WorldWideScience

Sample records for equilibrium mixture models

  1. Modelling of an homogeneous equilibrium mixture model

    International Nuclear Information System (INIS)

    Bernard-Champmartin, A.; Poujade, O.; Mathiaud, J.; Mathiaud, J.; Ghidaglia, J.M.

    2014-01-01

    We present here a model for two phase flows which is simpler than the 6-equations models (with two densities, two velocities, two temperatures) but more accurate than the standard mixture models with 4 equations (with two densities, one velocity and one temperature). We are interested in the case when the two-phases have been interacting long enough for the drag force to be small but still not negligible. The so-called Homogeneous Equilibrium Mixture Model (HEM) that we present is dealing with both mixture and relative quantities, allowing in particular to follow both a mixture velocity and a relative velocity. This relative velocity is not tracked by a conservation law but by a closure law (drift relation), whose expression is related to the drag force terms of the two-phase flow. After the derivation of the model, a stability analysis and numerical experiments are presented. (authors)

  2. Thermodynamic parameters for mixtures of quartz under shock wave loading in views of the equilibrium model

    International Nuclear Information System (INIS)

    Maevskii, K. K.; Kinelovskii, S. A.

    2015-01-01

    The numerical results of modeling of shock wave loading of mixtures with the SiO 2 component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described

  3. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Karanam, Aditya; Sharma, Pavan K.; Ganju, Sunil; Singh, Ram Kumar [Bhabha Atomic Research Centre (BARC), Mumbai (India). Reactor Safety Div.

    2016-12-15

    During postulated accident sequences in nuclear reactors, hydrogen may get released from the core and form a flammable mixture in the surrounding containment structure. Ignition of such mixtures and the subsequent pressure rise are an imminent threat for safe and sustainable operation of nuclear reactors. Methods for evaluating post ignition characteristics are important for determining the design safety margins in such scenarios. This study presents two thermo-chemical models for determining the post ignition state. The first model is based on internal energy balance while the second model uses the concept of element potentials to minimize the free energy of the system with internal energy imposed as a constraint. Predictions from both the models have been compared against published data over a wide range of mixture compositions. Important differences in the regions close to flammability limits and for stoichiometric mixtures have been identified and explained. The equilibrium model has been validated for varied temperatures and pressures representative of initial conditions that may be present in the containment during accidents. Special emphasis has been given to the understanding of the role of dissociation and its effect on equilibrium pressure, temperature and species concentrations.

  4. Equilibrium based analytical model for estimation of pressure magnification during deflagration of hydrogen air mixtures

    International Nuclear Information System (INIS)

    Karanam, Aditya; Sharma, Pavan K.; Ganju, Sunil; Singh, Ram Kumar

    2016-01-01

    During postulated accident sequences in nuclear reactors, hydrogen may get released from the core and form a flammable mixture in the surrounding containment structure. Ignition of such mixtures and the subsequent pressure rise are an imminent threat for safe and sustainable operation of nuclear reactors. Methods for evaluating post ignition characteristics are important for determining the design safety margins in such scenarios. This study presents two thermo-chemical models for determining the post ignition state. The first model is based on internal energy balance while the second model uses the concept of element potentials to minimize the free energy of the system with internal energy imposed as a constraint. Predictions from both the models have been compared against published data over a wide range of mixture compositions. Important differences in the regions close to flammability limits and for stoichiometric mixtures have been identified and explained. The equilibrium model has been validated for varied temperatures and pressures representative of initial conditions that may be present in the containment during accidents. Special emphasis has been given to the understanding of the role of dissociation and its effect on equilibrium pressure, temperature and species concentrations.

  5. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  6. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  7. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yen, E-mail: yen.liu@nasa.gov; Vinokur, Marcel [NASA Ames Research Center, Moffett Field, California 94035 (United States); Panesi, Marco; Sahai, Amal [University of Illinois, Urbana-Champaign, Illinois 61801 (United States)

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  8. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    International Nuclear Information System (INIS)

    Liu, Yen; Vinokur, Marcel; Panesi, Marco; Sahai, Amal

    2015-01-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  9. Determination and correlation thermodynamic models for solid–liquid equilibrium of the Nifedipine in pure and mixture organic solvents

    International Nuclear Information System (INIS)

    Wu, Gang; Hu, Yonghong; Gu, Pengfei; Yang, Wenge; Wang, Chunxiao; Ding, Zhiwen; Deng, Renlun; Li, Tao; Hong, Housheng

    2016-01-01

    Highlights: • The solubility increased with increasing temperature. • The data were fitted using the modified Apelblat equation in pure solvents. • The data were fitted using the CNIBS/R-K model in binary solvent mixture. - Abstract: Knowledge of thermodynamic parameters on corresponding solid-liquid equilibrium of nifedipine in different solvents is essential for a preliminary study of pharmaceutical engineering and industrial applications. In this paper, a gravimetric method was used to correct the solid-liquid equilibrium of nifedipine in methanol, ethanol, 1-butanol, acetone, acetonitrile, ethyl acetate and tetrahydrofuran pure solvents as well as in the (tetrahydrofuran + acetonitrile) mixture solvents at temperatures from 278.15 K to 328.15 K under 0.1 MPa. For the temperature range investigation, the solubility of nifedipine in the solvents increased with increasing temperature. The solubility of nifedipine in tetrahydrofuran is superior to other selected pure solvents. The modified Apelblat model, the Buchowski-Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model stood out to be more suitable with the higher accuracy. The solubility values were fitted using a modified Apelblat model, a variant of the combined nearly ideal binary solvent/Redich-Kister (CNIBS/R-K) model and Jouyban-Acree model in (tetrahydrofuran + acetonitrile) binary solvent mixture. Computational results showed that the CNIBS/R-K model had more advantages than other models.

  10. Equilibrium study for ternary mixtures of biodiesel

    Science.gov (United States)

    Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.

    2017-11-01

    The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.

  11. Phase equilibrium modelling for mixtures with acetic acid using an association equation of state

    DEFF Research Database (Denmark)

    Muro Sunè, Nuria; Kontogeorgis, Georgios; von Solms, Nicolas

    2008-01-01

    Acetic acid is a very important compound in the chemical industry with applications both as solvent and intermediate in the production of, e.g., polyesters. The design of these processes requires knowledge of the phase equilibria of mixtures containing acetic acid and a wide variety of compounds ...

  12. Computing Properties Of Chemical Mixtures At Equilibrium

    Science.gov (United States)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  13. Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the (solid + liquid) equilibrium and the (vapour + liquid) equilibrium. The modified UNIFAC (Do) model characterization

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lachwa, Joanna

    2005-01-01

    The (solid + liquid) equilibrium (SLE) of eight binary systems containing N-methyl-2-pyrrolidinone (NMP) with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) were carried out by using a dynamic method from T = 200 K to the melting point of the NMP. The isothermal (vapour + liquid) equilibrium data (VLE) have been measured for three binary mixtures of NMP with 2-propanone, 3-pentanone and 2-hexanone at pressure range from p = 0 kPa to p = 115 kPa. Data were obtained at the temperature T = 333.15 K for the first system and at T = 373.15 K for the second two systems. The experimental results of SLE have been correlated using the binary parameters Wilson, UNIQUAC ASM and two modified NRTL equations. The root-mean-square deviations of the solubility temperatures for all the calculated values vary from (0.32 K to 0.68 K) and depend on the particular equation used. The data of VLE were correlated with one to three parameters in the Redlich-Kister expansion. Binary mixtures of NMP with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) have been investigated in the framework of the modified UNIFAC (Do) model. The reported new interaction parameters for NMP-group (c-CONCH 3 ) and carbonyl group ( C=O) let the model consistently described a set of thermodynamic properties, including (solid + liquid) equilibrium (vapour + liquid) equilibrium, excess Gibbs energy and molar excess enthalpies of mixing. Our experimental and literature data of binary mixtures containing NMP and ketones were compared with the results of prediction with the modified UNIFAC (Do) model

  14. A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results

    Science.gov (United States)

    M. M. Clark; T. H. Fletcher; R. R. Linn

    2010-01-01

    The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixture– fraction model relying on thermodynamic...

  15. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    Science.gov (United States)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  16. Modeling the Solid-Liquid Equilibrium in Pharmaceutical-Solvent Mixtures: Systems with Complex Hydrogen Bonding Behvaior

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Economou, Ioannis; Kontogeorgis, Georgios

    2009-01-01

    simpler molecules of similar chemical structure and/or are fitted to Hansen's partial solubility parameters. The methodology is applied to modeling the solubility of three pharmaceuticals, namely acetanilide, phenacetin, and paracetamol, using the nonrandom hydrogen bonding (NRHB) EoS. In all cases...

  17. A study of chemical equilibrium of tri-component mixtures of hydrogen isotopes

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, I.; Peculea, M.

    1998-01-01

    In this paper we present a model for computing the equilibrium constants for chemical reactions between hydrogen's isotopes as function of temperature. The equilibrium constants were expressed with the aid of Gibbs potential and the partition function of the mixture. We assessed the partition function for hydrogen's isotopes having in view that some nuclei are fermions and other bosons. As results we plotted the values of equilibrium constants as function of temperature. Knowing these values we determined the deuterium distribution on species (for mixture H 2 -HD-D 2 ) as function of total deuterium concentration and the tritium distribution on species (for mixtures D 2 -DT-T 2 and H 2 -HT-T 2 ) as function of total tritium concentration. (authors)

  18. Equilibrium models and variational inequalities

    CERN Document Server

    Konnov, Igor

    2007-01-01

    The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...

  19. Phase equilibrium and physical properties of biobased ionic liquid mixtures.

    Science.gov (United States)

    Toledo Hijo, Ariel A C; Maximo, Guilherme J; Cunha, Rosiane L; Fonseca, Felipe H S; Cardoso, Lisandro P; Pereira, Jorge F B; Costa, Mariana C; Batista, Eduardo A C; Meirelles, Antonio J A

    2018-02-28

    Protic ionic liquid crystals (PILCs) obtained from natural sources are promising compounds due to their peculiar properties and sustainable appeal. However, obtaining PILCs with higher thermal and mechanical stabilities for product and process design is in demand and studies on such approaches using this new IL generation are still scarce. In this context, this work discloses an alternative way for tuning the physicochemical properties of ILCs by mixing PILs. New binary mixtures of PILs derived from fatty acids and 2-hydroxy ethylamines have been synthesized here and investigated through the characterization of the solid-solid-[liquid crystal]-liquid thermodynamic equilibrium and their rheological and critical micellar concentration profiles. The mixtures presented a marked nonideal melting profile with the formation of solid solutions. This work revealed an improvement of the PILCs' properties based on a significant increase in the ILC temperature domain and the obtainment of more stable mesophases at high temperatures when compared to pure PILs. In addition, mixtures of PILs also showed significant changes in their non-Newtonian and viscosity profile up to 100 s -1 , as well as mechanical stability over a wide temperature range. The enhancement of the physicochemical properties of PILs here disclosed by such an approach leads to more new possibilities of their industrial application at high temperatures.

  20. A Multiperiod Equilibrium Pricing Model

    Directory of Open Access Journals (Sweden)

    Minsuk Kwak

    2014-01-01

    Full Text Available We propose an equilibrium pricing model in a dynamic multiperiod stochastic framework with uncertain income. There are one tradable risky asset (stock/commodity, one nontradable underlying (temperature, and also a contingent claim (weather derivative written on the tradable risky asset and the nontradable underlying in the market. The price of the contingent claim is priced in equilibrium by optimal strategies of representative agent and market clearing condition. The risk preferences are of exponential type with a stochastic coefficient of risk aversion. Both subgame perfect strategy and naive strategy are considered and the corresponding equilibrium prices are derived. From the numerical result we examine how the equilibrium prices vary in response to changes in model parameters and highlight the importance of our equilibrium pricing principle.

  1. Helical axis stellarator equilibrium model

    International Nuclear Information System (INIS)

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift

  2. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles

    International Nuclear Information System (INIS)

    Spruijt, E; Biesheuvel, P M

    2014-01-01

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation–diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL

  3. Using nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) for simultaneous determination of concentration and equilibrium constant.

    Science.gov (United States)

    Kanoatov, Mirzo; Galievsky, Victor A; Krylova, Svetlana M; Cherney, Leonid T; Jankowski, Hanna K; Krylov, Sergey N

    2015-03-03

    Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a versatile tool for studying affinity binding. Here we describe a NECEEM-based approach for simultaneous determination of both the equilibrium constant, K(d), and the unknown concentration of a binder that we call a target, T. In essence, NECEEM is used to measure the unbound equilibrium fraction, R, for the binder with a known concentration that we call a ligand, L. The first set of experiments is performed at varying concentrations of T, prepared by serial dilution of the stock solution, but at a constant concentration of L, which is as low as its reliable quantitation allows. The value of R is plotted as a function of the dilution coefficient, and dilution corresponding to R = 0.5 is determined. This dilution of T is used in the second set of experiments in which the concentration of T is fixed but the concentration of L is varied. The experimental dependence of R on the concentration of L is fitted with a function describing their theoretical dependence. Both K(d) and the concentration of T are used as fitting parameters, and their sought values are determined as the ones that generate the best fit. We have fully validated this approach in silico by using computer-simulated NECEEM electropherograms and then applied it to experimental determination of the unknown concentration of MutS protein and K(d) of its interactions with a DNA aptamer. The general approach described here is applicable not only to NECEEM but also to any other method that can determine a fraction of unbound molecules at equilibrium.

  4. Equilibrium moisture content of waste mixtures from post-consumer carton packaging.

    Science.gov (United States)

    Bacelos, M S; Freire, J T

    2012-01-01

    The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.

  5. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  6. Prevalence Incidence Mixture Models

    Science.gov (United States)

    The R package and webtool fits Prevalence Incidence Mixture models to left-censored and irregularly interval-censored time to event data that is commonly found in screening cohorts assembled from electronic health records. Absolute and relative risk can be estimated for simple random sampling, and stratified sampling (the two approaches of superpopulation and a finite population are supported for target populations). Non-parametric (absolute risks only), semi-parametric, weakly-parametric (using B-splines), and some fully parametric (such as the logistic-Weibull) models are supported.

  7. The precise measurement of the (vapour + liquid) equilibrium properties for (CO2 + isobutane) binary mixtures

    International Nuclear Information System (INIS)

    Nagata, Y.; Mizutani, K.; Miyamoto, H.

    2011-01-01

    Recently, it has been suggested that natural working fluids, such as CO 2 , hydrocarbons, and their mixtures, could provide a long-term alternative to fluorocarbon refrigerants. (Vapour + liquid) equilibrium (VLE) data for these fluids are essential for the development of equations of state, and for industrial process such as separation and refinement. However, there are large inconsistencies among the available literature data for (CO 2 + isobutane) binary mixtures, and therefore provision of reliable and new measurements with expanded uncertainties is required. In this study, we determined precise VLE data using a new re-circulating type apparatus, which was mainly designed by Akico Co., Japan. An equilibrium cell with an inner volume of about 380 cm 3 and two optical windows was used to observe the phase behaviour. The cell had re-circulating loops and expansion loops that were immersed in a thermostatted liquid bath and air bath, respectively. After establishment of a steady state in these loops, the compositions of the samples were measured by a gas chromatograph (GL Science, GC-3200). The VLE data were measured for CO 2 /propane and CO 2 /isobutane binary mixtures within the temperature range from 300 K to 330 K and at pressures up to 7 MPa. These data were compared with the available literature data and with values predicted by thermodynamic property models.

  8. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  9. Global phase equilibrium calculations: Critical lines, critical end points and liquid-liquid-vapour equilibrium in binary mixtures

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht

    2007-01-01

    A general strategy for global phase equilibrium calculations (GPEC) in binary mixtures is presented in this work along with specific methods for calculation of the different parts involved. A Newton procedure using composition, temperature and Volume as independent variables is used for calculation...

  10. Modeling of diffusive plasmas in local thermodynamic equilibrium with integral constraints: application to mercury-free high pressure discharge lamp mixtures

    NARCIS (Netherlands)

    Janssen, J.F.J.; Suijker, J.L.G.; Peerenboom, K.S.C.; van Dijk, J.

    2017-01-01

    The mercury free lamp model previously discussed in Gnybida et al (2014 J. Phys. D: Appl. Phys. 47 125201) did not account for self-consistent diffusion and only included two molecular transitions. In this paper we apply, for the first time, a self-consistent diffusion algorithm that features (1)

  11. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  12. Modeling of diffusive plasmas in local thermodynamic equilibrium with integral constraints: application to mercury-free high pressure discharge lamp mixtures

    Science.gov (United States)

    Janssen, J. F. J.; Suijker, J. L. G.; Peerenboom, K. S. C.; van Dijk, J.

    2017-03-01

    The mercury free lamp model previously discussed in Gnybida et al (2014 J. Phys. D: Appl. Phys. 47 125201) did not account for self-consistent diffusion and only included two molecular transitions. In this paper we apply, for the first time, a self-consistent diffusion algorithm that features (1) species/mass conservation up to machine accuracy and (2) an arbitrary mix of integral (total mass) and local (cold spot) constraints on the composition. Another advantage of this model is that the total pressure of the gas is calculated self consistently. Therefore, the usage of a predetermined pressure is no longer required. Additionally, the number of association processes has been increased from 2 to 6. The population as a function of interatomic separation determines the spectrum of the emitted continuum radiation. Previously, this population was calculated using the limit of low densities. In this work an expression is used that removes this limitation. The result of these improvements is that the agreement between the simulated and measured spectra has improved considerably.

  13. Non-equilibrium modelling of distillation

    NARCIS (Netherlands)

    Wesselingh, JA; Darton, R

    1997-01-01

    There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase

  14. Non-equilibrium dog-flea model

    Science.gov (United States)

    Ackerson, Bruce J.

    2017-11-01

    We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.

  15. An Equilibrium-Based Model of Gas Reaction and Detonation

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    2000-01-01

    During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999

  16. Micro Data and General Equilibrium Models

    DEFF Research Database (Denmark)

    Browning, Martin; Hansen, Lars Peter; Heckman, James J.

    1999-01-01

    Dynamic general equilibrium models are required to evaluate policies applied at the national level. To use these models to make quantitative forecasts requires knowledge of an extensive array of parameter values for the economy at large. This essay describes the parameters required for different...... economic models, assesses the discordance between the macromodels used in policy evaluation and the microeconomic models used to generate the empirical evidence. For concreteness, we focus on two general equilibrium models: the stochastic growth model extended to include some forms of heterogeneity...

  17. Phase equilibrium in a polarized saturated 3He-4He mixture

    International Nuclear Information System (INIS)

    Rodrigues, A.; Vermeulen, G.

    1997-01-01

    We present experimental results on the phase equilibrium of a saturated 3 He- 4 He mixture, which has been cooled to a temperature of 10-15 mK and polarized in a 4 He circulating dilution refrigerator to a stationary polarization of 15 %, 7 times higher than the equilibrium polarization in the external field of 7 T. The pressure dependence of the polarization enhancement in the refrigerator shows that the molar susceptibilities of the concentrated and dilute phase of a saturated 3 He- 4 He mixture are equal at p = 2.60 ± 0.04 bar. This result affects the Fermi liquid parameters of the dilute phase. The osmotic pressure in the dilute phase has been measured as a function of the polarization of the coexisting concentrated phase up to 15 %. We find that the osmotic pressure at low polarization ( < 7 % ) agrees well with thermodynamics using the new Fermi liquid parameters of the dilute phase

  18. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  19. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  20. A statistical mechanical model for equilibrium ionization

    International Nuclear Information System (INIS)

    Macris, N.; Martin, P.A.; Pule, J.

    1990-01-01

    A quantum electron interacts with a classical gas of hard spheres and is in thermal equilibrium with it. The interaction is attractive and the electron can form a bound state with the classical particles. It is rigorously shown that in a well defined low density and low temperature limit, the ionization probability for the electron tends to the value predicted by the Saha formula for thermal ionization. In this regime, the electron is found to be in a statistical mixture of a bound and a free state. (orig.)

  1. Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones

    International Nuclear Information System (INIS)

    Radhamma, M.; Venkatesu, P.; Rao, M.V. Prabhakara; Prasad, D.H.L.

    2007-01-01

    Excess enthalpies (H E ), at ambient pressure and T = 298.15 K, have been measured by using a solution calorimeter for the binary liquid mixtures of dimethyl sulphoxide (DMSO) with ketones, as a function of composition. The ketones chosen in the present investigation were methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The H E values are positive over the entire composition range for the three binary mixtures. Furthermore, the (vapour + liquid) equilibrium (VLE) was measured at 715 Torr for these mixtures, of different compositions, with the help of Swietoslawski-ebulliometer. The experimental temperature-mole fraction (t-x) data were used to compute Wilson parameters and then used to calculate the equilibrium vapour-phase compositions as well as the theoretical points for these binary mixtures. These Wilson parameters are used to calculate activity coefficients (γ) and these in turn to calculate excess Gibbs free energy (G E ). The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties

  2. Non-equilibrium Quasi-Chemical Nucleation Model

    Science.gov (United States)

    Gorbachev, Yuriy E.

    2018-04-01

    Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.

  3. Nonparametric Mixture of Regression Models.

    Science.gov (United States)

    Huang, Mian; Li, Runze; Wang, Shaoli

    2013-07-01

    Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.

  4. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    Energy Technology Data Exchange (ETDEWEB)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud [Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2014-05-15

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm{sup 2} and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm{sup 2} and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress.

  5. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment

    International Nuclear Information System (INIS)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan Nasef; Mohamed, Mahmoud

    2014-01-01

    A vapor-liquid equilibrium (VLE) study was conducted on ethanol/ethylacetate mixture as a preliminary step towards developing an ultrasonic-assisted distillation process for separating azeotropic mixtures. The influence of ultrasonic intensity and frequency on the vapor-liquid equilibrium (VLE) of the mixture was examined using a combination of four ultrasonic intensities in range of 100-400W/cm 2 and three frequencies ranging from 25-68 kHz. The sonication was found to have significant impacts on the VLE of the system as it alters both the relative volatility and azeotrope point, with preference to lower frequency operation. A maximum relative volatility of 2.32 was obtained at an intensity of 300 W/cm 2 and a frequency of 25 kHz coupled with complete elimination of ethanol-ethyl acetate azeotrope. Results from this work were also congruent with some experimental and theoretical works presented in the literature. These findings set a good beginning towards the development of an ultrasonic assisted distillation that is currently in progress

  6. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  7. General Equilibrium Models: Improving the Microeconomics Classroom

    Science.gov (United States)

    Nicholson, Walter; Westhoff, Frank

    2009-01-01

    General equilibrium models now play important roles in many fields of economics including tax policy, environmental regulation, international trade, and economic development. The intermediate microeconomics classroom has not kept pace with these trends, however. Microeconomics textbooks primarily focus on the insights that can be drawn from the…

  8. Consistency of the MLE under mixture models

    OpenAIRE

    Chen, Jiahua

    2016-01-01

    The large-sample properties of likelihood-based statistical inference under mixture models have received much attention from statisticians. Although the consistency of the nonparametric MLE is regarded as a standard conclusion, many researchers ignore the precise conditions required on the mixture model. An incorrect claim of consistency can lead to false conclusions even if the mixture model under investigation seems well behaved. Under a finite normal mixture model, for instance, the consis...

  9. Sound speed models for a noncondensible gas-steam-water mixture

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1984-01-01

    An analytical expression is derived for the homogeneous equilibrium speed of sound in a mixture of noncondensible gas, steam, and water. The expression is based on the Gibbs free energy interphase equilibrium condition for a Gibbs-Dalton mixture in contact with a pure liquid phase. Several simplified models are discussed including the homogeneous frozen model. These idealized models can be used as a reference for data comparison and also serve as a basis for empirically corrected nonhomogeneous and nonequilibrium models

  10. NON-EQUILIBRIUM MOLECULAR DYNAMICS USED TO OBTAIN SORET COEFFICIENTS OF BINARY HYDROCARBON MIXTURES

    Directory of Open Access Journals (Sweden)

    F. A. Furtado

    2015-09-01

    Full Text Available AbstractThe Boundary Driven Non-Equilibrium Molecular Dynamics (BD-NEMD method is employed to evaluate Soret coefficients of binary mixtures. Using a n-decane/n-pentane mixture at 298 K, we study several parameters and conditions of the simulation procedure such as system size, time step size, frequency of perturbation, and the undesired warming up of the system during the simulation. The Soret coefficients obtained here deviated around 20% when comparing with experimental data and with simulated results from the literature. We showed that fluctuations in composition gradients and the consequent deviations of the Soret coefficient may be due to characteristic fluctuations of the composition gradient. Best results were obtained with the smallest time steps and without using a thermostat, which shows that there is room for improvement and/or development of new BD-NEMD algorithms.

  11. Thermochemical equilibrium modelling of a gasifying process

    International Nuclear Information System (INIS)

    Melgar, Andres; Perez, Juan F.; Laget, Hannes; Horillo, Alfonso

    2007-01-01

    This article discusses a mathematical model for the thermochemical processes in a downdraft biomass gasifier. The model combines the chemical equilibrium and the thermodynamic equilibrium of the global reaction, predicting the final composition of the producer gas as well as its reaction temperature. Once the composition of the producer gas is obtained, a range of parameters can be derived, such as the cold gas efficiency of the gasifier, the amount of dissociated water in the process and the heating value and engine fuel quality of the gas. The model has been validated experimentally. This work includes a parametric study of the influence of the gasifying relative fuel/air ratio and the moisture content of the biomass on the characteristics of the process and the producer gas composition. The model helps to predict the behaviour of different biomass types and is a useful tool for optimizing the design and operation of downdraft biomass gasifiers

  12. An Equilibrium Model of User Generated Content

    OpenAIRE

    Dae-Yong Ahn; Jason A. Duan; Carl F. Mela

    2011-01-01

    This paper considers the joint creation and consumption of content on user generated content platforms (e.g., reviews or articles, chat, videos, etc.). On these platforms, users' utilities depend upon the participation of others; hence, users' expectations regarding the participation of others on the site becomes germane to their own involvement levels. Yet these beliefs are often assumed to be fixed. Accordingly, we develop a dynamic rational expectations equilibrium model of joint consumpti...

  13. Application of a Crossover Equation of State to Describe Phase Equilibrium and Critical Properties of n-Alkanes and Methane/n-Alkane Mixtures

    DEFF Research Database (Denmark)

    P. C. M. Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios M.

    2018-01-01

    and the asymptotic one near the critical point. Although several crossover EOSs have been developed in the last decades their use in modeling industrial processes is rather limited. In this work, we use the crossover Soave–Redlich–Kwong (CSRK) to describe phase equilibrium and critical properties of pure n......-alkanes and methane/n-alkane binary mixtures and compare the results to two other modeling approaches of the SRK EOS. In the case of the pure fluids, CSRK gives an accurate overall description of the phase equilibrium and critical properties; nevertheless, a minor increase in the deviation of the saturation pressure...

  14. Gas-liquid equilibrium in mixtures of methane + m-xylene, and methane + m-cresol

    Energy Technology Data Exchange (ETDEWEB)

    Simnick, J J; Sebastian, H M; Lin, H M; Chao, K C

    1979-01-01

    Compositions of saturated equilibrium liquid and vapor phases as determined in a flow apparatus for methane + m-xylene mixtures at 370/sup 0/, 450/sup 0/, 520/sup 0/, and 600/sup 0/F (190/sup 0/, 230/sup 0/, 270/sup 0/, and 310/sup 0/C) and up to 200 atm, and for methane + m-cresol at 370/sup 0/, 520/sup 0/, 660/sup 0/, and 730/sup 0/F (190/sup 0/, 270/sup 0/, 350/sup 0/, and 390/sup 0/C) and up to 250 atm. Compared with published data on its solubility in benzene, methane appears to be more soluble in m-xylene at similar conditions but substantially less soluble in m-cresol. This difference indicates that the functional groups CH/sub 3/ and OH play different roles in determining the solubility of methane.

  15. Mixture Modeling: Applications in Educational Psychology

    Science.gov (United States)

    Harring, Jeffrey R.; Hodis, Flaviu A.

    2016-01-01

    Model-based clustering methods, commonly referred to as finite mixture modeling, have been applied to a wide variety of cross-sectional and longitudinal data to account for heterogeneity in population characteristics. In this article, we elucidate 2 such approaches: growth mixture modeling and latent profile analysis. Both techniques are…

  16. Measuring productivity differences in equilibrium search models

    DEFF Research Database (Denmark)

    Lanot, Gauthier; Neumann, George R.

    1996-01-01

    Equilibrium search models require unobserved heterogeneity in productivity to fit observed wage distribution data, but provide no guidance about the location parameter of the heterogeneity. In this paper we show that the location of the productivity heterogeneity implies a mode in a kernel density...... estimate of the wage distribution. The number of such modes and their location are identified using bump hunting techniques due to Silverman (1981). These techniques are applied to Danish panel data on workers and firms. These estimates are used to assess the importance of employer wage policy....

  17. Adiabatic equilibrium models for direct containment heating

    International Nuclear Information System (INIS)

    Pilch, M.; Allen, M.D.

    1991-01-01

    Probabilistic risk assessment (PRA) studies are being extended to include a wider spectrum of reactor plants than was considered in NUREG-1150. There is a need for simple direct containment heating (DCH) models that can be used for screening studies aimed at identifying potentially significant contributors to overall risk in individual nuclear power plants. This paper presents two adiabatic equilibrium models suitable for the task. The first, a single-cell model, places a true upper bound on DCH loads. This upper bound, however, often far exceeds reasonable expectations of containment loads based on CONTAIN calculations and experiment observations. In this paper, a two cell model is developed that captures the major mitigating feature of containment compartmentalization, thus providing more reasonable estimates of the containment load

  18. Equilibrium statistical mechanics of lattice models

    CERN Document Server

    Lavis, David A

    2015-01-01

    Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg—Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi—Hijmans—De Boer hierarchy of approximations. In Part III the use of alge...

  19. Models for the computation of opacity of mixtures

    International Nuclear Information System (INIS)

    Klapisch, Marcel; Busquet, Michel

    2013-01-01

    We compare four models for the partial densities of the components of mixtures. These models yield different opacities as shown on polystyrene, acrylic and polyimide in local thermodynamical equilibrium (LTE). Two of these models, the ‘whole volume partial pressure’ model (M1) and its modification (M2) are not thermodynamically consistent (TC). The other two models are TC and minimize free energy. M3, the ‘partial volume equal pressure’ model, uses equality of chemical potential. M4 uses commonality of free electron density. The latter two give essentially identical results in LTE, but M4’s convergence is slower. M4 is easily generalized to non-LTE conditions. Non-LTE effects are shown by the variation of the Planck mean opacity of the mixtures with temperature and density. (paper)

  20. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  1. Equilibrium Price Dispersion in a Matching Model with Divisible Money

    NARCIS (Netherlands)

    Kamiya, K.; Sato, T.

    2002-01-01

    The main purpose of this paper is to show that, for any given parameter values, an equilibrium with dispersed prices (two-price equilibrium) exists in a simple matching model with divisible money presented by Green and Zhou (1998).We also show that our two-price equilibrium is unique in certain

  2. Mathematical models and equilibrium in irreversible microeconomics

    Directory of Open Access Journals (Sweden)

    Anatoly M. Tsirlin

    2010-07-01

    Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  3. On modeling of structured multiphase mixtures

    International Nuclear Information System (INIS)

    Dobran, F.

    1987-01-01

    The usual modeling of multiphase mixtures involves a set of conservation and balance equations of mass, momentum, energy and entropy (the basic set) constructed by an averaging procedure or postulated. The averaged models are constructed by averaging, over space or time segments, the local macroscopic field equations of each phase, whereas the postulated models are usually motivated by the single phase multicomponent mixture models. In both situations, the resulting equations yield superimposed continua models and are closed by the constitutive equations which place restrictions on the possible material response during the motion and phase change. In modeling the structured multiphase mixtures, the modeling of intrinsic motion of grains or particles is accomplished by adjoining to the basic set of field equations the additional balance equations, thereby placing restrictions on the motion of phases only within the imposed extrinsic and intrinsic sources. The use of the additional balance equations has been primarily advocated in the postulatory theories of multiphase mixtures and are usually derived through very special assumptions of the material deformation. Nevertheless, the resulting mixture models can predict a wide variety of complex phenomena such as the Mohr-Coulomb yield criterion in granular media, Rayleigh bubble equation, wave dispersion and dilatancy. Fundamental to the construction of structured models of multiphase mixtures are the problems pertaining to the existence and number of additional balance equations to model the structural characteristics of a mixture. Utilizing a volume averaging procedure it is possible not only to derive the basic set of field equation discussed above, but also a very general set of additional balance equations for modeling of structural properties of the mixture

  4. Model structure selection in convolutive mixtures

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai

    2006-01-01

    The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious represent......The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious...... representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: ’Are we actually dealing with a convolutive mixture?’. We try to answer this question for EEG data....

  5. Mixture

    Directory of Open Access Journals (Sweden)

    Silva-Aguilar Martín

    2011-01-01

    Full Text Available Metals are ubiquitous pollutants present as mixtures. In particular, mixture of arsenic-cadmium-lead is among the leading toxic agents detected in the environment. These metals have carcinogenic and cell-transforming potential. In this study, we used a two step cell transformation model, to determine the role of oxidative stress in transformation induced by a mixture of arsenic-cadmium-lead. Oxidative damage and antioxidant response were determined. Metal mixture treatment induces the increase of damage markers and the antioxidant response. Loss of cell viability and increased transforming potential were observed during the promotion phase. This finding correlated significantly with generation of reactive oxygen species. Cotreatment with N-acetyl-cysteine induces effect on the transforming capacity; while a diminution was found in initiation, in promotion phase a total block of the transforming capacity was observed. Our results suggest that oxidative stress generated by metal mixture plays an important role only in promotion phase promoting transforming capacity.

  6. Probabilistic mixture-based image modelling

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Havlíček, Vojtěch; Grim, Jiří

    2011-01-01

    Roč. 47, č. 3 (2011), s. 482-500 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593 Grant - others:CESNET(CZ) 387/2010; GA MŠk(CZ) 2C06019; GA ČR(CZ) GA103/11/0335 Institutional research plan: CEZ:AV0Z10750506 Keywords : BTF texture modelling * discrete distribution mixtures * Bernoulli mixture * Gaussian mixture * multi-spectral texture modelling Subject RIV: BD - Theory of Information Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/RO/haindl-0360244.pdf

  7. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units.

    Science.gov (United States)

    Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp

    2013-07-02

    A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.

  8. Modeling text with generalizable Gaussian mixtures

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Sigurdsson, Sigurdur; Kolenda, Thomas

    2000-01-01

    We apply and discuss generalizable Gaussian mixture (GGM) models for text mining. The model automatically adapts model complexity for a given text representation. We show that the generalizability of these models depends on the dimensionality of the representation and the sample size. We discuss...

  9. The phase behavior of a hard sphere chain model of a binary n-alkane mixture

    International Nuclear Information System (INIS)

    Malanoski, A. P.; Monson, P. A.

    2000-01-01

    Monte Carlo computer simulations have been used to study the solid and fluid phase properties as well as phase equilibrium in a flexible, united atom, hard sphere chain model of n-heptane/n-octane mixtures. We describe a methodology for calculating the chemical potentials for the components in the mixture based on a technique used previously for atomic mixtures. The mixture was found to conform accurately to ideal solution behavior in the fluid phase. However, much greater nonidealities were seen in the solid phase. Phase equilibrium calculations indicate a phase diagram with solid-fluid phase equilibrium and a eutectic point. The components are only miscible in the solid phase for dilute solutions of the shorter chains in the longer chains. (c) 2000 American Institute of Physics

  10. Monotonous and oscillation instability of mechanical equilibrium of isothermal three-components mixture with zero-gradient density

    International Nuclear Information System (INIS)

    Zhavrin, Yu.I.; Kosov, V.N.; Kul'zhanov, D.U.; Karataev, K.K.

    2000-01-01

    Presence of two types of instabilities of mechanical equilibrium of a mixture experimentally is shown at an isothermal diffusion of multicomponent system with zero gradient of density/ Theoretically is proved, that partial Rayleigh numbers R 1 , R 2 having different signs, there are two areas with monotonous (R 1 2 < by 0) instability. The experimental data confirm presence of these areas and satisfactory are described by the represented theory. (author)

  11. Approach to chemical equilibrium in thermal models

    International Nuclear Information System (INIS)

    Boal, D.H.

    1984-01-01

    The experimentally measured (μ - , charged particle)/(μ - ,n) and (p,n/p,p') ratios for the emission of energetic nucleons are used to estimate the time evolution of a system of secondary nucleons produced in a direct interaction of a projectile or captured muon. The values of these ratios indicate that chemical equilibrium is not achieved among the secondary nucleons in noncomposite induced reactions, and this restricts the time scale for the emission of energetic nucleons to be about 0.7 x 10 -23 sec. It is shown that the reason why thermal equilibrium can be reached so rapidly for a particular nucleon species is that the sum of the particle spectra produced in multiple direct reactions looks surprisingly thermal. The rate equations used to estimate the reaction times for muon and nucleon induced reactions are then applied to heavy ion collisions, and it is shown that chemical equilibrium can be reached more rapidly, as one would expect

  12. Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)

    2013-07-01

    Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.

  13. Hydrogenic ionization model for mixtures in non-LTE plasmas

    International Nuclear Information System (INIS)

    Djaoui, A.

    1999-01-01

    The Hydrogenic Ionization Model for Mixtures (HIMM) is a non-Local Thermodynamic Equilibrium (non-LTE), time-dependent ionization model for laser-produced plasmas containing mixtures of elements (species). In this version, both collisional and radiative rates are taken into account. An ionization distribution for each species which is consistent with the ambient electron density is obtained by use of an iterative procedure in a single calculation for all species. Energy levels for each shell having a given principal quantum number and for each ion stage of each species in the mixture are calculated using screening constants. Steady-state non-LTE as well as LTE solutions are also provided. The non-LTE rate equations converge to the LTE solution at sufficiently high densities or as the radiation temperature approaches the electron temperature. The model is particularly useful at low temperatures where convergence problems are usually encountered in our previous models. We apply our model to typical situation in x-ray laser research, laser-produced plasmas and inertial confinement fusion. Our results compare well with previously published results for a selenium plasma. (author)

  14. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: Linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units

    DEFF Research Database (Denmark)

    Schmidt, Stine Nørgaard; Holmstrup, Martin; Smith, Kilian E. C.

    2013-01-01

    treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑Clipid eq.), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments...... could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LClipid eq...

  15. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    2002-01-01

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of non-linear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  16. Parameter Estimation for a Computable General Equilibrium Model

    DEFF Research Database (Denmark)

    Arndt, Channing; Robinson, Sherman; Tarp, Finn

    We introduce a maximum entropy approach to parameter estimation for computable general equilibrium (CGE) models. The approach applies information theory to estimating a system of nonlinear simultaneous equations. It has a number of advantages. First, it imposes all general equilibrium constraints...

  17. The DART general equilibrium model: A technical description

    OpenAIRE

    Springer, Katrin

    1998-01-01

    This paper provides a technical description of the Dynamic Applied Regional Trade (DART) General Equilibrium Model. The DART model is a recursive dynamic, multi-region, multi-sector computable general equilibrium model. All regions are fully specified and linked by bilateral trade flows. The DART model can be used to project economic activities, energy use and trade flows for each of the specified regions to simulate various trade policy as well as environmental policy scenarios, and to analy...

  18. A strictly hyperbolic equilibrium phase transition model

    International Nuclear Information System (INIS)

    Allaire, G; Faccanoni, G; Kokh, S.

    2007-01-01

    This Note is concerned with the strict hyperbolicity of the compressible Euler equations equipped with an equation of state that describes the thermodynamical equilibrium between the liquid phase and the vapor phase of a fluid. The proof is valid for a very wide class of fluids. The argument only relies on smoothness assumptions and on the classical thermodynamical stability assumptions, that requires a definite negative Hessian matrix for each phase entropy as a function of the specific volume and internal energy. (authors)

  19. Phase Equilibrium Calculations for Multi-Component Polar Fluid Mixtures with tPC-PSAFT

    DEFF Research Database (Denmark)

    Karakatsani, Eirini; Economou, Ioannis

    2007-01-01

    The truncated Perturbed-Chain Polar Statistical Associating Fluid Theory (tPC-PSAFT) is applied to a number of different mixtures, including binary, ternary and quaternary mixtures of components that differ substantially in terms of intermolecular interactions and molecular size. In contrast to m...

  20. Distribution of trichloroethylene and selected aliphatic and aromatic hydrocarbons between ''weathered'' and ''unweathered'' fuel mixtures and groundwater: Equilibrium and kinetic considerations

    International Nuclear Information System (INIS)

    Doucette, W.J.; Dupont, R.R.

    1995-01-01

    The distribution of trichloroethylene and several aliphatic and aromatic fuel components between 46 weathered and 11 unweathered fuel mixtures and groundwater was investigated using a slow stirring method. The weathered fuel mixtures were obtained from several contaminated field sites. Both unlabeled and 14C-labeled test compounds were used in the distribution experiments. Analyses of the test compound concentrations over time was performed by gas chromatograph or liquid scintillation counting. The time required to reach equilibrium varied from about 24 to 72 hours. Generally, the greater the hydrophobicity of the test compounds the longer time that was required to reach equilibrium. It was also observed that the fuel/water distribution coefficients were generally larger for the weathered fuels than those measured for the unweathered fuels, in some cases by a factor of 100. The weathered fuel mixtures obtained from the field site were depleted of the more water soluble compounds over time and became significantly more enriched in long chain aliphatic hydrocarbons. The ability of several models to describe the observed distribution behavior was examined

  1. Vapor-liquid equilibrium prediction with pseudo-cubic equation of state for binary mixtures containing hydrogen, helium, or neon

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Tanaka, H. (Nihon Univ.,Fukushima, (Japan). Faculty of Enineering)

    1990-03-01

    As an equation of state of vapor-liquid equilibrium, an original pseudo-cubic equation of state was previously proposed by the authors of this report and its study is continued. In the present study, new effective critical values of hydrogen, helium and neon were determined empirically from vapor-liquid equilibrium data of literature values against their critical temperatures, critical pressures and critical volumes. The vapor-liquid equilibrium relations of binary system quantum gas mixtures were predicted combining the conventinal pseudo-cubic equation of state and the new effective critical values, and without using binary heteromolecular interaction parameter. The predicted values of hydrogen-ethylene, helium-propane and neon-oxygen systems were compared with literature values. As a result, it was indicated that the vapor-liquid relations of binary system mixtures containing hydrogen, helium and neon can be predicted with favorable accuracy combining the effective critical values and the three parameter pseudo-cubic equation of state. 37 refs., 3 figs., 4 tabs.

  2. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    The formation of a solid phase in liquid mixtures with large paraffinic molecules is a phenomenon of interest in the petroleum, pharmaceutical, and biotechnological industries among onters. Efforts to model the solid-liquid equilibrium in these systems have been mainly empirical and with different...... degrees of success.An attempt to describe the equilibrium between the high temperature form of a paraffinic solid solution, commonly known as rotator phase, and the liquid phase is performed. The Chain Delta Lattice Parameter model (CDLP) is developed allowing a successful description of the solid-liquid...... equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...

  3. Optimal designs for linear mixture models

    NARCIS (Netherlands)

    Mendieta, E.J.; Linssen, H.N.; Doornbos, R.

    1975-01-01

    In a recent paper Snee and Marquardt [8] considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of this

  4. Optimal designs for linear mixture models

    NARCIS (Netherlands)

    Mendieta, E.J.; Linssen, H.N.; Doornbos, R.

    1975-01-01

    In a recent paper Snee and Marquardt (1974) considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of

  5. A simple and sensitive separation technique of 99Mo and 99mTc from their equilibrium mixture

    International Nuclear Information System (INIS)

    Swadesh Mandal; Ajoy Mandal

    2014-01-01

    The present work describes a simple and inexpensive separation method of 99 Mo from the equilibrium mixture. The liquid-liquid extraction technique has been employed to separate 99 Mo and 99m Tc using triisooctylamine (TIOA). The 99 Mo and 99m Tc were quantitatively separated out in 2 M TIOA with tripled distilled water; 99m Tc was back extracted from TIOA organic phase to aqueous phase by 0.1 M DTPA. The species information or indirect speciation of molybdenum was also established by the extraction profile of the molybdenum. (author)

  6. Dividend taxation in an infinite-horizon general equilibrium model

    OpenAIRE

    Pham, Ngoc-Sang

    2017-01-01

    We consider an infinite-horizon general equilibrium model with heterogeneous agents and financial market imperfections. We investigate the role of dividend taxation on economic growth and asset price. The optimal dividend taxation is also studied.

  7. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.; Villacorte, Loreen O.; Verliefde, Arne R. D.; Verberk, Jasper Q J C; Heijman, Bas G J; Amy, Gary L.; Van Dijk, Johannis C.

    2010-01-01

    to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon

  8. Termination of Dynamic Contracts in an Equilibrium Labor Market Model

    OpenAIRE

    Wang, Cheng

    2005-01-01

    I construct an equilibrium model of the labor market where workers and firms enter into dyamic contracts that can potentially last forever, but are subject to optimal terminations. Upon a termination, the firm hires a new worker, and the worker who is terminated receives a termination compensation from the firm and is then free to go back to the labor market to seek new employment opportunities and enter into new dynamic contracts. The model permits only two types of equilibrium terminations ...

  9. Insights: Simple Models for Teaching Equilibrium and Le Chatelier's Principle.

    Science.gov (United States)

    Russell, Joan M.

    1988-01-01

    Presents three models that have been effective for teaching chemical equilibrium and Le Chatelier's principle: (1) the liquid transfer model, (2) the fish model, and (3) the teeter-totter model. Explains each model and its relation to Le Chatelier's principle. (MVL)

  10. Experimental determination of the (vapor + liquid) equilibrium data of binary mixtures of fatty acids by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Matricarde Falleiro, Rafael M.; Meirelles, Antonio J.A.; Kraehenbuehl, Maria A.

    2010-01-01

    (Vapor + liquid) equilibrium (VLE) data for three binary mixtures of saturated fatty acids were obtained by differential scanning calorimetry (DSC). However, changes in the calorimeter pressure cell and the use of hermetic pans with holes (φ = 250 mm) in the lids were necessary to make it possible to apply this analytical technique, obtaining accurate results with smaller samples and shorter operational times. The systems evaluated in this study were: myristic acid (C 14:0 ) + palmitic acid (C 16:0 ), myristic acid (C 14:0 ) + stearic acid (C 18:0 ), and palmitic acid (C 16:0 ) + stearic acid (C 18:0 ), all measured at 50 mm Hg and with mole fractions between 0.0 and 1.0 in relation to the most volatile component of each diagram. The fugacity coefficients for the components in the vapor phase were calculated using the Hayden and O'Connell method [J.G. Hayden, J.P. O'Connell, Ind. Eng. Chem. Process Design Develop. 14 (3) (1975) 209-216] and the activity coefficients for the liquid phase were correlated with the traditional g E models (NRTL [H. Renon, J.M. Prausnitz, Aiche J. 14 (1968) 135-144], UNIQUAC [D.S. Abrams, J.M. Prausnitz, Aiche J. 21 (1975) 116-128], and Wilson [J.M. Prausnitz, N.L. Linchtenthaler, E.G. Azevedo, Molecular Thermodynamics of Fluid-phase Equilibria, River-Prentice Hall, Upper Saddle, 1999]). The sets of parameters were then compared in order to determine which adjustments best represented the VLE.

  11. A BGK model for reactive mixtures of polyatomic gases with continuous internal energy

    Science.gov (United States)

    Bisi, M.; Monaco, R.; Soares, A. J.

    2018-03-01

    In this paper we derive a BGK relaxation model for a mixture of polyatomic gases with a continuous structure of internal energies. The emphasis of the paper is on the case of a quaternary mixture undergoing a reversible chemical reaction of bimolecular type. For such a mixture we prove an H -theorem and characterize the equilibrium solutions with the related mass action law of chemical kinetics. Further, a Chapman-Enskog asymptotic analysis is performed in view of computing the first-order non-equilibrium corrections to the distribution functions and investigating the transport properties of the reactive mixture. The chemical reaction rate is explicitly derived at the first order and the balance equations for the constituent number densities are derived at the Euler level.

  12. Direct Importance Estimation with Gaussian Mixture Models

    Science.gov (United States)

    Yamada, Makoto; Sugiyama, Masashi

    The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.

  13. Phase Equilibrium Modeling for Shale Production Simulation

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando

    is obtained for hydrocarbon mixtures. Such behavior is mainly caused by compositional changes in the bulk phase due to selective adsorption of the heavier components onto the rock, while the change in bubble point pressure is mainly due to capillary pressure. This study has developed several robust......Production of oil and gas from shale reservoirs has gained more attention in the past few decades due to its increasing economic feasibility and the size of potential sources around the world. Shale reservoirs are characterized by a more tight nature in comparison with conventional reservoirs......, having pore size distributions ranging in the nanometer scale. Such a confined nature introduces new challenges in the fluid phase behavior. High capillary forces can be experienced between the liquid and vapor, and selective adsorption of components onto the rock becomes relevant. The impact...

  14. Text document classification based on mixture models

    Czech Academy of Sciences Publication Activity Database

    Novovičová, Jana; Malík, Antonín

    2004-01-01

    Roč. 40, č. 3 (2004), s. 293-304 ISSN 0023-5954 R&D Projects: GA AV ČR IAA2075302; GA ČR GA102/03/0049; GA AV ČR KSK1019101 Institutional research plan: CEZ:AV0Z1075907 Keywords : text classification * text categorization * multinomial mixture model Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.224, year: 2004

  15. Learning of Chemical Equilibrium through Modelling-Based Teaching

    Science.gov (United States)

    Maia, Poliana Flavia; Justi, Rosaria

    2009-01-01

    This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…

  16. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    Science.gov (United States)

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.

  17. Phase equilibrium engineering

    CERN Document Server

    Brignole, Esteban Alberto

    2013-01-01

    Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and

  18. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  19. A turbulence model in mixtures. First part: Statistical description of mixture

    International Nuclear Information System (INIS)

    Besnard, D.

    1987-03-01

    Classical theory of mixtures gives a model for molecular mixtures. This kind of model is based on a small gradient approximation for concentration, temperature, and pression. We present here a mixture model, allowing for large gradients in the flow. We also show that, with a local balance assumption between material diffusion and flow gradients evolution, we obtain a model similar to those mentioned above [fr

  20. Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models

    CERN Document Server

    Srinivasan, Seshasai

    2013-01-01

    Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.

  1. Phylogenies support out-of-equilibrium models of biodiversity.

    Science.gov (United States)

    Manceau, Marc; Lambert, Amaury; Morlon, Hélène

    2015-04-01

    There is a long tradition in ecology of studying models of biodiversity at equilibrium. These models, including the influential Neutral Theory of Biodiversity, have been successful at predicting major macroecological patterns, such as species abundance distributions. But they have failed to predict macroevolutionary patterns, such as those captured in phylogenetic trees. Here, we develop a model of biodiversity in which all individuals have identical demographic rates, metacommunity size is allowed to vary stochastically according to population dynamics, and speciation arises naturally from the accumulation of point mutations. We show that this model generates phylogenies matching those observed in nature if the metacommunity is out of equilibrium. We develop a likelihood inference framework that allows fitting our model to empirical phylogenies, and apply this framework to various mammalian families. Our results corroborate the hypothesis that biodiversity dynamics are out of equilibrium. © 2015 John Wiley & Sons Ltd/CNRS.

  2. Gaussian Mixture Model of Heart Rate Variability

    Science.gov (United States)

    Costa, Tommaso; Boccignone, Giuseppe; Ferraro, Mario

    2012-01-01

    Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters. PMID:22666386

  3. PAINeT: An object-oriented software package for simulations of flow-field, transport coefficients and flux terms in non-equilibrium gas mixture flows

    Science.gov (United States)

    Istomin, V. A.

    2018-05-01

    The software package Planet Atmosphere Investigator of Non-equilibrium Thermodynamics (PAINeT) has been devel-oped for studying the non-equilibrium effects associated with electronic excitation, chemical reactions and ionization. These studies are necessary for modeling process in shock tubes, in high enthalpy flows, in nozzles or jet engines, in combustion and explosion processes, in modern plasma-chemical and laser technologies. The advantages and possibilities of the package implementation are stated. Within the framework of the package implementation, based on kinetic theory approximations (one-temperature and state-to-state approaches), calculations are carried out, and the limits of applicability of a simplified description of shock-heated air flows and any other mixtures chosen by the user are given. Using kinetic theory algorithms, a numerical calculation of the heat fluxes and relaxation terms can be performed, which is necessary for further comparison of engineering simulation with experi-mental data. The influence of state-to-state distributions over electronic energy levels on the coefficients of thermal conductivity, diffusion, heat fluxes and diffusion velocities of the components of various gas mixtures behind shock waves is studied. Using the software package the accuracy of different approximations of the kinetic theory of gases is estimated. As an example state-resolved atomic ionized mixture of N/N+/O/O+/e- is considered. It is shown that state-resolved diffusion coefficients of neutral and ionized species vary from level to level. Comparing results of engineering applications with those given by PAINeT, recommendations for adequate models selection are proposed.

  4. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water

    Science.gov (United States)

    Wu, Xiongwu; Brooks, Bernard R.

    2015-01-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. PMID:26506245

  5. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water.

    Directory of Open Access Journals (Sweden)

    Xiongwu Wu

    2015-10-01

    Full Text Available Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.

  6. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water.

    Science.gov (United States)

    Wu, Xiongwu; Brooks, Bernard R

    2015-10-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.

  7. The rational expectations equilibrium inventory model theory and applications

    CERN Document Server

    1989-01-01

    This volume consists of six essays that develop and/or apply "rational expectations equilibrium inventory models" to study the time series behavior of production, sales, prices, and inventories at the industry level. By "rational expectations equilibrium inventory model" I mean the extension of the inventory model of Holt, Modigliani, Muth, and Simon (1960) to account for: (i) discounting, (ii) infinite horizon planning, (iii) observed and unobserved by the "econometrician" stochastic shocks in the production, factor adjustment, storage, and backorders management processes of firms, as well as in the demand they face for their products; and (iv) rational expectations. As is well known according to the Holt et al. model firms hold inventories in order to: (a) smooth production, (b) smooth production changes, and (c) avoid stockouts. Following the work of Zabel (1972), Maccini (1976), Reagan (1982), and Reagan and Weitzman (1982), Blinder (1982) laid the foundations of the rational expectations equilibrium inve...

  8. Non-equilibrium modelling of distillation

    NARCIS (Netherlands)

    Wesselingh, J.A

    This is a lecture on the way that we engineers model distillation. How we have done such modelling, how we would like to do it, and how far we have come at this moment. The ideas that I will be bringing forward are not my own. I owe them mostly to R. Krishna, R. Taylor, H. Kooijman and A. Gorak.

  9. Plasma equilibrium response modelling and validation on JT-60U

    International Nuclear Information System (INIS)

    Lister, J.B.; Sharma, A.; Limebeer, D.J.N.; Wainwright, J.P.; Nakamura, Y.; Yoshino, R.

    2002-01-01

    A systematic procedure to identify the plasma equilibrium response to the poloidal field coil voltages has been applied to the JT-60U tokamak. The required response was predicted with a high accuracy by a state-space model derived from first principles. The ab initio derivation of linearized plasma equilibrium response models is re-examined using an approach standard in analytical mechanics. A symmetric formulation is naturally obtained, removing a previous weakness in such models. RZIP, a rigid current distribution model, is re-derived using this approach and is compared with the new experimental plasma equilibrium response data obtained from Ohmic and neutral beam injection discharges in the JT-60U tokamak. In order to remove any bias from the comparison between modelled and measured plasma responses, the electromagnetic response model without plasma was first carefully tuned against experimental data, using a parametric approach, for which different cost functions for quantifying model agreement were explored. This approach additionally provides new indications of the accuracy to which various plasma parameters are known, and to the ordering of physical effects. Having taken these precautions when tuning the plasmaless model, an empirical estimate of the plasma self-inductance, the plasma resistance and its radial derivative could be established and compared with initial assumptions. Off-line tuning of the JT-60U controller is presented as an example of the improvements which might be obtained by using such a model of the plasma equilibrium response. (author)

  10. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  11. Fitting Equilibrium Search Models to Labour Market Data

    DEFF Research Database (Denmark)

    Bowlus, Audra J.; Kiefer, Nicholas M.; Neumann, George R.

    1996-01-01

    Specification and estimation of a Burdett-Mortensen type equilibrium search model is considered. The estimation is nonstandard. An estimation strategy asymptotically equivalent to maximum likelihood is proposed and applied. The results indicate that specifications with a small number of productiv...... of productivity types fit the data well compared to the homogeneous model....

  12. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured re- source. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  13. Numerical equilibrium analysis for structured consumer resource models

    NARCIS (Netherlands)

    de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.

    2010-01-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries

  14. Estimating Dynamic Equilibrium Models using Macro and Financial Data

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Posch, Olaf; van der Wel, Michel

    We show that including financial market data at daily frequency, along with macro series at standard lower frequency, facilitates statistical inference on structural parameters in dynamic equilibrium models. Our continuous-time formulation conveniently accounts for the difference in observation...... of the estimators and estimate the model using 20 years of U.S. macro and financial data....

  15. Simple models of equilibrium and nonequilibrium phenomena

    International Nuclear Information System (INIS)

    Lebowitz, J.L.

    1987-01-01

    This volume consists of two chapters of particular interest to researchers in the field of statistical mechanics. The first chapter is based on the premise that the best way to understand the qualitative properties that characterize many-body (i.e. macroscopic) systems is to study 'a number of the more significant model systems which, at least in principle are susceptible of complete analysis'. The second chapter deals exclusively with nonequilibrium phenomena. It reviews the theory of fluctuations in open systems to which they have made important contributions. Simple but interesting model examples are emphasised

  16. Chemical equilibrium models of interstellar gas clouds

    International Nuclear Information System (INIS)

    Freeman, A.

    1982-10-01

    This thesis contains work which helps towards our understanding of the chemical processes and astrophysical conditions in interstellar clouds, across the whole range of cloud types. The object of the exercise is to construct a mathematical model representing a large system of two-body chemical reactions in order to deduce astrophysical parameters and predict molecular abundances and chemical pathways. Comparison with observations shows that this type of model is valid but also indicates that our knowledge of some chemical reactions is incomplete. (author)

  17. MOLECULAR SIMULATION OF THE VAPOR-LIQUID EQUILIBRIUM OF N2-NC5 MIXTURE BY MONTE CARLO SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Florianne Castillo-Borja

    2013-12-01

    Full Text Available ABSTRACT This study used Monte Carlo simulations in the Gibbs ensemble to describe the liquid-vapor phase equilibrium of nitrogen-n-pentane system for three isotherms. The study analyzed a wide range of pressures ranging up to 25 MPa. The system was modeled using the intermolecular potential Galassi-Tildesley for nitrogen and SKS for n-pentane. Results were compared against experimental data. Far from the critical point region, analyzed models reproduce favorably shape of the curve of phase equilibrium and in the vicinity of the critical point, results tend to move away from the experimental behavior. Critical points were determined (pressure, density and composition for the three isotherms using an extrapolation method based on scaling laws, with satisfactory results. Calculated coexistence curves are adequate even if the models analyzed do not contain optimized binary interaction parameters .

  18. Electricity market equilibrium model with resource constraint and transmission congestion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F. [ABB, Inc., Santa Clara, CA 95050 (United States); Sheble, G.B. [Portland State University, Portland, OR 97207 (United States)

    2010-01-15

    Electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models and many efforts have been made on it before. However, most past research focused on a single-period, single-market model and did not address the fact that GENCOs hold a portfolio of assets in both electricity and fuel markets. This paper first identifies a proper SFE model, which can be applied to a multiple-period situation. Then the paper develops the equilibrium condition using discrete time optimal control considering fuel resource constraints. Finally, the paper discusses the issues of multiple equilibria caused by transmission network and shows that a transmission constrained equilibrium may exist, however the shadow price may not be zero. Additionally, an advantage from the proposed model for merchant transmission planning is discussed. (author)

  19. Electricity market equilibrium model with resource constraint and transmission congestion

    International Nuclear Information System (INIS)

    Gao, F.; Sheble, G.B.

    2010-01-01

    Electricity market equilibrium model not only helps Independent System Operator/Regulator analyze market performance and market power, but also provides Market Participants the ability to build optimal bidding strategies based on Microeconomics analysis. Supply Function Equilibrium (SFE) is attractive compared to traditional models and many efforts have been made on it before. However, most past research focused on a single-period, single-market model and did not address the fact that GENCOs hold a portfolio of assets in both electricity and fuel markets. This paper first identifies a proper SFE model, which can be applied to a multiple-period situation. Then the paper develops the equilibrium condition using discrete time optimal control considering fuel resource constraints. Finally, the paper discusses the issues of multiple equilibria caused by transmission network and shows that a transmission constrained equilibrium may exist, however the shadow price may not be zero. Additionally, an advantage from the proposed model for merchant transmission planning is discussed. (author)

  20. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    International Nuclear Information System (INIS)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-01-01

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  1. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  2. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  3. African wildlife and people : finding solutions where equilibrium models fail

    NARCIS (Netherlands)

    Poshiwa, X.

    2013-01-01

    Grazing systems, covering about half of the terrestrial surface, tend to be either equilibrial or non-equilibrial in nature, largely depending on the environmental stochasticity.The equilibrium model perspective stresses the importance of biotic feedbacks between herbivores and their resource,

  4. An applied general equilibrium model for Dutch agribusiness policy analysis

    NARCIS (Netherlands)

    Peerlings, J.

    1993-01-01

    The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of

  5. (Liquid + liquid) equilibrium at T = 298.15 K for ternary mixtures of alkane + aromatic compounds + imidazolium-based ionic liquids

    International Nuclear Information System (INIS)

    Domínguez, Irene; Requejo, Patricia F.; Canosa, José; Domínguez, Ángeles

    2014-01-01

    Highlights: • The LLE ternary phase diagrams with 2 imidazolium-based ionic liquids were measured. • The LLE data were experimental determined at T = 298.15 K and p = 1 atm. • Mixtures of (octane or nonane) and (benzene or toluene or ethylbenzene) were studied. • LLE experimental data were correlated with NRTL and UNIQUAC thermodynamic models. - Abstract: Ionic liquids, with their unique and tunable properties, can be an advantageous alternative as extractive solvents in separation processes involving systems containing aliphatic and aromatic hydrocarbons. In this work, (liquid + liquid) equilibrium (LLE) data for the ternary systems {nonane (1) + benzene (2) + 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMim][NTf 2 ] (3)}, {octane (1) + benzene (2) + 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf 2 ] (3)}, and {nonane (1) + aromatic compound (benzene or toluene or ethylbenzene) (2) + [PMim][NTf 2 ] (3)} were determined at T = 298.15 K and atmospheric pressure. Selectivity and solute distribution ratio, derived from the equilibrium data, were used to determine if this ionic liquid can be considered as a potential solvent for the separation of aromatic compounds (benzene, toluene, and ethylbenzene) from alkanes (octane and nonane). The experimental data were satisfactorily correlated with NRTL and UNIQUAC models

  6. Choking flow modeling with mechanical and thermal non-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, H.J.; Ishii, M.; Revankar, S.T. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2006-01-15

    The mechanistic model, which considers the mechanical and thermal non-equilibrium, is described for two-phase choking flow. The choking mass flux is obtained from the momentum equation with the definition of choking. The key parameter for the mechanical non-equilibrium is a slip ratio. The dependent parameters for the slip ratio are identified. In this research, the slip ratio which is defined in the drift flux model is used to identify the impact parameters on the slip ratio. Because the slip ratio in the drift flux model is related to the distribution parameter and drift velocity, the adequate correlations depending on the flow regime are introduced in this study. For the thermal non-equilibrium, the model is developed with bubble conduction time and Bernoulli choking model. In case of highly subcooled water compared to the inlet pressure, the Bernoulli choking model using the pressure undershoot is used because there is no bubble generation in the test section. When the phase change happens inside the test section, two-phase choking model with relaxation time calculates the choking mass flux. According to the comparison of model prediction with experimental data shows good agreement. The developed model shows good prediction in both low and high pressure ranges. (author)

  7. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  8. Mixture of Regression Models with Single-Index

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2016-01-01

    In this article, we propose a class of semiparametric mixture regression models with single-index. We argue that many recently proposed semiparametric/nonparametric mixture regression models can be considered special cases of the proposed model. However, unlike existing semiparametric mixture regression models, the new pro- posed model can easily incorporate multivariate predictors into the nonparametric components. Backfitting estimates and the corresponding algorithms have been proposed for...

  9. Maximum likelihood estimation of finite mixture model for economic data

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-06-01

    Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.

  10. A dissipative model of plasma equilibrium in toroidal systems

    International Nuclear Information System (INIS)

    Wobig, H.

    1985-10-01

    In order to describe a steady-state plasma equilibrium in tokamaks, stellarators or other non-axisymmetric configurations, the model of ideal MHD with isotropic plasma pressure is widely used. The ideal MHD - model of a toroidal plasma equilibrium requires the existence of closed magnetic surfaces. Several numerical codes have been developed in the past to solve the three-dimensional equilibrium problem, but so far no existence theorem for a solution has been proved. Another difficulty is the formation of magnetic islands and field line ergodisation, which can only be described in terms of ideal MHD if the plasma pressure is constant in the ergodic region. In order to describe the formation of magnetic islands and ergodisation of surfaces properly, additional dissipative terms have to be incorporated to allow decoupling of the plasma and magnetic field. In a collisional plasma viscosity and inelastic collisions introduce such dissipative processes. In the model used a friction term proportional to the velocity v vector of the plasma is included. Such a term originates from charge exchange interaction of the plasma with a nuetral background. With these modifications, the equilibrium problem reduces to a set of quasilinear elliptic equations for the pressure, the electric potential and the magnetic field. The paper deals with an existence theorem based on the Fixed - Point method of Schauder. It can be shown that a self-consistent and unique equilibrium exists if the friction term is large and the plasma pressure is sufficiently low. The essential role of the dissipative terms is to remove the singularities of the ideal MHD model on rational magnetic surfaces. The problem has a strong similarity to Benard cell convection, and consequently similar behaviour such as bifurcation and exchange of stability are expected. (orig./GG)

  11. Knowledge Management through the Equilibrium Pattern Model for Learning

    Science.gov (United States)

    Sarirete, Akila; Noble, Elizabeth; Chikh, Azeddine

    Contemporary students are characterized by having very applied learning styles and methods of acquiring knowledge. This behavior is consistent with the constructivist models where students are co-partners in the learning process. In the present work the authors developed a new model of learning based on the constructivist theory coupled with the cognitive development theory of Piaget. The model considers the level of learning based on several stages and the move from one stage to another requires learners' challenge. At each time a new concept is introduced creates a disequilibrium that needs to be worked out to return back to its equilibrium stage. This process of "disequilibrium/equilibrium" has been analyzed and validated using a course in computer networking as part of Cisco Networking Academy Program at Effat College, a women college in Saudi Arabia. The model provides a theoretical foundation for teaching especially in a complex knowledge domain such as engineering and can be used in a knowledge economy.

  12. High pressure phase equilibrium of ternary and multicomponent alkane mixtures in the temperature range from (283–473) K

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Liu, Yiqun; Wibowo, Ahmad A.

    2017-01-01

    /n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane as model reservoir fluids and measured their phase equilibrium in the temperature range from (283–473) K by using a variable volume cell with full visibility. Their phase envelopes and liquid volume fractions below the saturation pressure have been measured. Four equations of state, including Soave......-Redlich-Kwong (SRK), Peng-Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR), have been used to predict phase equilibrium of the measured systems. PR and PC-SAFT give better results than others and Soave-BWR gives poor phase envelope predictions...

  13. Laminar or turbulent boundary-layer flows of perfect gases or reacting gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Lewis, C. H.

    1971-01-01

    Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.

  14. Numerical solution of dynamic equilibrium models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    2013-01-01

    We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....

  15. Nonparametric Mixture Models for Supervised Image Parcellation.

    Science.gov (United States)

    Sabuncu, Mert R; Yeo, B T Thomas; Van Leemput, Koen; Fischl, Bruce; Golland, Polina

    2009-09-01

    We present a nonparametric, probabilistic mixture model for the supervised parcellation of images. The proposed model yields segmentation algorithms conceptually similar to the recently developed label fusion methods, which register a new image with each training image separately. Segmentation is achieved via the fusion of transferred manual labels. We show that in our framework various settings of a model parameter yield algorithms that use image intensity information differently in determining the weight of a training subject during fusion. One particular setting computes a single, global weight per training subject, whereas another setting uses locally varying weights when fusing the training data. The proposed nonparametric parcellation approach capitalizes on recently developed fast and robust pairwise image alignment tools. The use of multiple registrations allows the algorithm to be robust to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with expert manual labels for the white matter, cerebral cortex, ventricles and subcortical structures. The results demonstrate that the proposed nonparametric segmentation framework yields significantly better segmentation than state-of-the-art algorithms.

  16. Stochastic radiative transfer model for mixture of discontinuous vegetation canopies

    International Nuclear Information System (INIS)

    Shabanov, Nikolay V.; Huang, D.; Knjazikhin, Y.; Dickinson, R.E.; Myneni, Ranga B.

    2007-01-01

    Modeling of the radiation regime of a mixture of vegetation species is a fundamental problem of the Earth's land remote sensing and climate applications. The major existing approaches, including the linear mixture model and the turbid medium (TM) mixture radiative transfer model, provide only an approximate solution to this problem. In this study, we developed the stochastic mixture radiative transfer (SMRT) model, a mathematically exact tool to evaluate radiation regime in a natural canopy with spatially varying optical properties, that is, canopy, which exhibits a structured mixture of vegetation species and gaps. The model solves for the radiation quantities, direct input to the remote sensing/climate applications: mean radiation fluxes over whole mixture and over individual species. The canopy structure is parameterized in the SMRT model in terms of two stochastic moments: the probability of finding species and the conditional pair-correlation of species. The second moment is responsible for the 3D radiation effects, namely, radiation streaming through gaps without interaction with vegetation and variation of the radiation fluxes between different species. We performed analytical and numerical analysis of the radiation effects, simulated with the SMRT model for the three cases of canopy structure: (a) non-ordered mixture of species and gaps (TM); (b) ordered mixture of species without gaps; and (c) ordered mixture of species with gaps. The analysis indicates that the variation of radiation fluxes between different species is proportional to the variation of species optical properties (leaf albedo, density of foliage, etc.) Gaps introduce significant disturbance to the radiation regime in the canopy as their optical properties constitute major contrast to those of any vegetation species. The SMRT model resolves deficiencies of the major existing mixture models: ignorance of species radiation coupling via multiple scattering of photons (the linear mixture model

  17. Hydrate Equilibrium Data for CO2+N-2 System in the Presence of Tetra-n-butylammonium Fluoride (TBAF) and Mixture of TBAF and Cyclopentane (CP)

    DEFF Research Database (Denmark)

    Tzirakis, Fragkiskos; Stringari, Paolo; Coquelet, Christophe

    2016-01-01

    Hydrates can be used for CO2 capture from flue gases (hydrate crystallization). In this work, hydrate equilibrium data were measured and compared with literature data. The isochoric method was used to determine the gas hydrate dissociation points. Different CO2+N2 gas mixtures were used...

  18. Gaussian random bridges and a geometric model for information equilibrium

    Science.gov (United States)

    Mengütürk, Levent Ali

    2018-03-01

    The paper introduces a class of conditioned stochastic processes that we call Gaussian random bridges (GRBs) and proves some of their properties. Due to the anticipative representation of any GRB as the sum of a random variable and a Gaussian (T , 0) -bridge, GRBs can model noisy information processes in partially observed systems. In this spirit, we propose an asset pricing model with respect to what we call information equilibrium in a market with multiple sources of information. The idea is to work on a topological manifold endowed with a metric that enables us to systematically determine an equilibrium point of a stochastic system that can be represented by multiple points on that manifold at each fixed time. In doing so, we formulate GRB-based information diversity over a Riemannian manifold and show that it is pinned to zero over the boundary determined by Dirac measures. We then define an influence factor that controls the dominance of an information source in determining the best estimate of a signal in the L2-sense. When there are two sources, this allows us to construct information equilibrium as a functional of a geodesic-valued stochastic process, which is driven by an equilibrium convergence rate representing the signal-to-noise ratio. This leads us to derive price dynamics under what can be considered as an equilibrium probability measure. We also provide a semimartingale representation of Markovian GRBs associated with Gaussian martingales and a non-anticipative representation of fractional Brownian random bridges that can incorporate degrees of information coupling in a given system via the Hurst exponent.

  19. mixtools: An R Package for Analyzing Mixture Models

    Directory of Open Access Journals (Sweden)

    Tatiana Benaglia

    2009-10-01

    Full Text Available The mixtools package for R provides a set of functions for analyzing a variety of finite mixture models. These functions include both traditional methods, such as EM algorithms for univariate and multivariate normal mixtures, and newer methods that reflect some recent research in finite mixture models. In the latter category, mixtools provides algorithms for estimating parameters in a wide range of different mixture-of-regression contexts, in multinomial mixtures such as those arising from discretizing continuous multivariate data, in nonparametric situations where the multivariate component densities are completely unspecified, and in semiparametric situations such as a univariate location mixture of symmetric but otherwise unspecified densities. Many of the algorithms of the mixtools package are EM algorithms or are based on EM-like ideas, so this article includes an overview of EM algorithms for finite mixture models.

  20. Non-Equilibrium Turbulence and Two-Equation Modeling

    Science.gov (United States)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  1. Effective equilibrium states in mixtures of active particles driven by colored noise

    Science.gov (United States)

    Wittmann, René; Brader, J. M.; Sharma, A.; Marconi, U. Marini Bettolo

    2018-01-01

    We consider the steady-state behavior of pairs of active particles having different persistence times and diffusivities. To this purpose we employ the active Ornstein-Uhlenbeck model, where the particles are driven by colored noises with exponential correlation functions whose intensities and correlation times vary from species to species. By extending Fox's theory to many components, we derive by functional calculus an approximate Fokker-Planck equation for the configurational distribution function of the system. After illustrating the predicted distribution in the solvable case of two particles interacting via a harmonic potential, we consider systems of particles repelling through inverse power-law potentials. We compare the analytic predictions to computer simulations for such soft-repulsive interactions in one dimension and show that at linear order in the persistence times the theory is satisfactory. This work provides the toolbox to qualitatively describe many-body phenomena, such as demixing and depletion, by means of effective pair potentials.

  2. Modeling the flow of activated H2 + CH4 mixture by deposition of diamond nanostructures

    Directory of Open Access Journals (Sweden)

    Plotnikov Mikhail

    2017-01-01

    Full Text Available Algorithm of the direct simulation Monte Carlo method for the flow of hydrogen and methane mixture in a cylindrical channel is developed. Heterogeneous reactions on tungsten channel surfaces are included into the model. Their effects on flows are analyzed. A one-dimensional approach based on the solution of equilibrium chemical kinetics equations is used to analyze gas-phase methane decomposition. The obtained results may be useful for optimization of gas-dynamic sources of activated gas diamond synthesis.

  3. Reduced chemical kinetic model of detonation combustion of one- and multi-fuel gaseous mixtures with air

    Science.gov (United States)

    Fomin, P. A.

    2018-03-01

    Two-step approximate models of chemical kinetics of detonation combustion of (i) one hydrocarbon fuel CnHm (for example, methane, propane, cyclohexane etc.) and (ii) multi-fuel gaseous mixtures (∑aiCniHmi) (for example, mixture of methane and propane, synthesis gas, benzene and kerosene) are presented for the first time. The models can be used for any stoichiometry, including fuel/fuels-rich mixtures, when reaction products contain molecules of carbon. Owing to the simplicity and high accuracy, the models can be used in multi-dimensional numerical calculations of detonation waves in corresponding gaseous mixtures. The models are in consistent with the second law of thermodynamics and Le Chatelier's principle. Constants of the models have a clear physical meaning. The models can be used for calculation thermodynamic parameters of the mixture in a state of chemical equilibrium.

  4. Non-Equilibrium Modeling of Inductively Coupled RF Plasmas

    Science.gov (United States)

    2015-01-01

    wall can be approximated with the expression for an infinite solenoid , B(r = R) = µ0NIc, where quan- tities N and Ic are the number of turns per unit...Modeling of non-equilibrium plasmas in an induc- tively coupled plasma facility. AIAA Paper 2014– 2235, 2014. 45th AIAA Plasmadynamics and Lasers ...1993. 24th Plas- madynamics and Laser Conference, Orlando, FL. [22] M. Capitelli, I. Armenise, D. Bruno, M. Caccia- tore, R. Celiberto, G. Colonna, O

  5. On a unified presentation of the non-equilibrium two-phase flow models

    International Nuclear Information System (INIS)

    Boure, J.A.

    1975-01-01

    If the various existing one-dimensional two-phase flow models are consistent, they must appear as particular cases of more general models. It is shown that such is the case if, and only if, the mathematical form of the laws of the transfers between the phases is sufficiently general. These transfer laws control the non-equilibrium phenomena. A convenient general model is a particular form of the two-fluid model. This particular form involves three equations and three dependent variables characterizing the mixture, and three equations and three dependent variables characterizing the differences between the phases (slip, thermal non-equilibriums). The mathematical expressions of the transfert terms present in the above equations involve first-order partial derivatives of the dependent variables. The other existing models may be deduced from the general model by making assumptions on the fluid evolution. Several examples are given. The resulting unified presentation of the existing model enables a comparison of the implicit assumptions made in these models on the transfer laws. It is therefore, a useful tool for the appraisal of the existing models and for the development of new models [fr

  6. Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

    Science.gov (United States)

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…

  7. Computing diffusivities from particle models out of equilibrium

    Science.gov (United States)

    Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia

    2018-04-01

    A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.

  8. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Cobbs Gary

    2012-08-01

    Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the

  9. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.

    Science.gov (United States)

    Cobbs, Gary

    2012-08-16

    Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of

  10. Recent tests of the equilibrium-point hypothesis (lambda model).

    Science.gov (United States)

    Feldman, A G; Ostry, D J; Levin, M F; Gribble, P L; Mitnitski, A B

    1998-07-01

    The lambda model of the equilibrium-point hypothesis (Feldman & Levin, 1995) is an approach to motor control which, like physics, is based on a logical system coordinating empirical data. The model has gone through an interesting period. On one hand, several nontrivial predictions of the model have been successfully verified in recent studies. In addition, the explanatory and predictive capacity of the model has been enhanced by its extension to multimuscle and multijoint systems. On the other hand, claims have recently appeared suggesting that the model should be abandoned. The present paper focuses on these claims and concludes that they are unfounded. Much of the experimental data that have been used to reject the model are actually consistent with it.

  11. Modelling of diffusion from equilibrium diffraction fluctuations in ordered phases

    International Nuclear Information System (INIS)

    Arapaki, E.; Argyrakis, P.; Tringides, M.C.

    2008-01-01

    Measurements of the collective diffusion coefficient D c at equilibrium are difficult because they are based on monitoring low amplitude concentration fluctuations generated spontaneously, that are difficult to measure experimentally. A new experimental method has been recently used to measure time-dependent correlation functions from the diffraction intensity fluctuations and was applied to measure thermal step fluctuations. The method has not been applied yet to measure superstructure intensity fluctuations in surface overlayers and to extract D c . With Monte Carlo simulations we study equilibrium fluctuations in Ising lattice gas models with nearest neighbor attractive and repulsive interactions. The extracted diffusion coefficients are compared to the ones obtained from equilibrium methods. The new results are in good agreement with the results from the other methods, i.e., D c decreases monotonically with coverage Θ for attractive interactions and increases monotonically with Θ for repulsive interactions. Even the absolute value of D c agrees well with the results obtained with the probe area method. These results confirm that this diffraction based method is a novel, reliable way to measure D c especially within the ordered region of the phase diagram when the superstructure spot has large intensity

  12. Modeling the effects of binary mixtures on survival in time.

    NARCIS (Netherlands)

    Baas, J.; van Houte, B.P.P.; van Gestel, C.A.M.; Kooijman, S.A.L.M.

    2007-01-01

    In general, effects of mixtures are difficult to describe, and most of the models in use are descriptive in nature and lack a strong mechanistic basis. The aim of this experiment was to develop a process-based model for the interpretation of mixture toxicity measurements, with effects of binary

  13. Chemical equilibrium relations used in the fireball model of relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Gupta, S.D.

    1978-01-01

    The fireball model of relativistic heavy-ion collision uses chemical equilibrium relations to predict cross sections for particle and composite productions. These relations are examined in a canonical ensemble model where chemical equilibrium is not explicitly invoked

  14. Experimental (liquid + liquid) equilibrium data for ternary and quaternary mixtures of fatty acid methyl and ethyl esters (FAME/FAEE) from soybean oil

    International Nuclear Information System (INIS)

    Beneti, Stéphani C.; Lanza, Marcelo; Mazutti, Marcio A.; Kunita, Marcos Hiroiuqui; Cardozo-Filho, Lúcio; Vladimir Oliveira, J.

    2014-01-01

    Highlights: • Innovative technique for quantification of compounds involved in the biodiesel production. • Easy and quick determination from NIR combined with multivariate calibration. • Reliable LLE correlation and predictions can be attained from the technique. -- Abstract: This work is aimed at providing an easy and quick determination of the biodiesel products using near infrared spectroscopy (NIR) by combination with the multivariate calibration in the analysis of (liquid + liquid) equilibrium (LLE) data for ternary and quaternary mixtures containing soybean fatty acid methyl (FAME) and ethyl (FAEE) esters, glycerol, ethanol, methanol and water, at various temperatures. The mass balance for the compositions obtained for each phase was carried out so as to demonstrate the reliability of the models generated by the multivariate calibration. Two distinct phases are observed, a glycerol-rich and the other ester-rich, while ethanol is dissolved among the phases hence reducing the partial mutual miscibility between glycerol and ester. Through (liquid + liquid) equilibrium (LLE) results, systems containing FAEE at T = 318.15 K and 303.15 K (calibration using data obtained at temperature of 318.15 K), a good agreement is verified among the values determined using conventional and NIR technique for alcoholic phase (AP) or aqueous phase (WP) and biodiesel phase (BP). Likewise in the systems containing FAME at 318.15 K, 303.15 K and 333.15 K (calibration using data obtained at temperature of 318.15 K), the LLE results were reproduced at the upper and lower temperature to the tests of the reproducibility of the models generated by the multivariate calibration

  15. Adsorption properties of biologically active derivatives of quaternary ammonium surfactants and their mixtures at aqueous/air interface. I. Equilibrium surface tension, surfactant aggregation and wettability.

    Science.gov (United States)

    Rojewska, Monika; Biadasz, Andrzej; Kotkowiak, Michał; Olejnik, Anna; Rychlik, Joanna; Dudkowiak, Alina; Prochaska, Krystyna

    2013-10-01

    The adsorption properties of surfactant mixtures containing two types of quaternary derivatives of lysosomotropic substances: alkyl N,N-dimethylalaninates methobromides and alkyl N,N-dimethylglycinates methobromides were studied. Quantitative and qualitative description of the adsorption process was carried out on the basis of experimentally obtained equilibrium surface tension isotherms. The results indicated that most of the systems studied revealed synergistic effect both in adsorption and wetting properties. In vitro studies on human cancer cells were undertaken and the data obtained showed that the mixtures suppressed the cancer cells' proliferation more effectively than individual components. Results of preliminary research on the interaction of catanionic mixtures with phospholipids suggested a possibility of a strong penetration of cell membranes by the mixtures investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Thermodynamic models for determination of solid–liquid equilibrium of the 6-benzyladenine in pure and binary organic solvents

    International Nuclear Information System (INIS)

    Li, Tao; Deng, Renlun; Wu, Gang; Gu, Pengfei; Hu, Yonghong; Yang, Wenge; Yu, Yemin; Zhang, Yuhao; Yang, Chen

    2017-01-01

    Highlights: • The solubility increased with increasing temperature. • Data were fitted using the modified Apelblat equation and other models in pure solvents. • Data were fitted using the modified Apelblat equation and other models in binary solvent mixture. - Abstract: Data on corresponding solid–liquid equilibrium of 6-benzyladenine in different solvents are essential for a preliminary study of industrial applications. In this paper, the solid–liquid equilibrium of 6-benzyladenine in methanol, ethanol, 1-butanol, acetone, acetonitrile, ethyl acetate, dimethyl formamide and tetrahydrofuran pure solvents and (dimethyl formamide + actone) mixture solvents was explored within the temperature range from (278.15 to 333.15) K under 0.1 MPa. For the temperature range investigated, the solubility of 6-benzyladenine in the solvents increased with increasing temperature. The solubility of 6-benzyladenine in dimethyl formamide is superior to other selected pure solvents. The modified Apelblat model, the Buchowski-Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model has more advantages than the other two models. The solubility results were fitted using a modified Apelblat equation, a variant of the combined nearly ideal binary solvent/Redich-Kister (CNIBS/R-K) model, Jouyban-Acree model and Ma model in (dimethyl formamide + acetone) binary solvent mixture. Computational results showed that the modified Apelblat model is superior to the other equations.

  17. Pharmaceutical industry and trade liberalization using computable general equilibrium model.

    Science.gov (United States)

    Barouni, M; Ghaderi, H; Banouei, Aa

    2012-01-01

    Computable general equilibrium models are known as a powerful instrument in economic analyses and widely have been used in order to evaluate trade liberalization effects. The purpose of this study was to provide the impacts of trade openness on pharmaceutical industry using CGE model. Using a computable general equilibrium model in this study, the effects of decrease in tariffs as a symbol of trade liberalization on key variables of Iranian pharmaceutical products were studied. Simulation was performed via two scenarios in this study. The first scenario was the effect of decrease in tariffs of pharmaceutical products as 10, 30, 50, and 100 on key drug variables, and the second was the effect of decrease in other sectors except pharmaceutical products on vital and economic variables of pharmaceutical products. The required data were obtained and the model parameters were calibrated according to the social accounting matrix of Iran in 2006. The results associated with simulation demonstrated that the first scenario has increased import, export, drug supply to markets and household consumption, while import, export, supply of product to market, and household consumption of pharmaceutical products would averagely decrease in the second scenario. Ultimately, society welfare would improve in all scenarios. We presents and synthesizes the CGE model which could be used to analyze trade liberalization policy issue in developing countries (like Iran), and thus provides information that policymakers can use to improve the pharmacy economics.

  18. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  19. A new inorganic atmospheric aerosol phase equilibrium model (UHAERO

    Directory of Open Access Journals (Sweden)

    N. R. Amundson

    2006-01-01

    Full Text Available A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model computes deliquescence behavior without any a priori specification of the relative humidities of deliquescence. Also included in the model is a formulation based on classical theory of nucleation kinetics that predicts crystallization behavior. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition.

  20. A general mixture model and its application to coastal sandbar migration simulation

    Science.gov (United States)

    Liang, Lixin; Yu, Xiping

    2017-04-01

    A mixture model for general description of sediment laden flows is developed and then applied to coastal sandbar migration simulation. Firstly the mixture model is derived based on the Eulerian-Eulerian approach of the complete two-phase flow theory. The basic equations of the model include the mass and momentum conservation equations for the water-sediment mixture and the continuity equation for sediment concentration. The turbulent motion of the mixture is formulated for the fluid and the particles respectively. A modified k-ɛ model is used to describe the fluid turbulence while an algebraic model is adopted for the particles. A general formulation for the relative velocity between the two phases in sediment laden flows, which is derived by manipulating the momentum equations of the enhanced two-phase flow model, is incorporated into the mixture model. A finite difference method based on SMAC scheme is utilized for numerical solutions. The model is validated by suspended sediment motion in steady open channel flows, both in equilibrium and non-equilibrium state, and in oscillatory flows as well. The computed sediment concentrations, horizontal velocity and turbulence kinetic energy of the mixture are all shown to be in good agreement with experimental data. The mixture model is then applied to the study of sediment suspension and sandbar migration in surf zones under a vertical 2D framework. The VOF method for the description of water-air free surface and topography reaction model is coupled. The bed load transport rate and suspended load entrainment rate are all decided by the sea bed shear stress, which is obtained from the boundary layer resolved mixture model. The simulation results indicated that, under small amplitude regular waves, erosion occurred on the sandbar slope against the wave propagation direction, while deposition dominated on the slope towards wave propagation, indicating an onshore migration tendency. The computation results also shows that

  1. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  2. Modelling interactions in grass-clover mixtures

    NARCIS (Netherlands)

    Nassiri Mahallati, M.

    1998-01-01

    The study described in this thesis focuses on a quantitative understanding of the complex interactions in binary mixtures of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) under cutting. The first part of the study describes the dynamics of growth, production

  3. Thermodynamic modeling of CO2 mixtures

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel

    Knowledge of the thermodynamic properties and phase equilibria of mixtures containing carbon dioxide (CO2) is important in several industrial processes such as enhanced oil recovery, carbon capture and storage, and supercritical extractions, where CO2 is used as a solvent. Despite this importance...

  4. Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    Science.gov (United States)

    Chamberlain, Robert G.

    2013-01-01

    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project

  5. A numerical model for boiling heat transfer coefficient of zeotropic mixtures

    Science.gov (United States)

    Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo

    2017-12-01

    Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.

  6. Equilibrium in a random viewer model of television broadcasting

    DEFF Research Database (Denmark)

    Hansen, Bodil Olai; Keiding, Hans

    2014-01-01

    The authors considered a model of commercial television market with advertising with probabilistic viewer choice of channel, where private broadcasters may coexist with a public television broadcaster. The broadcasters influence the probability of getting viewer attention through the amount...... number of channels. The authors derive properties of equilibrium in an oligopolistic market with private broadcasters and show that the number of firms has a negative effect on overall advertising and viewer satisfaction. If there is a public channel that also sells advertisements but does not maximize...... profits, this will have a positive effect on advertiser and viewer satisfaction....

  7. Model of opacity and emissivity of non-equilibrium plasma

    International Nuclear Information System (INIS)

    Politov V Y

    2008-01-01

    In this work the model describing absorption and emission properties of the non-equilibrium plasma is presented. It is based on the kinetics equations for populations of the ground, singly and doubly excited states of multi-charged ions. After solving these equations, the states populations together with the spectroscopic data, supplied in the special database for a lot ionization stages, are used for building the spectral distributions of plasma opacity and emissivity in STA approximation. Results of kinetics simulation are performed for such important X-ray converter as gold, which is investigated intensively in ICF-experiments

  8. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    Science.gov (United States)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  9. A Dirichlet process mixture model for brain MRI tissue classification.

    Science.gov (United States)

    Ferreira da Silva, Adelino R

    2007-04-01

    Accurate classification of magnetic resonance images according to tissue type or region of interest has become a critical requirement in diagnosis, treatment planning, and cognitive neuroscience. Several authors have shown that finite mixture models give excellent results in the automated segmentation of MR images of the human normal brain. However, performance and robustness of finite mixture models deteriorate when the models have to deal with a variety of anatomical structures. In this paper, we propose a nonparametric Bayesian model for tissue classification of MR images of the brain. The model, known as Dirichlet process mixture model, uses Dirichlet process priors to overcome the limitations of current parametric finite mixture models. To validate the accuracy and robustness of our method we present the results of experiments carried out on simulated MR brain scans, as well as on real MR image data. The results are compared with similar results from other well-known MRI segmentation methods.

  10. NHPP-Based Software Reliability Models Using Equilibrium Distribution

    Science.gov (United States)

    Xiao, Xiao; Okamura, Hiroyuki; Dohi, Tadashi

    Non-homogeneous Poisson processes (NHPPs) have gained much popularity in actual software testing phases to estimate the software reliability, the number of remaining faults in software and the software release timing. In this paper, we propose a new modeling approach for the NHPP-based software reliability models (SRMs) to describe the stochastic behavior of software fault-detection processes. The fundamental idea is to apply the equilibrium distribution to the fault-detection time distribution in NHPP-based modeling. We also develop efficient parameter estimation procedures for the proposed NHPP-based SRMs. Through numerical experiments, it can be concluded that the proposed NHPP-based SRMs outperform the existing ones in many data sets from the perspective of goodness-of-fit and prediction performance.

  11. Out-of-equilibrium dynamics in a Gaussian trap model

    International Nuclear Information System (INIS)

    Diezemann, Gregor

    2007-01-01

    The violations of the fluctuation-dissipation theorem are analysed for a trap model with a Gaussian density of states. In this model, the system reaches thermal equilibrium for long times after a quench to any finite temperature and therefore all ageing effect are of a transient nature. For not too long times after the quench it is found that the so-called fluctuation-dissipation ratio tends to a non-trivial limit, thus indicating the possibility for the definition of a timescale-dependent effective temperature. However, different definitions of the effective temperature yield distinct results. In particular, plots of the integrated response versus the correlation function strongly depend on the way they are constructed. Also the definition of effective temperatures in the frequency domain is not unique for the model considered. This may have some implications for the interpretation of results from computer simulations and experimental determinations of effective temperatures

  12. Equilibrium Analysis of a Yellow Fever Dynamical Model with Vaccination

    Directory of Open Access Journals (Sweden)

    Silvia Martorano Raimundo

    2015-01-01

    Full Text Available We propose an equilibrium analysis of a dynamical model of yellow fever transmission in the presence of a vaccine. The model considers both human and vector populations. We found thresholds parameters that affect the development of the disease and the infectious status of the human population in the presence of a vaccine whose protection may wane over time. In particular, we derived a threshold vaccination rate, above which the disease would be eradicated from the human population. We show that if the mortality rate of the mosquitoes is greater than a given threshold, then the disease is naturally (without intervention eradicated from the population. In contrast, if the mortality rate of the mosquitoes is less than that threshold, then the disease is eradicated from the populations only when the growing rate of humans is less than another threshold; otherwise, the disease is eradicated only if the reproduction number of the infection after vaccination is less than 1. When this reproduction number is greater than 1, the disease will be eradicated from the human population if the vaccination rate is greater than a given threshold; otherwise, the disease will establish itself among humans, reaching a stable endemic equilibrium. The analysis presented in this paper can be useful, both to the better understanding of the disease dynamics and also for the planning of vaccination strategies.

  13. Homogeneous non-equilibrium two-phase critical flow model

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Vuxuan, N.

    1987-01-01

    An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)

  14. Capillary Condensation of Binary and Ternary Mixtures of n-Pentane-Isopentane-CO2 in Nanopores: An Experimental Study on the Effects of Composition and Equilibrium.

    Science.gov (United States)

    Barsotti, Elizabeth; Saraji, Soheil; Tan, Sugata P; Piri, Mohammad

    2018-02-06

    Confinement in nanopores can significantly impact the chemical and physical behavior of fluids. While some quantitative understanding is available for how pure fluids behave in nanopores, there is little such insight for mixtures. This study aims to shed light on how nanoporosity impacts the phase behavior and composition of confined mixtures through comparison of the effects of static and dynamic equilibrium on experimentally measured isotherms and chromatographic analysis of the experimental fluids. To this end, a novel gravimetric apparatus is introduced and validated. Unlike apparatuses that have been previously used to study the confinement-induced phase behavior of fluids, this apparatus employs a gravimetric technique capable of discerning phase transitions in a wide variety of nanoporous media under both static and dynamic conditions. The apparatus was successfully validated against data in the literature for pure carbon dioxide and n-pentane. Then, isotherms were generated for binary mixtures of carbon dioxide and n-pentane using static and flow-through methods. Finally, two ternary mixtures of carbon dioxide, n-pentane, and isopentane were measured using the static method. While the equilibrium time was found important for determination of confined phase transitions, flow rate in the dynamic method was not found to affect the confined phase behavior. For all measurements, the results indicate qualitative transferability of the bulk phase behavior to the confined fluid.

  15. Chemical equilibrium model for high- Tc and heavy fermion superconductors: the density of states

    International Nuclear Information System (INIS)

    Kallio, A.; Hissa, J.; Hayrynen, T.; Braysy, V.; Sakkinen, T.

    1998-01-01

    The chemical equilibrium model is based on the idea of correlated electron pairs, which in singlet state can exist as quasimolecules in the superfluid and normal states of a superconductor. These preformed pairs are bosons which can undergo a Bose-Einstein condensation in analogy with the superfluidity of 4 He+ 3 He-mixture. The bosons (B ++ ) and the fermions (h + ) are in chemical equilibrium with respect to the reaction B ++ ↔ 2h + , at any temperature. The mean densities of bosons and fermions (quasiholes) n B (T) and n h (T) are determined from the thermodynamics of the equilibrium reaction in terms of a single function f(T). By thermodynamics the function f(T) is connected to equilibrium constant φ(T) by 1-f(T) = [1 + φ(T)] -1/2 . Using a simple power law, known to be valid near T = 0, for the chemical constant φ(T) α/t 2γ , t = T/T*, the mean density of quasiholes is given in closed form. This enables one to calculate the corresponding density of states (DOS) D(E) N s /N(0), by solving an integral equation. The NIS- tunneling conductivity near T = 0, given by D(E) compares well with the most recent experiments: D(E) ∼ E γ , for small E and a finite maximum of right size, corresponding to 'finite quasiparticle lifetime'. The corresponding SIS-tunneling conductivity is obtained from a simple convolution and is also in agreement with recent break junction experiments of Hancotte et al. The position of the maximum can be used to obtain the scaling temperature T*, which comes close to the one measured by Hall coefficient in the normal state. A simple explanation for the spingap effect in NMR is given. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  16. A new equilibrium trading model with asymmetric information

    Directory of Open Access Journals (Sweden)

    Lianzhang Bao

    2018-03-01

    Full Text Available Taking arbitrage opportunities into consideration in an incomplete market, dealers will pricebonds based on asymmetric information. The dealer with the best offering price wins the bid. The riskpremium in dealer’s offering price is primarily determined by the dealer’s add-on rate of change tothe term structure. To optimize the trading strategy, a new equilibrium trading model is introduced.Optimal sequential estimation scheme for detecting the risk premium due to private inforamtion isproposed based on historical prices, and the best bond pricing formula is given with the accordingoptimal trading strategy. Numerical examples are provided to illustrate the economic insights underthe certain stochastic term structure interest rate models.

  17. Equilibrium modeling of the TFCX poloidal field coil system

    International Nuclear Information System (INIS)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed

  18. An equiratio mixture model for non-additive components : a case study for aspartame/acesulfame-K mixtures

    NARCIS (Netherlands)

    Schifferstein, H.N.J.

    1996-01-01

    The Equiratio Mixture Model predicts the psychophysical function for an equiratio mixture type on the basis of the psychophysical functions for the unmixed components. The model reliably estimates the sweetness of mixtures of sugars and sugar-alchohols, but is unable to predict intensity for

  19. The negotiated equilibrium model of spinal cord function.

    Science.gov (United States)

    Wolpaw, Jonathan R

    2018-04-16

    The belief that the spinal cord is hardwired is no longer tenable. Like the rest of the CNS, the spinal cord changes during growth and aging, when new motor behaviours are acquired, and in response to trauma and disease. This paper describes a new model of spinal cord function that reconciles its recently appreciated plasticity with its long recognized reliability as the final common pathway for behaviour. According to this model, the substrate of each motor behaviour comprises brain and spinal plasticity: the plasticity in the brain induces and maintains the plasticity in the spinal cord. Each time a behaviour occurs, the spinal cord provides the brain with performance information that guides changes in the substrate of the behaviour. All the behaviours in the repertoire undergo this process concurrently; each repeatedly induces plasticity to preserve its key features despite the plasticity induced by other behaviours. The aggregate process is a negotiation among the behaviours: they negotiate the properties of the spinal neurons and synapses that they all use. The ongoing negotiation maintains the spinal cord in an equilibrium - a negotiated equilibrium - that serves all the behaviours. This new model of spinal cord function is supported by laboratory and clinical data, makes predictions borne out by experiment, and underlies a new approach to restoring function to people with neuromuscular disorders. Further studies are needed to test its generality, to determine whether it may apply to other CNS areas such as the cerebral cortex, and to develop its therapeutic implications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Foundations and models of pre-equilibrium decay

    International Nuclear Information System (INIS)

    Bunakov, V.E.

    1980-01-01

    A review is given of the presently existing microscopic, semi-phenomenologic and phenomenologic models used for the description of nuclear reactions. Their advantages and drawbacks are analyzed. A special attention is given to the analysis of pre-equilibrium decay phenomenological models based on the use of master equations (time-dependent versions of exciton models, intranuclear cascade, etc.). A version of the unified theory of nuclear reactions is discussed which makes use of quantum master equations for finite open systems. The conditions are formulated for the derivation of these equations from the time-dependent Schroedinger equation for the many-body problem. The various models of nuclear reactions used in practice are shown to be approximate solutions of master equations for finite open systems. From this point of view the analysis is carried out of these models' reliability in the description of experimental data. Possible modifications are considered which provide for better agreement between the different models and for the more exact description of experimental data. (author)

  1. Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms?

    NARCIS (Netherlands)

    Muijs, B.|info:eu-repo/dai/nl/194995526; Jonker, M.T.O.|info:eu-repo/dai/nl/175518793

    2012-01-01

    Over the past couple of years, several analytical methods have been developed for assessing the bioavailability of environmental contaminants in sediments and soils. Comparison studies suggest that equilibrium passive sampling methods generally provide the better estimates of internal concentrations

  2. Computable general equilibrium model fiscal year 2013 capability development report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    This report documents progress made on continued developments of the National Infrastructure Simulation and Analysis Center (NISAC) Computable General Equilibrium Model (NCGEM), developed in fiscal year 2012. In fiscal year 2013, NISAC the treatment of the labor market and tests performed with the model to examine the properties of the solutions computed by the model. To examine these, developers conducted a series of 20 simulations for 20 U.S. States. Each of these simulations compared an economic baseline simulation with an alternative simulation that assumed a 20-percent reduction in overall factor productivity in the manufacturing industries of each State. Differences in the simulation results between the baseline and alternative simulations capture the economic impact of the reduction in factor productivity. While not every State is affected in precisely the same way, the reduction in manufacturing industry productivity negatively affects the manufacturing industries in each State to an extent proportional to the reduction in overall factor productivity. Moreover, overall economic activity decreases when manufacturing sector productivity is reduced. Developers ran two additional simulations: (1) a version of the model for the State of Michigan, with manufacturing divided into two sub-industries (automobile and other vehicle manufacturing as one sub-industry and the rest of manufacturing as the other subindustry); and (2) a version of the model for the United States, divided into 30 industries. NISAC conducted these simulations to illustrate the flexibility of industry definitions in NCGEM and to examine the simulation properties of in more detail.

  3. Beta Regression Finite Mixture Models of Polarization and Priming

    Science.gov (United States)

    Smithson, Michael; Merkle, Edgar C.; Verkuilen, Jay

    2011-01-01

    This paper describes the application of finite-mixture general linear models based on the beta distribution to modeling response styles, polarization, anchoring, and priming effects in probability judgments. These models, in turn, enhance our capacity for explicitly testing models and theories regarding the aforementioned phenomena. The mixture…

  4. Phase diagrams of (vapour + liquid) equilibrium for binary mixtures of α,α,α-trifluorotoluene with ethanol, or benzene, or chloroform at pressure 101.4 kPa

    International Nuclear Information System (INIS)

    Atik, Zadjia

    2008-01-01

    (Vapour + liquid) equilibrium (VLE) of binary mixtures of (ethanol + α,α,α-trifluorotoluene), (benzene + α,α,α-trifluorotoluene), and (chloroform + α,α,α-trifluorotoluene) have been investigated at the pressure 101.4 kPa using the dynamic-ebulliometry method over the whole composition range. The correlated VLE phase diagrams were adequately described by means of NRTL and UNIQUAC thermodynamic models. Fair attractive energies in the first two systems are capable to yield azeotropes, while moderate repulsive energies in the later system make it zeotrope

  5. New models for predicting thermophysical properties of ionic liquid mixtures.

    Science.gov (United States)

    Huang, Ying; Zhang, Xiangping; Zhao, Yongsheng; Zeng, Shaojuan; Dong, Haifeng; Zhang, Suojiang

    2015-10-28

    Potential applications of ILs require the knowledge of the physicochemical properties of ionic liquid (IL) mixtures. In this work, a series of semi-empirical models were developed to predict the density, surface tension, heat capacity and thermal conductivity of IL mixtures. Each semi-empirical model only contains one new characteristic parameter, which can be determined using one experimental data point. In addition, as another effective tool, artificial neural network (ANN) models were also established. The two kinds of models were verified by a total of 2304 experimental data points for binary mixtures of ILs and molecular compounds. The overall average absolute deviations (AARDs) of both the semi-empirical and ANN models are less than 2%. Compared to previously reported models, these new semi-empirical models require fewer adjustable parameters and can be applied in a wider range of applications.

  6. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  7. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2011-01-01

    In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid–liqu...

  8. Social security as Markov equilibrium in OLG models: A note

    DEFF Research Database (Denmark)

    Gonzalez Eiras, Martin

    2011-01-01

    I refine and extend the Markov perfect equilibrium of the social security policy game in Forni (2005) for the special case of logarithmic utility. Under the restriction that the policy function be continuous, instead of differentiable, the equilibrium is globally well defined and its dynamics...

  9. A Synthesis of Equilibrium and Historical Models of Landform Development.

    Science.gov (United States)

    Renwick, William H.

    1985-01-01

    The synthesis of two approaches that can be used in teaching geomorphology is described. The equilibrium approach explains landforms and landform change in terms of equilibrium between landforms and controlling processes. The historical approach draws on climatic geomorphology to describe the effects of Quaternary climatic and tectonic events on…

  10. Numerical equilibrium analysis for structured consumer resource models.

    Science.gov (United States)

    de Roos, A M; Diekmann, O; Getto, P; Kirkilionis, M A

    2010-02-01

    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.

  11. Solid–liquid equilibrium and thermodynamic research of 3-Thiophenecarboxylic acid in (water + acetic acid) binary solvent mixtures

    International Nuclear Information System (INIS)

    Liu, Xiang; Liang, Mengmeng; Hu, Yonghong; Yang, Wenge; Shi, Ying; Yin, Jingjing; Liu, Yan

    2014-01-01

    Highlights: • The solubility was measured in (water + acetic acid) from 283.15 to 338.15 K. • The solubility increased with increasing temperature and water contents. • The modified Apelblat equation was more accurate than the λh equation. - Abstract: In this study, the solubility of 3-thiophenecarboxylic acid was measured in (water + acetic acid) binary solvent mixtures in the temperature ranging from 283.15 to 338.15 K by the analytical stirred-flask method under atmospheric pressure. The experimental data were well-correlated with the modified Apelblat equation and the λh equation. In addition, the calculated solubilities showed good agreement with the experimental results. It was found that the modified Apelblat equation could obtain the better correlation results than the λh equation. The experiment results indicated that the solubility of 3-thiophenecarboxylic acid in the binary solvents increased with increasing temperature, increases with increasing water contents, but the increments with temperature differed from different water contents. In addition, the thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis. The experimental data and model parameters would be useful for optimizing the process of purification of 3-thiophenecarboxylic acid in industry

  12. Non-equilibrium mass transfer absorption model for the design of boron isotopes chemical exchange column

    International Nuclear Information System (INIS)

    Bai, Peng; Fan, Kaigong; Guo, Xianghai; Zhang, Haocui

    2016-01-01

    Highlights: • We propose a non-equilibrium mass transfer absorption model instead of a distillation equilibrium model to calculate boron isotopes separation. • We apply the model to calculate the needed column height to meet prescribed separation requirements. - Abstract: To interpret the phenomenon of chemical exchange in boron isotopes separation accurately, the process is specified as an absorption–reaction–desorption hybrid process instead of a distillation equilibrium model, the non-equilibrium mass transfer absorption model is put forward and a mass transfer enhancement factor E is introduced to find the packing height needed to meet the specified separation requirements with MATLAB.

  13. Phase equilibrium measurements of ternary systems formed by linoleic and linolenic acids in carbon dioxide/ethanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Sibele R. [EQA/UFSC, Chemical and Food Engineering Department, Federal University of Santa Catarina, C.P. 476, CEP 88040-900, Florianopolis, SC (Brazil); Franceschi, Elton; Borges, Gustavo R.; Corazza, Marcos L.; Oliveira, J. Vladimir [Department of Food Engineering, URI - Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS 99700-000 (Brazil); Ferreira, Sandra R.S. [EQA/UFSC, Chemical and Food Engineering Department, Federal University of Santa Catarina, C.P. 476, CEP 88040-900, Florianopolis, SC (Brazil)], E-mail: sandra@enq.ufsc.br

    2009-11-15

    This work reports phase equilibrium measurements for the ternary systems linoleic (acid + CO{sub 2} + ethanol) and (linolenic acid + CO{sub 2} + ethanol). The fatty acids present in the ternary systems were selected based on composition of banana peel oil extracted by supercritical CO{sub 2} at 20 MPa and 313 K. The motivation of this research relies on the fact that these unsaturated fatty acids are recognized to play an important role in lowering blood pressure and serum cholesterol and because they are present in high concentrations in banana peel extract. Besides that, equilibrium data of these compounds are scarce in literature. The phase equilibrium experiments were performed using a high-pressure variable-volume view cell over the temperature range of (303 to 343) K and pressures up to 19 MPa. For both systems, only vapour-liquid phase transitions were visually recorded for all data measured.

  14. From equilibrium spin models to probabilistic cellular automata

    International Nuclear Information System (INIS)

    Georges, A.; Le Doussal, P.

    1989-01-01

    The general equivalence between D-dimensional probabilistic cellular automata (PCA) and (D + 1)-dimensional equilibrium spin models satisfying a disorder condition is first described in a pedagogical way and then used to analyze the phase diagrams, the critical behavior, and the universality classes of some automato. Diagrammatic representations of time-dependent correlation functions PCA are introduced. Two important classes of PCA are singled out for which these correlation functions simplify: (1) Quasi-Hamiltonian automata, which have a current-carrying steady state, and for which some correlation functions are those of a D-dimensional static model PCA satisfying the detailed balance condition appear as a particular case of these rules for which the current vanishes. (2) Linear (and more generally affine) PCA for which the diagrammatics reduces to a random walk problem closely related to (D + 1)-dimensional directed SAWs: both problems display a critical behavior with mean-field exponents in any dimension. The correlation length and effective velocity of propagation of excitations can be calculated for affine PCA, as is shown on an explicit D = 1 example. The authors conclude with some remarks on nonlinear PCA, for which the diagrammatics is related to reaction-diffusion processes, and which belong in some cases to the universality class of Reggeon field theory

  15. A non-equilibrium neutral model for analysing cultural change.

    Science.gov (United States)

    Kandler, Anne; Shennan, Stephen

    2013-08-07

    Neutral evolution is a frequently used model to analyse changes in frequencies of cultural variants over time. Variants are chosen to be copied according to their relative frequency and new variants are introduced by a process of random mutation. Here we present a non-equilibrium neutral model which accounts for temporally varying population sizes and mutation rates and makes it possible to analyse the cultural system under consideration at any point in time. This framework gives an indication whether observed changes in the frequency distributions of a set of cultural variants between two time points are consistent with the random copying hypothesis. We find that the likelihood of the existence of the observed assemblage at the end of the considered time period (expressed by the probability of the observed number of cultural variants present in the population during the whole period under neutral evolution) is a powerful indicator of departures from neutrality. Further, we study the effects of frequency-dependent selection on the evolutionary trajectories and present a case study of change in the decoration of pottery in early Neolithic Central Europe. Based on the framework developed we show that neutral evolution is not an adequate description of the observed changes in frequency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The Supermarket Model with Bounded Queue Lengths in Equilibrium

    Science.gov (United States)

    Brightwell, Graham; Fairthorne, Marianne; Luczak, Malwina J.

    2018-04-01

    In the supermarket model, there are n queues, each with a single server. Customers arrive in a Poisson process with arrival rate λ n , where λ = λ (n) \\in (0,1) . Upon arrival, a customer selects d=d(n) servers uniformly at random, and joins the queue of a least-loaded server amongst those chosen. Service times are independent exponentially distributed random variables with mean 1. In this paper, we analyse the behaviour of the supermarket model in the regime where λ (n) = 1 - n^{-α } and d(n) = \\lfloor n^β \\rfloor , where α and β are fixed numbers in (0, 1]. For suitable pairs (α , β ) , our results imply that, in equilibrium, with probability tending to 1 as n → ∞, the proportion of queues with length equal to k = \\lceil α /β \\rceil is at least 1-2n^{-α + (k-1)β } , and there are no longer queues. We further show that the process is rapidly mixing when started in a good state, and give bounds on the speed of mixing for more general initial conditions.

  17. Hydrate equilibrium data for the CO2 + N2 system with the use of tetra-n-butylammonium bromide (TBAB), cyclopentane (CP) and their mixture

    DEFF Research Database (Denmark)

    Tzirakis, Fragkiskos; Stringari, Paolo; von Solms, Nicolas

    2016-01-01

    Carbon Dioxide capture and sequestration (CCS) is nowadays an important area of research for decreasing CO2 emissions worldwide. Hydrates can become of great importance in the future as they form the basis for a new technology that can be used for CO2 capture from flue gases (hydrate...... crystallization). In this work hydrate equilibrium data are measured and compared with literature data. In particular, experimental results for hydrate dissociation with several promoters are presented. The isochoric method is used to determine the gas hydrate dissociation points. Different CO2 + N2 gas mixtures...

  18. Detecting Housing Submarkets using Unsupervised Learning of Finite Mixture Models

    DEFF Research Database (Denmark)

    Ntantamis, Christos

    association between prices that can be attributed, among others, to unobserved neighborhood effects. In this paper, a model of spatial association for housing markets is introduced. Spatial association is treated in the context of spatial heterogeneity, which is explicitly modeled in both a global and a local....... The identified mixtures are considered as the different spatial housing submarkets. The main advantage of the approach is that submarkets are recovered by the housing prices data compared to submarkets imposed by administrative or geographical criteria. The Finite Mixture Model is estimated using the Figueiredo...

  19. Phase equilibria for mixtures containing nonionic surfactant systems: Modeling and experiments

    International Nuclear Information System (INIS)

    Shin, Moon Sam; Kim, Hwayong

    2008-01-01

    Surfactants are important materials with numerous applications in the cosmetic, pharmaceutical, and food industries due to inter-associating and intra-associating bond. We present a lattice fluid equation-of-state that combines the quasi-chemical nonrandom lattice fluid model with Veytsman statistics for (intra + inter) molecular association to calculate phase behavior for mixtures containing nonionic surfactants. We also measured binary (vapor + liquid) equilibrium data for {2-butoxyethanol (C 4 E 1 ) + n-hexane} and {2-butoxyethanol (C 4 E 1 ) + n-heptane} systems at temperatures ranging from (303.15 to 323.15) K. A static apparatus was used in this study. The presented equation-of-state correlated well with the measured and published data for mixtures containing nonionic surfactant systems

  20. Bayesian Plackett-Luce Mixture Models for Partially Ranked Data.

    Science.gov (United States)

    Mollica, Cristina; Tardella, Luca

    2017-06-01

    The elicitation of an ordinal judgment on multiple alternatives is often required in many psychological and behavioral experiments to investigate preference/choice orientation of a specific population. The Plackett-Luce model is one of the most popular and frequently applied parametric distributions to analyze rankings of a finite set of items. The present work introduces a Bayesian finite mixture of Plackett-Luce models to account for unobserved sample heterogeneity of partially ranked data. We describe an efficient way to incorporate the latent group structure in the data augmentation approach and the derivation of existing maximum likelihood procedures as special instances of the proposed Bayesian method. Inference can be conducted with the combination of the Expectation-Maximization algorithm for maximum a posteriori estimation and the Gibbs sampling iterative procedure. We additionally investigate several Bayesian criteria for selecting the optimal mixture configuration and describe diagnostic tools for assessing the fitness of ranking distributions conditionally and unconditionally on the number of ranked items. The utility of the novel Bayesian parametric Plackett-Luce mixture for characterizing sample heterogeneity is illustrated with several applications to simulated and real preference ranked data. We compare our method with the frequentist approach and a Bayesian nonparametric mixture model both assuming the Plackett-Luce model as a mixture component. Our analysis on real datasets reveals the importance of an accurate diagnostic check for an appropriate in-depth understanding of the heterogenous nature of the partial ranking data.

  1. Supervised Gaussian mixture model based remote sensing image ...

    African Journals Online (AJOL)

    Using the supervised classification technique, both simulated and empirical satellite remote sensing data are used to train and test the Gaussian mixture model algorithm. For the purpose of validating the experiment, the resulting classified satellite image is compared with the ground truth data. For the simulated modelling, ...

  2. Investigating Individual Differences in Toddler Search with Mixture Models

    Science.gov (United States)

    Berthier, Neil E.; Boucher, Kelsea; Weisner, Nina

    2015-01-01

    Children's performance on cognitive tasks is often described in categorical terms in that a child is described as either passing or failing a test, or knowing or not knowing some concept. We used binomial mixture models to determine whether individual children could be classified as passing or failing two search tasks, the DeLoache model room…

  3. On non-equilibrium states in QFT model with boundary interaction

    International Nuclear Information System (INIS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Zamolodchikov, Alexander B.

    1999-01-01

    We prove that certain non-equilibrium expectation values in the boundary sine-Gordon model coincide with associated equilibrium-state expectation values in the systems which differ from the boundary sine-Gordon in that certain extra boundary degrees of freedom (q-oscillators) are added. Applications of this result to actual calculation of non-equilibrium characteristics of the boundary sine-Gordon model are also discussed

  4. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo

    2013-04-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  5. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo; Marchisio, Daniele Luca; Chidambaram, Narayanan; Fox, Rodney O.

    2013-01-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  6. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  7. A DFT based equilibrium study of a chemical mixture Tachyhydrite and their lower hydrates for long term heat storage

    NARCIS (Netherlands)

    Pathak, A.D.; Gaastra - Nedea, S.V.; Zondag, H.A.; Rindt, C.C.M.; Smeulders, D.M.J.

    2016-01-01

    Chloride based salt hydrates are promising materials for seasonal heat storage. However, hydrolysis, a side reaction, deteriorates, their cycle stability. To improve the kinetics and durability, we have investigated the optimum operating conditions of a chemical mixture of CaCl2 and MgCl2 hydrates.

  8. A continuous stochastic model for non-equilibrium dense gases

    Science.gov (United States)

    Sadr, M.; Gorji, M. H.

    2017-12-01

    While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are

  9. A Comparison of the Computation Times of Thermal Equilibrium and Non-equilibrium Models of Droplet Field in a Two-Fluid Three-Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Cho, Heong Kyu; Kim, Jong Tae; Yoon, Han Young; Jeong, Jae Jun

    2007-12-15

    A computational model for transient, 3 dimensional 2 phase flows was developed by using 'unstructured-FVM-based, non-staggered, semi-implicit numerical scheme' considering the thermally non-equilibrium droplets. The assumption of the thermally equilibrium between liquid and droplets of previous studies was not used any more, and three energy conservation equations for vapor, liquid, liquid droplets were set up. Thus, 9 conservation equations for mass, momentum, and energy were established to simulate 2 phase flows. In this report, the governing equations and a semi-implicit numerical sheme for a transient 1 dimensional 2 phase flows was described considering the thermally non-equilibrium between liquid and liquid droplets. The comparison with the previous model considering the thermally non-equilibrium between liquid and liquid droplets was also reported.

  10. Research on spot power market equilibrium model considering the electric power network characteristics

    International Nuclear Information System (INIS)

    Wang, Chengmin; Jiang, Chuanwen; Chen, Qiming

    2007-01-01

    Equilibrium is the optimum operational condition for the power market by economics rule. A realistic spot power market cannot achieve the equilibrium condition due to network losses and congestions. The impact of the network losses and congestion on spot power market is analyzed in this paper in order to establish a new equilibrium model considering the network loss and transmission constraints. The OPF problem formulated according to the new equilibrium model is solved by means of the equal price principle. A case study on the IEEE-30-bus system is provided in order to prove the effectiveness of the proposed approach. (author)

  11. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions

    Science.gov (United States)

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and...

  12. Dynamic Processes of Conceptual Change: Analysis of Constructing Mental Models of Chemical Equilibrium.

    Science.gov (United States)

    Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju

    2002-01-01

    Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…

  13. Non-equilibrium scaling analysis of the Kondo model with voltage bias

    International Nuclear Information System (INIS)

    Fritsch, Peter; Kehrein, Stefan

    2009-01-01

    The quintessential description of Kondo physics in equilibrium is obtained within a scaling picture that shows the buildup of Kondo screening at low temperature. For the non-equilibrium Kondo model with a voltage bias, the key new feature are decoherence effects due to the current across the impurity. In the present paper, we show how one can develop a consistent framework for studying the non-equilibrium Kondo model within a scaling picture of infinitesimal unitary transformations (flow equations). Decoherence effects appear naturally in third order of the β-function and dominate the Hamiltonian flow for sufficiently large voltage bias. We work out the spin dynamics in non-equilibrium and compare it with finite temperature equilibrium results. In particular, we report on the behavior of the static spin susceptibility including leading logarithmic corrections and compare it with the celebrated equilibrium result as a function of temperature.

  14. Copula Based Factorization in Bayesian Multivariate Infinite Mixture Models

    OpenAIRE

    Martin Burda; Artem Prokhorov

    2012-01-01

    Bayesian nonparametric models based on infinite mixtures of density kernels have been recently gaining in popularity due to their flexibility and feasibility of implementation even in complicated modeling scenarios. In economics, they have been particularly useful in estimating nonparametric distributions of latent variables. However, these models have been rarely applied in more than one dimension. Indeed, the multivariate case suffers from the curse of dimensionality, with a rapidly increas...

  15. The R Package bgmm : Mixture Modeling with Uncertain Knowledge

    Directory of Open Access Journals (Sweden)

    Przemys law Biecek

    2012-04-01

    Full Text Available Classical supervised learning enjoys the luxury of accessing the true known labels for the observations in a modeled dataset. Real life, however, poses an abundance of problems, where the labels are only partially defined, i.e., are uncertain and given only for a subsetof observations. Such partial labels can occur regardless of the knowledge source. For example, an experimental assessment of labels may have limited capacity and is prone to measurement errors. Also expert knowledge is often restricted to a specialized area and is thus unlikely to provide trustworthy labels for all observations in the dataset. Partially supervised mixture modeling is able to process such sparse and imprecise input. Here, we present an R package calledbgmm, which implements two partially supervised mixture modeling methods: soft-label and belief-based modeling. For completeness, we equipped the package also with the functionality of unsupervised, semi- and fully supervised mixture modeling. On real data we present the usage of bgmm for basic model-fitting in all modeling variants. The package can be applied also to selection of the best-fitting from a set of models with different component numbers or constraints on their structures. This functionality is presented on an artificial dataset, which can be simulated in bgmm from a distribution defined by a given model.

  16. Option Pricing with Asymmetric Heteroskedastic Normal Mixture Models

    DEFF Research Database (Denmark)

    Rombouts, Jeroen V. K; Stentoft, Lars

    2015-01-01

    We propose an asymmetric GARCH in mean mixture model and provide a feasible method for option pricing within this general framework by deriving the appropriate risk neutral dynamics. We forecast the out-of-sample prices of a large sample of options on the S&P 500 index from January 2006 to December...

  17. Application of association models to mixtures containing alkanolamines

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Eriksen, Daniel Kunisch; Kontogeorgis, Georgios

    2011-01-01

    Two association models,the CPA and sPC-SAFT equations of state, are applied to binarymixtures containing alkanolamines and hydrocarbons or water. CPA is applied to mixtures of MEA and DEA, while sPC-SAFT is applied to MEA–n-heptane liquid–liquid equilibria and MEA–water vapor–liquid equilibria. T...

  18. The Semiparametric Normal Variance-Mean Mixture Model

    DEFF Research Database (Denmark)

    Korsholm, Lars

    1997-01-01

    We discuss the normal vairance-mean mixture model from a semi-parametric point of view, i.e. we let the mixing distribution belong to a non parametric family. The main results are consistency of the non parametric maximum likelihood estimat or in this case, and construction of an asymptotically...... normal and efficient estimator....

  19. Evaluation of Distance Measures Between Gaussian Mixture Models of MFCCs

    DEFF Research Database (Denmark)

    Jensen, Jesper Højvang; Ellis, Dan P. W.; Christensen, Mads Græsbøll

    2007-01-01

    In music similarity and in the related task of genre classification, a distance measure between Gaussian mixture models is frequently needed. We present a comparison of the Kullback-Leibler distance, the earth movers distance and the normalized L2 distance for this application. Although...

  20. Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2010-01-01

    Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing both discrete and continuous variables). On the other hand, estimating an MTE from data has turned out to be a difficul...

  1. Detecting Math Anxiety with a Mixture Partial Credit Model

    Science.gov (United States)

    Ölmez, Ibrahim Burak; Cohen, Allan S.

    2017-01-01

    The purpose of this study was to investigate a new methodology for detection of differences in middle grades students' math anxiety. A mixture partial credit model analysis revealed two distinct latent classes based on homogeneities in response patterns within each latent class. Students in Class 1 had less anxiety about apprehension of math…

  2. A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis

    OpenAIRE

    Masataka, SUZUKI; Yoshihiko, YAMAZAKI; Yumiko, TANIGUCHI; Department of Psychology, Kinjo Gakuin University; Department of Health and Physical Education, Nagoya Institute of Technology; College of Human Life and Environment, Kinjo Gakuin University

    2003-01-01

    SUZUKI,M., YAMAZAKI,Y. and TANIGUCHI,Y., A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis. Adv. Exerc. Sports Physiol., Vol.9, No.1 pp.7-25, 2003. According to the equilibrium point hypothesis of motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction among moving equilibrium point, reflex feedback and muscle mechanical properties. This approach is attractive as it obviates the n...

  3. Free radical generation by non-equilibrium atmospheric pressure plasma in alcohol-water mixtures: an EPR-spin trapping study

    Science.gov (United States)

    Uchiyama, Hidefumi; Ishikawa, Kenji; Zhao, Qing-Li; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Krishna, Murali C.; Ishijima, Tatsuo; Matsuya, Yuji; Hori, Masaru; Noguchi, Kyo; Kondo, Takashi

    2018-03-01

    Free radical species in aqueous solution—various alcohol-water reaction mixtures—by exposure to non-equilibrium cold atmospheric pressure Ar plasma (CAP), were monitored using electron paramagnetic resonance spin-trapping techniques with 3, 5-dibromo-4-nitrosobenzene sulfonate as a water soluble nitroso spin trap. The major radical species were formed by H-abstraction from alcohol molecules due to ·OH radicals. In the ethanol-water mixture ·CH2CH2OH produced by H abstraction from CH3 group of the ethanol and ·CH3 radicals were detected. The latter was due to the decomposition of unstable CH3·CHOH to form the ·CH3 radicals and the stable formaldehyde by C-C bond fission. These intermediates are similar to those observed by reaction with ·OH radicals generation in the H2O2-UV photolysis of the reaction mixtures. The evidence of ·CH3 radical formation in the pyrolytic decomposition of the reaction mixtures by exposure to ultrasound or in methane irradiated with microwave plasma have been reported previously. However, the pyrolytic ·CH3 radicals were not found in both plasma and H2O2-UV photolysis condition. These results suggests that free radicals produced by Ar-CAP are most likely due to the reaction between abundant ·OH radicals and alcohol molecules.

  4. Mixture models with entropy regularization for community detection in networks

    Science.gov (United States)

    Chang, Zhenhai; Yin, Xianjun; Jia, Caiyan; Wang, Xiaoyang

    2018-04-01

    Community detection is a key exploratory tool in network analysis and has received much attention in recent years. NMM (Newman's mixture model) is one of the best models for exploring a range of network structures including community structure, bipartite and core-periphery structures, etc. However, NMM needs to know the number of communities in advance. Therefore, in this study, we have proposed an entropy regularized mixture model (called EMM), which is capable of inferring the number of communities and identifying network structure contained in a network, simultaneously. In the model, by minimizing the entropy of mixing coefficients of NMM using EM (expectation-maximization) solution, the small clusters contained little information can be discarded step by step. The empirical study on both synthetic networks and real networks has shown that the proposed model EMM is superior to the state-of-the-art methods.

  5. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    Science.gov (United States)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  6. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [College of Environmental Science and Engineering, Anhui Normal University, South Jiuhua Road, 189, 241002 Wuhu (China); Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Fiol, Núria [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Villaescusa, Isabel, E-mail: Isabel.Villaescusa@udg.edu [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Poch, Jordi [Applied Mathematics Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain)

    2016-01-15

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the modelModel validation by checking it against independent sets of data.

  7. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    International Nuclear Information System (INIS)

    Liu, Chang; Fiol, Núria; Villaescusa, Isabel; Poch, Jordi

    2016-01-01

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the modelModel validation by checking it against independent sets of data

  8. Challenges in modelling the random structure correctly in growth mixture models and the impact this has on model mixtures.

    Science.gov (United States)

    Gilthorpe, M S; Dahly, D L; Tu, Y K; Kubzansky, L D; Goodman, E

    2014-06-01

    Lifecourse trajectories of clinical or anthropological attributes are useful for identifying how our early-life experiences influence later-life morbidity and mortality. Researchers often use growth mixture models (GMMs) to estimate such phenomena. It is common to place constrains on the random part of the GMM to improve parsimony or to aid convergence, but this can lead to an autoregressive structure that distorts the nature of the mixtures and subsequent model interpretation. This is especially true if changes in the outcome within individuals are gradual compared with the magnitude of differences between individuals. This is not widely appreciated, nor is its impact well understood. Using repeat measures of body mass index (BMI) for 1528 US adolescents, we estimated GMMs that required variance-covariance constraints to attain convergence. We contrasted constrained models with and without an autocorrelation structure to assess the impact this had on the ideal number of latent classes, their size and composition. We also contrasted model options using simulations. When the GMM variance-covariance structure was constrained, a within-class autocorrelation structure emerged. When not modelled explicitly, this led to poorer model fit and models that differed substantially in the ideal number of latent classes, as well as class size and composition. Failure to carefully consider the random structure of data within a GMM framework may lead to erroneous model inferences, especially for outcomes with greater within-person than between-person homogeneity, such as BMI. It is crucial to reflect on the underlying data generation processes when building such models.

  9. Modeling of the equilibrium of a tokamak plasma

    International Nuclear Information System (INIS)

    Grandgirard, V.

    1999-12-01

    The simulation and the control of a plasma discharge in a tokamak require an efficient and accurate solving of the equilibrium because this equilibrium needs to be calculated again every microsecond to simulate discharges that can last up to 1000 seconds. The purpose of this thesis is to propose numerical methods in order to calculate these equilibrium with acceptable computer time and memory size. Chapter 1 deals with hydrodynamics equation and sets up the problem. Chapter 2 gives a method to take into account the boundary conditions. Chapter 3 is dedicated to the optimization of the inversion of the system matrix. This matrix being quasi-symmetric, the Woodbury method combined with Cholesky method has been used. This direct method has been compared with 2 iterative methods: GMRES (generalized minimal residual) and BCG (bi-conjugate gradient). The 2 last chapters study the control of the plasma equilibrium, this work is presented in the formalism of the optimized control of distributed systems and leads to non-linear equations of state and quadratic functionals that are solved numerically by a quadratic sequential method. This method is based on the replacement of the initial problem with a series of control problems involving linear equations of state. (A.C.)

  10. Equilibrium and non-equilibrium concepts in forest genetic modelling: population- and individually-based approaches

    OpenAIRE

    Kramer, Koen; van der Werf, D. C.

    2010-01-01

    The environment is changing and so are forests, in their functioning, in species composition, and in the species’ genetic composition. Many empirical and process-based models exist to support forest management. However, most of these models do not consider the impact of environmental changes and forest management on genetic diversity nor on the rate of adaptation of critical plant processes. How genetic diversity and rates of adaptation depend on management actions is a crucial next step in m...

  11. Isothermal (vapour + liquid) equilibrium for binary mixtures of polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, or 2-propanol

    International Nuclear Information System (INIS)

    Khoiroh, Ianatul; Lee, Ming-Jer

    2011-01-01

    Highlights: → An autoclave apparatus was used for binary (vapour + liquid) equilibrium data measurement. → The studied systems are polyethylene glycol mono-4-nonylphenyl ether with alcohols. → The saturated pressure data were fitted accurately to the Antoine equation. → The NRTL model correlated well the phase equilibrium data. → The solvent activities have been calculated. - Abstract: Saturated pressures of three binary systems of oligomeric polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, and 2-propanol have been measured by using an autoclave (vapour + liquid) equilibrium (VLE) apparatus at temperatures ranging from (340 to 455) K and the oligomer content ranging from 0.100 to 0.400 in mole fraction. With a given feed composition, equilibrium pressures were measured at various temperatures to obtain VLE data. The experimental data were fitted to the Antoine equation and also correlated with activity coefficient models, the NRTL and the UNIQUAC. The correlation results showed good agreement between the calculated values and the experimental data. In general, the NRTL model yielded better results. Additionally, the solvent activities were evaluated from the experimental results and were compared with those from the NRTL and the UNIQUAC models.

  12. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  13. Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.

    Science.gov (United States)

    Zhang, Jiachao; Hirakawa, Keigo

    2017-04-01

    This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.

  14. The Extended Generalized Cost Concept and its Application in Freight Transport and General Equilibrium Modeling

    NARCIS (Netherlands)

    Tavasszy, L.; Davydenko, I.; Ruijgrok, K.

    2009-01-01

    The integration of Spatial Equilibrium models and Freight transport network models is important to produce consistent scenarios for future freight transport demand. At various spatial scales, we see the changes in production, trade, logistics networking and transportation, being driven by

  15. Phylogenetic mixtures and linear invariants for equal input models.

    Science.gov (United States)

    Casanellas, Marta; Steel, Mike

    2017-04-01

    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

  16. Modeling of thermodynamic non-equilibrium flows around cylinders and in channels

    Science.gov (United States)

    Sinha, Avick; Gopalakrishnan, Shiva

    2017-11-01

    Numerical simulations for two different types of flash-boiling flows, namely shear flow (flow through a de-Laval nozzle) and free shear flow (flow past a cylinder) are carried out in the present study. The Homogenous Relaxation Model (HRM) is used to model the thermodynamic non-equilibrium process. It was observed that the vaporization of the fluid stream, which was initially maintained at a sub-cooled state, originates at the nozzle throat. This is because the fluid accelerates at the vena-contracta and subsequently the pressure falls below the saturation vapor pressure, generating a two-phase mixture in the diverging section of the nozzle. The mass flow rate at the nozzle was found to decrease with the increase in fluid inlet temperature. A similar phenomenon also occurs for the free shear case due to boundary layer separation, causing a drop in pressure behind the cylinder. The mass fraction of vapor is maximum at rear end of the cylinder, where the size of the wake is highest. As the back pressure is reduced, severe flashing behavior was observed. The numerical simulations were validated against available experimental data. The authors gratefully acknowledge funding from the public-private partnership between DST, Confederation of Indian Industry and General Electric Pvt. Ltd.

  17. Extraction of benzene and cyclohexane using [BMIM][N(CN)2] and their equilibrium modeling

    Science.gov (United States)

    Ismail, Marhaina; Bustam, M. Azmi; Man, Zakaria

    2017-12-01

    The separation of aromatic compound from aliphatic mixture is one of the essential industrial processes for an economically green process. In order to determine the separation efficiency of ionic liquid (IL) as a solvent in the separation, the ternary diagram of liquid-liquid extraction (LLE) 1-butyl-3-methylimidazolium dicyanamide [BMIM][N(CN)2] with benzene and cyclohexane was studied at T=298.15 K and atmospheric pressure. The solute distribution coefficient and solvent selectivity derived from the equilibrium data were used to evaluate if the selected ionic liquid can be considered as potential solvent for the separation of benzene from cyclohexane. The experimental tie line data was correlated using non-random two liquid model (NRTL) and Margules model. It was found that the solute distribution coefficient is (0.4430-0.0776) and selectivity of [BMIM][N(CN)2] for benzene is (53.6-13.9). The ternary diagram showed that the selected IL can perform the separation of benzene and cyclohexane as it has extractive capacity and selectivity. Therefore, [BMIM][N(CN)2] can be considered as a potential extracting solvent for the LLE of benzene and cyclohexane.

  18. Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

    International Nuclear Information System (INIS)

    Zhi-Jun, Wang; Jin-Cheng, Wang; Gen-Cang, Yang

    2010-01-01

    All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed. (cross-disciplinary physics and related areas of science and technology)

  19. A nonparametric mixture model for cure rate estimation.

    Science.gov (United States)

    Peng, Y; Dear, K B

    2000-03-01

    Nonparametric methods have attracted less attention than their parametric counterparts for cure rate analysis. In this paper, we study a general nonparametric mixture model. The proportional hazards assumption is employed in modeling the effect of covariates on the failure time of patients who are not cured. The EM algorithm, the marginal likelihood approach, and multiple imputations are employed to estimate parameters of interest in the model. This model extends models and improves estimation methods proposed by other researchers. It also extends Cox's proportional hazards regression model by allowing a proportion of event-free patients and investigating covariate effects on that proportion. The model and its estimation method are investigated by simulations. An application to breast cancer data, including comparisons with previous analyses using a parametric model and an existing nonparametric model by other researchers, confirms the conclusions from the parametric model but not those from the existing nonparametric model.

  20. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  1. Modeling adsorption of binary and ternary mixtures on microporous media

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2007-01-01

    it possible using the same equation of state to describe the thermodynamic properties of the segregated and the bulk phases. For comparison, we also used the ideal adsorbed solution theory (IAST) to describe adsorption equilibria. The main advantage of these two models is their capabilities to predict......The goal of this work is to analyze the adsorption of binary and ternary mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). In the MPTA, the adsorbate is considered as a segregated mixture in the external potential field emitted by the solid adsorbent. This makes...... multicomponent adsorption equilibria on the basis of single-component adsorption data. We compare the MPTA and IAST models to a large set of experimental data, obtaining reasonable good agreement with experimental data and high degree of predictability. Some limitations of both models are also discussed....

  2. Evaluation of Thermodynamic Models for Predicting Phase Equilibria of CO2 + Impurity Binary Mixture

    Science.gov (United States)

    Shin, Byeong Soo; Rho, Won Gu; You, Seong-Sik; Kang, Jeong Won; Lee, Chul Soo

    2018-03-01

    For the design and operation of CO2 capture and storage (CCS) processes, equation of state (EoS) models are used for phase equilibrium calculations. Reliability of an EoS model plays a crucial role, and many variations of EoS models have been reported and continue to be published. The prediction of phase equilibria for CO2 mixtures containing SO2, N2, NO, H2, O2, CH4, H2S, Ar, and H2O is important for CO2 transportation because the captured gas normally contains small amounts of impurities even though it is purified in advance. For the design of pipelines in deep sea or arctic conditions, flow assurance and safety are considered priority issues, and highly reliable calculations are required. In this work, predictive Soave-Redlich-Kwong, cubic plus association, Groupe Européen de Recherches Gazières (GERG-2008), perturbed-chain statistical associating fluid theory, and non-random lattice fluids hydrogen bond EoS models were compared regarding performance in calculating phase equilibria of CO2-impurity binary mixtures and with the collected literature data. No single EoS could cover the entire range of systems considered in this study. Weaknesses and strong points of each EoS model were analyzed, and recommendations are given as guidelines for safe design and operation of CCS processes.

  3. Color Texture Segmentation by Decomposition of Gaussian Mixture Model

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří; Somol, Petr; Haindl, Michal; Pudil, Pavel

    2006-01-01

    Roč. 19, č. 4225 (2006), s. 287-296 ISSN 0302-9743. [Iberoamerican Congress on Pattern Recognition. CIARP 2006 /11./. Cancun, 14.11.2006-17.11.2006] R&D Projects: GA AV ČR 1ET400750407; GA MŠk 1M0572; GA MŠk 2C06019 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : texture segmentation * gaussian mixture model * EM algorithm Subject RIV: IN - Informatics, Computer Science Impact factor: 0.402, year: 2005 http://library.utia.cas.cz/separaty/historie/grim-color texture segmentation by decomposition of gaussian mixture model.pdf

  4. XDGMM: eXtreme Deconvolution Gaussian Mixture Modeling

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-08-01

    XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.

  5. The truthful signalling hypothesis: an explicit general equilibrium model.

    Science.gov (United States)

    Hausken, Kjell; Hirshleifer, Jack

    2004-06-21

    In mating competition, the truthful signalling hypothesis (TSH), sometimes known as the handicap principle, asserts that higher-quality males signal while lower-quality males do not (or else emit smaller signals). Also, the signals are "believed", that is, females mate preferentially with higher-signalling males. Our analysis employs specific functional forms to generate analytic solutions and numerical simulations that illuminate the conditions needed to validate the TSH. Analytic innovations include: (1) A Mating Success Function indicates how female mating choices respond to higher and lower signalling levels. (2) A congestion function rules out corner solutions in which females would mate exclusively with higher-quality males. (3) A Malthusian condition determines equilibrium population size as related to per-capita resource availability. Equilibria validating the TSH are achieved over a wide range of parameters, though not universally. For TSH equilibria it is not strictly necessary that the high-quality males have an advantage in terms of lower per-unit signalling costs, but a cost difference in favor of the low-quality males cannot be too great if a TSH equilibrium is to persist. And although the literature has paid less attention to these points, TSH equilibria may also fail if: the quality disparity among males is too great, or the proportion of high-quality males in the population is too large, or if the congestion effect is too weak. Signalling being unprofitable in aggregate, it can take off from a no-signalling equilibrium only if the trait used for signalling is not initially a handicap, but instead is functionally useful at low levels. Selection for this trait sets in motion a bandwagon, whereby the initially useful indicator is pushed by male-male competition into the domain where it does indeed become a handicap.

  6. Option Pricing with Asymmetric Heteroskedastic Normal Mixture Models

    DEFF Research Database (Denmark)

    Rombouts, Jeroen V.K.; Stentoft, Lars

    This paper uses asymmetric heteroskedastic normal mixture models to fit return data and to price options. The models can be estimated straightforwardly by maximum likelihood, have high statistical fit when used on S&P 500 index return data, and allow for substantial negative skewness and time...... varying higher order moments of the risk neutral distribution. When forecasting out-of-sample a large set of index options between 1996 and 2009, substantial improvements are found compared to several benchmark models in terms of dollar losses and the ability to explain the smirk in implied volatilities...

  7. Variable selection for mixture and promotion time cure rate models.

    Science.gov (United States)

    Masud, Abdullah; Tu, Wanzhu; Yu, Zhangsheng

    2016-11-16

    Failure-time data with cured patients are common in clinical studies. Data from these studies are typically analyzed with cure rate models. Variable selection methods have not been well developed for cure rate models. In this research, we propose two least absolute shrinkage and selection operators based methods, for variable selection in mixture and promotion time cure models with parametric or nonparametric baseline hazards. We conduct an extensive simulation study to assess the operating characteristics of the proposed methods. We illustrate the use of the methods using data from a study of childhood wheezing. © The Author(s) 2016.

  8. Equilibrium polymerization models of re-entrant self-assembly

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  9. KONVERGENSI ESTIMATOR DALAM MODEL MIXTURE BERBASIS MISSING DATA

    Directory of Open Access Journals (Sweden)

    N Dwidayati

    2014-06-01

    Full Text Available Abstrak __________________________________________________________________________________________ Model mixture dapat mengestimasi proporsi pasien yang sembuh (cured dan fungsi survival pasien tak sembuh (uncured. Pada kajian ini, model mixture dikembangkan untuk  analisis cure rate berbasis missing data. Ada beberapa metode yang dapat digunakan untuk analisis missing data. Salah satu metode yang dapat digunakan adalah Algoritma EM, Metode ini didasarkan pada 2 (dua langkah, yaitu: (1 Expectation Step dan (2 Maximization Step. Algoritma EM merupakan pendekatan iterasi untuk mempelajari model dari data dengan nilai hilang melalui 4 (empat langkah, yaitu(1 pilih himpunan inisial dari parameter untuk sebuah model, (2 tentukan nilai ekspektasi untuk data hilang, (3 buat induksi parameter model baru dari gabungan nilai ekspekstasi dan data asli, dan (4 jika parameter tidak converged, ulangi langkah 2 menggunakan model baru. Berdasar kajian yang dilakukan dapat ditunjukkan bahwa pada algoritma EM, log-likelihood untuk missing data mengalami kenaikan setelah dilakukan setiap iterasi dari algoritmanya. Dengan demikian berdasar algoritma EM, barisan likelihood konvergen jika likelihood terbatas ke bawah.   Abstract __________________________________________________________________________________________ Model mixture can estimate proportion of recovering patient  and function of patient survival do not recover. At this study, model mixture developed to analyse cure rate bases on missing data. There are some method which applicable to analyse missing data. One of method which can be applied is Algoritma EM, This method based on 2 ( two step, that is: ( 1 Expectation Step and ( 2 Maximization Step. EM Algorithm is approach of iteration to study model from data with value loses through 4 ( four step, yaitu(1 select;chooses initial gathering from parameter for a model, ( 2 determines expectation value for data to lose, ( 3 induce newfangled parameter

  10. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    Science.gov (United States)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  11. Equilibrium and transient conductivity for gadolium-doped ceria under large perturbations: II. Modeling

    DEFF Research Database (Denmark)

    Zhu, Huayang; Ricote, Sandrine; Coors, W. Grover

    2014-01-01

    the computational implementation of a Nernst–Planck–Poisson (NPP) model to represent and interpret conductivity-relaxation measurements. Defect surface chemistry is represented with both equilibrium and finite-rate kinetic models. The experiments and the models are capable of representing relaxations from strongly......A model-based approach is used to interpret equilibrium and transient conductivity measurements for 10% gadolinium-doped ceria: Ce0.9Gd0.1O1.95 − δ (GDC10). The measurements were carried out by AC impedance spectroscopy on slender extruded GDC10 rods. Although equilibrium conductivity measurements...... provide sufficient information from which to derive material properties, it is found that uniquely establishing properties is difficult. Augmenting equilibrium measurements with conductivity relaxation significantly improves the evaluation of needed physical properties. This paper develops and applies...

  12. Bayesian mixture models for source separation in MEG

    International Nuclear Information System (INIS)

    Calvetti, Daniela; Homa, Laura; Somersalo, Erkki

    2011-01-01

    This paper discusses the problem of imaging electromagnetic brain activity from measurements of the induced magnetic field outside the head. This imaging modality, magnetoencephalography (MEG), is known to be severely ill posed, and in order to obtain useful estimates for the activity map, complementary information needs to be used to regularize the problem. In this paper, a particular emphasis is on finding non-superficial focal sources that induce a magnetic field that may be confused with noise due to external sources and with distributed brain noise. The data are assumed to come from a mixture of a focal source and a spatially distributed possibly virtual source; hence, to differentiate between those two components, the problem is solved within a Bayesian framework, with a mixture model prior encoding the information that different sources may be concurrently active. The mixture model prior combines one density that favors strongly focal sources and another that favors spatially distributed sources, interpreted as clutter in the source estimation. Furthermore, to address the challenge of localizing deep focal sources, a novel depth sounding algorithm is suggested, and it is shown with simulated data that the method is able to distinguish between a signal arising from a deep focal source and a clutter signal. (paper)

  13. Improving firm performance in out-of-equilibrium, deregulated markets using feedback simulation models

    International Nuclear Information System (INIS)

    Gary, S.; Larsen, E.R.

    2000-01-01

    Deregulation has reshaped the utility sector in many countries around the world. Organisations in these deregulated industries must adopt new polices which guide strategic decisions, in an uncertain and unfamiliar environment, that determine the short- and long-term fate of their companies. Traditional economic equilibrium models do not adequately address the issues facing these organisations in the shift towards deregulated market competition. Equilibrium assumptions break down in the out-of-equilibrium transition to competitive markets, and therefore different underpinning assumptions must be adopted in order to guide management in these periods. Simulation models incorporating information feedback through behavioural policies fill the void left by equilibrium models and support strategic policy analysis in out-of-equilibrium markets. As an example, we present a feedback simulation model developed to examine firm and industry level performance consequences of new generation capacity investment policies in the deregulated UK electricity sector. The model explicitly captures behavioural decision polices of boundedly rational managers and avoids equilibrium assumptions. Such models are essential to help managers evaluate the performance impact of various strategic policies in environments in which disequilibrum behaviour dominates. (Author)

  14. Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture

    International Nuclear Information System (INIS)

    Stroev, N E; Iosilevskiy, I L

    2016-01-01

    Non-congruent gas-liquid phase transition (NCPT) have been studied previously in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a uniformly compressible ideal electronic background /BIM(∼)/. The features of NCPT in improved version of the BIM(∼) model for the same mixture on background of non-ideal electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to equation of state of electronic and ionic subsystems were used in present calculations within the Gibbs-Guggenheim conditions of non-congruent phase equilibrium. Parameters of critical point-line were calculated on the entire range of proportions of mixed ions 0 < X < 1. Strong “distillation” effect was found for NCPT in the present BIM(∼) model. Just similar distillation was obtained in the variant of NCPT in dense nuslear matter. The absence of azeotropic compositions was revealed in studied variants of BIM(∼) in contrast to an explicit existence of the azeotropic compositions for the NCPT in chemically reacting plasmas and in astrophysical applications. (paper)

  15. Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture

    Science.gov (United States)

    Stroev, N. E.; Iosilevskiy, I. L.

    2016-11-01

    Non-congruent gas-liquid phase transition (NCPT) have been studied previously in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a uniformly compressible ideal electronic background /BIM(∼)/. The features of NCPT in improved version of the BIM(∼) model for the same mixture on background of non-ideal electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to equation of state of electronic and ionic subsystems were used in present calculations within the Gibbs-Guggenheim conditions of non-congruent phase equilibrium. Parameters of critical point-line were calculated on the entire range of proportions of mixed ions 0 distillation” effect was found for NCPT in the present BIM(∼) model. Just similar distillation was obtained in the variant of NCPT in dense nuslear matter. The absence of azeotropic compositions was revealed in studied variants of BIM(∼) in contrast to an explicit existence of the azeotropic compositions for the NCPT in chemically reacting plasmas and in astrophysical applications.

  16. Determining of migraine prognosis using latent growth mixture models.

    Science.gov (United States)

    Tasdelen, Bahar; Ozge, Aynur; Kaleagasi, Hakan; Erdogan, Semra; Mengi, Tufan

    2011-04-01

    This paper presents a retrospective study to classify patients into subtypes of the treatment according to baseline and longitudinally observed values considering heterogenity in migraine prognosis. In the classical prospective clinical studies, participants are classified with respect to baseline status and followed within a certain time period. However, latent growth mixture model is the most suitable method, which considers the population heterogenity and is not affected drop-outs if they are missing at random. Hence, we planned this comprehensive study to identify prognostic factors in migraine. The study data have been based on a 10-year computer-based follow-up data of Mersin University Headache Outpatient Department. The developmental trajectories within subgroups were described for the severity, frequency, and duration of headache separately and the probabilities of each subgroup were estimated by using latent growth mixture models. SAS PROC TRAJ procedures, semiparametric and group-based mixture modeling approach, were applied to define the developmental trajectories. While the three-group model for the severity (mild, moderate, severe) and frequency (low, medium, high) of headache appeared to be appropriate, the four-group model for the duration (low, medium, high, extremely high) was more suitable. The severity of headache increased in the patients with nausea, vomiting, photophobia and phonophobia. The frequency of headache was especially related with increasing age and unilateral pain. Nausea and photophobia were also related with headache duration. Nausea, vomiting and photophobia were the most significant factors to identify developmental trajectories. The remission time was not the same for the severity, frequency, and duration of headache.

  17. Spatially adaptive mixture modeling for analysis of FMRI time series.

    Science.gov (United States)

    Vincent, Thomas; Risser, Laurent; Ciuciu, Philippe

    2010-04-01

    Within-subject analysis in fMRI essentially addresses two problems, the detection of brain regions eliciting evoked activity and the estimation of the underlying dynamics. In Makni et aL, 2005 and Makni et aL, 2008, a detection-estimation framework has been proposed to tackle these problems jointly, since they are connected to one another. In the Bayesian formalism, detection is achieved by modeling activating and nonactivating voxels through independent mixture models (IMM) within each region while hemodynamic response estimation is performed at a regional scale in a nonparametric way. Instead of IMMs, in this paper we take advantage of spatial mixture models (SMM) for their nonlinear spatial regularizing properties. The proposed method is unsupervised and spatially adaptive in the sense that the amount of spatial correlation is automatically tuned from the data and this setting automatically varies across brain regions. In addition, the level of regularization is specific to each experimental condition since both the signal-to-noise ratio and the activation pattern may vary across stimulus types in a given brain region. These aspects require the precise estimation of multiple partition functions of underlying Ising fields. This is addressed efficiently using first path sampling for a small subset of fields and then using a recently developed fast extrapolation technique for the large remaining set. Simulation results emphasize that detection relying on supervised SMM outperforms its IMM counterpart and that unsupervised spatial mixture models achieve similar results without any hand-tuning of the correlation parameter. On real datasets, the gain is illustrated in a localizer fMRI experiment: brain activations appear more spatially resolved using SMM in comparison with classical general linear model (GLM)-based approaches, while estimating a specific parcel-based HRF shape. Our approach therefore validates the treatment of unsmoothed fMRI data without fixed GLM

  18. Models of supply function equilibrium with applications to the electricity industry

    Science.gov (United States)

    Aromi, J. Daniel

    Electricity market design requires tools that result in a better understanding of incentives of generators and consumers. Chapter 1 and 2 provide tools and applications of these tools to analyze incentive problems in electricity markets. In chapter 1, models of supply function equilibrium (SFE) with asymmetric bidders are studied. I prove the existence and uniqueness of equilibrium in an asymmetric SFE model. In addition, I propose a simple algorithm to calculate numerically the unique equilibrium. As an application, a model of investment decisions is considered that uses the asymmetric SFE as an input. In this model, firms can invest in different technologies, each characterized by distinct variable and fixed costs. In chapter 2, option contracts are introduced to a supply function equilibrium (SFE) model. The uniqueness of the equilibrium in the spot market is established. Comparative statics results on the effect of option contracts on the equilibrium price are presented. A multi-stage game where option contracts are traded before the spot market stage is considered. When contracts are optimally procured by a central authority, the selected profile of option contracts is such that the spot market price equals marginal cost for any load level resulting in a significant reduction in cost. If load serving entities (LSEs) are price takers, in equilibrium, there is no trade of option contracts. Even when LSEs have market power, the central authority's solution cannot be implemented in equilibrium. In chapter 3, we consider a game in which a buyer must repeatedly procure an input from a set of firms. In our model, the buyer is able to sign long term contracts that establish the likelihood with which the next period contract is awarded to an entrant or the incumbent. We find that the buyer finds it optimal to favor the incumbent, this generates more intense competition between suppliers. In a two period model we are able to completely characterize the optimal mechanism.

  19. Modeling Phase Equilibria for Acid Gas Mixtures Using the CPA Equation of State. I. Mixtures with H2S

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    (water, methanol, and glycols) are modeled assuming presence or not of cross-association interactions. Such interactions are accounted for using either a combining rule or a cross-solvation energy obtained from spectroscopic data. Using the parameters obtained from the binary systems, one ternary......The Cubic-Plus-Association (CPA) equation of state is applied to a large variety of mixtures containing H2S, which are of interest in the oil and gas industry. Binary H2S mixtures with alkanes, CO2, water, methanol, and glycols are first considered. The interactions of H2S with polar compounds...... and three quaternary mixtures are considered. It is shown that overall excellent correlation for binary, mixtures and satisfactory prediction results for multicomponent systems are obtained. There are significant differences between the various modeling approaches and the best results are obtained when...

  20. Quantum Cournot equilibrium for the Hotelling–Smithies model of product choice

    International Nuclear Information System (INIS)

    Rahaman, Ramij; Majumdar, Priyadarshi; Basu, B

    2012-01-01

    This paper demonstrates the quantization of a spatial Cournot duopoly model with product choice, a two stage game focusing on non-cooperation in locations and quantities. With quantization, the players can access a continuous set of strategies, using a continuous variable quantum mechanical approach. The presence of quantum entanglement in the initial state identifies a quantity equilibrium for each location pair choice with any transport cost. Also higher profit is obtained by the firms at Nash equilibrium. Adoption of quantum strategies rewards us by the existence of a larger quantum strategic space at equilibrium. (paper)

  1. A two-temperature chemical non-equilibrium modeling of DC arc plasma

    International Nuclear Information System (INIS)

    Qian Haiyang; Wu Bin

    2011-01-01

    To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)

  2. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    International Nuclear Information System (INIS)

    Yeh, G.T.; Iskra, G.A.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength

  3. Effective dielectric mixture model for characterization of diesel contaminated soil

    International Nuclear Information System (INIS)

    Al-Mattarneh, H.M.A.

    2007-01-01

    Human exposure to contaminated soil by diesel isomers can have serious health consequences like neurological diseases or cancer. The potential of dielectric measuring techniques for electromagnetic characterization of contaminated soils was investigated in this paper. The purpose of the research was to develop an empirical dielectric mixture model for soil hydrocarbon contamination application. The paper described the basic theory and elaborated in dielectric mixture theory. The analytical and empirical models were explained in simple algebraic formulas. The experimental study was then described with reference to materials, properties and experimental results. The results of the analytical models were also mathematically explained. The proposed semi-empirical model was also presented. According to the result of the electromagnetic properties of dry soil contaminated with diesel, the diesel presence had no significant effect on the electromagnetic properties of dry soil. It was concluded that diesel had no contribution to the soil electrical conductivity, which confirmed the nonconductive character of diesel. The results of diesel-contaminated soil at saturation condition indicated that both dielectric constant and loss factors of soil were decreased with increasing diesel content. 15 refs., 2 tabs., 9 figs

  4. Equilibrium and nonequilibrium attractors for a discrete, selection-migration model

    Science.gov (United States)

    James F. Selgrade; James H. Roberds

    2003-01-01

    This study presents a discrete-time model for the effects of selection and immigration on the demographic and genetic compositions of a population. Under biologically reasonable conditions, it is shown that the model always has an equilibrium. Although equilibria for similar models without migration must have real eigenvalues, for this selection-migration model we...

  5. Exploring the Use of Multiple Analogical Models when Teaching and Learning Chemical Equilibrium

    Science.gov (United States)

    Harrison, Allan G.; De Jong, Onno

    2005-01-01

    This study describes the multiple analogical models used to introduce and teach Grade 12 chemical equilibrium. We examine the teacher's reasons for using models, explain each model's development during the lessons, and analyze the understandings students derived from the models. A case study approach was used and the data were drawn from the…

  6. Measurements and modeling of quaternary (liquid + liquid) equilibria for mixtures of (methanol or ethanol + water + toluene + n-dodecane)

    International Nuclear Information System (INIS)

    Mohammad Doulabi, F.S.; Mohsen-Nia, M.; Modarress, H.

    2006-01-01

    The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol) (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography. The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents. The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents

  7. Experiments with Mixtures Designs, Models, and the Analysis of Mixture Data

    CERN Document Server

    Cornell, John A

    2011-01-01

    The most comprehensive, single-volume guide to conducting experiments with mixtures"If one is involved, or heavily interested, in experiments on mixtures of ingredients, one must obtain this book. It is, as was the first edition, the definitive work."-Short Book Reviews (Publication of the International Statistical Institute)"The text contains many examples with worked solutions and with its extensive coverage of the subject matter will prove invaluable to those in the industrial and educational sectors whose work involves the design and analysis of mixture experiments."-Journal of the Royal S

  8. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Directory of Open Access Journals (Sweden)

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  9. BGK-type models in strong reaction and kinetic chemical equilibrium regimes

    International Nuclear Information System (INIS)

    Monaco, R; Bianchi, M Pandolfi; Soares, A J

    2005-01-01

    A BGK-type procedure is applied to multi-component gases undergoing chemical reactions of bimolecular type. The relaxation process towards local Maxwellians, depending on mass and numerical densities of each species as well as common velocity and temperature, is investigated in two different cases with respect to chemical regimes. These cases are related to the strong reaction regime characterized by slow reactions, and to the kinetic chemical equilibrium regime where fast reactions take place. The consistency properties of both models are stated in detail. The trend to equilibrium is numerically tested and comparisons for the two regimes are performed within the hydrogen-air and carbon-oxygen reaction mechanism. In the spatial homogeneous case, it is also shown that the thermodynamical equilibrium of the models recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler equations

  10. Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model

    Directory of Open Access Journals (Sweden)

    Pessôa Filho P. A.

    2004-01-01

    Full Text Available Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.

  11. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia; Chazirakis, A.; Tsourtis, A.; Katsoulakis, M. A.; Plechá č, P.; Harmandaris, V.

    2016-01-01

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  12. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia

    2016-10-18

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  13. On population size estimators in the Poisson mixture model.

    Science.gov (United States)

    Mao, Chang Xuan; Yang, Nan; Zhong, Jinhua

    2013-09-01

    Estimating population sizes via capture-recapture experiments has enormous applications. The Poisson mixture model can be adopted for those applications with a single list in which individuals appear one or more times. We compare several nonparametric estimators, including the Chao estimator, the Zelterman estimator, two jackknife estimators and the bootstrap estimator. The target parameter of the Chao estimator is a lower bound of the population size. Those of the other four estimators are not lower bounds, and they may produce lower confidence limits for the population size with poor coverage probabilities. A simulation study is reported and two examples are investigated. © 2013, The International Biometric Society.

  14. Modeling and numerical analysis of non-equilibrium two-phase flows

    International Nuclear Information System (INIS)

    Rascle, P.; El Amine, K.

    1997-01-01

    We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English)

  15. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders

  16. The Equilibrium Analysis of a Closed Economy Model with Government and Money Market Sector

    Directory of Open Access Journals (Sweden)

    Catalin Angelo Ioan

    2011-10-01

    Full Text Available In this paper, we first study the static equilibrium of a a closed economy model in terms of dependence on national income and interest rate from the main factors namely the marginal propensity to consume, tax rate, investment rate and the rate of currency demand. In the second part, we study the dynamic equilibrium solutions in terms of stability. We thus obtain the variation functions of national income and interest rate variation and their limit values.

  17. The restricted stochastic user equilibrium with threshold model: Large-scale application and parameter testing

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Kjær; Nielsen, Otto Anker; Watling, David P.

    2017-01-01

    Equilibrium model (DUE), by combining the strengths of the Boundedly Rational User Equilibrium model and the Restricted Stochastic User Equilibrium model (RSUE). Thereby, the RSUET model reaches an equilibrated solution in which the flow is distributed according to Random Utility Theory among a consistently...... model improves the behavioural realism, especially for high congestion cases. Also, fast and well-behaved convergence to equilibrated solutions among non-universal choice sets is observed across different congestion levels, choice model scale parameters, and algorithm step sizes. Clearly, the results...... highlight that the RSUET outperforms the MNP SUE in terms of convergence, calculation time and behavioural realism. The choice set composition is validated by using 16,618 observed route choices collected by GPS devices in the same network and observing their reproduction within the equilibrated choice sets...

  18. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.

    Science.gov (United States)

    Khantuleva, Tatiana A; Shalymov, Dmitry S

    2017-03-06

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  19. A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Peter E [ORNL; Wang, Weile [ORNL; Law, Beverly E. [Oregon State University; Nemani, Ramakrishna R [NASA Ames Research Center

    2009-01-01

    The increasing complexity of ecosystem models represents a major difficulty in tuning model parameters and analyzing simulated results. To address this problem, this study develops a hierarchical scheme that simplifies the Biome-BGC model into three functionally cascaded tiers and analyzes them sequentially. The first-tier model focuses on leaf-level ecophysiological processes; it simulates evapotranspiration and photosynthesis with prescribed leaf area index (LAI). The restriction on LAI is then lifted in the following two model tiers, which analyze how carbon and nitrogen is cycled at the whole-plant level (the second tier) and in all litter/soil pools (the third tier) to dynamically support the prescribed canopy. In particular, this study analyzes the steady state of these two model tiers by a set of equilibrium equations that are derived from Biome-BGC algorithms and are based on the principle of mass balance. Instead of spinning-up the model for thousands of climate years, these equations are able to estimate carbon/nitrogen stocks and fluxes of the target (steady-state) ecosystem directly from the results obtained by the first-tier model. The model hierarchy is examined with model experiments at four AmeriFlux sites. The results indicate that the proposed scheme can effectively calibrate Biome-BGC to simulate observed fluxes of evapotranspiration and photosynthesis; and the carbon/nitrogen stocks estimated by the equilibrium analysis approach are highly consistent with the results of model simulations. Therefore, the scheme developed in this study may serve as a practical guide to calibrate/analyze Biome-BGC; it also provides an efficient way to solve the problem of model spin-up, especially for applications over large regions. The same methodology may help analyze other similar ecosystem models as well.

  20. Modeling Mathematical Programs with Equilibrium Constraints in Pyomo

    Energy Technology Data Exchange (ETDEWEB)

    Hart, William E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Siirola, John Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    We describe new capabilities for modeling MPEC problems within the Pyomo modeling software. These capabilities include new modeling components that represent complementar- ity conditions, modeling transformations for re-expressing models with complementarity con- ditions in other forms, and meta-solvers that apply transformations and numeric optimization solvers to optimize MPEC problems. We illustrate the breadth of Pyomo's modeling capabil- ities for MPEC problems, and we describe how Pyomo's meta-solvers can perform local and global optimization of MPEC problems.

  1. Fractionation of lemon essential oil by solvent extraction: Phase equilibrium for model systems at T = 298.2 K

    International Nuclear Information System (INIS)

    Koshima, Cristina C.; Capellini, Maria C.; Geremias, Ivana M.; Aracava, Keila K.; Gonçalves, Cintia B.; Rodrigues, Christianne E.C.

    2012-01-01

    Highlights: ► Deterpenation of lemon oil by solvent extraction using hydrous ethanol. ► Limonene, γ-terpinene, β-pinene, and citral were used to simulate the oil. ► Citral shows a higher distribution coefficient than the hydrocarbons. ► Terpenic hydrocarbons exhibit very similar phase separation behaviour. ► NRTL and UNIQUAC models provided a good description of the phase equilibrium. - Abstract: The fractioning of lemon essential oil can be performed by liquid–liquid extraction using hydrous ethanol as a solvent. A quaternary mixture composed of limonene, γ-terpinene, β-pinene, and citral was used to simulate lemon essential oil. In this paper, we present (liquid + liquid) equilibrium data that were experimentally determined for systems containing essential oil compounds, ethanol, and water at T = 298.2 K. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were less than 0.0053 in all systems, indicating the accuracy of these molecular models in describing our systems. The results show that as the water content in the solvent phase increased, the values of the distribution coefficients decreased, regardless of the type of compound studied. However, the oxygenated compound always showed the highest distribution coefficient among the components of the essential oil, thus making deterpenation of the lemon essential oil a feasible process.

  2. A mixture model for robust registration in Kinect sensor

    Science.gov (United States)

    Peng, Li; Zhou, Huabing; Zhu, Shengguo

    2018-03-01

    The Microsoft Kinect sensor has been widely used in many applications, but it suffers from the drawback of low registration precision between color image and depth image. In this paper, we present a robust method to improve the registration precision by a mixture model that can handle multiply images with the nonparametric model. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS).The estimation is performed by the EM algorithm which by also estimating the variance of the prior model is able to obtain good estimates. We illustrate the proposed method on the public available dataset. The experimental results show that our approach outperforms the baseline methods.

  3. Fast Bayesian Inference in Dirichlet Process Mixture Models.

    Science.gov (United States)

    Wang, Lianming; Dunson, David B

    2011-01-01

    There has been increasing interest in applying Bayesian nonparametric methods in large samples and high dimensions. As Markov chain Monte Carlo (MCMC) algorithms are often infeasible, there is a pressing need for much faster algorithms. This article proposes a fast approach for inference in Dirichlet process mixture (DPM) models. Viewing the partitioning of subjects into clusters as a model selection problem, we propose a sequential greedy search algorithm for selecting the partition. Then, when conjugate priors are chosen, the resulting posterior conditionally on the selected partition is available in closed form. This approach allows testing of parametric models versus nonparametric alternatives based on Bayes factors. We evaluate the approach using simulation studies and compare it with four other fast nonparametric methods in the literature. We apply the proposed approach to three datasets including one from a large epidemiologic study. Matlab codes for the simulation and data analyses using the proposed approach are available online in the supplemental materials.

  4. Prediction of the working parameters of a wood waste gasifier through an equilibrium model

    Energy Technology Data Exchange (ETDEWEB)

    Altafini, Carlos R.; Baretto, Ronaldo M. [Caxias do Sul Univ., Dept. of Mechanical Engineering, Caxias do Sul, RS (Brazil); Wander, Paulo R. [Caxias do Sul Univ., Dept. of Mechanical Engineering, Caxias do Sul, RS (Brazil); Federal Univ. of Rio Grande do Sul State (UFRGS), Mechanical Engineering Postgraduation Program (PROMEC), RS (Brazil)

    2003-10-01

    This paper deals with the computational simulation of a wood waste (sawdust) gasifier using an equilibrium model based on minimization of the Gibbs free energy. The gasifier has been tested with Pinus Elliotis sawdust, an exotic specie largely cultivated in the South of Brazil. The biomass used in the tests presented a moisture of nearly 10% (wt% on wet basis), and the average composition results of the gas produced (without tar) are compared with the equilibrium models used. Sensitivity studies to verify the influence of the moisture sawdust content on the fuel gas composition and on its heating value were made. More complex models to reproduce with better accuracy the gasifier studied were elaborated. Although the equilibrium models do not represent the reactions that occur at relatively high temperatures ( {approx_equal} 800 deg C) very well, these models can be useful to show some tendencies on the working parameter variations of a gasifier. (Author)

  5. Pre-equilibrium assumptions and statistical model parameters effects on reaction cross-section calculations

    International Nuclear Information System (INIS)

    Avrigeanu, M.; Avrigeanu, V.

    1992-02-01

    A systematic study on effects of statistical model parameters and semi-classical pre-equilibrium emission models has been carried out for the (n,p) reactions on the 56 Fe and 60 Co target nuclei. The results obtained by using various assumptions within a given pre-equilibrium emission model differ among them more than the ones of different models used under similar conditions. The necessity of using realistic level density formulas is emphasized especially in connection with pre-equilibrium emission models (i.e. with the exciton state density expression), while a basic support could be found only by replacement of the Williams exciton state density formula with a realistic one. (author). 46 refs, 12 figs, 3 tabs

  6. Soils apart from equilibrium – consequences for soil carbon balance modelling

    Directory of Open Access Journals (Sweden)

    T. Wutzler

    2007-01-01

    Full Text Available Many projections of the soil carbon sink or source are based on kinetically defined carbon pool models. Para-meters of these models are often determined in a way that the steady state of the model matches observed carbon stocks. The underlying simplifying assumption is that observed carbon stocks are near equilibrium. This assumption is challenged by observations of very old soils that do still accumulate carbon. In this modelling study we explored the consequences of the case where soils are apart from equilibrium. Calculation of equilibrium states of soils that are currently accumulating small amounts of carbon were performed using the Yasso model. It was found that already very small current accumulation rates cause big changes in theoretical equilibrium stocks, which can virtually approach infinity. We conclude that soils that have been disturbed several centuries ago are not in equilibrium but in a transient state because of the slowly ongoing accumulation of the slowest pool. A first consequence is that model calibrations to current carbon stocks that assume equilibrium state, overestimate the decay rate of the slowest pool. A second consequence is that spin-up runs (simulations until equilibrium overestimate stocks of recently disturbed sites. In order to account for these consequences, we propose a transient correction. This correction prescribes a lower decay rate of the slowest pool and accounts for disturbances in the past by decreasing the spin-up-run predicted stocks to match an independent estimate of current soil carbon stocks. Application of this transient correction at a Central European beech forest site with a typical disturbance history resulted in an additional carbon fixation of 5.7±1.5 tC/ha within 100 years. Carbon storage capacity of disturbed forest soils is potentially much higher than currently assumed. Simulations that do not adequately account for the transient state of soil carbon stocks neglect a considerable

  7. Microbial comparative pan-genomics using binomial mixture models

    Directory of Open Access Journals (Sweden)

    Ussery David W

    2009-08-01

    Full Text Available Abstract Background The size of the core- and pan-genome of bacterial species is a topic of increasing interest due to the growing number of sequenced prokaryote genomes, many from the same species. Attempts to estimate these quantities have been made, using regression methods or mixture models. We extend the latter approach by using statistical ideas developed for capture-recapture problems in ecology and epidemiology. Results We estimate core- and pan-genome sizes for 16 different bacterial species. The results reveal a complex dependency structure for most species, manifested as heterogeneous detection probabilities. Estimated pan-genome sizes range from small (around 2600 gene families in Buchnera aphidicola to large (around 43000 gene families in Escherichia coli. Results for Echerichia coli show that as more data become available, a larger diversity is estimated, indicating an extensive pool of rarely occurring genes in the population. Conclusion Analyzing pan-genomics data with binomial mixture models is a way to handle dependencies between genomes, which we find is always present. A bottleneck in the estimation procedure is the annotation of rarely occurring genes.

  8. Quantitation of movement of the phosphoryl group during catalytic transfer in the arginine kinase reaction: {sup 31}P relaxation measurements on enzyme-bound equilibrium mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Bruce D. [Indiana University, Purdue University at Indianapolis (IUPUI), Department of Physics (United States); Jarori, Gotam K. [Tata Institute of Fundamental Research (India); Nageswara Rao, B.D. [Indiana University, Purdue University at Indianapolis (IUPUI), Department of Physics (United States)], E-mail: brao@iupui.edu

    2002-05-15

    {sup 31}P nuclear spin relaxation measurements have been made on enzyme-bound equilibrium mixtures of lobster-muscle arginine kinase in the presence of substituent activating paramagnetic cation Co(II) (in place of Mg(II)), i.e., on samples in which the reaction, E{center_dot}CoATP{center_dot}arginine {r_reversible} E{center_dot}CoADP{center_dot}P-arginine, is in progress. The results have been analyzed on the basis of a previously published theory (Nageswara Rao, B.D. (1995) J. Magn. Reson., B108, 289-293) to determine the structural changes in the reaction complex accompanying phosphoryl transfer. The analysis enables the determination of the change in the Co(II)-{sup 31}P ({gamma}-P(ATP)) vector as the transferable phosphoryl group moves over and attaches to arginine to form P-arginine. It is shown that the Co(II)-{sup 31}P distance of {approx}3.0 A, representing direct coordination of Co(II) to {gamma}-P(ATP), changes to {approx}4.0 A when P-arginine is formed in the enzyme-bound reaction complex. This elongation of the Co(II)-{sup 31}P vector implies an excursion of at least 1.0 A for the itinerant phosphoryl group on the surface of the enzyme.

  9. Quantitation of movement of the phosphoryl group during catalytic transfer in the arginine kinase reaction: 31P relaxation measurements on enzyme-bound equilibrium mixtures

    International Nuclear Information System (INIS)

    Ray, Bruce D.; Jarori, Gotam K.; Nageswara Rao, B.D.

    2002-01-01

    31 P nuclear spin relaxation measurements have been made on enzyme-bound equilibrium mixtures of lobster-muscle arginine kinase in the presence of substituent activating paramagnetic cation Co(II) (in place of Mg(II)), i.e., on samples in which the reaction, E·CoATP·arginine ↔ E·CoADP·P-arginine, is in progress. The results have been analyzed on the basis of a previously published theory (Nageswara Rao, B.D. (1995) J. Magn. Reson., B108, 289-293) to determine the structural changes in the reaction complex accompanying phosphoryl transfer. The analysis enables the determination of the change in the Co(II)- 31 P (γ-P(ATP)) vector as the transferable phosphoryl group moves over and attaches to arginine to form P-arginine. It is shown that the Co(II)- 31 P distance of ∼3.0 A, representing direct coordination of Co(II) to γ-P(ATP), changes to ∼4.0 A when P-arginine is formed in the enzyme-bound reaction complex. This elongation of the Co(II)- 31 P vector implies an excursion of at least 1.0 A for the itinerant phosphoryl group on the surface of the enzyme

  10. Phenomenological model for non-equilibrium deuteron emission in nucleon induced reactions

    International Nuclear Information System (INIS)

    Broeders, C.H.M.; Konobeyev, A.Yu.

    2005-01-01

    A new approach is proposed for the calculation of non-equilibrium deuteron energy distributions in nuclear reactions induced by nucleons of intermediate energies. It combines the model of the nucleon pick-up, the coalescence and the deuteron knock-out. Emission and absorption rates for excited particles are described by the pre-equilibrium hybrid model. The model of Sato, Iwamoto, Harada is used to describe the nucleon pick-up and the coalescence of nucleons from the exciton configurations starting from (2p, 1h). The model of deuteron knock-out is formulated taking into account the Pauli principle for the nucleon-deuteron interaction inside a nucleus. The contribution of the direct nucleon pick-up is described phenomenologically. The multiple pre-equilibrium emission of particles is taken into account. The calculated deuteron energy distributions are compared with experimental data from 12 C to 209 Bi. (orig.)

  11. New Flexible Models and Design Construction Algorithms for Mixtures and Binary Dependent Variables

    NARCIS (Netherlands)

    A. Ruseckaite (Aiste)

    2017-01-01

    markdownabstractThis thesis discusses new mixture(-amount) models, choice models and the optimal design of experiments. Two chapters of the thesis relate to the so-called mixture, which is a product or service whose ingredients’ proportions sum to one. The thesis begins by introducing mixture

  12. Measuring Convergence using Dynamic Equilibrium Models: Evidence from Chinese Provinces

    DEFF Research Database (Denmark)

    Pan, Lei; Posch, Olaf; van der Wel, Michel

    We propose a model to study economic convergence in the tradition of neoclassical growth theory. We employ a novel stochastic set-up of the Solow (1956) model with shocks to both capital and labor. Our novel approach identifies the speed of convergence directly from estimating the parameters which...

  13. Tractography segmentation using a hierarchical Dirichlet processes mixture model.

    Science.gov (United States)

    Wang, Xiaogang; Grimson, W Eric L; Westin, Carl-Fredrik

    2011-01-01

    In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being manually specified. After the models of bundles have been learned from training data without supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across subjects. When clustering fibers of new subjects, new clusters can be created for structures not observed in the training data. Our approach does not require computing pairwise distances between fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data sets, the largest of which has more than 120,000 fibers. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Estuarine Facies Model Revisited: Conceptual Model of Estuarine Sediment Dynamics During Non-Equilibrium Conditions

    Science.gov (United States)

    Elliott, E. A.; Rodriguez, A. B.; McKee, B. A.

    2017-12-01

    Traditional models of estuarine systems show deposition occurs primarily within the central basin. There, accommodation space is high within the deep central valley, which is below regional wave base and where current energy is presumed to reach a relative minimum, promoting direct deposition of cohesive sediment and minimizing erosion. However, these models often reflect long-term (decadal-millennial) timescales, where accumulation rates are in relative equilibrium with the rate of relative sea-level rise, and lack the resolution to capture shorter term changes in sediment deposition and erosion within the central estuary. This work presents a conceptual model for estuarine sedimentation during non-equilibrium conditions, where high-energy inputs to the system reach a relative maximum in the central basin, resulting in temporary deposition and/or remobilization over sub-annual to annual timescales. As an example, we present a case study of Core Sound, NC, a lagoonal estuarine system where the regional base-level has been reached, and sediment deposition, resuspension and bypassing is largely a result of non-equilibrium, high-energy events. Utilizing a 465 cm-long sediment core from a mini-basin located between Core Sound and the continental shelf, a 40-year sub-annual chronology was developed for the system, with sediment accumulation rates (SAR) interpolated to a monthly basis over the 40-year record. This study links erosional processes in the estuary directly with sediment flux to the continental shelf, taking advantage of the highly efficient sediment trapping capability of the mini-basin. The SAR record indicates high variation in the estuarine sediment supply, with peaks in the SAR record at a recurrence interval of 1 year (+/- 0.25). This record has been compared to historical storm influence for the area. Through this multi-decadal record, sediment flushing events occur at a much more frequent interval than previously thought (i.e. annual rather than

  15. Pre-equilibrium nuclear reactions: An introduction to classical and quantum-mechanical models

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1999-01-01

    In studies of light-ion induced nuclear reactions one distinguishes three different mechanisms: direct, compound and pre-equilibrium nuclear reactions. These reaction processes can be subdivided according to time scales or, equivalently, the number of intranuclear collisions taking place before emission. Furthermore, each mechanism preferably excites certain parts of the nuclear level spectrum and is characterized by different types of angular distributions. This presentation includes description of the classical, exciton model, semi-classical models, with some selected results, and quantum mechanical models. A survey of classical versus quantum-mechanical pre-equilibrium reaction theory is presented including practical applications

  16. Absence of local thermal equilibrium in two models of heat conduction

    OpenAIRE

    Dhar, Abhishek; Dhar, Deepak

    1998-01-01

    A crucial assumption in the conventional description of thermal conduction is the existence of local thermal equilibrium. We test this assumption in two simple models of heat conduction. Our first model is a linear chain of planar spins with nearest neighbour couplings, and the second model is that of a Lorentz gas. We look at the steady state of the system when the two ends are connected to heat baths at temperatures T1 and T2. If T1=T2, the system reaches thermal equilibrium. If T1 is not e...

  17. Clustering disaggregated load profiles using a Dirichlet process mixture model

    International Nuclear Information System (INIS)

    Granell, Ramon; Axon, Colin J.; Wallom, David C.H.

    2015-01-01

    Highlights: • We show that the Dirichlet process mixture model is scaleable. • Our model does not require the number of clusters as an input. • Our model creates clusters only by the features of the demand profiles. • We have used both residential and commercial data sets. - Abstract: The increasing availability of substantial quantities of power-use data in both the residential and commercial sectors raises the possibility of mining the data to the advantage of both consumers and network operations. We present a Bayesian non-parametric model to cluster load profiles from households and business premises. Evaluators show that our model performs as well as other popular clustering methods, but unlike most other methods it does not require the number of clusters to be predetermined by the user. We used the so-called ‘Chinese restaurant process’ method to solve the model, making use of the Dirichlet-multinomial distribution. The number of clusters grew logarithmically with the quantity of data, making the technique suitable for scaling to large data sets. We were able to show that the model could distinguish features such as the nationality, household size, and type of dwelling between the cluster memberships

  18. Bayesian nonparametric meta-analysis using Polya tree mixture models.

    Science.gov (United States)

    Branscum, Adam J; Hanson, Timothy E

    2008-09-01

    Summary. A common goal in meta-analysis is estimation of a single effect measure using data from several studies that are each designed to address the same scientific inquiry. Because studies are typically conducted in geographically disperse locations, recent developments in the statistical analysis of meta-analytic data involve the use of random effects models that account for study-to-study variability attributable to differences in environments, demographics, genetics, and other sources that lead to heterogeneity in populations. Stemming from asymptotic theory, study-specific summary statistics are modeled according to normal distributions with means representing latent true effect measures. A parametric approach subsequently models these latent measures using a normal distribution, which is strictly a convenient modeling assumption absent of theoretical justification. To eliminate the influence of overly restrictive parametric models on inferences, we consider a broader class of random effects distributions. We develop a novel hierarchical Bayesian nonparametric Polya tree mixture (PTM) model. We present methodology for testing the PTM versus a normal random effects model. These methods provide researchers a straightforward approach for conducting a sensitivity analysis of the normality assumption for random effects. An application involving meta-analysis of epidemiologic studies designed to characterize the association between alcohol consumption and breast cancer is presented, which together with results from simulated data highlight the performance of PTMs in the presence of nonnormality of effect measures in the source population.

  19. Computable general equilibrium model fiscal year 2014 capability development report

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Brian Keith [Los Alamos National Laboratory; Boero, Riccardo [Los Alamos National Laboratory

    2016-05-11

    This report provides an overview of the development of the NISAC CGE economic modeling capability since 2012. This capability enhances NISAC's economic modeling and analysis capabilities to answer a broader set of questions than possible with previous economic analysis capability. In particular, CGE modeling captures how the different sectors of the economy, for example, households, businesses, government, etc., interact to allocate resources in an economy and this approach captures these interactions when it is used to estimate the economic impacts of the kinds of events NISAC often analyzes.

  20. Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering

    OpenAIRE

    Xiang, Sijia; Yao, Weixin

    2017-01-01

    In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...

  1. Simulation and thermodynamic modeling of the extraction of tocopherol from a synthetic mixture of tocopherol, squalene and CO2

    Directory of Open Access Journals (Sweden)

    M.F. Mendes

    2000-12-01

    Full Text Available Soybean oil is the most consumed vegetable oil in the world, representing 54% of the total world production. Brazil is the second country in the world that produces and export soybean seeds, almost 20%. One of the most important by-product of the soybean oil is the deodorizer distillate, commonly known as soybean sludge. This residue is rich in many high value compounds as tocopherols, squalene and sterols. Tocopherols are the major components in the deodorized distillated due to their characteristics as an antioxidant agent. So, the objective of this work is to study the concentration of tocopherols presented in this raw material, using the operational conditions obtained from the equilibrium data and using supercritical carbon dioxide as a solvent. The deodorizer distillate is a complex mixture of more than 200 components, so a synthetic mixture was chosen to represent the deodorizer distillate. The synthetic mixture used in this work is composed by tocopherols, fatty acids and squalene. The simulation was carried out using ASPEN+ simulator and the LCVM thermodynamic model was used to correlate the available equilibrium data.

  2. Models of direct reactions and quantum pre-equilibrium for nucleon scattering on spherical nuclei

    International Nuclear Information System (INIS)

    Dupuis, M.

    2006-01-01

    When a nucleon collides with a target nucleus, several reactions may occur: elastic and inelastic scatterings, charge exchange... In order to describe these reactions, different models are involved: the direct reactions, pre-equilibrium and compound nucleus models. Our goal is to study, within a quantum framework and without any adjustable parameter, the direct and pre-equilibrium reactions for nucleons scatterings off double closed-shell nuclei. We first consider direct reactions: we are studying nucleon scattering with the Melbourne G-matrix, which represents the interaction between the projectile and one target nucleon, and with random phase approximation (RPA) wave functions which describe all target states. This is a fully microscopic approach since no adjustable parameters are involved. A second part is dedicated to the study of nucleon inelastic scattering for large energy transfer which necessarily involves the pre-equilibrium mechanism. Several models have been developed in the past to deal with pre-equilibrium. They start from the Born expansion of the transition amplitude which is associated to the inelastic process and they use several approximations which have not yet been tested. We have achieved some comparisons between second order cross sections which have been calculated with and without these approximations. Our results allow us to criticize some of these approximations and give several directions to improve the quantum pre-equilibrium models. (author)

  3. Accounting for household heterogeneity in general equilibrium economic growth models

    International Nuclear Information System (INIS)

    Melnikov, N.B.; O'Neill, B.C.; Dalton, M.G.

    2012-01-01

    We describe and evaluate a new method of aggregating heterogeneous households that allows for the representation of changing demographic composition in a multi-sector economic growth model. The method is based on a utility and labor supply calibration that takes into account time variations in demographic characteristics of the population. We test the method using the Population-Environment-Technology (PET) model by comparing energy and emissions projections employing the aggregate representation of households to projections representing different household types explicitly. Results show that the difference between the two approaches in terms of total demand for energy and consumption goods is negligible for a wide range of model parameters. Our approach allows the effects of population aging, urbanization, and other forms of compositional change on energy demand and CO 2 emissions to be estimated and compared in a computationally manageable manner using a representative household under assumptions and functional forms that are standard in economic growth models.

  4. Modeling mixtures of thyroid gland function disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo

    Energy Technology Data Exchange (ETDEWEB)

    Thienpont, Benedicte; Barata, Carlos [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona, 18-26, 08034 Barcelona (Spain); Raldúa, Demetrio, E-mail: drpqam@cid.csic.es [Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona, 18-26, 08034 Barcelona (Spain); Maladies Rares: Génétique et Métabolisme (MRGM), University of Bordeaux, EA 4576, F-33400 Talence (France)

    2013-06-01

    Maternal thyroxine (T4) plays an essential role in fetal brain development, and even mild and transitory deficits in free-T4 in pregnant women can produce irreversible neurological effects in their offspring. Women of childbearing age are daily exposed to mixtures of chemicals disrupting the thyroid gland function (TGFDs) through the diet, drinking water, air and pharmaceuticals, which has raised the highest concern for the potential additive or synergic effects on the development of mild hypothyroxinemia during early pregnancy. Recently we demonstrated that zebrafish eleutheroembryos provide a suitable alternative model for screening chemicals impairing the thyroid hormone synthesis. The present study used the intrafollicular T4-content (IT4C) of zebrafish eleutheroembryos as integrative endpoint for testing the hypotheses that the effect of mixtures of TGFDs with a similar mode of action [inhibition of thyroid peroxidase (TPO)] was well predicted by a concentration addition concept (CA) model, whereas the response addition concept (RA) model predicted better the effect of dissimilarly acting binary mixtures of TGFDs [TPO-inhibitors and sodium-iodide symporter (NIS)-inhibitors]. However, CA model provided better prediction of joint effects than RA in five out of the six tested mixtures. The exception being the mixture MMI (TPO-inhibitor)-KClO{sub 4} (NIS-inhibitor) dosed at a fixed ratio of EC{sub 10} that provided similar CA and RA predictions and hence it was difficult to get any conclusive result. There results support the phenomenological similarity criterion stating that the concept of concentration addition could be extended to mixture constituents having common apical endpoints or common adverse outcomes. - Highlights: • Potential synergic or additive effect of mixtures of chemicals on thyroid function. • Zebrafish as alternative model for testing the effect of mixtures of goitrogens. • Concentration addition seems to predict better the effect of

  5. Modeling mixtures of thyroid gland function disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo

    International Nuclear Information System (INIS)

    Thienpont, Benedicte; Barata, Carlos; Raldúa, Demetrio

    2013-01-01

    Maternal thyroxine (T4) plays an essential role in fetal brain development, and even mild and transitory deficits in free-T4 in pregnant women can produce irreversible neurological effects in their offspring. Women of childbearing age are daily exposed to mixtures of chemicals disrupting the thyroid gland function (TGFDs) through the diet, drinking water, air and pharmaceuticals, which has raised the highest concern for the potential additive or synergic effects on the development of mild hypothyroxinemia during early pregnancy. Recently we demonstrated that zebrafish eleutheroembryos provide a suitable alternative model for screening chemicals impairing the thyroid hormone synthesis. The present study used the intrafollicular T4-content (IT4C) of zebrafish eleutheroembryos as integrative endpoint for testing the hypotheses that the effect of mixtures of TGFDs with a similar mode of action [inhibition of thyroid peroxidase (TPO)] was well predicted by a concentration addition concept (CA) model, whereas the response addition concept (RA) model predicted better the effect of dissimilarly acting binary mixtures of TGFDs [TPO-inhibitors and sodium-iodide symporter (NIS)-inhibitors]. However, CA model provided better prediction of joint effects than RA in five out of the six tested mixtures. The exception being the mixture MMI (TPO-inhibitor)-KClO 4 (NIS-inhibitor) dosed at a fixed ratio of EC 10 that provided similar CA and RA predictions and hence it was difficult to get any conclusive result. There results support the phenomenological similarity criterion stating that the concept of concentration addition could be extended to mixture constituents having common apical endpoints or common adverse outcomes. - Highlights: • Potential synergic or additive effect of mixtures of chemicals on thyroid function. • Zebrafish as alternative model for testing the effect of mixtures of goitrogens. • Concentration addition seems to predict better the effect of mixtures of

  6. Modeling dynamic functional connectivity using a wishart mixture model

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard

    2017-01-01

    framework provides model selection by quantifying models generalization to new data. We use this to quantify the number of states within a prespecified window length. We further propose a heuristic procedure for choosing the window length based on contrasting for each window length the predictive...... together whereas short windows are more unstable and influenced by noise and we find that our heuristic correctly identifies an adequate level of complexity. On single subject resting state fMRI data we find that dynamic models generally outperform static models and using the proposed heuristic points...

  7. Multiple Response Regression for Gaussian Mixture Models with Known Labels.

    Science.gov (United States)

    Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng

    2012-12-01

    Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes.

  8. A numerical model for simulating electroosmotic micro- and nanochannel flows under non-Boltzmann equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoungjin; Kwak, Ho Sang [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Song, Tae-Ho, E-mail: kimkj@kumoh.ac.kr, E-mail: hskwak@kumoh.ac.kr, E-mail: thsong@kaist.ac.kr [Department of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)

    2011-08-15

    This paper describes a numerical model for simulating electroosmotic flows (EOFs) under non-Boltzmann equilibrium in a micro- and nanochannel. The transport of ionic species is represented by employing the Nernst-Planck equation. Modeling issues related to numerical difficulties are discussed, which include the handling of boundary conditions based on surface charge density, the associated treatment of electric potential and the evasion of nonlinearity due to the electric body force. The EOF in the entrance region of a straight channel is examined. The numerical results show that the present model is useful for the prediction of the EOFs requiring a fine resolution of the electric double layer under either the Boltzmann equilibrium or non-equilibrium. Based on the numerical results, the correlation between the surface charge density and the zeta potential is investigated.

  9. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikić, Zoran; Linker, Jon A.

    2013-01-01

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 Å and 131 Å channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model

  10. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2015-10-09

    The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.

  11. Restructured electric power systems analysis of electricity markets with equilibrium models

    CERN Document Server

    2010-01-01

    Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets.

  12. Regional disaster impact analysis: comparing Input-Output and Computable General Equilibrium models

    NARCIS (Netherlands)

    Koks, E.E.; Carrera, L.; Jonkeren, O.; Aerts, J.C.J.H.; Husby, T.G.; Thissen, M.; Standardi, G.; Mysiak, J.

    2016-01-01

    A variety of models have been applied to assess the economic losses of disasters, of which the most common ones are input-output (IO) and computable general equilibrium (CGE) models. In addition, an increasing number of scholars have developed hybrid approaches: one that combines both or either of

  13. The Matrix model, a driven state variables approach to non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    2001-01-01

    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  14. A general equilibrium model of ecosystem services in a river basin

    Science.gov (United States)

    Travis Warziniack

    2014-01-01

    This study builds a general equilibrium model of ecosystem services, with sectors of the economy competing for use of the environment. The model recognizes that production processes in the real world require a combination of natural and human inputs, and understanding the value of these inputs and their competing uses is necessary when considering policies of resource...

  15. Phase equilibrium modeling of gas hydrate systems for CO2 capture

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2012-01-01

    to form from vapor phases with initial mole fractions of CO2 at or above 0.15.The two models are validated against mixed hydrate equilibrium data found in literature. Both dissociation pressures and hydrate compositions are considered in the validation process.With the fitted parameters, Model I predicts...

  16. Quasi-equilibrium channel model of an constant current arc

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2003-01-01

    Full Text Available The rather simple method of calculation of electronic and gas temperature in the channel of arc of plasma generator is offered. This method is based on self-consistent two-temperature channel model of an electric arc. The method proposed enables to obtain radial allocation of gas and electronic temperatures in a non-conducting zone of an constant current arc, for prescribed parameters of discharge (current intensity and power of the discharge, with enough good precision. The results obtained can be used in model and engineering calculations to estimate gas and electronic temperatures in the channel of an arc plasma generator.

  17. General equilibrium basic needs policy model, (updating part).

    OpenAIRE

    Kouwenaar A

    1985-01-01

    ILO pub-WEP pub-PREALC pub. Working paper, econometric model for the assessment of structural change affecting development planning for basic needs satisfaction in Ecuador - considers population growth, family size (households), labour force participation, labour supply, wages, income distribution, profit rates, capital ownership, etc.; examines nutrition, education and health as factors influencing productivity. Diagram, graph, references, statistical tables.

  18. Developing a Dynamic Stochastic General Equilibrium Model for the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    They bring benefits by helping to project changes that take place because of shocks to the ... This proposal seeks to develop a DSGE model for the Indian economy to ... In partnership with UNESCO's Organization for Women in Science for the ...

  19. Two-temperature chemically non-equilibrium modelling of an air supersonic ICP

    Energy Technology Data Exchange (ETDEWEB)

    El Morsli, Mbark; Proulx, Pierre [Laboratoire de Modelisation de Procedes Chimiques par Ordinateur Oppus, Departement de Genie Chimique, Universite de Sherbrooke (Ciheam) J1K 2R1 (Canada)

    2007-08-21

    In this work, a non-equilibrium mathematical model for an air inductively coupled plasma torch with a supersonic nozzle is developed without making thermal and chemical equilibrium assumptions. Reaction rate equations are written, and two coupled energy equations are used, one for the calculation of the translational-rotational temperature T{sub hr} and one for the calculation of the electro-vibrational temperature T{sub ev}. The viscous dissipation is taken into account in the translational-rotational energy equation. The electro-vibrational energy equation also includes the pressure work of the electrons, the Ohmic heating power and the exchange due to elastic collision. Higher order approximations of the Chapman-Enskog method are used to obtain better accuracy for transport properties, taking advantage of the most recent sets of collisions integrals available in the literature. The results obtained are compared with those obtained using a chemical equilibrium model and a one-temperature chemical non-equilibrium model. The influence of the power and the pressure chamber on the chemical and thermal non-equilibrium is investigated.

  20. A smooth mixture of Tobits model for healthcare expenditure.

    Science.gov (United States)

    Keane, Michael; Stavrunova, Olena

    2011-09-01

    This paper develops a smooth mixture of Tobits (SMTobit) model for healthcare expenditure. The model is a generalization of the smoothly mixing regressions framework of Geweke and Keane (J Econometrics 2007; 138: 257-290) to the case of a Tobit-type limited dependent variable. A Markov chain Monte Carlo algorithm with data augmentation is developed to obtain the posterior distribution of model parameters. The model is applied to the US Medicare Current Beneficiary Survey data on total medical expenditure. The results suggest that the model can capture the overall shape of the expenditure distribution very well, and also provide a good fit to a number of characteristics of the conditional (on covariates) distribution of expenditure, such as the conditional mean, variance and probability of extreme outcomes, as well as the 50th, 90th, and 95th, percentiles. We find that healthier individuals face an expenditure distribution with lower mean, variance and probability of extreme outcomes, compared with their counterparts in a worse state of health. Males have an expenditure distribution with higher mean, variance and probability of an extreme outcome, compared with their female counterparts. The results also suggest that heart and cardiovascular diseases affect the expenditure of males more than that of females. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Modeling of columnar and equiaxed solidification of binary mixtures

    International Nuclear Information System (INIS)

    Roux, P.

    2005-12-01

    This work deals with the modelling of dendritic solidification in binary mixtures. Large scale phenomena are represented by volume averaging of the local conservation equations. This method allows to rigorously derive the partial differential equations of averaged fields and the closure problems associated to the deviations. Such problems can be resolved numerically on periodic cells, representative of dendritic structures, in order to give a precise evaluation of macroscopic transfer coefficients (Drag coefficients, exchange coefficients, diffusion-dispersion tensors...). The method had already been applied for a model of columnar dendritic mushy zone and it is extended to the case of equiaxed dendritic solidification, where solid grains can move. The two-phase flow is modelled with an Eulerian-Eulerian approach and the novelty is to account for the dispersion of solid velocity through the kinetic agitation of the particles. A coupling of the two models is proposed thanks to an original adaptation of the columnar model, allowing for undercooling calculation: a solid-liquid interfacial area density is introduced and calculated. At last, direct numerical simulations of crystal growth are proposed with a diffuse interface method for a representation of local phenomena. (author)

  2. Microbial comparative pan-genomics using binomial mixture models

    DEFF Research Database (Denmark)

    Ussery, David; Snipen, L; Almøy, T

    2009-01-01

    The size of the core- and pan-genome of bacterial species is a topic of increasing interest due to the growing number of sequenced prokaryote genomes, many from the same species. Attempts to estimate these quantities have been made, using regression methods or mixture models. We extend the latter...... approach by using statistical ideas developed for capture-recapture problems in ecology and epidemiology. RESULTS: We estimate core- and pan-genome sizes for 16 different bacterial species. The results reveal a complex dependency structure for most species, manifested as heterogeneous detection...... probabilities. Estimated pan-genome sizes range from small (around 2600 gene families) in Buchnera aphidicola to large (around 43000 gene families) in Escherichia coli. Results for Echerichia coli show that as more data become available, a larger diversity is estimated, indicating an extensive pool of rarely...

  3. A Generic Model for Prediction of Separation Performance of Olefin/Paraffin Mixture by Glassy Polymer Membranes

    Directory of Open Access Journals (Sweden)

    A.A. Ghoreyshi

    2008-02-01

    Full Text Available The separation of olefin/paraffin mixtures is an important process in petrochemical industries, which is traditionally performed by low temperature distillation with a high-energy consumption, or complex extractive distillationand adsorption techniques. Membrane separation process is emerging as an alternative for traditional separation processes with respect to low energy and simple operation. Investigations made by various researchers on polymeric membranes it is found that special glassy polymers render them as suitable materials for olefin/paraffin mixture separation. In this regard, having some knowledge on the possible transport mechanism of these processes would play a significant role in their design and applications. In this study, separation behavior of olefin/paraffin mixtures through glassy polymers was modeled by three different approaches: the so-called dual transport model, the basic adsorption-diffusion theory and the general Maxwell-Stefan formulation. The systems chosen to validate the developed transport models are separation of ethane-ethylene mixture by 6FDA-6FpDA polyimide membrane and propane-propylene mixture by 6FDA-TrMPD polyimide membrane for which the individual sorption and permeation data are available in the literature. Acritical examination of dual transport model shows that this model fails clearly to predict even the proper trend for selectivities. The adjustment of pemeabilities by accounting for the contribution of non-selective bulk flow in the transport model introduced no improvement in the predictability of the model. The modeling results based on the basic adsorption-diffusion theory revealed that in this approach only using mixed permeability data, an acceptable result is attainable which fades out the advantages of predictibility of multicomponent separation performance from pure component data. Finally, the results obtained from the model developed based on Maxwell-Stefan formulation approach show a

  4. Copper removal by algal biomass: biosorbents characterization and equilibrium modelling.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Pinheiro, José P S; Domingos, Rute F; Boaventura, Rui A R

    2009-04-30

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g(-1)) and proton binding parameters (pK(H)=5.0, 5.3 and 4.4; m(H)=0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK(M) (3.2; 3.6 and 3.3), n(M) (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.

  5. Copper removal by algal biomass: Biosorbents characterization and equilibrium modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Pinheiro, Jose P.S.; Domingos, Rute F. [Centro de Biomedicina Molecular e Estrutural, Department of Chemistry and Biochemistry, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2009-04-30

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g{sup -1}) and proton binding parameters (pK{sup '}{sub H}=5.0,5.3and4.4;m{sub H} = 0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK{sup '}{sub M} (3.2; 3.6 and 3.3), n{sub M} (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.

  6. Copper removal by algal biomass: Biosorbents characterization and equilibrium modelling

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Botelho, Cidalia M.S.; Pinheiro, Jose P.S.; Domingos, Rute F.; Boaventura, Rui A.R.

    2009-01-01

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g -1 ) and proton binding parameters (pK ' H =5.0,5.3and4.4;m H = 0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK ' M (3.2; 3.6 and 3.3), n M (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions

  7. Atomistic modeling of thermodynamic equilibrium and polymorphism of iron

    International Nuclear Information System (INIS)

    Lee, Tongsik; Baskes, Michael I; Valone, Steven M; Doll, J D

    2012-01-01

    We develop two new modified embedded-atom method (MEAM) potentials for elemental iron, intended to reproduce the experimental phase stability with respect to both temperature and pressure. These simple interatomic potentials are fitted to a wide variety of material properties of bcc iron in close agreement with experiments. Numerous defect properties of bcc iron and bulk properties of the two close-packed structures calculated with these models are in reasonable agreement with the available first-principles calculations and experiments. Performance at finite temperatures of these models has also been examined using Monte Carlo simulations. We attempt to reproduce the experimental iron polymorphism at finite temperature by means of free energy computations, similar to the procedure previously pursued by Müller et al (2007 J. Phys.: Condens. Matter 19 326220), and re-examine the adequacy of the conclusion drawn in the study by addressing two critical aspects missing in their analysis: (i) the stability of the hcp structure relative to the bcc and fcc structures and (ii) the compatibility between the temperature and pressure dependences of the phase stability. Using two MEAM potentials, we are able to represent all of the observed structural phase transitions in iron. We discuss that the correct reproductions of the phase stability among three crystal structures of iron with respect to both temperature and pressure are incompatible with each other due to the lack of magnetic effects in this class of empirical interatomic potential models. The MEAM potentials developed in this study correctly predict, in the bcc structure, the self-interstitial in the 〈110〉 orientation to be the most stable configuration, and the screw dislocation to have a non-degenerate core structure, in contrast to many embedded-atom method potentials for bcc iron in the literature. (paper)

  8. Quasi-equilibrium models of magnetized compact objects

    International Nuclear Information System (INIS)

    Markakis, Charalampos; Uryu, Koji; Gourgoulhon, Eric

    2011-01-01

    We report work towards a relativistic formulation for modeling strongly magnetized neutron stars, rotating or in a close circular orbit around another neutron star or black hole, under the approximations of helical symmetry and ideal MHD. The quasi-stationary evolution is governed by the frst law of thermodynamics for helically symmetric systems, which is generalized to include magnetic felds. The formulation involves an iterative scheme for solving the Einstein-Maxwell and relativistic MHD-Euler equations numerically. The resulting configurations for binary systems could be used as self-consistent initial data for studying their inspiral and merger.

  9. Equilibrium models of trade equations : a critical review

    OpenAIRE

    Portugal, Marcelo Savino

    1993-01-01

    Neste artigo, revisa-se a literatura teórica sobre equações de comércio exterior, inclusive o modelo de comércio baseado na teoria da produção. Discute-se vários problemas comumente encontrados em trabalhos empíricos e também a literatura existente sobre equações relativas ao comércio exterior brasileiro. In this paper we review the theoretical literature on trade equation models, including the production theory approach. We discuss several empirical problems commonly found in the applied ...

  10. Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.

    Science.gov (United States)

    Jia, Chen; Qian, Minping; Jiang, Daquan

    2014-08-01

    A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.

  11. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    Energy Technology Data Exchange (ETDEWEB)

    Kulik, D.; Berner, U.; Curti, E

    2004-03-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  12. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    International Nuclear Information System (INIS)

    Kulik, D.; Berner, U.; Curti, E.

    2004-01-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  13. An experiment on radioactive equilibrium and its modelling using the ‘radioactive dice’ approach

    Science.gov (United States)

    Santostasi, Davide; Malgieri, Massimiliano; Montagna, Paolo; Vitulo, Paolo

    2017-07-01

    In this article we describe an educational activity on radioactive equilibrium we performed with secondary school students (17-18 years old) in the context of a vocational guidance stage for talented students at the Department of Physics of the University of Pavia. Radioactive equilibrium is investigated experimentally by having students measure the activity of 214Bi from two different samples, obtained using different preparation procedures from an uraniferous rock. Students are guided in understanding the mathematical structure of radioactive equilibrium through a modelling activity in two parts. Before the lab measurements, a dice game, which extends the traditional ‘radioactive dice’ activity to the case of a chain of two decaying nuclides, is performed by students divided into small groups. At the end of the laboratory work, students design and run a simple spreadsheet simulation modelling the same basic radioactive chain with user defined decay constants. By setting the constants to realistic values corresponding to nuclides of the uranium decay chain, students can deepen their understanding of the meaning of the experimental data, and also explore the difference between cases of non-equilibrium, transient and secular equilibrium.

  14. Modeling of non-additive mixture properties using the Online CHEmical database and Modeling environment (OCHEM

    Directory of Open Access Journals (Sweden)

    Oprisiu Ioana

    2013-01-01

    Full Text Available Abstract The Online Chemical Modeling Environment (OCHEM, http://ochem.eu is a web-based platform that provides tools for automation of typical steps necessary to create a predictive QSAR/QSPR model. The platform consists of two major subsystems: a database of experimental measurements and a modeling framework. So far, OCHEM has been limited to the processing of individual compounds. In this work, we extended OCHEM with a new ability to store and model properties of binary non-additive mixtures. The developed system is publicly accessible, meaning that any user on the Web can store new data for binary mixtures and develop models to predict their non-additive properties. The database already contains almost 10,000 data points for the density, bubble point, and azeotropic behavior of binary mixtures. For these data, we developed models for both qualitative (azeotrope/zeotrope and quantitative endpoints (density and bubble points using different learning methods and specially developed descriptors for mixtures. The prediction performance of the models was similar to or more accurate than results reported in previous studies. Thus, we have developed and made publicly available a powerful system for modeling mixtures of chemical compounds on the Web.

  15. Game equilibrium models I evolution and game dynamics

    CERN Document Server

    1991-01-01

    There are two main approaches towards the phenotypic analysis of frequency dependent natural selection. First, there is the approach of evolutionary game theory, which was introduced in 1973 by John Maynard Smith and George R. Price. In this theory, the dynamical process of natural selection is not modeled explicitly. Instead, the selective forces acting within a population are represented by a fitness function, which is then analysed according to the concept of an evolutionarily stable strategy or ESS. Later on, the static approach of evolutionary game theory has been complemented by a dynamic stability analysis of the replicator equations. Introduced by Peter D. Taylor and Leo B. Jonker in 1978, these equations specify a class of dynamical systems, which provide a simple dynamic description of a selection process. Usually, the investigation of the replicator dynamics centers around a stability analysis of their stationary solutions. Although evolutionary stability and dynamic stability both intend to charac...

  16. Flexible Mixture-Amount Models for Business and Industry Using Gaussian Processes

    NARCIS (Netherlands)

    A. Ruseckaite (Aiste); D. Fok (Dennis); P.P. Goos (Peter)

    2016-01-01

    markdownabstractMany products and services can be described as mixtures of ingredients whose proportions sum to one. Specialized models have been developed for linking the mixture proportions to outcome variables, such as preference, quality and liking. In many scenarios, only the mixture

  17. Induced polarization of clay-sand mixtures: experiments and modeling

    International Nuclear Information System (INIS)

    Okay, G.; Leroy, P.; Tournassat, C.; Ghorbani, A.; Jougnot, D.; Cosenza, P.; Camerlynck, C.; Cabrera, J.; Florsch, N.; Revil, A.

    2012-01-01

    were performed with a cylindrical four-electrode sample-holder (cylinder made of PVC with 30 cm in length and 19 cm in diameter) associated with a SIP-Fuchs II impedance meter and non-polarizing Cu/CuSO 4 electrodes. These electrodes were installed at 10 cm from the base of the sample holder and regularly spaced (each 90 degree). The results illustrate the strong impact of the Cationic Exchange Capacity (CEC) of the clay minerals upon the complex conductivity. The amplitude of the in-phase conductivity of the kaolinite-clay samples is strongly dependent to saturating fluid salinity for all volumetric clay fractions, whereas the in-phase conductivity of the smectite-clay samples is quite independent on the salinity, except at the low clay content (5% and 1% of clay in volume). This is due to the strong and constant surface conductivity of smectite associated with its very high CEC. The quadrature conductivity increases steadily with the CEC and the clay content. We observe that the dependence on frequency of the quadrature conductivity of sand-kaolinite mixtures is more important than for sand-bentonite mixtures. For both types of clay, the quadrature conductivity seems to be fairly independent on the pore fluid salinity except at very low clay contents (1% in volume of kaolinite-clay). This is due to the constant surface site density of Na counter-ions in the Stern layer of clay materials. At the lowest clay content (1%), the magnitude of the quadrature conductivity increases with the salinity, as expected for silica sands. In this case, the surface site density of Na counter-ions in the Stern layer increases with salinity. The experimental data show good agreement with predicted values given by our Spectral Induced Polarization (SIP) model. This complex conductivity model considers the electrochemical polarization of the Stern layer coating the clay particles and the Maxwell-Wagner polarization. We use the differential effective medium theory to calculate the complex

  18. Comparing two non-equilibrium approaches to modelling of a free-burning arc

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Cunha, M D

    2013-01-01

    Two models of high-pressure arc discharges are compared with each other and with experimental data for an atmospheric-pressure free-burning arc in argon for arc currents of 20–200 A. The models account for space-charge effects and thermal and ionization non-equilibrium in somewhat different ways. One model considers space-charge effects, thermal and ionization non-equilibrium in the near-cathode region and thermal non-equilibrium in the bulk plasma. The other model considers thermal and ionization non-equilibrium in the entire arc plasma and space-charge effects in the near-cathode region. Both models are capable of predicting the arc voltage in fair agreement with experimental data. Differences are observed in the arc attachment to the cathode, which do not strongly affect the near-cathode voltage drop and the total arc voltage for arc currents exceeding 75 A. For lower arc currents the difference is significant but the arc column structure is quite similar and the predicted bulk plasma characteristics are relatively close to each other. (paper)

  19. Continuum model of non-equilibrium solvation and solvent effect on ultra-fast processes

    International Nuclear Information System (INIS)

    Li Xiangyuan; Fu Kexiang; Zhu Quan

    2006-01-01

    In the past 50 years, non-equilibrium solvation theory for ultra-fast processes such as electron transfer and light absorption/emission has attracted particular interest. A great deal of research efforts was made in this area and various models which give reasonable qualitative descriptions for such as solvent reorganization energy in electron transfer and spectral shift in solution, were developed within the framework of continuous medium theory. In a series of publications by the authors, we clarified that the expression of the non-equilibrium electrostatic free energy that is at the dominant position of non-equilibrium solvation and serves as the basis of various models, however, was incorrectly formulated. In this work, the authors argue that reversible charging work integration was inappropriately applied in the past to an irreversible path linking the equilibrium or the non-equilibrium state. Because the step from the equilibrium state to the nonequilibrium state is factually thermodynamically irreversible, the conventional expression for non-equilibrium free energy that was deduced in different ways is unreasonable. Here the authors derive the non-equilibrium free energy to a quite different form according to Jackson integral formula. Such a difference throws doubts to the models including the famous Marcus two-sphere model for solvent reorganization energy of electron transfer and the Lippert-Mataga equation for spectral shift. By introducing the concept of 'spring energy' arising from medium polarizations, the energy constitution of the non-equilibrium state is highlighted. For a solute-solvent system, the authors separate the total electrostatic energy into different components: the self-energies of solute charge and polarized charge, the interaction energy between them and the 'spring energy' of the solvent polarization. With detailed reasoning and derivation, our formula for non-equilibrium free energy can be reached through different ways. Based on the

  20. Modelling the effect of mixture components on permeation through skin.

    Science.gov (United States)

    Ghafourian, T; Samaras, E G; Brooks, J D; Riviere, J E

    2010-10-15

    A vehicle influences the concentration of penetrant within the membrane, affecting its diffusivity in the skin and rate of transport. Despite the huge amount of effort made for the understanding and modelling of the skin absorption of chemicals, a reliable estimation of the skin penetration potential from formulations remains a challenging objective. In this investigation, quantitative structure-activity relationship (QSAR) was employed to relate the skin permeation of compounds to the chemical properties of the mixture ingredients and the molecular structures of the penetrants. The skin permeability dataset consisted of permeability coefficients of 12 different penetrants each blended in 24 different solvent mixtures measured from finite-dose diffusion cell studies using porcine skin. Stepwise regression analysis resulted in a QSAR employing two penetrant descriptors and one solvent property. The penetrant descriptors were octanol/water partition coefficient, logP and the ninth order path molecular connectivity index, and the solvent property was the difference between boiling and melting points. The negative relationship between skin permeability coefficient and logP was attributed to the fact that most of the drugs in this particular dataset are extremely lipophilic in comparison with the compounds in the common skin permeability datasets used in QSAR. The findings show that compounds formulated in vehicles with small boiling and melting point gaps will be expected to have higher permeation through skin. The QSAR was validated internally, using a leave-many-out procedure, giving a mean absolute error of 0.396. The chemical space of the dataset was compared with that of the known skin permeability datasets and gaps were identified for future skin permeability measurements. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Toxicological risk assessment of complex mixtures through the Wtox model

    Directory of Open Access Journals (Sweden)

    William Gerson Matias

    2015-01-01

    Full Text Available Mathematical models are important tools for environmental management and risk assessment. Predictions about the toxicity of chemical mixtures must be enhanced due to the complexity of eects that can be caused to the living species. In this work, the environmental risk was accessed addressing the need to study the relationship between the organism and xenobiotics. Therefore, ve toxicological endpoints were applied through the WTox Model, and with this methodology we obtained the risk classication of potentially toxic substances. Acute and chronic toxicity, citotoxicity and genotoxicity were observed in the organisms Daphnia magna, Vibrio scheri and Oreochromis niloticus. A case study was conducted with solid wastes from textile, metal-mechanic and pulp and paper industries. The results have shown that several industrial wastes induced mortality, reproductive eects, micronucleus formation and increases in the rate of lipid peroxidation and DNA methylation of the organisms tested. These results, analyzed together through the WTox Model, allowed the classication of the environmental risk of industrial wastes. The evaluation showed that the toxicological environmental risk of the samples analyzed can be classied as signicant or critical.

  2. A development of multi-Species mass transport model considering thermodynamic phase equilibrium

    DEFF Research Database (Denmark)

    Hosokawa, Yoshifumi; Yamada, Kazuo; Johannesson, Björn

    2008-01-01

    ) variation in solid-phase composition when using different types of cement, (ii) physicochemical evaluation of steel corrosion initiation behaviour by calculating the molar ratio of chloride ion to hydroxide ion [Cl]/[OH] in pore solution, (iii) complicated changes of solid-phase composition caused......In this paper, a multi-species mass transport model, which can predict time dependent variation of pore solution and solid-phase composition due to the mass transport into the hardened cement paste, has been developed. Since most of the multi-species models established previously, based...... on the Poisson-Nernst-Planck theory, did not involve the modeling of chemical process, it has been coupled to thermodynamic equilibrium model in this study. By the coupling of thermodynamic equilibrium model, the multi-species model could simulate many different behaviours in hardened cement paste such as: (i...

  3. A new model of equilibrium subsurface hydration on Mars

    Science.gov (United States)

    Hecht, M. H.

    2011-12-01

    One of the surprises of the Odyssey mission was the discovery by the Gamma Ray Spectrometer (GRS) suite of large concentrations of water-equivalent hydrogen (WEH) in the shallow subsurface at low latitudes, consistent with 5-7% regolith water content by weight (Mitrofanov et al. Science 297, p. 78, 2002; Feldman et al. Science 297, p. 75, 2002). Water at low latitudes on Mars is generally believed to be sequestered in the form of hydrated minerals. Numerous attempts have been made to relate the global map of WEH to specific mineralogy. For example Feldman et al. (Geophys. Res. Lett., 31, L16702, 2004) associated an estimated 10% sulfate content of the soil with epsomite (51% water), hexahydrite (46% water) and kieserite (13% water). In such studies, stability maps have been created by assuming equilibration of the subsurface water vapor density with a global mean annual column mass vapor density. Here it is argued that this value significantly understates the subsurface humidity. Results from the Phoenix mission are used to suggest that the midday vapor pressure measured just above the surface is a better proxy for the saturation vapor pressure of subsurface hydrous minerals. The measured frostpoint at the Phoenix site was found to be equal to the surface temperature by night and the modeled temperature at the top of the ice table by day (Zent et al. J. Geophys. Res., 115, E00E14, 2010). It was proposed by Hecht (41st LPSC abstract #1533, 2010) that this phenomenon results from water vapor trapping at the coldest nearby surface. At night, the surface is colder than the surface of the ice table; by day it is warmer. Thus, at night, the subsurface is bounded by a fully saturated layer of cold water frost or adsorbed water at the surface, not by the dry boundary layer itself. This argument is not strongly dependent on the particular saturation vapor pressure (SVP) of ice or other subsurface material, only on the thickness of the dry layer. Specifically, the diurnal

  4. Polymer mixtures in confined geometries: Model systems to explore ...

    Indian Academy of Sciences (India)

    to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2d Ising class irrespective of chain length. ..... AB interface does not approach the wall; (b) corresponds to a temperature .... Very recently, these theoretical studies have been extended to polymer mixtures.

  5. Energy taxes and wages in a general equilibrium model of production

    International Nuclear Information System (INIS)

    Thompson, H.

    2000-01-01

    Energy taxes are responsible for a good deal of observed differences in energy prices across states and countries. They alter patterns of production and income distribution. The present paper examines the potential of energy taxes to lower wages in a general equilibrium model of production with capital, labour and energy inputs. (Author)

  6. Non-existence of Steady State Equilibrium in the Neoclassical Growth Model with a Longevity Trend

    DEFF Research Database (Denmark)

    Hermansen, Mikkel Nørlem

    of steady state equilibrium when considering the empirically observed trend in longevity. We extend a standard continuous time overlapping generations model by a longevity trend and are thereby able to study the properties of mortality-driven population growth. This turns out to be exceedingly complicated...

  7. Ginsburg criterion for an equilibrium superradiant model in the dynamic approach

    International Nuclear Information System (INIS)

    Trache, M.

    1991-10-01

    Some critical properties of an equilibrium superradiant model are discussed, taking into account the quantum fluctuations of the field variables. The critical region is calculated using the Ginsburg criterion, underlining the role of the atomic concentration as a control parameter of the phase transition. (author). 16 refs, 1 fig

  8. Deviations from mass transfer equilibrium and mathematical modeling of mixer-settler contactors

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.; Chung, H.F.; Bennett, J.E.

    1980-01-01

    This paper presents the mathematical basis for the computer model PUBG of mixer-settler contactors which accounts for deviations from mass transfer equilibrium. This is accomplished by formulating the mass balance equations for the mixers such that the mass transfer rate of nuclear materials between the aqueous and organic phases is accounted for. 19 refs

  9. Modeling chromatographic columns. Non-equilibrium packed-bed adsorption with non-linear adsorption isotherms

    NARCIS (Netherlands)

    Özdural, A.R.; Alkan, A.; Kerkhof, P.J.A.M.

    2004-01-01

    In this work a new mathematical model, based on non-equilibrium conditions, describing the dynamic adsorption of proteins in columns packed with spherical adsorbent particles is used to study the performance of chromatographic systems. Simulations of frontal chromatography, including axial

  10. Phase equilibrium of North Sea oils with polar chemicals: Experiments and CPA modeling

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Kontogeorgis, Georgios M.; von Solms, Nicolas

    2016-01-01

    This work consists of a combined experimental and modeling study for oil - MEG - water systems, of relevance to petroleum applications. We present new experimental liquid-liquid equilibrium data for the mutual solubility of two North Sea oils + MEG and North Sea oils + MEG + water systems...

  11. Coenzyme B12 model studies: Equilibrium constants for the pH ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 114; Issue 1. Coenzyme B12 model studies: Equilibrium constants for the H-dependent axial ligation of benzyl(aquo)cobaloxime by various N- and S-donor ligands. D Sudarshan Reddy N Ravi Kumar Reddy V Sridhar S Satyanarayana. Inorganic and Analytical ...

  12. Sudden transition from equilibrium stability to chaotic dynamics in a cautious tâtonnement model

    International Nuclear Information System (INIS)

    Foroni, Ilaria; Avellone, Alessandro; Panchuk, Anastasiia

    2015-01-01

    Tâtonnement processes are usually interpreted as auctions, where a fictitious agent sets the prices until an equilibrium is reached and the trades are made. The main purpose of such processes is to explain how an economy comes to its equilibrium. It is well known that discrete time price adjustment processes may fail to converge and may exhibit periodic or even chaotic behavior. To avoid large price changes, a version of the discrete time tâtonnement process for reaching an equilibrium in a pure exchange economy based on a cautious updating of the prices has been proposed two decades ago. This modification leads to a one dimensional bimodal piecewise smooth map, for which we show analytically that degenerate bifurcations and border collision bifurcations play a fundamental role for the asymptotic behavior of the model.

  13. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling

    Science.gov (United States)

    Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang

    2018-04-01

    Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.

  14. Modelling Thomson scattering for systems with non-equilibrium electron distributions

    Directory of Open Access Journals (Sweden)

    Chapman D.A.

    2013-11-01

    Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.

  15. A study of finite mixture model: Bayesian approach on financial time series data

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-07-01

    Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.

  16. Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor.

    Science.gov (United States)

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2016-02-01

    This work proposes a simple and accurate tool for predicting the main parameters of biomass gasification (syngas composition, heating value, flow rate), suitable for process study and system analysis. A multizonal model based on non-stoichiometric equilibrium models and a repartition factor, simulating the bypass of pyrolysis products through the oxidant zone, was developed. The results of tests with different feedstocks (corn cobs, wood pellets, rice husks and vine pruning) in a demonstrative downdraft gasifier (350kW) were used for validation. The average discrepancy between model and experimental results was up to 8 times less than the one with the simple equilibrium model. The repartition factor was successfully related to the operating conditions and characteristics of the biomass to simulate different conditions of the gasifier (variation in potentiality, densification and mixing of feedstock) and analyze the model sensitivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Nonparametric Identification and Estimation of Finite Mixture Models of Dynamic Discrete Choices

    OpenAIRE

    Hiroyuki Kasahara; Katsumi Shimotsu

    2006-01-01

    In dynamic discrete choice analysis, controlling for unobserved heterogeneity is an important issue, and finite mixture models provide flexible ways to account for unobserved heterogeneity. This paper studies nonparametric identifiability of type probabilities and type-specific component distributions in finite mixture models of dynamic discrete choices. We derive sufficient conditions for nonparametric identification for various finite mixture models of dynamic discrete choices used in appli...

  18. Mixture modeling methods for the assessment of normal and abnormal personality, part II: longitudinal models.

    Science.gov (United States)

    Wright, Aidan G C; Hallquist, Michael N

    2014-01-01

    Studying personality and its pathology as it changes, develops, or remains stable over time offers exciting insight into the nature of individual differences. Researchers interested in examining personal characteristics over time have a number of time-honored analytic approaches at their disposal. In recent years there have also been considerable advances in person-oriented analytic approaches, particularly longitudinal mixture models. In this methodological primer we focus on mixture modeling approaches to the study of normative and individual change in the form of growth mixture models and ipsative change in the form of latent transition analysis. We describe the conceptual underpinnings of each of these models, outline approaches for their implementation, and provide accessible examples for researchers studying personality and its assessment.

  19. PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models

    International Nuclear Information System (INIS)

    Li, Hailong; Jakobsen, Jana P.; Wilhelmsen, Oivind; Yan, Jinyue

    2011-01-01

    Highlights: → Accurate knowledge about the thermodynamic properties of CO 2 is essential in the design and operation of CCS systems. → Experimental data about the phase equilibrium and density of CO 2 -mixtures have been reviewed. → Equations of state have been reviewed too regarding CO 2 -mixtures. None has shown any clear advantage in CCS applications. → Identified knowledge gaps suggest to conducting more experiments and developing novel models. -- Abstract: The knowledge about pressure-volume-temperature-composition (PVTxy) properties plays an important role in the design and operation of many processes involved in CO 2 capture and storage (CCS) systems. A literature survey was conducted on both the available experimental data and the theoretical models associated with the thermodynamic properties of CO 2 mixtures within the operation window of CCS. Some gaps were identified between available experimental data and requirements of the system design and operation. The major concerns are: for the vapour-liquid equilibrium, there are no data about CO 2 /COS and few data about the CO 2 /N 2 O 4 mixture. For the volume property, there are no published experimental data for CO 2 /O 2 , CO 2 /CO, CO 2 /N 2 O 4 , CO 2 /COS and CO 2 /NH 3 and the liquid volume of CO 2 /H 2 . The experimental data available for multi-component CO 2 mixtures are also scarce. Many equations of state are available for thermodynamic calculations of CO 2 mixtures. The cubic equations of state have the simplest structure and are capable of giving reasonable results for the PVTxy properties. More complex equations of state such as Lee-Kesler, SAFT and GERG typically give better results for the volume property, but not necessarily for the vapour-liquid equilibrium. None of the equations of state evaluated in the literature show any clear advantage in CCS applications for the calculation of all PVTxy properties. A reference equation of state for CCS should, thus, be a future goal.

  20. Adaptive behaviour and multiple equilibrium states in a predator-prey model.

    Science.gov (United States)

    Pimenov, Alexander; Kelly, Thomas C; Korobeinikov, Andrei; O'Callaghan, Michael J A; Rachinskii, Dmitrii

    2015-05-01

    There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Optical measurements for the gaseous phase speciation of HIx mixtures: experiments and modelling

    International Nuclear Information System (INIS)

    Denis Doizi; Vincent Dauvois; Vincent Delanne; Jean Luc Roujou; Bruno Larousse; Olivier Hercher; Christophe Moulin; Pierre Fauvet; P Carles; Jean Michel Hartmann

    2006-01-01

    To design and optimize the efficiency of the reactive distillation column of HI we have proposed for the HI section of the I-S cycle, analytical optical 'online' techniques have been proposed to measure the partial and total pressures of the liquid vapour equilibrium of the ternary HI/I 2 /H 2 O mixtures: - FTIR spectrometry for the measurement of hydrogen iodide and water vapours, - Visible spectrometry for the measurement of iodine vapour. The use of these optical techniques has been validated in an experimental device around 130 C and 2 bars. This device is composed of a glass cell equipped with two optical path lengths and placed in a thermo-regulated oven to allow the optical measurements of the concentrations of the three species in the vapour phase. Using an experimental design analysis, the infrared spectra of hydrogen iodide and water have been measured in a selected wavelength range versus temperature and for different HI x compositions. The spectra are then analyzed in particular using a model especially developed for this objective. This model relies on the fitting of the experimental infrared data using a root mean square method and an appropriate spectroscopic database. The visible spectrum of iodine has also been measured. (authors)

  2. Modelling of spark to ignition transition in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akram, M.

    1996-10-01

    This thesis pertains to the models for studying sparking in chemically inert gases. The processes taking place in a spark to flame transition can be segregated into physical and chemical processes, and this study is focused on physical processes. The plasma is regarded as a single-substance material. One and two-dimensional models are developed. The transfer of electrical energy into thermal energy of the gas and its redistribution in space and time along with the evolution of a plasma kernel is studied in the time domain ranging from 10 ns to 40 micros. In the case of ultra-fast sparks, the propagation of the shock and its reflection from a rigid wall is presented. The influence of electrode shape and the gap size on the flow structure development is found to be a dominating factor. It is observed that the flow structure that has developed in the early stage more or less prevails at later stages and strongly influences the shape and evolution of the hot kernel. The electrode geometry and configuration are responsible for the development of the flow structure. The strength of the vortices generated in the flow field is influenced by the power input to the gap and their location of emergence is dictated by the electrode shape and configuration. The heat transfer after 2 micros in the case of ultra-fast sparks is dominated by convection and diffusion. The strong mixing produced by hydrodynamic effects and the electrode geometry give the indication that the magnetic pinch effect might be negligible. Finally, a model for a multicomponent gas mixture is presented. The chemical kinetics mechanism for dissociation and ionization is introduced. 56 refs

  3. Modified Ammonia Removal Model Based on Equilibrium and Mass Transfer Principles

    International Nuclear Information System (INIS)

    Shanableh, A.; Imteaz, M.

    2010-01-01

    Yoon et al. 1 presented an approximate mathematical model to describe ammonia removal from an experimental batch reactor system with gaseous headspace. The development of the model was initially based on assuming instantaneous equilibrium between ammonia in the aqueous and gas phases. In the model, a 'saturation factor, β' was defined as a constant and used to check whether the equilibrium assumption was appropriate. The authors used the trends established by the estimated β values to conclude that the equilibrium assumption was not valid. The authors presented valuable experimental results obtained using a carefully designed system and the model used to analyze the results accounted for the following effects: speciation of ammonia between NH 3 and NH 4 + as a function of pH: temperature dependence of the reactions constants; and air flow rate. In this article, an alternative model based on the exact solution of the governing mass-balance differential equations was developed and used to describe ammonia removal without relying on the use of the saturation factor. The modified model was also extended to mathematically describe the pH dependence of the ammonia removal rate, in addition to accounting for the speciation of ammonia, temperature dependence of reactions constants, and air flow rate. The modified model was used to extend the analysis of the original experimental data presented by Yoon et al. 1 and the results matched the theory in an excellent manner

  4. Identifiability in N-mixture models: a large-scale screening test with bird data.

    Science.gov (United States)

    Kéry, Marc

    2018-02-01

    Binomial N-mixture models have proven very useful in ecology, conservation, and monitoring: they allow estimation and modeling of abundance separately from detection probability using simple counts. Recently, doubts about parameter identifiability have been voiced. I conducted a large-scale screening test with 137 bird data sets from 2,037 sites. I found virtually no identifiability problems for Poisson and zero-inflated Poisson (ZIP) binomial N-mixture models, but negative-binomial (NB) models had problems in 25% of all data sets. The corresponding multinomial N-mixture models had no problems. Parameter estimates under Poisson and ZIP binomial and multinomial N-mixture models were extremely similar. Identifiability problems became a little more frequent with smaller sample sizes (267 and 50 sites), but were unaffected by whether the models did or did not include covariates. Hence, binomial N-mixture model parameters with Poisson and ZIP mixtures typically appeared identifiable. In contrast, NB mixtures were often unidentifiable, which is worrying since these were often selected by Akaike's information criterion. Identifiability of binomial N-mixture models should always be checked. If problems are found, simpler models, integrated models that combine different observation models or the use of external information via informative priors or penalized likelihoods, may help. © 2017 by the Ecological Society of America.

  5. Nonlinear Structured Growth Mixture Models in M"plus" and OpenMx

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam; Estabrook, Ryne

    2010-01-01

    Growth mixture models (GMMs; B. O. Muthen & Muthen, 2000; B. O. Muthen & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models…

  6. Modeling and Control of an Ornithopter for Non-Equilibrium Maneuvers

    OpenAIRE

    Rose, Cameron Jarrel

    2015-01-01

    Flapping-winged flight is very complex, and it is difficult to efficiently model the unsteady airflow and nonlinear dynamics for online control. While steady state flight is well understood, transitions between flight regimes are not readily modeled or controlled. Maneuverability in non-equilibrium flight, which birds and insects readily exhibit in nature, is necessary to operate in the types of cluttered environments that small-scale flapping-winged robots are best suited for. The advantages...

  7. Examining Policies to Reduce Homelessness Using a General Equilibrium Model of the Housing Market

    OpenAIRE

    Mansur, Erin; Quigley, John M.; Raphael, Steven; Smolensky, Eugene

    2003-01-01

    In this paper, we use a general equilibrium simulation model to assess the potential impacts on homelessness of various housing-market policy interventions. We calibrate the model to the four largest metropolitan areas in California. We explore the welfare con- sequences and the effects on homelessness of three housing-market policy interventions: extending housing vouchers to all low-income households, subsidizing all landlords, and subsidizing those landlords who supply low-income housing. ...

  8. Clarifications to the limitations of the s-α equilibrium model for gyrokinetic computations of turbulence

    International Nuclear Information System (INIS)

    Lapillonne, X.; Brunner, S.; Dannert, T.; Jolliet, S.; Marinoni, A.; Villard, L.; Goerler, T.; Jenko, F.; Merz, F.

    2009-01-01

    In the context of gyrokinetic flux-tube simulations of microturbulence in magnetized toroidal plasmas, different treatments of the magnetic equilibrium are examined. Considering the Cyclone DIII-D base case parameter set [Dimits et al., Phys. Plasmas 7, 969 (2000)], significant differences in the linear growth rates, the linear and nonlinear critical temperature gradients, and the nonlinear ion heat diffusivities are observed between results obtained using either an s-α or a magnetohydrodynamic (MHD) equilibrium. Similar disagreements have been reported previously [Redd et al., Phys. Plasmas 6, 1162 (1999)]. In this paper it is shown that these differences result primarily from the approximation made in the standard implementation of the s-α model, in which the straight field line angle is identified to the poloidal angle, leading to inconsistencies of order ε (ε=a/R is the inverse aspect ratio, a the minor radius and R the major radius). An equilibrium model with concentric, circular flux surfaces and a correct treatment of the straight field line angle gives results very close to those using a finite ε, low β MHD equilibrium. Such detailed investigation of the equilibrium implementation is of particular interest when comparing flux tube and global codes. It is indeed shown here that previously reported agreements between local and global simulations in fact result from the order ε inconsistencies in the s-α model, coincidentally compensating finite ρ * effects in the global calculations, where ρ * =ρ s /a with ρ s the ion sound Larmor radius. True convergence between local and global simulations is finally obtained by correct treatment of the geometry in both cases, and considering the appropriate ρ * →0 limit in the latter case.

  9. A model for non-equilibrium, non-homogeneous two-phase critical flow

    International Nuclear Information System (INIS)

    Bassel, Wageeh Sidrak; Ting, Daniel Kao Sun

    1999-01-01

    Critical two phase flow is a very important phenomena in nuclear reactor technology for the analysis of loss of coolant accident. Several recent papers, Lee and Shrock (1990), Dagan (1993) and Downar (1996) , among others, treat the phenomena using complex models which require heuristic parameters such as relaxation constants or interfacial transfer models. In this paper a mathematical model for one dimensional non equilibrium and non homogeneous two phase flow in constant area duct is developed. The model is constituted of three conservation equations type mass ,momentum and energy. Two important variables are defined in the model: equilibrium constant in the energy equation and the impulse function in the momentum equation. In the energy equation, the enthalpy of the liquid phase is determined by a linear interpolation function between the liquid phase enthalpy at inlet condition and the saturated liquid enthalpy at local pressure. The interpolation coefficient is the equilibrium constant. The momentum equation is expressed in terms of the impulse function. It is considered that there is slip between the liquid and vapor phases, the liquid phase is in metastable state and the vapor phase is in saturated stable state. The model is not heuristic in nature and does not require complex interface transfer models. It is proved numerically that for the critical condition the partial derivative of two phase pressure drop with respect to the local pressure or to phase velocity must be zero.This criteria is demonstrated by numerical examples. The experimental work of Fauske (1962) and Jeandey (1982) were analyzed resulting in estimated numerical values for important parameters like slip ratio, equilibrium constant and two phase frictional drop. (author)

  10. Once more on the equilibrium-point hypothesis (lambda model) for motor control.

    Science.gov (United States)

    Feldman, A G

    1986-03-01

    The equilibrium control hypothesis (lambda model) is considered with special reference to the following concepts: (a) the length-force invariant characteristic (IC) of the muscle together with central and reflex systems subserving its activity; (b) the tonic stretch reflex threshold (lambda) as an independent measure of central commands descending to alpha and gamma motoneurons; (c) the equilibrium point, defined in terms of lambda, IC and static load characteristics, which is associated with the notion that posture and movement are controlled by a single mechanism; and (d) the muscle activation area (a reformulation of the "size principle")--the area of kinematic and command variables in which a rank-ordered recruitment of motor units takes place. The model is used for the interpretation of various motor phenomena, particularly electromyographic patterns. The stretch reflex in the lambda model has no mechanism to follow-up a certain muscle length prescribed by central commands. Rather, its task is to bring the system to an equilibrium, load-dependent position. Another currently popular version defines the equilibrium point concept in terms of alpha motoneuron activity alone (the alpha model). Although the model imitates (as does the lambda model) spring-like properties of motor performance, it nevertheless is inconsistent with a substantial data base on intact motor control. An analysis of alpha models, including their treatment of motor performance in deafferented animals, reveals that they suffer from grave shortcomings. It is concluded that parameterization of the stretch reflex is a basis for intact motor control. Muscle deafferentation impairs this graceful mechanism though it does not remove the possibility of movement.

  11. Modeling abundance using N-mixture models: the importance of considering ecological mechanisms.

    Science.gov (United States)

    Joseph, Liana N; Elkin, Ché; Martin, Tara G; Possinghami, Hugh P

    2009-04-01

    Predicting abundance across a species' distribution is useful for studies of ecology and biodiversity management. Modeling of survey data in relation to environmental variables can be a powerful method for extrapolating abundances across a species' distribution and, consequently, calculating total abundances and ultimately trends. Research in this area has demonstrated that models of abundance are often unstable and produce spurious estimates, and until recently our ability to remove detection error limited the development of accurate models. The N-mixture model accounts for detection and abundance simultaneously and has been a significant advance in abundance modeling. Case studies that have tested these new models have demonstrated success for some species, but doubt remains over the appropriateness of standard N-mixture models for many species. Here we develop the N-mixture model to accommodate zero-inflated data, a common occurrence in ecology, by employing zero-inflated count models. To our knowledge, this is the first application of this method to modeling count data. We use four variants of the N-mixture model (Poisson, zero-inflated Poisson, negative binomial, and zero-inflated negative binomial) to model abundance, occupancy (zero-inflated models only) and detection probability of six birds in South Australia. We assess models by their statistical fit and the ecological realism of the parameter estimates. Specifically, we assess the statistical fit with AIC and assess the ecological realism by comparing the parameter estimates with expected values derived from literature, ecological theory, and expert opinion. We demonstrate that, despite being frequently ranked the "best model" according to AIC, the negative binomial variants of the N-mixture often produce ecologically unrealistic parameter estimates. The zero-inflated Poisson variant is preferable to the negative binomial variants of the N-mixture, as it models an ecological mechanism rather than a

  12. Real time tracking by LOPF algorithm with mixture model

    Science.gov (United States)

    Meng, Bo; Zhu, Ming; Han, Guangliang; Wu, Zhiguo

    2007-11-01

    A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently, we first use Sobel algorithm to extract the profile of the object. Then, we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones, in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise, the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here, we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.

  13. A Note on the Use of Mixture Models for Individual Prediction.

    Science.gov (United States)

    Cole, Veronica T; Bauer, Daniel J

    Mixture models capture heterogeneity in data by decomposing the population into latent subgroups, each of which is governed by its own subgroup-specific set of parameters. Despite the flexibility and widespread use of these models, most applications have focused solely on making inferences for whole or sub-populations, rather than individual cases. The current article presents a general framework for computing marginal and conditional predicted values for individuals using mixture model results. These predicted values can be used to characterize covariate effects, examine the fit of the model for specific individuals, or forecast future observations from previous ones. Two empirical examples are provided to demonstrate the usefulness of individual predicted values in applications of mixture models. The first example examines the relative timing of initiation of substance use using a multiple event process survival mixture model whereas the second example evaluates changes in depressive symptoms over adolescence using a growth mixture model.

  14. Thermodynamic Modeling and Optimization of the Copper Flash Converting Process Using the Equilibrium Constant Method

    Science.gov (United States)

    Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Chen, Zhuo; Wang, Jin-liang

    2018-05-01

    Based on the principle of multiphase equilibrium, a mathematical model of the copper flash converting process was established by the equilibrium constant method, and a computational system was developed with the use of MetCal software platform. The mathematical model was validated by comparing simulated outputs, industrial data, and published data. To obtain high-quality blister copper, a low copper content in slag, and increased impurity removal rate, the model was then applied to investigate the effects of the operational parameters [oxygen/feed ratio (R OF), flux rate (R F), and converting temperature (T)] on the product weights, compositions, and the distribution behaviors of impurity elements. The optimized results showed that R OF, R F, and T should be controlled at approximately 156 Nm3/t, within 3.0 pct, and at approximately 1523 K (1250 °C), respectively.

  15. 30th International School of Mathematics "G Stampacchia" : Equilibrium Problems and Variational Models "Ettore Majorana"

    CERN Document Server

    Giannessi, Franco; Maugeri, Antonino; Equilibrium Problems and Variational Models

    2000-01-01

    The volume, devoted to variational analysis and its applications, collects selected and refereed contributions, which provide an outline of the field. The meeting of the title "Equilibrium Problems and Variational Models", which was held in Erice (Sicily) in the period June 23 - July 2 2000, was the occasion of the presentation of some of these papers; other results are a consequence of a fruitful and constructive atmosphere created during the meeting. New results, which enlarge the field of application of variational analysis, are presented in the book; they deal with the vectorial analysis, time dependent variational analysis, exact penalization, high order deriva­ tives, geometric aspects, distance functions and log-quadratic proximal methodology. The new theoretical results allow one to improve in a remarkable way the study of significant problems arising from the applied sciences, as continuum model of transportation, unilateral problems, multicriteria spatial price models, network equilibrium...

  16. Mechanism of alkalinity lowering and chemical equilibrium model of high fly ash silica fume cement

    International Nuclear Information System (INIS)

    Hoshino, Seiichi; Honda, Akira; Negishi, Kumi

    2014-01-01

    The mechanism of alkalinity lowering of a High Fly ash Silica fume Cement (HFSC) under liquid/solid ratio conditions where the pH is largely controlled by the soluble alkali components (Region I) has been studied. This mechanism was incorporated in the chemical equilibrium model of HFSC. As a result, it is suggested that the dissolution and precipitation behavior of SO 4 2- partially contributes to alkalinity lowering of HFSC in Region I. A chemical equilibrium model of HFSC incorporating alkali (Na, K) adsorption, which was presumed as another contributing factor of the alkalinity lowering effect, was also developed, and an HFSC immersion experiment was analyzed using the model. The results of the developed model showed good agreement with the experiment results. From the above results, it was concluded that the alkalinity lowering of HFSC in Region I was attributed to both the dissolution and precipitation behavior of SO 4 2- and alkali adsorption, in addition to the absence of Ca(OH) 2 . A chemical equilibrium model of HFSC incorporating alkali and SO 4 2- adsorption was also proposed. (author)

  17. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    Science.gov (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  18. Background based Gaussian mixture model lesion segmentation in PET

    Energy Technology Data Exchange (ETDEWEB)

    Soffientini, Chiara Dolores, E-mail: chiaradolores.soffientini@polimi.it; Baselli, Giuseppe [DEIB, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133 (Italy); De Bernardi, Elisabetta [Department of Medicine and Surgery, Tecnomed Foundation, University of Milano—Bicocca, Monza 20900 (Italy); Zito, Felicia; Castellani, Massimo [Nuclear Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, Milan 20122 (Italy)

    2016-05-15

    Purpose: Quantitative {sup 18}F-fluorodeoxyglucose positron emission tomography is limited by the uncertainty in lesion delineation due to poor SNR, low resolution, and partial volume effects, subsequently impacting oncological assessment, treatment planning, and follow-up. The present work develops and validates a segmentation algorithm based on statistical clustering. The introduction of constraints based on background features and contiguity priors is expected to improve robustness vs clinical image characteristics such as lesion dimension, noise, and contrast level. Methods: An eight-class Gaussian mixture model (GMM) clustering algorithm was modified by constraining the mean and variance parameters of four background classes according to the previous analysis of a lesion-free background volume of interest (background modeling). Hence, expectation maximization operated only on the four classes dedicated to lesion detection. To favor the segmentation of connected objects, a further variant was introduced by inserting priors relevant to the classification of neighbors. The algorithm was applied to simulated datasets and acquired phantom data. Feasibility and robustness toward initialization were assessed on a clinical dataset manually contoured by two expert clinicians. Comparisons were performed with respect to a standard eight-class GMM algorithm and to four different state-of-the-art methods in terms of volume error (VE), Dice index, classification error (CE), and Hausdorff distance (HD). Results: The proposed GMM segmentation with background modeling outperformed standard GMM and all the other tested methods. Medians of accuracy indexes were VE <3%, Dice >0.88, CE <0.25, and HD <1.2 in simulations; VE <23%, Dice >0.74, CE <0.43, and HD <1.77 in phantom data. Robustness toward image statistic changes (±15%) was shown by the low index changes: <26% for VE, <17% for Dice, and <15% for CE. Finally, robustness toward the user-dependent volume initialization was

  19. Post-CHF heat transfer: a non-equilibrium, relaxation model

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Zuber, N.

    1977-01-01

    Existing phenomenological models of heat transfer in the non-equilibrium, liquid-deficient, dispersed flow regime can sometimes predict the thermal behavior fairly well but are quite complex, requiring coupled simultaneous differential equations to describe the axial gradients of mass and energy along with those of droplet acceleration and size. In addition, empirical relations are required to express the droplet breakup and increased effective heat transfer due to holdup. This report describes the development of a different approach to the problem. It is shown that the non-equilibrium component of the total energy can be expressed as a first order, inhomogeneous relaxation equation in terms of one variable coefficient termed the Superheat Relaxation number. A demonstration is provided to show that this relaxation number can be correlated using local variables in such a manner to allow the single non-equilibrium equation to accurately calculate the effects of mass velocity and heat flux along with tube length, diameter, and critical quality for equilibrium qualities from 0.13 to over 3.0

  20. Ageing in the trap model as a relaxation further away from equilibrium

    International Nuclear Information System (INIS)

    Bertin, Eric

    2013-01-01

    The ageing regime of the trap model, observed for a temperature T below the glass transition temperature T g , is a prototypical example of non-stationary out-of-equilibrium state. We characterize this state by evaluating its ‘distance to equilibrium’, defined as the Shannon entropy difference ΔS (in absolute value) between the non-equilibrium state and the equilibrium state with the same energy. We consider the time evolution of ΔS and show that, rather unexpectedly, ΔS(t) continuously increases in the ageing regime, if the number of traps is infinite, meaning that the ‘distance to equilibrium’ increases instead of decreasing in the relaxation process. For a finite number N of traps, ΔS(t) exhibits a maximum value before eventually converging to zero when equilibrium is reached. The time t* at which the maximum is reached however scales in a non-standard way as t * ∼N T g /2T , while the equilibration time scales as τ eq ∼N T g /T . In addition, the curves ΔS(t) for different N are found to rescale as ln t/ln t*, instead of the more familiar scaling t/t*. (paper)

  1. Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data

    DEFF Research Database (Denmark)

    Røge, Rasmus; Madsen, Kristoffer Hougaard; Schmidt, Mikkel Nørgaard

    2017-01-01

    spherical manifold are rarely analyzed, in part due to the computational challenges imposed by directional statistics. In this letter, we discuss a Bayesian von Mises-Fisher (vMF) mixture model for data on the unit hypersphere and present an efficient inference procedure based on collapsed Markov chain...... Monte Carlo sampling. Comparing the vMF and gaussian mixture models on synthetic data, we demonstrate that the vMF model has a slight advantage inferring the true underlying clustering when compared to gaussian-based models on data generated from both a mixture of vMFs and a mixture of gaussians......Cluster analysis of functional magnetic resonance imaging (fMRI) data is often performed using gaussian mixture models, but when the time series are standardized such that the data reside on a hypersphere, this modeling assumption is questionable. The consequences of ignoring the underlying...

  2. Modeling the economic costs of disasters and recovery: analysis using a dynamic computable general equilibrium model

    Science.gov (United States)

    Xie, W.; Li, N.; Wu, J.-D.; Hao, X.-L.

    2014-04-01

    Disaster damages have negative effects on the economy, whereas reconstruction investment has positive effects. The aim of this study is to model economic causes of disasters and recovery involving the positive effects of reconstruction activities. Computable general equilibrium (CGE) model is a promising approach because it can incorporate these two kinds of shocks into a unified framework and furthermore avoid the double-counting problem. In order to factor both shocks into the CGE model, direct loss is set as the amount of capital stock reduced on the supply side of the economy; a portion of investments restores the capital stock in an existing period; an investment-driven dynamic model is formulated according to available reconstruction data, and the rest of a given country's saving is set as an endogenous variable to balance the fixed investment. The 2008 Wenchuan Earthquake is selected as a case study to illustrate the model, and three scenarios are constructed: S0 (no disaster occurs), S1 (disaster occurs with reconstruction investment) and S2 (disaster occurs without reconstruction investment). S0 is taken as business as usual, and the differences between S1 and S0 and that between S2 and S0 can be interpreted as economic losses including reconstruction and excluding reconstruction, respectively. The study showed that output from S1 is found to be closer to real data than that from S2. Economic loss under S2 is roughly 1.5 times that under S1. The gap in the economic aggregate between S1 and S0 is reduced to 3% at the end of government-led reconstruction activity, a level that should take another four years to achieve under S2.

  3. Removal of semivolatiles from soils by steam stripping. 1. A local equilibrium model

    International Nuclear Information System (INIS)

    Wilson, D.J.; Clarke, A.N.

    1992-01-01

    A mathematical model for the in-situ steam stripping of volatile and semivolatile organics from contaminated vadose zone soils at hazardous waste sites is developed. A single steam injection well is modeled. The model assumes that the pneumatic permeability of the soil is spatially constant and isotropic, that the adsorption isotherm of the contaminant is linear, and that the local equilibrium approximation is adequate. The model is used to explore the streamlines and transit times of the injected steam as well as the effects of injection well depth and contaminant distribution on the time required for remediation

  4. An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model

    Science.gov (United States)

    Gawron, C.

    An iterative algorithm to determine the dynamic user equilibrium with respect to link costs defined by a traffic simulation model is presented. Each driver's route choice is modeled by a discrete probability distribution which is used to select a route in the simulation. After each simulation run, the probability distribution is adapted to minimize the travel costs. Although the algorithm does not depend on the simulation model, a queuing model is used for performance reasons. The stability of the algorithm is analyzed for a simple example network. As an application example, a dynamic version of Braess's paradox is studied.

  5. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels

    Science.gov (United States)

    Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi

    2005-03-01

    In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.

  6. Two-temperature chemically non-equilibrium modelling of transferred arcs

    International Nuclear Information System (INIS)

    Baeva, M; Kozakov, R; Gorchakov, S; Uhrlandt, D

    2012-01-01

    A two-temperature chemically non-equilibrium model describing in a self-consistent manner the heat transfer, the plasma chemistry, the electric and magnetic field in a high-current free-burning arc in argon has been developed. The model is aimed at unifying the description of a thermionic tungsten cathode, a flat copper anode, and the arc plasma including the electrode sheath regions. The heat transfer in the electrodes is coupled to the plasma heat transfer considering the energy fluxes onto the electrode boundaries with the plasma. The results of the non-equilibrium model for an arc current of 200 A and an argon flow rate of 12 slpm are presented along with results obtained from a model based on the assumption of local thermodynamic equilibrium (LTE) and from optical emission spectroscopy. The plasma shows a near-LTE behaviour along the arc axis and in a region surrounding the axis which becomes wider towards the anode. In the near-electrode regions, a large deviation from LTE is observed. The results are in good agreement with experimental findings from optical emission spectroscopy. (paper)

  7. Automatic categorization of web pages and user clustering with mixtures of hidden Markov models

    NARCIS (Netherlands)

    Ypma, A.; Heskes, T.M.; Zaiane, O.R.; Srivastav, J.

    2003-01-01

    We propose mixtures of hidden Markov models for modelling clickstreams of web surfers. Hence, the page categorization is learned from the data without the need for a (possibly cumbersome) manual categorization. We provide an EM algorithm for training a mixture of HMMs and show that additional static

  8. Finite Mixture Multilevel Multidimensional Ordinal IRT Models for Large Scale Cross-Cultural Research

    Science.gov (United States)

    de Jong, Martijn G.; Steenkamp, Jan-Benedict E. M.

    2010-01-01

    We present a class of finite mixture multilevel multidimensional ordinal IRT models for large scale cross-cultural research. Our model is proposed for confirmatory research settings. Our prior for item parameters is a mixture distribution to accommodate situations where different groups of countries have different measurement operations, while…

  9. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cas...

  10. Combinatorial bounds on the α-divergence of univariate mixture models

    KAUST Repository

    Nielsen, Frank

    2017-06-20

    We derive lower- and upper-bounds of α-divergence between univariate mixture models with components in the exponential family. Three pairs of bounds are presented in order with increasing quality and increasing computational cost. They are verified empirically through simulated Gaussian mixture models. The presented methodology generalizes to other divergence families relying on Hellinger-type integrals.

  11. ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics.

    Directory of Open Access Journals (Sweden)

    Jan Hasenauer

    2014-07-01

    Full Text Available Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.

  12. ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics.

    Science.gov (United States)

    Hasenauer, Jan; Hasenauer, Christine; Hucho, Tim; Theis, Fabian J

    2014-07-01

    Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.

  13. Why Enforcing its UNCAC Commitments Would be Good for Russia: A Computable General Equilibrium Model

    Directory of Open Access Journals (Sweden)

    Michael P. BARRY

    2010-05-01

    Full Text Available Russia has ratified the UN Convention Against Corruption but has not successfully enforced it. This paper uses updated GTAP data to reconstruct a computable general equilibrium (CGE model to quantify the macroeconomic effects of corruption in Russia. Corruption is found to cost the Russian economy billions of dollars a year. A conclusion of the paper is that implementing and enforcing the UNCAC would be of significant economic benefit to Russia and its people.

  14. Discharge Fee Policy Analysis: A Computable General Equilibrium (CGE) Model of Water Resources and Water Environments

    OpenAIRE

    Guohua Fang; Ting Wang; Xinyi Si; Xin Wen; Yu Liu

    2016-01-01

    To alleviate increasingly serious water pollution and shortages in developing countries, various kinds of policies have been implemented by local governments. It is vital to quantify and evaluate the performance and potential economic impacts of these policies. This study develops a Computable General Equilibrium (CGE) model to simulate the regional economic and environmental effects of discharge fees. Firstly, water resources and water environment factors are separated from the input and out...

  15. Effects of Risk Aversion on Market Outcomes: A Stochastic Two-Stage Equilibrium Model

    DEFF Research Database (Denmark)

    Kazempour, Jalal; Pinson, Pierre

    2016-01-01

    This paper evaluates how different risk preferences of electricity producers alter the market-clearing outcomes. Toward this goal, we propose a stochastic equilibrium model for electricity markets with two settlements, i.e., day-ahead and balancing, in which a number of conventional and stochastic...... by its optimality conditions, resulting in a mixed complementarity problem. Numerical results from a case study based on the IEEE one-area reliability test system are derived and discussed....

  16. A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring

    Science.gov (United States)

    Dick, Jeffrey M.; Shock, Everett L.

    2013-01-01

    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the

  17. Assimilation of tourism satellite accounts and applied general equilibrium models to inform tourism policy analysis

    OpenAIRE

    Rossouw, Riaan; Saayman, Melville

    2011-01-01

    Historically, tourism policy analysis in South Africa has posed challenges to accurate measurement. The primary reason for this is that tourism is not designated as an 'industry' in standard economic accounts. This paper therefore demonstrates the relevance and need for applied general equilibrium (AGE) models to be completed and extended through an integration with tourism satellite accounts (TSAs) as a tool for policy makers (especially tourism policy makers) in South Africa. The paper sets...

  18. First principles modeling of hydrocarbons conversion in non-equilibrium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Deminsky, M.A.; Strelkova, M.I.; Durov, S.G.; Jivotov, V.K.; Rusanov, V.D.; Potapkin, B.V. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2001-07-01

    Theoretical justification of catalytic activity of non-equilibrium plasma in hydrocarbons conversion process is presented in this paper. The detailed model of highest hydrocarbons conversion includes the gas-phase reactions, chemistry of the growth of polycyclic aromatic hydrocarbons (PAHs), precursor of soot particles formation, neutral, charged clusters and soot particle formation, ion-molecular gas-phase and heterogeneous chemistry. The results of theoretical analysis are compared with experimental results. (authors)

  19. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.

    Science.gov (United States)

    Ahsendorf, Tobias; Wong, Felix; Eils, Roland; Gunawardena, Jeremy

    2014-12-05

    Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. As epigenomic data become increasingly

  20. Modelling of phase equilibria of glycol ethers mixtures using an association model

    DEFF Research Database (Denmark)

    Garrido, Nuno M.; Folas, Georgios; Kontogeorgis, Georgios

    2008-01-01

    Vapor-liquid and liquid-liquid equilibria of glycol ethers (surfactant) mixtures with hydrocarbons, polar compounds and water are calculated using an association model, the Cubic-Plus-Association Equation of State. Parameters are estimated for several non-ionic surfactants of the polyoxyethylene ...

  1. Distinguishing Continuous and Discrete Approaches to Multilevel Mixture IRT Models: A Model Comparison Perspective

    Science.gov (United States)

    Zhu, Xiaoshu

    2013-01-01

    The current study introduced a general modeling framework, multilevel mixture IRT (MMIRT) which detects and describes characteristics of population heterogeneity, while accommodating the hierarchical data structure. In addition to introducing both continuous and discrete approaches to MMIRT, the main focus of the current study was to distinguish…

  2. Using Bayesian statistics for modeling PTSD through Latent Growth Mixture Modeling : implementation and discussion

    NARCIS (Netherlands)

    Depaoli, Sarah; van de Schoot, Rens; van Loey, Nancy; Sijbrandij, Marit

    2015-01-01

    BACKGROUND: After traumatic events, such as disaster, war trauma, and injuries including burns (which is the focus here), the risk to develop posttraumatic stress disorder (PTSD) is approximately 10% (Breslau & Davis, 1992). Latent Growth Mixture Modeling can be used to classify individuals into

  3. Morphodynamic Modeling of the Lower Yellow River, China: Flux (Equilibrium) Form or Entrainment (Nonequilibrium) Form of Sediment Mass Conservation?

    Science.gov (United States)

    An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.

    2017-12-01

    Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the

  4. Gassmann Modeling of Acoustic Properties of Sand-clay Mixtures

    Science.gov (United States)

    Gurevich, B.; Carcione, J. M.

    The feasibility of modeling elastic properties of a fluid-saturated sand-clay mixture rock is analyzed by assuming that the rock is composed of macroscopic regions of sand and clay. The elastic properties of such a composite rock are computed using two alternative schemes.The first scheme, which we call the composite Gassmann (CG) scheme, uses Gassmann equations to compute elastic moduli of the saturated sand and clay from their respective dry moduli. The effective elastic moduli of the fluid-saturated composite rock are then computed by applying one of the mixing laws commonly used to estimate elastic properties of composite materials.In the second scheme which we call the Berryman-Milton scheme, the elastic moduli of the dry composite rock matrix are computed from the moduli of dry sand and clay matrices using the same composite mixing law used in the first scheme. Next, the saturated composite rock moduli are computed using the equations of Brown and Korringa, which, together with the expressions for the coefficients derived by Berryman and Milton, provide an extension of Gassmann equations to rocks with a heterogeneous solid matrix.For both schemes, the moduli of the dry homogeneous sand and clay matrices are assumed to obey the Krief's velocity-porosity relationship. As a mixing law we use the self-consistent coherent potential approximation proposed by Berryman.The calculated dependence of compressional and shear velocities on porosity and clay content for a given set of parameters using the two schemes depends on the distribution of total porosity between the sand and clay regions. If the distribution of total porosity between sand and clay is relatively uniform, the predictions of the two schemes in the porosity range up to 0.3 are very similar to each other. For higher porosities and medium-to-large clay content the elastic moduli predicted by CG scheme are significantly higher than those predicted by the BM scheme.This difference is explained by the fact

  5. Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions

    International Nuclear Information System (INIS)

    Rodriguez-Alejandro, David A.; Nam, Hyungseok; Maglinao, Amado L.; Capareda, Sergio C.; Aguilera-Alvarado, Alberto F.

    2016-01-01

    The objective of this work is to develop a thermodynamic model considering non-stoichiometric restrictions. The model validation was done from experimental works using a bench-scale fluidized bed gasifier with wood chips, dairy manure, and sorghum. The model was used for a further parametric study to predict the performance of a pilot-scale fluidized biomass gasifier. The Gibbs free energy minimization was applied to the modified equilibrium model considering a heat loss to the surroundings, carbon efficiency, and two non-equilibrium factors based on empirical correlations of ER and gasification temperature. The model was in a good agreement with RMS <4 for the produced gas. The parametric study ranges were 0.01 < ER < 0.99 and 500 °C < T < 900 °C to predict syngas concentrations and its LHV (lower heating value) for the optimization. Higher aromatics in tar were contained in WC gasification compared to manure gasification. A wood gasification tar simulation was produced to predict the amount of tars at specific conditions. The operating conditions for the highest quality syngas were reconciled experimentally with three biomass wastes using a fluidized bed gasifier. The thermodynamic model was used to predict the gasification performance at conditions beyond the actual operation. - Highlights: • Syngas from experimental gasification was used to create a non-equilibrium model. • Different types of biomass (HTS, DM, and WC) were used for gasification modelling. • Different tar compositions were identified with a simulation of tar yields. • The optimum operating conditions were found through the developed model.

  6. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  7. Energy, economy and equity interactions in a CGE [Computable General Equilibrium] model for Pakistan

    International Nuclear Information System (INIS)

    Naqvi, Farzana

    1997-01-01

    In the last three decades, Computable General Equilibrium modelling has emerged as an established field of applied economics. This book presents a CGE model developed for Pakistan with the hope that it will lay down a foundation for application of general equilibrium modelling for policy formation in Pakistan. As the country is being driven swiftly to become an open market economy, it becomes vital to found out the policy measures that can foster the objectives of economic planning, such as social equity, with the minimum loss of the efficiency gains from the open market resource allocations. It is not possible to build a model for practical use that can do justice to all sectors of the economy in modelling of their peculiar features. The CGE model developed in this book focuses on the energy sector. Energy is considered as one of the basic needs and an essential input to economic growth. Hence, energy policy has multiple criteria to meet. In this book, a case study has been carried out to analyse energy pricing policy in Pakistan using this CGE model of energy, economy and equity interactions. Hence, the book also demonstrates how researchers can model the fine details of one sector given the core structure of a CGE model. (UK)

  8. Self-organising mixture autoregressive model for non-stationary time series modelling.

    Science.gov (United States)

    Ni, He; Yin, Hujun

    2008-12-01

    Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.

  9. Verify Super Double-Heterogeneous Spherical Lattice Model for Equilibrium Fuel Cycle Analysis AND HTR Spherical Super Lattice Model for Equilibrium Fuel Cycle Analysis

    International Nuclear Information System (INIS)

    Gray S. Chang

    2005-01-01

    The currently being developed advanced High Temperature gas-cooled Reactors (HTR) is able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. Traditionally, the effect of the random fuel kernel distribution in the fuel pebble/block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced KbK-sph model and whole pebble super lattice model (PSLM), which can address and update the burnup dependent Dancoff effect during the EqFC analysis. The pebble homogeneous lattice model (HLM) is verified by the burnup characteristics with the double-heterogeneous KbK-sph lattice model results. This study summarizes and compares the KbK-sph lattice model and HLM burnup analyzed results. Finally, we discuss the Monte-Carlo coupling with a fuel depletion and buildup code--ORIGEN-2 as a fuel burnup analysis tool and its PSLM calculated results for the HTR EqFC burnup analysis

  10. Diffusion models for mixtures using a stiff dissipative hyperbolic formalism

    OpenAIRE

    Boudin , Laurent; Grec , Bérénice; Pavan , Vincent

    2018-01-01

    In this article, we are interested in a system of uid equations for mixtures with a sti relaxation term of Maxwell-Stefan diusion type. We use the formalism developed by Chen, Levermore, Liu in [4] to obtain a limit system of Fick type where the species velocities tend to align to a bulk velocity when the relaxation parameter remains small.

  11. Modeling of the (liquid + liquid) equilibrium of polydisperse hyperbranched polymer solutions by lattice-cluster theory

    International Nuclear Information System (INIS)

    Enders, Sabine; Browarzik, Dieter

    2014-01-01

    Graphical abstract: - Highlights: • Calculation of the (liquid + liquid) equilibrium of hyperbranched polymer solutions. • Description of branching effects by the lattice-cluster theory. • Consideration of self- and cross association by chemical association models. • Treatment of the molar-mass polydispersity by the use of continuous thermodynamics. • Improvement of the theoretical results by the incorporation of polydispersity. - Abstract: The (liquid + liquid) equilibrium of solutions of hyperbranched polymers of the Boltorn type is modeled in the framework of lattice-cluster theory. The association effects are described by the chemical association models CALM (for self association) and ECALM (for cross association). For the first time the molar mass polydispersity of the hyperbranched polymers is taken into account. For this purpose continuous thermodynamics is applied. Because the segment-molar excess Gibbs free energy depends on the number average of the segment number of the polymer the treatment is more general than in previous papers on continuous thermodynamics. The polydispersity is described by a generalized Schulz–Flory distribution. The calculation of the cloud-point curve reduces to two equations that have to be numerically solved. Conditions for the calculation of the spinodal curve and of the critical point are derived. The calculated results are compared to experimental data taken from the literature. For Boltorn solutions in non-polar solvents the polydispersity influence is small. In all other of the considered cases polydispersity influences the (liquid + liquid) equilibrium considerably. However, association and polydispersity influence phase equilibrium in a complex manner. Taking polydispersity into account the accuracy of the calculations is improved, especially, in the diluted region

  12. Electric Circuit Model Analogy for Equilibrium Lattice Relaxation in Semiconductor Heterostructures

    Science.gov (United States)

    Kujofsa, Tedi; Ayers, John E.

    2018-01-01

    The design and analysis of semiconductor strained-layer device structures require an understanding of the equilibrium profiles of strain and dislocations associated with mismatched epitaxy. Although it has been shown that the equilibrium configuration for a general semiconductor strained-layer structure may be found numerically by energy minimization using an appropriate partitioning of the structure into sublayers, such an approach is computationally intense and non-intuitive. We have therefore developed a simple electric circuit model approach for the equilibrium analysis of these structures. In it, each sublayer of an epitaxial stack may be represented by an analogous circuit configuration involving an independent current source, a resistor, an independent voltage source, and an ideal diode. A multilayered structure may be built up by the connection of the appropriate number of these building blocks, and the node voltages in the analogous electric circuit correspond to the equilibrium strains in the original epitaxial structure. This enables analysis using widely accessible circuit simulators, and an intuitive understanding of electric circuits can easily be extended to the relaxation of strained-layer structures. Furthermore, the electrical circuit model may be extended to continuously-graded epitaxial layers by considering the limit as the individual sublayer thicknesses are diminished to zero. In this paper, we describe the mathematical foundation of the electrical circuit model, demonstrate its application to several representative structures involving In x Ga1- x As strained layers on GaAs (001) substrates, and develop its extension to continuously-graded layers. This extension allows the development of analytical expressions for the strain, misfit dislocation density, critical layer thickness and widths of misfit dislocation free zones for a continuously-graded layer having an arbitrary compositional profile. It is similar to the transition from circuit

  13. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  14. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    Science.gov (United States)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  15. Stability of the thermodynamic equilibrium: A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    International Nuclear Information System (INIS)

    Faghihi, M.; Scheffel, J.; Spies, G.O.

    1988-01-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure

  16. A nonlinear model for myogenic regulation of blood flow to bone: equilibrium states and stability characteristics.

    Science.gov (United States)

    Harrigan, T P

    1996-01-01

    A simple compartmental model for myogenic regulation of interstitial pressure in bone is developed, and the interaction between changes in interstitial pressure and changes in arterial and venous resistance is studied. The arterial resistance is modeled by a myogenic model that depends on transmural pressure, and the venous resistance is modeled by using a vascular waterfall. Two series capacitances model blood storage in the vascular system and interstitial fluid storage in the extravascular space. The static results mimic the observed effect that vasodilators work less well in bone than do vasoconstrictors. The static results also show that the model gives constant flow rates over a limited range of arterial pressure. The dynamic model shows unstable behavior at small values of bony capacitance and at high enough myogenic gain. At low myogenic gain, only a single equilibrium state is present, but a high enough myogenic gain, two new equilibrium states appear. At additional increases in gain, one of the two new states merges with and then separates from the original state, and the original state becomes a saddle point. The appearance of the new states and the transition of the original state to a saddle point do not depend on the bony capacitance, and these results are relevant to general fluid compartments. Numerical integration of the rate equations confirms the stability calculations and shows limit cycling behavior in several situations. The relevance of this model to circulation in bone and to other compartments is discussed.

  17. Modeling of electron behaviors under microwave electric field in methane and air pre-mixture gas plasma assisted combustion

    Science.gov (United States)

    Akashi, Haruaki; Sasaki, K.; Yoshinaga, T.

    2011-10-01

    Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found

  18. Transfer coefficients to terrestrial food products in equilibrium assessment models for nuclear installations

    International Nuclear Information System (INIS)

    Zach, R.

    1980-09-01

    Transfer coefficients have become virtually indispensible in the study of the fate of radioisotopes released from nuclear installations. These coefficients are used in equilibrium assessment models where they specify the degree of transfer in food chains of individual radioisotopes from soil to plant products and from feed or forage and drinking water to animal products and ultimately to man. Information on transfer coefficients for terrestrial food chain models is very piecemeal and occurs in a wide variety of journals and reports. To enable us to choose or determine suitable values for assessments, we have addressed the following aspects of transfer coefficients on a very broad scale: (1) definitions, (2) equilibrium assumption, which stipulates that transfer coefficients be restricted to equilibrium or steady rate conditions, (3) assumption of linearity, that is the idea that radioisotope concentrations in food products increase linearly with contamination levels in the soil or animal feed, (4) methods of determination, (5) variability, (6) generic versus site-specific values, (7) statistical aspects, (8) use, (9) sources of currently used values, (10) criteria for revising values, (11) establishment and maintenance of files on transfer coefficients, and (12) future developments. (auth)

  19. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation

    Directory of Open Access Journals (Sweden)

    Benjamin Scellier

    2017-05-01

    Full Text Available We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made and the second phase of training (after the target or prediction error is revealed. Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST

  20. Model-based experimental design for assessing effects of mixtures of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Baas, Jan, E-mail: jan.baas@falw.vu.n [Vrije Universiteit of Amsterdam, Dept of Theoretical Biology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Stefanowicz, Anna M., E-mail: anna.stefanowicz@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Klimek, Beata, E-mail: beata.klimek@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Kooijman, Sebastiaan A.L.M., E-mail: bas@bio.vu.n [Vrije Universiteit of Amsterdam, Dept of Theoretical Biology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2010-01-15

    We exposed flour beetles (Tribolium castaneum) to a mixture of four poly aromatic hydrocarbons (PAHs). The experimental setup was chosen such that the emphasis was on assessing partial effects. We interpreted the effects of the mixture by a process-based model, with a threshold concentration for effects on survival. The behavior of the threshold concentration was one of the key features of this research. We showed that the threshold concentration is shared by toxicants with the same mode of action, which gives a mechanistic explanation for the observation that toxic effects in mixtures may occur in concentration ranges where the individual components do not show effects. Our approach gives reliable predictions of partial effects on survival and allows for a reduction of experimental effort in assessing effects of mixtures, extrapolations to other mixtures, other points in time, or in a wider perspective to other organisms. - We show a mechanistic approach to assess effects of mixtures in low concentrations.

  1. Model-based experimental design for assessing effects of mixtures of chemicals

    International Nuclear Information System (INIS)

    Baas, Jan; Stefanowicz, Anna M.; Klimek, Beata; Laskowski, Ryszard; Kooijman, Sebastiaan A.L.M.

    2010-01-01

    We exposed flour beetles (Tribolium castaneum) to a mixture of four poly aromatic hydrocarbons (PAHs). The experimental setup was chosen such that the emphasis was on assessing partial effects. We interpreted the effects of the mixture by a process-based model, with a threshold concentration for effects on survival. The behavior of the threshold concentration was one of the key features of this research. We showed that the threshold concentration is shared by toxicants with the same mode of action, which gives a mechanistic explanation for the observation that toxic effects in mixtures may occur in concentration ranges where the individual components do not show effects. Our approach gives reliable predictions of partial effects on survival and allows for a reduction of experimental effort in assessing effects of mixtures, extrapolations to other mixtures, other points in time, or in a wider perspective to other organisms. - We show a mechanistic approach to assess effects of mixtures in low concentrations.

  2. On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio

    Directory of Open Access Journals (Sweden)

    Tatjana Miljkovic

    2018-05-01

    Full Text Available We review two complementary mixture-based clustering approaches for modeling unobserved heterogeneity in an insurance portfolio: the generalized linear mixed cluster-weighted model (CWM and mixture-based clustering for an ordered stereotype model (OSM. The latter is for modeling of ordinal variables, and the former is for modeling losses as a function of mixed-type of covariates. The article extends the idea of mixture modeling to a multivariate classification for the purpose of testing unobserved heterogeneity in an insurance portfolio. The application of both methods is illustrated on a well-known French automobile portfolio, in which the model fitting is performed using the expectation-maximization (EM algorithm. Our findings show that these mixture-based clustering methods can be used to further test unobserved heterogeneity in an insurance portfolio and as such may be considered in insurance pricing, underwriting, and risk management.

  3. Oscillation Susceptibility Analysis of the ADMIRE Aircraft along the Path of Longitudinal Flight Equilibriums in Two Different Mathematical Models

    Directory of Open Access Journals (Sweden)

    Achim Ionita

    2009-01-01

    Full Text Available The oscillation susceptibility of the ADMIRE aircraft along the path of longitudinal flight equilibriums is analyzed numerically in the general and in a simplified flight model. More precisely, the longitudinal flight equilibriums, the stability of these equilibriums, and the existence of bifurcations along the path of these equilibriums are researched in both models. Maneuvers and appropriate piloting tasks for the touch-down moment are simulated in both models. The computed results obtained in the models are compared in order to see if the movement concerning the landing phase computed in the simplified model is similar to that computed in the general model. The similarity we find is not a proof of the structural stability of the simplified system, what as far we know never been made, but can increase the confidence that the simplified system correctly describes the real phenomenon.

  4. Model-based experimental design for assessing effects of mixtures of chemicals

    NARCIS (Netherlands)

    Baas, J.; Stefanowicz, A.M.; Klimek, B.; Laskowski, R.; Kooijman, S.A.L.M.

    2010-01-01

    We exposed flour beetles (Tribolium castaneum) to a mixture of four poly aromatic hydrocarbons (PAHs). The experimental setup was chosen such that the emphasis was on assessing partial effects. We interpreted the effects of the mixture by a process-based model, with a threshold concentration for

  5. A general mixture model for mapping quantitative trait loci by using molecular markers

    NARCIS (Netherlands)

    Jansen, R.C.

    1992-01-01

    In a segregating population a quantitative trait may be considered to follow a mixture of (normal) distributions, the mixing proportions being based on Mendelian segregation rules. A general and flexible mixture model is proposed for mapping quantitative trait loci (QTLs) by using molecular markers.

  6. Mathematical modeling of the radiation-chemical behavior of neptunium in HNO3. Equilibrium states

    International Nuclear Information System (INIS)

    Vladimirova, M.V.

    1995-01-01

    A mathematical model of the radiation-chemical behavior of neptunium is presented for a wide range of α-and γ-irradiation doses. Equations determining the equilibrium concentrations of NP(IV), Np(V), and Np(VI) are derived for various concentrations of HNO 3 and dose rates of the ionizing irradiation. The rate constants of the reactions NP(IV) + OH, Np(IV) + NO 3 , Np(V) + NO 2 , Np(V) + H, Np(IV), and Np(V) + Np(V) are obtained by the mathematical modeling

  7. The performance of simulated annealing in parameter estimation for vapor-liquid equilibrium modeling

    Directory of Open Access Journals (Sweden)

    A. Bonilla-Petriciolet

    2007-03-01

    Full Text Available In this paper we report the application and evaluation of the simulated annealing (SA optimization method in parameter estimation for vapor-liquid equilibrium (VLE modeling. We tested this optimization method using the classical least squares and error-in-variable approaches. The reliability and efficiency of the data-fitting procedure are also considered using different values for algorithm parameters of the SA method. Our results indicate that this method, when properly implemented, is a robust procedure for nonlinear parameter estimation in thermodynamic models. However, in difficult problems it still can converge to local optimums of the objective function.

  8. International nuclear model and code comparison on pre-equilibrium effects

    International Nuclear Information System (INIS)

    Gruppelaar, H.; van der Kamp, H.A.J.; Nagel, P.

    1983-01-01

    This paper gives the specification of an intercomparison of statistical nuclear models and codes with emphasis on pre-equilibrium effects. It is partly based upon the conclusions of a meeting of an ad-hoc working group on this subject. The parameters studied are: masses, Q values, level scheme data, optical model parameters, X-ray competition parameters, total level-density specifications, for 86 Rb, 89 Sr, 90 Y, 92 Y, 92 Zr, 93 Zr, 89 Y, 91 Nb, 92 Nb and 93 Nb

  9. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    Science.gov (United States)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  10. Comparison of Themodynamic and Transport Property Models for Computing Equilibrium High Enthalpy Flows

    Science.gov (United States)

    Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik

    2017-11-01

    To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.

  11. Chaos in a dynamic model of urban transportation network flow based on user equilibrium states

    International Nuclear Information System (INIS)

    Xu Meng; Gao Ziyou

    2009-01-01

    In this study, we investigate the dynamical behavior of network traffic flow. We first build a two-stage mathematical model to analyze the complex behavior of network flow, a dynamical model, which is based on the dynamical gravity model proposed by Dendrinos and Sonis [Dendrinos DS, Sonis M. Chaos and social-spatial dynamic. Berlin: Springer-Verlag; 1990] is used to estimate the number of trips. Considering the fact that the Origin-Destination (O-D) trip cost in the traffic network is hard to express as a functional form, in the second stage, the user equilibrium network assignment model was used to estimate the trip cost, which is the minimum cost of used path when user equilibrium (UE) conditions are satisfied. It is important to use UE to estimate the O-D cost, since a connection is built among link flow, path flow, and O-D flow. The dynamical model describes the variations of O-D flows over discrete time periods, such as each day and each week. It is shown that even in a system with dimensions equal to two, chaos phenomenon still exists. A 'Chaos Propagation' phenomenon is found in the given model.

  12. Monte Carlo modeling of Lead-Cooled Fast Reactor in adiabatic equilibrium state

    Energy Technology Data Exchange (ETDEWEB)

    Stanisz, Przemysław, E-mail: pstanisz@agh.edu.pl; Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2016-05-15

    Graphical abstract: - Highlights: • We present the Monte Carlo modeling of the LFR in the adiabatic equilibrium state. • We assess the adiabatic equilibrium fuel composition using the MCB code. • We define the self-adjusting process of breeding gain by the control rod operation. • The designed LFR can work in the adiabatic cycle with zero fuel breeding. - Abstract: Nuclear power would appear to be the only energy source able to satisfy the global energy demand while also achieving a significant reduction of greenhouse gas emissions. Moreover, it can provide a stable and secure source of electricity, and plays an important role in many European countries. However, nuclear power generation from its birth has been doomed by the legacy of radioactive nuclear waste. In addition, the looming decrease in the available resources of fissile U235 may influence the future sustainability of nuclear energy. The integrated solution to both problems is not trivial, and postulates the introduction of a closed-fuel cycle strategy based on breeder reactors. The perfect choice of a novel reactor system fulfilling both requirements is the Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state. In such a state, the reactor converts depleted or natural uranium into plutonium while consuming any self-generated minor actinides and transferring only fission products as waste. We present the preliminary design of a Lead-Cooled Fast Reactor operating in the adiabatic equilibrium state with the Monte Carlo Continuous Energy Burnup Code – MCB. As a reference reactor model we apply the core design developed initially under the framework of the European Lead-cooled SYstem (ELSY) project and refined in the follow-up Lead-cooled European Advanced DEmonstration Reactor (LEADER) project. The major objective of the study is to show to what extent the constraints of the adiabatic cycle are maintained and to indicate the phase space for further improvements. The analysis

  13. Cap-and-Trade Modeling and Analysis: Congested Electricity Market Equilibrium

    Science.gov (United States)

    Limpaitoon, Tanachai

    This dissertation presents an equilibrium framework for analyzing the impact of cap-and-trade regulation on transmission-constrained electricity market. The cap-and-trade regulation of greenhouse gas emissions has gained momentum in the past decade. The impact of the regulation and its efficacy in the electric power industry depend on interactions of demand elasticity, transmission network, market structure, and strategic behavior of firms. I develop an equilibrium model of an oligopoly electricity market in conjunction with a market for tradable emissions permits to study the implications of such interactions. My goal is to identify inefficiencies that may arise from policy design elements and to avoid any unintended adverse consequences on the electric power sector. I demonstrate this modeling framework with three case studies examining the impact of carbon cap-and-trade regulation. In the first case study, I study equilibrium results under various scenarios of resource ownership and emission targets using a 24-bus IEEE electric transmission system. The second and third case studies apply the equilibrium model to a realistic electricity market, Western Electricity Coordinating Council (WECC) 225-bus system with a detailed representation of the California market. In the first and second case studies, I examine oligopoly in electricity with perfect competition in the permit market. I find that under a stringent emission cap and a high degree of concentration of non-polluting firms, the electricity market is subject to potential abuses of market power. Also, market power can occur in the procurement of non-polluting energy through the permit market when non-polluting resources are geographically concentrated in a transmission-constrained market. In the third case study, I relax the competitive market structure assumption of the permit market by allowing oligopolistic competition in the market through a conjectural variation approach. A short-term equilibrium

  14. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  15. Analytical modeling of equilibrium of strongly anisotropic plasma in tokamaks and stellarators

    International Nuclear Information System (INIS)

    Lepikhin, N. D.; Pustovitov, V. D.

    2013-01-01

    Theoretical analysis of equilibrium of anisotropic plasma in tokamaks and stellarators is presented. The anisotropy is assumed strong, which includes the cases with essentially nonuniform distributions of plasma pressure on magnetic surfaces. Such distributions can arise at neutral beam injection or at ion cyclotron resonance heating. Then the known generalizations of the standard theory of plasma equilibrium that treat p ‖ and p ⊥ (parallel and perpendicular plasma pressures) as almost constant on magnetic surfaces are not applicable anymore. Explicit analytical prescriptions of the profiles of p ‖ and p ⊥ are proposed that allow modeling of the anisotropic plasma equilibrium even with large ratios of p ‖ /p ⊥ or p ⊥ /p ‖ . A method for deriving the equation for the Shafranov shift is proposed that does not require introduction of the flux coordinates and calculation of the metric tensor. It is shown that for p ⊥ with nonuniformity described by a single poloidal harmonic, the equation for the Shafranov shift coincides with a known one derived earlier for almost constant p ⊥ on a magnetic surface. This does not happen in the other more complex case

  16. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  17. Metal Mixture Modeling Evaluation project: 2. Comparison of four modeling approaches

    Science.gov (United States)

    Farley, Kevin J.; Meyer, Joe; Balistrieri, Laurie S.; DeSchamphelaere, Karl; Iwasaki, Yuichi; Janssen, Colin; Kamo, Masashi; Lofts, Steve; Mebane, Christopher A.; Naito, Wataru; Ryan, Adam C.; Santore, Robert C.; Tipping, Edward

    2015-01-01

    As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the U.S. Geological Survey (USA), HDR⎪HydroQual, Inc. (USA), and the Centre for Ecology and Hydrology (UK) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME Workshop in Brussels, Belgium (May 2012), is provided herein. Overall, the models were found to be similar in structure (free ion activities computed by WHAM; specific or non-specific binding of metals/cations in or on the organism; specification of metal potency factors and/or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single versus multiple types of binding site on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong inter-relationships among the model parameters (log KM values, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed.

  18. Investigating the Impact of Item Parameter Drift for Item Response Theory Models with Mixture Distributions.

    Science.gov (United States)

    Park, Yoon Soo; Lee, Young-Sun; Xing, Kuan

    2016-01-01

    This study investigates the impact of item parameter drift (IPD) on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT) models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS) were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results also showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effects on item parameters and examinee ability.

  19. Investigating the Impact of Item Parameter Drift for Item Response Theory Models with Mixture Distributions

    Directory of Open Access Journals (Sweden)

    Yoon Soo ePark

    2016-02-01

    Full Text Available This study investigates the impact of item parameter drift (IPD on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effect on item parameters and examinee ability.

  20. Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1996-01-01

    Safety assessments for radioactive waste repositories require a detailed knowledge of physical, chemical, hydrological, and geological processes for long time spans. In the past, individual models for hydraulics, transport, or geochemical processes were developed more or less separately to great sophistication for the individual processes. Such processes are especially important in the near field of a waste repository. Attempts have been made to couple at least two individual processes to get a more adequate description of geochemical systems. These models are called coupled codes; they couple predominantly a multicomponent transport model with a chemical reaction model. Here reactive transport is modeled by the sequentially coupled code MCOTAC that couples one-dimensional advective, dispersive, and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium. Transport, described by a random walk of multispecies particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term. The modular-structured code was applied to incongruent dissolution of hydrated silicate gels, to movement of multiple solid front systems, and to an artificial, numerically difficult heterogeneous redox problem. These applications show promising features with respect to applicability to relevant problems and possibilities of extensions

  1. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  2. Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Li Xiaoli; Li Hengde

    2009-01-01

    Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model

  3. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  4. Sweatshop equilibrium

    OpenAIRE

    Chau, Nancy H.

    2009-01-01

    This paper presents a capability-augmented model of on the job search, in which sweatshop conditions stifle the capability of the working poor to search for a job while on the job. The augmented setting unveils a sweatshop equilibrium in an otherwise archetypal Burdett-Mortensen economy, and reconciles a number of oft noted yet perplexing features of sweatshop economies. We demonstrate existence of multiple rational expectation equilibria, graduation pathways out of sweatshops in complete abs...

  5. Near-wall extension of a non-equilibrium, omega-based Reynolds stress model

    International Nuclear Information System (INIS)

    Nguyen, Tue; Behr, Marek; Reinartz, Birgit

    2011-01-01

    In this paper, the development of a new ω-based Reynolds stress model that is consistent with asymptotic analysis in the near wall region and with rapid distortion theory in homogeneous turbulence is reported. The model is based on the SSG/LRR-ω model developed by Eisfeld (2006) with three main modifications. Firstly, the near wall behaviors of the redistribution, dissipation and diffusion terms are modified according to the asymptotic analysis and a new blending function based on low Reynolds number is proposed. Secondly, an anisotropic dissipation tensor based on the Reynolds stress inhomogeneity (Jakirlic et al., 2007) is used instead of the original isotropic model. Lastly, the SSG redistribution term, which is activated far from the wall, is replaced by Speziale's non-equilibrium model (Speziale, 1998).

  6. Influence of high power ultrasound on rheological and foaming properties of model ice-cream mixtures

    Directory of Open Access Journals (Sweden)

    Verica Batur

    2010-03-01

    Full Text Available This paper presents research of the high power ultrasound effect on rheological and foaming properties of ice cream model mixtures. Ice cream model mixtures are prepared according to specific recipes, and afterward undergone through different homogenization techniques: mechanical mixing, ultrasound treatment and combination of mechanical and ultrasound treatment. Specific diameter (12.7 mm of ultrasound probe tip has been used for ultrasound treatment that lasted 5 minutes at 100 percent amplitude. Rheological parameters have been determined using rotational rheometer and expressed as flow index, consistency coefficient and apparent viscosity. From the results it can be concluded that all model mixtures have non-newtonian, dilatant type behavior. The highest viscosities have been observed for model mixtures that were homogenizes with mechanical mixing, and significantly lower values of viscosity have been observed for ultrasound treated ones. Foaming properties are expressed as percentage of increase in foam volume, foam stability index and minimal viscosity. It has been determined that ice cream model mixtures treated only with ultrasound had minimal increase in foam volume, while the highest increase in foam volume has been observed for ice cream mixture that has been treated in combination with mechanical and ultrasound treatment. Also, ice cream mixtures having higher amount of proteins in composition had shown higher foam stability. It has been determined that optimal treatment time is 10 minutes.

  7. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  8. A phase-field model for non-equilibrium solidification of intermetallics

    International Nuclear Information System (INIS)

    Assadi, H.

    2007-01-01

    Intermetallics may exhibit unique solidification behaviour-including slow growth kinetics, anomalous partitioning and formation of unusual growth morphologies-because of departure from local equilibrium. A phase-field model is developed and used to illustrate these non-equilibrium effects in solidification of a prototype B2 intermetallic phase. The model takes sublattice compositions as primary field variables, from which chemical long-range order is derived. The diffusive reactions between the two sublattices, and those between each sublattice and the liquid phase are taken as 'internal' kinetic processes, which take place within control volumes of the system. The model can thus capture solute and disorder trapping effects, which are consistent-over a wide range of the solid/liquid interface thickness-with the predictions of the sharp-interface theory of solute and disorder trapping. The present model can also take account of solid-state ordering and thus illustrate the effects of chemical ordering on microstructure formation and crystal growth kinetics

  9. Modelling of Equilibrium Between Mantle and Core: Refractory, Volatile, and Highly Siderophile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K.; Shofner, G.; Lee, C. -T.

    2013-01-01

    Siderophile elements have been used to constrain conditions of core formation and differentiation for the Earth, Mars and other differentiated bodies [1]. Recent models for the Earth have concluded that the mantle and core did not fully equilibrate and the siderophile element contents of the mantle can only be explained under conditions where the oxygen fugacity changes from low to high during accretion and the mantle and core do not fully equilibrate [2,3]. However these conclusions go against several physical and chemical constraints. First, calculations suggest that even with the composition of accreting material changing from reduced to oxidized over time, the fO2 defined by metal-silicate equilibrium does not change substantially, only by approximately 1 logfO2 unit [4]. An increase of more than 2 logfO2 units in mantle oxidation are required in models of [2,3]. Secondly, calculations also show that metallic impacting material will become deformed and sheared during accretion to a large body, such that it becomes emulsified to a fine scale that allows equilibrium at nearly all conditions except for possibly the length scale for giant impacts [5] (contrary to conclusions of [6]). Using new data for D(Mo) metal/silicate at high pressures, together with updated partitioning expressions for many other elements, we will show that metal-silicate equilibrium across a long span of Earth s accretion history may explain the concentrations of many siderophile elements in Earth's mantle. The modeling includes refractory elements Ni, Co, Mo, and W, as well as highly siderophile elements Au, Pd and Pt, and volatile elements Cd, In, Bi, Sb, Ge and As.

  10. Econometrically calibrated computable general equilibrium models: Applications to the analysis of energy and climate politics

    Science.gov (United States)

    Schu, Kathryn L.

    Economy-energy-environment models are the mainstay of economic assessments of policies to reduce carbon dioxide (CO2) emissions, yet their empirical basis is often criticized as being weak. This thesis addresses these limitations by constructing econometrically calibrated models in two policy areas. The first is a 35-sector computable general equilibrium (CGE) model of the U.S. economy which analyzes the uncertain impacts of CO2 emission abatement. Econometric modeling of sectors' nested constant elasticity of substitution (CES) cost functions based on a 45-year price-quantity dataset yields estimates of capital-labor-energy-material input substitution elasticities and biases of technical change that are incorporated into the CGE model. I use the estimated standard errors and variance-covariance matrices to construct the joint distribution of the parameters of the economy's supply side, which I sample to perform Monte Carlo baseline and counterfactual runs of the model. The resulting probabilistic abatement cost estimates highlight the importance of the uncertainty in baseline emissions growth. The second model is an equilibrium simulation of the market for new vehicles which I use to assess the response of vehicle prices, sales and mileage to CO2 taxes and increased corporate average fuel economy (CAFE) standards. I specify an econometric model of a representative consumer's vehicle preferences using a nested CES expenditure function which incorporates mileage and other characteristics in addition to prices, and develop a novel calibration algorithm to link this structure to vehicle model supplies by manufacturers engaged in Bertrand competition. CO2 taxes' effects on gasoline prices reduce vehicle sales and manufacturers' profits if vehicles' mileage is fixed, but these losses shrink once mileage can be adjusted. Accelerated CAFE standards induce manufacturers to pay fines for noncompliance rather than incur the higher costs of radical mileage improvements

  11. Exact correlations in the Lieb-Liniger model and detailed balance out-of-equilibrium

    Directory of Open Access Journals (Sweden)

    Jacopo De Nardis, Miłosz Panfil

    2016-12-01

    Full Text Available We study the density-density correlation function of the 1D Lieb-Liniger model and obtain an exact expression for the small momentum limit of the static correlator in the thermodynamic limit. We achieve this by summing exactly over the relevant form factors of the density operator in the small momentum limit. The result is valid for any eigenstate, including thermal and non-thermal states. We also show that the small momentum limit of the dynamic structure factors obeys a generalized detailed balance relation valid for any equilibrium state.

  12. Pre-equilibrium (exciton) model and the heavy-ion reactions with cluster emission

    CERN Document Server

    Betak, E

    2015-01-01

    We bring the possibility to include the cluster emission into the statistical pre-equilibrium (exciton) model enlarged for considering also the heavy ion collisions. At this moment, the calculations have been done without treatment of angular momentum variables, but all the approach can be straightforwardly applied to heavy-ion reactions with cluster emission including the angular momentum variables. The direct motivation of this paper is a possibility of producing the superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, $\\alpha$-particles).

  13. Core-state models for fuel management of equilibrium and transition cycles in pressurized water reactors

    International Nuclear Information System (INIS)

    Aragones, J.M.; Martinez-Val, J.M.; Corella, M.R.

    1977-01-01

    Fuel management requires that mass, energy, and reactivity balance be satisfied in each reload cycle. Procedures for selection of alternatives, core-state models, and fuel cost calculations have been developed for both equilibrium and transition cycles. Effective cycle lengths and fuel cycle variables--namely, reload batch size, schedule of incore residence for the fuel, feed enrichments, energy sharing cycle by cycle, and discharge burnup and isotopics--are the variables being considered for fuel management planning with a given energy generation plan, fuel design, recycling strategy, and financial assumptions

  14. Sudden transition from equilibrium stability to chaotic dynamics in a cautious tâtonnement model

    International Nuclear Information System (INIS)

    Foroni, I.; Avellone, A.; Panchuk, A.

    2016-01-01

    Discrete time price adjustment processes may fail to converge and may exhibit periodic or even chaotic behavior. To avoid large price changes, a version of the discrete time tâtonnement process for reaching an equilibrium in a pure exchange economy based on a cautious updating of the prices has been proposed two decades ago. This modification leads to a one dimensional bimodal piecewise smooth map, for which we show analytically that degenerate bifurcations and border collision bifurcations play a fundamental role for the asymptotic behavior of the model. (paper)

  15. Analysis of a decision model in the context of equilibrium pricing and order book pricing

    Science.gov (United States)

    Wagner, D. C.; Schmitt, T. A.; Schäfer, R.; Guhr, T.; Wolf, D. E.

    2014-12-01

    An agent-based model for financial markets has to incorporate two aspects: decision making and price formation. We introduce a simple decision model and consider its implications in two different pricing schemes. First, we study its parameter dependence within a supply-demand balance setting. We find realistic behavior in a wide parameter range. Second, we embed our decision model in an order book setting. Here, we observe interesting features which are not present in the equilibrium pricing scheme. In particular, we find a nontrivial behavior of the order book volumes which reminds of a trend switching phenomenon. Thus, the decision making model alone does not realistically represent the trading and the stylized facts. The order book mechanism is crucial.

  16. A multicomponent ion-exchange equilibrium model for chabazite columns treating ORNL wastewaters

    International Nuclear Information System (INIS)

    Perona, J.J.

    1993-06-01

    Planned near-term and long-term upgrades of the Oak Ridge National Laboratory (ORNL) Process Waste Treatment Plant (PWTP) will use chabazite columns to remove 90 Sr and 137 Cs from process wastewater. A valid equilibrium model is required for the design of these columns and for evaluating their performance when influent wastewater composition changes. The cations exchanged, in addition to strontium and cesium, are calcium, magnesium, and sodium. A model was developed using the Wilson equation for the calculation of the solid-phase activity coefficients. The model was tested against chabazite column runs on two different wastewaters and found to be valid. A sensitivity analysis was carried out for the projected wastewater compositions, in which the model was used to predict changes in relative separation factors for strontium and cesium subject to changes in calcium, magnesium, and sodium concentrations

  17. Combinatorial bounds on the α-divergence of univariate mixture models

    KAUST Repository

    Nielsen, Frank; Sun, Ke

    2017-01-01

    We derive lower- and upper-bounds of α-divergence between univariate mixture models with components in the exponential family. Three pairs of bounds are presented in order with increasing quality and increasing computational cost. They are verified

  18. Statistical imitation system using relational interest points and Gaussian mixture models

    CSIR Research Space (South Africa)

    Claassens, J

    2009-11-01

    Full Text Available The author proposes an imitation system that uses relational interest points (RIPs) and Gaussian mixture models (GMMs) to characterize a behaviour. The system's structure is inspired by the Robot Programming by Demonstration (RDP) paradigm...

  19. A compressibility based model for predicting the tensile strength of directly compressed pharmaceutical powder mixtures.

    Science.gov (United States)

    Reynolds, Gavin K; Campbell, Jacqueline I; Roberts, Ron J

    2017-10-05

    A new model to predict the compressibility and compactability of mixtures of pharmaceutical powders has been developed. The key aspect of the model is consideration of the volumetric occupancy of each powder under an applied compaction pressure and the respective contribution it then makes to the mixture properties. The compressibility and compactability of three pharmaceutical powders: microcrystalline cellulose, mannitol and anhydrous dicalcium phosphate have been characterised. Binary and ternary mixtures of these excipients have been tested and used to demonstrate the predictive capability of the model. Furthermore, the model is shown to be uniquely able to capture a broad range of mixture behaviours, including neutral, negative and positive deviations, illustrating its utility for formulation design. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Modeling Hydrodynamic State of Oil and Gas Condensate Mixture in a Pipeline

    Directory of Open Access Journals (Sweden)

    Dudin Sergey

    2016-01-01

    Based on the developed model a calculation method was obtained which is used to analyze hydrodynamic state and composition of hydrocarbon mixture in each ith section of the pipeline when temperature-pressure and hydraulic conditions change.

  1. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  2. Mixture estimation with state-space components and Markov model of switching

    Czech Academy of Sciences Publication Activity Database

    Nagy, Ivan; Suzdaleva, Evgenia

    2013-01-01

    Roč. 37, č. 24 (2013), s. 9970-9984 ISSN 0307-904X R&D Projects: GA TA ČR TA01030123 Institutional support: RVO:67985556 Keywords : probabilistic dynamic mixtures, * probability density function * state-space models * recursive mixture estimation * Bayesian dynamic decision making under uncertainty * Kerridge inaccuracy Subject RIV: BC - Control Systems Theory Impact factor: 2.158, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/nagy-mixture estimation with state-space components and markov model of switching.pdf

  3. Integrated environmental assessment of future energy scenarios based on economic equilibrium models

    International Nuclear Information System (INIS)

    Igos, E.; Rugani, B.; Rege, S.; Benetto, E.; Drouet, L.; Zachary, D.; Haas, T.

    2014-01-01

    The future evolution of energy supply technologies strongly depends on (and affects) the economic and environmental systems, due to the high dependency of this sector on the availability and cost of fossil fuels, especially on the small regional scale. This paper aims at presenting the modeling system and preliminary results of a research project conducted on the scale of Luxembourg to assess the environmental impact of future energy scenarios for the country, integrating outputs from partial and computable general equilibrium models within hybrid Life Cycle Assessment (LCA) frameworks. The general equilibrium model for Luxembourg, LUXGEM, is used to evaluate the economic impacts of policy decisions and other economic shocks over the time horizon 2006-2030. A techno-economic (partial equilibrium) model for Luxembourg, ETEM, is used instead to compute operation levels of various technologies to meet the demand for energy services at the least cost along the same timeline. The future energy demand and supply are made consistent by coupling ETEM with LUXGEM so as to have the same macro-economic variables and energy shares driving both models. The coupling results are then implemented within a set of Environmentally-Extended Input-Output (EE-IO) models in historical time series to test the feasibility of the integrated framework and then to assess the environmental impacts of the country. Accordingly, a dis-aggregated energy sector was built with the different ETEM technologies in the EE-IO to allow hybridization with Life Cycle Inventory (LCI) and enrich the process detail. The results show that the environmental impact slightly decreased overall from 2006 to 2009. Most of the impacts come from some imported commodities (natural gas, used to produce electricity, and metalliferous ores and metal scrap). The main energy production technology is the combined-cycle gas turbine plant 'Twinerg', representing almost 80% of the domestic electricity production in Luxembourg

  4. Estimation of value at risk and conditional value at risk using normal mixture distributions model

    Science.gov (United States)

    Kamaruzzaman, Zetty Ain; Isa, Zaidi

    2013-04-01

    Normal mixture distributions model has been successfully applied in financial time series analysis. In this paper, we estimate the return distribution, value at risk (VaR) and conditional value at risk (CVaR) for monthly and weekly rates of returns for FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI) from July 1990 until July 2010 using the two component univariate normal mixture distributions model. First, we present the application of normal mixture distributions model in empirical finance where we fit our real data. Second, we present the application of normal mixture distributions model in risk analysis where we apply the normal mixture distributions model to evaluate the value at risk (VaR) and conditional value at risk (CVaR) with model validation for both risk measures. The empirical results provide evidence that using the two components normal mixture distributions model can fit the data well and can perform better in estimating value at risk (VaR) and conditional value at risk (CVaR) where it can capture the stylized facts of non-normality and leptokurtosis in returns distribution.

  5. An equilibrium pricing model for weather derivatives in a multi-commodity setting

    International Nuclear Information System (INIS)

    Lee, Yongheon; Oren, Shmuel S.

    2009-01-01

    Many industries are exposed to weather risk. Weather derivatives can play a key role in hedging and diversifying such risk because the uncertainty in a company's profit function can be correlated to weather condition which affects diverse industry sectors differently. Unfortunately the weather derivatives market is a classical example of an incomplete market that is not amenable to standard methodologies used for derivative pricing in complete markets. In this paper, we develop an equilibrium pricing model for weather derivatives in a multi-commodity setting. The model is constructed in the context of a stylized economy where agents optimize their hedging portfolios which include weather derivatives that are issued in a fixed quantity by a financial underwriter. The supply and demand resulting from hedging activities and the supply by the underwriter are combined in an equilibrium pricing model under the assumption that all agents maximize some risk averse utility function. We analyze the gains due to the inclusion of weather derivatives in hedging portfolios and examine the components of that gain attributable to hedging and to risk sharing. (author)

  6. Expansion dynamics and equilibrium conditions in a laser ablation plume of lithium: Modeling and experiment

    International Nuclear Information System (INIS)

    Stapleton, M.W.; McKiernan, A.P.; Mosnier, J.-P.

    2005-01-01

    The gas dynamics and atomic kinetics of a laser ablation plume of lithium, expanding adiabatically in vacuum, are included in a numerical model, using isothermal and isentropic self-similar analytical solutions and steady-state collisional radiative equations, respectively. Measurements of plume expansion dynamics using ultrafast imaging for various laser wavelengths (266-1064 nm), fluences (2-6.5 J cm -2 ), and spot sizes (50-1000 μm) are performed to provide input parameters for the model and, thereby, study the influence of laser spot size, wavelength, and fluence, respectively, on both the plume expansion dynamics and atomic kinetics. Target recoil pressure, which clearly affects plume dynamics, is included in the model. The effects of laser wavelength and spot size on plume dynamics are discussed in terms of plasma absorption of laser light. A transition from isothermal to isentropic behavior for spot sizes greater than 50 μm is clearly evidenced. Equilibrium conditions are found to exist only up to 300 ns after the plume creation, while complete local thermodynamic equilibrium is found to be confined to the very early parts of the expansion

  7. A new model and extension of Wong-Sandler mixing rule for prediction of (vapour + liquid) equilibrium of polymer solutions using EOS/GE

    International Nuclear Information System (INIS)

    Haghtalab, Ali; Espanani, Reza

    2004-01-01

    The cubic equation of state (CEOS) is a powerful method for calculation of (vapour + liquid) equilibrium (VLE) in polymer solutions. Using CEOS for both the vapour and liquid phases allows one to calculate the non-ideality of polymer solutions based on a single EOS approach. However, the traditional mixing rules are not appropriate to extend the CEOS to non-ideal mixtures such as polymer solutions. Several authors have applied the EOS/G E approach to predict (vapour + liquid) equilibria in polymer solutions, however, incorporating an appropriate excess Gibbs free energy for the new mixing rule is a major step. In this research, the NRTL-NRF model was extended in terms of volume fraction of polymer and solvent (instead of mole fraction), then equilibrium calculations were carried out using PRSV EOS and Wong-Sandler mixing rules. Using the adjustable parameters as a function of solution temperature, the NRTL-NRF model can be used as a predictive model. In comparison with NRTL model, the results of the new NRTL-NRF model show better accuracy

  8. Quantity Constrained General Equilibrium

    NARCIS (Netherlands)

    Babenko, R.; Talman, A.J.J.

    2006-01-01

    In a standard general equilibrium model it is assumed that there are no price restrictions and that prices adjust infinitely fast to their equilibrium values.In case of price restrictions a general equilibrium may not exist and rationing on net demands or supplies is needed to clear the markets.In

  9. Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms

    Science.gov (United States)

    Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cǎtǎlin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A.

    2018-04-01

    We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.

  10. Geomagnetic polarity reversals as a mechanism for the punctuated equilibrium model of biological evolution

    International Nuclear Information System (INIS)

    Welsh, J.S.; Welsh, A.L.; Welsh, W.F.

    2003-01-01

    In contrast to what is predicted by classical Darwinian theory (phyletic gradualism), the fossil record typically displays a pattern of relatively sudden, dramatic changes as detailed by Eldregde and Gould's model of punctuated equilibrium. Evolutionary biologists have been at a loss to explain the ultimate source of the new mutations that drive evolution. One hypothesis holds that the abrupt speciation seen in the punctuated equilibrium model is secondary to an increased mutation rate resulting from periodically increased levels of ionizing radiation on the Earth's surface. Sporadic geomagnetic pole reversals, occurring every few million years on the average, are accompanied by alterations in the strength of the Earth's magnetic field and magnetosphere. This diminution may allow charged cosmic radiation to bombard Earth with less attenuation, thereby resulting in increased mutation rates. This episodic fluctuation in the magnetosphere is an attractive mechanism for the observed fossil record. Selected periods and epochs of geologic history for which data was available were reviewed for both geomagnetic pole reversal history and fossil record. Anomalies in either were scrutinized in greater depth and correlations were made. A 35 million year span (118-83 Ma) was identified during the Early/Middle Cretaceous period that was devoid of geomagnetic polarity reversals(the Cretaceous normal superchron). Examination of the fossil record (including several invertebrate and vertebrate taxons) during the Cretaceous normal superchron does not reveal any significant gap or slowing of speciation. Although increased terrestrial radiation exposure due to a diminution of the Earth's magnetosphere caused by a reversal of geomagnetic polarity is an attractive explanation for the mechanism of punctuated equilibrium, our investigation suggests that such polarity reversals cannot fully provide the driving force behind biological evolution. Further research is required to determine if

  11. Understanding the drug release mechanism from a montmorillonite matrix and its binary mixture with a hydrophilic polymer using a compartmental modelling approach

    Science.gov (United States)

    Choiri, S.; Ainurofiq, A.

    2018-03-01

    Drug release from a montmorillonite (MMT) matrix is a complex mechanism controlled by swelling mechanism of MMT and an interaction of drug and MMT. The aim of this research was to explain a suitable model of the drug release mechanism from MMT and its binary mixture with a hydrophilic polymer in the controlled release formulation based on a compartmental modelling approach. Theophylline was used as a drug model and incorporated into MMT and a binary mixture with hydroxyl propyl methyl cellulose (HPMC) as a hydrophilic polymer, by a kneading method. The dissolution test was performed and the modelling of drug release was assisted by a WinSAAM software. A 2 model was purposed based on the swelling capability and basal spacing of MMT compartments. The model evaluation was carried out to goodness of fit and statistical parameters and models were validated by a cross-validation technique. The drug release from MMT matrix regulated by a burst release mechanism of unloaded drug, swelling ability, basal spacing of MMT compartment, and equilibrium between basal spacing and swelling compartments. Furthermore, the addition of HPMC in MMT system altered the presence of swelling compartment and equilibrium between swelling and basal spacing compartment systems. In addition, a hydrophilic polymer reduced the burst release mechanism of unloaded drug.

  12. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  13. Risk Route Choice Analysis and the Equilibrium Model under Anticipated Regret Theory

    Directory of Open Access Journals (Sweden)

    pengcheng yuan

    2014-02-01

    Full Text Available The assumption about travellers’ route choice behaviour has major influence on the traffic flow equilibrium analysis. Previous studies about the travellers’ route choice were mainly based on the expected utility maximization theory. However, with the gradually increasing knowledge about the uncertainty of the transportation system, the researchers have realized that there is much constraint in expected util­ity maximization theory, because expected utility maximiza­tion requires travellers to be ‘absolutely rational’; but in fact, travellers are not truly ‘absolutely rational’. The anticipated regret theory proposes an alternative framework to the tra­ditional risk-taking in route choice behaviour which might be more scientific and reasonable. We have applied the antici­pated regret theory to the analysis of the risk route choosing process, and constructed an anticipated regret utility func­tion. By a simple case which includes two parallel routes, the route choosing results influenced by the risk aversion degree, regret degree and the environment risk degree have been analyzed. Moreover, the user equilibrium model based on the anticipated regret theory has been established. The equivalence and the uniqueness of the model are proved; an efficacious algorithm is also proposed to solve the model. Both the model and the algorithm are demonstrated in a real network. By an experiment, the model results and the real data have been compared. It was found that the model re­sults can be similar to the real data if a proper regret degree parameter is selected. This illustrates that the model can better explain the risk route choosing behaviour. Moreover, it was also found that the traveller’ regret degree increases when the environment becomes more and more risky.

  14. An Equilibrium Chance-Constrained Multiobjective Programming Model with Birandom Parameters and Its Application to Inventory Problem

    Directory of Open Access Journals (Sweden)

    Zhimiao Tao

    2013-01-01

    Full Text Available An equilibrium chance-constrained multiobjective programming model with birandom parameters is proposed. A type of linear model is converted into its crisp equivalent model. Then a birandom simulation technique is developed to tackle the general birandom objective functions and birandom constraints. By embedding the birandom simulation technique, a modified genetic algorithm is designed to solve the equilibrium chance-constrained multiobjective programming model. We apply the proposed model and algorithm to a real-world inventory problem and show the effectiveness of the model and the solution method.

  15. Interface model conditions for a non-equilibrium heat transfer model for conjugate fluid/porous/solid domains

    International Nuclear Information System (INIS)

    Betchen, L.J.; Straatman, A.G.

    2005-01-01

    A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)

  16. Study on possibility of plasma current profile determination using an analytical model of tokamak equilibrium

    International Nuclear Information System (INIS)

    Moriyama, Shin-ichi; Hiraki, Naoji

    1996-01-01

    The possibility of determining the current profile of tokamak plasma from the external magnetic measurements alone is investigated using an analytical model of tokamak equilibrium. The model, which is based on an approximate solution of the Grad-Shafranov equation, can set a plasma current profile expressed with four free parameters of the total plasma current, the poloidal beta, the plasma internal inductance and the axial safety factor. The analysis done with this model indicates that, for a D-shaped plasma, the boundary poloidal magnetic field prescribing the external magnetic field distribution is dependent on the axial safety factor in spite of keeping the boundary safety factor and the plasma internal inductance constant. This suggests that the plasma current profile is reversely determined from the external magnetic analysis. The possibility and the limitation of current profile determination are discussed through this analytical result. (author)

  17. Equilibrium Model of Discrete Dynamic Supply Chain Network with Random Demand and Advertisement Strategy

    Directory of Open Access Journals (Sweden)

    Guitao Zhang

    2014-01-01

    Full Text Available The advertisement can increase the consumers demand; therefore it is one of the most important marketing strategies in the operations management of enterprises. This paper aims to analyze the impact of advertising investment on a discrete dynamic supply chain network which consists of suppliers, manufactures, retailers, and demand markets associated at different tiers under random demand. The impact of advertising investment will last several planning periods besides the current period due to delay effect. Based on noncooperative game theory, variational inequality, and Lagrange dual theory, the optimal economic behaviors of the suppliers, the manufactures, the retailers, and the consumers in the demand markets are modeled. In turn, the supply chain network equilibrium model is proposed and computed by modified project contraction algorithm with fixed step. The effectiveness of the model is illustrated by numerical examples, and managerial insights are obtained through the analysis of advertising investment in multiple periods and advertising delay effect among different periods.

  18. International trade in oil, gas and carbon emission rights: An intertemporal general equilibrium model

    International Nuclear Information System (INIS)

    Manne, A.S.; Rutherford, T.F.

    1994-01-01

    This paper employs a five-region intertemporal model to examine three issues related to carbon emission restrictions. First, we investigate the possible impact of such limits upon future oil prices. We show that carbon limits are likely to differ in their near- and long-term impact. Second, we analyze the problem of open-quotes leakageclose quotes which could arise if the OECD countries were to adopt unilateral limits upon carbon emissions. Third, we quantify some of the gains from trade in carbon emission rights. Each of these issues have been studied before, but to our knowledge this is the first study based on a multi-regional, forward-looking model. We show that sequential joint maximization can be an effective way to compute equilibria for intertemporal general equilibrium models of international trade. 18 refs., 10 figs

  19. A quantitative trait locus mixture model that avoids spurious LOD score peaks.

    Science.gov (United States)

    Feenstra, Bjarke; Skovgaard, Ib M

    2004-06-01

    In standard interval mapping of quantitative trait loci (QTL), the QTL effect is described by a normal mixture model. At any given location in the genome, the evidence of a putative QTL is measured by the likelihood ratio of the mixture model compared to a single normal distribution (the LOD score). This approach can occasionally produce spurious LOD score peaks in regions of low genotype information (e.g., widely spaced markers), especially if the phenotype distribution deviates markedly from a normal distribution. Such peaks are not indicative of a QTL effect; rather, they are caused by the fact that a mixture of normals always produces a better fit than a single normal distribution. In this study, a mixture model for QTL mapping that avoids the problems of such spurious LOD score peaks is presented.

  20. A Dirichlet process mixture of generalized Dirichlet distributions for proportional data modeling.

    Science.gov (United States)

    Bouguila, Nizar; Ziou, Djemel

    2010-01-01

    In this paper, we propose a clustering algorithm based on both Dirichlet processes and generalized Dirichlet distribution which has been shown to be very flexible for proportional data modeling. Our approach can be viewed as an extension of the finite generalized Dirichlet mixture model to the infinite case. The extension is based on nonparametric Bayesian analysis. This clustering algorithm does not require the specification of the number of mixture components to be given in advance and estimates it in a principled manner. Our approach is Bayesian and relies on the estimation of the posterior distribution of clusterings using Gibbs sampler. Through some applications involving real-data classification and image databases categorization using visual words, we show that clustering via infinite mixture models offers a more powerful and robust performance than classic finite mixtures.

  1. Modeling of Eddy current distribution and equilibrium reconstruction in the SST-1 Tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Sharma, Deepti; Radhakrishnana, Srinivasan; Daniel, Raju; Shankara Joisa, Y.; Atrey, Parveen Kumar; Pathak, Surya Kumar; Singh, Amit Kumar

    2015-01-01

    Toroidal continuity of the vacuum vessel and the cryostat leads to the generation of large eddy currents in these passive structures during the Ohmic phase of the steady state superconducting tokamak SST-1. This reduces the magnitude of the loop voltage seen by the plasma as also delays its buildup. During the ramping down of the Ohmic transformer current (OT), the resultant eddy currents flowing in the passive conductors play a crucial role in governing the plasma equilibrium. Amount of this eddy current and its distribution has to be accurately determined such that this can be fed to the equilibrium reconstruction code as an input. For the accurate inclusion of the effect of eddy currents in the reconstruction, the toroidally continuous conducting structures like the vacuum vessel and the cryostat with large poloidal cross-section and any other poloidal field (PF) coil sitting idle on the machine are broken up into a large number of co-axial toroidal current carrying filaments. The inductance matrix for this large set of toroidal current carrying conductors is calculated using the standard Green's function and the induced currents are evaluated for the OT waveform of each plasma discharge. Consistency of this filament model is cross-checked with the 11 in-vessel and 12 out-vessel toroidal flux loop signals in SST-1. Resistances of the filaments are adjusted to reproduce the experimental measurements of these flux loops in pure OT shots and shots with OT and vertical field (BV). Such shots are taken routinely in SST-1 without the fill gas to cross-check the consistency of the filament model. A Grad-Shafranov (GS) equation solver, named as IPREQ, has been developed in IPR to reconstruct the plasma equilibrium through searching for the best-fit current density profile. Ohmic transformer current (OT), vertical field coil current (BV), currents in the passive filaments along with the plasma pressure (p) and current (I p ) profiles are used as inputs to the IPREQ

  2. Latent Transition Analysis with a Mixture Item Response Theory Measurement Model

    Science.gov (United States)

    Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian

    2010-01-01

    A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…

  3. The case for an internal dynamics model versus equilibrium point control in human movement.

    Science.gov (United States)

    Hinder, Mark R; Milner, Theodore E

    2003-06-15

    The equilibrium point hypothesis (EPH) was conceived as a means whereby the central nervous system could control limb movements by a relatively simple shift in equilibrium position without the need to explicitly compensate for task dynamics. Many recent studies have questioned this view with results that suggest the formation of an internal dynamics model of the specific task. However, supporters of the EPH have argued that these results are not incompatible with the EPH and that there is no reason to abandon it. In this study, we have tested one of the fundamental predictions of the EPH, namely, equifinality. Subjects learned to perform goal-directed wrist flexion movements while a motor provided assistance in proportion to the instantaneous velocity. It was found that the subjects stopped short of the target on the trials where the magnitude of the assistance was randomly decreased, compared to the preceding control trials (P = 0.003), i.e. equifinality was not achieved. This is contrary to the EPH, which predicts that final position should not be affected by external loads that depend purely on velocity. However, such effects are entirely consistent with predictions based on the formation of an internal dynamics model.

  4. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  5. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.

    Science.gov (United States)

    Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri

    2015-10-01

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts

  6. Final Technical Report: "Representing Endogenous Technological Change in Climate Policy Models: General Equilibrium Approaches"

    Energy Technology Data Exchange (ETDEWEB)

    Ian Sue Wing

    2006-04-18

    The research supported by this award pursued three lines of inquiry: (1) The construction of dynamic general equilibrium models to simulate the accumulation and substitution of knowledge, which has resulted in the preparation and submission of several papers: (a) A submitted pedagogic paper which clarifies the structure and operation of computable general equilibrium (CGE) models (C.2), and a review article in press which develops a taxonomy for understanding the representation of technical change in economic and engineering models for climate policy analysis (B.3). (b) A paper which models knowledge directly as a homogeneous factor, and demonstrates that inter-sectoral reallocation of knowledge is the key margin of adjustment which enables induced technical change to lower the costs of climate policy (C.1). (c) An empirical paper which estimates the contribution of embodied knowledge to aggregate energy intensity in the U.S. (C.3), followed by a companion article which embeds these results within a CGE model to understand the degree to which autonomous energy efficiency improvement (AEEI) is attributable to technical change as opposed to sub-sectoral shifts in industrial composition (C.4) (d) Finally, ongoing theoretical work to characterize the precursors and implications of the response of innovation to emission limits (E.2). (2) Data development and simulation modeling to understand how the characteristics of discrete energy supply technologies determine their succession in response to emission limits when they are embedded within a general equilibrium framework. This work has produced two peer-reviewed articles which are currently in press (B.1 and B.2). (3) Empirical investigation of trade as an avenue for the transmission of technological change to developing countries, and its implications for leakage, which has resulted in an econometric study which is being revised for submission to a journal (E.1). As work commenced on this topic, the U.S. withdrawal

  7. Three Different Ways of Calibrating Burger's Contact Model for Viscoelastic Model of Asphalt Mixtures by Discrete Element Method

    DEFF Research Database (Denmark)

    Feng, Huan; Pettinari, Matteo; Stang, Henrik

    2016-01-01

    modulus. Three different approaches have been used and compared for calibrating the Burger's contact model. Values of the dynamic modulus and phase angle of asphalt mixtures were predicted by conducting DE simulation under dynamic strain control loading. The excellent agreement between the predicted......In this paper the viscoelastic behavior of asphalt mixture was investigated by employing a three-dimensional discrete element method. Combined with Burger's model, three contact models were used for the construction of constitutive asphalt mixture model with viscoelastic properties...

  8. Modeling Phase Equilibria for Acid Gas Mixtures using the Cubic-Plus-Association Equation of State. 3. Applications Relevant to Liquid or Supercritical CO2 Transport

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios

    2014-01-01

    density data for both CO2 and CO2–water and for vapor–liquid equilibrium for mixtures of CO2 with various compounds present in transport systems. In all of these cases we consider various possibilities for modeling CO2 (inert, self-associating using two-, three-, and four sites) and the possibility......The CPA (cubic-plus-association) equation of state is applied in this work to a wide range of systems of relevance to CO2 transport. Both phase equilibria and densities over extensive temperature and pressure ranges are considered. More specifically in this study we first evaluate CPA against......” for applying CPA to acid gas mixtures. The overall conclusion is that CPA performs satisfactorily; the model in most cases correlates well binary data and predicts with good accuracy multicomponent vapor–liquid equilibria. Among the various approaches investigated, the best ones are when cross association...

  9. Development of a global computable general equilibrium model coupled with detailed energy end-use technology

    International Nuclear Information System (INIS)

    Fujimori, Shinichiro; Masui, Toshihiko; Matsuoka, Yuzuru

    2014-01-01

    Highlights: • Detailed energy end-use technology information is considered within a CGE model. • Aggregated macro results of the detailed model are similar to traditional model. • The detailed model shows unique characteristics in the household sector. - Abstract: A global computable general equilibrium (CGE) model integrating detailed energy end-use technologies is developed in this paper. The paper (1) presents how energy end-use technologies are treated within the model and (2) analyzes the characteristics of the model’s behavior. Energy service demand and end-use technologies are explicitly considered, and the share of technologies is determined by a discrete probabilistic function, namely a Logit function, to meet the energy service demand. Coupling with detailed technology information enables the CGE model to have more realistic representation in the energy consumption. The proposed model in this paper is compared with the aggregated traditional model under the same assumptions in scenarios with and without mitigation roughly consistent with the two degree climate mitigation target. Although the results of aggregated energy supply and greenhouse gas emissions are similar, there are three main differences between the aggregated and the detailed technologies models. First, GDP losses in mitigation scenarios are lower in the detailed technology model (2.8% in 2050) as compared with the aggregated model (3.2%). Second, price elasticity and autonomous energy efficiency improvement are heterogeneous across regions and sectors in the detailed technology model, whereas the traditional aggregated model generally utilizes a single value for each of these variables. Third, the magnitude of emissions reduction and factors (energy intensity and carbon factor reduction) related to climate mitigation also varies among sectors in the detailed technology model. The household sector in the detailed technology model has a relatively higher reduction for both energy

  10. Modeling of Video Sequences by Gaussian Mixture: Application in Motion Estimation by Block Matching Method

    Directory of Open Access Journals (Sweden)

    Abdenaceur Boudlal

    2010-01-01

    Full Text Available This article investigates a new method of motion estimation based on block matching criterion through the modeling of image blocks by a mixture of two and three Gaussian distributions. Mixture parameters (weights, means vectors, and covariance matrices are estimated by the Expectation Maximization algorithm (EM which maximizes the log-likelihood criterion. The similarity between a block in the current image and the more resembling one in a search window on the reference image is measured by the minimization of Extended Mahalanobis distance between the clusters of mixture. Performed experiments on sequences of real images have given good results, and PSNR reached 3 dB.

  11. Entropy analysis on non-equilibrium two-phase flow models

    International Nuclear Information System (INIS)

    Karwat, H.; Ruan, Y.Q.

    1995-01-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships

  12. Effect of including decay chains on predictions of equilibrium-type terrestrial food chain models

    International Nuclear Information System (INIS)

    Kirchner, G.

    1990-01-01

    Equilibrium-type food chain models are commonly used for assessing the radiological impact to man from environmental releases of radionuclides. Usually these do not take into account build-up of radioactive decay products during environmental transport. This may be a potential source of underprediction. For estimating consequences of this simplification, the equations of an internationally recognised terrestrial food chain model have been extended to include decay chains of variable length. Example calculations show that for releases from light water reactors as expected both during routine operation and in the case of severe accidents, the build-up of decay products during environmental transport is generally of minor importance. However, a considerable number of radionuclides of potential radiological significance have been identified which show marked contributions of decay products to calculated contamination of human food and resulting radiation dose rates. (author)

  13. Emission policies and the Nigerian economy. Simulations from a dynamic applied general equilibrium model

    International Nuclear Information System (INIS)

    Nwaobi, Godwin Chukwudum

    2004-01-01

    Recently, there has been growing concern that human activities may be affecting the global climate through growing atmospheric concentrations of greenhouse gases (GHG). Such warming could have major impacts on economic activity and society. For the Nigerian case, the study uses multisector dynamic applied general equilibrium model to quantify the economy-wide, distributional and environmental costs of policies to curb GHG emissions. The simulation results indicate effectiveness of carbon tax, tradable permit and backstop technology policies in curbing GHG emissions but with distorted economy-wide income distributional effects. However, the model was found to be sensitive to three key exogenous variable and parameters tested: lower GDP growth rate, changed interfuel substitution elasticity and autonomous energy efficiency factor. Unlike the first test, the last two tests only had improved environmental effect but stable economy wide effect. This then suggest that domestic energy conservation measures could be a second best alternative

  14. Equilibrium arsenic adsorption onto metallic oxides : Isotherm models, error analysis and removal mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Esra Bilgin [Yalova University, Yalova (Turkmenistan); Beker, Ulker [Yldz Technical University, Istanbul (Turkmenistan)

    2014-11-15

    Arsenic adsorption properties of mono- (Fe or Al) and binary (Fe-Al) metal oxides supported on natural zeolite were investigated at three levels of temperature (298, 318 and 338 K). All data obtained from equilibrium experiments were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, Sips, Toth and Redlich-Peterson isotherms, and error functions were used to predict the best fitting model. The error analysis demonstrated that the As(Ⅴ) adsorption processes were best described by the Dubinin-Raduskevich model with the lowest sum of normalized error values. According to results, the presence of iron and aluminum oxides in the zeolite network improved the As(Ⅴ) adsorption capacity of the raw zeolite (ZNa). The X-ray photoelectron spectroscopy (XPS) analyses of ZNa-Fe and ZNa-AlFe samples suggested that the redox reactions are the postulated mechanisms for the adsorption onto them while the adsorption process is followed by surface complexation reactions for ZNa-Al.

  15. An equilibrium model for tungsten fuzz in an eroding plasma environment

    International Nuclear Information System (INIS)

    Doerner, R.P.; Baldwin, M.J.; Stangeby, P.C.

    2011-01-01

    A model equating the growth rate of tungsten fuzz on a plasma-exposed surface to the erosion rate of the fuzzy surface is developed to predict the likelihood of tungsten fuzz formation in the steady-state environment of toroidal confinement devices. To date this question has not been answered because the operational conditions in existing magnetic confinement machines do not necessarily replicate those expected in future fusion reactors (i.e. high-fluence operation, high temperature plasma-facing materials and edge plasma relatively free of condensable impurities). The model developed is validated by performing plasma exposure experiments at different incident ion energies (thereby varying the erosion rate) and measuring the resultant fuzz layer thickness. The results indicate that if the conditions exist for fuzz development in a steady-state plasma (surface temperature and energetic helium flux), then the erosion rate will determine the equilibrium thickness of the surface fuzz layer.

  16. Entropy analysis on non-equilibrium two-phase flow models

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  17. Effects of Test Conditions on APA Rutting and Prediction Modeling for Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-01-01

    Full Text Available APA rutting tests were conducted for six kinds of asphalt mixtures under air-dry and immersing conditions. The influences of test conditions, including load, temperature, air voids, and moisture, on APA rutting depth were analyzed by using grey correlation method, and the APA rutting depth prediction model was established. Results show that the modified asphalt mixtures have bigger rutting depth ratios of air-dry to immersing conditions, indicating that the modified asphalt mixtures have better antirutting properties and water stability than the matrix asphalt mixtures. The grey correlation degrees of temperature, load, air void, and immersing conditions on APA rutting depth decrease successively, which means that temperature is the most significant influencing factor. The proposed indoor APA rutting prediction model has good prediction accuracy, and the correlation coefficient between the predicted and the measured rutting depths is 96.3%.

  18. Study of the Internal Mechanical response of an asphalt mixture by 3-D Discrete Element Modeling

    DEFF Research Database (Denmark)

    Feng, Huan; Pettinari, Matteo; Hofko, Bernhard

    2015-01-01

    and the reliability of which have been validated. The dynamic modulus of asphalt mixtures were predicted by conducting Discrete Element simulation under dynamic strain control loading. In order to reduce the calculation time, a method based on frequency–temperature superposition principle has been implemented......In this paper the viscoelastic behavior of asphalt mixture was investigated by employing a three-dimensional Discrete Element Method (DEM). The cylinder model was filled with cubic array of spheres with a specified radius, and was considered as a whole mixture with uniform contact properties....... The ball density effect on the internal stress distribution of the asphalt mixture model has been studied when using this method. Furthermore, the internal stresses under dynamic loading have been studied. The agreement between the predicted and the laboratory test results of the complex modulus shows...

  19. Modelling of the migration of lanthanoids and actinoids in ground water; the medium dependence of equilibrium constants

    International Nuclear Information System (INIS)

    Biedermann, G.; Bruno, J.; Ferri, D.; Grenthe, I.; Salvatore, F.; Spahiu, K.

    1982-01-01

    The examples given in this communication indicate that it is possible to obtain a good estimate of the medium dependence of equilibrium constants by using the specific interaction theory. The theory is applicable both when extrapolating equilibrium constants to zero ionic strength and for the estimation of activity coefficients in mixtures of electrolytes. Many interaction coefficients are available in the literature, or can be calculated from published mean activity coefficient or isopiestic data. The magnitude of interaction coefficients can often be correlated with the charge and size of ions. This offers a possibility to estimate the coefficients for complexes, for which direct experimental information is difficult to get. The specific interaction theory is superior to the empirical equations of the Davies type. There is superior to the empirical equations of the Davies type. There is sufficient experimental information on interaction coefficients to warrant the implementation of the specific interaction approach in existing specifiation codes

  20. The tropical water and energy cycles in a cumulus ensemble model. Part 1: Equilibrium climate

    Science.gov (United States)

    Sui, C. H.; Lau, K. M.; Tao, W. K.; Simpson, J.

    1994-01-01

    A cumulus ensemble model is used to study the tropical water and energy cycles and their role in the climate system. The model includes cloud dynamics, radiative processes, and microphysics that incorporate all important production and conversion processes among water vapor and five species of hydrometeors. Radiative transfer in clouds is parameterized based on cloud contents and size distributions of each bulk hydrometeor. Several model integrations have been carried out under a variety of imposed boundary and large-scale conditions. In Part 1 of this paper, the primary focus is on the water and heat budgets of the control experiment, which is designed to simulate the convective - radiative equilibrium response of the model to an imposed vertical velocity and a fixed sea surface temperature at 28 C. The simulated atmosphere is conditionally unstable below the freezing level and close to neutral above the freezing level. The equilibrium water budget shows that the total moisture source, M(sub s), which is contributed by surface evaporation (0.24 M(sub s)) and the large-scale advection (0.76 M(sub s)), all converts to mean surface precipitation bar-P(sub s). Most of M(sub s) is transported verticaly in convective regions where much of the condensate is generated and falls to surface (0.68 bar-P(sub s)). The remaining condensate detrains at a rate of 0.48 bar-P(sub s) and constitutes 65% of the source for stratiform clouds above the melting level. The upper-level stratiform cloud dissipates into clear environment at a rate of 0.14 bar-P(sub s), which is a significant moisture source comparable to the detrained water vapor (0.15 bar-P(sub s)) to the upper troposphere from convective clouds. In the lower troposphere, stratiform clouds evaporate at a rate of 0.41 bar-P(sub s), which is a more dominant moisture source than surface evaporation (0.22 bar-P(sub s)). The precipitation falling to the surface in the stratiform region is about 0.32 bar-P(sub s). The associated