International Nuclear Information System (INIS)
Zhavrin, Yu.I.; Kosov, V.N.; Kul'zhanov, D.U.; Karataev, K.K.
2000-01-01
Presence of two types of instabilities of mechanical equilibrium of a mixture experimentally is shown at an isothermal diffusion of multicomponent system with zero gradient of density/ Theoretically is proved, that partial Rayleigh numbers R 1 , R 2 having different signs, there are two areas with monotonous (R 1 2 < by 0) instability. The experimental data confirm presence of these areas and satisfactory are described by the represented theory. (author)
Equilibrium problems for Raney densities
Forrester, Peter J.; Liu, Dang-Zheng; Zinn-Justin, Paul
2015-07-01
The Raney numbers are a class of combinatorial numbers generalising the Fuss-Catalan numbers. They are indexed by a pair of positive real numbers (p, r) with p > 1 and 0 0 and similarly use both methods to identify the equilibrium problem for (p, r) = (θ/q + 1, 1/q), θ > 0 and q \\in Z+ . The Wiener-Hopf method is used to extend the latter to parameters (p, r) = (θ/q + 1, m + 1/q) for m a non-negative integer, and also to identify the equilibrium problem for a family of densities with moments given by certain binomial coefficients.
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Microinstabilities in weak density gradient tokamak systems
International Nuclear Information System (INIS)
Tang, W.M.; Rewoldt, G.; Chen, L.
1986-04-01
A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient
The effect of density gradients on hydrometers
Heinonen, Martti; Sillanpää, Sampo
2003-05-01
Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.
Gradient descent learning in and out of equilibrium
International Nuclear Information System (INIS)
Caticha, Nestor; Araujo de Oliveira, Evaldo
2001-01-01
Relations between the off thermal equilibrium dynamical process of on-line learning and the thermally equilibrated off-line learning are studied for potential gradient descent learning. The approach of Opper to study on-line Bayesian algorithms is used for potential based or maximum likelihood learning. We look at the on-line learning algorithm that best approximates the off-line algorithm in the sense of least Kullback-Leibler information loss. The closest on-line algorithm works by updating the weights along the gradient of an effective potential, which is different from the parent off-line potential. A few examples are analyzed and the origin of the potential annealing is discussed
Energy Technology Data Exchange (ETDEWEB)
Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.
International Nuclear Information System (INIS)
Bakosi, Jozsef; Ristorcelli, Raymond J.
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
International Nuclear Information System (INIS)
Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.
2011-01-01
In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.
Planar-channeling spatial density under statistical equilibrium
International Nuclear Information System (INIS)
Ellison, J.A.; Picraux, S.T.
1978-01-01
The phase-space density for planar channeled particles has been derived for the continuum model under statistical equilibrium. This is used to obtain the particle spatial probability density as a function of incident angle. The spatial density is shown to depend on only two parameters, a normalized incident angle and a normalized planar spacing. This normalization is used to obtain, by numerical calculation, a set of universal curves for the spatial density and also for the channeled-particle wavelength as a function of amplitude. Using these universal curves, the statistical-equilibrium spatial density and the channeled-particle wavelength can be easily obtained for any case for which the continuum model can be applied. Also, a new one-parameter analytic approximation to the spatial density is developed. This parabolic approximation is shown to give excellent agreement with the exact calculations
A density gradient theory based method for surface tension calculations
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios
2016-01-01
The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...
International Nuclear Information System (INIS)
Shukla, P.K.; Bharuthram, R.; Schlickeiser, R.
2004-01-01
It is shown that the dispersive Shukla mode [P.K. Shukla, Phys. Lett. A 316, 238 (2003)] can become unstable in the presence of equilibrium density and magnetic field inhomogeneities in a dusty plasma. A new dispersion relation for our nonuniform dusty magnetoplasma is derived and analyzed to show the modification of the Shukla mode frequency and its amplification due to combined action of the plasma density and magnetic field gradients. The present instability may account for the origin of low-frequency electromagnetic turbulence in molecular clouds and in cometary plasmas
Destabilization of drift waves due to nonuniform density gradient
International Nuclear Information System (INIS)
Hirose, A.; Ishihara, O.
1985-01-01
It is shown that the conventional mode differential equation for low frequency electrostatic waves in a tokamak does not contain full ion dynamics. Both electrons and ions contribute to the ballooning term, which is subject to finite ion Larmor radius effects. Also, both fluid ion approximation and kinetic ion model yield the same correction. Reexamined are the density gradient universal mode and ion temperature gradient instability employing the lowest order Pearlstein-Berk type radial eigenfunctions. No unstable, bounded, energy outgoing eigenfunctions have been found. In particular, a large ion temperature gradient (eta/sub i/) tends to further stabilize the temperature gradient driven mode
Density gradients in ceramic pellets measured by computed tomography
International Nuclear Information System (INIS)
Sawicka, B.D.; Palmer, B.J.F.
1986-07-01
Density gradients are of fundamental importance in ceramic processing and computed tomography (CT) can provide accurate measurements of density profiles in sintered and unsintered ceramic parts. As a demonstration of this potential, the density gradients in an unsintered pellet pressed from an alumina powder were measured by CT scanning. To detect such small density gradients, the CT images must have good density resolution and be free from beam-hardening effects. This was achieved by measuring high-contrast (low-noise) images with the use of an Ir-192 isotopic source. A beam-hardening correction was applied. The resulting images are discussed relative to the transmission of forces through the powder mass during the pelletizing process
Local thermodynamic equilibrium in rapidly heated high energy density plasmas
International Nuclear Information System (INIS)
Aslanyan, V.; Tallents, G. J.
2014-01-01
Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance
Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.
Khantuleva, Tatiana A; Shalymov, Dmitry S
2017-03-06
The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
Graph approach to the gradient expansion of density functionals
International Nuclear Information System (INIS)
Kozlowski, P.M.; Nalewajski, R.F.
1986-01-01
A graph representation of terms in the gradient expansion of the kinetic energy density functional is presented. They briefly discuss the implications of the virial theorem for the graph structure and relations between possible graphs at a given order of expansion
Effect of Crustal Density Structures on GOCE Gravity Gradient Observables
Directory of Open Access Journals (Sweden)
Robert Tenzer Pavel Novák
2013-01-01
Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the Earth¡¦s crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The Earth¡¦s gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.
International Nuclear Information System (INIS)
Salat, A.
1990-01-01
In conventional drift wave theory the density gradient κ n =d lnn/dχ determines the linear phase velocity, and the (electron) temperature gradient κ T =d lnT/dχ gives rise to a nonlinear term which leads to the existence of soliton-type solutions and solitary waves. LAKHIN, MIKHAILOVSKI and ONISHCHENKO, Phys. Lett. A 119, 348 (1987) and Plasma Phys. and Contr. Fus. 30, 457 (1988), recently claimed that it is not κ T but essentially the derivative of the density gradient, dκ n /dχ, that is relevant. This claim is refuted by means of an expansion scheme in ε=eΦ/T≤1, where Φ is the drift wave potential. (orig.)
Travelling waves of density for a fourth-gradient model of fluids
Gouin, Henri; Saccomandi, Giuseppe
2016-09-01
In mean-field theory, the non-local state of fluid molecules can be taken into account using a statistical method. The molecular model combined with a density expansion in Taylor series of the fourth order yields an internal energy value relevant to the fourth-gradient model, and the equation of isothermal motions takes then density's spatial derivatives into account for waves travelling in both liquid and vapour phases. At equilibrium, the equation of the density profile across interfaces is more precise than the Cahn and Hilliard equation, and near the fluid's critical point, the density profile verifies an Extended Fisher-Kolmogorov equation, allowing kinks, which converges towards the Cahn-Hillard equation when approaching the critical point. Nonetheless, we also get pulse waves oscillating and generating critical opalescence.
Gradient-based stochastic estimation of the density matrix
Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton
2018-03-01
Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.
Interacting Eigenmodes of a plasma diode with a density gradient
International Nuclear Information System (INIS)
Loefgren, T.; Gunell, H.
1997-08-01
The formation of narrow high frequency electric field spikes in plasma density gradients is investigated using one-dimensional particle in cell simulations. It is found that the shape of the plasma density gradient is very important for the spike formation. The spike appears also in simulations with immobile ions showing that a coupling to the ion motion, as for example in wave interactions, is not necessary for the formation of HF spikes. However, the HF spike influences the ion motion, and ion waves are seen in the simulations. It has been found, in experiments and simulations, that the electron velocity distribution function deviates from the Maxwellian distribution. Dispersion relations are calculated using realistic distribution functions. The spike can be seen as a coupled system of two Eigenmodes of a plasma diode fed by the beam-plasma interaction. Based on a simplified fluid description of such Eigenmodes, explanations for the localization of the spike, spatially and in frequency, are given. The density amplitude is comparable with the DC density level close to the cathode. Space charge limits of waves in this region seem to determine the amplitude of the spike through the Poisson's equation
Density gradient effect on waveguide launching of lower hybrid waves
International Nuclear Information System (INIS)
Fichet, M.; Fidone, I.
1981-01-01
An extensive numerical investigation of the waveguide-plasma coupling, in the lower hybrid range of frequencies, is presented. The role of a sharp density gradient at the plasma edge is investigated. It is found that, in the case of a very sharp gradient, the accessibility condition |nsub(parallel)|>nsub(c)=(1-ω 2 /ωsub(i)ωsub(e))sup(-1/2) is violated and an appreciable fraction of the total energy is launched in the range |nsub(parallel)|< nsub(c). The case of one, two and four waveguides is considered, and it is found that the general pattern of the energy spectrum is very similar for the three antennas. (author)
Density gradients in the solar plasma observed by interplanetary scintillation
International Nuclear Information System (INIS)
Gapper, G.R.; Hewish, A.
1981-01-01
A new technique is described which overcomes the limitation set by Fresnel filtering in previous IPS studies of the small-scale density irregularities in the solar plasma. Phase gradients introduced by irregularities larger than the Fresnel limit cause transverse displacements of the small-scale scintillation pattern. In the presence of the solar wind, such refraction effects may be revealed by simultaneous measurements of intensity scintillation at two radio frequencies. Observations show that the structure corresponding to temporal frequencies approximately 0.02 Hz is in agreement with an extrapolation of the Kolmogorov spectrum derived from spacecraft data at lower frequencies. (author)
Approach to equilibrium in a pure superconductor. The relaxation of the Cooper pair density
Energy Technology Data Exchange (ETDEWEB)
Schid, A
1968-01-01
Electron-phonon and electron-electron collisions are the processes which determine the relaxation time r/sub R/ of the Cooper pair density. The case is considered for which the deviation of the pair density from equilibrium is small and where the equilibrium state is homogeneous. Starting from the Eliashberg equation one is able to reduce the problem to a quadrature once the equilibrium Green functions are known.
Mineral density volume gradients in normal and diseased human tissues.
Directory of Open Access Journals (Sweden)
Sabra I Djomehri
Full Text Available Clinical computed tomography provides a single mineral density (MD value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca to phosphorus (P and Ca to zinc (Zn elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc. A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49, hypomineralized dentin (0.32-0.46, cementum (1.51, and bone (1.68 were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765 and in cementum (595-990, highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.
Mineral Density Volume Gradients in Normal and Diseased Human Tissues
Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.
2015-01-01
Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386
Moho Density Contrast in Central Eurasia from GOCE Gravity Gradients
Directory of Open Access Journals (Sweden)
Mehdi Eshagh
2016-05-01
Full Text Available Seismic data are primarily used in studies of the Earth’s inner structure. Since large parts of the world are not yet sufficiently covered by seismic surveys, products from the Earth’s satellite observation systems have more often been used for this purpose in recent years. In this study we use the gravity-gradient data derived from the Gravity field and steady-state Ocean Circulation Explorer (GOCE, the elevation data from the Shuttle Radar Topography Mission (SRTM and other global datasets to determine the Moho density contrast at the study area which comprises most of the Eurasian plate (including parts of surrounding continental and oceanic tectonic plates. A regional Moho recovery is realized by solving the Vening Meinesz-Moritz’s (VMM inverse problem of isostasy and a seismic crustal model is applied to constrain the gravimetric solution. Our results reveal that the Moho density contrast reaches minima along the mid-oceanic rift zones and maxima under the continental crust. This spatial pattern closely agrees with that seen in the CRUST1.0 seismic crustal model as well as in the KTH1.0 gravimetric-seismic Moho model. However, these results differ considerably from some previously published gravimetric studies. In particular, we demonstrate that there is no significant spatial correlation between the Moho density contrast and Moho deepening under major orogens of Himalaya and Tibet. In fact, the Moho density contrast under most of the continental crustal structure is typically much more uniform.
International Nuclear Information System (INIS)
Bozkaya, Uğur; Sherrill, C. David
2016-01-01
An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C 10 H 22 ), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.
Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.
2017-10-01
Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
A new estimation method for nuclide number densities in equilibrium cycle
International Nuclear Information System (INIS)
Seino, Takeshi; Sekimoto, Hiroshi; Ando, Yoshihira.
1997-01-01
A new method is proposed for estimating nuclide number densities of LWR equilibrium cycle by multi-recycling calculation. Conventionally, it is necessary to spend a large computation time for attaining the ultimate equilibrium state. Hence, the cycle in nearly constant fuel composition has been considered as an equilibrium state which can be achieved by a few of recycling calculations on a simulated cycle operation under a specific fuel core design. The present method uses steady state fuel nuclide number densities as the initial guess for multi-recycling burnup calculation obtained by a continuously fuel supplied core model. The number densities are modified to be the initial number densities for nuclides of a batch supplied fuel. It was found that the calculated number densities could attain to more precise equilibrium state than that of a conventional multi-recycling calculation with a small number of recyclings. In particular, the present method could give the ultimate equilibrium number densities of the nuclides with the higher mass number than 245 Cm and 244 Pu which were not able to attain to the ultimate equilibrium state within a reasonable number of iterations using a conventional method. (author)
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation
Peng, Wei
2013-01-01
Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols-so-called detonation nanodiamonds (DNDs)-are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach. © 2013 The Royal Society of Chemistry.
Modelling CO2-Brine Interfacial Tension using Density Gradient Theory
Ruslan, Mohd Fuad Anwari Che
2018-03-01
Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data
International Nuclear Information System (INIS)
Kleva, Robert G.; Guzdar, Parvez N.
2009-01-01
Steepening of the ion temperature gradient in nonlinear fluid simulations of the edge region of a tokamak plasma causes a rapid degradation in confinement. As the density gradient steepens, there is a continuous improvement in confinement analogous to the low (L) to high (H) transition observed in tokamaks. In contrast, as the ion temperature gradient steepens, there is a rapid increase in the particle and energy fluxes and no L-H transition. For a given pressure gradient, confinement always improves when more of the pressure gradient arises from the density gradient, and less of the pressure gradient arises from the ion temperature gradient.
2017-05-05
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9724 Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and Absorption...and electronic excited-state absorption spectra for eqilibrium structures of SixOy molecular clusters using density function theory (DFT) and time
General approach for solving the density gradient theory in the interfacial tension calculations
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht
2017-01-01
Within the framework of the density gradient theory, the interfacial tension can be calculated by finding the density profiles that minimize an integral of two terms over the system of infinite width. It is found that the two integrands exhibit a constant difference along the interface for a finite...... property evaluations compared to other methods. The performance of the algorithm with recommended parameters is analyzed for various systems, and the efficiency is further compared with the geometric-mean density gradient theory, which only needs to solve nonlinear algebraic equations. The results show...... that the algorithm is only 5-10 times less efficient than solving the geometric-mean density gradient theory....
L. Braga, F.
2013-10-01
The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.
The causal relation between turbulent particle flux and density gradient
Energy Technology Data Exchange (ETDEWEB)
Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C. [CIEMAT - Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); García, L.; Nicolau, J. H. [Universidad Carlos III, 28911 Leganés, Madrid (Spain)
2016-07-15
A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local and instantaneous, as is sometimes assumed.
BMP4 density gradient in disk-shaped confinement
Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.
We present a quantitative model that explains the scaling of BMP4 gradients during gastrulation and the recent experimental observation that geometric confinement of human embryonic stem cells is sufficient to recapitulate much of germ layer patterning. Based on a assumption that BMP4 diffusion rate is much smaller than the diffusion rate of it's inhibitor molecules, our results confirm that the length-scale which defines germ layer territories does not depend on system size.
Depth perception: cuttlefish (Sepia officinalis) respond to visual texture density gradients.
Josef, Noam; Mann, Ofri; Sykes, António V; Fiorito, Graziano; Reis, João; Maccusker, Steven; Shashar, Nadav
2014-11-01
Studies concerning the perceptual processes of animals are not only interesting, but are fundamental to the understanding of other developments in information processing among non-humans. Carefully used visual illusions have been proven to be an informative tool for understanding visual perception. In this behavioral study, we demonstrate that cuttlefish are responsive to visual cues involving texture gradients. Specifically, 12 out of 14 animals avoided swimming over a solid surface with a gradient picture that to humans resembles an illusionary crevasse, while only 5 out of 14 avoided a non-illusionary texture. Since texture gradients are well-known cues for depth perception in vertebrates, we suggest that these cephalopods were responding to the depth illusion created by the texture density gradient. Density gradients and relative densities are key features in distance perception in vertebrates. Our results suggest that they are fundamental features of vision in general, appearing also in cephalopods.
Semiautomated system for the production and analysis of sucrose density gradients
International Nuclear Information System (INIS)
Lange, C.S.; Liberman, D.F.
1974-01-01
A semiautomated system in DNA damage studies permitting considerable accuracy, speed, and reproducibility in the making and fractionation of sucrose density gradients is described. The system consists of a modified Beckman gradient forming device that makes six gradients simultaneously and delivers them into six 12.5 ml polyallomer centrifuge tubes in such a manner that new material is continuously added to the meniscus of the gradient. The gradients are fractionated three at a time and up to 100 fractions per gradient can be collected automatically directly into scintillation vials with a choice of drop counting or time mode with rinse and automatic addition of scintillation fluid to each vial. The system can process up to six gradients per hour but centrifugation time is usually the limiting factor. With neutral sucrose gradients, sharp, reproducible, monodisperse peaks containing up to 100 percent of the gradient radioactivity are usually obtained but a smaller monodisperse peak containing as little as 3.5 percent of the gradient radioactivity can be detected under conditions where some pairs of molecules might tangle or dimerize. The resolution and reproducibility of this system when used with neutral sucrose gradients is at least the equal if not superior to that commonly claimed for alkaline sucrose gradients. (U.S.)
DEFF Research Database (Denmark)
Campagnoli, C; Multhaupt, H A; Ludomirski, A
1997-01-01
OBJECTIVE: To develop a noninvasive method suitable for clinical prenatal diagnosis. STUDY DESIGN: Fetal nucleated erythrocytes were separated from peripheral blood of 17 healthy pregnant women using small magnetically activated cell sorting columns (MiniMACS) following density gradient centrifug...
DEFF Research Database (Denmark)
Regueira Muñiz, Teresa; Pantelide, Georgia; Yan, Wei
2016-01-01
isothermal compressibility values were obtained by differentiation from the Tammann-Tait correlation ofthe determined density values. Isobaric thermal expansion coefficients were also calculated based on differentiation from the isobaric fit of density data. We also measured the phase equilibrium...
International Nuclear Information System (INIS)
Abo-Elmagd, M.; Mansy, M.; Eissa, H.M.; El-Fiki, M.A.
2006-01-01
The equilibrium factor F between radon and its daughters as a function of the track density ratio D/D 0 between bare and in can track detectors is solved graphically and gave more accurate solution than that solved mathematically elsewhere. The advantages of the graphical solution come from its simplicity and does not need any tedious mathematical formula or a computer program. The simplicity of this solution makes us study many parameters that affect the equilibrium factor determination such as the detector type, the diffusion chamber dimensions, the membrane specifications and the behavior of α-emitters around the detector. The results show that the equilibrium factor as a function of D/D 0 takes different form according to the facility used. The range of this study covers two widely used detectors (CR-39 and LR-115) equipped in two widely used diffusion chambers (small and medium chambers)
Analytic solutions for Rayleigh-Taylor growth rates in smooth density gradients
International Nuclear Information System (INIS)
Munro, D.H.
1988-01-01
The growth rate of perturbations on the shell of a laser fusion target can be estimated as √gk , where g is the shell acceleration and k is the transverse wave number of the perturbation. This formula overestimates the growth rate, and should be modified for the effects of density gradients and/or ablation of the unstable interface. The density-gradient effect is explored here analytically. With the use of variational calculus to explore all possible density profiles, the growth rate is shown to exceed √gk/(1+kL) , where L is a typical density-gradient scale length. Density profiles actually exhibiting this minimum growth rate are found
Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi
2018-06-01
A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.
Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu
2016-07-20
Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.
Virus purification by CsCl density gradient using general centrifugation.
Nasukawa, Tadahiro; Uchiyama, Jumpei; Taharaguchi, Satoshi; Ota, Sumire; Ujihara, Takako; Matsuzaki, Shigenobu; Murakami, Hironobu; Mizukami, Keijirou; Sakaguchi, Masahiro
2017-11-01
Virus purification by cesium chloride (CsCl) density gradient, which generally requires an expensive ultracentrifuge, is an essential technique in virology. Here, we optimized virus purification by CsCl density gradient using general centrifugation (40,000 × g, 2 h, 4 °C), which showed almost the same purification ability as conventional CsCl density gradient ultracentrifugation (100,000 × g, 1 h, 4 °C) using phages S13' and φEF24C. Moreover, adenovirus strain JM1/1 was also successfully purified by this method. We suggest that general centrifugation can become a less costly alternative to ultracentrifugation for virus purification by CsCl densiy gradient and will thus encourage research in virology.
Czech Academy of Sciences Publication Activity Database
Malijevský, Alexandr; Lísal, Martin
2009-01-01
Roč. 130, č. 16 (2009), 164713-1-24 ISSN 0021-9606 R&D Projects: GA ČR GA203/05/0725; GA AV ČR 1ET400720507; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504 Keywords : density functional theory * reaction ensemble Monte Carlo * reaction equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.093, year: 2009
DEFF Research Database (Denmark)
Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim
2001-01-01
.5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...
International Nuclear Information System (INIS)
Kleva, Robert G.; Guzdar, Parvez N.
2011-01-01
The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.
Chemical equilibrium model for high- Tc and heavy fermion superconductors: the density of states
International Nuclear Information System (INIS)
Kallio, A.; Hissa, J.; Hayrynen, T.; Braysy, V.; Sakkinen, T.
1998-01-01
The chemical equilibrium model is based on the idea of correlated electron pairs, which in singlet state can exist as quasimolecules in the superfluid and normal states of a superconductor. These preformed pairs are bosons which can undergo a Bose-Einstein condensation in analogy with the superfluidity of 4 He+ 3 He-mixture. The bosons (B ++ ) and the fermions (h + ) are in chemical equilibrium with respect to the reaction B ++ ↔ 2h + , at any temperature. The mean densities of bosons and fermions (quasiholes) n B (T) and n h (T) are determined from the thermodynamics of the equilibrium reaction in terms of a single function f(T). By thermodynamics the function f(T) is connected to equilibrium constant φ(T) by 1-f(T) = [1 + φ(T)] -1/2 . Using a simple power law, known to be valid near T = 0, for the chemical constant φ(T) α/t 2γ , t = T/T*, the mean density of quasiholes is given in closed form. This enables one to calculate the corresponding density of states (DOS) D(E) N s /N(0), by solving an integral equation. The NIS- tunneling conductivity near T = 0, given by D(E) compares well with the most recent experiments: D(E) ∼ E γ , for small E and a finite maximum of right size, corresponding to 'finite quasiparticle lifetime'. The corresponding SIS-tunneling conductivity is obtained from a simple convolution and is also in agreement with recent break junction experiments of Hancotte et al. The position of the maximum can be used to obtain the scaling temperature T*, which comes close to the one measured by Hall coefficient in the normal state. A simple explanation for the spingap effect in NMR is given. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Density gradient instabilities in a neutron inhomogeneous guiding-centre plasma
International Nuclear Information System (INIS)
Shoucri, M.M.; Gagne, R.R.J.
1977-01-01
The guiding-centre equations for a plasma of cold ions and thermal electrons admit neutral and non-neutral inhomogeneous equilibrium solutions, and the linear stability of these solutions has been recently investigated numerically by Shoucri and Knorr (1975). With arbitrary density profiles, numerical techniques appear to be the only practical way to study the linear stability of the inhomogeneous equilibrium solutions for the guiding centre plasma. However, analytical methods can be applied to some simple types of density profiles. The purpose of the present note is to present some analytical results on the linear instabilities of an inhomogeneous neutral guiding centre plasma. (U.K.)
Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi
2017-10-01
Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).
Reflection and absorption of ion-acoustic waves in a plasma density gradient
International Nuclear Information System (INIS)
Ishihara, O.
1977-01-01
Plasma is characterized by electrical quasineutrality and the collective behavior. There exists a longitudinal low-frequency wave called an ion-acoustic wave in a plasma. One problem in the experimental study of ion-acoustic waves has been that sometimes they are observed to be reflected from discharge tube walls, and sometimes to be absorbed. Theoretical computation reveals that a velocity gradient produced by a density gradient plays a significant role in the reflection. The velocity gradient produces the subsonic-supersonic transition and long wavelength waves are reflected before reaching the transition while short wavelength waves penetrate over the transition and are absorbed in the supersonic flow plasma
OptiPrep? Density Gradient Solutions for Macromolecules and Macromolecular Complexes
Directory of Open Access Journals (Sweden)
John Graham
2002-01-01
Full Text Available Any density gradient for the isolation of mammalian cells should ideally only expose the sedimenting particles to an increasing concentration of the gradient solute. Thus they will experience only an increasing density and viscosity, other parameters such as osmolality, pH, ionic strength and the concentration of important additives (such as EDTA or divalent cations should remain as close to constant as possible. This Protocol Article describes the strategies for the dilution of OptiPrep™ in order to prepare such solutions for mammalian cells.
Spectroscopic analysis of the density and temperature gradients in the laser-heated gas jet
International Nuclear Information System (INIS)
Matthews, D.L.; Lee, R.W.; Auerbach, J.M.
1981-01-01
We have performed an analysis of the x-ray spectra produced by a 1.0TW, lambda/sub L/-0.53μm laser-irradiated gas jet. Plasmas produced by ionization of neon, argon and N 2 + SF 6 gases were included in those measurements. Plasma electron density and temperature gradients were obtained by comparison of measured spectra with those produced by computer modeling. Density gradients were also obtained using laser interferometry. The limitations of this technique for plasma diagnosis will be discussed
Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System
Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan
2018-04-01
This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.
Correcting the error in neutron moisture probe measurements caused by a water density gradient
International Nuclear Information System (INIS)
Wilson, D.J.
1988-01-01
If a neutron probe lies in or near a water density gradient, the probe may register a water density different to that at the measuring point. The effect of a thin stratum of soil containing an excess or depletion of water at various distances from a probe in an otherwise homogeneous system has been calculated, producing an 'importance' curve. The effect of these strata can be integrated over the soil region in close proximity to the probe resulting in the net effect of the presence of a water density gradient. In practice, the probe is scanned through the point of interest and the count rate at that point is corrected for the influence of the water density on each side of it. An example shows that the technique can reduce an error of 10 per cent to about 2 per cent
Bermejo, Marie Kristel; Milenkovic, Marija; Salahpour, Ali; Ramsey, Amy J
2014-09-03
Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.
Density gradient in SiO 2 films on silicon as revealed by positron annihilation spectroscopy
Revesz, A. G.; Anwand, W.; Brauer, G.; Hughes, H. L.; Skorupa, W.
2002-06-01
Positron annihilation spectroscopy of thermally grown and deposited SiO 2 films on silicon shows in a non-destructive manner that these films have a gradient in their density. The gradient is most pronounced for the oxide grown in dry oxygen. Oxidation in water-containing ambient results in an oxide with reduced gradient, similarly to the gradient in the deposited oxide. These observations are in accordance with earlier optical and other studies using stepwise etching or a set of samples of varying thickness. The effective oxygen charge, which is very likely one of the reasons for the difference in the W parameters of silica glass and quartz crystal, could be even higher at some localized configurations in the SiO 2 films resulting in increased positron trapping.
Equilibrium and dynamics of uniform density ellipsoidal non-neutral plasmas
International Nuclear Information System (INIS)
Dubin, D.H.E.
1993-01-01
When a single-species plasma is confined in a harmonic Penning trap at cryogenic temperature, the thermal equilibrium is approximately a uniform density spheroid (ellipsoid of revolution). Normal modes corresponding to quadrupole excitations of this plasma have recently been measured. In this paper, nonlinear equations of motion are derived for these quadrupole oscillations. For large amplitudes, the oscillations deform a spheroidal plasma into a triaxial ellipsoid with time-dependent shape and orientation. The integrals of the motion are found and the cylindrically symmetric finite-amplitude oscillations of a spheroid are studied. An analysis of all possible ellipsoidal equilibria is also carried out. New equilibria are discovered which correspond to finite-amplitude versions of the noncylindrically symmetric linear quadrupole oscillations. The equilibria are shown to fall into two classes in which the ellipsoids are either tilted or aligned with respect to the magnetic field. Some of these equilibria have densities well above the Brillouin limit
Vertical density gradient in the eastern North Atlantic during the last 30,000 years
Energy Technology Data Exchange (ETDEWEB)
Rogerson, M.; Ramirez, J. [University of Hull, Geography Department, Hull (United Kingdom); Bigg, G.R. [University of Sheffield, Department of Geography, Sheffield (United Kingdom); Rohling, E.J. [University of Southampton, National Oceanography Centre, School of Ocean and Earth Science, Southampton (United Kingdom)
2012-08-15
Past changes in the density and momentum structure of oceanic circulation are an important aspect of changes in the Atlantic Meridional Overturning Circulation and consequently climate. However, very little is known about past changes in the vertical density structure of the ocean, even very extensively studied systems such as the North Atlantic. Here we exploit the physical controls on the settling depth of the dense Mediterranean water plume derived from the Strait of Gibraltar to obtain the first robust, observations-based, probabilistic reconstruction of the vertical density gradient in the eastern North Atlantic during the last 30,000 years. We find that this gradient was weakened by more than 50%, relative to the present, during the last Glacial Maximum, and that changes in general are associated with reductions in AMOC intensity. However, we find only a small change during Heinrich Event 1 relative to the Last Glacial Maximum, despite strong evidence that overturning was substantially altered. This implies that millennial-scale changes may not be reflected in vertical density structure of the ocean, which may be limited to responses on an ocean-overturning timescale or longer. Regardless, our novel reconstruction of Atlantic density structure can be used as the basis for a dynamical measure for validation of model-based AMOC reconstructions. In addition, our general approach is transferrable to other marginal sea outflow plumes, to provide estimates of oceanic vertical density gradients in other locations. (orig.)
Pitfalls of using the geometric-mean combining rule in the density gradient theory
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios
2016-01-01
It is popular and attractive to model the interfacial tension using the density gradient theory with the geometric-mean combining rule, in which the same equation of state is used for the interface and bulk phases. The computational efficiency is the most important advantage of this theory. In th...
Critical temperature gradient and critical current density in thin films of a type I superconductor
Energy Technology Data Exchange (ETDEWEB)
Heubener, R P
1968-12-16
Measurements of the critical temperature gradient and the critical current density in superconducting lead films in a transverse magnetic field indicate that the critical current flows predominantly along the surface of the films and that the critical surface currents contribute only very little to the Lorentz force on a fluxoid.
International Nuclear Information System (INIS)
Bunting, R.W.; Callahan, R.J.; Finkelstein, S.; Lees, R.S.; Strauss, H.W.
1982-01-01
When labeling platelets with indium-111 oxine, albumin density-gradient separation minimizes the time spent to resuspend those platelets that have been centrifuged against a hard surface. Labeling efficiency or platelet viability, as measured by platelet survival or aggregation with adenosine diphosphate, are not adversely affected
Teunissen, M. B.; Wormmeester, J.; Kapsenberg, M. L.; Bos, J. D.
1988-01-01
In this report we introduce an alternative procedure for enrichment of human epidermal Langerhans cells (LC) from epidermal cell suspensions of normal skin. By means of discontinuous Ficoll-Metrizoate density gradient centrifugation, a fraction containing high numbers of viable, more than 80% pure
Microfluidic Adaptation of Density-Gradient Centrifugation for Isolation of Particles and Cells
Directory of Open Access Journals (Sweden)
Yuxi Sun
2017-08-01
Full Text Available Density-gradient centrifugation is a label-free approach that has been extensively used for cell separations. Though elegant, this process is time-consuming (>30 min, subjects cells to high levels of stress (>350 g and relies on user skill to enable fractionation of cells that layer as a narrow band between the density-gradient medium and platelet-rich plasma. We hypothesized that microfluidic adaptation of this technique could transform this process into a rapid fractionation approach where samples are separated in a continuous fashion while being exposed to lower levels of stress (<100 g for shorter durations of time (<3 min. To demonstrate proof-of-concept, we designed a microfluidic density-gradient centrifugation device and constructed a setup to introduce samples and medium like Ficoll in a continuous, pump-less fashion where cells and particles can be exposed to centrifugal force and separated via different outlets. Proof-of-concept studies using binary mixtures of low-density polystyrene beads (1.02 g/cm3 and high-density silicon dioxide beads (2.2 g/cm3 with Ficoll–Paque (1.06 g/cm3 show that separation is indeed feasible with >99% separation efficiency suggesting that this approach can be further adapted for separation of cells.
Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.
2017-12-01
We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.
A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics
Kretchmer, Joshua S.; Chan, Garnet Kin-Lic
2018-02-01
We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.
International Nuclear Information System (INIS)
Gunell, H.; Loefgren, T.
1997-02-01
In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs
Electric field spikes formed by electron beam endash plasma interaction in plasma density gradients
International Nuclear Information System (INIS)
Gunell, H.; Loefgren, T.
1997-01-01
In the electron beam endash plasma interaction at an electric double layer the beam density is much higher than in the classical beam endash plasma experiments. The wave propagation takes place along the density gradient that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp open-quotes spikeclose quotes with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward traveling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. copyright 1997 American Institute of Physics
Chernyak, Vladimir Y.; Chertkov, Michael; Bierkens, Joris; Kappen, Hilbert J.
2014-01-01
In stochastic optimal control (SOC) one minimizes the average cost-to-go, that consists of the cost-of-control (amount of efforts), cost-of-space (where one wants the system to be) and the target cost (where one wants the system to arrive), for a system participating in forced and controlled Langevin dynamics. We extend the SOC problem by introducing an additional cost-of-dynamics, characterized by a vector potential. We propose derivation of the generalized gauge-invariant Hamilton-Jacobi-Bellman equation as a variation over density and current, suggest hydrodynamic interpretation and discuss examples, e.g., ergodic control of a particle-within-a-circle, illustrating non-equilibrium space-time complexity.
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-20
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
Energy Technology Data Exchange (ETDEWEB)
Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)
2014-10-07
We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.
Meyer, Bradley S.; Krishnan, Tracy D.; Clayton, Donald D.
1998-05-01
Our first purpose is construction of a formal theory of quasi-equilibrium. We define quasi-equilibrium, in its simplest form, as statistical equilibrium in the face of an extra constraint on the nuclear populations. We show that the extra constraint introduces a uniform translation of the chemical potentials for the heavy nuclei and derive the abundances in terms of it. We then generalize this theory to accommodate any number of constraints. For nucleosynthesis, the most important constraint occurs when the total number of heavy nuclei Yh within a system of nuclei differs from the number that would exist in nuclear statistical equilibrium (NSE) under the same conditions of density and temperature. Three situations of high relevance are (1) silicon burning, wherein the total number of nuclei exceeds but asymptotically approaches the NSE number; (2) alpha-rich freezeout expansions of high entropy, wherein Yh is less than the NSE number; and (3) expansions from high temperature of low-entropy matter, in which Yh exceeds the NSE number. These are of importance, respectively, within (1) supernova shells, (2) Type II supernova cores modestly outside the mass cut, and (3) Type Ia supernova cores in near-Chandrasekhar-mass events. Our next goal is the detailed analysis of situation (2), the high-entropy alpha-rich neutron-rich freezeout. We employ a nuclear reaction network, which we integrate, to compare the actual abundances with those obtained at the same thermal conditions by the quasi-equilibrium (QSE) theory and by the NSE theory. For this detailed comparison, we choose a high-entropy photon-to-nucleon ratio φ = 6.8, for which we conduct expansions at initial bulk neutron excess η0 = 0.10. We demonstrate that the abundance populations, as they begin expansion and cooling from temperature 10 × 109 K, are characterized by three distinct phases: (1) NSE, (2) QSE having Yh smaller than the NSE value, and (3) final reaction rate-dependent freezeout modifications of the
Effects of bunch density gradient in high-gain free-electron lasers
International Nuclear Information System (INIS)
Huang, Z.; Kim, K.-J.
1999-01-01
The authors investigate effects of the bunch density gradient in self-amplified spontaneous emission (SASE), including the role of coherent spontaneous emission (CSE) in the evolution of the free-electron laser (FEL) process. In the exponential gain regime, the authors solve the coupled Maxwell-Vlasov equations and extend the linear theory to a bunched beam with energy spread. A time-dependent, nonlinear simulation algorithm is used to study the CSE effect and the nonlinear evolution of the radiation pulse
Directory of Open Access Journals (Sweden)
Kazuya Iwai
2016-05-01
Full Text Available Diagnostic methods that focus on the extracellular vesicles (EVs present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA and microRNA (miRNA, which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm and higher density (1.11 g/ml than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively. Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions.
Śmiga, Szymon; Fabiano, Eduardo; Laricchia, Savio; Constantin, Lucian A; Della Sala, Fabio
2015-04-21
We analyze the methodology and the performance of subsystem density functional theory (DFT) with meta-generalized gradient approximation (meta-GGA) exchange-correlation functionals for non-bonded molecular systems. Meta-GGA functionals depend on the Kohn-Sham kinetic energy density (KED), which is not known as an explicit functional of the density. Therefore, they cannot be directly applied in subsystem DFT calculations. We propose a Laplacian-level approximation to the KED which overcomes this limitation and provides a simple and accurate way to apply meta-GGA exchange-correlation functionals in subsystem DFT calculations. The so obtained density and energy errors, with respect to the corresponding supermolecular calculations, are comparable with conventional approaches, depending almost exclusively on the approximations in the non-additive kinetic embedding term. An embedding energy error decomposition explains the accuracy of our method.
International Nuclear Information System (INIS)
Diwakar, P.K.; Hahn, D.W.
2008-01-01
To further develop laser-induced breakdown spectroscopy (LIBS) as an analytical technique, it is necessary to better understand the fundamental processes and mechanisms taking place during the plasma evolution. This paper addresses the very early plasma dynamics (first 100 ns) using direct plasma imaging, light scattering, and transmission measurements from a synchronized 532-nm probe laser pulse. During the first 50 ns following breakdown, significant Thomson scattering was observed while the probe laser interacted with the laser-induced plasma. The Thomson scattering was observed to peak 15-25 ns following plasma initiation and then decay rapidly, thereby revealing the highly transient nature of the free electron density and plasma equilibrium immediately following breakdown. Such an intense free electron density gradient is suggestive of a non-equilibrium, free electron wave generated by the initial breakdown and growth processes. Additional probe beam transmission measurements and electron density measurements via Stark broadening of the 500.1-nm nitrogen ion line corroborate the Thomson scattering observations. In concert, the data support the finding of a highly transient plasma that deviates from local thermodynamic equilibrium (LTE) conditions during the first tens of nanoseconds of plasma lifetime. The implications of this early plasma transient behavior are discussed in the context of plasma-analyte interactions and the role on LIBS measurements
Current Density Functional Theory Using Meta-Generalized Gradient Exchange-Correlation Functionals.
Furness, James W; Verbeke, Joachim; Tellgren, Erik I; Stopkowicz, Stella; Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M
2015-09-08
We present the self-consistent implementation of current-dependent (hybrid) meta-generalized gradient approximation (mGGA) density functionals using London atomic orbitals. A previously proposed generalized kinetic energy density is utilized to implement mGGAs in the framework of Kohn-Sham current density functional theory (KS-CDFT). A unique feature of the nonperturbative implementation of these functionals is the ability to seamlessly explore a wide range of magnetic fields up to 1 au (∼235 kT) in strength. CDFT functionals based on the TPSS and B98 forms are investigated, and their performance is assessed by comparison with accurate coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) data. In the weak field regime, magnetic properties such as magnetizabilities and nuclear magnetic resonance shielding constants show modest but systematic improvements over generalized gradient approximations (GGA). However, in the strong field regime, the mGGA-based forms lead to a significantly improved description of the recently proposed perpendicular paramagnetic bonding mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the vorticity, these forms are found to be numerically stable, and their accuracy at high field suggests that the extension of mGGAs to CDFT via the generalized kinetic energy density should provide a useful starting point for further development of CDFT approximations.
Medicinal Plants Density Along an Altitudinal Gradient in and Around Ayubia National Park
International Nuclear Information System (INIS)
Tariq, A.; Adnan, M.; Begum, S.
2016-01-01
Medicinal plants are an essential source of livelihood for many rural populations and are currently facing several threats of extinction in temperate Himalaya, such as excessive grazing and collection along altitudinal gradients. The present study was designed to investigate the species density of medicinal plants at different mid-altitude levels (2200, 2300, 2400, and 2500 m above the sea level (a.s.l.) between two forest-use types and to examine the possible association between medicinal plant densities and forest-stand structural variables along the altitudinal gradient. Factorial design analysis of variance showed that the densities of all medicinal plants differed significantly between the forest-use types (p<0.00) and elevation (p<0.00). Moreover, a significant interaction (p<0.04) was also observed between the forest-use types and elevation. In the old-growth forest, density of medicinal plants was 290/40 m/sup 2/ at the higher altitude (2500 m a.s.l.), approximately 1.5-fold less than the 475/40 m/sup 2/ density observed at lower altitude (2200 m a.s.l.). However, in derived woodland, density of medicinal plants at higher altitude was approximately 4-fold less than that at the lower altitude. At these altitudinal levels, medicinal plants densities, such as Valeriana jatamansi, were significantly higher under old-growth forest compared to derived woodland, where they were almost nonexistent. A rapid vulnerability assessment has also shown that Valeriana jatamansi and Viola canescens were highly vulnerable species. Litter cover was the influential variable that was most likely related to medicinal plant density. In conclusion, abundance of medicinal plants decreased along mid-altitude levels in both of the forest-use types. However, this decrease was extremely marked in the derived woodland, and this decline may be due to human activity. Hence, these factors must be considered in future studies to suggest protective measures that can be applied along
Directory of Open Access Journals (Sweden)
Allen L. Garner
2016-03-01
Full Text Available Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.
International Nuclear Information System (INIS)
Hahm, T.S.
1990-12-01
Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs
Chemical bond as a test of density-gradient expansions for kinetic and exchange energies
International Nuclear Information System (INIS)
Perdew, J.P.; Levy, M.; Painter, G.S.; Wei, S.; Lagowski, J.B.
1988-01-01
Errors in kinetic and exchange contributions to the molecular bonding energy are assessed for approximate density functionals by reference to near-exact Hartree-Fock values. From the molecular calculations of Allan et al. and of Lee and Ghosh, it is demonstrated that the density-gradient expansion does not accurately describe the noninteracting kinetic contribution to the bonding energy, even when this expansion is carried to fourth order and applied in its spin-density-functional form to accurate Hartree-Fock densities. In a related study, it is demonstrated that the overbinding of molecules such as N 2 and F 2 , which occurs in the local-spin-density (LSD) approximation for the exchange-correlation energy, is not attributable to errors in the self-consistent LSD densities. Contrary to expectations based upon the Gunnarsson-Jones nodality argument, it is found that the LSD approximation for the exchange energy can seriously overbind a molecule even when bonding does not create additional nodes in the occupied valence orbitals. LSD and exact values for the exchange contribution to the bonding energy are displayed and discussed for several molecules
DEFF Research Database (Denmark)
Vegge, T.
2006-01-01
the kinetics significantly, the physical understanding remains elusive. Density functional theory is used to calculate the energy of the potential low energy surfaces of NaAlH4 to establish the equilibrium particle shape, and furthermore to determine the deposition energy of Ti/TiH2 and the substitutional...
Energy Technology Data Exchange (ETDEWEB)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A. [Physics and Astronomy Department, University of California, Los Angeles, California 90095 (United States); Bobrek, M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6006 (United States)
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.
Isolating peripheral lymphocytes by density gradient centrifugation and magnetic cell sorting.
Brosseron, Frederic; Marcus, Katrin; May, Caroline
2015-01-01
Combining density gradient centrifugation with magnetic cell sorting provides a powerful tool to isolate blood cells with high reproducibility, yield, and purity. It also allows for subsequent separation of multiple cell types, resulting in the possibility to analyze different purified fractions from one donor's sample. The centrifugation step divides whole blood into peripheral blood mononuclear cells (PBMC), erythrocytes, and platelet-rich plasma. In the following, lymphocyte subtypes can be consecutively isolated from the PBMC fraction. This chapter describes enrichment of erythrocytes, CD14-positive monocytes and CD3-positive T lymphocytes. Alternatively, other cell types can be targeted by using magnetic beads specific for the desired subpopulation.
Yeung, E.S.; Chen, G.
1990-05-01
A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.
Conjugate-gradient optimization method for orbital-free density functional calculations.
Jiang, Hong; Yang, Weitao
2004-08-01
Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.
International Nuclear Information System (INIS)
Demir, Mahmut; Yoney, Anna; Salman, Hanna; Douarche, Carine; Libchaber, Albert
2011-01-01
In shallow temperature gradients, changes in temperature that bacteria experience occur over long time scales. Therefore, slow processes such as adaptation, metabolism, chemical secretion and even gene expression become important. Since these are cellular processes, the cell density is an important parameter that affects the bacteria's response. We find that there are four density regimes with distinct behaviors. At low cell density, bacteria do not cause changes in their chemical environment; however, their response to the temperature gradient is strongly influenced by it. In the intermediate cell-density regime, the consumption of nutrients becomes significant and induces a gradient of nutrients opposing the temperature gradient due to higher consumption rate at the high temperature. This causes the bacteria to drift toward low temperature. In the high cell-density regime, interactions among bacteria due to secretion of an attractant lead to a strong local accumulation of bacteria. This together with the gradient of nutrients, resulted from the differential consumption rate, creates a fast propagating pulse of bacterial density. These observations are a result of classical nonlinear population dynamics. At extremely high cell density, a change in the physiological state of the bacteria is observed. The bacteria, at the individual level, become cold seeking. This appears initially as a result of a change in the methylation level of the two most abundant sensing receptors, Tsr and Tar. It is further enforced at an even higher cell density by a change in the expression level of these receptors. (perspective)
Yang, Qingling; Zhang, Nan; Zhao, Feifei; Zhao, Wanli; Dai, Shanjun; Liu, Jinhao; Bukhari, Ihtisham; Xin, Hang; Niu, Wenbing; Sun, Yingpu
2015-07-01
The ends of eukaryotic chromosomes contain specialized chromatin structures called telomeres, the length of which plays a key role in early human embryonic development. Although the effect of sperm preparation techniques on major sperm characteristics, such as concentration, motility and morphology have been previously documented, the possible status of telomere length and its relation with sperm preparation techniques is not well-known for humans. The aim of this study was to investigate the role of density gradient centrifugation in the selection of spermatozoa with longer telomeres for use in assisted reproduction techniques in 105 samples before and after sperm processing. After density gradient centrifugation, the average telomere length of the sperm was significantly longer (6.51 ± 2.54 versus 5.16 ± 2.29, P average motile sperm rate was significantly higher (77.9 ± 11.8 versus 44.6 ± 11.2, P average DNA fragmentation rate was significantly lower (11.1 ± 5.9 versus 25.9 ± 12.9, P sperm count (rs = 0.58; P sperm with longer telomeres. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Linking Soil Physical Parameters Along a Density Gradient in a Loess-Soil Long-Term Experiment
DEFF Research Database (Denmark)
Eden, Marie; Møldrup, Per; Schjønning, Per
2012-01-01
It is important to understand the impact of texture and organic carbon (OC) on soil structure development. Only few studies investigated this for silt-dominated soils. In this study, soil physical properties were determined on samples from a controlled experiment (Static Fertilization Experiment...... hydraulic conductivity. The management resulted in a distinct gradient in OC. A bulk density gradient developed from differences in amount of clay not complexed with OC. This gradient in bulk density mainly affected content of pores larger than 3 [mu]m. The air-connected porosity measured by a pycnometer...
Langenbach, K; Heilig, M; Horsch, M; Hasse, H
2018-03-28
A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO 2 ). The molecular model of CO 2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.
Langenbach, K.; Heilig, M.; Horsch, M.; Hasse, H.
2018-03-01
A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.
Study of Streamers in Gradient Density Air: Table Top Modeling of Red Sprites
Opaits, D. F.; Shneider, M. N.; Howard, P. J.; Miles, R. B.; Milikh, G. M.
2009-12-01
Sprites and blue jets develop in the upper atmosphere where ambient density changes drastically over their lengths. Theoretical analysis of Red Sprites [1] and Blue Jets [2,3] are based on the streamer tip parameters’ functional dependence on a local gas density N(h). At the moment there is a lack of experimental data for streamer propagation in a non-uniform ambient gas density. Small scale experiments in controllable conditions are important for validation of analytical models as well as numerical simulations, which can be used for the investigation of real scale plasma phenomena that develop above thunderclouds. Controllable, non-uniform gas density can be achieved in laboratory conditions in super sonic nozzles, fast centrifuges or gas filled tubes with a non-uniform temperature distribution along the axis. The latter approach was used in the present work. A quartz tube, approximately one foot in length, was filled with air at different pressures. A density gradient was created by heating up the top of the tube while keeping the bottom at room temperature. The discharge was initiated by applying a high voltage pulse to a pin electrode at the top of the tube while a flat electrode was grounded at the bottom. Similar to Red Sprites, the streamer propagates downwards into a region of higher density and stops before reaching the lower electrode while the top electrode remains under high potential. This work will present results of streamer propagation at different pressures and voltages. Measurements of current-voltage characteristics as well as integral images will be presented. 1. Y. P.Raizer, G. M. Milikh, M. N. Shneider, and S. V. Novakovski (1998), J. Phys. D: Appl. Phys. 31, 3255-3264. 2. Y. P.Raizer, G. M. Milikh, and M. N. Shneider (2006), Geophys. Res. Lett., 33, L23801 3. Y .P.Raizer, G. M. Milikh, and M. N. Shneider (2007), J. Atmos. & Solat-Terr. Phys, 69, 925-938
Jardínez, Christiaan; Vela, Alberto; Cruz-Borbolla, Julián; Alvarez-Mendez, Rodrigo J; Alvarado-Rodríguez, José G
2016-12-01
The relationship between the chemical structure and biological activity (log IC 50 ) of 40 derivatives of 1,4-dihydropyridines (DHPs) was studied using density functional theory (DFT) and multiple linear regression analysis methods. With the aim of improving the quantitative structure-activity relationship (QSAR) model, the reduced density gradient s( r) of the optimized equilibrium geometries was used as a descriptor to include weak non-covalent interactions. The QSAR model highlights the correlation between the log IC 50 with highest molecular orbital energy (E HOMO ), molecular volume (V), partition coefficient (log P), non-covalent interactions NCI(H4-G) and the dual descriptor [Δf(r)]. The model yielded values of R 2 =79.57 and Q 2 =69.67 that were validated with the next four internal analytical validations DK=0.076, DQ=-0.006, R P =0.056, and R N =0.000, and the external validation Q 2 boot =64.26. The QSAR model found can be used to estimate biological activity with high reliability in new compounds based on a DHP series. Graphical abstract The good correlation between the log IC 50 with the NCI (H4-G) estimated by the reduced density gradient approach of the DHP derivatives.
DEFF Research Database (Denmark)
Van Nieuwenhove, Nicolas; Hillaire-Marcel, Claude; Bauch, Henning A.
2016-01-01
We attempt to assess the Holocene surface-subsurface seawater density gradient on millennial time-scale based on the reconstruction of potential density (σθ) by combining data from dinoflagellate cyst assemblages and planktic foraminiferal (Neogloboquadrina pachyderma (s)) stable oxygen isotopes (δ...
Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C., Jr.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2018-04-01
Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T e ) and its fluctuations (δT e ). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects, the scrape-off layer region is not accessible to the ECEI measurements in steady state conditions and that the signal is dominated by the shine-through emission. Transient effects, such as filaments, can change the radiation transport locally, but cannot be distinguished from the shine-through. Local density measurements are essential for the correct interpretation of the electron cyclotron emission, since the density fluctuations influence the temperature measurements at the plasma edge. As an example, a low frequency 8 kHz mode, which causes 10%-15% fluctuations in the signal level of the ECEI, is analysed. The same mode has been measured with the lithium beam emission spectroscopy density diagnostic, and is very well correlated in time with high frequency magnetic fluctuations. With radiation transport modelling of the electron cyclotron radiation in the ECEI geometry, it is shown that the density contributes significantly to the radiation temperature (T rad) and the experimental observations have shown the amplitude modulation in both density and temperature measurements. The poloidal velocity of the low frequency mode measured by the ECEI is 3 km s-1. The calculated velocity of the high frequency mode measured with the magnetic pick-up coils is about 25 km s-1. Velocities are compared with the E × B background flow velocity and possible explanations for the origin of the low frequency mode are discussed.
Effect of stable-density stratification on counter gradient flux of a homogeneous shear flow
Energy Technology Data Exchange (ETDEWEB)
Lida, Oaki; Nagano, Yasutaka [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan). Department of Mechanical Engineering
2007-01-15
We performed direct numerical simulations of homogeneous shear flow under stable-density stratification to study the buoyancy effects on the heat and momentum transfer. These numerical data were compared with those of a turbulent channel flow to investigate the similarity between the near-wall turbulence and the homogeneous shear flow. We also investigated the generation mechanism of the persistent CGFs (counter gradient fluxes) appearing at the higher wavenumbers of the cospectrum, and lasting over a long time without oscillation. Spatially, the persistent CGFs are associated with the longitudinal vortical structure, which is elongated in the streamwise direction and typically observed in both homogeneous shear flow and near-wall turbulence. The CGFs appear at both the top and bottom of this longitudinal vortical structure, and expand horizontally with an increase in the Richardson number. It was found that the production and turbulent-diffusion terms are responsible for the distribution of the Reynolds shear stress including the persistent CGFs. The buoyancy term, combined with the swirling motion of the vortex, contributes to expand the persistent CGF regions and decrease the down gradient fluxes. (author)
Elsheikha, Hany M; Murphy, Alice J; Fitzgerald, Scott D; Mansfield, Linda S; Massey, Jeffrey P; Saeed, Mahdi A
2003-06-01
This report describes a new, inexpensive procedure for the rapid and efficient purification of Sarcocystis neurona sporocysts from opossum small intestine. S. neurona sporocysts were purified using a discontinuous potassium bromide density gradient. The procedure provides a source of sporocyst wall and sporozoites required for reliable biochemical characterization and for immunological studies directed at characterizing antigens responsible for immunological responses by the host. The examined isolates were identified as S. neurona using random amplified polymorphic DNA primers and restriction endonuclease digestion assays. This method allows the collection of large numbers of highly purified S. neurona sporocysts without loss of sporocyst viability as indicated by propidium iodide permeability and cell culture infectivity assays. In addition, this technique might also be used for sporocyst purification of other Sarcocystis spp.
Resistance scaling for composite fermions in the presence of a density gradient
International Nuclear Information System (INIS)
Stormer, H. L.; Tsui, Daniel Chee; Pan, Wei; West, Ken W.; Baldwin, K. W.; Pfeiffer, Loren N.
2006-01-01
The magnetoresistance, R xx , at even-denominator fractional fillings, of an ultra high quality two-dimensional electron system at T ∼ 35 mK is observed to be strictly linear in magnetic field, B. While at 35 mK R xx is dominated by the integer and fractional quantum Hall states, at T ≅ 1.2 K an almost perfect linear relationship between R xx and B emerges over the whole magnetic field range except for spikes at the integer quantum Hall states. This linear R xx cannot be understood within the Composite Fermion model, but can be explained through the existence of a density gradient in our sample
Energy Technology Data Exchange (ETDEWEB)
Nakamura, K., E-mail: nakamura@triam.kyushu-u.ac.jp [RIAM, Kyushu University, Kasuga 816-8580 (Japan); Alam, M.M. [IGSES, Kyushu University, Kasuga 816-8580 (Japan); Jiang, Y.Z. [Tsinghua University, Beijing 100084 (China); Mitarai, O. [Tokai University, Kumamoto 862-8652 (Japan); Kurihara, K.; Kawamata, Y.; Sueoka, M.; Takechi, M. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Hasegawa, M.; Tokunaga, K.; Araki, K.; Zushi, H.; Hanada, K.; Fujisawa, A.; Idei, H.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nagata, T. [RIAM, Kyushu University, Kasuga 816-8580 (Japan); and others
2016-11-01
Highlights: • High energy particle guiding center orbit is calculated as a contour plot of conserved variable. • Current density profile is analyzed based on the orbit-driven current. • Plasma equilibrium is reconstructed by considering the hollow current profile. - Abstract: In the present RF-driven (ECCD) steady-state plasma on QUEST (B{sub t} = 0.25 T, R = 0.68 m, a = 0.40 m), plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to plasma current fitting (PCF) method. We consider that the current in the open magnetic surface is due to orbit-driven current by high-energy particles in RF-driven plasma. So based on the analysis of current density profile based on the orbit-driven current, plasma equilibrium is to be calculated. We calculated high energy particles guiding center orbits as a contour plot of conserved variable in Hamiltonian formulation and considered particles initial position with different levels of energy and pitch angles that satisfy resonance condition. Then the profile of orbit-driven current is estimated by multiplying the particle density on the resonance surface and the velocity on the orbits. This analysis shows negative current near the magnetic axis and hollow current profile is expected even if pressure driven current is considered. Considering the hollow current profile shifted toward the low-field region, the equilibrium is fitted by J-EFIT coded by MATLAB.
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
Ernst, D.
2015-11-01
We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.
International Nuclear Information System (INIS)
Hopkins, Mark A.; King, Lyon B.
2014-01-01
Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations
An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.
Turchi, Sandra L.; Weiss, Monica
1988-01-01
Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)
Energy Technology Data Exchange (ETDEWEB)
Eichert, K.; Kaeppeler, H. J. [Institut fuer Plasmaforschung der Technischen Hochschule Stuttgart, Federal Republic of Germany (Germany)
1966-10-15
In previous publications, a system of equations was derived from the gas-kinetic description of a multi-component reacting plasma and employed for the calculation of one-dimensional subsonic flows. This system is now extended to include non-equilibrium excitation. No thermal or chemical equilibrium between the various components of the plasma is assumed. The components of the plasma considered are a non-reacting working fluid, an alkali metal vapour as a seeding material, ions of this seeding substance, and electrons. Three levels for the excited states are introduced. The reactions considered are excitation and ionization by electron collisions, and photo-ionization, as well as the corresponding reverse processes. For the reaction velocities, analytical equations are introduced permitting insertion of any excitation or ionization cross-sections of either experimental or theoretical origin. The method employed had been previously suggested by one of the authors. As examples, the degrees of excitation and ionization in the flow of a helium working fluid with 1% caesium seeding through a channel against transverse magnetic fields of 15 and 40 kg at Mach numbers of 0.7 and 0.8, respectively, were calculated. The results of the calculations show that for relatively small magnetic fields there is no rapid rise of the ionization to Saha-equilibrium as a function of electron temperature. A comparison with the results of a calculation neglecting excitation shows that especially for relatively large magnetic fields non-equilibrium excitation has an essential influence on the electron density and its approach to equilibrium. Neglecting excitation, there results a nearly frozen behaviour of the degree of ionization within channel lengths of technical interest for small magnetic fields. (author)
Energy Technology Data Exchange (ETDEWEB)
Bozkaya, Uğur, E-mail: ugur.bozkaya@atauni.edu.tr [Department of Chemistry, Atatürk University, Erzurum 25240, Turkey and Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)
2014-09-28
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller–Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
Lamarche, Leslie J.; Makarevich, Roman A.
2017-03-01
We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.
Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients
Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.
2012-05-01
We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.
Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients
Energy Technology Data Exchange (ETDEWEB)
Qamar, Anisa; Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Khyber Pakhtoon Khwa 25000 (Pakistan); National Center for Physics Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)
2012-05-15
We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.
Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients
International Nuclear Information System (INIS)
Qamar, Anisa; Ata-ur-Rahman; Mirza, Arshad M.
2012-01-01
We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.
International Nuclear Information System (INIS)
Underwood, T S A; Hill, M A; Winter, H C; Fenwick, J D
2013-01-01
Dosimeters often consist of several components whose mass densities differ substantially from water. These components cause small-field correction factors to vary significantly as lateral electronic equilibrium breaks down. Even amongst instruments designed for small-field dosimetry, inter-detector variation in the correction factors associated with very small (∼0.5 cm) fields can amount to tens of per cent. For a given dosimeter, small-field correction factors vary not only with field size but also with detector azimuthal angle and position within the field. Furthermore the accurate determination of these factors typically requires time-intensive Monte Carlo simulations. Thus, if achievable, ‘correction factor free’ small-field dosimetry would be highly desirable. This study demonstrates that a new generation of mass-density compensated detectors could take us towards this goal. Using a 6 MV beam model, it shows that ‘mass-density compensation’ can be utilized to improve the performance of a range of different detectors under small-field conditions. Non-sensitive material of appropriate mass-density is incorporated into detector designs in order to make the instruments behave as if consisting only of water. The dosimeter perturbative effects are then reduced to those associated with volume averaging. An even better solution—which modifies detectors to obtain profiles that look like those measured by a point-like water structure—is also considered. Provided that adequate sensitivity can be achieved for a small measurement volume, this study shows that it may be possible to use mass-density compensation (and Monte Carlo-driven design) to produce a solid-state dosimeter/ionization chamber with a near-perfect non-equilibrium response. (paper)
International Nuclear Information System (INIS)
1998-10-01
The topics discussed comprise the onset of instability in heated free jets and jets with density gradients, flow past heated/cooled boundaries, atmospheric shear flow, and mathematical modeling of laminar-turbulent transition phenomena. Three contributions have been input to INIS. (P.A.)
Czech Academy of Sciences Publication Activity Database
Šálek, Martin; Drahníková, L.; Tkadlec, Emil
2015-01-01
Roč. 45, č. 1 (2015), s. 1-14 ISSN 0305-1838 Institutional support: RVO:68081766 Keywords : Carnivores * home range size * natural–urban gradient * population density * review Subject RIV: EG - Zoology Impact factor: 4.116, year: 2015
Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.
2018-02-01
Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.
DEFF Research Database (Denmark)
Paidarová, Ivana; Sauer, Stephan P. A.
2012-01-01
We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradient...
International Nuclear Information System (INIS)
Ivascu, M.; Avrigeanu, M.; Ivascu, I.; Avrigeanu, V.
1989-01-01
The experimentally well known (n,p), (n,α) and (n,2n) reaction excitation functions, from threshold to 20 MeV incident energy, and neutron, proton and alpha-particle emission spectra at 14.8 MeV from Fe, Cr and Ni isotopes are calculated in the frame of a generalized Geometry-Dependent-Hybrid pre-equilibrium emission model, including angular momentum and parity conservation and alpha-particle emission, and the Hauser-Feshbach statistical model. Use of a consistent statistical model parameter set enables the validation of the pre-equilibrium emission model. Moreover, an enhanced pre-equilibrium emission from higher spin composite system states, associated with higher incident orbital momenta, has been evidenced. Higher orbital momenta involved also in the emergent channels of this process are suggested by calculations of the residual nuclei level populations. Finally, the unitary account of the (n, p) and (n, 2n) reaction excitation functions for Fe, Cr and Ni isotopes has allowed the proper establishment of the limits of the transition excitation range between the two different nuclear level density models used at medium and higher excitation energies, respectively. (author). 83 refs, 15 figs
International Nuclear Information System (INIS)
Chen, Xin
2014-01-01
Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems
International Nuclear Information System (INIS)
Fenwick, John D; Kumar, Sudhir; Scott, Alison J D; Nahum, Alan E
2013-01-01
The dose imparted by a small non-equilibrium photon radiation field to the sensitive volume of a detector located within a water phantom depends on the density of the sensitive volume. Here this effect is explained using cavity theory, and analysed using Monte Carlo data calculated for schematically modelled diamond and Pinpoint-type detectors. The combined impact of the density and atomic composition of the sensitive volume on its response is represented as a ratio, F w,det , of doses absorbed by equal volumes of unit density water and detector material co-located within a unit density water phantom. The impact of density alone is characterized through a similar ratio, P ρ− , of doses absorbed by equal volumes of unit and modified density water. The cavity theory is developed by splitting the dose absorbed by the sensitive volume into two components, imparted by electrons liberated in photon interactions occurring inside and outside the volume. Using this theory a simple model is obtained that links P ρ− to the degree of electronic equilibrium, s ee , at the centre of a field via a parameter I cav determined by the density and geometry of the sensitive volume. Following the scheme of Bouchard et al (2009 Med. Phys. 36 4654–63) F w,det can be written as the product of P ρ− , the water-to-detector stopping power ratio [L-bar Δ /ρ] ω det , and an additional factor P fl− . In small fields [L-bar Δ /ρ] ω det changes little with field-size; and for the schematic diamond and Pinpoint detectors P fl− takes values close to one. Consequently most of the field-size variation in F w,det originates from the P ρ− factor. Relative changes in s ee and in the phantom scatter factor s p are similar in small fields. For the diamond detector, the variation of P ρ− with s ee (and thus field-size) is described well by the simple cavity model using an I cav parameter in line with independent Monte Carlo estimates. The model also captures the overall field
Li, Shaohong L; Truhlar, Donald G
2015-07-14
Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.
Klok, C.; Roos, de A.M.
1998-01-01
1. The effects of changes in habitat size and quality on the expected population density and the expected time to extinction of Sorex araneus are studied by means of mathematical models that incorporate demographic stochasticity. 2. Habitat size is characterized by the number of territories, while
Directory of Open Access Journals (Sweden)
Honglei Li
2017-05-01
Full Text Available A three-dimensional density model of the crust and uppermost mantle is determined by the inversion of a set of GOCE gravity and gradients residual anomalies beneath the eastern margin of the Tibetan Plateau and its surrounding areas. In our work, we choose five independent gravity gradients (Txx, Tzz, Txy, Txz, Tyz to perform density inversion. Objective function is given based on Tikhonov regularization theory. Seismic S-wave velocities play the role of initial constraint for the inversion based on a relationship between density and S-wave velocity. Damped Least Square method is used during the inversion. The final density results offer some insights into understanding the underlying geodynamic processes: (1 Low densities in the margin of the Tibet, along with low wave velocity and resistivity results, yield conversions from soft and weak Tibet to the hard and rigid cratons. (2The lowest densities are found in the boundary of the plateau, instead of the whole Tibet indicates that the effects of extrusion stress environment in the margin affect the changes of the substance there. The substances and environments conditioning for the earthquake preparations and strong deformation in this transitional zone. (3 Evident low-D anomaly in the upper and middle crust in the Lasha terrane and Songpan-Ganzi terrane illustrated the eastward sub-ducted of southeastern Tibet, which could be accounts for the frequent volcano and earthquakes there.
Counsel, Madeleine; Bellinge, Rhys; Burton, Peter
2004-05-01
To ascertain whether washing sperm from oligozoospermic and normozoospermic samples before cryopreservation improves post-thaw vitality. Normozoospermic (n = 18) and oligozoospermic (n = 16) samples were divided into three aliquots. The first aliquot remained untreated and the second and third aliquots were subjected to the swim-up and discontinuous density gradient sperm washing techniques respectively. Vitality staining was performed, samples mixed with cryopreservation media and frozen. Spermatozoa were thawed, stained, and vitality quantified and expressed as the percentage of live spermatozoa present. Post-thaw vitality in untreated aliquots from normozoospermic samples (24.9% +/- 2.3; mean +/- SEM) was significantly higher (unpaired t-tests; P vitality was significantly higher after swim-up in normozoospermic samples (35.6% +/- 2.1; P vitality in oligozoospermic (22.4% +/- 1.0; P vitality in cryopreserved oligozoospermic samples was improved by both the swim-up and density gradient centrifugation washing techniques prior to freezing.
Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Wang, L. F.; Ye, W. H.; He, X. T.
2012-01-01
In this research, density gradient effects (i.e., finite thickness of ablation front effects) in ablative Rayleigh-Taylor instability (ARTI), in the presence of preheating within the weakly nonlinear regime, are investigated numerically. We analyze the weak, medium, and strong ablation surfaces which have different isodensity contours, respectively, to study the influences of finite thickness of ablation front on the weakly nonlinear behaviors of ARTI. Linear growth rates, generation coefficients of the second and the third harmonics, and coefficients of the third-order feedback to the fundamental mode are obtained. It is found that the linear growth rate which has a remarkable maximum, is reduced, especially when the perturbation wavelength λ is short and a cut-off perturbation wavelength λ c appears when the perturbation wavelength λ is sufficiently short, where no higher harmonics exists when λ c . The phenomenon of third-order positive feedback to the fundamental mode near the λ c [J. Sanz et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier et al., Phys. Rev. Lett. 90, 185003 (2003); J. Garnier and L. Masse, Phys. Plasmas 12, 062707 (2005)] is confirmed in numerical simulations, and the physical mechanism of the third-order positive feedback is qualitatively discussed. Moreover, it is found that generations and growths of the second and the third harmonics are stabilized (suppressed and reduced) by the ablation effect. Meanwhile, the third-order negative feedback to the fundamental mode is also reduced by the ablation effect, and hence, the linear saturation amplitude (typically ∼0.2λ in our simulations) is increased significantly and therefore exceeds the classical prediction 0.1λ, especially for the strong ablation surface with a small perturbation wavelength. Overall, the ablation effect stabilizes the ARTI in the weakly nonlinear regime. Numerical results obtained are in general agreement with the recent weakly nonlinear theories and simulations
International Nuclear Information System (INIS)
Adebayo, G.A.; Anusionwu, B.C.; Njah, A.N.; Adeniran, O.J.; Mathew, B.; Sunmonu, R.S.
2009-01-01
Arising from the inability of theoretical calculations to give accurate descriptions of (shear) viscosity in rare gases at high densities, we investigated the likely cause of discrepancy between theory and experiments. Molecular Dynamics simulations were performed to calculate transport coefficients and collision frequency of rare gases at high densities and different temperatures using a Lennard-Jones modelled pair potential. The results, when compared with experiments show an underestimation of the viscosity calculated through the Green-Kubo formalism, but in agreement with some other calculations performed by other groups. In the present work the origin of the underestimation is considered. Analyses of the transport coefficients show a very high collision frequency which suggests an atom may spend much less time in the neighbourhood of the fields of force of another atom and that the distribution in the systems studied adjusts itself to a nearly Maxwellian type which resulted in a locally and temporarily slowly varying temperature. We show that the time spent in the fields of force is so small compared with relaxation time thereby leading to a possible reduction in local velocity auto-correlation between atoms. (author)
Directory of Open Access Journals (Sweden)
Jingfeng Gao
Full Text Available In this study, GelGreen™ was investigated as a replacement for SYBR® Safe to stain DNA in cesium chloride (CsCl density gradients for DNA-stable isotope probing (SIP experiments. Using environmental DNA, the usage of GelGreen™ was optimized for sensitivity compared to SYBR® Safe, its optimal concentration, detection limit for environmental DNA and its application in environmental DNA-SIP assay. Results showed that GelGreen™ was more sensitive than SYBR® Safe, while the optimal dosage (15X concentration needed was approximately one-third of SYBR® Safe, suggesting that its sensitivity was three times more superior than SYBR® Safe. At these optimal parameters, the detection limit of GelGreen™-stained environmental DNA was as low as 0.2 μg, but the usage of 0.5 μg environmental DNA was recommended to produce a more consistent DNA band. In addition, a modified needle extraction procedure was developed to withdraw DNA effectively by fractionating CsCl density gradients into four or five fractions. The successful application of GelGreen™ staining with 13C-labeled DNA from enriched activated sludge suggests that this stain was an excellent alternative of SYBR® Safe in CsCl density gradients for DNA-SIP assays.
Energy Technology Data Exchange (ETDEWEB)
Lembarki, A.
1994-12-01
In this work, we have developed some gradient-corrected exchange-correlation functionals. This study is in keeping with the density functional theory (DFT) formalism. In the first part of this memory, a description of Hartree-Fock (HF), post-HF and density functional theories is given. The second part is devoted the study the different approximations of DFT exchange-correlation functionals which have been proposed in the last years. In particular, we have underlined the approximations used for the construction of these functionals. The third part of this memory consists in the development of new gradient-corrected functionals. In this study, we have established a new relation between exchange energy, correlation energy and kinetic energy. We have deduced two new possible forms of exchange or correlation functionals, respectively. In the fourth part, we have studied the exchange potential, for which the actual formulation does not satisfy some theoretical conditions, such as the asymptotic behavior -1/r. Our contribution lies in the development of an exchange potential with a correct asymptotic -1/r behavior for large values of r. In this chapter, we have proposed a model which permits the obtention of the exchange energy from the exchange potential, using the virial theorem. The fifth part of this memory is devoted the application of these different functionals to simple systems (H{sub 2}O, CO, N{sub 2}O, H{sub 3}{sup +} and H{sub 5}{sup +}) in order to characterize the performance of DFT calculations in regards to those obtained with post-HF methods. (author). 215 refs., 8 figs., 28 tabs.
Sharma, Nandlal; Reuter, Dirk
2017-11-01
Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.
LI, Honglei; Fang, Jian; Braitenberg, Carla; Wang, Xinsheng
2015-04-01
As the highest, largest and most active plateau on Earth, the Qinghai-Tibet Plateau has a complex crust-mantle structure, especially in its eastern part. In response to the subduction of the lithospheric mantle of the Indian plate, large-scale crustal motion occurs in this area. Despite the many previous studies, geodynamic processes at depth remain unclear. Knowledge of crust and upper mantle density distribution allows a better definition of the deeper geological structure and thus provides critically needed information for understanding of the underlying geodynamic processes. With an unprecedented precision of 1-2 mGal and a spatial resolution better than 100 km, GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission products can be used to constrain the crust-mantle density distribution. Here we used GOCE gravitational gradients at an altitude of 10km after reducing the effects of terrain, sediment thickness variations, and Moho undulations to image the density structures of eastern Tibet up to 200 km depths. We inverted the residual satellite gravitational gradients using a least square approach. The initial density model for the inversion is based on seismic velocities from the tomography. The model is composed of rectangular blocks, having a uniform density, with widths of about 100 km and variable thickness and depths. The thickness of the rectangular cells changes from10 to 60km in accordance with the seismic model. Our results reveal some large-scale, structurally controlled density variations at depths. The lithospheric root defined by higher-density contrast features from southwest to northeast, with shallowing in the central part: base of lithosphere reaches a depth of180 km, less than 100km, and 200 km underneath the Lhasa, Songpan-Ganzi, and Ordos crustal blocks, respectively. However, these depth values only represent a first-order parameterization because they depend on model discretization inherited from the original seismic
Vanovac, B.; Wolfrum, E.; Denk, S. S.; Mink, F.; Laggner, F. M.; Birkenmeier, G.; Willensdorfer, M.; Viezzer, E.; Hoelzl, M.; Freethy, S. J.; Dunne, M. G.; Lessig, A.; Luhmann, N. C.; ASDEX Upgrade team,; EUROfusion MST1 Team,
2018-01-01
Electron cyclotron emission imaging (ECEI) provides measurements of electron temperature (T-e) and its fluctuations (delta T-e). However, when measuring at the plasma edge, in the steep gradient region, radiation transport effects must be taken into account. It is shown that due to these effects,
International Nuclear Information System (INIS)
Lane, Taylor K; McClarren, Ryan G
2013-01-01
This work presents semi-analytic solutions to a radiation-hydrodynamics problem of a radiation source driving an initially cold medium. Our solutions are in the equilibrium diffusion limit, include material motion and allow for radiation-dominated situations where the radiation energy is comparable to (or greater than) the material internal energy density. As such, this work is a generalization of the classical Marshak wave problem that assumes no material motion and that the radiation energy is negligible. Including radiation energy density in the model serves to slow down the wave propagation. The solutions provide insight into the impact of radiation energy and material motion, as well as present a novel verification test for radiation transport packages. As a verification test, the solution exercises the radiation–matter coupling terms and their v/c treatment without needing a hydrodynamics solve. An example comparison between the self-similar solution and a numerical code is given. Tables of the self-similar solutions are also provided. (paper)
Directory of Open Access Journals (Sweden)
Józef Buczek
2014-01-01
Full Text Available The present work deals with the separation and some characteristics of ATPase activities bound with plant membanes prepared from sterile cultures of Spirodela polyrrhiza. The membrane-bound ATPases were separated on sucrose gradients and distinguished by membrane density and sensitivity to several inhibitors. The results showed that N0-3-sensitive ATPase activity associated with the tonoplast was localized at a sucrose density between 1.095-1.117 g•cm-3. The vanadate-sensitive ATPase activity bound with the plasma membrane showed a density between 1.127-1.151 g•cm-3. Both ATPases were insensitive to azide and oligomycin and were separable from markers for mitochondria.
International Nuclear Information System (INIS)
Shindo, Haruo; Imazu, Shingo; Inaba, Tsuginori.
1979-01-01
In wall-stabilized arc which is a very useful means for determining the transport characteristics of high temperature gases, it is the premise that the inside of arc column is in complete local thermal equilibrium (LTE). In general, the higher the gas pressure, the easier the establishment of LTE, accordingly the experimental investigations on the characteristics of arc discharge as well as the transport characteristics so far were limited to the region of relatively high pressure. However, the authors have found that the theoretical potential vs. current characteristic obtained by the transport characteristic was greatly different from the actually measured one in low pressure region, as the fundamental characteristic of wall-stabilized argon plasma arc below atmospheric pressure. This time, they have clarified this discrepancy at 0.1 atm using the plasma parameters obtained through the spectroscopic measurements. The spectroscopic measurements have been performed through the side observation window at the position 5.5 cm away from the cathode, when arc was ignited vertically at the electrodes distant by 11 cm. Arc radius was 0.5 cm. Electron density and temperature, gas temperature and the excitation density of argon neutral atoms have been experimentally measured. The investigations showed that, in the region of low arc current, where the ratio of current to arc radius is less than 200 A/cm, the fall of gas temperature affected greatly on the decrease of axial electric field of arc column. The non-equilibrium between electron temperature and gas temperature decreased with the increase of arc current, and it was concluded that LTE has been formed at the center portion of arc column above I/R = 300 A/cm. (Wakatsuki, Y.)
International Nuclear Information System (INIS)
Hamilton, B; Jacobs, J; Missous, M
2003-01-01
This paper is concerned with the scanning tunnelling microscope tunnelling conditions needed to produce constant current images dominated either by surface topology or by electronic effects. A model experimental structure was produced by cleaving a GaAs multiδ-doped layer in UHV and so projecting a spatially varying electron gas density onto the (110) surface. This cross sectional electron density varies on a nanometre scale in the [100] growth direction. The electronic structure and tunnelling properties of this system were modelled, and the tunnelling conditions favouring sensitivity to the surface electron gas density determined
Directory of Open Access Journals (Sweden)
S. M. Melo
2018-02-01
Full Text Available Abstract Reservoir operations alter, eliminate or restrain the natural hydrologic cycles. Biotic community has become subject to these non-cyclic events, responding by reducing the species diversity. Ephemeroptera species present distinct responses to environmental deterioration such that poses this assemblage between the most useful groups in biomonitoring programs. We hypothesized an alteration in beta diversity at the longitudinal species gradient, which will be influenced mainly by species losses between zones. Changes in temporal beta diversity is also expected, but the main drivers of such alterations will be the species turnover between the sampling period. Ephemeroptera community was monitored in nine sampling points from Itaipu Reservoir, where were installed three sets of substrates composed by a float and 2 wooden substrates. We took biological samples in triplicates monthly, from June-01 to August-02. Our initial hypothesis was partially supported and with significant variations only for spatial approach, between the Reservoir zones. The generated ordering from Non-Metric Dimensional Scale – NMDS - corroborated with spatial analyzes, with the formation of two groups along the gradient zonation of the reservoir. The temporal ordination showed no clear pattern. As expected, the contribution to beta diversity was different for our two approaches, such that the loss of species was more important along the spatial gradient and despite of no significant result, the species replacement was more important among months. The spatial results lead us to infer that differences in limnological characteristics between zones are important for determining differences in Ephemeroptera composition and can reflect the dependency degree of the species in relation to the lentic and sometimes-lotic conditions, mainly in the riverine zone of reservoirs. On the other hand, the absence of a temporal pattern can be result of chaotic variations in the
Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan
2013-08-22
Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.
Ancilotto, Francesco; Rossini, Davide; Pilati, Sebastiano
2018-04-01
The dynamics of a one-dimensional two-component Fermi gas in the presence of a quasiperiodic optical lattice (OL) is investigated by means of a density functional theory approach. Inspired by the protocol implemented in recent cold-atom experiments—designed to identify the many-body localization transition—we analyze the relaxation of an initially prepared imbalance between the occupation number of odd and of even sites. For quasidisorder strength beyond the Anderson localization transition, the imbalance survives for long times, indicating the inability of the system to reach local equilibrium. The late-time value of the imbalance diminishes for increasing interaction strength. Close to the critical quasidisorder strength corresponding to the noninteracting (Anderson) transition, the interacting system displays an extremely slow relaxation dynamics, consistent with subdiffusive behavior. The amplitude of the imbalance fluctuations around its running average is found to decrease with time, and such damping is more effective with increasing interaction strengths. While our study addresses the setup with two equally intense OLs, very similar effects due to interactions have been observed also in recent cold-atom experiments performed in the tight-binding regime, i.e., where one of the two OLs is very deep and the other is much weaker.
Fast-electron self-collimation in a plasma density gradient
International Nuclear Information System (INIS)
Yang, X. H.; Borghesi, M.; Robinson, A. P. L.
2012-01-01
A theoretical and numerical study of fast electron transport in solid and compressed fast ignition relevant targets is presented. The principal aim of the study is to assess how localized increases in the target density (e.g., by engineering of the density profile) can enhance magnetic field generation and thus pinching of the fast electron beam through reducing the rate of temperature rise. The extent to which this might benefit fast ignition is discussed.
International Nuclear Information System (INIS)
Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.
2011-01-01
A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.
Directory of Open Access Journals (Sweden)
Hrubý Jan
2012-04-01
Full Text Available The study presents some preliminary results of the density gradient theory (GT combined with two different equations of state (EoS: the classical cubic equation by van der Waals and a recent approach based on the statistical associating fluid theory (SAFT, namely its perturbed-chain (PC modification. The results showed that the cubic EoS predicted for a given surface tension the density profile with a noticeable defect. Bulk densities predicted by the cubic EoS differed as much as by 100 % from the reference data. On the other hand, the PC-SAFT EoS provided accurate results for density profile and both bulk densities in the large range of temperatures. It has been shown that PC-SAFT is a promising tool for accurate modeling of nucleation using the GT. Besides the basic case of a planar phase interface, the spherical interface was analyzed to model a critical cluster occurring either for nucleation of droplets (condensation or bubbles (boiling, cavitation. However, the general solution for the spherical interface will require some more attention due to its numerical difficulty.
Paudel, Prakash Kumar; Sipos, Jan; Brodie, Jedediah F
2018-02-07
A crucial step in conserving biodiversity is to identify the distributions of threatened species and the factors associated with species threat status. In the biodiversity hotspot of the Himalaya, very little is known about which locations harbour the highest diversity of threatened species and whether diversity of such species is related to area, mid-domain effects (MDE), range size, or human density. In this study, we assessed the drivers of variation in richness of threatened birds, mammals, reptiles, actinopterygii, and amphibians along an elevational gradient in Nepal Himalaya. Although geometric constraints (MDE), species range size, and human population density were significantly related to threatened species richness, the interaction between range size and human population density was of greater importance. Threatened species richness was positively associated with human population density and negatively associated with range size. In areas with high richness of threatened species, species ranges tend to be small. The preponderance of species at risk of extinction at low elevations in the subtropical biodiversity hotspot could be due to the double impact of smaller range sizes and higher human density.
Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem
2014-05-06
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low
Bozkaya, Uǧur; Sherrill, C. David
2013-08-01
Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal
International Nuclear Information System (INIS)
Pourali, Meisam; Maghari, Ali; Meloni, Simone; Magaletti, Francesco; Casciola, Carlo Massimo; Ciccotti, Giovanni
2014-01-01
We compare dynamical nonequilibrium molecular dynamics and continuum simulations of the dynamics of relaxation of a fluid system characterized by a non-uniform density profile. Results match quite well as long as the lengthscale of density nonuniformities are greater than the molecular scale (∼10 times the molecular size). In presence of molecular scale features some of the continuum fields (e.g., density and momentum) are in good agreement with atomistic counterparts, but are smoother. On the contrary, other fields, such as the temperature field, present very large difference with respect to reference (atomistic) ones. This is due to the limited accuracy of some of the empirical relations used in continuum models, the equation of state of the fluid in the present example
Emad, Ahmed; Drouin, Régen
2014-09-01
Physical separation by density gradient centrifugation (DGC) is usually used as an initial step of multistep enrichment protocols for purification of fetal cells (FCs) from maternal blood. Many protocols were designed but no single approach was efficient enough to provide noninvasive prenatal diagnosis. Procedures and methods were difficult to compare because of the nonuniformity of protocols among different groups. Recovery of FCs is jeopardized by their loss during the process of enrichment. Any loss of FCs must be minimized because of the multiplicative effect of each step of the enrichment process. The main objective of this study was to evaluate FC loss caused by DGC. Fetal cells were quantified in peripheral blood samples obtained from both euploid and aneuploid pregnancies before and after enrichment by buoyant DGC using Histopaque 1.119 g/mL. Density gradient centrifugation results in major loss of 60% to 80% of rare FCs, which may further complicate subsequent enrichment procedures. Eliminating aggressive manipulations can significantly minimize FC loss. Data obtained raise questions about the appropriateness of the DGC step for the enrichment of rare FCs and argues for the use of the alternative nonaggressive version of the procedure presented here or prioritizing other methods of enrichments. © 2014 John Wiley & Sons, Ltd.
Damping-Growth Transition for Ion-Acoustic Waves in a Density Gradient
DEFF Research Database (Denmark)
D'Angelo, N.; Michelsen, Poul; Pécseli, Hans
1975-01-01
A damping-growth transition for ion-acoustic waves propagating in a nonuniform plasma (e-folding length for the density ln) is observed at a wavelength λ∼2πln. This result supports calculations performed in connection with the problem of heating of the solar corona by ion-acoustic waves generated...
Yip, N.Y.; Vermaas, D.A.; Nijmeijer, K.; Elimelech, M.
2014-01-01
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we
Petrenko, A.; Sosedkin, A.
2016-01-01
Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1e15 1/cm^3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project --- the proof-of-prin...
Czech Academy of Sciences Publication Activity Database
Jůza, Tomáš; Ricard, Daniel; Blabolil, Petr; Čech, Martin; Draštík, Vladislav; Frouzová, Jaroslava; Muška, Milan; Peterka, Jiří; Prchalová, Marie; Říha, Milan; Sajdlová, Zuzana; Šmejkal, Marek; Tušer, Michal; Vašek, Mojmír; Vejřík, Lukáš; Kubečka, Jan
2015-01-01
Roč. 762, č. 1 (2015), s. 169-181 ISSN 0018-8158 R&D Projects: GA MŠk(CZ) EE2.3.20.0204; GA MŠk(CZ) EE2.3.30.0032; GA MŠk(CZ) 7F14316 Institutional support: RVO:60077344 Keywords : trawling * juvenile density * horizontal distribution * vertical distribution * tributary area Subject RIV: EH - Ecology, Behaviour Impact factor: 2.051, year: 2015
Energy Technology Data Exchange (ETDEWEB)
Puncher, M.R.B. [Biological Lab., Univ. of Kent, Canterbury (United Kingdom); Blower, P.J. [Nuclear Medicine Dept., Kent and Canterbury Hospital (United Kingdom)
1994-11-01
Technetium-99m-Exametazime (HMPAO) is widely used for radiolabelling leucocytes for localization of infection. The subcellular distribution of radionuclide in the labelled cells and the distribution of radioactivity among the leucocyte population are incompletely understood. Frozen section autoradiography was used to determine quantitatively the distribution of {sup 99m}Tc in leucocytes labelled with {sup 99m}Tc-Exametazime. Sections of rapidly frozen suspensions of labelled leucocytes in plasma were autoradiographed on Ilford K2 emulsion and stained with haematoxylin and eosin. Neutrophils, eosinophils and mononuclear cells were separated by Percoll density gradient centrifugation. Cell nuclei were isolated by a rapid cell-breakage and fractionation method. In a typical experiment mean grain densities [grains/100 {mu}m{sup 2} (ESD)] over cells were: eosinophils 31.2 (18.4), neutrophils 3.5 (3.5), mononuclear cells 4.2 (5.1). Mean grain numbers per cell (ESD) were: eosinophils 13 (6.8), neutrophils 1.3 (1.3), mononuclear cells 1.1 (1.3). These findings were confirmed by separation of labelled leucocytes on discontinuous density gradients. In four separation experiments, the mean activity-per-cell ratio for eosinophils to neutrophils was 10.1 (4.8):1, and for eosinophils to mononuclear cells, 14.1 (6.7):1. The subcellular distribution of the label was investigated using image analysis of autoradiographs and cell fractionation. This revealed no selectivity for nuclear or extranuclear compartments. It may be concluded that {sup 99m}Tc-Exametazime has strong selectivity for eosinophils over other leucocytes but no selectivity for nuclear/cytoplasmic compartments. (orig.)
Czech Academy of Sciences Publication Activity Database
Nguyen, L. D.; Cajthamlová, Kamila; Nguyen, H. T.; Weiser, Jaroslav; Holubová, Inge; Weiserová, Marie
2002-01-01
Roč. 47, č. 6 (2002), s. 641-648 ISSN 0015-5632 R&D Projects: GA ČR GA301/00/1369; GA ČR GA204/00/1252 Institutional research plan: CEZ:AV0Z5020903 Keywords : ecoki * non-equilibrium ph * gradient Subject RIV: EE - Microbiology, Virology Impact factor: 0.979, year: 2002
Weak turbulence theory of ion temperature gradient modes for inverted density plasmas
International Nuclear Information System (INIS)
Hahm, T.S.; Tang, W.M.
1989-09-01
Typical profiles measured in H-mode (''high confinement'') discharges from tokamaks such as JET and DIII-D suggest that the ion temperature gradient instability threshold parameter η i (≡dlnT i /dlnn i ) could be negative in many cases. Previous linear theoretical calculations have established the onset conditions for these negative η i -modes and the fact that their growth rate is much smaller than their real frequency over a wide range of negative η i values. This has motivated the present nonlinear weak turbulence analysis to assess the relevance of such instabilities for confinement in H-mode plasmas. The nonlinear eigenmode equation indicates that the 3-wave coupling to shorter wavelength modes is the dominant nonlinear saturation mechanism. It is found that both the saturation level for these fluctuations and the magnitude of the associated ion thermal diffusivity are considerably smaller than the strong turbulence mixing length type estimates for the more conventional positive-η i -instabilities. 19 refs., 3 figs
Energy Technology Data Exchange (ETDEWEB)
Okumura, M; Onishi, H; Yamada, S; Machida, M, E-mail: okumura@riken.j
2010-11-01
We study non-equilibrium properties of one-dimensional Hubbard model by the density-matrix renormalization-group method. First, we demonstrate stability of 'doublon', which characterized by double occupation on a site due to the integrability of the model. Next, we present a kind of anomalous transport caused by the doublons created under strong non-equilibrium conditions in an optical lattice system regarded as an ideal testbed to investigate fundamental properties of the Hubbard model. Finally, we give a result on development of the pair correlation function in a strong non-equilibrium condition. This can be understood as a development of coherence among many excited doublons.
Ion temperature gradient driven transport in a density modification experiment on the TFTR tokamak
International Nuclear Information System (INIS)
Horton, W.; Lindberg, D.; Kim, J.Y.; Dong, J.Q.; Hammett, G.W.; Scott, S.D.; Zarnstorff, M.C.; Hamaguchi, S.
1991-07-01
TFTR profiles from a supershot density-modification experiment are analyzed for their local and ballooning stability to toroidal η i -modes in order to understand the initially puzzling results showing no increase in X i when a pellet is used to produce an abrupt and large increase in the η i parameter. The local stability analysis assumes that k parallel = 1/qR and ignores the effects of shear, but makes no assumption on the magnitude of k parallel v ti /ω. The ballooning stability analysis determines a self-consistent linear spectrum of k parallel's including the effect of shear and toroidicity, but it expands in k parallel v ti /ω ≤ 1, which is a marginal assumption for this experiment. Nevertheless, the two approaches agree well and show that the mixing length estimate of the transport rate does not change appreciably during the density-modification and has a value close to or less than the observed X i , in contrast to most previous theories which predicted X i 's which were over an order-of-magnitude too large. However, we are still unable to explain the observed increase X i (r) with minor radius by adding the effects of the finite beta drift - MHD mode coupling, the slab-like mode, or the trapped electron response. The experimental tracking 0.2 e /X i i and trapped-electron driving mechanisms are operating. 4 refs., 5 figs., 5 tabs
Convective equilibrium and mixing-length theory for stellarator reactors
International Nuclear Information System (INIS)
Ho, D.D.M.; Kulsrud, R.M.
1985-09-01
In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-01
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for c...
Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.
Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI
DEFF Research Database (Denmark)
Nunes, Daniel; Cruz, Tomás L; Jespersen, Sune N
2017-01-01
available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time...... the quantitative results are compared against ground-truth histology, they seem to reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing......-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures – such as axons and extra-axonal spaces, which we here used in a simple model for the microstructure – and that, for axons parallel to the main magnetic field...
Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie
2015-01-01
Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.
International Nuclear Information System (INIS)
Bud'ko, A.B.; Liberman, M.A.; Bondarenko, E.A.
1992-01-01
Since development of the RT modes in the ablatively accelerated plasma of laser targets imposes crucial limitations on symmetry of spherical implosions and hence on energy cumulation, it has been the subject of intensive numerical and analytical analysis in the recent years, particularly in the context of inertial confinement fusion. Recent thin-foil ablative-acceleration experiments as well as the results of 2D numerical simulations demonstrated substantial reduction of the instability growth rates compared with the classical theory predictions up to the total stabilization in the short-wavelength limit. The numerical results indicated that the main stabilization mechanism is convection. To derive the scaling laws for the RT growth rates and cut-off wavenumbers in the wide range of flow parameters, analytical solutions attract special interest. The analytical approach based on the discontinuity model was developed to analyze the reduction of the RT growth rates by the plasma convective flow and the thermal conductivity effects. The following major problem arises in the discontinuity approximation, which leaves the solution undetermined: the number of the boundary conditions on the perturbed ablation surface is not sufficient to derive the dispersion equation. One needs additional boundary conditions not associated with the conservation laws on the discontinuity surface to close the system of linearized equations for small perturbations. The stabilization effect of highly structured hydrodynamic profiles was studied by Mikaelian and Munro for a stationary plasma. Nevertheless, no reasonable analytical model was constructed taking into account the combined convective, thermal conductivity and density gradient reduction of the RT growth rates. In this report we develop the analytical approach based on the WKB approximation to analyze the stabilization of the RT modes in plasma with smooth density and velocity gradients. (author) 9 refs., 1 fig
Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system
Rashidnia, N.; Balasubramaniam, R.
1991-01-01
An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).
Eccard, Jana A; Ylönen, Hannu
2007-01-01
1. Costs of coexistence for species with indirect resource competition usually increase monotonically with competitor numbers. Very little is known though about the shape of the cost function for species with direct interference competition. 2. Here we report the results of an experiment with two vole species in artificial coexistence in large enclosures, where density of the dominant competitor species (Microtus agrestis) was manipulated. Experimental populations of the subordinate vole species (Clethrionomys glareolus) were composed of same aged individuals to study distribution of costs of coexistence with a dominant species within an age-cohort. 3. Survival and space use decreased gradually with increasing field vole numbers. Thus, responses to interference competition in our system appeared to be similar as expected from resource competition. The total number of breeders was stable. Reproductive characteristics such as the timing of breeding, and the litter size were not affected. In the single species enclosures a proportion of surviving individuals were not able to establish a breeding territory against stronger conspecifics. Under competition with heterospecifics such nonbreeders suffered high mortality, whereas the breeders survived. 4. Combined interference of dominant conspecifics and heterospecifics probably increased the frequency of aggressive interactions, social stress and mortality for the weaker individuals within a homogeneous age cohort of the subordinate competitor population. 5. Our results suggest, that in open systems where bank voles are outcompeted over the breeding season by faster reproducing field voles, animals able to establish a territory may be able to withstand competitor pressure, while nonbreeding bank vole individuals are forced to emigrate to suboptimal forest habitats.
Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M
2017-01-01
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.
Radrizzani, Marina; Lo Cicero, Viviana; Soncin, Sabrina; Bolis, Sara; Sürder, Daniel; Torre, Tiziano; Siclari, Francesco; Moccetti, Tiziano; Vassalli, Giuseppe; Turchetto, Lucia
2014-09-27
Cardiovascular cell therapy represents a promising field, with several approaches currently being tested. The advanced therapy medicinal product (ATMP) for the ongoing METHOD clinical study ("Bone marrow derived cell therapy in the stable phase of chronic ischemic heart disease") consists of fresh mononuclear cells (MNC) isolated from autologous bone marrow (BM) through density gradient centrifugation on standard Ficoll-Paque. Cells are tested for safety (sterility, endotoxin), identity/potency (cell count, CD45/CD34/CD133, viability) and purity (contaminant granulocytes and platelets). BM-MNC were isolated by density gradient centrifugation on Ficoll-Paque. The following process parameters were optimized throughout the study: gradient medium density; gradient centrifugation speed and duration; washing conditions. A new manufacturing method was set up, based on gradient centrifugation on low density Ficoll-Paque, followed by 2 washing steps, of which the second one at low speed. It led to significantly higher removal of contaminant granulocytes and platelets, improving product purity; the frequencies of CD34+ cells, CD133+ cells and functional hematopoietic and mesenchymal precursors were significantly increased. The methodological optimization described here resulted in a significant improvement of ATMP quality, a crucial issue to clinical applications in cardiovascular cell therapy.
Directory of Open Access Journals (Sweden)
A.C Lucio
2012-06-01
Full Text Available The purpose of this work was to associate the modified swim-up method with centrifugation in density gradient for the separation of X-bearing spermatozoa. Sperm viability and integrity were evaluated through the Trypan Blue/Giemsa staining method. Quality control of centrifuged spermatozoa was performed in in vitro produced embryos. The results were validated by the sex ratio of in vitro produced embryos using PCR by Y- specific sequences present in bovine male genomic DNA. After determining genetic sex of in vitro produced embryos, the results showed difference (P<0.05 in deviation of sex ratio when comparing the control group (45.2% females with the other spermatozoa selection procedures (60.6% females (P<0.05. The sperm selection methods are capable of selecting X-bearing spermatozoa without compromising the spermatozoa fertility (cleavage and blastocyst rates, 70% and 26%, respectively and were considered relevant methods to be introduced in bovine in vitro produced embryo programs.
Dekoulis, George
2016-07-01
This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.
Yu, Shan; Zuo, Xingang; Shen, Tao; Duan, Yiyuan; Mao, Zhengwei; Gao, Changyou
2018-05-01
Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides
Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs
International Nuclear Information System (INIS)
Ghorui, S; Das, A K
2012-01-01
Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.
International Nuclear Information System (INIS)
Gao, Jiao; Hu, Yongjun; Li, Shaoxin; Zhang, Yanjiao; Chen, Xue
2013-01-01
Highlights: ► The tautomeric equlibrium and behavior of creatinine in aqueous solutions have been firstly studied by means of Raman spectroscopy and theoretical calculations (DFT). ► As 7 water molecules are gradually aggregated around the creatinine, theoretical results show an excellent accordance with the experimental spectrum. ► Analysis of molecular electrostatic potential (MEP) for creatinine (two tautomers and one protonated form) could explain why typical experimental Raman spectra with different pH values have obvious discrepancies at the electrical level. -- Abstract: The Raman spectral studies of creatinine with pH dependence were performed to explore the effects of pH values on the Raman spectroscopy of creatinine. Firstly, we calculated vibrational spectra by DFT to derive the equilibrium geometries and protonated form of creatinine. Comparing simulated and observed Raman spectra of creatinine in aqueous solution at pH 2, it is found the theoretical predicted spectra agree well with those of the experiment while seven water molecules are aggregated around the creatinine. Additionally, the tautomeric equilibrium of creatinine in aqueous solutions was studied and two tautomers are found to coexist by comparing its experimental and calculated Raman spectra. A water dimer being used to solvate creatinine would make the thermodynamic energy favor convert from the imino tautomer to the amino tautomer. Besides, the molecular electrostatic potential (MEP) analysis of the creatinine further confirms their discrepancies of typical experimental Raman spectra at different pH values.
Directory of Open Access Journals (Sweden)
Srinivas Sangisapu
2017-10-01
Full Text Available BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF. This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU and Double Density Gradient Swim-up (DDGSU are two most accepted methods. Cochrane systematic review (2007 finds no clear benefit of one method over the other in Intrauterine Insemination (IUI. Systematic review on effectiveness of these preparations in IVF is lacking. Effectiveness is generally assessed in terms recovery rates of the sperms. Capability of successful fertilisation of good quality oocytes should ideally be the functional endpoint for evaluating effectiveness of sperm preparation methods. The aim of the study is to1. Compare the successful fertilisation rates of oocytes inseminated by semen preparation of Double Wash Swim-up (DWSU vis-a-vis by Double Density Gradient Swim-up (DDGSU method. 2. Evaluate the effectiveness of fertilisation of oocytes by Double Wash Swim-up method (DWSU vis-a-vis Double Density Gradient Swim-up (DDGSU method. MATERIALS AND METHODS A retrospective cohort study was conducted on infertile couples undergoing IVF from June 2014 to June 2017 at an ART Centre of a tertiary care hospital. The male partners were normozoospermic and female partners were normoresponsive to controlled ovarian stimulation and oocyte retrieval. RESULTS 70 male partners were subjected to double wash swim-up and 64 underwent double density gradient swim-up preparation. 1296 good quality oocytes were retrieved in their respective female partners. 452 (61% out of 742 oocytes were successfully fertilised after insemination by semen prepared by DWSU method. 378 (68% oocytes out of 554 were fertilised by insemination with semen prepared by DDGSU method. There seems to be strong association (RR=1.12 of fertilisation success with oocytes exposed to semen prepared by Double Density Gradient
International Nuclear Information System (INIS)
Liu, Limei; Trakic, Adnan; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart
2014-01-01
MRI-LINAC is a new image-guided radiotherapy treatment system that combines magnetic resonance imaging (MRI) with a linear accelerator (LINAC) in a single unit. One drawback is that the pulsing of the split gradient coils of the system induces an electric field and currents in the patient which need to be predicted and evaluated for patient safety. In this novel numerical study the in situ electric fields and associated current densities were evaluated inside tissue-accurate male and female human voxel models when a number of different split-geometry gradient coils were operated. The body models were located in the MRI-LINAC system along the axial and radial directions in three different body positions. Each model had a region of interest (ROI) suitable for image-guided radiotherapy. The simulation results show that the amplitudes and distributions of the field and current density induced by different split x-gradient coils were similar with one another in the ROI of the body model, but varied outside of the region. The fields and current densities induced by a split classic coil with the surface unconnected showed the largest deviation from those given by the conventional non-split coils. Another finding indicated that the distributions of the peak current densities varied when the body position, orientation or gender changed, while the peak electric fields mainly occurred in the skin and fat tissues. (paper)
Grams, G.; Giraud, S.; Fantina, A. F.; Gulminelli, F.
2018-03-01
The aim of the present study is to calculate the nuclear distribution associated at finite temperature to any given equation of state of stellar matter based on the Wigner-Seitz approximation, for direct applications in core-collapse simulations. The Gibbs free energy of the different configurations is explicitly calculated, with special care devoted to the calculation of rearrangement terms, ensuring thermodynamic consistency. The formalism is illustrated with two different applications. First, we work out the nuclear statistical equilibrium cluster distribution for the Lattimer and Swesty equation of state, widely employed in supernova simulations. Secondly, we explore the effect of including shell structure, and consider realistic nuclear mass tables from the Brussels-Montreal Hartree-Fock-Bogoliubov model (specifically, HFB-24). We show that the whole collapse trajectory is dominated by magic nuclei, with extremely spread and even bimodal distributions of the cluster probability around magic numbers, demonstrating the importance of cluster distributions with realistic mass models in core-collapse simulations. Simple analytical expressions are given, allowing further applications of the method to any relativistic or nonrelativistic subsaturation equation of state.
Srinivas Sangisapu; Sandeep Karunakaran; Ashok Kumar Pillai
2017-01-01
BACKGROUND Recovery of optimum number of good quality of spermatozoa is an important component of In Vitro Fertilisation (IVF). This is achieved by sperm preparation methods involving separation and recovery of capacitated sperms. Double Wash Swim-up (DWSU) and Double Density Gradient Swim-up (DDGSU) are two most accepted methods. Cochrane systematic review (2007) finds no clear benefit of one method over the other in Intrauterine Insemination (IUI). Systematic review on effective...
Czech Academy of Sciences Publication Activity Database
Polášek, Pavel
2011-01-01
Roč. 59, č. 2 (2011), s. 107-117 ISSN 0042-790X R&D Projects: GA ČR GA103/07/1016 Institutional research plan: CEZ:AV0Z20600510 Keywords : flocculation optimum * inline high density suspension (IHDS) formation process * properties of aggregates * intensity of agitation * velocity gradient G Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011
Directory of Open Access Journals (Sweden)
Marianne Sandin
2015-09-01
Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.
Jhang, Hogun
2018-05-01
We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.
Bozkaya, Uğur
2018-03-15
Efficient implementations of analytic gradients for the orbital-optimized MP3 and MP2.5 and their standard versions with the density-fitting approximation, which are denoted as DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5, are presented. The DF-MP3, DF-MP2.5, DF-OMP3, and DF-OMP2.5 methods are applied to a set of alkanes and noncovalent interaction complexes to compare the computational cost with the conventional MP3, MP2.5, OMP3, and OMP2.5. Our results demonstrate that density-fitted perturbation theory (DF-MP) methods considered substantially reduce the computational cost compared to conventional MP methods. The efficiency of our DF-MP methods arise from the reduced input/output (I/O) time and the acceleration of gradient related terms, such as computations of particle density and generalized Fock matrices (PDMs and GFM), solution of the Z-vector equation, back-transformations of PDMs and GFM, and evaluation of analytic gradients in the atomic orbital basis. Further, application results show that errors introduced by the DF approach are negligible. Mean absolute errors for bond lengths of a molecular set, with the cc-pCVQZ basis set, is 0.0001-0.0002 Å. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Static Equilibrium Configurations of Charged Metallic Bodies
African Journals Online (AJOL)
Key words: Static equilibrium, charged metallic body, potential energy, projected gradient method. ... television, radio, internet, microwave ovens, mobile telephones, satellite communication systems, radar systems, electrical motors, electrical.
Johari, G P; Andersson, Ove
2017-06-21
We report a study of structural relaxation of high-density glasses of di-n-butyl phthalate (DBP) by measuring thermal conductivity, κ, under conditions of pressure and temperature (p,T) designed to modify both the vibrational and configurational states of a glass. Various high-density glassy states of DBP were formed by (i) cooling the liquid under a fixed high p and partially depressurizing the glass, (ii) isothermal annealing of the depressurized glass, and (iii) pressurizing the glass formed by cooling the liquid under low p. At a given low p, κ of the glass formed by cooling under high p is higher than that of the glass formed by cooling under low p, and the difference increases as glass formation p is increased. κ of the glass formed under 1 GPa is ∼20% higher at ambient p than κ of the glass formed at ambient p. On heating at low p, κ decreases until the glass to liquid transition range is reached. This is the opposite of the increase in κ observed when a glass formed under a certain p is heated under the same p. At a given high p, κ of the low-density glass formed by cooling at low p is lower than that of the high-density glass formed by cooling at that high p. On heating at high p, κ increases until the glass to liquid transition range is reached. The effects observed are due to a thermally assisted approach toward equilibrium at p different from the glass formation p. In all cases, the density, enthalpy, and entropy would change until the glasses become metastable liquids at a fixed p, thus qualitatively relating κ to variation in these properties.
International Nuclear Information System (INIS)
Clara, Rene A.; Gomez Marigliano, Ana C.; Solimo, Horacio N.
2007-01-01
Density and viscosity measurements for pure chloroform and methyl isobutyl ketone at T = (283.15, 293.15, 303.15, and 313.15) K as well as for the binary system {x 1 chloroform + (1 - x 1 ) methyl isobutyl ketone} at the same temperatures were made over the whole concentration range. The experimental results were fitted to empirical equations, which permit the calculation of these properties over the whole concentration and temperature ranges studied. Data of the binary mixture were further used to calculate the excess molar volume and viscosity deviation. The (vapour + liquid) equilibrium (VLE) at T = 303.15 K for this binary system was also measured in order to calculate the activity coefficients and the excess molar Gibbs energy. This binary system shows no azeotrope and negative deviations from ideal behaviour. The excess or deviation properties were fitted to the Redlich-Kister polynomial relation to obtain their coefficients and standard deviations
Directory of Open Access Journals (Sweden)
Leopoldo Vázquez
Full Text Available It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha, though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.
Vázquez, Leopoldo; Renton, Katherine
2015-01-01
It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.
Surface density profile and surface tension of the one-component classical plasma
International Nuclear Information System (INIS)
Ballone, P.; Senatore, G.; Trieste Univ.; Tosi, M.P.; Oxford Univ.
1982-08-01
The density profile and the interfacial tension of two classical plasmas in equilibrium at different densities are evaluated in the square-density-gradient approximation. For equilibrium in the absence of applied external voltage, the profile is oscillatory in the higher-density plasma and the interfacial tension is positive. The amplitude and phase of these oscillations and the magnitude of the interfacial tension are related to the width of the background profile. Approximate representations of the equilibrium profile by matching of its asymptotic forms are analyzed. A comparison with computer simulation data and a critical discussion of a local-density theory are also presented. (author)
Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L
2016-11-01
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.
Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.
2008-01-01
Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths. ?? 2008 American Chemical Society.
Sheridan, J W; Simmons, R J
1983-12-01
The buoyancy of suspension-grown Mastocytoma P815 X-2 cells in albumin-rich Cohn fraction V protein (CFVP) density gradients was found to be affected by prior incubation of the cells in pancreatin-EDTA salt solution. Whereas in pH 5.2 CFVP, pancreatin-EDTA treated cells behaved as if of reduced density when compared with the control 'undigested' group, in pH 7.3 CFVP they behaved as if of increased density. By contrast, pancreatin-EDTA treatment had no effect on the buoyancy of mastocytoma cells in polyvinylpyrrolidone-coated colloidal silica (PVP-CS, Percoll T.M.) density gradients of either pH 5.2 or pH 7.3. As cell size determinations failed to reveal alterations in cell size either as a direct result of pancreatin-EDTA treatment or as a combined consequence of such treatment and exposure to CFVP either with or without centrifugation, a mechanism involving a change in cell density other than during the centrifugation process itself seems unlikely. Binding studies employing 125I-CFVP, although indicating that CFVP bound to cells at 4 degrees, failed to reveal a pancreatin-EDTA treatment-related difference in the avidity of this binding. Although the mechanism of the pancreatin-EDTA-induced buoyancy shift in CFVP remains obscure, the absence of such an effect in PVP-CS suggests that the latter cell separation solution may more accurately be used to determine cell density.
Sergeev, A.; Alharbi, F. H.; Jovanovic, R.; Kais, S.
2016-04-01
The gradient expansion of the kinetic energy density functional, when applied to atoms or finite systems, usually grossly overestimates the energy in the fourth order and generally diverges in the sixth order. We avoid the divergence of the integral by replacing the asymptotic series including the sixth order term in the integrand by a rational function. Padé approximants show moderate improvements in accuracy in comparison with partial sums of the series. The results are discussed for atoms and Hooke’s law model for two-electron atoms.
Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.
1998-01-01
We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.
Moriarty, L J; Borgens, R B
2001-01-01
We have studied the cellular basis for recovery from acute spinal cord injury induced by applied electric fields. We have emphasized this recovery is due to the regeneration of spinal axons around and through the lesion, and have begun to evaluate the contribution of other cells to the recovery process. We have imposed a voltage gradient of about 320 microV/mm across puncture wounds to the adult rat spinal cord in order to study the accumulation and orientation of GFAP+ astrocytes within and adjacent to the lesion. This electric field was imposed by a miniaturized electronic implant designed to alternate the polarity of the field every 15 minutes. Astrocytes are known to undergo hyperplastic transformation within injured mammalian cords forming a major component of the scar that forms in response to injury. We have made three observations using a new computer based morphometry technique: First, we note a slight shift in the orientation of astrocytes parallel to the long axis of the spinal cord towards an imaginary reference perpendicular to this axis by approximately 10 degrees--but only in undamaged white matter near the lesion. Second, the relative number of astrocytes was markedly, and statistically significantly, reduced within electrically--treated spinal cords, particularly in the lesion. Third, the imposed voltage gradient statistically reduced the numbers of astrocytes possessing oriented cell processes within the injury site compared to adjacent undamaged regions of spinal cord.
Groot, P.H.E.; Scheek, L.M.; Havekes, L.; Noort, W.L. van; Hooft, F.M. van 't
1982-01-01
A method was developed for the separation of the high density lipoprotein subclasses HDL2 and HDL3 from human serum. Six serum samples are fractionated in a single-step ultracentrifugal procedure using the Beckman (SW-40) swinging bucket rotor. The method is based on a difference in flotation rate
Directory of Open Access Journals (Sweden)
M.V. Resende
2011-06-01
Full Text Available The objective of the present study was to determine the sperm enrichment with X-bearing spermatozoa, after one centrifugation in a Percoll or OptiPrep continuous density gradient, using quantitative real-time polymerase chain reaction (qPCR of sperm DNA and resultant in vitro-produced bovine embryos by PCR. Frozen/thawed sperm was layered on density gradients and the tubes were centrifuged. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Cleavage and blastocyst rates were determined through in vitro production of embryos and PCR was performed to identify the embryos' genetic sex. A difference in blastocyst rate was found in the Percoll treatment compared to OptiPrep (P<0.05. The percentage of female embryos in the Percoll and OptiPrep groups was 62.0% and 47.1%, respectively. These results were confirmed by qPCR of spermatozoa DNA and underestimation was seen only in the Percoll group. It was possible to sexing sperm using simple approach.
Czech Academy of Sciences Publication Activity Database
Plocková, Jana; Chmelík, Josef
2006-01-01
Roč. 1118, č. 2 (2006), s. 253-260 ISSN 0021-9673 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field flow fractionation * focusing elution mode * carrier liquid density Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006
Joshi-Barr, Shivanjali; Karpiak, Jerome V; Ner, Yogesh; Wen, Jessica H; Engler, Adam J; Almutairi, Adah
2013-02-12
Complex tissue culture matrices, in which types and concentrations of biological stimuli (e.g. growth factors, inhibitors, or small molecules) or matrix structure (e.g. composition, concentration, or stiffness of the matrix) vary over space, would enable a wide range of investigations concerning how these variables affect cell differentiation, migration, and other phenomena. The major challenge in creating layered matrices is maintaining the structural integrity of layer interfaces without diffusion of individual components from each layer. Current methodologies to achieve this include photopatterning, lithography, sequential functionalization5, freeze drying, microfluidics, or centrifugation, many of which require sophisticated instrumentation and technical skills. Others rely on sequential attachment of individual layers, which may lead to delamination of layers. DGMP overcomes these issues by using an inert density modifier such as iodixanol to create layers of varying densities. Since the density modifier can be mixed with any prepolymer or bioactive molecule, DGMP allows each scaffold layer to be customized. Simply varying the concentration of the density modifier prevents mixing of adjacent layers while they remain aqueous. Subsequent single step polymerization gives rise to a structurally continuous multilayered scaffold, in which each layer has distinct chemical and mechanical properties. The density modifier can be easily removed with sufficient rinsing without perturbation of the individual layers or their components. This technique is therefore well suited for creating hydrogels of various sizes, shapes, and materials. A protocol for fabricating a 2D-polyethylene glycol (PEG) gel, in which alternating layers incorporate RGDS-350, is outlined below. We use PEG because it is biocompatible and inert. RGDS, a cell adhesion peptide, is used to demonstrate spatial restriction of a biological cue, and the conjugation of a fluorophore (Alexa Fluor 350) enables
Ion-temperature-gradient-driven modes in bi-ion magnetoplasma
Energy Technology Data Exchange (ETDEWEB)
Batool, Nazia; Mirza, Arshad M [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Qamar, Anisa [Department of Physics, Peshawar University, NWFP 25120 (Pakistan)], E-mail: nazia.batool@ncp.edu.pk
2008-12-15
The toroidal ion-temperature-gradient (ITG)-driven electrostatic drift waves are investigated for bi-ion plasmas with equilibrium density, temperature and magnetic field gradients. Using Braginskii's transport equations for the ions and Boltzmann distributed electrons, the mode coupling equations are derived. New ITG-driven modes are shown to exist. The results of the present study should be helpful to understand several wave phenomena in space and tokamak plasmas.
Gregory-Eaves, Irene; Demers, J Marc J; Kimpe, Lynda; Krümmel, Eva M; Macdonald, Robie W; Finney, Bruce P; Blais, Jules M
2007-06-01
Many have demonstrated that anadromous Pacific salmon are significant vectors of nutrients from the ocean to freshwaters. Recently. however, it has been recognized that salmon spawners also input significant quantities of contaminants. The objectives of this paper are to delineate the extent to which salmon-derived nutrients are integrated into the freshwater food web using delta(15)N and delta(13)C and to assess the influence of the salmon pathway in the accumulation of contaminants in rainbow trout (Oncorhynchus mykiss). We found that the delta(15)N and delta(13)C of food web components were related positively and significantly to sockeye salmon (Oncorhynchus nerka) spawner density. Contaminant concentrations in rainbow trout also positively and significantly were related to sockeye salmon spawner density. These data suggest that the anadromous salmon nutrient and contaminant pathways are related and significantly impact the contaminant burden of resident fish.
Analysis of equilibrium and topology of tokamak plasmas
International Nuclear Information System (INIS)
Milligen, B.P. van.
1991-01-01
In a tokamak, the plasma is confined by means of a magnetic field. There exists an equilibrium between outward forces due to the pressure gradient in plasma and inward forces due to the interaction between currents flowing inside the plasma and the magnetic field. The equilibrium magnetic field is characterized by helical field lines that lie on nested toroidal surfaces of constant flux. The equilibrium yields values for global and local plasma parameters (e.g. plasma position, total current, local pressure). Thus, precise knowledge of the equilibrium is essential for plasma control, for the understanding of many phenomena occurring in the plasma (in particular departures from the ideal equilibrium involving current filamentation on the flux surfaces that lead to the formation of islands, i.e. nested helical flux surfaces), and for the interpretation of many different types of measurements (e.g. the translation of line integrated electron density measurements made by laser beams probing the plasma into a local electron density on a flux surface). The problem of determining the equilibrium magnetic field from external magnetic field measurements has been studied extensively in literature. The problem is 'ill-posed', which means that the solution is unstable to small changes in the measurement data, and the solution has to be constrained in order to stabilize it. Various techniques for handling this problem have been suggested in literature. Usually ad-hoc restrictions are imposed on the equilibrium solution in order to stabilize it. More equilibrium solvers are not able to handle very dissimilar measurement data which means information on the equilibrium is lost. The generally do not allow a straightforward error estimate of the obtained results to be made, and they require large amounts of computing time. This problems are addressed in this thesis. (author). 104 refs.; 42 figs.; 6 tabs
Directory of Open Access Journals (Sweden)
Orzan Marius
2016-06-01
Full Text Available Background: Assessment of the hemodynamic significance of a coronary artery stenosis is a challenging task, being extremely important for the establishment of indication for revascularization in atherosclerotic coronary artery stenosis. The aim of this study was to evaluate the role of a new marker reflecting the functional significance of a coronary artery stenosis, represented by the attenuation degree of contrast density along the stenosis by Coronary CT.
Schanz, U; Gmür, J
1992-12-01
The growing number of BMTs has increased interest in safe and standardized in vitro bone marrow processing techniques. We describe our experience with a rapid automated method for the isolation of mononuclear cells (MNC) from large volumes of bone marrow using a Fenwal CS-3000 cell separator without employing density gradient materials. Forty bone marrow harvests with a mean volume of 1650 +/- 307 ml were processed. A mean of 75 +/- 34% (50 percentile range 54-94%) of the original MNCs were recovered in a volume of 200 ml with only 4 +/- 2% of the starting red blood cells (RBC). Removal of granulocytes, immature myeloid precursors and platelets proved to be sufficient to permit safe cryopreservation and successful autologous BMT (n = 25). Allogeneic BMT (n = 14, including three major ABO-incompatible) could be performed without additional manipulation. In both groups of patients timely and stable engraftment comparable to historical controls receiving Ficoll gradient processed autologous (n = 17) or unprocessed allogeneic BMT (n = 54) was observed. Moreover, 70 +/- 14% of the RBC could be recovered from the grafts. They were used for autologous RBC support of donors, rendering unnecessary autologous blood pre-donations.
Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.
2016-01-01
We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. This platform has great potential in both medical diagnostics and research applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing. PMID:27054764
Zhang, Yi; Chen, Chao
2018-02-01
A density interface modeling method using polyhedral representation is proposed to construct 3-D models of spherical or ellipsoidal interfaces such as the terrain surface of the Earth and applied to forward calculating gravity effect of topography and bathymetry for regional or global applications. The method utilizes triangular facets to fit undulation of the target interface. The model maintains almost equal accuracy and resolution at different locations of the globe. Meanwhile, the exterior gravitational field of the model, including its gravity and gravity gradients, is obtained simultaneously using analytic solutions. Additionally, considering the effect of distant relief, an adaptive computation process is introduced to reduce the computational burden. Then features and errors of the method are analyzed. Subsequently, the method is applied to an area for the ellipsoidal Bouguer shell correction as an example and the result is compared to existing methods, which shows our method provides high accuracy and great computational efficiency. Suggestions for further developments and conclusions are drawn at last.
Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens
2016-01-01
Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376
Directory of Open Access Journals (Sweden)
Wei-hui Liu
Full Text Available BACKGROUND: Because few definitive markers are available for hepatic cancer stem cells (HCSCs, based on physical rather than immunochemical properties, we applied a novel method to enrich HCSCs. METHODOLOGY: After hepatic tumor cells (HTCs were first isolated from diethylinitrosamine-induced F344 rat HCC model using percoll discontinuous gradient centrifugation (PDGC and purified via differential trypsinization and differential attachment (DTDA, they were separated into four fractions using percoll continuous gradient centrifugation (PCGC and sequentially designated as fractions I-IV (FI-IV. Morphological characteristics, mRNA and protein levels of stem cell markers, proliferative abilities, induced differentiation, in vitro migratory capacities, in vitro chemo-resistant capacities, and in vivo malignant capacities were determined for the cells of each fraction. FINDINGS: As the density of cells increased, 22.18%, 11.62%, 4.73% and 61.47% of primary cultured HTCs were segregated in FI-FIV, respectively. The cells from FIII (density between 1.041 and 1.062 g/ml displayed a higher nuclear-cytoplasmic ratio and fewer organelles and expressed higher levels of stem cell markers (AFP, EpCAM and CD133 than cells from other fractions (P<0.01. Additionally, in vitro, the cells from FIII showed a greater capacity to self-renew, differentiate into mature HTCs, transit across membranes, close scratches, and carry resistance to chemotherapy than did cells from any other fraction; in vivo, injection of only 1×10(4 cells from FIII could generate tumors not only in subcutaneous tissue but also in the livers of nude mice. CONCLUSIONS: Through our novel method, HCSC-like cells were successfully enriched in FIII. This study will greatly contribute to two important areas of biological interest: CSC isolation and HCC therapy.
Thermodynamic evolution far from equilibrium
Khantuleva, Tatiana A.
2018-05-01
The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.
International Nuclear Information System (INIS)
Toyama, Hiroshi; Maeda, Hisato; Takeuchi, Akira; Koga, Sukehiko; Matsumura, Kaname; Nakashima, Hiromichi; Ichise, Masanori; Kurami, Miki; Nakagawa, Tsuyoshi.
1994-01-01
To establish a basis for semiquantitative SPECT measurements of the D 2 dopamine receptor density using equilibrium analysis, we evaluated in vivo kinetic properties of 125 I-IBZM in rat brains. We measured percent uptakes (% dose/g) of 125 I-IBZM in the striatum, frontal cortex, and cerebellum. We made these regional measurements at 15, 30, 45, 60, 90, and 120 minutes after injection, respectively. The specific striatal uptake, which is the uptake difference between striatum and frontal cortex or cerebellum, showed a transient equilibrium phase at 60 min. Theoretically, with these 'reversible' D 2 receptor binding ligands, the tracer-uptake ratio of the striatum-to-frontal cortex or cerebellum during the equilibrium phase provides an estimate of binding potential (Bound/Free=B max /K d ). Our experiment showed that these ratio increased with time after bolus injection of the tracer. Striatum to frontal cortex or cerebellum ratios which were calculated with pooled data (n=12) at 60 minutes in equilibrium phase showed nearly constant values (C.V.=12.3% and 13.5%, respectively). Although measuring the striatum to frontal cortex or cerebellum ratios near equilibrium phase by bolus injection of the tracer which are widely used in human SPECT study could not exactly signify the binding potential, those ratios at fixed time after injection would be reliable for semiquantitative index. (author)
Energy Technology Data Exchange (ETDEWEB)
Sato, Shunsuke A. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Taniguchi, Yasutaka [Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan); Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435 (Japan); Shinohara, Yasushi [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Yabana, Kazuhiro [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571 (Japan); Center for Computational Science, University of Tsukuba, Tsukuba 305-8571 (Japan)
2015-12-14
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functional which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.
Edge gradient and safety factor effects on electrostatic turbulent transport in tokamaks
International Nuclear Information System (INIS)
Tan, Ing Hwie.
1992-05-01
Electrostatic turbulence and transport measurements are performed on the Tokapole-II tokamak at the University of Wisconsin-Madison, as the safety-factor and the edge equilibrium gradients and varied substantially. Tokapole-II is a poloidal divertor tokamak capable of operating at a wide range of safety factors due to its unique magnetic limiter configuration. It also has retractable material limiters in a large scrape-off region, which permits the study of edge boundary conditions like density and temperature gradients. The turbulence is independent of safety factor, but strongly sensitive to the local density gradient, which itself depends upon the limiter configuration. When a material limiter is inserted in a high discharge, the density gradient is increased locally together with a local increase of the turbulence. On the other hand, limiter insertion in low discharges did not increase the density gradient as much and the turbulence properties are unchanged with respect to the magnetic limiter case. It is conducted then, that electrostatic turbulence is caused by the density gradient. Although the electrostatic fluctuation driven transport is enhanced in the large density gradient case, it is in all cases to small to explain the observed energy confinement times. To explore instabilities with small wavelengths, a 0.5 mm diameter shperical Langmuir probe was constructed, and its power compared with the power measured by larger cylindrical probes
Ponderomotive force effects on temperature-gradient-driven instabilities
International Nuclear Information System (INIS)
Sundaram, A.K.; Hershkowitz, N.
1992-01-01
The modification of temperature-gradient-driven instabilities due to the presence of nonuniform radio-frequency fields near the ion cyclotron frequency is investigated in the linear regime. Employing the fluid theory, it is shown that the induced field line compression caused by ion cyclotron range of frequencies (ICRF) fields makes the net parallel compressibility positive, and thus provides a stabilizing influence on the ion-temperature-gradient-driven mode for an appropriately tailored profile of radio-frequency (rf) pressure. Concomitantly, the radial ponderomotive force generates an additional contribution via coupling between the perturbed fluid motion and the equilibrium ponderomotive force and this effect plays the role of dissipation to enhance or decrease the growth of temperature-gradient-driven modes depending upon the sign of rf pressure gradients. For decreased growth of temperature-gradient-driven instabilities, the plasma density gradients and rf pressure gradients must have opposite signs while enhancement in growth arises when both gradients have the same sign. Finally, the kinetic effects associated with these modes are briefly discussed
Energy Technology Data Exchange (ETDEWEB)
Anon.
1984-12-15
From 3-6 September the First International Workshop on Local Equilibrium in Strong Interaction Physics took place in Bad-Honnef at the Physics Centre of the German Physical Society. A number of talks covered the experimental and theoretical investigation of the 'hotspots' effect, both in high energy particle physics and in intermediate energy nuclear physics.
African Journals Online (AJOL)
context of antimicrobial therapy in malnutrition. Dialysis has in the past presented technical problems, being complicated and time-consuming. A new dialysis system based on the equilibrium technique has now become available, and it is the principles and practical application of this apparatus (Kontron Diapack; Kontron.
van Damme, E.E.C.
2000-01-01
An outcome in a noncooperative game is said to be self-enforcing, or a strategic equilibrium, if, whenever it is recommended to the players, no player has an incentive to deviate from it.This paper gives an overview of the concepts that have been proposed as formalizations of this requirement and of
Ismail, M.S.
2014-01-01
We introduce a new concept which extends von Neumann and Morgenstern's maximin strategy solution by incorporating `individual rationality' of the players. Maximin equilibrium, extending Nash's value approach, is based on the evaluation of the strategic uncertainty of the whole game. We show that
Energy Technology Data Exchange (ETDEWEB)
Montes, Carmen Sotelo; Weber, John C. [World Agroforestry Centre (ICRAF), Sahel Office, B.P. E 5118 Bamako (Mali); Silva, Dimas Agostinho da; Bolzon de Muniz, Graciela Ines [Universidade Federal do Parana (UFPR), Av. Lothario Meissner, 900, CEP.: 80270-170-Curitiba (Brazil); Garcia, Rosilei A. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Instituto de Florestas, Departamento de Produtos Florestais, BR 465, km 07, 23890-000, Seropedica, Rio de Janeiro (Brazil)
2011-01-15
Prosopis africana and Balanites aegyptiaca are native tree species in the West African Sahel and provide wood for fuel, construction and other essential products. A provenance/progeny test of each species was established at one relatively dry site in Niger, and evaluated at 13 years. Gross calorific value of the wood was determined for a random sample of trees in each test: gross CV and CVm{sup 3} = gross calorific value in MJ kg{sup -1} and MJ m{sup -3}, respectively. The major objectives were to determine if gross CV was positively correlated with wood density and tree growth, and if gross CV and/or CVm{sup 3} varied with rainfall gradients in the sample region. Provenances were grouped into a drier and more humid zone, and correlations were computed among all trees and separately in each zone. Results indicated that gross CV was not significantly correlated with density in either species. Gross CV was positively correlated with growth of P. africana (but not B. aegyptiaca) only in the drier zone. Gross CVm{sup 3} was positively correlated with growth of both species, and the correlations were stronger in the drier zone. Multiple regressions with provenance latitude, longitude and elevation indicated that provenance means for gross CV increased, in general, from the drier to the more humid zones. Regressions with gross CVm{sup 3} were not significant. Results are compared with earlier research reports from the provenance/progeny tests and with other tropical hardwood species; and practical implications are presented for tree improvement and conservation programs in the region. (author)
Fischer, C; Scherfer-Brähler, V; Müller-Schlösser, F; Schröder-Printzen, I; Weidner, W
2007-05-01
Microcalorimetric measurements can be used for recording exothermic or endothermic summation effects of a great variety of biological processes. The aim of the present study was to examine the usefullness of the microcalorimetry method to characterise the biological activity of spermatozoa. The heat flow of bovine fresh sperm as well as cryosperm samples were measured after Percoll density-gradient centrifugation in a 4-channel microcalorimeter. Various calibration times, volumes of samples and sperm concentrations were tested and analysed. Sperm concentration was recorded by a computer-assisted, computer-aided software system method (CASA). Using a calibration time of 15 minutes, the heat signal of the fresh and cryosperm samples showed a characteristic peak after 39.5 min and 38.1 min (mean), respectively, with a significant correlation to sample volume and sperm concentration (p < 0.05). For obtaining the best results, a sample volume of 1 ml and a sperm concentration of more than 50 x 10 (6)/mL was used. With microcalorimetric measurements the biological activity of spermatozoa could be recorded for reproducible results, thus opening the way to an automatised ejaculate analysis in the future. More investigations are necessary to correlate microcalorimetric parameters with semen function.
Directory of Open Access Journals (Sweden)
Osamu Inoue
2017-01-01
Full Text Available To evaluate the clinical efficacy of a procedure comprising a combination of Percoll continuous density gradient and modified swim-up techniques for the removal of human immunodeficiency virus type 1 (HIV-1 from the semen of HIV-1 infected males, a total of 129 couples with an HIV-1 positive male partner and an HIV-1 negative female partner (serodiscordant couples who were treated at Keio University Hospital between January 2002 and April 2012 were examined. A total of 183 ejaculates from 129 HIV-1 infected males were processed. After swim-up, we successfully collected motile sperms at a recovery rate as high as 100.0% in cases of normozoospermia (126/126 ejaculates, oligozoospermia (6/6, and asthenozoospermia (36/36. The recovery rate of oligoasthenozoospermia was 86.7% (13/15. In processed semen only four ejaculates (4/181:2.2% showed viral nucleotide sequences consistent with those in the blood of the infected males. After using these sperms, no horizontal infections of the female patients and no vertical infections of the newborns were observed. Furthermore, no obvious adverse effects were observed in the offspring. This protocol allowed us to collect HIV-1 negative motile sperms at a high rate, even in male factor cases. We concluded that our protocol is clinically effective both for decreasing HIV-1 infections and for yielding a healthy child.
Explanation of L→H mode transition based on gradient stabilization of edge thermal fluctuations
International Nuclear Information System (INIS)
Stacey, W.M.
1996-01-01
A linear analysis of thermal fluctuations, using a fluid model which treats the large radial gradient related phenomena in the plasma edge, leads to a constraint on the temperature and density gradients for stabilization of edge temperature fluctuations. A temperature gradient, or conductive edge heat flux, threshold is identified. It is proposed that the L→H transition takes place when the conductive heat flux to the edge produces a sufficiently large edge temperature gradient to stabilize the edge thermal fluctuations. The consequences following from this mechanism for the L→H transition are in accord with observed phenomena associated with the L→H transition and with the observed parameter dependences of the power threshold. First, a constraint is established on the edge temperature and density gradients that are sufficient for the stability of edge temperature fluctuations. A slab approximation for the thin plasma edge and a fluid model connected to account for the large radial gradients present in the plasma edge are used. Equilibrium solutions are characterized by the value of the density and of its gradient L n -1 double-bond - n -1 , etc. Temperature fluctuations expanded about the equilibrium value are then used in the energy balance equation summed over plasma ions, electrons and impurities to obtain, after linearization, an expression for the growth rate ω of edge localized thermal fluctuations. Thermal stability of the equilibrium solution requires ω ≤ 0, which establishes a constraint that must be satisfied by L n -1 and L T -1 . The limiting value of the constraint (ω = 0) leads to an expression for the minimum value of that is sufficient for thermal stability, for a given value of L T -1. It is found that there is a minimum value of the temperature gradient, (L T -1 ) min that is necessary for a stable solution to exist for any value of L n -1
Applicability of Stokes method for measuring viscosity of mixtures with concentration gradient
Directory of Open Access Journals (Sweden)
César Medina
2017-12-01
Full Text Available After measuring density and viscosity of a mixture of glycerin and water contained in a vertical pipe, a variation of these properties according to depth is observed. These gradients are typical of non-equilibrium states related to the lower density of water and the fact that relatively long times are necessary to achieve homogeneity. In the same pipe, the falling velocity of five little spheres is measured as a function of depth, and then a numerical fit is performed which agrees very well with experimental data. Based on the generalization of these results, the applicability of Stokes method is discussed for measuring viscosity of mixtures with a concentration gradient.
Ion temperature gradient mode driven solitons and shocks
Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.
2016-04-01
Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.
Chau, Nancy H.
2009-01-01
This paper presents a capability-augmented model of on the job search, in which sweatshop conditions stifle the capability of the working poor to search for a job while on the job. The augmented setting unveils a sweatshop equilibrium in an otherwise archetypal Burdett-Mortensen economy, and reconciles a number of oft noted yet perplexing features of sweatshop economies. We demonstrate existence of multiple rational expectation equilibria, graduation pathways out of sweatshops in complete abs...
One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet
International Nuclear Information System (INIS)
Harrison, Michael G.; Neukirch, Thomas
2009-01-01
In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet
Wetting of flat gradient surfaces.
Bormashenko, Edward
2018-04-01
Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles
International Nuclear Information System (INIS)
Spruijt, E; Biesheuvel, P M
2014-01-01
In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation–diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik–Mansoori–Carnahan–Starling–Leland (BMCSL
Decay to Equilibrium for Energy-Reaction-Diffusion Systems
Haskovec, Jan
2018-02-06
We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.
Decay to Equilibrium for Energy-Reaction-Diffusion Systems
Haskovec, Jan; Hittmeir, Sabine; Markowich, Peter A.; Mielke, Alexander
2018-01-01
We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.
Lestari, Silvia W.; Lestari, Sarah H.; Pujianto, Dwi A.
2018-02-01
Intra uterine insemination (IUI) as one of the treatment for infertility, persists low success rate. A factor that contributes to the unsuccessful of IUI is sperm preparation, performed through Swim-up (SU) and Density Gradient Centrifugation (DGC) methods. Furthermore, studies have shown that Alpha Lipoic Acid (ALA) is a potent antioxidant that could enhance the sperm motility and protect the DNA integrity of the sperm [1]. This study is aimed to re-evaluate the efficiency of the DGC and SU methods in selecting sperm before being transferred for IUI by the supplementation of ALA based on the sperm DNA integrity. Semen samples were obtained from 13 men from partners of women who are infertile (normozoospermia) and underwent IUI. Semen analysis based on the guideline of World Health Organization (WHO) 2010 was performed to measure the sperm motility and velocity, before and after sperm preparation. Then, samples were incubated with Alpha Lipoic Acid (ALA) in 0.625 mg (ALA 1), 1.25 mg (ALA 2) and 2.5 mg (ALA 3). The Sperm Chromatin Dispersion (SCD) test was performed to evaluate the sperm DNA Fragmentation Index (DFI). The percentage of motile sperm was higher in prepared sperm (post-DGC and post-SU) than in whole semen. Furthermore, the percentage of motile sperm was higher in post-DGC compared to post-SU. The level of DFI after the supplementation of ALA was decreased in prepared sperm compared to the whole semen. ALA was proved capable to select the better sperm quality with decreased sperm DNA fragmentation of prepared sperm in the all of DFI category.
Widjaja, E; Mahmoodabadi, S Z; Rea, D; Moineddin, R; Vidarsson, L; Nilsson, D
2009-01-01
Tensor estimation can be improved by increasing the number of gradient directions (NGD) or increasing the number of signal averages (NSA), but at a cost of increased scan time. To evaluate the effects of NGD and NSA on fractional anisotropy (FA) and fiber density index (FDI) in vivo. Ten healthy adults were scanned on a 1.5T system using nine different diffusion tensor sequences. Combinations of 7 NGD, 15 NGD, and 25 NGD with 1 NSA, 2 NSA, and 3 NSA were used, with scan times varying from 2 to 18 min. Regions of interest (ROIs) were placed in the internal capsules, middle cerebellar peduncles, and splenium of the corpus callosum, and FA and FDI were calculated. Analysis of variance was used to assess whether there was a difference in FA and FDI of different combinations of NGD and NSA. There was no significant difference in FA of different combinations of NGD and NSA of the ROIs (P>0.005). There was a significant difference in FDI between 7 NGD/1 NSA and 25 NGD/3 NSA in all three ROIs (PNSA, 25 NGD/1 NSA, and 25 NGD/2 NSA and 25 NGD/3 NSA in all ROIs (P>0.005). We have not found any significant difference in FA with varying NGD and NSA in vivo in areas with relatively high anisotropy. However, lower NGD resulted in reduced FDI in vivo. With larger NGD, NSA has less influence on FDI. The optimal sequence among the nine sequences tested with the shortest scan time was 25 NGD/1 NSA.
Luca Anderlini; Daniele Terlizzese
2009-01-01
We build a simple model of trust as an equilibrium phenomenon, departing from standard "selfish" preferences in a minimal way. Agents who are on the receiving end of an other to transact can choose whether to cheat and take away the entire surplus, taking into account a "cost of cheating." The latter has an idiosyncratic component (an agent's type), and a socially determined one. The smaller the mass of agents who cheat, the larger the cost of cheating suffered by those who cheat. Depending o...
Nonlinear equilibrium in Tokamaks including convective terms and viscosity
International Nuclear Information System (INIS)
Martin, P.; Castro, E.; Puerta, J.
2003-01-01
MHD equilibrium in tokamaks becomes very complex, when the non-linear convective term and viscosity are included in the momentum equation. In order to simplify the analysis, each new term has been separated in type gradient terms and vorticity depending terms. For the special case in which the vorticity vanishes, an extended Grad-Shafranov type equation can be obtained. However now the magnetic surface is not isobars or current surfaces as in the usual Grad-Shafranov treatment. The non-linear convective terms introduces gradient of Bernoulli type kinetic terms . Montgomery and other authors have shown the importance of the viscosity terms in tokamaks [1,2], here the treatment is carried out for the equilibrium condition, including generalized tokamaks coordinates recently described [3], which simplify the equilibrium analysis. Calculation of the new isobar surfaces is difficult and some computation have been carried out elsewhere for some particular cases [3]. Here, our analysis is extended discussing how the toroidal current density, plasma pressure and toroidal field are modified across the midplane because of the new terms (convective and viscous). New calculations and computations are also presented. (Author)
International Nuclear Information System (INIS)
Wisniak, Jaime; Ortega, Juan; Fernández, Luis
2017-01-01
Highlights: • A critical analysis on the published data in JCT 102 (2016) 155–163, is carried out. • Different consistency tests are applied to the data used in this work for their thermodynamic evaluation. • It concludes by questioning the quality of the published data. - Abstract: The vapour-liquid equilibrium results reported by Zhang et al. [1] for the binary systems {methanol (1) + 2,2,3,3,4,4,5,5-octafluoro-1-pentanol (2)} and {2,2,3,3-tetrafluoro-1-propanol (1) + 2,2,3,3,4,4,5,5-octafluoro-1-pentanol (2)} have been analysed using the data evaluation methodology published recently [2] and found to be unreliable.
de Oliveira, Mário J
2017-01-01
This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...
Directory of Open Access Journals (Sweden)
Rosa Sayoko Kawasaki-Oyama
2008-03-01
Ficoll-Paque gradient density method (d=1.077g/ml. METHODS: Ten samples of the umbilical cord blood obtained from full-term deliveries were submitted to two different procedures of mesenchymal stem cell culture: a Method without the Ficoll-Paque density gradient, which concentrates all nucleated cells; b Method with the Ficoll-Paque density gradient, which selects only low-density mononuclear cells. Cells were initially plated into 25 cm² cultures flasks at a density of 1x10(7 nucleated cells/cm² and 1x10(6 mononuclear cells/cm². RESULTS: It was obtained 2-13x10(7 (median = 2.35x10(7 nucleated cells/cm² by the method without the Ficoll-Paque gradient density, and 3.7-15.7x10(6 (median = 7.2x10(6 mononuclear cells/cm² by the method with the Ficoll-Paque gradient density. In all cultures adherent cells were observed 24 hours after being cultured. Cells presented fibroblastoid and epithelioid morphology. In most of the cultures, cell proliferation occurred in the first week, but after the second week only some cultures - derived from the method without the Ficoll-Paque gradient density - maintained the growth rate reaching confluence. Those cultures were submitted to trypsinization with 0.25% trypsin/EDTA solution and cultured for two to three months. CONCLUSION: In the samples analyzed, cell separation and mesenchymal stem cell culture techniques from human umbilical cord blood by the method without the Ficoll-Paque density gradient was more efficient than the method with the Ficoll-Paque density gradient.
Lestari, Silvia W.; Larasati, Manggiasih D.; Asmarinah, Mansur, Indra G.
2018-02-01
As one of the treatment for infertility, the success rate of Intrauterine Insemination (IUI) is still relatively low. Several sperm preparation methods, swim-up (SU) and the density-gradient centrifugation (DGC) are frequently used to select for better sperm quality which also contribute to IUI failure. Sperm selection methods mainly separate the motile from the immotile sperm, eliminating the seminal plasma. The sperm motility involves the structure and function of sperm membrane in maintaining the balance of ion transport system which is regulated by the Na+, K+-ATPase, and Ca2+-ATPase enzymes. This study aims to re-evaluate the efficiency of these methods in selecting for sperm before being used for IUI and based the evaluation on sperm Na+,K+-ATPase and Ca2+-ATPase activities. Fourteen infertile men from couples who underwent IUI were involved in this study. The SU and DGC methods were used for the sperm preparation. Semen analysis was performed based on the reference value of World Health Organization (WHO) 2010. After isolating the membrane fraction of sperms, the Na+, K+-ATPase activity was defined as the difference in the released inorganic phosphate (Pi) with and without the existence of 10 mM ouabain in the reaction, while the Ca2+-ATPase was determined as the difference in Pi contents with and without the existence of 55 µm CaCl2. The prepared sperm demonstrated a higher percentage of motile sperm compared to sperm from the whole semen. Additionally, the percentage of motile sperm of post-DGC showed higher result than the sperm from post-SU. The velocity of sperm showed similar pattern with the percentage of motile sperm, in which the velocity of prepared sperm was higher than the sperm from whole semen. Furthermore, the sperm velocity of post-DGC was higher compared to the sperm from post-SU. The Na+, K+-ATPase activity of prepared sperm was higher compared to whole semen, whereas Na+, K+-ATPase activity in the post DGC was higher than post SU. The Ca2
Luzon, Javier; Castro, Miguel; Vertelman, Esther J.M.; Gengler, Régis Y.N.; van Koningsbruggen, Petra J.; Molodtsova, Olga; Knupfer, Martin; Rudolf, Petra; Loosdrecht, Paul H.M. van; Broer, Ria
2008-01-01
A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)(6)] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related
Directory of Open Access Journals (Sweden)
L. Bànyai
1997-06-01
Full Text Available The single layer model of GPS ionospheric data processing is compared with the International Reference Ionosphere í 1990 and the attached Diffusive Equilibrium model of Plasmasphere (IRI-90+DEP which proved to be a good supplement to GPS data processing. These models can be used to estimate the single layer height and to improve the mapping function in day-time. The code delays estimated from IRI-90+DEP models are compared with GPS measurements carried out by TurboRogue receiver. These models can be used to estimate the preliminary receiver biases especially in the case of cross-correlation tracking mode. The practical drawback of the IRI-90 model is the sharp discontinuity of the ion components during sunset and sunrise at an elevation of 1000 km, because it also causes a sharp discontinuity in the TEC values computed from the DEP model. The GPS data may be a good source to improve the topside region of the IRI model estimating smooth TEC transition before and after sunrise in the plasmasphere.
Tolman temperature gradients in a gravitational field
Santiago, Jessica; Visser, Matt
2018-01-01
Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...
Equilibrium calculations, ch. 6
International Nuclear Information System (INIS)
Deursen, A.P.J. van
1976-01-01
A calculation is presented of dimer intensities obtained in supersonic expansions. There are two possible limiting considerations; the dimers observed are already present in the source, in thermodynamic equilibrium, and are accelerated in the expansion. Destruction during acceleration is neglected, as are processes leading to newly formed dimers. On the other hand one can apply a kinetic approach, where formation and destruction processes are followed throughout the expansion. The difficulty of this approach stems from the fact that the density, temperature and rate constants have to be known at all distances from the nozzle. The simple point of view has been adopted and the measured dimer intensities are compared with the equilibrium concentration in the source. The comparison is performed under the assumption that the detection efficiency for dimers is twice the detection efficiency for monomers. The experimental evidence against the simple point of view that the dimers of the onset region are formed in the source already, under equilibrium conditions, is discussed. (Auth.)
Czech Academy of Sciences Publication Activity Database
Qian, J.; Wang, Z.; Klimešová, Jitka; Lü, X.; Kuang, W.; Liu, Z.; Han, X.
2017-01-01
Roč. 120, č. 5 (2017), s. 755-764 ISSN 0305-7364 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : Bud Bank * Precipitation gradient * Stepic vegetation Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.041, year: 2016
Relativistic Fluid Dynamics Far From Local Equilibrium
Romatschke, Paul
2018-01-01
Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.
Energy Technology Data Exchange (ETDEWEB)
Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))
2010-05-15
Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage
Influence of collective excitations on pre-equilibrium and equilibrium processes
International Nuclear Information System (INIS)
Ignatyuk, A.V.; Lunev, V.P.
1990-01-01
The influence of the collective states excitations on equilibrium and preequilibrium processes in reaction is discussed. It is shown that for a consistent description of the contribution of preequilibrium and equilibrium compound processes collective states should be taken into account in the level density calculations. The microscopic and phenomenological approaches for the level density calculations are discussed. 13 refs.; 8 figs
On lower order strain gradient plasticity theories
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Hutchinson, J. W.
2002-01-01
By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...
Sheree Cato; Lisa McMillan; Lloyd Donaldson; Thomas Richardson; Craig Echt; Richard Gardner
2006-01-01
Wood formation was investigated at five heights along the bole for two unrelated trees of Pinus radiataBoth trees showed clear gradients in wood properties from the base to the crown. Cambial cells at the base of the tree were dividing 3.3-fold slower than those at the crown, while the average thickness of cell walls in wood was highest at the base....
Control of colloids with gravity, temperature gradients, and electric fields
Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M
2003-01-01
We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.
Control of colloids with gravity, temperature gradients, and electric fields
Energy Technology Data Exchange (ETDEWEB)
Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)
2003-01-15
We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.
Czech Academy of Sciences Publication Activity Database
Vinš, Václav; Planková, Barbora; Hrubý, Jan
2013-01-01
Roč. 34, č. 5 (2013), s. 792-812 ISSN 0195-928X R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GPP101/11/P046; GA ČR GA101/09/1633 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : chemical polarity * gradient theory * surface tension Subject RIV: BJ - Thermodynamics Impact factor: 0.623, year: 2013 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10765-012-1207-z
Statistical thermodynamics of equilibrium polymers at interfaces
Gucht, van der J.; Besseling, N.A.M.
2002-01-01
The behavior of a solution of equilibrium polymers (or living polymers) at an interface is studied, using a Bethe-Guggenheim lattice model for molecules with orientation dependent interactions. The density profile of polymers and the chain length distribution are calculated. For equilibrium polymers
Directory of Open Access Journals (Sweden)
Haiqing Yu
2016-01-01
Full Text Available Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.
Collapse and equilibrium of rotating, adiabatic clouds
International Nuclear Information System (INIS)
Boss, A.P.
1980-01-01
A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand
Directory of Open Access Journals (Sweden)
Alberto Lopes Gusmão
2010-03-01
Full Text Available O objetivo, neste trabalho, foi verificar o desvio da proporção de sexo e a presença de fragmentação do DNA, pela técnica de TUNEL (“In situ terminal deoxinucleotidyl transferase mediated dUTP nick end labeling assay”, em espermatozoides bovinos centrifugados em gradientes de densidade de Percoll ou OptiPrep durante a separação espermática. Doses de sêmen de touros foram descongeladas, e cerca de 40 milhões de espermatozoides foram depositados sobre cada gradiente de densidade compostos por Percoll ou OptiPrep com três camadas entre 1.110g/mL e 1.123g/mL, em tubos de 15mL, em que permaneceram por 24h a 4°C antes da deposição dos espermatozoides. Os tubos foram centrifugados a 500xg por 15min a 22°C. Os sobrenadantes foram aspirados, e os sedimentos, recuperados para verificação da fragmentação do DNA pela técnica de TUNEL. Obteve-se um desvio dos embriões produzidos in vitro para fêmeas no gradiente de Percoll (62% de fêmeas, em relação aos grupos OptiPrep e Controle (47,1 e 48,7% de fêmeas, respectivamente. Não foi detectada fragmentação do DNA dos espermatozoides nas amostras centrifugadas, tanto no gradiente de Percoll quanto de OptiPrep. Dessa forma, foi possível realizar a sexagem espermática, com uma maior porcentagem de espermatozoides X do que o grupo controle, por meio de metodologia mais simples e sem provocar danos ao DNA dos espermatozoides.The objective of the present study was to verify the sex ratio and presence of DNA fragmentation by TUNEL technique (In situ terminal deoxinucleotidyl transferase mediated dUTP nick end labeling assay in bovine spermatozoa centrifuged in density gradients of Percoll or OptiPrep during the sperm separation. Approximately 40 million of frozen/thawed bovine spermatozoa were deposited on each density gradient composed of Percoll or OptiPrep with three layers ranging from 1.110g/mL to 1.123g/mL in polystyrene tubes of 15mL. The tubes were kept at 4°C for 24h before
Mass flow and the validity of ionization equilibrium on the sun
International Nuclear Information System (INIS)
Joselyn, J.; Munro, R.H.; Holzer, T.E.
1979-01-01
Ionization equilibrium is a useful assumption which allows temperatures and other plasma properties to be deduced from spectral observations. Inherent to this assumption is the premise that the ion stage densities are determined solely by atomic processes which are local functions of the plasma temperature and electron density. However, if the time scale of plasma flow through a temperature gradient is less than the characteristic time scale for an important atomic process, deviations from the ionization stage densities expected for equilibrium will occur which could introduce serious errors into subsequent analyses. In the past few years, significant flow velocities in the upper solar atmosphere have been inferred from observations of emission lines originating in the transition region (about 10 4 -10 6 K) and corona. In this paper, 3 models of the solar atmosphere (quiet Sun, coronal hole, and a network model) are examined to determine if the emission expected from these model atmospheres could be produced from equilibrium ion populations when steady flows of several kilometers per second are assumed. If the flows are quasi-periodic instead of steady, spatial and temporal averaging inherent in the observations may allow for the construction of satisfactory models based on the assumption of ionization equilibrium. Representative emission lines are analysed for the following ions: C III, IV, O IV, V, VI, Ne VII, VIII, Mg IX, X, Si XII, Fe IX-XIV. Two principle conclusions are drawn. First, only the iron ions are generally in equilibrium for steady flows of 20 kms -1 . For carbon and oxygen, ionization equilibrium is not a valid assumption for steady flows as small as 1 kms -1 . Second, the 3 models representing different solar conditions behave in a qualitatively similar manner, implying that these results are not particularly model dependent over the range of temperature gradients and electron densities thus far inferred for the Sun. In view of the flow velocities
Topics on MHD equilibrium and stability in heliotron / torsatron
International Nuclear Information System (INIS)
Ichiguchi, Katsuji; Nakajima, Noriyoshi; Okamoto, Masao.
1996-10-01
Recent topics on the MHD properties with and without bootstrap current in Heliotron / Torsatron configurations are presented. In a currentless equilibrium with a large Shafranov shift, a high-n ballooning mode can be unstable even in the region with positive gradient of the rotational transform. This is because the local shear in the field line bending term can be reduced by the fact that the local enhancement of the poloidal field varies in the radial direction. Since the local curvature of the field lines depends on the label of the magnetic field line, α, in Heliotron / Torsatron, the eigenvalue ω 2 also depends on α. In the Mercier stable region, the level surfaces of ω 2 of unstable modes form spheroids in the (ψ, θ k , α) space, where ψ and θ k are the label of the flux surface and the radial wave number, while they form cylinders in tokamaks. Such high-n modes cannot be related to low-n modes in this case. In the LHD configuration, bootstrap current depends on the collisionality of the plasma. When the beta value is raised by increasing the temperature with the density fixed, the plasma becomes less collisional and the bootstrap current grows in the direction where the rotational transform is increased. On the contrary, when the beta value is raised by increasing the density with the temperature fixed, the plasma becomes more collisional. While a small amount of the current flows in the same direction as in the above sequence at low beta in this case, the direction of the current reverses at high beta equilibrium. This is because the geometrical factor in the expression of the bootstrap current in the plateau regime has opposite signature to that in the 1/ν regime. The latter equilibrium sequence is more stable in the Mercier criterion than the former one. Thus, the beta should be raised by increasing the density rather than the temperature to obtain stable high beta plasma. (author)
Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.
Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M
2018-05-15
Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.
On lower order strain gradient plasticity theories
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Hutchinson, J. W.
2003-01-01
By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...... the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory....... The findings raise questions about the physical acceptability of this class of strain gradient theories....
Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.
Yeh, Li-Hsien; Chen, Fu; Chiou, Yu-Ting; Su, Yen-Shao
2017-12-01
Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m -2 can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kong, Fanjie; Hu, Yanfei
2014-03-01
The geometries, stabilities, and electronic and magnetic properties of Mg(n) X (X = Fe, Co, Ni, n = 1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg(n)Fe, Mg(n)Co, and Mg(n)Ni clusters have similar geometric structures and that the X atom in Mg(n)X clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg₄X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg₁,₂,₃,₄,₅,₆,₈,₉Fe, Mg₁,₂,₄,₅,₆,₈,₉Co, and Mg₁,₂,₅,₆,₇,₉Ni, present high magnetic moments (4 μ(B), 3 μ(B), and 2 μ(B), respectively).
Computation of Phase Equilibrium and Phase Envelopes
DEFF Research Database (Denmark)
Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp
formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...
Ion exchange equilibrium constants
Marcus, Y
2013-01-01
Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and
International Nuclear Information System (INIS)
Russo, T.V.; Martin, R.L.; Jeffrey Hay, P.
1995-01-01
Density functional theory (DFT) and Hartree--Fock (HF) calculations are reported for the family of transition metal fluorides ScF 3 , TiF 4 , VF 5 , and CrF 6 . Both HF and the local-density approximation (LDA) yield excellent agreement with experimental bond lengths, while the B-LYP gradient-corrected density functional gives bond lengths 0.04-0.05 A too long. An investigation of various combinations of exchange and correlation functionals shows that, for this series, the origin of this behavior lies in the Becke exchange functional. Much improved bond distances are found using the hybrid HF/DFT functional advocated by Becke. This approximation also leads to much improved thermochemistries. The LDA overestimates average bond energies in this series by 30-40 kcal/mol, whereas the B-LYP functional overbinds by only ∼8-12 kcal/mol, and the hybrid HF/DFT method overbinds by only ∼2 kcal/mol. The hybrid method predicts the octahedral isomer of CrF 6 to be more stable than the trigonal prismatic form by 14 kcal/mol. Comparison of theoretical vibrational frequencies with experiment supports the assignment of an octahedral geometry
Quantity Constrained General Equilibrium
Babenko, R.; Talman, A.J.J.
2006-01-01
In a standard general equilibrium model it is assumed that there are no price restrictions and that prices adjust infinitely fast to their equilibrium values.In case of price restrictions a general equilibrium may not exist and rationing on net demands or supplies is needed to clear the markets.In
International Nuclear Information System (INIS)
Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft
1992-04-01
A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques
On solutions to equilibrium problems for systems of stiffened gases
Flåtten, Tore; Morin, Alexandre; Munkejord, Svend Tollak
2011-01-01
We consider an isolated system of N immiscible fluids, each following a stiffened-gas equation of state. We consider the problem of calculating equilibrium states from the conserved fluid-mechanical properties, i.e., the partial densities and internal energies. We consider two cases; in each case mechanical equilibrium is assumed, but the fluids may or may not be in thermal equilibrium. For both cases, we address the issues of existence, uniqueness, and physical validity of equilibrium soluti...
Thermodynamic theory of equilibrium fluctuations
International Nuclear Information System (INIS)
Mishin, Y.
2015-01-01
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.
International Nuclear Information System (INIS)
Goto, R.; Hatori, T.; Miura, H.; Ito, A.; Sato, M.
2015-01-01
Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. The formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability
Steady equilibrium of a cylindrically symmetric plasma sustained by fueling
International Nuclear Information System (INIS)
Tomita, Yukihiro; Momota, Hiromu
1993-01-01
By introducing a novel and natural method to obtain a steady equilibrium, it is shown that a pressure gradient produced by the particle injection or resultant diamagnetic current can sustain only an equilibrium of a diffused linear pinch. For an extremely elongated FRC where magnetic field vanishes at a certain point, a seed current is needed to sustain configuration in a steady state equilibrium. A directed flow of fusion produced protons forms a seed current and consequently it sustains a steady FRC equilibrium by fueling only once D- 3 He burning takes place. Effects of anomalous transports on the sustainment are discussed. (author)
Brignole, Esteban Alberto
2013-01-01
Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and
International Nuclear Information System (INIS)
Balter, H.S.
1994-01-01
This work studies the behaviour of radionuclides when it produce a desintegration activity,decay and the isotopes stable creation. It gives definitions about the equilibrium between activity of parent and activity of the daughter, radioactive decay,isotope stable and transient equilibrium and maxim activity time. Some considerations had been given to generators that permit a disgregation of two radioisotopes in equilibrium and its good performance. Tabs
International Nuclear Information System (INIS)
Shiraishi, J.; Aiba, N.; Miyato, N.; Yagi, M.
2014-01-01
Toroidal rotation effects are self-consistently taken into account not only in the linear magnetohydrodynamic (MHD) stability analysis but also in the equilibrium calculation. The MHD equilibrium computation is affected by centrifugal force due to the toroidal rotation. To study the toroidal rotation effects on resistive wall modes (RWMs), a new code has been developed. The RWMaC modules, which solve the electromagnetic dynamics in vacuum and the resistive wall, have been implemented in the MINERVA code, which solves the Frieman–Rotenberg equation that describes the linear ideal MHD dynamics in a rotating plasma. It is shown that modification of MHD equilibrium by the centrifugal force significantly reduces growth rates of RWMs with fast rotation in the order of M 2 = 0.1 where M is the Mach number. Moreover, it can open a stable window which does not exist under the assumption that the rotation affects only the linear dynamics. The rotation modifies the equilibrium pressure gradient and current density profiles, which results in the change of potential energy including rotational effects. (paper)
Kleppe, J.; Borm, P.E.M.; Hendrickx, R.L.P.
2008-01-01
Fall back equilibrium is a refinement of the Nash equilibrium concept. In the underly- ing thought experiment each player faces the possibility that, after all players decided on their action, his chosen action turns out to be blocked. Therefore, each player has to decide beforehand on a back-up
Ion transition heights from topside electron density profiles
International Nuclear Information System (INIS)
Titheridge, J.E.
1976-01-01
Theoretical electron density profiles are calculated for the topside ionosphere to determine the major factors controlling the profile shape. Only the mean temperature, the vertical temperature gradient and the O + /H + ion transition height are important. Vertical proton fluxes alter the ion transition height but have no other effect on the profile shape. Diffusive equilibrium profiles including only these three effects fit observed profiles, at all latitudes, to within experimental accuracy. Values of plasma temperature, temperature gradient and ion transition height hsub(T) were determined by fitting theoretical models to 60,000 experimental profiles obtained from Alouette 1 ionograms, at latitudes of 75 0 S to 85 0 N near solar minimum. Inside the plasmasphere hsub(T) varies from about 500 km on winter nights to 850 km on summer days. Diurnal variations are caused primarily by the production and loss of O + in the ionosphere. The approximately constant winter night value of hsub(T) is close to the level for chemical equilibrium. In summer hsub(T) is always above the equilibrium level, giving a continual production of protons which travel along lines of force to aid in maintaining the conjugate winter night ionosphere. Outside the plasmasphere hsub(T) is 300 to 600 km above the equilibrium level at all times. This implies a continual near-limiting upwards flux of protons which persists down to latitudes of about 60 0 at night and 50 0 during the day. (author)
Directory of Open Access Journals (Sweden)
Jun Takezawa
2010-01-01
Full Text Available When a replicative DNA polymerase stalls upon encountering a lesion on the template strand, it is relieved by other low-processivity polymerase(s, which insert nucleotide(s opposite the lesion, extend by a few nucleotides, and dissociate from the 3′-OH. The replicative polymerase then resumes DNA synthesis. This process, termed translesion replication (TLS or replicative bypass, may involve at least five different polymerases in mammals, although the participating polymerases and their roles have not been entirely characterized. Using siRNAs originally designed and an alkaline sucrose density gradient sedimentation technique, we verified the involvement of several polymerases in ultraviolet (UV light-induced TLS in HeLa cells. First, siRNAs to Rev3 or Rev7 largely abolished UV-TLS, suggesting that these 2 gene products, which comprise Polζ, play a main role in mutagenic TLS. Second, Rev1-targeted siRNA also abrogated UV-TLS, indicating that Rev1 is also indispensable to mutagenic TLS. Third, Polη-targeted siRNA also prevented TLS to a greater extent than our expectations. Forth, although siRNA to Polι had no detectable effect, that to Polκ delayed UV-TLS. To our knowledge, this is the first study reporting apparent evidence for the participation of Polκ in UV-TLS.
Equilibrium and non equilibrium in fragmentation
International Nuclear Information System (INIS)
Dorso, C.O.; Chernomoretz, A.; Lopez, J.A.
2001-01-01
Full text: In this communication we present recent results regarding the interplay of equilibrium and non equilibrium in the process of fragmentation of excited finite Lennard Jones drops. Because the general features of such a potential resemble the ones of the nuclear interaction (fact that is reinforced by the similarity between the EOS of both systems) these studies are not only relevant from a fundamental point of view but also shed light on the problem of nuclear multifragmentation. We focus on the microscopic analysis of the state of the fragmenting system at fragmentation time. We show that the Caloric Curve (i e. the functional relationship between the temperature of the system and the excitation energy) is of the type rise plateau with no vapor branch. The usual rise plateau rise pattern is only recovered when equilibrium is artificially imposed. This result puts a serious question on the validity of the freeze out hypothesis. This feature is independent of the dimensionality or excitation mechanism. Moreover we explore the behavior of magnitudes which can help us determine the degree of the assumed phase transition. It is found that no clear cut criteria is presently available. (Author)
Chemical Principles Revisited: Chemical Equilibrium.
Mickey, Charles D.
1980-01-01
Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)
Equilibrium and non-equilibrium phenomena in arcs and torches
Mullen, van der J.J.A.M.
2000-01-01
A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.
Directory of Open Access Journals (Sweden)
Katalin Martinás
2007-02-01
Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.
DIAGNOSIS OF FINANCIAL EQUILIBRIUM
Directory of Open Access Journals (Sweden)
SUCIU GHEORGHE
2013-04-01
Full Text Available The analysis based on the balance sheet tries to identify the state of equilibrium (disequilibrium that exists in a company. The easiest way to determine the state of equilibrium is by looking at the balance sheet and at the information it offers. Because in the balance sheet there are elements that do not reflect their real value, the one established on the market, they must be readjusted, and those elements which are not related to the ordinary operating activities must be eliminated. The diagnosis of financial equilibrium takes into account 2 components: financing sources (ownership equity, loaned, temporarily attracted. An efficient financial equilibrium must respect 2 fundamental requirements: permanent sources represented by ownership equity and loans for more than 1 year should finance permanent needs, and temporary resources should finance the operating cycle.
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
Computing Equilibrium Chemical Compositions
Mcbride, Bonnie J.; Gordon, Sanford
1995-01-01
Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.
International Nuclear Information System (INIS)
Ishizawa, A.; Nakajima, N.
2007-01-01
This is the first numerical simulation demonstrating that a macromagnetohydrodynamic (macro-MHD) mode is excited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between microturbulence and zonal flow based on a reduced two-fluid model. This simulation of a macro-MHD mode, a double tearing mode, is accomplished in a reversed shear equilibrium that includes zonal flow and turbulence due to kinetic ballooning modes. In the quasi-steady equilibrium, a macroscale fluctuation that has the same helicity as the double tearing mode is a part of the turbulence. After a certain period of time, the macro-MHD mode begins to grow. It effectively utilizes free energy of the equilibrium current density gradient and is destabilized by a positive feedback loop between zonal flow suppression and magnetic island growth. Thus, once the macro-MHD appears from the quasi-equilibrium, it continues to grow steadily. This simulation is more comparable with experimental observations of growing macro-MHD activity than earlier MHD simulations starting from linear macroinstabilities in a static equilibrium
Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition
Brambilla, G.; al Masri, J.H.M.; Pierno, M.; Berthier, L.; Cipelletti, L.
2010-01-01
We use dynamic light scattering and computer simulations to study equilibrium dynamics and dynamic heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an unprecedented density range and spans seven decades in structural relaxation time, , including equilibrium
International Nuclear Information System (INIS)
Li, Ji W.; Chang, Lei; Li, Yun S.; Li, Jing H.
2011-01-01
For the ICF capsule surrounded by a high-Z pusher which traps the radiation and confines the hot fuel, the fuel will first be ignited in thermal equilibrium with radiation at a much lower temperature than hot-spot ignition, which is also the low temperature ignition. Because of the lower areal density for ICF capsules, the equilibrium ignition must be developed into a non-equilibrium burn to shorten the reaction time and lower the drive energy. In this paper, the transition from the equilibrium ignition to non-equilibrium burn is discussed and the energy deposited by α particles required for the equilibrium ignition and non-equilibrium burn to occur is estimated.
Eberl, Gérard
2016-08-01
The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.
Directory of Open Access Journals (Sweden)
Gustavo Cabrera
2017-11-01
Full Text Available The procedure for the synthesis of 3-cyano-4-hydroxycoumarin is presented along with the results from the analysis of its tautomeric equilibrium using Density Functional Theory (DFT and Polarizable Continuum Model (PCM. The geometry of the compounds was optimized with Gaussian 03 and from the resulting structures, a group of thermodynamic and kinetic parameters were determined. It was found that 3-cyano-4-hydroxycoumarin was the most stable tautomer, as was also shown by spectroscopic techniques. Other parameters, such as: transition state energy, equlibrium constant, kinetic constant, bond orders and bond angles, were also calculated.
Non-equilibrium effects in the plasmas
International Nuclear Information System (INIS)
Einfeld, D.
1975-01-01
Radial dependences of non-equilibrium effects of a He plasma were studied in a wall-stabilized short-time discharge. The electron density (nsub(e) = 2.5 x 10 22 m -3 ), the electron temperature and the equilibrium shift were determined by calculations of the continuum beam density and the beam densities of one He-I and one He-II line, respectively. In the discharge axis, the overpopulation factors of the ground state of He-I and He-II are about 75. As the distance to the axis increases, they increase for He-I and decrease for He-II. Except for the usual errors of measurement, the overpopulation factors found here correspond to those calculated from the balance equations (Drawin). (orig./AK) [de
Can elliptical galaxies be equilibrium systems
Energy Technology Data Exchange (ETDEWEB)
Caimmi, R [Padua Univ. (Italy). Ist. di Astronomia
1980-08-01
This paper deals with the question of whether elliptical galaxies can be considered as equilibrium systems (i.e., the gravitational + centrifugal potential is constant on the external surface). We find that equilibrium models such as Emden-Chandrasekhar polytropes and Roche polytropes with n = 0 can account for the main part of observations relative to the ratio of maximum rotational velocity to central velocity dispersion in elliptical systems. More complex models involving, for example, massive halos could lead to a more complete agreement. Models that are a good fit to the observed data are characterized by an inner component (where most of the mass is concentrated) and a low-density outer component. A comparison is performed between some theoretical density distributions and the density distribution observed by Young et al. (1978) in NGC 4473, but a number of limitations must be adopted. Alternative models, such as triaxial oblate non-equilibrium configurations with coaxial shells, involve a number of problems which are briefly discussed. We conclude that spheroidal oblate models describing elliptical galaxies cannot be ruled out until new analyses relative to more refined theoretical equilibrium models (involving, for example, massive halos) and more detailed observations are performed.
MHD equilibrium of heliotron J plasmas
International Nuclear Information System (INIS)
Suzuki, Yasuhiro; Nakamura, Yuji; Kondo, Katsumi; Nakajima, Noriyoshi; Hayashi, Takaya
2004-01-01
MHD equilibria of Heliotron J plasma are investigated by using HINT code. By assuming some profiles of the current density, effects of the net toroidal currents on the magnetohydrodynamics (MHD) equilibrium are investigated. If the rotational transform can be controlled by the currents, the generation of good flux surfaces is expected. In order to study equilibria with self-consistent bootstrap current, the boozer coordinates are constructed by converged HINT equilibrium as a preliminary study. Obtained spectra are compared with ones of VMEC code and both results are consistent. (author)
Equilibrium shoreface profiles
DEFF Research Database (Denmark)
Aagaard, Troels; Hughes, Michael G
2017-01-01
Large-scale coastal behaviour models use the shoreface profile of equilibrium as a fundamental morphological unit that is translated in space to simulate coastal response to, for example, sea level oscillations and variability in sediment supply. Despite a longstanding focus on the shoreface...... profile and its relevance to predicting coastal response to changing environmental conditions, the processes and dynamics involved in shoreface equilibrium are still not fully understood. Here, we apply a process-based empirical sediment transport model, combined with morphodynamic principles to provide......; there is no tuning or calibration and computation times are short. It is therefore easily implemented with repeated iterations to manage uncertainty....
Pressure gradients fail to predict diffusio-osmosis
Liu, Yawei; Ganti, Raman; Frenkel, Daan
2018-05-01
We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.
Gyrokinetic Magnetohydrodynamics and the Associated Equilibrium
Lee, W. W.; Hudson, S. R.; Ma, C. H.
2017-10-01
A proposed scheme for the calculations of gyrokinetic MHD and its associated equilibrium is discussed related a recent paper on the subject. The scheme is based on the time-dependent gyrokinetic vorticity equation and parallel Ohm's law, as well as the associated gyrokinetic Ampere's law. This set of equations, in terms of the electrostatic potential, ϕ, and the vector potential, ϕ , supports both spatially varying perpendicular and parallel pressure gradients and their associated currents. The MHD equilibrium can be reached when ϕ -> 0 and A becomes constant in time, which, in turn, gives ∇ . (J|| +J⊥) = 0 and the associated magnetic islands. Examples in simple cylindrical geometry will be given. The present work is partially supported by US DoE Grant DE-AC02-09CH11466.
Line radiative transfer and statistical equilibrium*
Directory of Open Access Journals (Sweden)
Kamp Inga
2015-01-01
Full Text Available Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe here the basic principles of statistical equilibrium and illustrate them through the two-level atom. In a second part, the fundamentals of line radiative transfer are introduced along with the various broadening mechanisms. I explain general solution methods with their drawbacks and also specific difficulties encountered in solving the line radiative transfer equation in disks (e.g. velocity gradients. I am closing with a few special cases of line emission from disks: Radiative pumping, masers and resonance scattering.
Instability of quantum equilibrium in Bohm's dynamics.
Colin, Samuel; Valentini, Antony
2014-11-08
We consider Bohm's second-order dynamics for arbitrary initial conditions in phase space. In principle, Bohm's dynamics allows for 'extended' non-equilibrium, with initial momenta not equal to the gradient of phase of the wave function (as well as initial positions whose distribution departs from the Born rule). We show that extended non-equilibrium does not relax in general and is in fact unstable. This is in sharp contrast with de Broglie's first-order dynamics, for which non-standard momenta are not allowed and which shows an efficient relaxation to the Born rule for positions. On this basis, we argue that, while de Broglie's dynamics is a tenable physical theory, Bohm's dynamics is not. In a world governed by Bohm's dynamics, there would be no reason to expect to see an effective quantum theory today (even approximately), in contradiction with observation.
Heavy quark energy loss far from equilibrium in a strongly coupled collision
Chesler, Paul M; Rajagopal, Krishna
2013-01-01
We compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium expression for heavy quark energy loss in a homogeneous strongly coupled plasma with the same instantaneous energy density or pressure as that at the location of the quark describes many qualitative features of our results. One interesting exception is that there is a time delay after the initial collision before the heavy quark energy loss becomes significant. At later times, once a liquid plasma described by viscous hydrodynamics has formed, expressions based upon assuming instantaneous homogeneity and equilibrium provide a semi-quantitative description of our results - as long as the rapidity of the heavy quark is not too large. For a heavy quark with large rapidity, the gradients in the velocity of the hydrodyna...
Mean flow structure of non-equilibrium boundary layers with adverse ...
Indian Academy of Sciences (India)
According to them, an equilibrium boundary layer might exist if the pressure ... of adverse pressure gradient on the turbulent boundary layer at the flat plate for ..... of a constant-pressure turbulent layer to the sudden application of an sudden.
Microeconomics : Equilibrium and Efficiency
Ten Raa, T.
2013-01-01
Microeconomics: Equilibrium and Efficiency teaches how to apply microeconomic theory in an innovative, intuitive and concise way. Using real-world, empirical examples, this book not only covers the building blocks of the subject, but helps gain a broad understanding of microeconomic theory and
Differential Equation of Equilibrium
African Journals Online (AJOL)
user
ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...
Equilibrium Analysis in Cake Cutting
DEFF Research Database (Denmark)
Branzei, Simina; Miltersen, Peter Bro
2013-01-01
Cake cutting is a fundamental model in fair division; it represents the problem of fairly allocating a heterogeneous divisible good among agents with different preferences. The central criteria of fairness are proportionality and envy-freeness, and many of the existing protocols are designed...... to guarantee proportional or envy-free allocations, when the participating agents follow the protocol. However, typically, all agents following the protocol is not guaranteed to result in a Nash equilibrium. In this paper, we initiate the study of equilibria of classical cake cutting protocols. We consider one...... of the simplest and most elegant continuous algorithms -- the Dubins-Spanier procedure, which guarantees a proportional allocation of the cake -- and study its equilibria when the agents use simple threshold strategies. We show that given a cake cutting instance with strictly positive value density functions...
Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay
International Nuclear Information System (INIS)
Prince, J.R.
1979-01-01
Equations describing serial radioactive decay are reviewed along with published descriptions or transient and secular equilibrium. It is shown that terms describing equilibrium are not used in the same way by various authors. Specific definitions are proposed; they suggest that secular equilibrium is a subset of transient equilibrium
Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases
International Nuclear Information System (INIS)
Campostrini, Massimo; Vicari, Ettore
2010-01-01
We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.
Equilibrium plasma corona surfaces
International Nuclear Information System (INIS)
Ensley, D.L.
1979-07-01
The distribution of charge of one sign when the opposite charge density is given is determined. Poisson's equation is solved in plane geometry for a simple specified ion density. This automatically gives the inverse solution for a given electron density, by reversing the sign of the potential. Some solutions can approximate a microwave confined corona, for very over dense cases
International Nuclear Information System (INIS)
Tendler, M.
1984-06-01
The energy loss from a tokamak plasma due to neutral hydrogen radiation and recycling is of great importance for the energy balance at the periphery. It is shown that the requirement for thermal equilibrium implies a constraint on the maximum attainable edge density. The relation to other density limits is discussed. The average plasma density is shown to be a strong function of the refuelling deposition profile. (author)
Equilibrium and pre-equilibrium emissions in proton-induced ...
Indian Academy of Sciences (India)
necessary for the domain of fission-reactor technology for the calculation of nuclear transmutation ... tions occur in three stages: INC, pre-equilibrium and equilibrium (or compound. 344. Pramana ... In the evaporation phase of the reaction, the.
Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.
Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L
2017-09-25
Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.
Directory of Open Access Journals (Sweden)
Aline Costa Lucio
2009-07-01
Full Text Available
The aim of this study was to separate X-bearing bovine sperm by continuous Percoll and OptiPrep density gradients and to validate the sexing of resultant in vitro produced embryos by Polimerase Chain Reaction (PCR. Frozen/thawed sperm was layered on density gradients which were previously prepared in polystyrene tubes, 24 h before procedures and maintained at 4 °C. The tubes were centrifuged at 500 x g for 15 min at 22 °C. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Viability and integrity of sperm were evaluated by Trypan Blue/Giemsa stain. Cleavage and blastocyst rates were determined by in vitro production of embryos and PCR was performed for identification of the embryos’ genetic sex. No damage in viability and acrossomal integrity and in cleavage and blastocyst rates was found in the Percoll and OptiPrep treatment compared to the non-centrifuged group (P>0.05. The percentage of female embryos in the Percoll and OptiPrep group was 63.0 and 47.6%, respectively. The female embryos in control group were 48.7%. A sexual deviation in the Percoll density gradient was achieved without reduction of sperm viability and in vitro production rates.
KEY WORDS: Bovine, centrifugation, in vitro production of embryos, PCR, X-bearing sperm.
Gated equilibrium bloodpool scintigraphy
International Nuclear Information System (INIS)
Reinders Folmer, S.C.C.
1981-01-01
This thesis deals with the clinical applications of gated equilibrium bloodpool scintigraphy, performed with either a gamma camera or a portable detector system, the nuclear stethoscope. The main goal has been to define the value and limitations of noninvasive measurements of left ventricular ejection fraction as a parameter of cardiac performance in various disease states, both for diagnostic purposes as well as during follow-up after medical or surgical intervention. Secondly, it was attempted to extend the use of the equilibrium bloodpool techniques beyond the calculation of ejection fraction alone by considering the feasibility to determine ventricular volumes and by including the possibility of quantifying valvular regurgitation. In both cases, it has been tried to broaden the perspective of the observations by comparing them with results of other, invasive and non-invasive, procedures, in particular cardiac catheterization, M-mode echocardiography and myocardial perfusion scintigraphy. (Auth.)
Problems in equilibrium theory
Aliprantis, Charalambos D
1996-01-01
In studying General Equilibrium Theory the student must master first the theory and then apply it to solve problems. At the graduate level there is no book devoted exclusively to teaching problem solving. This book teaches for the first time the basic methods of proof and problem solving in General Equilibrium Theory. The problems cover the entire spectrum of difficulty; some are routine, some require a good grasp of the material involved, and some are exceptionally challenging. The book presents complete solutions to two hundred problems. In searching for the basic required techniques, the student will find a wealth of new material incorporated into the solutions. The student is challenged to produce solutions which are different from the ones presented in the book.
Equilibrium statistical mechanics
Jackson, E Atlee
2000-01-01
Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t
DEFF Research Database (Denmark)
Bollerslev, Tim; Sizova, Natalia; Tauchen, George
Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast i......, and the dynamic cross-correlations of the volatility measures with the returns calculated from actual high-frequency intra-day data on the S&P 500 aggregate market and VIX volatility indexes....
Molecular equilibrium with condensation
International Nuclear Information System (INIS)
Sharp, C.M.; Huebner, W.F.
1990-01-01
Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-07
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas
Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.
1998-05-01
Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.
Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas
International Nuclear Information System (INIS)
Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.
1998-01-01
Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet close-quote s model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature T z . An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z * and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated. copyright 1998 American Institute of Physics
Noncompact Equilibrium Points and Applications
Directory of Open Access Journals (Sweden)
Zahra Al-Rumaih
2012-01-01
Full Text Available We prove an equilibrium existence result for vector functions defined on noncompact domain and we give some applications in optimization and Nash equilibrium in noncooperative game.
Equilibrium thermodynamics - Callen's postulational approach
Jongschaap, R.J.J.; Öttinger, Hans Christian
2001-01-01
In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates
MHD equilibrium with toroidal rotation
International Nuclear Information System (INIS)
Li, J.
1987-03-01
The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)
Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak
International Nuclear Information System (INIS)
Dunne, Michael G.
2014-01-01
The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.
Inter-ELM evolution of the edge current density profile on the ASDEX Upgrade tokamak
Energy Technology Data Exchange (ETDEWEB)
Dunne, Michael G.
2014-02-15
The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak device due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohydrodynamic (MHD) peeling-ballooning modes are driven unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade (AUG) tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement between the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs suppressed by external magnetic perturbations (MPs), and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation onsets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, thus providing a mechanism to suppress both the peeling and ballooning modes.
International Nuclear Information System (INIS)
Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi; Kobayashi, Yuka; Asai, Tomohiko
2008-01-01
The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed to sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.
Ion temperature gradient instability
International Nuclear Information System (INIS)
1989-01-01
Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc
Non-equilibrium thermodynamics
De Groot, Sybren Ruurds
1984-01-01
The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn
Strongly correlated quantum transport out-of-equilibrium
Dutt, Prasenjit
The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally
Effect of impurity radiation on tokamak equilibrium
International Nuclear Information System (INIS)
Rebut, P.H.; Green, B.J.
1977-01-01
The energy loss from a tokamak plasma due to the radiation from impurities is of great importance in the overall energy balance. Taking the temperature dependence of this loss for two impurities characteristic of those present in existing tokamak plasmas, the condition for radial power balance is derived. For the impurities considered (oxygen and iron) it is found that the radiation losses are concentrated in a thin outer layer of the plasma and the equilibrium condition places an upper limit on the plasma paraticle number density in this region. This limiting density scales with mean current density in the same manner as is experimentally observed for the peak number density of tokamak plasmas. The stability of such equilibria is also discussed. (author)
Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.
Tian, Huanhuan; Zhang, Li; Wang, Moran
2015-08-15
Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.
A substrate independent approach for generation of surface gradients
Energy Technology Data Exchange (ETDEWEB)
Goreham, Renee V. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Mierczynska, Agnieszka; Pierce, Madelene [Ian Wark Research Institute, University of South Australia, Mawson Lakes 5095 (Australia); Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir, E-mail: krasimir.vasilev@unisa.edu.au [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia)
2013-01-01
Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands.
A substrate independent approach for generation of surface gradients
International Nuclear Information System (INIS)
Goreham, Renee V.; Mierczynska, Agnieszka; Pierce, Madelene; Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E.; Vasilev, Krasimir
2013-01-01
Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands
Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G
2016-05-01
The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Tanaka, Yasunori
2006-01-01
A time-dependent, two-dimensional, two-temperature and chemical non-equilibrium model was developed for high-power Ar-N 2 pulse-modulated inductively coupled plasmas (PMICPs) at atmospheric pressure. The high-power PMICP is a new technique for sustaining high-power induction plasmas. It can control the plasma temperature and radical densities in the time domain. The PMICP promotes non-equilibrium effects by a sudden application of electric field, even in the high-power density plasmas. The developed model accounts separately for the time-dependent energy conservation equations of electrons and heavy particles. This model also considers reaction heat effects and energy transfer between electrons and heavy particles as well as enthalpy flow resulting from diffusion caused by the particle density gradient. Chemical non-equilibrium effects are also taken into account by solving time-dependent mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from 30 chemical reactions. Transport and thermodynamic properties of Ar-N 2 plasmas are calculated self-consistently using the first order approximation of the Chapman-Enskog method at each position and iteration using the local particle composition, heavy particle temperature and electron temperature. This model is useful to discuss time evolution in temperature, gas flow fields and distribution of chemical species
Uspenskaya, Yu. A.; Mamin, G. V.; Babunts, R. A.; Badalyan, A. G.; Edinach, E. V.; Asatryan, H. R.; Romanov, N. G.; Orlinskii, S. B.; Khanin, V. M.; Wieczorek, H.; Ronda, C.; Baranov, P. G.
2018-03-01
The presence of aluminum and gallium isotopes with large nuclear magnetic and quadrupole moments in the nearest environment of impurity ions Mn2+ and Ce3+ in garnets made it possible to use hyperfine and quadrupole interactions with these ions to determine the spatial distribution of the unpaired electron and the gradient of the electric field at the sites of aluminum and gallium in the garnet lattice. High-frequency (94 GHz) electron spin echo detected electron paramagnetic resonance and electron-nuclear double resonance measurements have been performed. Large difference in the electric field gradient and quadrupole splitting at octahedral and tetrahedral sites allowed identifying the positions of aluminum and gallium ions in the garnet lattice and proving that gallium first fills tetrahedral positions in mixed aluminum-gallium garnets. This should be taken into account in the development of garnet-based scintillators and lasers. It is shown that the electric field gradient at aluminum nuclei near Mn2+ possessing an excess negative charge in the garnet lattice is ca. 2.5 times larger than on aluminum nuclei near Ce3+.
Equilibrium thermodynamics in modified gravitational theories
International Nuclear Information System (INIS)
Bamba, Kazuharu; Geng, C.-Q.; Tsujikawa, Shinji
2010-01-01
We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,φ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field φ. This comes from a suitable definition of an energy-momentum tensor of the 'dark' component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S in non-equilibrium thermodynamics and an entropy production term.
Ono, Shunsuke
2017-04-01
Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.
Mapping Isobaric Aging onto the Equilibrium Phase Diagram.
Niss, Kristine
2017-09-15
The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.
Mapping Isobaric Aging onto the Equilibrium Phase Diagram
DEFF Research Database (Denmark)
Niss, Kristine
2017-01-01
The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts...... of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case—challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium...... states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single...
Real time equilibrium reconstruction for tokamak discharge control
International Nuclear Information System (INIS)
Ferron, J.R.; Walker, M.L.; Lao, L.L.; St John, H.E.; Humphreys, D.A.; Leuer, J.A.
1998-01-01
A practical method for performing a tokamak equilibrium reconstruction in real time for arbitrary time varying discharge shapes and current profiles is described. An approximate solution to the Grad-Shafranov equilibrium relation is found which best fits the diagnostic measurements. Thus, a solution for the spatial distribution of poloidal flux and toroidal current density is available in real time that is consistent with plasma force balance, allowing accurate evaluation of parameters such as discharge shape and safety factor profile. The equilibrium solutions are produced at a rate sufficient for discharge control. This equilibrium reconstruction algorithm has been implemented on the digital plasma control system for the DIII-D tokamak. The first application of real time equilibrium reconstruction to discharge shape control is described. (author)
Three gradients and the perception of flat and curved surfaces.
Cutting, J E; Millard, R T
1984-06-01
Researchers of visual perception have long been interested in the perceived slant of a surface and in the gradients that purportedly specify it. Slant is the angle between the line of sight and the tangent to the planar surface at any point, also called the surface normal. Gradients are the sources of information that grade, or change, with visual angle as one looks from one's feet upward to the horizon. The present article explores three gradients--perspective, compression, and density--and the phenomenal impression of flat and curved surfaces. The perspective gradient is measured at right angles to the axis of tilt at any point in the optic array; that is, when looking down a hallway at the tiles of a floor receding in the distance, perspective is measured by the x-axis width of each tile projected on the image plane orthogonal to the line of sight. The compression gradient is the ratio of y/x axis measures on the projected plane. The density gradient is measured by the number of tiles per unit solid visual angle. For flat surfaces and many others, perspective and compression gradients decrease with distance, and the density gradient increases. We discuss the manner in which these gradients change for various types of surfaces. Each gradient is founded on a different assumption about textures on the surfaces around us. In Experiment 1, viewers assessed the three-dimensional character of projections of flat and curved surfaces receding in the distance. They made pairwise judgments of preference and of dissimilarity among eight stimuli in each of four sets. The presence of each gradient was manipulated orthogonally such that each stimulus had zero, one, two, or three gradients appropriate for either a flat surface or a curved surface. Judgments were made were made for surfaces with both regularly shaped and irregularly shaped textures scattered on them. All viewer assessment were then scaled in one dimension. Multiple correlation and regression on the scale values
Generalized Gradient Approximation Made Simple
International Nuclear Information System (INIS)
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-01-01
Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Bresme, F.; Armstrong, J.
2014-01-01
We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation
Self-similar solutions for multi-species plasma mixing by gradient driven transport
Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.
2018-05-01
Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.
Equilibrium models and variational inequalities
Konnov, Igor
2007-01-01
The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...
Grinding kinetics and equilibrium states
Opoczky, L.; Farnady, F.
1984-01-01
The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.
Mental Equilibrium and Rational Emotions
Eyal Winter; Ignacio Garcia-Jurado; Jose Mendez-Naya; Luciano Mendez-Naya
2009-01-01
We introduce emotions into an equilibrium notion. In a mental equilibrium each player "selects" an emotional state which determines the player's preferences over the outcomes of the game. These preferences typically differ from the players' material preferences. The emotional states interact to play a Nash equilibrium and in addition each player's emotional state must be a best response (with respect to material preferences) to the emotional states of the others. We discuss the concept behind...
Para-equilibrium phase diagrams
International Nuclear Information System (INIS)
Pelton, Arthur D.; Koukkari, Pertti; Pajarre, Risto; Eriksson, Gunnar
2014-01-01
Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase
Poloidal field equilibrium calculations for JET
International Nuclear Information System (INIS)
Khalafallah, A.K.
1976-01-01
The structure of the JET 2D Poloidal Field Analysis Package is discussed. The ability to cope with different plasma current density distributions (skin, flat or peaked), each with a range of Beta poloidal values and varying plasma shapes is a new feature of these calculations. It is possible to construct instant-by-instant pictures of equilibrium configurations for various plasma build up scenarios taking into account the level of flux in the iron core and return limbs. The equilibrium configurations are calculated for two possible sequences of plasma build up. Examples of the magnetic field calculations being carried out under contract to JET at the Rutherford Laboratory, using a 3D code, are also given
Coreless Concept for High Gradient Induction Cell
International Nuclear Information System (INIS)
Krasnykh, Anatoly
2008-01-01
An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM(reg s ign)) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments
Directory of Open Access Journals (Sweden)
Jaques Waisberg
2002-04-01
Full Text Available The prospects for allotransplantation of pancreatic islets in man depend on the development of methods that provide sufficient quantities of pancreatic islets from a single donor, which are capable, when transplanted, of achieve the normalization of carbohydrate metabolism. Objective: Evaluate the efficacy of the isolation of Langerhans islets from dogs, by means of mechanical-enzymatic separation technique with stationary digestion using collagenase, and purification with a discontinuous dextran density gradient. Methods: The counting of islet numbers and evaluation of their sizes was accomplished by staining with diphenylthiocarbazone and using stereoscopic microscopes equipped with eyepiece reticule for the measurement of average diameters of stained islets. Results: The results disclosed that the average number of islets isolated was 81032.20 ± 24736.79 and the average number of islets isolated per kg of body weight was 6938.70 ± 1392.43. The average number of islets isolated per kg of body weight showed significant correlation with body weight and weight of the pancreas resected. Conclusion: The number of islets isolated, of a single donor, by mechanical-enzymatic separation, stationary collagenase digestion and discontinuous dextran density gradient purification can be sufficient to success of pancreatic islets transplant in dogs.A perspectiva do alotransplante de ilhotas pancreáticas no homem está na dependência do desenvolvimento de métodos que propiciem quantidades suficientes de ilhotas pancreáticas, originadas de doador único, capazes de, quando transplantadas, levarem à normalização do metabolismo dos hidratos de carbono. Objetivo: Avaliar, em cães, a eficácia do isolamento das ilhotas de Langerhans por meio da técnica de separação mecânica-enzimática, digestão estacionária com colagenase e purificação pelo gradiente de densidade descontínua de dextran. Métodos: A contagem do número e avaliação do tamanho
Electron-temperature-gradient-driven drift waves and anomalous electron energy transport
International Nuclear Information System (INIS)
Shukla, P.K.; Murtaza, G.; Weiland, J.
1990-01-01
By means of a kinetic description for ions and Braginskii's fluid model for electrons, three coupled nonlinear equations governing the dynamics of low-frequency short-wavelength electrostatic waves in the presence of equilibrium density temperature and magnetic-field gradients in a two-component magnetized plasma are derived. In the linear limit a dispersion relation that admits new instabilities of drift waves is presented. An estimate of the anomalous electron energy transport due to non-thermal drift waves is obtained by making use of the saturated wave potential, which is deduced from the mixing-length hypothesis. Stationary solutions of the nonlinear equations governing the interaction of linearly unstable drift waves are also presented. The relevance of this investigation to wave phenomena in space and laboratory plasmas is pointed out. (author)
International Nuclear Information System (INIS)
Mirza, Arshad M.; Qamar, Anisa; Khan, M. Yaqub; Ayub, M.
2007-01-01
A system of nonlinear equations that governs the dynamics of toroidal-ion-temperature-gradient (TITG) driven modes in the presence of dust contamination is presented. In the linear limit, a local dispersion relation is derived and analyzed for a flat density profile case. In the nonlinear case, and by taking some specific profiles of equilibrium density, ion temperature, magnetic field, and sheared plasma flows, the stationary solutions of the nonlinear system can be represented in the form of a tripolar vortex solution. Numerical results obtained in the present study show that the inclusion of dust modifies the nonlinear vortical structures, and the amplitude of the normalized potential is found to be increased in the presence of negatively charged dust grains. The results of our present investigation would be useful to understand some linear as well as nonlinear properties of TITG modes in a dust-contaminated tokamak plasma
International Nuclear Information System (INIS)
Roh, Heui-Seol
2015-01-01
Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms
Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim
2017-12-01
We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.
Density functional study of the bonding in small silicon clusters
International Nuclear Information System (INIS)
Fournier, R.; Sinnott, S.B.; DePristo, A.E.
1992-01-01
We report the ground electronic state, equilibrium geometry, vibrational frequencies, and binding energy for various isomers of Si n (n = 2--8) obtained with the linear combination of atomic orbitals-density functional method. We used both a local density approximation approach and one with gradient corrections. Our local density approximation results concerning the relative stability of electronic states and isomers are in agreement with Hartree--Fock and Moller--Plesset (MP2) calculations [K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988)]. The binding energies calculated with the gradient corrected functional are in good agreement with experiment (Si 2 and Si 3 ) and with the best theoretical estimates. Our analysis of the bonding reveals two limiting modes of bonding and classes of silicon clusters. One class of clusters is characterized by relatively large s atomic populations and a large number of weak bonds, while the other class of clusters is characterized by relatively small s atomic populations and a small number of strong bonds
Fundamental functions in equilibrium thermodynamics
Horst, H.J. ter
In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using
A Multiperiod Equilibrium Pricing Model
Directory of Open Access Journals (Sweden)
Minsuk Kwak
2014-01-01
Full Text Available We propose an equilibrium pricing model in a dynamic multiperiod stochastic framework with uncertain income. There are one tradable risky asset (stock/commodity, one nontradable underlying (temperature, and also a contingent claim (weather derivative written on the tradable risky asset and the nontradable underlying in the market. The price of the contingent claim is priced in equilibrium by optimal strategies of representative agent and market clearing condition. The risk preferences are of exponential type with a stochastic coefficient of risk aversion. Both subgame perfect strategy and naive strategy are considered and the corresponding equilibrium prices are derived. From the numerical result we examine how the equilibrium prices vary in response to changes in model parameters and highlight the importance of our equilibrium pricing principle.
Non-equilibrium phase transitions
Henkel, Malte; Lübeck, Sven
2009-01-01
This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.
A Bioeconomic Foundation of the Malthusian Equilibrium
DEFF Research Database (Denmark)
Dalgaard, Carl-Johan Lars; Strulik, Holger
equilibrium in a two-dimensional state space characterized by population density and body size (metabolic rate) of the representative adult. As a result, the analysis allows us to examine the link between human biology, economic productivity, body size, and population size. Off the steady-state we investigate...... the possibility of cyclical behavior of the size of a population and the size of its representative member over the very long-run. We also demonstrate that a take-off into sustained growth should be associated with increasing income, population size and body size. The increase in the latter is, however, bounded...
A statistical mechanical model for equilibrium ionization
International Nuclear Information System (INIS)
Macris, N.; Martin, P.A.; Pule, J.
1990-01-01
A quantum electron interacts with a classical gas of hard spheres and is in thermal equilibrium with it. The interaction is attractive and the electron can form a bound state with the classical particles. It is rigorously shown that in a well defined low density and low temperature limit, the ionization probability for the electron tends to the value predicted by the Saha formula for thermal ionization. In this regime, the electron is found to be in a statistical mixture of a bound and a free state. (orig.)
Measuring productivity differences in equilibrium search models
DEFF Research Database (Denmark)
Lanot, Gauthier; Neumann, George R.
1996-01-01
Equilibrium search models require unobserved heterogeneity in productivity to fit observed wage distribution data, but provide no guidance about the location parameter of the heterogeneity. In this paper we show that the location of the productivity heterogeneity implies a mode in a kernel density...... estimate of the wage distribution. The number of such modes and their location are identified using bump hunting techniques due to Silverman (1981). These techniques are applied to Danish panel data on workers and firms. These estimates are used to assess the importance of employer wage policy....
Cell orientation gradients on an inverse opal substrate.
Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze
2015-05-20
The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.
Travelling gradient thermocouple calibration
International Nuclear Information System (INIS)
Broomfield, G.H.
1975-01-01
A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed
Quaternion Gradient and Hessian
Xu, Dongpo; Mandic, Danilo P.
2014-01-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...
Thermal equilibrium, stability and burn control
International Nuclear Information System (INIS)
Cohn, D.
1982-01-01
A number of aspects of the thermal stability and equilibrium control of ignited tokamak plasma have been investigated. Examined approaches were passive control (the effect of radial motion, the effect of radial motion and small additional transport loss), active control (the compression and decompression of plasma, subignited operation with small amount of variable external heating, and density control), and thermal equilibrium control (additional power loss from impurity radiation and enhanced transport from increased ripple). One-D calculation has been made on thermal instability eigen-modes. It was found that for electron thermal induction loss given by Alcator scaling and for neoclassical ion transport, there was at most one unstable mode with a temperature profile which maintains the temperature profile at thermal equilibrium. The effect of the coupling of temperature fluctuation and the fluctuation in major radius was investigated. Temperature driven radial motion combined with a small amount of ripple transport loss was found to be a very effective mechanism for passive thermal stability control. (Kato, T.)
Non-equilibrium supramolecular polymerization.
Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M
2017-09-18
Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.
Gradient Alloy for Optical Packaging
National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...
Spontaneity and Equilibrium: Why "?G Equilibrium" Are Incorrect
Raff, Lionel M.
2014-01-01
The fundamental criteria for chemical reactions to be spontaneous in a given direction are generally incorrectly stated as ?G equilibrium are also misstated as being ?G = 0 or ?A = 0. Following a brief review of the…
Intermittent Fermi-Pasta-Ulam Dynamics at Equilibrium
Campbell, David; Danieli, Carlo; Flach, Sergej
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body syste. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. We show that previously obtained scaling laws for equipartition times are modified at low energy density due to an unexpected slowing down of the relaxation. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. The long excursions arise from sticky dynamics close to regular orbits in the phase space. Our method is generalizable to large classes of many-body systems. The authors acknowledge financial support from IBS (Project Code IBS-R024-D1).
Foundations of atmospheric pressure non-equilibrium plasmas
Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny
2017-12-01
Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.
Helical axis stellarator equilibrium model
International Nuclear Information System (INIS)
Koniges, A.E.; Johnson, J.L.
1985-02-01
An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift
Rendell, Alistair P.; Lee, Timothy J.
1991-01-01
The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.
Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions.
Ortiz de Zárate, J M; Kirkpatrick, T R; Sengers, J V
2015-09-01
Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables. In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary concentration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with large Lewis and Schmidt numbers, we are able to obtain explicit analytical expressions for the intensity of the non-equilibrium concentration fluctuations as a function of the frequency ω and the wave number q of the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium fluctuations responsible for a non-equilibrium Casimir effect.
Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange
International Nuclear Information System (INIS)
Helgstrand, Magnus; Haerd, Torleif; Allard, Peter
2000-01-01
The McConnell equations combine the differential equations for a simple two-state chemical exchange process with the Bloch differential equations for a classical description of the behavior of nuclear spins in a magnetic field. This equation system provides a useful starting point for the analysis of slow, intermediate and fast chemical exchange studied using a variety of NMR experiments. The McConnell equations are in the mathematical form of an inhomogeneous system of first-order differential equations. Here we rewrite the McConnell equations in a homogeneous form in order to facilitate fast and simple numerical calculation of the solution to the equation system. The McConnell equations can only treat equilibrium chemical exchange. We therefore also present a homogeneous equation system that can handle both equilibrium and non-equilibrium chemical processes correctly, as long as the kinetics is of first-order. Finally, the same method of rewriting the inhomogeneous form of the McConnell equations into a homogeneous form is applied to a quantum mechanical treatment of a spin system in chemical exchange. In order to illustrate the homogeneous McConnell equations, we have simulated pulse sequences useful for measuring exchange rates in slow, intermediate and fast chemical exchange processes. A stopped-flow NMR experiment was simulated using the equations for non-equilibrium chemical exchange. The quantum mechanical treatment was tested by the simulation of a sensitivity enhanced 15 N-HSQC with pulsed field gradients during slow chemical exchange and by the simulation of the transfer efficiency of a two-dimensional heteronuclear cross-polarization based experiment as a function of both chemical shift difference and exchange rate constants
Modelling of an homogeneous equilibrium mixture model
International Nuclear Information System (INIS)
Bernard-Champmartin, A.; Poujade, O.; Mathiaud, J.; Mathiaud, J.; Ghidaglia, J.M.
2014-01-01
We present here a model for two phase flows which is simpler than the 6-equations models (with two densities, two velocities, two temperatures) but more accurate than the standard mixture models with 4 equations (with two densities, one velocity and one temperature). We are interested in the case when the two-phases have been interacting long enough for the drag force to be small but still not negligible. The so-called Homogeneous Equilibrium Mixture Model (HEM) that we present is dealing with both mixture and relative quantities, allowing in particular to follow both a mixture velocity and a relative velocity. This relative velocity is not tracked by a conservation law but by a closure law (drift relation), whose expression is related to the drag force terms of the two-phase flow. After the derivation of the model, a stability analysis and numerical experiments are presented. (authors)
High Gradient Accelerator Research
International Nuclear Information System (INIS)
Temkin, Richard
2016-01-01
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.
SDSS IV MaNGA - metallicity and nitrogen abundance gradients in local galaxies
Belfiore, Francesco; Maiolino, Roberto; Tremonti, Christy; Sánchez, Sebastian F.; Bundy, Kevin; Bershady, Matthew; Westfall, Kyle; Lin, Lihwai; Drory, Niv; Boquien, Médéric; Thomas, Daniel; Brinkmann, Jonathan
2017-07-01
We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star-forming regions in a representative sample of 550 nearby galaxies in the stellar mass range 109-1011.5 M⊙ with resolved spectroscopic data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius (Re), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with log (M⋆/M⊙) = 9.0 but exhibiting slopes as steep as -0.14 dex R_e^{-1} at log (M⋆/M⊙) = 10.5 (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample (R > 1.5Re), but a flattening is observed in the central regions (R 2.0Re), we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.
Numerical Verification Of Equilibrium Chemistry
International Nuclear Information System (INIS)
Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.
2010-01-01
A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.
Equilibrium ignition for ICF capsules
International Nuclear Information System (INIS)
Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.
1993-01-01
There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative
On the local equilibrium condition
International Nuclear Information System (INIS)
Hessling, H.
1994-11-01
A physical system is in local equilibrium if it cannot be distinguished from a global equilibrium by ''infinitesimally localized measurements''. This should be a natural characterization of local equilibrium, but the problem is to give a precise meaning to the qualitative phrase ''infinitesimally localized measurements''. A solution is suggested in form of a Local Equilibrium Condition (LEC), which can be applied to linear relativistic quantum field theories but not directly to selfinteracting quantum fields. The concept of local temperature resulting from LEC is compared to an old approach to local temperature based on the principle of maximal entropy. It is shown that the principle of maximal entropy does not always lead to physical states if it is applied to relativistic quantum field theories. (orig.)
Directory of Open Access Journals (Sweden)
Gabriel J. Turbay
2011-03-01
Full Text Available The strategic equilibrium of an N-person cooperative game with transferable utility is a system composed of a cover collection of subsets of N and a set of extended imputations attainable through such equilibrium cover. The system describes a state of coalitional bargaining stability where every player has a bargaining alternative against any other player to support his corresponding equilibrium claim. Any coalition in the sable system may form and divide the characteristic value function of the coalition as prescribed by the equilibrium payoffs. If syndicates are allowed to form, a formed coalition may become a syndicate using the equilibrium payoffs as disagreement values in bargaining for a part of the complementary coalition incremental value to the grand coalition when formed. The emergent well known-constant sum derived game in partition function is described in terms of parameters that result from incumbent binding agreements. The strategic-equilibrium corresponding to the derived game gives an equal value claim to all players. This surprising result is alternatively explained in terms of strategic-equilibrium based possible outcomes by a sequence of bargaining stages that when the binding agreements are in the right sequential order, von Neumann and Morgenstern (vN-M non-discriminatory solutions emerge. In these solutions a preferred branch by a sufficient number of players is identified: the weaker players syndicate against the stronger player. This condition is referred to as the stronger player paradox. A strategic alternative available to the stronger players to overcome the anticipated not desirable results is to voluntarily lower his bargaining equilibrium claim. In doing the original strategic equilibrium is modified and vN-M discriminatory solutions may occur, but also a different stronger player may emerge that has eventually will have to lower his equilibrium claim. A sequence of such measures converges to the equal
Collisional transport in a plasma with steep gradients
International Nuclear Information System (INIS)
Wang, W.; Okamoto, M.; Nakajima, N.; Murakami, S.
1999-06-01
The validity is given to the newly proposed two δf method for neoclassical transport calculation, which can be solve the drift kinetic equation considering effects of steep plasma gradients, large radial electric field, finite banana width, and an orbit topology near the axis. The new method is applied to the study of ion transport with steep plasma gradients. It is found that the ion thermal diffusivity decreases as the scale length of density gradient decreases, while the ion particle flux due to ion-ion self collisions increases with increasing gradient. (author)
Relevance of equilibrium in multifragmentation
International Nuclear Information System (INIS)
Furuta, Takuya; Ono, Akira
2009-01-01
The relevance of equilibrium in a multifragmentation reaction of very central 40 Ca + 40 Ca collisions at 35 MeV/nucleon is investigated by using simulations of antisymmetrized molecular dynamics (AMD). Two types of ensembles are compared. One is the reaction ensemble of the states at each reaction time t in collision events simulated by AMD, and the other is the equilibrium ensemble prepared by solving the AMD equation of motion for a many-nucleon system confined in a container for a long time. The comparison of the ensembles is performed for the fragment charge distribution and the excitation energies. Our calculations show that there exists an equilibrium ensemble that well reproduces the reaction ensemble at each reaction time t for the investigated period 80≤t≤300 fm/c. However, there are some other observables that show discrepancies between the reaction and equilibrium ensembles. These may be interpreted as dynamical effects in the reaction. The usual static equilibrium at each instant is not realized since any equilibrium ensemble with the same volume as that of the reaction system cannot reproduce the fragment observables
Collision integral and equilibrium distributions for a bounded plasma
International Nuclear Information System (INIS)
Zagorodnij, A.G.; Usenko, A.S.; Yakimenko, I.P.
1985-01-01
A kinetic equation of Balesku-Lennard type for multicomponent system of charged particle limited by two flat-parallel surfaces is derived on the basis of the general theory of electromagnetic fluctuations in plasma. Equilibrium values of collision integral for a plasma with arbitrary configuration boundaries are calculated and general ratios describing charged particles density profiles in such systems are obtained
Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade
Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team
2015-01-01
ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the
Generalized lower-hybrid drift instabilities in current-sheet equilibrium
International Nuclear Information System (INIS)
Yoon, Peter H.; Lui, Anthony T. Y.; Sitnov, Mikhail I.
2002-01-01
A class of drift instabilities in one-dimensional current-sheet configuration, i.e., classical Harris equilibrium, with frequency ranging from low ion-cyclotron to intermediate lower-hybrid frequencies, are investigated with an emphasis placed on perturbations propagating along the direction of cross-field current flow. Nonlocal two-fluid stability analysis is carried out, and a class of unstable modes with multiple eigenstates, similar to that of the familiar quantum mechanical potential-well problem, are found by numerical means. It is found that the most unstable modes correspond to quasi-electrostatic, short-wavelength perturbations in the lower-hybrid frequency range, with wave functions localized at the edge of the current sheet where the density gradient is maximum. It is also found that there exist quasi-electromagnetic modes located near the center of the current sheet where the current density is maximum, with both kink- and sausage-type polarizations. These modes are low-frequency, long-wavelength perturbations. It turns out that the current-driven modes are low-order eigensolutions while the lower-hybrid-type modes are higher-order states, and there are intermediate solutions between the two extreme cases. Attempts are made to interpret the available simulation results in light of the present eigenmode analysis
International Nuclear Information System (INIS)
Degtyarev, L.; Martynov, A.; Medvedev, S.; Troyon, F.; Villard, L.
1996-01-01
Large pressure gradients and current density at the plasma edge and accompanying edge-localized MHD instabilities are typical for H-mode discharges. Low-n external kink modes are a possible cause of the instabilities. The paper mostly deals with external kink modes driven by a finite current density at the plasma boundary (so called peeling modes). It was shown earlier that for a single axis plasma embedded into vacuum the peeling modes are stabilized when separatrix is approaching the plasma boundary. For doublet configurations a finite current density at the internal separatrix does not necessarily lead to external kink instability when the current density vanishes at the boundary. However, a finite current density at the plasma boundary outside the separatrix can drive outer peeling modes. The stability properties and structure of these modes depend on the plasma equilibrium outside the separatrix. The influence of plasma shear and pressure gradient at the boundary on the stability of the outer peeling modes in doublets is studied. The stability of kink modes in divertor configurations with plasma outside the separatrix is very sensitive to the boundary conditions set at open field lines. The choice of the boundary conditions and kink mode stability calculations for the divertor configurations are discussed. (author) 4 figs., 5 refs
Giovannini, Massimo
2015-01-01
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
High gradient superconducting quadrupoles
International Nuclear Information System (INIS)
Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.
1987-07-01
Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed
Shape characteristics of equilibrium and non-equilibrium fractal clusters.
Mansfield, Marc L; Douglas, Jack F
2013-07-28
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other
Directed motion of a Brownian motor in a temperature gradient
Liu, Yibing; Nie, Wenjie; Lan, Yueheng
2017-05-01
Directed motion of mesoscopic systems in a non-equilibrium environment is of great interest to both scientists and engineers. Here, the translation and rotation of a Brownian motor is investigated under non-equilibrium conditions. An anomalous directed translation is found if the two heads of the Brownian motor are immersed in baths with different particle masses, which is hinted in the analytic computation and confirmed by the numerical simulation. Similar consideration is also used to find the directed movement in the single rotational and translational degree of freedom of the Brownian motor when residing in one thermal bath with a temperature gradient.
Gaze, Eric C.
2005-01-01
We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…
Local effect of equilibrium current on tearing mode stability
International Nuclear Information System (INIS)
Cozzani, F.
1985-12-01
The local effect of the equilibrium current on the linear stability of low poloidal number tearing modes in tokamaks is investigated analytically. The plasma response inside the tearing layer is derived from fluid theory and the local equilibrium current is shown to couple to the mode dynamics through its gradient, which is proportional to the local electron temperature gradient under the approximations used in the analysis. The relevant eigenmode equations, expressing Ampere's law and the plasma quasineutrality condition, respectively, are suitably combined in a single integral equation, from which a variational principle is formulated to derive the mode dispersion relations for several cases of interest. The local equilibrium current is treated as a small perturbation of the known results for the m greater than or equal to 2 and the m = 1 tearing modes in the collisional regime, and the m greater than or equal to 2 tearing mode in the semicollisional regime; its effect is found to enhance stabilization for the m greater than or equal to 2 drift-tearing mode in the collisional regime, whereas the m = 1 growth rate is very slightly increased and the stabilizing effect of the parallel thermal conduction on the m greater than or equal to 2 mode in the semicollisional regime is slightly reduced
Energy Technology Data Exchange (ETDEWEB)
Cohen, Denise [Commissariat a l' energie atomique et aux energies alternatives - CEA, C. E. N. de Saclay, Service de Biologie (France)
1960-07-01
The P2 Hydis phage produced by P2 phage multiplication in E. coli B shows a higher density than its P2 parent. This density increase is the same for all P2 Hydis coming from a huge number of distinct hybridizations. It is closed to 0.002 g.cm{sup -3}. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 946-948, sitting of 1 February 1960 [French] Le phage P2 Hydis, produit lors de la multiplication du phage P2 dans E. Coli B, presente une densite superieure a celle de son parent P2. Cette augmentation de densite est la meme pour tous les P2 Hydis issus d'un grand nombre d'hybridations distinctes. Elle est voisine de 0,002 g.cm{sup -3}. Reproduction d'un article publie dans les Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 946-948, seance du 1er fevrier 1960.
Local Equilibrium and Retardation Revisited.
Hansen, Scott K; Vesselinov, Velimir V
2018-01-01
In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Capability Assessment of the Equilibrium Field System in KTX
International Nuclear Information System (INIS)
Luo Bing; You Wei; Tan Mingsheng; Bai Wei; Mao Wenzhe; Li Hong; Liu Adi; Lan Tao; Xie Jinlin; Liu Wandong; Luo Zhengping; Xiao Bingjia; Guo Yong
2016-01-01
Radial equilibrium of the KTX plasma column is maintained by the vertical field which is produced by the equilibrium field coils. The equilibrium is also affected by the eddy current, which is generated by the coupling of copper shell, plasma and poloidal field coils. An equivalent circuit model is developed to analyze the dynamic performance of equilibrium field coils, without auxiliary power input to equilibrium field coils and passive conductors. Considering the coupling of poloidal field coils, copper shell and plasma, the evolution of spatial distribution of the eddy current density on the copper shell is estimated by finite element to analyze the effect of shell to balance. The simulation results show that the copper shell and equilibrium field coils can provide enough vertical field to balance 1 MA plasma current in phase 1 of a KTX discharge. Auxiliary power supply on the EQ coils is necessary to control the horizontal displacement of KTX due to the finite resistance effect of the shell. (paper)
Silicon Burning. II. Quasi-Equilibrium and Explosive Burning
International Nuclear Information System (INIS)
Hix, W.R.; Thielemann, F.
1999-01-01
Having examined the application of quasi-equilibrium to hydrostatic silicon burning in Paper I of this series, we now turn our attention to explosive silicon burning. Previous authors have shown that for material that is heated to high temperature by a passing shock and then cooled by adiabatic expansion, the results can be divided into three broad categories, incomplete burning, normal freezeout, and α-rich freezeout, with the outcome depending on the temperature, density, and cooling timescale. In all three cases, we find that the important abundances obey quasi-equilibrium for temperatures greater than approximately 3x10 9 K, with relatively little nucleosynthesis occurring following the breakdown of quasi-equilibrium. We will show that quasi-equilibrium provides better abundance estimates than global nuclear statistical equilibrium, even for normal freezeout, and particularly for α-rich freezeout. We will also examine the accuracy with which the final nuclear abundances can be estimated from quasi-equilibrium. copyright copyright 1999. The American Astronomical Society
Effect of Equilibrium Current Profiles on External Kink Modes in Tokamaks
International Nuclear Information System (INIS)
Liu Chao; Liu Yue; Ma Zhaoshuai
2014-01-01
Based on a linearized MHD model, the effect of equilibrium current profiles on external kink modes in tokamaks is studied by MARS code. Three types of equilibrium current profiles are adopted in this work. Firstly, a set of parabolic equilibrium current profiles are chosen. In these profiles the maximum current values in the center of the plasma are fixed, and the currents have different gradient and jump at the plasma boundary. The effects of the current gradient and jump on the growth rate of external kink mode are investigated. It is found that the current jump which causes the q profiles to change plays an important role in the external kink modes in tokamaks. Secondly, a set of step equilibrium current profiles with different jump positions are chosen. The effect of jump position on external kink modes is discussed. Thirdly, a set of parabolic equilibrium current profiles with current bumps are chosen for the case of off-axis heating. The effects of height, width and position of the current bumps on external kink modes are analyzed. The flat equilibrium current profiles are disadvantageous for the MHD stabilities of tokamaks, because of the large current jump at the plasma edge. The peaked equilibrium current profiles and a large and localized current bump near the plasma edge benefit the MHD stabilities of tokamaks
Gradient Dynamics and Entropy Production Maximization
Janečka, Adam; Pavelka, Michal
2018-01-01
We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.
Energy Technology Data Exchange (ETDEWEB)
Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)
2015-10-09
The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.
Equilibrium Arrival Times to Queues
DEFF Research Database (Denmark)
Breinbjerg, Jesper; Østerdal, Lars Peter
We consider a non-cooperative queueing environment where a finite number of customers independently choose when to arrive at a queueing system that opens at a given point in time and serves customers on a last-come first-serve preemptive-resume (LCFS-PR) basis. Each customer has a service time...... requirement which is identically and independently distributed according to some general probability distribution, and they want to complete service as early as possible while minimizing the time spent in the queue. In this setting, we establish the existence of an arrival time strategy that constitutes...... a symmetric (mixed) Nash equilibrium, and show that there is at most one symmetric equilibrium. We provide a numerical method to compute this equilibrium and demonstrate by a numerical example that the social effciency can be lower than the effciency induced by a similar queueing system that serves customers...
Nonlocal linear theory of the gradient drift instability in the equatorial electrojet
International Nuclear Information System (INIS)
Ronchi, C.; Similon, P.L.; Sudan, R.N.
1989-01-01
The linear global eigenmodes of the gradient drift instability in the daytime equatorial electrojet are investigated. A main feature of the analysis is the inclusion of ion-neutral and electron-neutral collision frequencies dependent on altitude. It is found that the basic characteristics and localization of the unstable modes are determined mainly by the profiles of the Pedersen and Hall mobilities, which are derived from the Cowling conductivity model and experimental data. The equilibrium density profile is parabolic, which is fairly representative of the actual measurements. The unstable modes are sensitive not to the details of this profile, but only to the average value of the gradient. The results are obtained from a direct numerical integration of nonlocal linearized equations. They are further analyzed through an eikonal analysis, which provides both an interpretation of the transient modes observed by Fu et al. (1986) and some additional physics insight into the linear evolution of the global unstable modes. Finally, it is shown that the previously reported short-wavelength stabilization effect due to velocity shear may be overshadowed by the presence of regions in which the transient modes can develop into absolute instabilities. copyright American Geophysical Union 1989
Equilibrium fluctuations formulas for the quantum one-component plasma in a magnetic field
John, P.; Suttorp, L.G.
1993-01-01
The authors derive a complete set of equilibrium fluctuation formulae for the charge density, the current density and the energy density of the quantum one-component plasma in a magnetic field. The derivation is based on the use of imaginary-time-dependent Green functions and their Kubo transforms.
Spontaneity and Equilibrium: Why "?G Equilibrium" Are Incorrect
Raff, Lionel M.
2014-01-01
The fundamental criteria for chemical reactions to be spontaneous in a given direction are generally incorrectly stated as ?G chemistry textbooks and even in some more advanced texts. Similarly, the criteria for equilibrium are also misstated as being ?G = 0 or ?A = 0. Following a brief review of the…
Characteristics of equilibrium and perturbed transport coefficients in tokamaks
International Nuclear Information System (INIS)
Gentle, K.W.
1995-01-01
Although the evolution of a perturbation to a tokamak equilibrium can generally be described by local transport coefficients modestly enhanced above the equilibrium values, there are some significant cases for which this is inadequate. The density profile evolution in ASDEX-U occurs far more rapidly than is consistent with reasonable particle confinement times, and the evolution of cold pulses in TEXT requires nonlocal behavior in the core and some kind of anomaly near the periphery. The experiments are suggesting effects beyond standard local turbulent transport models. (orig.)
Equilibrium in a Production Economy
Energy Technology Data Exchange (ETDEWEB)
Chiarolla, Maria B., E-mail: maria.chiarolla@uniroma1.it [Universita di Roma ' La Sapienza' , Dipartimento di Metodi e Modelli per l' Economia, il Territorio e la Finanza, Facolta di Economia (Italy); Haussmann, Ulrich G., E-mail: uhaus@math.ubc.ca [University of British Columbia, Department of Mathematics (Canada)
2011-06-15
Consider a closed production-consumption economy with multiple agents and multiple resources. The resources are used to produce the consumption good. The agents derive utility from holding resources as well as consuming the good produced. They aim to maximize their utility while the manager of the production facility aims to maximize profits. With the aid of a representative agent (who has a multivariable utility function) it is shown that an Arrow-Debreu equilibrium exists. In so doing we establish technical results that will be used to solve the stochastic dynamic problem (a case with infinite dimensional commodity space so the General Equilibrium Theory does not apply) elsewhere.
Incentives in Supply Function Equilibrium
DEFF Research Database (Denmark)
Vetter, Henrik
2014-01-01
The author analyses delegation in homogenous duopoly under the assumption that the firm-managers compete in supply functions. In supply function equilibrium, managers’ decisions are strategic complements. This reverses earlier findings in that the author finds that owners give managers incentives...... to act in an accommodating way. As a result, optimal delegation reduces per-firm output and increases profits to above-Cournot profits. Moreover, in supply function equilibrium the mode of competition is endogenous. This means that the author avoids results that are sensitive with respect to assuming...
Equilibrium in a Production Economy
International Nuclear Information System (INIS)
Chiarolla, Maria B.; Haussmann, Ulrich G.
2011-01-01
Consider a closed production-consumption economy with multiple agents and multiple resources. The resources are used to produce the consumption good. The agents derive utility from holding resources as well as consuming the good produced. They aim to maximize their utility while the manager of the production facility aims to maximize profits. With the aid of a representative agent (who has a multivariable utility function) it is shown that an Arrow-Debreu equilibrium exists. In so doing we establish technical results that will be used to solve the stochastic dynamic problem (a case with infinite dimensional commodity space so the General Equilibrium Theory does not apply) elsewhere.
The Equilibrium Rule--A Personal Discovery
Hewitt, Paul G.
2016-01-01
Examples of equilibrium are evident everywhere and the equilibrium rule provides a reasoned way to view all things, whether in static (balancing rocks, steel beams in building construction) or dynamic (airplanes, bowling balls) equilibrium. Interestingly, the equilibrium rule applies not just to objects at rest but whenever any object or system of…
Non equilibrium atomic processes and plasma spectroscopy
International Nuclear Information System (INIS)
Kato, Takako
2003-01-01
Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)
Three-particle equilibrium correlations in dense hard-sphere fluids
Haffmans, A.F.E.M.; Schepper, I.M. de; Michels, J.P.J.; Beijeren, H. van
1988-01-01
We performed molecular-dynamics simulation experiments for a hard-sphere fluid at four high densities and determined the spatial Fourier transform of the three-particle equilibrium correlation function with two of the three particles at contact.
Bigravity from gradient expansion
International Nuclear Information System (INIS)
Yamashita, Yasuho; Tanaka, Takahiro
2016-01-01
We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.
2010-03-31
nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and
Modeling of the equilibrium of a tokamak plasma
International Nuclear Information System (INIS)
Grandgirard, V.
1999-12-01
The simulation and the control of a plasma discharge in a tokamak require an efficient and accurate solving of the equilibrium because this equilibrium needs to be calculated again every microsecond to simulate discharges that can last up to 1000 seconds. The purpose of this thesis is to propose numerical methods in order to calculate these equilibrium with acceptable computer time and memory size. Chapter 1 deals with hydrodynamics equation and sets up the problem. Chapter 2 gives a method to take into account the boundary conditions. Chapter 3 is dedicated to the optimization of the inversion of the system matrix. This matrix being quasi-symmetric, the Woodbury method combined with Cholesky method has been used. This direct method has been compared with 2 iterative methods: GMRES (generalized minimal residual) and BCG (bi-conjugate gradient). The 2 last chapters study the control of the plasma equilibrium, this work is presented in the formalism of the optimized control of distributed systems and leads to non-linear equations of state and quadratic functionals that are solved numerically by a quadratic sequential method. This method is based on the replacement of the initial problem with a series of control problems involving linear equations of state. (A.C.)
Near-surface temperature gradient in a coastal upwelling regime
Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.
2014-08-01
In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.
Computing diffusivities from particle models out of equilibrium
Embacher, Peter; Dirr, Nicolas; Zimmer, Johannes; Reina, Celia
2018-04-01
A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications. The key idea underlying the method is that finite, yet large, particle systems formally obey stochastic partial differential equations of gradient flow type satisfying a fluctuation-dissipation relation. The strategy is here applied to three classic particle models, namely independent random walkers, a zero-range process and a symmetric simple exclusion process in one space dimension, to allow the comparison with analytic solutions.
Use of S-α diagram for representing tokamak equilibrium
International Nuclear Information System (INIS)
Takahashi, H.; Chance, M.; Kessel, C.; LeBlanc, B.; Manickam, J.; Okabayashi, M.
1991-05-01
A use of the S-α diagram is proposed as a tool for representing the plasma equilibrium with a qualitative characterization of its stability through pattern recognition. The diagram is an effective tool for visually presenting the relationship between the shear and dimensionless pressure gradient of an equilibrium. In the PBX-M tokamak, an H-mode operating regime with high poloidal β and L-mode regime with high toroidal β, obtained using different profile modification techniques, are found to have distinct S-α trajectory patterns. Pellet injection into a plasma in the H-mode regime with high toroidal β, obtained using different profile modification techniques, are found to have distinct S-α trajectory patterns. Pellet injection into a plasma in the H-mode regime results in favorable qualities of both regimes. The β collapse process and ELM event also manifest themselves as characteristic changes in the S-α pattern
Shear viscosity and out of equilibrium dynamics
International Nuclear Information System (INIS)
El, Andrej; Xu Zhe; Greiner, Carsten; Muronga, Azwinndini
2009-01-01
Using Grad's method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling α s ∼0.3 (with η/s≅0.18) and is a factor of 2-3 larger at a small coupling α s ∼0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small α s . On the other hand, we demonstrate that for such small α s , the gluon system is far from kinetic and chemical equilibrium, which indicates the break down of second-order hydrodynamics because of the strong nonequilibrium evolution. In addition, for large α s (0.3-0.6), the Israel-Stewart hydrodynamics formally breaks down at large momentum p T > or approx. 3 GeV but is still a reasonably good approximation.
Deviations from thermal equilibrium in plasmas
International Nuclear Information System (INIS)
Burm, K.T.A.L.
2004-01-01
A plasma system in local thermal equilibrium can usually be described with only two parameters. To describe deviations from equilibrium two extra parameters are needed. However, it will be shown that deviations from temperature equilibrium and deviations from Saha equilibrium depend on one another. As a result, non-equilibrium plasmas can be described with three parameters. This reduction in parameter space will ease the plasma describing effort enormously
Non-equilibrium fluctuation-induced interactions
International Nuclear Information System (INIS)
Dean, David S
2012-01-01
We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.
Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)
Elghobashi, S.
1977-01-01
The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.
Far-from-equilibrium heavy quark energy loss at strong coupling
Chesler, Paul; Rajagopal, Krishna
2013-01-01
We study the energy loss of a heavy quark propagating through the matter produced in the collision of two sheets of energy [1]. Even though this matter is initially far-from-equilibrium we find that, when written in terms of the energy density, the equilibrium expression for heavy quark energy loss describes most qualitative features of our results well. At later times, once a plasma described by viscous hydrodynamics has formed, the equilibrium expression describes the heavy quark energy loss quantitatively. In addition to the drag force that makes it lose energy, a quark moving through the out-of-equilibrium matter feels a force perpendicular to its velocity.
Understanding Thermal Equilibrium through Activities
Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra
2015-01-01
Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…
Equilibrium theory : A salient approach
Schalk, S.
1999-01-01
Whereas the neoclassical models in General Equilibrium Theory focus on the existence of separate commodities, this thesis regards 'bundles of trade' as the unit objects of exchange. Apart from commodities and commodity bundles in the neoclassical sense, the term `bundle of trade' includes, for
Essays in general equilibrium theory
Konovalov, A.
2001-01-01
The thesis focuses on various issues of general equilibrium theory and can approximately be divided into three parts. The first part of the thesis studies generalized equilibria in the Arrow-Debreu model in the situation where the strong survival assumption is not satisfied. Chapter four deals with
Financial equilibrium with career concerns
Directory of Open Access Journals (Sweden)
Amil Dasgupta
2006-03-01
Full Text Available What are the equilibrium features of a financial market where a sizeable proportion of traders face reputational concerns? This question is central to our understanding of financial markets, which are increasingly dominated by institutional investors. We construct a model of delegated portfolio management that captures key features of the US mutual fund industry and embed it in an asset pricing framework. We thus provide a formal model of financial equilibrium with career concerned agents. Fund managers differ in their ability to understand market fundamentals, and in every period investors choose a fund. In equilibrium, the presence of career concerns induces uninformed fund managers to churn, i.e., to engage in trading even when they face a negative expected return. Churners act as noise traders and enhance the level of trading volume. The equilibrium relationship between fund return and net fund flows displays a skewed shape that is consistent with stylized facts. The robustness of our core results is probed from several angles.
Equilibrium with arbitrary market structure
DEFF Research Database (Denmark)
Grodal, Birgit; Vind, Karl
2005-01-01
. The complete market predicted by this theory is clearly unrealistic, and Radner [10] formulated and proved existence of equilibrium in a multiperiod model with incomplete markets. In this paper the Radner result is extended. Radner assumed a specific structure of markets, independence of preferences...
Nash equilibrium with lower probabilities
DEFF Research Database (Denmark)
Groes, Ebbe; Jacobsen, Hans Jørgen; Sloth, Birgitte
1998-01-01
We generalize the concept of Nash equilibrium in mixed strategies for strategic form games to allow for ambiguity in the players' expectations. In contrast to other contributions, we model ambiguity by means of so-called lower probability measures or belief functions, which makes it possible...
A Local Probe for Universal Non-equilibrium Dynamics
2015-06-01
shown are polarizing beam splitters . About 700µW are superimposed with a reference laser on a glass plate and coupled into an optical fiber to detect...A Local Probe for Universal Non -equilibrium Dynamics We report on the results obtained across a nine-month ARO-sponsored project, whose purpose was...to implement a local probe for a gas of ultracold atoms. We used a phase plate with a spiral phase gradient to create a hollow-core laser beam . This
High-Sensitivity Measurement of Density by Magnetic Levitation.
Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M
2016-03-01
This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.
Effect of Equilibrium Flow on Plasma Parameters
International Nuclear Information System (INIS)
Mukhopadhyay, S.; Lahiri, S.; Sakanaka, P.H.; Dasgupta, B.
2003-01-01
The transition to high confinement modes have been identified with the occurrence of strong shear flow near the plasma boundary. Plasma flow has also been associated with various instabilities, heating and other physical processes. As a result, it has become very important to study the effect of such flows on various plasma parameters. In this paper, we present the numerical solution of plasma equilibrium with incompressible toroidal and poloidal flows in several magnetic confinement configurations including tokamaks. The code, which was reported in the last conference, has been used to solve the problem in both circular and D-shaped devices. A parametric study on the generation of shear flow due to radial electric fields has been carried out. Through this study, it has been possible to generate plasma equilibria having sharp pressure gradients which are remarkably close to those reported in various H-mode experiments. The effects of flow on reverse shear equilibria and on the position of the magnetic axis has been studied. Finally, a detailed study has been carried out to understand the effect of flows on important plasma parameters, such as the poloidal flux function, β, energy confinement time
Calculation code NIRVANA for free boundary MHD equilibrium
International Nuclear Information System (INIS)
Ninomiya, Hiromasa; Suzuki, Yasuo; Kameari, Akihisa
1975-03-01
The calculation method and code of solving the free boundary problem for MHD equilibrium has been developed. Usage of the code ''NIRVANA'' is described. The toroidal plasma current density determined as a function of the flux function PSI is substituted by a group of the ring currents, whereby the equation of MHD equilibrium is transformed into an integral equation. Either of the two iterative methods is chosen to solve the integral equation, depending on the assumptions made of the plasma surface points. Calculation of the magnetic field configurations is possible when the plasma surface coincides self-consistently with the magnetic flux including the separatrix points. The code is usable in calculation of the circular or non-circular shell-less Tokamak equilibrium. (auth.)
Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation
Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.
2018-02-01
We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.
Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.
Bose, Amartya; Makri, Nancy
2017-10-21
The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.
On generalized operator quasi-equilibrium problems
Kum, Sangho; Kim, Won Kyu
2008-09-01
In this paper, we will introduce the generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which generalize the operator equilibrium problem due to Kazmi and Raouf [K.R. Kazmi, A. Raouf, A class of operator equilibrium problems, J. Math. Anal. Appl. 308 (2005) 554-564] into multi-valued and quasi-equilibrium problems. Using a Fan-Browder type fixed point theorem in [S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994) 493-519] and an existence theorem of equilibrium for 1-person game in [X.-P. Ding, W.K. Kim, K.-K. Tan, Equilibria of non-compact generalized games with L*-majorized preferences, J. Math. Anal. Appl. 164 (1992) 508-517] as basic tools, we prove new existence theorems on generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which includes operator equilibrium problems.
Non-Equilibrium Properties from Equilibrium Free Energy Calculations
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.
Multiscale measures of equilibrium on finite dynamic systems
International Nuclear Information System (INIS)
Bigerelle, M.; Iost, A.
2004-01-01
This article presents a new method for the study of the evolution of dynamic systems based on the notion of quantity of information. The system is divided into elementary cells and the quantity of information is studied with respect to the cell size. We have introduced an analogy between quantity of information and entropy, and defined the intrinsic entropy as the entropy of the whole system independent of the size of the cells. It is shown that the intrinsic entropy follows a Gaussian probability density function (PDF) and thereafter, the time needed by the system to reach equilibrium is a random variable. For a finite system, statistical analyses show that this entropy converges to a state of equilibrium and an algorithmic method is proposed to quantify the time needed to reach equilibrium for a given confidence interval level. A Monte-Carlo simulation of diffusion of A* atoms in A is then provided to illustrate the proposed simulation. It follows that the time to reach equilibrium for a constant error probability, t e , depends on the number, n, of elementary cells as: t e ∝n 2.22 ±0.06 . For an infinite system size (n infinite), the intrinsic entropy obtained by statistical modelling is a pertinent characteristic number of the system at the equilibrium
Equilibrium studies of helical axis stellarators
International Nuclear Information System (INIS)
Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.
1984-01-01
The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit
Students’ misconceptions on solubility equilibrium
Setiowati, H.; Utomo, S. B.; Ashadi
2018-05-01
This study investigated the students’ misconceptions of the solubility equilibrium. The participants of the study consisted of 164 students who were in the science class of second year high school. Instrument used is two-tier diagnostic test consisting of 15 items. Responses were marked and coded into four categories: understanding, misconception, understand little without misconception, and not understanding. Semi-structured interviews were carried out with 45 students according to their written responses which reflected different perspectives, to obtain a more elaborated source of data. Data collected from multiple methods were analyzed qualitatively and quantitatively. Based on the data analysis showed that the students misconceptions in all areas in solubility equilibrium. They had more misconceptions such as in the relation of solubility and solubility product, common-ion effect and pH in solubility, and precipitation concept.
An introduction to equilibrium thermodynamics
Morrill, Bernard; Hartnett, James P; Hughes, William F
1973-01-01
An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a
Money Inventories in Search Equilibrium
Berentsen, Aleksander
1998-01-01
The paper relaxes the one unit storage capacity imposed in the basic search-theoretic model of fiat money with indivisible real commodities and indivisible money. Agents can accumulate as much money as they want. It characterizes the stationary distributions of money and shows that for reasonable parameter values (e.g. production cost, discounting, degree of specialization) a monetary equilibrium exists. There are multiple stationary distributions of a given amount of money, which differ in t...
Groundwater flux estimation in streams: A thermal equilibrium approach
Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon
2018-06-01
Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.
Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration
Becattini, F.; Grossi, E.
2015-08-01
We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.
Local equilibrium in bird flocks
Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene
2016-12-01
The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.
Zocco, A.; Xanthopoulos, P.; Doerk, H.; Connor, J. W.; Helander, P.
2018-02-01
The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven instabilities that render the modes ubiquitous in both tokamaks and stellarators is investigated. We discover remarkably similar results for both confinement concepts if care is taken in the analysis of the effect of the global shear . We revisit, analytically and by means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of some aspects of their theoretical interpretation. In particular, for standard tokamak configurations, we find that global shear effects on the critical gradient cannot be attributed to the wave-particle resonance destabilising mechanism of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185-1192), but are consistent with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989, pp. 109-118). Extensive analytical and numerical investigations show that virtually no previous tokamak theoretical predictions capture the temperature dependence of the mode frequency at marginality, thus leading to incorrect instability thresholds. In the asymptotic limit , where is the rotational transform, and such a threshold should be solely determined by the resonant toroidal branch of the ITG mode, we discover a family of unstable solutions below the previously known threshold of instability. This is true for a tokamak case described by a local local equilibrium, and for the stellarator Wendelstein 7-X, where these unstable solutions are present even for configurations with a small trapped-particle population. We conjecture they are of the Floquet type and derive their properties from the Fourier analysis of toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180-3185), and to Hill's theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886, pp. 1-36). The temperature dependence of the newly determined threshold is given for both confinement concepts. In the first case, the new temperature-gradient
The η/s of hadrons out of chemical equilibrium
International Nuclear Information System (INIS)
Wiranata, A; Wang, X N; Prakash, M; Huovinen, P; Koch, V
2014-01-01
We study how the shear viscosity, η, entropy density, s, and η/s depend on growing hadron chemical potentials resulting from the loss of chemical equilibrium during the evolution of a relativistic heavy-ion collision. Our calculations here are for an interacting pion gas in a system of net baryon number zero. Time evolution of the temperature and pion chemical potential are taken from ideal fluid hydrodynamic calculations of RHIC and LHC collisions. We find that the shear viscosity decreases whereas the entropy density increases with increasing pion chemical potential resulting in values of η/s that are slightly reduced from the case of chemical potentials being zero when chemical equilibrium prevails. Our results indicate that the inclusion of additional mesons and baryons will likely lead to further reduction in the value of η/s.
Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.
Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua
2013-09-28
We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.
The Temperature and Density from Permitted O II Lines in the Planetary Nebula NGC 7009
Richer, M. G., Guillén Tavera, J. E., Arrieta, A., Torres-Peimbert, S.
2017-11-01
We present spatially- and velocity-resolved spectroscopy of NGC 7009 acquired with the UVES spectrograph at the VLT UT2/Kueyen. We use these data to determine the electron temperature and density structure based upon O II lines. We find a strong gradient in the electron temperature. It agrees with the electron temperature determined from collisionally-excited lines in part of the nebular volume, but also differs by more than 6,000 K in other parts of the nebular volume. This result supports the hypothesis that NGC 7009 contains two plasma components, one of which emits collisionally-excited lines and the other that does not. We are able to determine only a lower limit to the electron density of 10^4 cm^{-3} from the O II lines, which is higher than derived from collisionally-excited lines. We are unable to determine whether the two plasma components are in pressure equilibrium from our data, but there exist temperature and density combinations that allow this equilibrium for temperatures between 600 K and 6,000 K.
Quantum dynamical semigroups and approach to equilibrium
International Nuclear Information System (INIS)
Frigerio, A.
1977-01-01
For a quantum dynamical semigroup possessing a faithful normal stationary state, some conditions are discussed, which ensure the uniqueness of the equilibrium state and/or the approach to equilibrium for arbitrary initial condition. (Auth.)
A numerical solution for a toroidal plasma in equilibrium
International Nuclear Information System (INIS)
Hintz, E.; Sudano, J.P.
1982-01-01
The iterative techniques alternating direction implicit (ADI), sucessive ove-relaxation (SOR) and Gauss-Seidel are applied to a nonlinear elliptical second order differential equation (Grand-Shafranov). This equation was solve with the free boundary conditions plasma-vacuum interface over a rectangular section in cylindrical coordinates R and Z. The current density profile, plasma pressure profile, magnetic and isobaric surfaces are numerically determined for a toroidal plasma in equilibrium. (L.C.) [pt
Modelling CO2-Brine Interfacial Tension using Density Gradient Theory
Ruslan, Mohd Fuad Anwari Che
2018-01-01
In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation.
Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M; Bakr, Osman M
2013-06-07
Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly Applications requiring DNDs with specific particle or aggregate sizes are now within reach.
Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation
Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre; Bakr, Osman
2013-01-01
challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized
The geometry of finite equilibrium sets
DEFF Research Database (Denmark)
Balasko, Yves; Tvede, Mich
2009-01-01
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely noncollinear....
Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.
Hu, Yujing; Gao, Yang; An, Bo
2015-07-01
An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.
The Geometry of Finite Equilibrium Datasets
DEFF Research Database (Denmark)
Balasko, Yves; Tvede, Mich
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely non collinear....
Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.
Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart
2018-04-01
In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.
Color Gradient in the King Type Globular Cluster NGC 7089
Directory of Open Access Journals (Sweden)
Young-Jong Sohn
1999-12-01
Full Text Available We use BV CCD images to investigate the reality of the color gradient within a King type globular cluster NGC 7089. Surface photometry shows that there is a strong radial color gradient in the central region of the cluster in the sense of bluer center with the amplitude of -0.39 +/- 0.07 mag/arcsec2 in (B - V. In the outer region of the cluster, however, the radial color gradient shows a reverse case, i.e., redder toward the center. (B - V color profile which was derived from resolved stars in VGC 7089 field also shows a significant color gradient in the central region of the clusters, indicating that lights from the combination of red giant stars and blue horizontal branch stars cause the radial color gradient. Color gradient of the outer region of NGC 7089 may be due to the unresolved background of the cluster. Similar color gradients in the central area of clusters have been previously observed exserved exclusively in highly concentrated systems classified as post core collapse clusters. We caution, however, to confirm the reality of the color gradient from resolved stars, we need more accurate imaging data of the cluster with exceptional seeing condition because the effect of completeness correlates with local density of stars.
Open problems in non-equilibrium physics
International Nuclear Information System (INIS)
Kusnezov, D.
1997-01-01
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions
The concept of equilibrium in organization theory
Gazendam, H.W.M.
1998-01-01
Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or
The concept of equilibrium in organization theory
Gazendam, Henk W.M.
1997-01-01
Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or
Open problems in non-equilibrium physics
Energy Technology Data Exchange (ETDEWEB)
Kusnezov, D.
1997-09-22
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.
Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir
2014-06-28
Determining the lattice thermal conductivity (κ) of nanostructures is especially challenging in that, aside from the phonon-phonon scattering present in large systems, the scattering of phonons from the system boundary greatly influences heat transport, particularly when system length (L) is less than the average phonon mean free path (MFP). One possible route to modeling κ in these systems is through molecular dynamics (MD) simulations, inherently including both phonon-phonon and phonon-boundary scattering effects in the classical limit. Here, we compare current MD methods for computing κ in nanostructures with both L ⩽ MFP and L ≫ MFP, referred to as mean free path constrained (cMFP) and unconstrained (uMFP), respectively. Using a (10,0) CNT (carbon nanotube) as a benchmark case, we find that while the uMFP limit of κ is well-defined through the use of equilibrium MD and the time-correlation formalism, the standard equilibrium procedure for κ is not appropriate for the treatment of the cMFP limit because of the large influence of boundary scattering. To address this issue, we define an appropriate equilibrium procedure for cMFP systems that, through comparison to high-fidelity non-equilibrium methods, is shown to be the low thermal gradient limit to non-equilibrium results. Further, as a means of predicting κ in systems having L ≫ MFP from cMFP results, we employ an extrapolation procedure based on the phenomenological, boundary scattering inclusive expression of Callaway [Phys. Rev. 113, 1046 (1959)]. Using κ from systems with L ⩽ 3 μm in the extrapolation, we find that the equilibrium uMFP κ of a (10,0) CNT can be predicted within 5%. The equilibrium procedure is then applied to a variety of carbon-based nanostructures, such as graphene flakes (GF), graphene nanoribbons (GNRs), CNTs, and icosahedral fullerenes, to determine the influence of size and environment (suspended versus supported) on κ. Concerning the GF and GNR systems, we find that
Active Brownian particles at interfaces: An effective equilibrium approach
Wittmann, René; Brader, Joseph M.
2016-06-01
A simple theoretical approach is used to investigate active colloids at the free interface and near repulsive substrates. We employ dynamical density functional theory to determine the steady-state density profiles in an effective equilibrium system (Farage T. F. F. et al., Phys. Rev. E, 91 (2015) 042310). In addition to the known accumulation at surfaces, we predict wetting and drying transitions at a flat repulsive wall and capillary condensation and evaporation in a slit pore. These new phenomena are closely related to the motility-induced phase separation (MIPS) in the bulk.
Equilibrium and non-equilibrium metal-ceramic interfaces
International Nuclear Information System (INIS)
Gao, Y.; Merkle, K.L.
1992-01-01
Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au
Characterizing developing adverse pressure gradient flows subject to surface roughness
Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano
2010-04-01
An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.
Gradient Boosting Machines, A Tutorial
Directory of Open Access Journals (Sweden)
Alexey eNatekin
2013-12-01
Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.
Thermal equilibrium in Einstein's elevator.
Sánchez-Rey, Bernardo; Chacón-Acosta, Guillermo; Dagdug, Leonardo; Cubero, David
2013-05-01
We report fully relativistic molecular-dynamics simulations that verify the appearance of thermal equilibrium of a classical gas inside a uniformly accelerated container. The numerical experiments confirm that the local momentum distribution in this system is very well approximated by the Jüttner function-originally derived for a flat spacetime-via the Tolman-Ehrenfest effect. Moreover, it is shown that when the acceleration or the container size is large enough, the global momentum distribution can be described by the so-called modified Jüttner function, which was initially proposed as an alternative to the Jüttner function.
New Non-Stationary Gradient Model of Heat-Mass-Electric Charge Transfer in Thin Porous Media
Directory of Open Access Journals (Sweden)
V. Rogankov
2017-10-01
Full Text Available The well-known complicated system of non-equilibrium balance equations for a continuous fluid (f medium needs the new non-Gibbsian model of f-phase to be applicable for description of the heterogeneous porous media (PMs. It should be supplemented by the respective coupled thermal and caloric equations of state (EOS developed specially for PMs to become adequate and solvable for the irreversible transport f-processes. The set of standard assumptions adopted by the linear (or quasi-linear non-equilibrium thermodynamics are based on the empirical gradient-caused correlations between flows and forces. It leads, in particular, to the oversimplified stationary solutions for PMs. The most questionable but typical modeling suppositions of the stationary gradient (SG theory are: 1 the assumption of incompressibility accepted, as a rule, for f-flows; 2 the ignorance of distinctions between the hydrophilic and hydrophobic influence of a porous matrix on the properties; 3 the omission of effects arising due to the concomitant phase intra-porous transitions between the neighboring f-fragments with the sharp differences in densities; 4 the use of exclusively Gibbsian (i.e. homogeneous and everywhere differentiable description of any f-phase in PM; 5 the very restrictive reduction of the mechanical velocity field to its specific potential form in the balance equation of f-motion as well as of the heat velocity field in the balance equation of internal energy; 6 the neglect of the new specific peculiarities arising due to the study of any non-equilibrium PM in the meso- and nano-scales of a finite-size macroscopic (N,V-system of discrete particles. This work is an attempt to develop the alternative non-stationary gradient (NSG model of real irreversible processes in PM. Another aim is to apply it without the above restrictions 1-6 to the description of f-flows through the obviously non-Gibbsian thin porous medium (TPM. We will suppose that it is composed by two
On the solution of the Hartree-Fock-Bogoliubov equations by the conjugate gradient method
International Nuclear Information System (INIS)
Egido, J.L.; Robledo, L.M.
1995-01-01
The conjugate gradient method is formulated in the Hilbert space for density and non-density dependent Hamiltonians. We apply it to the solution of the Hartree-Fock-Bogoliubov equations with constraints. As a numerical application we show calculations with the finite range density dependent Gogny force. The number of iterations required to reach convergence is reduced by a factor of three to four as compared with the standard gradient method. (orig.)
Fast response densitometer for measuring liquid density
1972-01-01
Densitometer was developed which produces linear voltage proportional to changes in density of flowing liquid hydrogen. Unit has fast response time and good system stability, statistical variation, and thermal equilibrium. System accuracy is 2 percent of total density span. Basic design may be altered to include measurement of other flowing materials.
Silverberg, Lee J.; Raff, Lionel M.
2015-01-01
Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…
Approach to transverse equilibrium in axial channeling
International Nuclear Information System (INIS)
Fearick, R.W.
2000-01-01
Analytical treatments of channeling rely on the assumption of equilibrium on the transverse energy shell. The approach to equilibrium, and the nature of the equilibrium achieved, is examined using solutions of the equations of motion in the continuum multi-string model. The results show that the motion is chaotic in the absence of dissipative processes, and a complicated structure develops in phase space which prevent the development of the simple equilibrium usually assumed. The role of multiple scattering in smoothing out the equilibrium distribution is investigated
Gradient waveform synthesis for magnetic propulsion using MRI gradient coils
International Nuclear Information System (INIS)
Han, B H; Lee, S Y; Park, S
2008-01-01
Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.
2018-01-01
The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on the current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. The results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.
Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment
Berg, Robert F.; Moldover, Michael R.
1993-01-01
Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.
Theory of resistivity-gradient-driven turbulence
International Nuclear Information System (INIS)
Garcia, L.; Carreras, B.A.; Diamond, P.H.; Callen, J.D.
1984-10-01
A theory of the nonlinear evolution and saturation of resistivity-driven turbulence, which evolves from linear rippling instabilities, is presented. The nonlinear saturation mechanism is identified both analytically and numerically. Saturation occurs when the turbulent diffusion of the resistivity is large enough so that dissipation due to parallel electron thermal conduction balances the nonlinearly modified resistivity gradient driving term. The levels of potential, resistivity, and density fluctuations at saturation are calculated. A combination of computational modeling and analytic treatment is used in this investigation
Pre-equilibrium plasma dynamics
Energy Technology Data Exchange (ETDEWEB)
Heinz, U.
1986-01-01
Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs. (LEW)
Non-equilibrium phase transition
International Nuclear Information System (INIS)
Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.
1998-01-01
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken
Pre-equilibrium plasma dynamics
International Nuclear Information System (INIS)
Heinz, U.
1986-01-01
Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades
Directory of Open Access Journals (Sweden)
Han XU
2017-10-01
Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.
Theory of neoclassical resistivity-gradient-driven turbulence
International Nuclear Information System (INIS)
Kwon, O.J.; Diamond, P.H.; Hahm, T.S.
1988-12-01
It is shown that rippling instabilities can tap the density gradient expansion free energy source through the density dependence of the neoclassical resistivity. Linear analyses show that the region where neoclassical rippling modes are significantly excited extends from the edge of the plasma to the region where ν/sub *e/ ≤ 1. Since these modes are non-dispersive, diamagnetic effects are negligible in comparison to the nonlinear decorrelation rate at saturation. Thus, the relevant regime is the 'strong turbulence' regime. The turbulent radial diffusivities of the temperature and the density are obtained as eigenvalues of the renormalized eigenmode equations at steady state. The density gradient acts to enhance the level of turbulence, compared to that driven by the temperature gradient alone. The saturated turbulent state is characterized by: current decoupling, the breakdown of Boltzmann relation, a radial mode scale of density fluctuations exceeding that of temperature fluctuations, implying that density diffusivity exceeds temperature diffusivity, and that density fluctuation levels exceed temperature fluctuation levels. Magnetic fluctuation levels are negligible. 29 refs., 1 fig
Xu, Qiuju; Belmonte, Andrew; deForest, Russ; Liu, Chun; Tan, Zhong
2017-04-01
In this paper, we study a fitness gradient system for two populations interacting via a symmetric game. The population dynamics are governed by a conservation law, with a spatial migration flux determined by the fitness. By applying the Galerkin method, we establish the existence, regularity and uniqueness of global solutions to an approximate system, which retains most of the interesting mathematical properties of the original fitness gradient system. Furthermore, we show that a Turing instability occurs for equilibrium states of the fitness gradient system, and its approximations.
Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.
2007-12-01
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due
Denaturing gradient gel electrophoresis
International Nuclear Information System (INIS)
Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.
2005-01-01
It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations
International Nuclear Information System (INIS)
Maslov, V.M.
1998-01-01
Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)
U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...
Characterization of gradient control systems
Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Characterization of Gradient Control Systems
Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Sobolev gradients and differential equations
Neuberger, J W
2010-01-01
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...
Electric field gradients in metals
International Nuclear Information System (INIS)
Schatz, G.
1979-01-01
A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)
Kinetic equations within the formalism of non-equilibrium thermo field dynamics
International Nuclear Information System (INIS)
Arimitsu, Toshihico
1988-01-01
After reviewing the real-time formalism of dissipative quantum field theory, i.e. non-equilibrium thermo field dynamics (NETFD), a kinetic equation, a self-consistent equation for the dissipation coefficient and a ''mass'' or ''chemical potential'' renormalization equation for non-equilibrium transient situations are extracted out of the two-point Green's function of the Heisenberg field, in their most general forms upon the basic requirements of NETFD. The formulation is applied to the electron-phonon system, as an example, where the gradient expansion and the quasi-particle approximation are performed. The formalism of NETFD is reinvestigated in connection with the kinetic equations. (orig.)
Thermal equilibrium properties of an intense relativistic electron beam
International Nuclear Information System (INIS)
Davidson, R.C.; Uhm, H.S.
1979-01-01
The thermal equilibrium properties of an intense relativistic electron beam with distribution function f 0 /sub b/=Z -1 /sub b/exp[-(H-β/sub b/cP/sub z/-ω/sub b/P/sub theta/) /T] are investigated. This choice of f 0 /sub b/ allows for a mean azimuthal rotation of the beam electrons (when ω/sub b/not =0), and corresponds to an important generalization of the distribution function first analyzed by Bennett. Beam equilibrium properties, including axial velocity profile V 0 /sub z/b(r), azimuthal velocity profile V 0 /sub thetab/(r), beam temperature profile T 0 /sub b/(r), beam density profile n 0 /sub b/(r), and equilibrium self-field profiles, are calculated for a broad range of system parameters. For appropriate choice of beam rotation velocity ω/sub b/, it is found that radially confined equilibrium solutions [with n 0 /sub b/(r→infinity) =0] exist even in the absence of a partially neutralizing ion background that weakens the repulsive space-charge force. The necessary and sufficient conditions for radially confined equilibria are ω - /sub b/ + /sub b/ for 0 2 /sub b/p /ω 2 /sub b/c) (1-f-β 2 /sub b/) 2 /sub b/p/ω 2 /sub b/c) (1-f-β 2 /sub b/) <0
Near-equilibrium dumb-bell-shaped figures for cohesionless small bodies
Descamps, Pascal
2016-02-01
In a previous paper (Descamps, P. [2015]. Icarus 245, 64-79), we developed a specific method aimed to retrieve the main physical characteristics (shape, density, surface scattering properties) of highly elongated bodies from their rotational lightcurves through the use of dumb-bell-shaped equilibrium figures. The present work is a test of this method. For that purpose we introduce near-equilibrium dumb-bell-shaped figures which are base dumb-bell equilibrium shapes modulated by lognormal statistics. Such synthetic irregular models are used to generate lightcurves from which our method is successfully applied. Shape statistical parameters of such near-equilibrium dumb-bell-shaped objects are in good agreement with those calculated for example for the Asteroid (216) Kleopatra from its dog-bone radar model. It may suggest that such bilobed and elongated asteroids can be approached by equilibrium figures perturbed be the interplay with a substantial internal friction modeled by a Gaussian random sphere.
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
Nandi, Prithwish Kumar; Valsakumar, M C; Chandra, Sharat; Sahu, H K; Sundar, C S
2010-09-01
We calculate properties like equilibrium lattice parameter, bulk modulus and monovacancy formation energy for nickel (Ni), iron (Fe) and chromium (Cr) using Kohn-Sham density functional theory (DFT). We compare the relative performance of local density approximation (LDA) and generalized gradient approximation (GGA) for predicting such physical properties for these metals. We also make a relative study between two different flavors of GGA exchange correlation functional, namely PW91 and PBE. These calculations show that there is a discrepancy between DFT calculations and experimental data. In order to understand this discrepancy in the calculation of vacancy formation energy, we introduce a correction for the surface intrinsic error corresponding to an exchange correlation functional using the scheme implemented by Mattsson et al (2006 Phys. Rev. B 73 195123) and compare the effectiveness of the correction scheme for Al and the 3d transition metals.
An algorithm for gradient-based dynamic optimization of UV ﬂash processes
DEFF Research Database (Denmark)
Ritschel, Tobias Kasper Skovborg; Capolei, Andrea; Gaspar, Jozsef
2017-01-01
This paper presents a novel single-shooting algorithm for gradient-based solution of optimal control problems with vapor-liquid equilibrium constraints. Such optimal control problems are important in several engineering applications, for instance in control of distillation columns, in certain two...... softwareaswellastheperformanceofdiﬀerentcompilersinaLinuxoperatingsystem. Thesetestsindicatethatreal-timenonlinear model predictive control of UV ﬂash processes is computationally feasible....
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
Kachan, Devin Michael
Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I
On combined gravity gradient components modelling for applied geophysics
International Nuclear Information System (INIS)
Veryaskin, Alexey; McRae, Wayne
2008-01-01
Gravity gradiometry research and development has intensified in recent years to the extent that technologies providing a resolution of about 1 eotvos per 1 second average shall likely soon be available for multiple critical applications such as natural resources exploration, oil reservoir monitoring and defence establishment. Much of the content of this paper was composed a decade ago, and only minor modifications were required for the conclusions to be just as applicable today. In this paper we demonstrate how gravity gradient data can be modelled, and show some examples of how gravity gradient data can be combined in order to extract valuable information. In particular, this study demonstrates the importance of two gravity gradient components, Txz and Tyz, which, when processed together, can provide more information on subsurface density contrasts than that derived solely from the vertical gravity gradient (Tzz)
Theory of ion-temperature-gradient-driven turbulence in tokamaks
International Nuclear Information System (INIS)
Lee, G.S.; Diamond, P.H.
1986-01-01
An analytic theory of ion-temperature-gradient-driven turbulence in tokamaks is presented. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity chi/sub i/ = 0.4[(π/2)ln(1 + eta/sub i/)] 2 [(1 + eta/sub i/)/tau] 2 rho/sub s/ 2 c/sub s//L/sub s/ is derived and is found to be consistent with experimentally-deduced thermal diffusivities. The associated electron thermal diffusivity and particle and heat-pinch velocities are also calculated. The effect of impurity gradients on saturated ion-temperature-gradient-driven turbulence is discussed and a related explanation of density profile steepening during Z-mode operation is proposed. 35 refs., 4 figs
Fluids density functional theory and initializing molecular dynamics simulations of block copolymers
Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.
2016-03-01
Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.
MAGNETIC RECONNECTION IN NON-EQUILIBRIUM IONIZATION PLASMA
International Nuclear Information System (INIS)
Imada, S.; Shimizu, T.; Murakami, I.; Watanabe, T.; Hara, H.
2011-01-01
We have studied the effect of time-dependent ionization and the recombination processes on magnetic reconnection in the solar corona. Petschek-type steady reconnection, in which the magnetic energy is mainly converted at the slow-mode shocks, was assumed. We carried out the time-dependent ionization calculation in the magnetic reconnection structure. We only calculated the transient ionization of iron; the other species were assumed to be in ionization equilibrium. The intensity of line emissions at specific wavelengths was also calculated for comparison with Hinode or other observations in future. We found the following: (1) iron is mostly in non-equilibrium ionization in the reconnection region; (2) the intensity of line emission estimated by the time-dependent ionization calculation is significantly different from that determined from the ionization equilibrium assumption; (3) the effect of time-dependent ionization is sensitive to the electron density in the case where the electron density is less than 10 10 cm –3 ; (4) the effect of thermal conduction lessens the time-dependent ionization effect; and (5) the effect of radiative cooling is negligibly small even if we take into account time-dependent ionization.
Equilibrium calculations and mode analysis
International Nuclear Information System (INIS)
Herrnegger, F.
1987-01-01
The STEP asymptotic stellarator expansion procedure was used to study the MHD equilibrium and stability properties of stellarator configurations without longitudinal net-current, which also apply to advanced stellarators. The effects of toroidal curvature and magnetic well, and the Shafranov shift were investigated. A classification of unstable modes in toroidal stellarators is given. For WVII-A coil-field configurations having a β value of 1% and a parabolic pressure profile, no free-boundary modes are found. This agrees with the experimental fact that unstable behavior of the plasma column is not observed for this parameter range. So a theoretical β-limit for stability against ideal MHD modes can be estimated by mode analysis for the WVII-A device
Stellar Equilibrium in Semiclassical Gravity.
Carballo-Rubio, Raúl
2018-02-09
The phenomenon of quantum vacuum polarization in the presence of a gravitational field is well understood and is expected to have a physical reality, but studies of its backreaction on the dynamics of spacetime are practically nonexistent outside of the specific context of homogeneous cosmologies. Building on previous results of quantum field theory in curved spacetimes, in this Letter we first derive the semiclassical equations of stellar equilibrium in the s-wave Polyakov approximation. It is highlighted that incorporating the polarization of the quantum vacuum leads to a generalization of the classical Tolman-Oppenheimer-Volkoff equation. Despite the complexity of the resulting field equations, it is possible to find exact solutions. Aside from being the first known exact solutions that describe relativistic stars including the nonperturbative backreaction of semiclassical effects, these are identified as a nontrivial combination of the black star and gravastar proposals.
Risk premia in general equilibrium
DEFF Research Database (Denmark)
Posch, Olaf
This paper shows that non-linearities can generate time-varying and asymmetric risk premia over the business cycle. These (empirical) key features become relevant and asset market implications improve substantially when we allow for non-normalities in the form of rare disasters. We employ explici......'s effective risk aversion.......This paper shows that non-linearities can generate time-varying and asymmetric risk premia over the business cycle. These (empirical) key features become relevant and asset market implications improve substantially when we allow for non-normalities in the form of rare disasters. We employ explicit...... solutions of dynamic stochastic general equilibrium models, including a novel solution with endogenous labor supply, to obtain closed-form expressions for the risk premium in production economies. We find that the curvature of the policy functions affects the risk premium through controlling the individual...
Neoclassical equilibrium in gyrokinetic simulations
International Nuclear Information System (INIS)
Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph.
2009-01-01
This paper presents a set of model collision operators, which reproduce the neoclassical equilibrium and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on an entropy variational principle, which allows one to perform a fast calculation of the neoclassical diffusivity and poloidal velocity. It is shown that the force balance equation is recovered at lowest order in the expansion parameter, the normalized gyroradius, hence allowing one to calculate correctly the radial electric field. Also, the conventional neoclassical transport and the poloidal velocity are reproduced in the plateau and banana regimes. The advantages and drawbacks of the various model operators are discussed in view of the requirements for neoclassical and turbulent transport.