stimulus.

  7. China’s Rare Earths Supply Forecast in 2025: A Dynamic Computable General Equilibrium Analysis

    Directory of Open Access Journals (Sweden)

    Jianping Ge

    2016-09-01

    Full Text Available The supply of rare earths in China has been the focus of significant attention in recent years. Due to changes in regulatory policies and the development of strategic emerging industries, it is critical to investigate the scenario of rare earth supplies in 2025. To address this question, this paper constructed a dynamic computable equilibrium (DCGE model to forecast the production, domestic supply, and export of China’s rare earths in 2025. Based on our analysis, production will increase by 10.8%–12.6% and achieve 116,335–118,260 tons of rare-earth oxide (REO in 2025, based on recent extraction control during 2011–2016. Moreover, domestic supply and export will be 75,081–76,800 tons REO and 38,797–39,400 tons REO, respectively. The technological improvements on substitution and recycling will significantly decrease the supply and mining activities of rare earths. From a policy perspective, we found that the elimination of export regulations, including export quotas and export taxes, does have a negative impact on China’s future domestic supply of rare earths. The policy conflicts between the increase in investment in strategic emerging industries, and the increase in resource and environmental taxes on rare earths will also affect China’s rare earths supply in the future.

  8. Equilibrium and dynamic methods when comparing an English text and its Esperanto translation

    Science.gov (United States)

    Ausloos, M.

    2008-11-01

    A comparison of two English texts written by Lewis Carroll, one (Alice in Wonderland), also translated into Esperanto, the other (Through the Looking Glass) are discussed in order to observe whether natural and artificial languages significantly differ from each other. One dimensional time series like signals are constructed using only word frequencies (FTS) or word lengths (LTS). The data is studied through (i) a Zipf method for sorting out correlations in the FTS and (ii) a Grassberger-Procaccia (GP) technique based method for finding correlations in LTS. The methods correspond to an equilibrium and a dynamic approach respectively to human texts features. There are quantitative statistical differences between the original English text and its Esperanto translation, but the qualitative differences are very minutes. However different power laws are observed with characteristic exponents for the ranking properties, and the phase space attractor dimensionality. The Zipf exponent can take values much less than unity (∼0.50 or 0.30) depending on how a sentence is defined. This variety in exponents can be conjectured to be an intrinsic measure of the book style or purpose, rather than the language or author vocabulary richness, since a similar exponent is obtained whatever the text. Moreover the attractor dimension r is a simple function of the so called phase space dimension n, i.e., r=nλ, with λ=0.79. Such an exponent could also be conjectured to be a measure of the author style versatility, - here well preserved in the translation.

  9. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    Science.gov (United States)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  10. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Philip, B.; Wang, Z.; Berrill, M.A.; Birke, M.; Pernice, M.

    2014-01-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence

  11. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de; Kühn, Oliver [Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock (Germany)

    2015-06-28

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  12. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    International Nuclear Information System (INIS)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver

    2015-01-01

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom

  13. The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model

    Science.gov (United States)

    Verkley, Wim; Severijns, Camiel

    2014-05-01

    Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy

  14. Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach

    Science.gov (United States)

    Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene

    2018-03-01

    When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.

  15. Thermal transpiration: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    T, Joe Francis [Computational Nanotechnology Laboratory, School of Nano Science and Technology, National Institute of Technology Calicut, Kozhikode (India); Sathian, Sarith P. [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai (India)

    2014-12-09

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  16. Investigating Ebola virus pathogenicity using molecular dynamics.

    Science.gov (United States)

    Pappalardo, Morena; Collu, Francesca; Macpherson, James; Michaelis, Martin; Fraternali, Franca; Wass, Mark N

    2017-08-11

    Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.

  17. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Tian, Pengfei; Frellsen, J.

    2014-01-01

    recently been shown that using such information directly as input in molecular simulations based on the molecular fragment replacement strategy can help the process of protein structure determination. Here, we show how to implement this strategy to determine not only the structures of proteins but also...

  18. How Dynamic Visualization Technology Can Support Molecular Reasoning

    Science.gov (United States)

    Levy, Dalit

    2013-01-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and…

  19. Molecular beam studies of adsorption dynamics

    International Nuclear Information System (INIS)

    Arumainayagam, C.R.; McMaster, M.C.; Madix, R.J.

    1991-01-01

    We have investigated the trapping dynamics of C 1 -C 3 alkanes and Xe on Pt(111) using supersonic molecular beams and a direct technique to measure trapping probabilities. We have extended a one-dimensional model based on classical mechanics to include trapping and have found semiquantitative agreement with experimental results for the dependence of the initial trapping probability on incident translational energy at normal incidence. Our measurements of the initial trapping probability as a function of incident translational energy at normal incidence are in agreement with previous mean translational energy measurements for Xe and CH 4 desorbing near the surface normal, in accordance with detailed balance. However, the angular dependence of the initial trapping probability shows deviations from normal energy scaling, demonstrating the importance of parallel momentum in the trapping process and the inadequacy of one-dimensional models. The dependence of the initial trapping probability of Xe on incident translational energy and angle is quite well fit by three-dimensional stochastic classical trajectory calculations utilizing a Morse potential. Angular distributions of the scattered molecules indicate that the trapping probability is not a sensitive function of surface temperature. The trapping probability increases with surface coverage in quantitative agreement with a modified Kisliuk model which incorporates enhanced trapping onto the monolayer. We have also used the direct technique to study trapping onto a saturated monolayer state to investigate the dynamics of extrinsic precursor adsorption and find that the initial trapping probability onto the monolayer is higher than on the clean surface. The initial trapping probability onto the monolayer scales with total energy, indicating a highly corrugated interaction potential

  20. Nonideal plasmas as non-equilibrium media

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  1. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    Science.gov (United States)

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  2. The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.

    Science.gov (United States)

    Hunjan, Jagtar Singh; Eu, Byung Chan

    2010-04-07

    The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.

  3. What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics

    Science.gov (United States)

    Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj

    Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.

  4. Folding very short peptides using molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Bosco K Ho

    2006-04-01

    Full Text Available Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides, the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the beta hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.

  5. Molecular dynamics studies of displacement cascades

    International Nuclear Information System (INIS)

    Averback, R.S.; Hsieh, Horngming; Diaz de la Rubia, T.

    1990-02-01

    Molecular-dynamics simulations of cascades in Cu and Ni with primary-knock-on energies up to 5 keV and lattice temperatures in the range 0 K--700 K are described. Interatomic forces were represented by either the Gibson II (Cu) or Johnson-Erginsoy (Ni) potentials in most of this work, although some simulations using ''Embedded Atom Method'' potentials, e.g., for threshold events in Ni 3 Al, are also presented. The results indicate that the primary state of damage produced by displacement cascades is controlled by two phenomena, replacement collision sequences during the collisional phase of the cascade and local melting during the thermal spike. As expected, the collisional phase is rather similar in Cu and Ni, however, the thermal spike is of longer duration and has a more pronounced influence in Cu than Ni. When the ambient temperature of the lattice is increased, the melt zones are observed to both increase in size and cool more slowly. This has the effect of reducing defect production and enhancing atomic mixing and disordering. The implications of these results for defect production, cascade collapse, atomic disordering will be discussed. 34 refs., 7 figs., 2 tabs

  6. A molecular dynamics simulation code ISIS

    International Nuclear Information System (INIS)

    Kambayashi, Shaw

    1992-06-01

    Computer simulation based on the molecular dynamics (MD) method has become an important tool complementary to experiments and theoretical calculations in a wide range of scientific fields such as physics, chemistry, biology, and so on. In the MD method, the Newtonian equations-of-motion of classical particles are integrated numerically to reproduce a phase-space trajectory of the system. In the 1980's, several new techniques have been developed for simulation at constant-temperature and/or constant-pressure in convenient to compare result of computer simulation with experimental results. We first summarize the MD method for both microcanonical and canonical simulations. Then, we present and overview of a newly developed ISIS (Isokinetic Simulation of Soft-spheres) code and its performance on various computers including vector processors. The ISIS code has a capability to make a MD simulation under constant-temperature condition by using the isokinetic constraint method. The equations-of-motion is integrated by a very accurate fifth-order finite differential algorithm. The bookkeeping method is also utilized to reduce the computational time. Furthermore, the ISIS code is well adopted for vector processing: Speedup ratio ranged from 16 to 24 times is obtained on a VP2600/10 vector processor. (author)

  7. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  8. Spatio-temporal dynamics and transition from asymptotic equilibrium to bounded oscillations in Chrysomya albiceps (Diptera, Calliphoridae

    Directory of Open Access Journals (Sweden)

    Wesley Augusto Conde Godoy

    2001-07-01

    Full Text Available The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-dependent model of population growth. Our simulations show that variation in fecundity and mainly in survival has marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point dynamics. Population dynamics of C. albiceps is here compared to dynamics of Cochliomyia macellaria, C. megacephala and C. putoria.

  9. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Po Jen; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw [Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320, Taiwan and Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Rapallo, Arnaldo [Istituto per lo Studio delle Macromolecole (ISMAC) Consiglio Nazionale delle Ricerche (CNR), via E. Bassini 15, C.A.P 20133 Milano (Italy)

    2014-03-14

    solvent, we performed in this work the classical molecular dynamics simulation on a realistic model solution with the peptide embedded in an explicit water environment, and calculated its dynamic properties both as an outcome of the simulations, and by the diffusion theory in reduced statistical-mechanical approach within HBA on the premise that the mode-coupling approach to the diffusion theory can give both the long-range and local dynamics starting from equilibrium averages which were obtained from detailed atomistic simulations.

  10. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    International Nuclear Information System (INIS)

    Hsu, Po Jen; Lai, S. K.; Rapallo, Arnaldo

    2014-01-01

    solvent, we performed in this work the classical molecular dynamics simulation on a realistic model solution with the peptide embedded in an explicit water environment, and calculated its dynamic properties both as an outcome of the simulations, and by the diffusion theory in reduced statistical-mechanical approach within HBA on the premise that the mode-coupling approach to the diffusion theory can give both the long-range and local dynamics starting from equilibrium averages which were obtained from detailed atomistic simulations

  11. Structure and dynamics of a [1:1] drug-DNA complex: Analysis of 2D NMR data using molecular mechanics and molecular dynamics calculations

    International Nuclear Information System (INIS)

    Sarma, R.H.; Sarma, M.H.; Umemoto, K.

    1990-01-01

    1D/2D NMR studies are reported for a [1:1] complex of d(GA 4 T 4 C) 2 and Dst2 (an analogue of distamycin A). Full- Matrix NOESY Simulations, Molecular Mechanics and Molecular Dynamics Calculations are performed to analyze the NMR data. Results show that drug-DNA complex formation is driven by static features like H-bonding and steric interactions in the minor-groove of DNA. As a consequence of drug binding, a non-linear oscillatory mode is activated. In this mode the molecule samples equilibrium structural states of difference degrees of bending. It is noted that these structures belong to three distinctly different energy wells that satisfy the same NMR data. 14 refs., 4 figs., 2 tabs

  12. Modeling the economic costs of disasters and recovery: analysis using a dynamic computable general equilibrium model

    Science.gov (United States)

    Xie, W.; Li, N.; Wu, J.-D.; Hao, X.-L.

    2014-04-01

    Disaster damages have negative effects on the economy, whereas reconstruction investment has positive effects. The aim of this study is to model economic causes of disasters and recovery involving the positive effects of reconstruction activities. Computable general equilibrium (CGE) model is a promising approach because it can incorporate these two kinds of shocks into a unified framework and furthermore avoid the double-counting problem. In order to factor both shocks into the CGE model, direct loss is set as the amount of capital stock reduced on the supply side of the economy; a portion of investments restores the capital stock in an existing period; an investment-driven dynamic model is formulated according to available reconstruction data, and the rest of a given country's saving is set as an endogenous variable to balance the fixed investment. The 2008 Wenchuan Earthquake is selected as a case study to illustrate the model, and three scenarios are constructed: S0 (no disaster occurs), S1 (disaster occurs with reconstruction investment) and S2 (disaster occurs without reconstruction investment). S0 is taken as business as usual, and the differences between S1 and S0 and that between S2 and S0 can be interpreted as economic losses including reconstruction and excluding reconstruction, respectively. The study showed that output from S1 is found to be closer to real data than that from S2. Economic loss under S2 is roughly 1.5 times that under S1. The gap in the economic aggregate between S1 and S0 is reduced to 3% at the end of government-led reconstruction activity, a level that should take another four years to achieve under S2.

  13. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    Science.gov (United States)

    Wu, Bin

    , at neutral condition, the exterior residues folding back into interior would necessarily lead to higher entropy and equivalently lower free energy and thereby is energetically favored. As one decreases the pH condition of PAMAM dendrimers, the constituent residues would carry positive charges. The resultant inter-residue Coulomb repulsion would naturally result in conformational evolution. We found from CVSANS analysis that when dendrimers are charged by different acids, this conformational evolution is not the same. For dendrimers charged by DCl, the mass is seen to relocate from molecular interior to periphery. Nevertheless, those acidified by D 2SO4 exhibit surprisingly minor structural change under variation of molecular charge. To explain the above observation, we performed MD simulations and calculated the excess free energy of Cl- and SO 42- counterions. The binding between sulfate ions and charged amines of PAMAM dendrimers are found to be much stronger than the case for chlorides. This more energetic binding would serve as better screening effect among charged residues. Consequently, electrostatic repulsion triggered outstretching tendency is effectively diminished. In order to make direct comparison between MD simulations and neutron scattering experiments, we proposed and implemented a rigorous method, which incorporates the contribution from those invasive water molecules, to calculate scattering functions of a single PAMAM dendrimer using equilibrium MD trajectories. The bridge between neutron scattering experiments and MD simulation is successfully established. Aside from structural comparisons between MD simulations and experiments, we utilized MD simulation to decipher the previously reported QENS experimental observation that the segmental dynamics of PAMAM dendrimer would enhance with increasing molecular charge. We pursued the mechanism from the perspective of hydrocarbon component of dendrimer and solvent (water) interaction as a form similar to

  14. Modeling shockwave deformation via molecular dynamics

    International Nuclear Information System (INIS)

    Holian, B.L.

    1987-01-01

    Molecular dynamics (MD), where the equations of motion of up to thousands of interacting atoms are solved on the computer, has proven to be a powerful tool for investigating a wide variety of nonequilibrium processes from the atomistic viewpoint. Simulations of shock waves in three-dimensional (3D) solids and fluids have shown conclusively that shear-stress relaxation is achieved through atomic rearrangement. In the case of fluids, the transverse motion is viscous, and the constitutive model of Navier-Stokes hydrodynamics has been shown to be accurate - even on the time and distance scales of MD experiments. For strong shocks in solids, the plastic flow that leads to shear-stress relaxation in MD is highly localized near the shock front, involving a slippage along close-packed planes. For shocks of intermediate strength, MD calculations exhibit an elastic precursor running out in front of the steady plastic wave, where slippage similar in character to that in the very strong shocks leads to shear-stress relaxation. An interesting correlation between the maximum shear stress and the Hugoniot pressure jump is observed for both 3D and fluid shockwave calculations, which may have some utility in modeling applications. At low shock strengths, the MD simulations show only elastic compression, with no permanent transverse atomic strains. The result for perfect 3D crystals is also seen in calculations for 1D chains. It is speculated that, if it were practical, a very large MD system containing dislocations could be expected to exhibit more realistic plastic flow for weak shock waves, too

  15. A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit

    Science.gov (United States)

    Smith, Edward

    2016-11-01

    What happens to turbulent motions below the Kolmogorov length scale? In order to explore this question, a 300 million molecule Molecular Dynamics (MD) simulation is presented for the minimal Couette channel in which turbulence can be sustained. The regeneration cycle and turbulent statistics show excellent agreement to continuum based computational fluid dynamics (CFD) at Re=400. As MD requires only Newton's laws and a form of inter-molecular potential, it captures a much greater range of phenomena without requiring the assumptions of Newton's law of viscosity, thermodynamic equilibrium, fluid isotropy or the limitation of grid resolution. The fundamental nature of MD means it is uniquely placed to explore the nature of turbulent transport. A number of unique insights from MD are presented, including energy budgets, sub-grid turbulent energy spectra, probability density functions, Lagrangian statistics and fluid wall interactions. EPSRC Post Doctoral Prize Fellowship.

  16. Molecular dynamics simulations of ultrathin water film confined between flat diamond plates

    Directory of Open Access Journals (Sweden)

    A.V. Khomenko

    2008-12-01

    Full Text Available Molecular dynamics simulations of ultrathin water film confined between atomically flat rigid diamond plates are described. Films with thickness of one and two molecular diameters are concerned and TIP4P model is used for water molecules. Dynamical and equilibrium characteristics of the system for different values of the external load and shear force are investigated. An increase of the external load causes the transition of the film to a solidlike state. This is manifested in a decrease of the diffusion constant and in the ordering of the liquid molecules into quasidiscrete layers. For two-layer film under high loads, the molecules also become ordered parallel to the surfaces. Time dependencies of the friction force and the changes of its average value with the load are obtained. In general, the behaviour of the studied model is consistent with the experimental results obtained for simple liquids with spherical molecules.

  17. Sediment Equilibrium and Diffusive Fluxes in Relation to Phosphorus Dynamics in the Turbid Minnesota River

    National Research Council Canada - National Science Library

    James, William F

    2009-01-01

    ...) concentration in large river systems. However, in-stream processes such as equilibrium P flux from suspended sediment and diffusive P flux from deposited sediment stored in river channels may also play a role in soluble P control...

  18. A comparison of molecular dynamics and diffuse interface model predictions of Lennard-Jones fluid evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Barbante, Paolo [Dipartimento di Matematica, Politecnico di Milano - Piazza Leonardo da Vinci 32 - 20133 Milano (Italy); Frezzotti, Aldo; Gibelli, Livio [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa 34 - 20156 Milano (Italy)

    2014-12-09

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.

  19. Finite-Temperature Non-equilibrium Quasicontinuum Method based on Langevin Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Marian, J; Venturini, G; Hansen, B; Knap, J; Ortiz, M; Campbell, G

    2009-05-08

    The concurrent bridging of molecular dynamics and continuum thermodynamics presents a number of challenges, mostly associated with energy transmission and changes in the constitutive description of a material across domain boundaries. In this paper, we propose a framework for simulating coarse dynamic systems in the canonical ensemble using the Quasicontinuum method (QC). The equations of motion are expressed in reduced QC coordinates and are strictly derived from dissipative Lagrangian mechanics. The derivation naturally leads to a classical Langevin implementation where the timescale is governed by vibrations emanating from the finest length scale occurring in the computational cell. The equations of motion are integrated explicitly via Newmark's ({beta} = 0; {gamma} = 1/2) method, leading to a robust numerical behavior and energy conservation. In its current form, the method only allows for wave propagations supported by the less compliant of the two meshes across a heterogeneous boundary, which requires the use of overdamped dynamics to avoid spurious heating due to reflected vibrations. We have applied the method to two independent crystallographic systems characterized by different interatomic potentials (Al and Ta) and have measured thermal expansion in order to quantify the vibrational entropy loss due to homogenization. We rationalize the results in terms of system size, mesh coarseness, and nodal cluster diameter within the framework of the quasiharmonic approximation. For Al, we find that the entropy loss introduced by mesh coarsening varies linearly with the element size, and that volumetric effects are not critical in driving the anharmonic behavior of the simulated systems. In Ta, the anomalies of the interatomic potential employed result in negative and zero thermal expansion at low and high temperatures, respectively.

  20. Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions

    Czech Academy of Sciences Publication Activity Database

    Zobač, Vladimír; Lewis, J.P.; Jelínek, Pavel

    2016-01-01

    Roč. 27, č. 28 (2016), 1-8, č. článku 285202. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : non-adiabatic molecular dynamics * molecular junctions * molecular switches * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016

  1. A model of lipid-free apolipoprotein A-I revealed by iterative molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Xing Zhang

    Full Text Available Apolipoprotein A-I (apo A-I, the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS. Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipid-free apo A-I, which contains a bundled four-helix N-terminal domain (1-192 that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193-243. This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.

  2. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Castanon, J.; Bomboi, F. [Sapienza–Università di Roma, P.le A. Moro 5, 00185 Roma (Italy); Rovigatti, L. [Rudolf Peierls C.T.P., University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Zanatta, M. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); CNR-ISC, UOS Sapienza–Università di Roma, I-00186 Roma (Italy); Paciaroni, A. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); Comez, L. [Dipartimento di Fisica, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); IOM-CNR, UOS Perugia c/o Dipartimento di Fisica e Geologia, Università di Perugia, Via Pascoli, 06123 Perugia (Italy); Porcar, L. [Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9 (France); Jafta, C. J. [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fadda, G. C. [Laboratoire Léon Brillouin, LLB, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Bellini, T. [Department of Medical Biotechnology and Translational Medicine, Università di Milano, I-20133 Milano (Italy); Sciortino, F., E-mail: francesco.sciortino@uniroma1.it [Sapienza–Università di Roma, P.le A. Moro 5, 00185 Roma (Italy); CNR-ISC, UOS Sapienza–Università di Roma, I-00186 Roma (Italy)

    2016-08-28

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.

  3. Investigations of transport properties of molten sodium fluoride using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Chattaraj, D.; Dash, Smruti

    2013-01-01

    The thermal conductivity and coefficient of shear viscosity of molten sodium fluoride were calculated using Green-Kubo equilibrium molecular dynamics (EMD) simulation. The Green-Kubo method is an equilibrium technique based on the fluctuation-dissipation theorem of statistical thermodynamics. The canonical ensemble (N, V, T) was used in the MD simulation to obtain the transport properties of molten NaF. In this simulation, several state points were investigated using the Born-Meyer-Huggins-Tosi-Fumi interionic potential model. The electrostatic interactions present in this ionic fluid were calculated through the Ewald method. The results obtained in this study were found to be in good agreement with the reported experimental data. (author)

  4. Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics

    Science.gov (United States)

    Lakshmanan, A.; Srivastava, S.; Ramazani, A.; Sundararaghavan, V.

    2018-04-01

    Thermal conductivity in a pillared graphene-epoxy nanocomposite (PGEN) is studied using equilibrium molecular dynamics simulations. PGEN is a proposed material for advanced thermal management applications because it combines high in-plane conductivity of graphene with high axial conductivity of a nanotube to significantly enhance the overall conductivity of the epoxy matrix material. Anisotropic conductivity of PGEN has been compared with that of pristine and functionalized carbon nanotube-epoxy nanocomposites, showcasing the advantages of the unique hierarchical structure of PGEN. Compared to pure carbon allotropes, embedding the epoxy matrix also promotes a weaker dependence of conductivity on thermal variations. These features make this an attractive material for thermal management applications.

  5. Pulsed melting of silicon (111) and (100) surfaces simulated by molecular dynamics

    International Nuclear Information System (INIS)

    Abraham, F.F.; Broughton, J.Q.

    1986-01-01

    The pulsed heating of Si (100) and (111) surfaces has been simulated by molecular dynamics. The (111) crystal-melt interface propagates by layer-by-layer growth whereas the (100) interface grows in a continuous fashion. The equilibrium crystal-melt interface is sharp for the (111) orientation and broad for the (100) orientation. These simulations are the first use of nonpairwise potentials to study interfaces between condensed phases, and the results support models of interfaces which heretofore had to be deduced from indirect experimental information

  6. Relevance of equilibrium in multifragmentation

    International Nuclear Information System (INIS)

    Furuta, Takuya; Ono, Akira

    2009-01-01

    The relevance of equilibrium in a multifragmentation reaction of very central 40 Ca + 40 Ca collisions at 35 MeV/nucleon is investigated by using simulations of antisymmetrized molecular dynamics (AMD). Two types of ensembles are compared. One is the reaction ensemble of the states at each reaction time t in collision events simulated by AMD, and the other is the equilibrium ensemble prepared by solving the AMD equation of motion for a many-nucleon system confined in a container for a long time. The comparison of the ensembles is performed for the fragment charge distribution and the excitation energies. Our calculations show that there exists an equilibrium ensemble that well reproduces the reaction ensemble at each reaction time t for the investigated period 80≤t≤300 fm/c. However, there are some other observables that show discrepancies between the reaction and equilibrium ensembles. These may be interpreted as dynamical effects in the reaction. The usual static equilibrium at each instant is not realized since any equilibrium ensemble with the same volume as that of the reaction system cannot reproduce the fragment observables

  7. Dynamical equations for time-ordered Green’s functions: from the Keldysh time-loop contour to equilibrium at finite and zero temperature

    International Nuclear Information System (INIS)

    Ness, H; Dash, L K

    2012-01-01

    We study the dynamical equation of the time-ordered Green’s function at finite temperature. We show that the time-ordered Green’s function obeys a conventional Dyson equation only at equilibrium and in the limit of zero temperature. In all other cases, i.e. finite temperature at equilibrium or non-equilibrium, the time-ordered Green’s function obeys instead a modified Dyson equation. The derivation of this result is obtained from the general formalism of the non-equilibrium Green’s functions on the Keldysh time-loop contour. At equilibrium, our result is fully consistent with the Matsubara temperature Green’s function formalism and also justifies rigorously the correction terms introduced in an ad hoc way with Hedin and Lundqvist. Our results show that one should use the appropriate dynamical equation for the time-ordered Green’s function when working beyond the equilibrium zero-temperature limit.

  8. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  9. Molecular dynamics using quasielastic neutron scattering

    CERN Document Server

    Mitra, S

    2003-01-01

    Quasielastic neutron scattering (QENS) technique is well suited to study the molecular motions (rotations and translations) in solids or liquids. It offers a unique possibility of analysing spatial dimensions of atomic or molecular processes in their development over time. We describe here some of the systems studied using the QENS spectrometer, designed, developed and commissioned at Dhruva reactor in Trombay. We have studied a variety of systems to investigate the molecular motion, for example, simple molecular solids, molecules adsorbed in confined medium like porous systems or zeolites, monolayer-protected nano-sized metal clusters, water in Portland cement as it cures with time, etc. (author)

  10. Neutron scattering on equilibrium and nonequilibrium phonons, excitons and polaritons

    International Nuclear Information System (INIS)

    Broude, V.L.; Sheka, E.F.

    1978-01-01

    A number of problems of solid-state physics representing interest for neutron spectroscopy of future is considered. The development of the neutron inelastic scattering spectroscopy (neutron spectroscopy of equilibrium phonons) is discussed with application to nuclear dynamics of crystals in the thermodynamic equilibrium. The results of high-flux neutron source experiments on molecular crystals are presented. The advantages of neutron inelastic scattering over optical spectroscopy are discussed. The spectroscopy of quasi-equilibrium and non-equilibrium quasi-particles is discussed. In particular, the neutron scattering on polaritons, excitons in thermal equilibrium and production of light-excitons are considered. The problem of the possibility of such experiments is elucidated

  11. CO2, energy and economy interactions: A multisectoral, dynamic, computable general equilibrium model for Korea

    Science.gov (United States)

    Kang, Yoonyoung

    While vast resources have been invested in the development of computational models for cost-benefit analysis for the "whole world" or for the largest economies (e.g. United States, Japan, Germany), the remainder have been thrown together into one model for the "rest of the world." This study presents a multi-sectoral, dynamic, computable general equilibrium (CGE) model for Korea. This research evaluates the impacts of controlling COsb2 emissions using a multisectoral CGE model. This CGE economy-energy-environment model analyzes and quantifies the interactions between COsb2, energy and economy. This study examines interactions and influences of key environmental policy components: applied economic instruments, emission targets, and environmental tax revenue recycling methods. The most cost-effective economic instrument is the carbon tax. The economic effects discussed include impacts on main macroeconomic variables (in particular, economic growth), sectoral production, and the energy market. This study considers several aspects of various COsb2 control policies, such as the basic variables in the economy: capital stock and net foreign debt. The results indicate emissions might be stabilized in Korea at the expense of economic growth and with dramatic sectoral allocation effects. Carbon dioxide emissions stabilization could be achieved to the tune of a 600 trillion won loss over a 20 year period (1990-2010). The average annual real GDP would decrease by 2.10% over the simulation period compared to the 5.87% increase in the Business-as-Usual. This model satisfies an immediate need for a policy simulation model for Korea and provides the basic framework for similar economies. It is critical to keep the central economic question at the forefront of any discussion regarding environmental protection. How much will reform cost, and what does the economy stand to gain and lose? Without this model, the policy makers might resort to hesitation or even blind speculation. With

  12. Crystal structure and pair potentials: A molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1980-10-06

    With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.

  13. Molecular Interactions and Reaction Dynamics in Supercritical Water Oxidation

    National Research Council Canada - National Science Library

    Johnston, K

    1998-01-01

    .... From UV-vis spectroscopic measurements and molecular dynamics simulation of chemical equilibria, we have shown that density effects on broad classes of reactions may be explained in terms of changes...

  14. Molecular Dynamics and Bioactivity of a Novel Mutated Human ...

    African Journals Online (AJOL)

    Keywords: Parathyroid hormone, Mutation prediction, Molecular dynamics, RANKL/OPG, UAMS-32P cell. Tropical .... PTH1R were used as MD simulation starting points. A full-atom ... Values of RMSD, Rg, and potential energy evaluation ...

  15. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    National Research Council Canada - National Science Library

    Low, Tammy K

    2006-01-01

    .... Our research goals consisted of employing olefin metathesis in the synthesis of peptidomimetics, and studying the feasibility of this method in dynamic combinatorial chemistry and molecular imprinting of nerve agents...

  16. A molecular dynamics calculation of solid phase of malonic acid ...

    Indian Academy of Sciences (India)

    Sathya S R R Perumal

    Keywords. Hydrogen bond chain; elastic constants; molecular dynamics. 1. Introduction ... theory - a probabilistic model to determine the hydro- gen bonds within the .... compares poorly with the experimental value of 108.5. Similarly β and γ ...

  17. Sudden transition from equilibrium stability to chaotic dynamics in a cautious tâtonnement model

    International Nuclear Information System (INIS)

    Foroni, Ilaria; Avellone, Alessandro; Panchuk, Anastasiia

    2015-01-01

    Tâtonnement processes are usually interpreted as auctions, where a fictitious agent sets the prices until an equilibrium is reached and the trades are made. The main purpose of such processes is to explain how an economy comes to its equilibrium. It is well known that discrete time price adjustment processes may fail to converge and may exhibit periodic or even chaotic behavior. To avoid large price changes, a version of the discrete time tâtonnement process for reaching an equilibrium in a pure exchange economy based on a cautious updating of the prices has been proposed two decades ago. This modification leads to a one dimensional bimodal piecewise smooth map, for which we show analytically that degenerate bifurcations and border collision bifurcations play a fundamental role for the asymptotic behavior of the model.

  18. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    Science.gov (United States)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  19. Comment on "Step dynamics and equilibrium structure of monoatomic steps on Si(001)-2x1" by J.R. Sanchez and C.M. Aldao

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Wulfhekel, W.C.U.; Hendriksen, B.; Poelsema, Bene

    1997-01-01

    In contrast to a recent claim by Sánchez and Aldao [Phys. Rev. B 54, R11 058 (1996)] that the relaxation dynamics of attachment processes influences the equilibrium step structure we argue that the step structure in thermodynamic equilibrium is only governed by the configurational free energy

  20. Molecular dynamics and Monte Carlo calculations in statistical mechanics

    International Nuclear Information System (INIS)

    Wood, W.W.; Erpenbeck, J.J.

    1976-01-01

    Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references

  1. Next generation extended Lagrangian first principles molecular dynamics.

    Science.gov (United States)

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  2. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  3. Molecular Dynamics Simulations of Kinetic Models for Chiral Dominance in Soft Condensed Matter

    DEFF Research Database (Denmark)

    Toxvaerd, Søren

    2001-01-01

    Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality......Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality...

  4. The dynamics of a non-equilibrium bubble near bio-materials

    International Nuclear Information System (INIS)

    Ohl, S W; Klaseboer, E; Khoo, B C

    2009-01-01

    In many medical treatments oscillating (non-equilibrium) bubbles appear. They can be the result of high-intensity-focused ultrasound, laser treatments or shock wave lithotripsy for example. The physics of such oscillating bubbles is often not very well understood. This is especially so if the bubbles are oscillating near (soft) bio-materials. It is well known that bubbles oscillating near (hard) materials have a tendency to form a high speed jet directed towards the material during the collapse phase of the bubble. It is equally well studied that bubbles near a free interface (air) tend to collapse with a jet directed away from this interface. If the interface is neither 'free' nor 'hard', such as often occurs in bio-materials, the resulting flow physics can be very complex. Yet, in many bio-applications, it is crucial to know in which direction the jet will go (if there is a jet at all). Some applications require a jet towards the tissue, for example to destroy it. For other applications, damage due to impacting jets is to be prevented at all cost. This paper tries to address some of the physics involved in these treatments by using a numerical method, the boundary element method (BEM), to study the dynamics of such bubbles near several bio-materials. In the present work, the behaviour of a bubble placed in a water-like medium near various bio-materials (modelled as elastic fluids) is investigated. It is found that its behaviour depends on the material properties (Young's modulus, Poisson ratio and density) of the bio-material. For soft bio-materials (fat, skin, brain and muscle), the bubble tends to split into smaller bubbles. In certain cases, the resulting bubbles develop opposing jets. For hard bio-materials (cornea, cartilage and bone), the bubble collapses towards the interface with high speed jets (between 100 and about 250 m s -1 ). A summary graph is provided identifying the combined effects of the dimensionless elasticity (κ) and density ratio (α) of

  5. Molecular-Level Simulations of Chemical Reaction Equilibrium and Diffusion in Slit and Cylindrical Nanopores: Model Dimerisation Reactions

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Předota, Milan; Brennan, J.K.

    2013-01-01

    Roč. 39, č. 13 (2013), s. 1103-1120 ISSN 0892-7022 R&D Projects: GA ČR GA13-09914S Grant - others:GA ČR(CZ) GA13-08651S Institutional support: RVO:67985858 Keywords : molecular dynamics * reaction ensemble Monte Carlo * slit and cylindrical nanopores Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.119, year: 2013

  6. A fermionic molecular dynamics technique to model nuclear matter

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2009-01-01

    Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)

  7. Current-driven dynamics in molecular-scale devices

    International Nuclear Information System (INIS)

    Seideman, Tamar

    2003-01-01

    We review recent theoretical work on current-triggered processes in molecular-scale devices - a field at the interface between solid state physics and chemical dynamics with potential applications in diverse areas, including artificial molecular machines, unimolecular transport, surface nanochemistry and nanolithography. The qualitative physics underlying current-triggered dynamics is first discussed and placed in context with several well-studied phenomena with which it shares aspects. A theory for modelling these dynamics is next formulated within a time-dependent scattering approach. Our end result provides useful insight into the system properties that determine the reaction outcome as well as a computationally convenient framework for numerical realization. The theory is applied to study single-molecule surface reactions induced by a scanning tunnelling microscope and current-triggered dynamics in single-molecule transistors. We close with a discussion of several potential applications of current-induced dynamics in molecular devices and several opportunities for future research. (topical review)

  8. Molecular Dynamic Modeling and Simulation for Polymers

    National Research Council Canada - National Science Library

    Harrell, Anthony

    2003-01-01

    ... the mechanical properties of polymers. In particular, the goal was to develop insights as to how a molecular level structure is connected to the bulk properties of materials assuming homogeneity...

  9. Visualizing functional motions of membrane transporters with molecular dynamics simulations.

    Science.gov (United States)

    Shaikh, Saher A; Li, Jing; Enkavi, Giray; Wen, Po-Chao; Huang, Zhijian; Tajkhorshid, Emad

    2013-01-29

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.

  10. Pseudorotational dynamics of small molecular species

    International Nuclear Information System (INIS)

    Hagelberg, F.

    2002-01-01

    The electron nuclear dynamics (END) theory was designed to provide a full description of the dynamic development of the electronic system. It is independent of any potential energy surface constructions. The dynamic behavior of molecules close to the threshold of dissociation was the objective of this study. Thus, simulations based on END theory were performed with the aim to extend the current understanding of the dynamic features of pseudorotational into a non-adiabatic regime. Electron dynamics of triatomic species (H 3 + and Li 3 + ) in terms of electronic angular momentum expectation values were characterized. Finally, it is shown that the expansion coefficients which carry the information about the excitation content of the electronic system at any stage of the motional process can be calculated. (nevyjel)

  11. R&D and economic growth in Slovenia: A dynamic general equilibrium approach with endogenous growth

    NARCIS (Netherlands)

    Verbic, M.; Majcen, B.; Ivanova, O.; Cok, M.

    2011-01-01

    In the article, we model R&D as a major endogenous growth element in a small open economy general equilibrium framework and consider several R&D policy scenarios for Slovenia. Increase of the share of sectoral investment in R&D that is deductible from the corporate income tax and increase of

  12. Ginsburg criterion for an equilibrium superradiant model in the dynamic approach

    International Nuclear Information System (INIS)

    Trache, M.

    1991-10-01

    Some critical properties of an equilibrium superradiant model are discussed, taking into account the quantum fluctuations of the field variables. The critical region is calculated using the Ginsburg criterion, underlining the role of the atomic concentration as a control parameter of the phase transition. (author). 16 refs, 1 fig

  13. Dynamics of a grassland ecosystem: botanical equilibrium in the Park Grass Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Silvertown, J

    1980-01-01

    The published results of the Park Grass Experiment (PGE), begun in 1856, provide up to 30 yr of annual data which may be used to determine whether the botanical composition of these grasslands was at equilibrium. Data covering a period exceeding 80 yr are available to test for relationships between hay yield (biomass), species diversity, species number and time. Species diversity and species number show negative relationships with plot biomass and with pH. These relationships were constant over time. The effects of biomass and pH on species number and species diversity were additive. Analysis of the flora of nine plots, each divided into grasses, legumes and a miscellaneous component showed that these components were at equilibrium. The effect of various endogenous factors on this botanical equilibrium was examined. No regular or irregular cycles of component biomass operating between years were detected and it is inferred that populations were regulated by processes operating within individual years. The biomasses of all three components were positively correlated within an unfertilized plot but the floristic components of plots receiving a fertilizer treatment showed few within-plot correlations. By contrast between-plot correlations of components were common for all plots with the exception of those receiving nitrogen fertilizer. The mechanisms of population regulation which maintained the park grass ecosystem at equilibrium are discussed and tests for these are proposed.

  14. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    Science.gov (United States)

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).

  15. Dynamic combinatorial libraries based on hydrogen-bonde molecular boxes

    NARCIS (Netherlands)

    Kerckhoffs, J.M.C.A.; Mateos timoneda, Miguel; Reinhoudt, David; Crego Calama, Mercedes

    2007-01-01

    This article describes two different types of dynamic combinatorial libraries of host and guest molecules. The first part of this article describes the encapsulation of alizarin trimer 2 a3 by dynamic mixtures of up to twenty different self-assembled molecular receptors together with the

  16. Energy conservation in molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren; Heilmann, Ole; Dyre, J. C.

    2012-01-01

    Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...

  17. Comparison of molecular models of carbon monoxide for calculation of vapor-liquid equilibrium

    Directory of Open Access Journals (Sweden)

    Bibian Alonso Hoyos-Madrigal

    2015-01-01

    Full Text Available Existen varios modelos moleculares para el monóxido de carbono desarrollados a partir de diferentes mediciones experimentales. El objetivo de este trabajo es comparar los resultados que varios de estos modelos producen en el cálculo del equilibrio líquido-vapor en busca de recomendar qué modelo debe ser usado de acuerdo la propiedad y la fase que se desea calcular. Los modelos seleccionados corresponden a cuatro modelos no polares, con uno o dos sitios Lennard-Jones, y cuatro modelos polares, con dipolos o cargas parciales para representar la polaridad del monóxido de carbono. Simulaciones Monte Carlo en la versión Gibbs canónica (NVT-GEMC se emplearon para determinar las densidades de las fases en equilibrio, la presión de vapor y la entalpia de vaporización entre 80 y 130 K con cada uno de los modelos seleccionados. Se encontró que los modelos más complejos SVH, ANC y PGB, son los que mejor describen la densidad del líquido saturado (alrededor de 7% de desviación promedio, pero estos modelos generan desviaciones mayores al 40% para las propiedades del vapor y al 20% para la entalpia de vaporización. Por otro lado, el modelo no- polar BLF generó las menores desviaciones para la presión de saturación y la densidad del vapor (6.8 y 21.5%, respectivamente. Este modelo, al igual que el modelo HCB, produce desviaciones aceptables para la densidad del líquido y la entalpia de vaporización (entre 10 y 12%. Los modelos no polares BLF y HCB, que no requieren el cálculo de las interacciones de largo alcance, se pueden considerar como los modelos moleculares que presentan un balance satisfactorio entre desviaciones en los resultados y complejidad de cálculo.

  18. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    de Almeida, Valmor F.; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  19. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD{sub 3}CN treated with a parallel multi-state EVB model

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, David R., E-mail: drglowacki@gmail.com [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Department of Computer Science, University of Bristol, Bristol BS8 1UB (United Kingdom); PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Orr-Ewing, Andrew J. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Harvey, Jeremy N. [Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee (Belgium)

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD{sub 3}CN → DF + CD{sub 2}CN reaction in CD{sub 3}CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD{sub 3}CN solvent, equilibrium power spectra of DF in CD{sub 3}CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol{sup −1} localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD{sub 3}CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational

  20. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD3CN treated with a parallel multi-state EVB model.

    Science.gov (United States)

    Glowacki, David R; Orr-Ewing, Andrew J; Harvey, Jeremy N

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD3CN → DF + CD2CN reaction in CD3CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD3CN solvent, equilibrium power spectra of DF in CD3CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol(-1) localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD3CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral

  1. Invariant molecular-dynamics approach to structural phase transitions

    International Nuclear Information System (INIS)

    Wentzcovitch, R.M.

    1991-01-01

    Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics

  2. Ab initio molecular dynamics in a finite homogeneous electric field.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  3. Insight derived from molecular dynamics simulations into molecular motions, thermodynamics and kinetics of HIV-1 gp120.

    Directory of Open Access Journals (Sweden)

    Peng Sang

    Full Text Available Although the crystal structures of the HIV-1 gp120 core bound and pre-bound by CD4 are known, the details of dynamics involved in conformational equilibrium and transition in relation to gp120 function have remained elusive. The homology models of gp120 comprising the N- and C-termini and loops V3 and V4 in the CD4-bound and CD4-unbound states were built and subjected to molecular dynamics (MD simulations to investigate the differences in dynamic properties and molecular motions between them. The results indicate that the CD4-bound gp120 adopted a more compact and stable conformation than the unbound form during simulations. For both the unbound and bound gp120, the large concerted motions derived from essential dynamics (ED analyses can influence the size/shape of the ligand-binding channel/cavity of gp120 and, therefore, were related to its functional properties. The differences in motion direction between certain structural components of these two forms of gp120 were related to the conformational interconversion between them. The free energy calculations based on the metadynamics simulations reveal a more rugged and complex free energy landscape (FEL for the unbound than for the bound gp120, implying that gp120 has a richer conformational diversity in the unbound form. The estimated free energy difference of ∼-6.0 kJ/mol between the global minimum free energy states of the unbound and bound gp120 indicates that gp120 can transform spontaneously from the unbound to bound states, revealing that the bound state represents a high-probability "ground state" for gp120 and explaining why the unbound state resists crystallization. Our results provide insight into the dynamics-and-function relationship of gp120, and facilitate understandings of the thermodynamics, kinetics and conformational control mechanism of HIV-1 gp120.

  4. Classical and quantum molecular dynamics in NMR spectra

    CERN Document Server

    Szymański, Sławomir

    2018-01-01

    The book provides a detailed account of how condensed-phase molecular dynamics are reflected in the line shapes of NMR spectra. The theories establishing connections between random, time-dependent molecular processes and lineshape effects are exposed in depth. Special emphasis is placed on the theoretical aspects, involving in particular intermolecular processes in solution, and molecular symmetry issues. The Liouville super-operator formalism is briefly introduced and used wherever it is beneficial for the transparency of presentation. The proposed formal descriptions of the discussed problems are sufficiently detailed to be implemented on a computer. Practical applications of the theory in solid- and liquid-phase studies are illustrated with appropriate experimental examples, exposing the potential of the lineshape method in elucidating molecular dynamics NMR-observable molecular phenomena where quantization of the spatial nuclear degrees of freedom is crucial are addressed in the last part of the book. As ...

  5. Dynamics of molecular superrotors in an external magnetic field

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Valery

    2015-08-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.

  6. Dynamics of molecular superrotors in an external magnetic field

    International Nuclear Information System (INIS)

    Korobenko, Aleksey; Milner, Valery

    2015-01-01

    We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation. (paper)

  7. Molecular dynamics with deterministic and stochastic numerical methods

    CERN Document Server

    Leimkuhler, Ben

    2015-01-01

    This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications.  Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method...

  8. Colored thermal noise driven dynamical system in the presence and absence of non-equilibrium constraint: time dependence of information entropy flux and entropy production

    International Nuclear Information System (INIS)

    Goswami, Gurupada; Mukherjee, Biswajit; Bag, Bidhan Chandra

    2005-01-01

    We have studied the relaxation of non-Markovian and thermodynamically closed system both in the absence and presence of non-equilibrium constraint in terms of the information entropy flux and entropy production based on the Fokker-Planck and the entropy balance equations. Our calculation shows how the relaxation time depends on noise correlation time. It also considers how the non-equilibrium constraint is affected by system parameters such as noise correlation time, strength of dissipation and frequency of dynamical system. The interplay of non-equilibrium constraint, frictional memory kernel, noise correlation time and frequency of dynamical system reveals the extremum nature of the entropy production

  9. Colored thermal noise driven dynamical system in the presence and absence of non-equilibrium constraint: time dependence of information entropy flux and entropy production

    Science.gov (United States)

    Goswami, Gurupada; Mukherjee, Biswajit; Bag, Bidhan Chandra

    2005-06-01

    We have studied the relaxation of non-Markovian and thermodynamically closed system both in the absence and presence of non-equilibrium constraint in terms of the information entropy flux and entropy production based on the Fokker-Planck and the entropy balance equations. Our calculation shows how the relaxation time depends on noise correlation time. It also considers how the non-equilibrium constraint is affected by system parameters such as noise correlation time, strength of dissipation and frequency of dynamical system. The interplay of non-equilibrium constraint, frictional memory kernel, noise correlation time and frequency of dynamical system reveals the extremum nature of the entropy production.

  10. Transient magnetic currents through a molecular bridge: limits to reduction of non-equilibrium Green's functions to a generalized master equation

    Czech Academy of Sciences Publication Activity Database

    Kalvová, Anděla; Velický, B.; Špička, Václav

    2017-01-01

    Roč. 30, č. 3 (2017), s. 807-811 ISSN 1557-1939 Institutional support: RVO:68378271 Keywords : non-equilibrium * initial conditions * transient currents * molecular islands Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.180, year: 2016

  11. First principles molecular dynamics without self-consistent field optimization

    International Nuclear Information System (INIS)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations

  12. Dynamics and non-equilibrium steady state in a system of coupled harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ghesquière, Anne, E-mail: Anne.Ghesquiere@nithep.ac.za; Sinayskiy, Ilya, E-mail: sinayskiy@ukzn.ac.za; Petruccione, Francesco, E-mail: petruccione@ukzn.ac.za

    2013-10-15

    A system of two coupled oscillators, each of them coupled to an independent reservoir, is analysed. The analytical solution of the non-rotating wave master equation is obtained in the high-temperature and weak coupling limits. No thermal entanglement is found in the high-temperature limit. In the weak coupling limit the system converges to an entangled non-equilibrium steady state. A critical temperature for the appearance of quantum correlations is found.

  13. Cooperativity in Molecular Dynamics Structural Models and the Dielectric Spectra of 1,2-Ethanediol

    Science.gov (United States)

    Usacheva, T. M.

    2018-05-01

    Linear relationships are established between the experimental equilibrium correlation factor and the molecular dynamics (MD) mean value of the O-H···O bond angle and the longitudinal component of the unit vector of the mean statistical dipole moment of the cluster in liquid 1,2-ethanediol (12ED). The achievements of modern MD models in describing the experimental dispersion of the permittivity of 12ED by both continuous and discrete relaxation time spectra are analyzed. The advantage computer MD experiments have over dielectric spectroscopy for calculating relaxation time and determining the molecular diffusion mechanisms of the rearrangement of the network 12ED structure, which is more complex than water, is demonstrated.

  14. Long-run and Cyclic Movements in the Unemployment Rate in Hong Kong: A Dynamic, General Equilibrium Approach

    OpenAIRE

    Michael K. Salemi

    2007-01-01

    Prior to the late 1990s, low unemployment was a standard feature of macroeconomic life in Hong Kong. Between 1985 and 1997, the unemployment rate averaged 2.5 percent. But the picture changed dramatically thereafter with the unemployment rate rising to 6.2 percent by 1999 and remaining above 5 percent through 2005. What caused the large and sustained increase? This paper provides some answers with an analysis based on a dynamic, general equilibrium model of a small, open economy in which wage...

  15. Non-equilibrium reversible dynamics of work production in four-spin system in a magnetic field

    Directory of Open Access Journals (Sweden)

    E.A. Ivanchenko

    2011-06-01

    Full Text Available A closed system of the equations for the local Bloch vectors and spin correlation functions is obtained by decomplexification of the Liouville-von Neumann equation for 4 magnetic particles with the exchange interaction that takes place in an arbitrary time-dependent external magnetic field. The analytical and numerical analysis of the quantum thermodynamic variables is carried out depending on separable mixed initial state and the magnetic field modulation. Under unitary evolution, non-equilibrium reversible dynamics of power production in the finite environment is investigated.

  16. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity.

    Science.gov (United States)

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-09-30

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.

  17. Partition functions. I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    Science.gov (United States)

    Popovas, A.; Jørgensen, U. G.

    2016-11-01

    Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when

  18. Damage-spreading and out-of-equilibrium dynamics in the low-temperature regime of the two-dimensional ± J Edwards–Anderson model

    International Nuclear Information System (INIS)

    Rubio Puzzo, M L; Romá, F; Bustingorry, S; Gleiser, P M

    2010-01-01

    We present results showing the correlation between the out-of-equilibrium dynamics and the equilibrium damage-spreading process in the two-dimensional ± J Edwards–Anderson model at low temperatures. A key ingredient in our analysis is the projection of finite temperature spin configurations onto the ground state topology of the system. In particular, through numerical simulations we correlate ground state information with the out-of-equilibrium dynamics. We also analyse how the propagation of a small perturbation in equilibrated systems is related to the ground state topology. This damage-spreading study unveils the presence of rigid clusters of spins. We claim that these clusters give rise to the slow out-of-equilibrium dynamics observed in the temperature range between the glass temperature T g = 0 of the two-dimensional ± J Edwards–Anderson model and the critical temperature T c of the pure ferromagnetic Ising model

  19. Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.

  20. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    Science.gov (United States)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  1. Geometric Energy Derivatives at the Complete Basis Set Limit: Application to the Equilibrium Structure and Molecular Force Field of Formaldehyde.

    Science.gov (United States)

    Morgan, W James; Matthews, Devin A; Ringholm, Magnus; Agarwal, Jay; Gong, Justin Z; Ruud, Kenneth; Allen, Wesley D; Stanton, John F; Schaefer, Henry F

    2018-03-13

    Geometric energy derivatives which rely on core-corrected focal-point energies extrapolated to the complete basis set (CBS) limit of coupled cluster theory with iterative and noniterative quadruple excitations, CCSDTQ and CCSDT(Q), are used as elements of molecular gradients and, in the case of CCSDT(Q), expansion coefficients of an anharmonic force field. These gradients are used to determine the CCSDTQ/CBS and CCSDT(Q)/CBS equilibrium structure of the S 0 ground state of H 2 CO where excellent agreement is observed with previous work and experimentally derived results. A fourth-order expansion about this CCSDT(Q)/CBS reference geometry using the same level of theory produces an exceptional level of agreement to spectroscopically observed vibrational band origins with a MAE of 0.57 cm -1 . Second-order vibrational perturbation theory (VPT2) and variational discrete variable representation (DVR) results are contrasted and discussed. Vibration-rotation, anharmonicity, and centrifugal distortion constants from the VPT2 analysis are reported and compared to previous work. Additionally, an initial application of a sum-over-states fourth-order vibrational perturbation theory (VPT4) formalism is employed herein, utilizing quintic and sextic derivatives obtained with a recursive algorithmic approach for response theory.

  2. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.

    Science.gov (United States)

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-07

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  3. Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium

    Science.gov (United States)

    Green, Jason R.; Costa, Anthony B.; Grzybowski, Bartosz A.; Szleifer, Igal

    2013-01-01

    Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov–Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov–Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes. PMID:24065832

  4. Estuarine Facies Model Revisited: Conceptual Model of Estuarine Sediment Dynamics During Non-Equilibrium Conditions

    Science.gov (United States)

    Elliott, E. A.; Rodriguez, A. B.; McKee, B. A.

    2017-12-01

    Traditional models of estuarine systems show deposition occurs primarily within the central basin. There, accommodation space is high within the deep central valley, which is below regional wave base and where current energy is presumed to reach a relative minimum, promoting direct deposition of cohesive sediment and minimizing erosion. However, these models often reflect long-term (decadal-millennial) timescales, where accumulation rates are in relative equilibrium with the rate of relative sea-level rise, and lack the resolution to capture shorter term changes in sediment deposition and erosion within the central estuary. This work presents a conceptual model for estuarine sedimentation during non-equilibrium conditions, where high-energy inputs to the system reach a relative maximum in the central basin, resulting in temporary deposition and/or remobilization over sub-annual to annual timescales. As an example, we present a case study of Core Sound, NC, a lagoonal estuarine system where the regional base-level has been reached, and sediment deposition, resuspension and bypassing is largely a result of non-equilibrium, high-energy events. Utilizing a 465 cm-long sediment core from a mini-basin located between Core Sound and the continental shelf, a 40-year sub-annual chronology was developed for the system, with sediment accumulation rates (SAR) interpolated to a monthly basis over the 40-year record. This study links erosional processes in the estuary directly with sediment flux to the continental shelf, taking advantage of the highly efficient sediment trapping capability of the mini-basin. The SAR record indicates high variation in the estuarine sediment supply, with peaks in the SAR record at a recurrence interval of 1 year (+/- 0.25). This record has been compared to historical storm influence for the area. Through this multi-decadal record, sediment flushing events occur at a much more frequent interval than previously thought (i.e. annual rather than

  5. Sudden transition from equilibrium stability to chaotic dynamics in a cautious tâtonnement model

    International Nuclear Information System (INIS)

    Foroni, I.; Avellone, A.; Panchuk, A.

    2016-01-01

    Discrete time price adjustment processes may fail to converge and may exhibit periodic or even chaotic behavior. To avoid large price changes, a version of the discrete time tâtonnement process for reaching an equilibrium in a pure exchange economy based on a cautious updating of the prices has been proposed two decades ago. This modification leads to a one dimensional bimodal piecewise smooth map, for which we show analytically that degenerate bifurcations and border collision bifurcations play a fundamental role for the asymptotic behavior of the model. (paper)

  6. Dynamic neutron scattering from conformational dynamics. II. Application using molecular dynamics simulation and Markov modeling.

    Science.gov (United States)

    Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C

    2013-11-07

    Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.

  7. Molecular dynamics study of atomic displacements in disordered solid alloys

    Science.gov (United States)

    Puzyrev, Yevgeniy S.

    The effects of atomic displacements on the energetics of alloys plays important role in the determining the properties of alloys. We studied the atomic displacements in disordered solid alloys using molecular dynamics and Monte-Carlo methods. The diffuse scattering of pure materials, copper, gold, nickel, and palladium was calculated. The experimental data for pure Cu was obtained from diffuse scattering intensity of synchrotron x-ray radiation. The comparison showed the advantages of molecular dynamics method for calculating the atomic displacements in solid alloys. The individual nearest neighbor separations were calculated for Cu 50Au50 alloy and compared to the result of XAFS experiment. The molecular dynamics method provided theoretical predictions of nearest neighbor pair separations in other binary alloys, Cu-Pd and Cu-Al for wide range of the concentrations. We also experimentally recovered the diffuse scattering maps for the Cu47.3Au52.7 and Cu85.2Al14.8 alloy.

  8. Atomistic interactions of clusters on surfaces using molecular dynamics and hyper molecular dynamics

    International Nuclear Information System (INIS)

    Sanz-Navarro, Carlos F.

    2002-01-01

    The work presented in this thesis describes the results of Molecular Dynamics (MD) simulations applied to the interaction of silver clusters with graphite surfaces and some numerical and theoretical methods concerning the extension of MD simulations to longer time scales (hyper-MD). The first part of this thesis studies the implantation of clusters at normal incidence onto a graphite surface in order to determine the scaling of the penetration depth (PD) against the impact energy. A comparison with experimental results is made with good agreement. The main physical observations of the impact process are described and analysed. It is shown that there is a threshold impact velocity above which the linear dependence on PD on impact energy changes to a linear dependence on velocity. Implantation of silver clusters at oblique incidence is also considered. The second part of this work analyses the validity and feasibility of the three minimisation methods for the hyper-MD simulation method whereby time scales of an MD simulation can be extended. A correct mathematical basis for the iterative method is derived. It is found that one of the iterative methods, upon which hyper-lD is based, is very likely to fail in high-dimensional situations because it requires a too expensive convergence. Two new approximations to the hyper-MD approach are proposed, which reduce the computational effort considerably. Both approaches, although not exact, can help to search for some of the most likely transitions in the system. Some examples are given to illustrate this. (author)

  9. The Potsdam Parallel Ice Sheet Model (PISM-PIK – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    M. A. Martin

    2011-09-01

    Full Text Available We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK. The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  10. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Science.gov (United States)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  11. Ge deposition on Si(1 0 0) in the conditions close to dynamic equilibrium between islands growth and their decay

    International Nuclear Information System (INIS)

    Shklyaev, A.A.; Budazhapova, A.E.

    2016-01-01

    Graphical abstract: - Highlights: • Solid source MBE is used for island growth by Ge deposition on Si(1 0 0) at 700–900 °C. • Islands acquire a monomodal size distribution at temperatures above 800 °C. • Islands form ordered arrays during Ge deposition at 900 °C. • Conditions close to dynamic equilibrium are realized for growth and decay of islands at 900 °C. • Shape of ordered islands is cone with shallow sidewalls. - Abstract: The formation of islands arrays during Ge deposition on Si(1 0 0) at high temperatures is studied using scanning tunneling and electron microscopies. It is found that the island size and shape distributions, which are known to be bimodal at growth temperatures below 700 °C, become monomodal at temperatures above 800 °C. The obtained data suggest that the processes such as island nucleation and Ostwald ripening become less significant in the surface morphology formation, giving the advantage to selective attachment of deposited Ge atoms to island sidewalls and spatially inhomogeneous Si-Ge intermixing, as the temperature increases. At 900 °C, the islands exhibit a tendency to form laterally ordered arrays when the growth conditions approach the dynamic equilibrium between the growth of islands and their decay by means of Si-Ge intermixing. The islands ordering is accompanied by their shape transformation into the cone with shallow sidewalls inclined from (1 0 0) by angles of around 10°.

  12. Empirical phylogenies and species abundance distributions are consistent with pre-equilibrium dynamics of neutral community models with gene flow

    KAUST Repository

    Bonnet-Lebrun, Anne-Sophie

    2017-03-17

    Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modelled communities - i.e., with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities - from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in pre-equilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under pre-equilibrium conditions. This article is protected by copyright. All rights reserved.

  13. Nonlinear Dynamic Analysis on the Rain-Wind-Induced Vibration of Cable Considering the Equilibrium Position of Rivulet

    Directory of Open Access Journals (Sweden)

    Xijun Liu

    2013-01-01

    Full Text Available The nonlinear dynamic behavior of rain-wind-induced vibration of inclined cable is investigated with the consideration of the equilibrium position of the moving rivulet. The partial differential governing equations of three-degree-of-freedom on the model of rain-wind-induced cable vibration are established, which are proposed for describing the nonlinear interactions among the in-plane, out-of-plane vibration of the cable and the oscillation of the moving rivulet. The Galerkin method is applied to discretize the partial differential governing equations. The approximately analytic solution is obtained by using the method of averaging. The unique correspondence between the wind and the equilibrium position of the rivulet is ascertained. The presence of rivulet at certain positions on the surface of cable is then proved to be one of the trigger for wind-rain-induced cable vibration. The nonlinear dynamic phenomena of the inclined cable subjected to wind and rain turbulence are then studied by varying the parameters including mean wind velocity, Coulomb damping force, damping ratio, the span length, and the initial tension of the inclined cable on the model. The jump phenomenon is also observed which occurs when there are multiple solutions in the system.

  14. Empirical phylogenies and species abundance distributions are consistent with pre-equilibrium dynamics of neutral community models with gene flow

    KAUST Repository

    Bonnet-Lebrun, Anne-Sophie; Manica, Andrea; Eriksson, Anders; Rodrigues, Ana S.L.

    2017-01-01

    Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modelled communities - i.e., with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities - from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in pre-equilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under pre-equilibrium conditions. This article is protected by copyright. All rights reserved.

  15. Dynamic molecular oxygen production in cometary comae

    Science.gov (United States)

    Yao, Yunxi; Giapis, Konstantinos P.

    2017-05-01

    Abundant molecular oxygen was discovered in the coma of comet 67P/Churyumov-Gerasimenko. Its origin was ascribed to primordial gaseous O2 incorporated into the nucleus during the comet's formation. This thesis was put forward after discounting several O2 production mechanisms in comets, including photolysis and radiolysis of water, solar wind-surface interactions and gas-phase collisions. Here we report an original Eley-Rideal reaction mechanism, which permits direct O2 formation in single collisions of energetic water ions with oxidized cometary surface analogues. The reaction proceeds by H2O+ abstracting a surface O-atom, then forming an excited precursor state, which dissociates to produce O2-. Subsequent photo-detachment leads to molecular O2, whose presence in the coma may thus be linked directly to water molecules and their interaction with the solar wind. This abiotic O2 production mechanism is consistent with reported trends in the 67P coma and raises awareness of the role of energetic negative ions in comets.

  16. Equilibrium and Dynamic Osmotic Behaviour of Aqueous Solutions with Varied Concentration at Constant and Variable Volume

    Science.gov (United States)

    Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.

    2013-01-01

    Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448

  17. Maxwell–Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India)

    2016-05-23

    In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green–Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF–KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, Đ{sub Li-K} which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2{sup nd} law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.

  18. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  19. Femtochemistry and femtobiology ultrafast dynamics in molecular science

    CERN Document Server

    Douhal, Abderrazzak

    2002-01-01

    This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological mol

  20. AceCloud: Molecular Dynamics Simulations in the Cloud.

    Science.gov (United States)

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  1. State-to-state dynamics of molecular energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  2. Chain networking revealed by molecular dynamics simulation

    Science.gov (United States)

    Zheng, Yexin; Tsige, Mesfin; Wang, Shi-Qing

    Based on Kremer-Grest model for entangled polymer melts, we demonstrate how the response of a polymer glass depends critically on the chain length. After quenching two melts of very different chain lengths (350 beads per chain and 30 beads per chain) into deeply glassy states, we subject them to uniaxial extension. Our MD simulations show that the glass of long chains undergoes stable necking after yielding whereas the system of short chains is unable to neck and breaks up after strain localization. During ductile extension of the polymer glass made of long chain significant chain tension builds up in the load-bearing strands (LBSs). Further analysis is expected to reveal evidence of activation of the primary structure during post-yield extension. These results lend support to the recent molecular model 1 and are the simulations to demonstrate the role of chain networking. This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859)

  3. Multiple time step integrators in ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-01-01

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy

  4. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp

    2012-06-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.

  5. Plastic dislocation motion via nonequilibrium molecular and continuum dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.; Ladd, A.J.C.; Hoover, N.E.

    1980-01-01

    The classical two-dimensional close-packed triangular lattice, with nearest-neighbor spring forces, is a convenient standard material for the investigation of dislocation motion and plastic flow. Two kinds of calculations, based on this standard material, are described here: (1) Molecular Dynamics simulations, incorporating adiabatic strains described with the help of Doll's Tensor, and (2) Continuum Dynamics simulations, incorporating periodic boundaries and dislocation interaction through stress-field superposition

  6. Molecular Dynamics Simulations of Poly(dimethylsiloxane) Properties

    Czech Academy of Sciences Publication Activity Database

    Fojtíková, J.; Kalvoda, L.; Sedlák, Petr

    2015-01-01

    Roč. 128, č. 4 (2015), s. 637-639 ISSN 0587-4246 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : molecular dynamics * poly(dimethylsiloxane) * dissipative particle dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.525, year: 2015 http://przyrbwn.icm.edu.pl/APP/PDF/128/a128z4p40.pdf

  7. Investigation of nuclear multifragmentation using molecular dynamics and restructured aggregation

    International Nuclear Information System (INIS)

    Paula, L. de; Nemeth, J.; Ben-Hao, Sa.; Leray, S.; Ngo, C.; Souza, S.R.; Yu-Ming, Zheng; Paula, L. de; Nemeth, J.; Ben-Hao, Sa.; Yu-Ming, Zheng; Ngo, H.

    1991-01-01

    We study the stability of excited 197 Au nuclei with respect to multifragmentation. For that we use a dynamical simulation based on molecular dynamics and restructured aggregation. A particular attention is paid to check the stability of the ground state nuclei generated by the simulation. Four kinds of excitations are considered: heat, compression, rotation and a geometrical instability created when a projectile drills a hole in a 197 Au nucleus

  8. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  9. Equilibrium dynamical correlations in the Toda chain and other integrable models

    Science.gov (United States)

    Kundu, Aritra; Dhar, Abhishek

    2016-12-01

    We investigate the form of equilibrium spatiotemporal correlation functions of conserved quantities in the Toda lattice and in other integrable models. From numerical simulations we find that the correlations satisfy ballistic scaling with a remarkable collapse of data from different times. We examine special limiting choices of parameter values, for which the Toda lattice tends to either the harmonic chain or the equal mass hard-particle gas. In both these limiting cases, one can obtain the correlations exactly and we find excellent agreement with the direct Toda simulation results. We also discuss a transformation to "normal mode" variables, as commonly done in hydrodynamic theory of nonintegrable systems, and find that this is useful, to some extent, even for the integrable system. The striking differences between the Toda chain and a truncated version, expected to be nonintegrable, are pointed out.

  10. R&D and economic growth in Slovenia: A dynamic general equilibrium approach with endogenous growth

    Directory of Open Access Journals (Sweden)

    Verbič Miroslav

    2011-01-01

    Full Text Available In the article, we model R&D as a major endogenous growth element in a small open economy general equilibrium framework and consider several R&D policy scenarios for Slovenia. Increase of the share of sectoral investment in R&D that is deductible from the corporate income tax and increase of government spending on R&D turned out to be the most effective suggested policy measures. While the former policy measure is still followed in part by an undesired transfer of the tax relief to dividends, a moderate increase of government spending on R&D boosts long-run productivity in the economy, thus increasing the future value of firms, which is reflected in a desired dividend increase. The households that would gain more utility from such policy scenarios are those with more skilled and highly skilled labour, but not the very top earners in the economy.

  11. Equilibrium and dynamics of uniform density ellipsoidal non-neutral plasmas

    International Nuclear Information System (INIS)

    Dubin, D.H.E.

    1993-01-01

    When a single-species plasma is confined in a harmonic Penning trap at cryogenic temperature, the thermal equilibrium is approximately a uniform density spheroid (ellipsoid of revolution). Normal modes corresponding to quadrupole excitations of this plasma have recently been measured. In this paper, nonlinear equations of motion are derived for these quadrupole oscillations. For large amplitudes, the oscillations deform a spheroidal plasma into a triaxial ellipsoid with time-dependent shape and orientation. The integrals of the motion are found and the cylindrically symmetric finite-amplitude oscillations of a spheroid are studied. An analysis of all possible ellipsoidal equilibria is also carried out. New equilibria are discovered which correspond to finite-amplitude versions of the noncylindrically symmetric linear quadrupole oscillations. The equilibria are shown to fall into two classes in which the ellipsoids are either tilted or aligned with respect to the magnetic field. Some of these equilibria have densities well above the Brillouin limit

  12. Theory of multiexciton dynamics in molecular chains

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2016-11-01

    Ultrafast and strong optical excitation of a molecular system is considered which is formed by a regular one-dimensional arrangement of identical molecules. As it is typical for zinc chlorine-type molecules the transition energy from the ground state to the first excited singlet state is assumed to be smaller than the energy difference between the first excited state and the following one. This enables the creation of many excitons without their immediate quenching due to exciton-exciton annihilation. As a first step into the field of dense Frenkel-exciton systems the present approach stays at a mean-field type of description and ignores vibrational contributions. The resulting nonlinear kinetic equations mix Rabi-type oscillations with those caused by energy transfer and suggest an excitation-dependent narrowing of the exciton band. The indication of this effect in the framework of a two-color pump-probe experiment and of the detection of photon emission is discussed.

  13. An improved molecular dynamics algorithm to study thermodiffusion in binary hydrocarbon mixtures

    Science.gov (United States)

    Antoun, Sylvie; Saghir, M. Ziad; Srinivasan, Seshasai

    2018-03-01

    In multicomponent liquid mixtures, the diffusion flow of chemical species can be induced by temperature gradients, which leads to a separation of the constituent components. This cross effect between temperature and concentration is known as thermodiffusion or the Ludwig-Soret effect. The performance of boundary driven non-equilibrium molecular dynamics along with the enhanced heat exchange (eHEX) algorithm was studied by assessing the thermodiffusion process in n-pentane/n-decane (nC5-nC10) binary mixtures. The eHEX algorithm consists of an extended version of the HEX algorithm with an improved energy conservation property. In addition to this, the transferable potentials for phase equilibria-united atom force field were employed in all molecular dynamics (MD) simulations to precisely model the molecular interactions in the fluid. The Soret coefficients of the n-pentane/n-decane (nC5-nC10) mixture for three different compositions (at 300.15 K and 0.1 MPa) were calculated and compared with the experimental data and other MD results available in the literature. Results of our newly employed MD algorithm showed great agreement with experimental data and a better accuracy compared to other MD procedures.

  14. First principles molecular dynamics of metal/water interfaces under bias potential

    Science.gov (United States)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  15. Molecular dynamics studies of superionic conductors

    International Nuclear Information System (INIS)

    Rahman, A.

    1979-01-01

    Over the last fifteen years computer modeling of liquids and solids has become a useful method of understanding the structural and dynamical correlations in these systems. Some characteristics of the method are presented with an example from work on homogeneous nucleation in monoatomic liquids; the interaction potential determines the structure: a Lennard--Jones system nucleates a close packed structure while an alkali metal potential nucleates a bcc packing. In the study of ionic systems like CaF 2 the Coulomb interaction together with the short range repulsion is enough to produce a satisfactory model for the motion of F - ions in CaF 2 at approx. 1600 0 K. Analysis of this motion shows that F - ions reside at their fluorite sites for about 6 x 10 -12 s and that the diffusion is mainly due to F - jumps in the 100 direction. The motion can be analyzed in terms of the generation and annihilation of anti-Frenkel pairs. The temperature dependence of the F - diffusion constant at two different densities has also been calculated. The computer model does not correspond with experiment in this regard

  16. Photoionization dynamics of excited molecular states

    International Nuclear Information System (INIS)

    Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.

    1987-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs

  17. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...

  18. Molecular dynamics of the structure and thermodynamics of dusty ...

    African Journals Online (AJOL)

    The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...

  19. A MOLECULAR-DYNAMICS STUDY OF LECITHIN MONOLAYERS

    NARCIS (Netherlands)

    AHLSTROM, P; BERENDSEN, HJC

    1993-01-01

    Two monolayers of didecanoyllecithin at the air-water interface have been studied using molecular dynamics simulations. The model system consisted of two monolayers of 42 lecithin molecules each separated by a roughly 4 nm thick slab of SPC water. The area per lecithin molecule was 0.78 nm(2)

  20. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  1. Ab initio molecular dynamics simulation of laser melting of silicon

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting

  2. Microsecond atomic-scale molecular dynamics simulations of polyimides

    NARCIS (Netherlands)

    Lyulin, S.V.; Gurtovenko, A.A.; Larin, S.V.; Nazarychev, V.M.; Lyulin, A.V.

    2013-01-01

    We employ microsecond atomic-scale molecular dynamics simulations to get insight into the structural and thermal properties of heat-resistant bulk polyimides. As electrostatic interactions are essential for the polyimides considered, we propose a two-step equilibration protocol that includes long

  3. Molecular dynamics study of the silica-water-SDA interactions

    NARCIS (Netherlands)

    Szyja, B.M.; Jansen, A.P.J.; Verstraelen, T.; Santen, van R.A.

    2009-01-01

    In this paper we have applied the molecular dynamics simulations in order to analyse the role of the structure directing tetrapropylammonium ions in the aggregation process that leads to silicalite formation. We address the specific question of how the interactions between silica precursor species

  4. Molecular dynamics simulations of ballistic He penetration into W fuzz

    NARCIS (Netherlands)

    Klaver, T. P. C.; Nordlund, K.; Morgan, T. W.; Westerhof, E.; Thijsse, B. J.; van de Sanden, M. C. M.

    2016-01-01

    Results are presented of large-scale Molecular Dynamics simulations of low-energy He bombardment of W nanorods, or so-called ‘fuzz’ structures. The goal of these simulations is to see if ballistic He penetration through W fuzz offers a more realistic scenario for how He moves through fuzz layers

  5. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    Directory of Open Access Journals (Sweden)

    Renata De Paris

    2015-01-01

    Full Text Available Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  6. Toluene model for molecular dynamics simulations in the ranges 298

    NARCIS (Netherlands)

    Fioroni, M.; Vogt, D.

    2004-01-01

    An all-atom model for toluene is presented in the framework of classical molecular dynamics (MD). The model has been parametrized under the GROMOS96 force field to reproduce the physicochemical properties of the neat liquid. Four new atom types have been introduced, distinguishing between carbons

  7. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  8. Molecular dynamics simulations and free energy profile of ...

    Indian Academy of Sciences (India)

    aDepartment of Chemical Engineering, bDepartment of Chemistry, Amirkabir University of Technology,. 15875-4413 ... Lipid bilayers; Paracetamol; free energy; molecular dynamics simulation; membrane. 1. ..... bilayer is less favourable due to the hydrophobic nature .... Orsi M and Essex J W 2010 Soft Matter 6 3797. 54.

  9. Molecular dynamics simulations of lipid vesicle fusion in atomic detail

    NARCIS (Netherlands)

    Knecht, Volker; Marrink, Siewert-Jan

    The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic

  10. Molecular dynamic analysis of the structure of dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Canetta, E.; Maino, G. E-mail: maino@bologna.enea.it

    2004-01-01

    We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques.

  11. Molecular dynamic analysis of the structure of dendrimers

    International Nuclear Information System (INIS)

    Canetta, E.; Maino, G.

    2004-01-01

    We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques

  12. Molecular dynamics study on the relaxation properties of bilayered ...

    Indian Academy of Sciences (India)

    2017-08-31

    Aug 31, 2017 ... Abstract. The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by molecular dynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. The results show that great changes begin to occur in the ...

  13. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18...

  14. Molecular Dynamics Investigation of Efficient SO₂ Absorption by ...

    Indian Academy of Sciences (India)

    Ionic liquids are appropriate candidates for the absorption of acid gases such as SO₂. Six anion functionalized ionic liquids with different basicities have been studied for SO₂ absorption capacity by employing quantum chemical calculations and molecular dynamics (MD) simulations. Gas phase quantum calculations ...

  15. Molecular dynamics simulations on PGLa using NMR orientational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Ulrich, E-mail: ulrich.sternberg@partner.kit.edu; Witter, Raiker [Tallinn University of Technology, Technomedicum (Estonia)

    2015-11-15

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.

  16. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    Science.gov (United States)

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is

  17. Three-particle equilibrium correlations in dense hard-sphere fluids

    NARCIS (Netherlands)

    Haffmans, A.F.E.M.; Schepper, I.M. de; Michels, J.P.J.; Beijeren, H. van

    1988-01-01

    We performed molecular-dynamics simulation experiments for a hard-sphere fluid at four high densities and determined the spatial Fourier transform of the three-particle equilibrium correlation function with two of the three particles at contact.

  18. Multiscale equation-free algorithms for molecular dynamics

    Science.gov (United States)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  19. Stability of molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2012-01-01

    The existence of a shadow Hamiltonian for discrete classical dynamics, obtained by an asymptotic expansion for a discrete symplectic algorithm, is employed to determine the limit of stability for molecular dynamics (MD) simulations with respect to the time-increment h of the discrete dynamics....... The investigation is based on the stability of the shadow energy, obtained by including the first term in the asymptotic expansion, and on the exact solution of discrete dynamics for a single harmonic mode. The exact solution of discrete dynamics for a harmonic potential with frequency ω gives a criterion...... for the limit of stability h ⩽ 2/ω. Simulations of the Lennard-Jones system and the viscous Kob-Andersen system show that one can use the limit of stability of the shadow energy or the stability criterion for a harmonic mode on the spectrum of instantaneous frequencies to determine the limit of stability of MD...

  20. Reaction dynamics of molecular hydrogen on silicon surfaces

    DEFF Research Database (Denmark)

    Bratu, P.; Brenig, W.; Gross, A.

    1996-01-01

    of the preexponential factor by about one order of magnitude per lateral degree of freedom. Molecular vibrations have practically no effect on the adsorption/desorption dynamics itself, but lead to vibrational heating in desorption with a strong isotope effect. Ab initio calculations for the H-2 interaction...... between the two surfaces. These results indicate that tunneling, molecular vibrations, and the structural details of the surface play only a minor role for the adsorption dynamics. Instead, they appear to be governed by the localized H-Si bonding and Si-Si lattice vibrations. Theoretically, an effective......Experimental and theoretical results on the dynamics of dissociative adsorption and recombinative desorption of hydrogen on silicon are presented. Using optical second-harmonic generation, extremely small sticking probabilities in the range 10(-9)-10(-5) could be measured for H-2 and D-2 on Si(111...