Bond-Length Distortions in Strained Semiconductor Alloys
International Nuclear Information System (INIS)
Woicik, J.C.; Pellegrino, J.G.; Steiner, B.; Miyano, K.E.; Bompadre, S.G.; Sorensen, L.B.; Lee, T.; Khalid, S.
1997-01-01
Extended x-ray absorption fine structure measurements performed at In-K edge have resolved the outstanding issue of bond-length strain in semiconductor-alloy heterostructures. We determine the In-As bond length to be 2.581±0.004 Angstrom in a buried, 213 Angstrom thick Ga 0.78 In 0.22 As layer grown coherently on GaAs(001). This bond length corresponds to a strain-induced contraction of 0.015±0.004 Angstrom relative to the In-As bond length in bulk Ga 1-x In x As of the same composition; it is consistent with a simple model which assumes a uniform bond-length distortion in the epilayer despite the inequivalent In-As and Ga-As bond lengths. copyright 1997 The American Physical Society
Convective equilibrium and mixing-length theory for stellarator reactors
International Nuclear Information System (INIS)
Ho, D.D.M.; Kulsrud, R.M.
1985-09-01
In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given
Performance of quantum Monte Carlo for calculating molecular bond lengths
Energy Technology Data Exchange (ETDEWEB)
Cleland, Deidre M., E-mail: deidre.cleland@csiro.au; Per, Manolo C., E-mail: manolo.per@csiro.au [CSIRO Virtual Nanoscience Laboratory, 343 Royal Parade, Parkville, Victoria 3052 (Australia)
2016-03-28
This work investigates the accuracy of real-space quantum Monte Carlo (QMC) methods for calculating molecular geometries. We present the equilibrium bond lengths of a test set of 30 diatomic molecules calculated using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods. The effect of different trial wavefunctions is investigated using single determinants constructed from Hartree-Fock (HF) and Density Functional Theory (DFT) orbitals with LDA, PBE, and B3LYP functionals, as well as small multi-configurational self-consistent field (MCSCF) multi-determinant expansions. When compared to experimental geometries, all DMC methods exhibit smaller mean-absolute deviations (MADs) than those given by HF, DFT, and MCSCF. The most accurate MAD of 3 ± 2 × 10{sup −3} Å is achieved using DMC with a small multi-determinant expansion. However, the more computationally efficient multi-determinant VMC method has a similar MAD of only 4.0 ± 0.9 × 10{sup −3} Å, suggesting that QMC forces calculated from the relatively simple VMC algorithm may often be sufficient for accurate molecular geometries.
The Supermarket Model with Bounded Queue Lengths in Equilibrium
Brightwell, Graham; Fairthorne, Marianne; Luczak, Malwina J.
2018-04-01
In the supermarket model, there are n queues, each with a single server. Customers arrive in a Poisson process with arrival rate λ n , where λ = λ (n) \\in (0,1) . Upon arrival, a customer selects d=d(n) servers uniformly at random, and joins the queue of a least-loaded server amongst those chosen. Service times are independent exponentially distributed random variables with mean 1. In this paper, we analyse the behaviour of the supermarket model in the regime where λ (n) = 1 - n^{-α } and d(n) = \\lfloor n^β \\rfloor , where α and β are fixed numbers in (0, 1]. For suitable pairs (α , β ) , our results imply that, in equilibrium, with probability tending to 1 as n → ∞, the proportion of queues with length equal to k = \\lceil α /β \\rceil is at least 1-2n^{-α + (k-1)β } , and there are no longer queues. We further show that the process is rapidly mixing when started in a good state, and give bounds on the speed of mixing for more general initial conditions.
The Golden ratio, ionic and atomic radii and bond lengths
Czech Academy of Sciences Publication Activity Database
Heyrovská, Rajalakshmi
2005-01-01
Roč. 103, 6-8 (2005), s. 877-882 ISSN 0026-8976 R&D Projects: GA MPO(CZ) 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : Bohr radius * bond lengths * axial ratios Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.351, year: 2005
Bond lengths and bond strengths in compounds of the 5f elements
International Nuclear Information System (INIS)
Zachariasen, W.H.
1975-01-01
The variation of bond length (D) with bond strength (S) in normal valence compounds of 3d, 4d, 5d-4f, and 6d-5f elements can be represented approximately as D(S)=D(0.5) F(S), where D(0.5) is a characteristic constant for a given bond and F(S) an empirical function which is the same for all bonds. A bond strength Ssub(ij)=ssub(ji) is assigned to the bond between atoms i and j such that Σsub(j) Ssub(ij)=vsub(i) and Σsub(i) Ssub(ij)=vsub(j), where vsub(i) and vsub(j) are the normal valences of the two atoms. The function F(S) decreases monotonically with increasing S, and is normalized to unity at S=0.5, so that the constant D(0.5) has the physical meaning of being the bond length adjusted to S=0.5. The method described above was used to interpret and systematize the experimental results on bond lengths in oxides, halides, and oxyhalides of the 5f elements. (U.S.)
The extended variant of the bond valence-bond length correlation curve for boron(III)-oxygen bonds
International Nuclear Information System (INIS)
Sidey, Vasyl
2015-01-01
The extended variant of the bond valence (s)-bond length (r) correlation curve for boron(III)-oxygen bonds has been closely approximated using the three-parameter function s = [k/(r - l)] - m, where s is measured in valence units (vu), r is measured in Aa, k = 0.53 Aa.vu, l = 0.975(1) Aa and m = 0.32 vu. The function s = exp[(r 0 - r)/b] traditionally used in the modern bond valence model requires the separate set of the bond valence parameters (r 0 = 1.362 Aa; b = 0.23 Aa) in order to approximate the above s-r curve for the bonds shorter than ∝1.3 Aa.
Bond lengths in Cd1-xZnxTe beyond linear laws revisited
International Nuclear Information System (INIS)
Koteski, V.; Haas, H.; Holub-Krappe, E.; Ivanovic, N.; Mahnke, H.-E.
2004-01-01
We have investigated the development of local bond lengths with composition in the Cd 1-x Zn x Te mixed system by measuring the fine structure in X-ray absorption (EXAFS) at all three constituent atoms. The bond strength is found to dominate over the averaging of the bulk so that the local bond length deviates only slightly from its natural value determined for the pure binary components ZnTe and CdTe, respectively. The deviations are significantly less than predicted by a simple radial force constant model for tetrahedrally co-ordinated binary systems, and the bond-length variation with concentration is significantly non-linear. For the second shell, bimodal anion-anion distances are found while the cation-cation distances can already be described by the virtual crystal approximation. In the diluted regime close to the end-point compounds, we have complemented our experimental work by ab initio calculations based on density functional theory with the WIEN97 program using the linearised augmented plane wave method. Equilibrium atomic lattice positions have been calculated for the substitutional isovalent metal atom in a 32-atom super cell, Zn in the CdTe lattice or Cd in the ZnTe lattice, respectively, yielding good agreement with the atomic distances as determined in our EXAFS experiments
Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.
Wang, Weizhou; Hobza, Pavel
2008-05-01
The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.
Bond-length fluctuations in the copper oxide superconductors
Energy Technology Data Exchange (ETDEWEB)
Goodenough, John B [Texas Materials Institute, ETC 9.102, University of Texas at Austin, Austin, TX 78712 (United States)
2003-02-26
Superconductivity in the copper oxides occurs at a crossover from localized to itinerant electronic behaviour, a transition that is first order. A spinodal phase segregation is normally accomplished by atomic diffusion; but where it occurs at too low a temperature for atomic diffusion, it may be realized by cooperative atomic displacements. Locally cooperative, fluctuating atomic displacements may stabilize a distinguishable phase lying between a localized-electron phase and a Fermi-liquid phase; this intermediate phase exhibits quantum-critical-point behaviour with strong electron-lattice interactions making charge transport vibronic. Ordering of the bond-length fluctuations at lower temperatures would normally stabilize a charge-density wave (CDW), which suppresses superconductivity. It is argued that in the copper oxide superconductors, crossover occurs at an optimal doping concentration for the formation of ordered two-electron/two-hole bosonic bags of spin S = 0 in a matrix of localized spins; the correlation bags contain two holes in a linear cluster of four copper centres ordered within alternate Cu-O-Cu rows of a CuO{sub 2} sheet. This ordering is optimal at a hole concentration per Cu atom of p {approx} 1/6, but it is not static. Hybridization of the vibronic electrons with the phonons that define long-range order of the fluctuating (Cu-O) bond lengths creates barely itinerant, vibronic quasiparticles of heavy mass. The heavy itinerant vibrons form Cooper pairs having a coherence length of the dimension of the bosonic bags. It is the hybridization of electrons and phonons that, it is suggested, stabilizes the superconductive state relative to a CDW state. (topical review)
Vervloed, J.; Kwakernaak, A.; Poulis, H.
2008-01-01
This paper focuses on the influences of overlap length, bond line thickness and pretreatment on the mechanical properties of adhesive bonds. In order to determine the bond strength, lap shear tests were performed. The researched adhesives are a 2 component epoxy and MS polymer. The smallest overlap
Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan
2017-05-01
Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.
Chemical bonding and the equilibrium composition of Grignard reagents in ethereal solutions.
Henriques, André M; Barbosa, André G H
2011-11-10
A thorough analysis of the electronic structure and thermodynamic aspects of Grignard reagents and its associated equilibrium composition in ethereal solutions is performed. Considering methylmagnesium halides containing fluorine, chlorine, and bromine, we studied the neutral, charged, and radical species associated with their chemical equilibrium in solution. The ethereal solvents considered, tetrahydrofuran (THF) and ethyl ether (Et(2)O), were modeled using the polarizable continuum model (PCM) and also by explicit coordination to the Mg atoms in a cluster. The chemical bonding of the species that constitute the Grignard reagent is analyzed in detail with generalized valence bond (GVB) wave functions. Equilibrium constants were calculated with the DFT/M06 functional and GVB wave functions, yielding similar results. According to our calculations and existing kinetic and electrochemical evidence, the species R(•), R(-), (•)MgX, and RMgX(2)(-) must be present in low concentration in the equilibrium. We conclude that depending on the halogen, a different route must be followed to produce the relevant equilibrium species in each case. Chloride and bromide must preferably follow a "radical-based" pathway, and fluoride must follow a "carbanionic-based" pathway. These different mechanisms are contrasted against the available experimental results and are proven to be consistent with the existing thermodynamic data on the Grignard reagent equilibria.
Analysis of surface bond lengths reported for chemisorption on metal surfaces
Mitchell, K. A. R.
1985-01-01
A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.
Charge transfer and bond lengths in YBa2Cu3-xMxO6+y
International Nuclear Information System (INIS)
Jorgensen, J.D.; Rhyne, J.J.; Neumann, D.A.; Miceli, P.F.; Tarascon, J.M.; Greene, L.H.; Barboux, P.
1989-01-01
We discuss the effects of doping on the Cu chain sites in YBa 2 Cu 3-x M x O 6+y . The relationship between bond lengths obtained from neutron scattering and charge transfer is evaluated in terms of bond valence. In particular, it is concluded that removing an oxygen from the chains transfers one electron to the planes. 24 refs., 3 figs
Effect of Different Bar Embedment Length on Bond-Slip in Plain and Fiber Reinforced Concrete
Jankovic, D.; Chopra, M.B.; Kunnath, S.K.
2001-01-01
This research aims to study the behaviour of the concrete-steel bond using numerical models, taking into account the effect of the different bar embedment length. Both plain and fiber reinforced concrete (FRC) are modeled. The interface bond stress as well as load-displacement response of the
Bond length effects during the dissociation of O2 on Ni(1 1 1)
International Nuclear Information System (INIS)
Shuttleworth, I.G.
2015-01-01
Graphical abstract: - Highlights: • The dissociation of O 2 on Ni(1 1 1) has been investigated using the Nudged Elastic Band (NEB) technique. • An exceptional correlation has been identified between the O/Ni bond order and the O 2 bond length for a series of sterically different reaction paths. • Direct magnetic phenomena accompany these processes suggesting further mechanisms for experimental control. - Abstract: The interaction between O 2 and Ni(1 1 1) has been investigated using spin-polarised density functional theory. A series of low activation energy (E A = 103–315 meV) reaction pathways corresponding to precursor and non-precursor mediated adsorption have been identified. It has been seen that a predominantly pathway-independent correlation exists between O−Ni bond order and the O 2 bond length. This correlation demonstrates that the O−O interaction predominantly determines the bonding of this system
Bond length contraction in Au nanocrystals formed by ion implantation into thin SiO2
International Nuclear Information System (INIS)
Kluth, P.; Johannessen, B.; Giraud, V.; Cheung, A.; Glover, C.J.; Azevedo, G. de M; Foran, G.J.; Ridgway, M.C.
2004-01-01
Au nanocrystals (NCs) fabricated by ion implantation into thin SiO 2 and annealing were investigated by means of extended x-ray absorption fine structure (EXAFS) spectroscopy and transmission electron microscopy. A bond length contraction was observed and can be explained by surface tension effects in a simple liquid-drop model. Such results are consistent with previous reports on nonembedded NCs implying a negligible influence of the SiO 2 matrix. Cumulant analysis of the EXAFS data suggests surface reconstruction or relaxation involving a further shortened bond length. A deviation from the octahedral closed shell structure is apparent for NCs of size 25 A
Doping and bond length contributions to Mn K-edge shift in La1 ...
Indian Academy of Sciences (India)
... corresponds to the shift in the center of gravity of the unoccupied Mn 4-band contributing to the Mn K-absorption edge region. This correspondence is then used to separate the doping and size contributions to the edge shift due to variation in the number of electrons in valence band and Mn-O bond lengths, respectively, ...
Scaling of the critical free length for progressive unfolding of self-bonded graphene
Energy Technology Data Exchange (ETDEWEB)
Kwan, Kenny; Cranford, Steven W., E-mail: s.cranford@neu.edu [Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering, 360 Huntington Avenue, Boston, Massachusetts 02115 (United States)
2014-05-19
Like filled pasta, rolled or folded graphene can form a large nanocapsule surrounding a hollow interior. Use as a molecular carrier, however, requires understanding of the opening of such vessels. Here, we investigate a monolayer sheet of graphene as a theoretical trial platform for such a nanocapsule. The graphene is bonded to itself via aligned disulfide (S-S) bonds. Through theoretical analysis and atomistic modeling, we probe the critical nonbonded length (free length, L{sub crit}) that induces fracture-like progressive unfolding as a function of folding radius (R{sub i}). We show a clear linear scaling relationship between the length and radius, which can be used to determine the necessary bond density to predict mechanical opening/closing. However, stochastic dissipated energy limits any exact elastic formulation, and the required energy far exceeds the dissociation energy of the S-S bond. We account for the necessary dissipated kinetic energy through a simple scaling factor (Ω), which agrees well with computational results.
Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M
2017-09-01
Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.
Directory of Open Access Journals (Sweden)
Jefferson Vinicius Bozelli
2013-12-01
Full Text Available OBJECTIVE: The aim of this study was to assess the time spent for direct (DBB - direct bracket bonding and indirect (IBB - indirect bracket bonding bracket bonding techniques. The time length of laboratorial (IBB and clinical steps (DBB and IBB as well as the prevalence of loose bracket after a 24-week follow-up were evaluated. METHODS: Seventeen patients (7 men and 10 women with a mean age of 21 years, requiring orthodontic treatment were selected for this study. A total of 304 brackets were used (151 DBB and 153 IBB. The same bracket type and bonding material were used in both groups. Data were submitted to statistical analysis by Wilcoxon non-parametric test at 5% level of significance. RESULTS: Considering the total time length, the IBB technique was more time-consuming than the DBB (p < 0.001. However, considering only the clinical phase, the IBB took less time than the DBB (p < 0.001. There was no significant difference (p = 0.910 for the time spent during laboratorial positioning of the brackets and clinical session for IBB in comparison to the clinical procedure for DBB. Additionally, no difference was found as for the prevalence of loose bracket between both groups. CONCLUSION: the IBB can be suggested as a valid clinical procedure since the clinical session was faster and the total time spent for laboratorial positioning of the brackets and clinical procedure was similar to that of DBB. In addition, both approaches resulted in similar frequency of loose bracket.
Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis
Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.
2018-04-01
Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous
Bond-equilibrium theory of liquid Se-Te alloys. II. Effect of singly attached ring molecules
Cutler, Melvin; Bez, Wolfgang G.
1981-06-01
A statistical-mechanical theory for bond equilibrium of chain polymers containing threefold (3F) and onefold (1F) bond defects is extended to include the effects of free ring molecules and ring molecules attached to chains by a single 3F atom. Positively charged singly attached rings are shown to play a key role in bond equilibrium in liquid Sex Te1-x by permitting the formation of ion pairs in which both constituents are effectively chain terminators, thus decreasing the average polymer size. The theory is applied to explain the behavior of the paramagnetic susceptibility, χp, and electronic transport as affected by the Fermi energy EF. It is found that the increase in χp with the concentration of Te is primarily the result of the smaller energy for breaking Te bonds. In addition, attached rings play an important role in determining the effect of temperature on χp. At x<~0.5, the concentrations of both free and attached rings becomes small at high T because of the high concentration of bond defects.
Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure
Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas
2017-06-01
Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.
International Nuclear Information System (INIS)
Pommeret, Stanislas; Leicknam, Jean-Claude; Bratos, Savo; Musat, Raluca; Renault, Jean Philippe
2009-01-01
The published work on H bond dynamics mainly refers to diluted solutions HDO/D 2 O rather than to normal water. The reasons for this choice are both theoretical and experimental. Mechanical isolation of the OH vibrator eliminating the resonant energy transfer makes it a better probe of the local H bond network, while the dilution in heavy water reduces the infrared absorption, which permits the use of thicker experimental cells. The isotopic substitution does not alter crucially the nature of the problem. The length r of an OH . . . O group is statistically distributed over a large interval comprised between 2.7 and 3.2 A with a mean value r 0 = 2.86 A. Liquid water may thus be viewed as a mixture of hydrogen bonds of different length. Two important characteristics of hydrogen bonding must be mentioned. (i) The OH stretching vibrations are strongly affected by this interaction. The shorter the length r of the hydrogen bond, the strongest the H bond link and the lower is its frequency ω: the covalent OH bond energy is lent to the OH. . .O bond and reinforces the latter. A number of useful relationships between ω and r were published to express this correlation. The one adopted in our previous work is the relationship due to Mikenda. (ii) Not only the OH vibrations, but also the HDO rotations are influenced noticeably by hydrogen bonding. This is due to steric forces that hinder the HDO rotations. As they are stronger in short than in long hydrogen bonds, rotations are slower in the first case than in the second. This effect was only recently discovered, but its existence is hardly to be contested. In the present contribution, we want to revisit the relationship between the frequency of the OH vibrator and the distance OH. . .O.
Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys
International Nuclear Information System (INIS)
Mattila, T.; Zunger, A.
1999-01-01
Valence force field simulations utilizing large supercells are used to investigate the bond lengths in wurtzite and zinc-blende In x Ga 1-x N and Al x Ga 1-x N random alloys. We find that (i) while the first-neighbor cation endash anion shell is split into two distinct values in both wurtzite and zinc-blende alloys (R Ga-N 1 ≠R In-N 1 ), the second-neighbor cation endash anion bonds are equal (R Ga-N 2 =R In-N 2 ). (ii) The second-neighbor cation endash anion bonds exhibit a crucial difference between wurtzite and zinc-blende binary structures: in wurtzite we find two bond distances which differ in length by 13% while in the zinc-blende structure there is only one bond length. This splitting is preserved in the alloy, and acts as a fingerprint, distinguishing the wurtzite from the zinc-blende structure. (iii) The small splitting of the first-neighbor cation endash anion bonds in the wurtzite structure due to nonideal c/a ratio is preserved in the alloy, but is obscured by the bond length broadening. (iv) The cation endash cation bond lengths exhibit three distinct values in the alloy (Ga endash Ga, Ga endash In, and In endash In), while the anion endash anion bonds are split into two values corresponding to N endash Ga endash N and N endash In endash N. (v) The cation endash related splitting of the bonds and alloy broadening are considerably larger in InGaN alloy than in AlGaN alloy due to larger mismatch between the binary compounds. (vi) The calculated first-neighbor cation endash anion and cation endash cation bond lengths in In x Ga 1-x N alloy are in good agreement with the available experimental data. The remaining bond lengths are provided as predictions. In particular, the predicted splitting for the second-neighbor cation endash anion bonds in the wurtzite structure awaits experimental testing. copyright 1999 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)
2012-11-15
Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.
International Nuclear Information System (INIS)
Omar, M.S.
2012-01-01
Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å 3 for bulk to 57 Å 3 for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10 −6 K −1 for a bulk crystal down to a minimum value of 0.1 × 10 −6 K −1 for a 6 nm diameter nanoparticle.
Czech Academy of Sciences Publication Activity Database
Heyrovská, Raji
2006-01-01
Roč. 432, č. 1-3 (2006), s. 348-351 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : length of the hydrogen bond * ionic radius * Golden ratio Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006
Origin of the X-Hal (Hal ) Cl, Br) Bond-Length Change in the Halogen-Bonded Complexes
Czech Academy of Sciences Publication Activity Database
Wang, Weizhou; Hobza, Pavel
2008-01-01
Roč. 112, č. 17 (2008), s. 4114-4119 ISSN 1089-5639 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550510 Institutional research plan: CEZ:AV0Z40550506 Keywords : hal ogen bonded complexes * MP2(full)/6-311++G(d,p) method * natural bond orbital analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.871, year: 2008
DEFF Research Database (Denmark)
Shim, Irene; Pelino, Mario; Gingerich, Karl A.
1992-01-01
, and they hardly contribute to the bonding. The chemical bond in the YC molecule is polar with charge transfer from Y to C giving rise to a dipole moment of 3.90 D at 3.9 a.u. in the 4PI ground state. Mass spectrometric equilibrium investigations in the temperature range 2365-2792 K have resulted...
Sigala, Paul A; Ruben, Eliza A; Liu, Corey W; Piccoli, Paula M B; Hohenstein, Edward G; Martínez, Todd J; Schultz, Arthur J; Herschlag, Daniel
2015-05-06
Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (ΔGf) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to ΔGf, but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H···O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite ΔGf differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond ΔGf are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.
2014-12-01
In reinforced concrete systems, ensuring that a good bond between the concrete and the embedded reinforcing steel is critical to : long-term structural performance. Without good bond between the two, the system simply cannot behave as intended. The b...
Grohe, Kristof; Movellan, Kumar Tekwani; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus
2017-05-01
We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1 H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.
The accuracy of molecular bond lengths computed by multireference electronic structure methods
International Nuclear Information System (INIS)
Shepard, Ron; Kedziora, Gary S.; Lischka, Hans; Shavitt, Isaiah; Mueller, Thomas; Szalay, Peter G.; Kallay, Mihaly; Seth, Michael
2008-01-01
We compare experimental R e values with computed R e values for 20 molecules using three multireference electronic structure methods, MCSCF, MR-SDCI, and MR-AQCC. Three correlation-consistent orbital basis sets are used, along with complete basis set extrapolations, for all of the molecules. These data complement those computed previously with single-reference methods. Several trends are observed. The SCF R e values tend to be shorter than the experimental values, and the MCSCF values tend to be longer than the experimental values. We attribute these trends to the ionic contamination of the SCF wave function and to the corresponding systematic distortion of the potential energy curve. For the individual bonds, the MR-SDCI R e values tend to be shorter than the MR-AQCC values, which in turn tend to be shorter than the MCSCF values. Compared to the previous single-reference results, the MCSCF values are roughly comparable to the MP4 and CCSD methods, which are more accurate than might be expected due to the fact that these MCSCF wave functions include no extra-valence electron correlation effects. This suggests that static valence correlation effects, such as near-degeneracies and the ability to dissociate correctly to neutral fragments, play an important role in determining the shape of the potential energy surface, even near equilibrium structures. The MR-SDCI and MR-AQCC methods predict R e values with an accuracy comparable to, or better than, the best single-reference methods (MP4, CCSD, and CCSD(T)), despite the fact that triple and higher excitations into the extra-valence orbital space are included in the single-reference methods but are absent in the multireference wave functions. The computed R e values using the multireference methods tend to be smooth and monotonic with basis set improvement. The molecular structures are optimized using analytic energy gradients, and the timings for these calculations show the practical advantage of using variational wave
The accuracy of molecular bond lengths computed by multireference electronic structure methods
Energy Technology Data Exchange (ETDEWEB)
Shepard, Ron [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: shepard@tcg.anl.gov; Kedziora, Gary S. [High Performance Technologies Inc., 2435 5th Street, WPAFB, OH 45433 (United States); Lischka, Hans [Institute for Theoretical Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna (Austria); Shavitt, Isaiah [Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801 (United States); Mueller, Thomas [Juelich Supercomputer Centre, Research Centre Juelich, D-52425 Juelich (Germany); Szalay, Peter G. [Laboratory for Theoretical Chemistry, Institute of Chemistry, Eoetvoes Lorand University, P.O. Box 32, H-1518 Budapest (Hungary); Kallay, Mihaly [Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest (Hungary); Seth, Michael [Department of Chemistry, University of Calgary, 2500 University Drive, N.W., Calgary, Alberta, T2N 1N4 (Canada)
2008-06-16
We compare experimental R{sub e} values with computed R{sub e} values for 20 molecules using three multireference electronic structure methods, MCSCF, MR-SDCI, and MR-AQCC. Three correlation-consistent orbital basis sets are used, along with complete basis set extrapolations, for all of the molecules. These data complement those computed previously with single-reference methods. Several trends are observed. The SCF R{sub e} values tend to be shorter than the experimental values, and the MCSCF values tend to be longer than the experimental values. We attribute these trends to the ionic contamination of the SCF wave function and to the corresponding systematic distortion of the potential energy curve. For the individual bonds, the MR-SDCI R{sub e} values tend to be shorter than the MR-AQCC values, which in turn tend to be shorter than the MCSCF values. Compared to the previous single-reference results, the MCSCF values are roughly comparable to the MP4 and CCSD methods, which are more accurate than might be expected due to the fact that these MCSCF wave functions include no extra-valence electron correlation effects. This suggests that static valence correlation effects, such as near-degeneracies and the ability to dissociate correctly to neutral fragments, play an important role in determining the shape of the potential energy surface, even near equilibrium structures. The MR-SDCI and MR-AQCC methods predict R{sub e} values with an accuracy comparable to, or better than, the best single-reference methods (MP4, CCSD, and CCSD(T)), despite the fact that triple and higher excitations into the extra-valence orbital space are included in the single-reference methods but are absent in the multireference wave functions. The computed R{sub e} values using the multireference methods tend to be smooth and monotonic with basis set improvement. The molecular structures are optimized using analytic energy gradients, and the timings for these calculations show the practical
International Nuclear Information System (INIS)
Meyerstein, D.; Ben-Gurion Univ. of the Negev, Beersheba
1989-01-01
Pulse-Radiolysis is a powerful technique for the determination of the equilibrium constants of the homolytic cleavage of metal-carbon σ bonds in aqueous solutions. In most systems studied the observed reaction is: L m-1 M (n+1) -R + L ↔ ML m. n + ·R. Therefore the results do not enable a direct determination of the metal-carbon bond dissociation energies. The results obtained indicate that these equilibrium constants are not directly related to the redox potential of either L .m M (n) or of ·R, or to the activation energies for the homolytic cleavage of a family of similarly substituted ethanes. (author)
International Nuclear Information System (INIS)
Rodriguez S, A.; Martinez Q, E.
1996-01-01
The vibrational spectra of different uranyl compounds were studied. The wave number was related to the harmonic oscillator model and to the mathematical expression of Badger as modified by Jones, to determine the strength and the bond length of atoms U and O in UO 2 2+ . A mathematical simplification develop by us is proposed and its results compared with values obtained by other methods. (Author)
Gieseking, Rebecca L.; Risko, Chad; Bredas, Jean-Luc
2015-01-01
Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.
Gieseking, Rebecca L.
2015-06-18
Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.
Yoshidomi, Shohei; Mishima, Megumi; Seyama, Shin; Abe, Manabu; Fujiwara, Yoshihisa; Ishibashi, Taka-Aki
2017-03-06
Localized singlet diradicals are key intermediates in bond homolyses. The singlet diradicals are energetically much less stable than the σ-bonded species. In general, only one-way reactions from diradicals to σ-bonded species are observed. In this study, a thermal equilibrium between a singlet 1,2-diazacyclopentane-3,5-diyl diradical and the corresponding σ-bonded species was directly observed. The singlet diradical was more stable than the σ-bonded species. The solvent effect clarified key features, such as the zwitterionic character of the singlet diradical. The effect of the nitrogen atoms is discussed in detail. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Johann Hlina
2016-08-01
Full Text Available Polysilanes are known to exhibit the interesting property of σ-bond electron delocalization. By employing optical spectroscopy (UV-vis, it is possible to judge the degree of delocalization and also differentiate parts of the molecules which are conjugated or not. The current study compares oligosilanes of similar chain length but different substitution pattern. The size of the substituents determines the spatial orientation of the main chain and also controls the conformational flexibility. The chemical nature of the substituents affects the orbital energies of the molecules and thus the positions of the absorption bands.
International Nuclear Information System (INIS)
Liu Guozheng; Liu Boli
1995-01-01
Some bond length regularities in MO 6 , MO-4, MX 5 α and MX 4 αβ moieties of technetium and rhenium compounds are summarized and rationalized by cavity model. The chemical properties of technetium and rhenium are so similar that their corresponding complexes have almost the same configuration and M-X bond lengths when they are in cavity-controlled state. Technetium and Rhenium combine preferably with N, O, F, S, Cl and Br when they are in higher oxidation states (>3), but preferably with P, Se etc. when they are in lower oxidation states ( 4 αβ is approximately constant; (2) the average M-X bond length of MX 6 varies moderately with the oxidation state of M; (3) the bond length of M-X trans to M-α in MX 5 α has a linear relationship with the angle
Bond-length strain in buried Ga1-xInxAs thin-alloy films grown coherently on InP(001)
International Nuclear Information System (INIS)
Woicik, J.C.; Gupta, J.A.; Watkins, S.P.; Crozier, E.D.
1998-01-01
The bond lengths in a series of strained, buried Ga 1-x In x As thin-alloy films grown coherently on InP(001) have been determined by high-resolution extended x-ray absorption fine-structure measurements. Comparison with a random-cluster calculation demonstrates that the external in-plane epitaxial strain imposed by pseudomorphic growth opposes the natural bond-length distortions due to alloying.copyright 1998 American Institute of Physics
共价键长的变化规律及计算%Variation Rule of Covalent Bond Length and Its Calculation Method
Institute of Scientific and Technical Information of China (English)
徐永群; 陈年友
2001-01-01
研究了共价键长的变化规律,提出了两个影响键长的参数,即配位体的半径与中心原子半径之比Rratio和由中心原子组成的基团的拓扑指数F2,用BP神经网络法逼近了50个、预测了11个简单无机分子中非含氢原子键的键长,其计算误差基本上在2pm以内。%The variation rule of covalent bond lengths is investigated.Two parameters which influence covalent bond lengths are presented: the radius ratio of the ligand to the centre atom and the topological index of the group of centre atom.With BP neural networks, 50 bond lengths have been approached and other 11 bond lengths have been forecasted. Errors of calculated bond lengths is almost within 2pm.
Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q
2012-01-21
From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.
Equilibrium structure of rare earth trihalides
International Nuclear Information System (INIS)
Oezgueven, Y.
2004-01-01
In this work, we have calculate the equilibrium structure of the yttrium tribromide (YBr 3 ) and its dimer using the interionic force model . In the determination of the model parameters of Y monomer and dimer we use the measured value of the breathing mode of molecular dimer in the pure molecular liquid. We compare our results for the equilibrium structure of molecular dimer namely, the bond lengths and bond angles, with measured values from electron diffraction and with the results of other theoretical calculations. The agreement between calculated and measured spectra frequencies of vibrational modes can be considered as very reasonable
2014-12-01
In reinforced concrete systems, ensuring that a good bond between the : concrete and the embedded reinforcing steel is critical to long-term structural : performance. Without good bond between the two, the system simply cannot : behave as intended. :...
Measurements of the microwave spectrum, Re-H bond length, and Re quadrupole coupling for HRe(CO)5
Kukolich, Stephen G.; Sickafoose, Shane M.
1993-11-01
Rotational transition frequencies for rhenium pentacarbonyl hydride were measured in the 4-10 GHz range using a Flygare-Balle type microwave spectrometer. The rotational constants and Re nuclear quadrupole coupling constants for the four isotopomers, (1) H187Re(CO)5, (2) H185Re(CO)5, (3) D187Re(CO)5, and (4) D185Re(CO)5, were obtained from the spectra. For the most common isotopomer, B(1)=818.5464(2) MHz and eq Q(187Re)=-900.13(3) MHz. The Re-H bond length (r0) determined by fitting the rotational constants is 1.80(1) Å. Although the Re atom is located at a site of near-octahedral symmetry, the quadrupole coupling is large due to the large Re nuclear moments. A 2.7% increase in Re quadrupole coupling was observed for D-substituted isotopomers, giving a rather large isotope effect on the quadrupole coupling. The Cax-Re-Ceq angle is 96(1)°, when all Re-C-O angles are constrained to 180°.
Wiersinga, W. M.; Platvoet-ter Schiphorst, M.
1990-01-01
1. Fatty acids have the capacity for inhibition of nuclear T3 binding (INB). The present studies were undertaken to describe the INB-activity of fatty acids as a function of chain length, unsaturated bonds, cis-trans configuration, and esterification. 2. Isolated rat liver nuclei were incubated with
Czech Academy of Sciences Publication Activity Database
Wang, Weizhou; Hobza, Pavel
2008-01-01
Roč. 73, 6/7 (2008), s. 862-872 ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550510 Institutional research plan: CEZ:AV0Z40550506 Keywords : Berlin's theorem * H-bonding * Blue -shifting H-bonding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008
DEFF Research Database (Denmark)
Tsivintzelis, Ioannis; Economou, Ioannis; Kontogeorgis, Georgios
2009-01-01
simpler molecules of similar chemical structure and/or are fitted to Hansen's partial solubility parameters. The methodology is applied to modeling the solubility of three pharmaceuticals, namely acetanilide, phenacetin, and paracetamol, using the nonrandom hydrogen bonding (NRHB) EoS. In all cases...
Directory of Open Access Journals (Sweden)
Thomas Gelbrich
2016-04-01
Full Text Available The crystal structure of the methanol hemisolvate of 5,5-dibromobarbituric acid (1MH displays an H-bonded layer structure which is based on N–H∙∙∙O=C, N–H∙∙∙O(MeOH and (MeOHO–H∙∙∙O interactions. The barbiturate molecules form an H-bonded substructure which has the fes topology. 5,5′-Methanediylbis(5-bromobarbituric acid 2, obtained from a solution of 5,5-dibromobarbituric acid in nitromethane, displays a N–H···O=C bonded framework of the sxd type. The conformation of the pyridmidine ring and the lengths of the ring substituent bonds C5–X and C5–X′ in crystal forms of 5,5-dibromobarbituric acid and three closely related analogues (X = X′ = Br, Cl, F, Me have been investigated. In each case, a conformation close to a C5-endo envelope is correlated with a significant lengthening of the axial C5–X′ in comparison to the equatorial C5–X bond. Isolated molecule geometry optimizations at different levels of theory confirm that the C5-endo envelope is the global conformational energy minimum of 5,5-dihalogenbarbituric acids. The relative lengthening of the axial bond is therefore interpreted as an inherent feature of the preferred envelope conformation of the pyrimidine ring, which minimizes repulsive interactions between the axial substituent and pyrimidine ring atoms.
International Nuclear Information System (INIS)
Oeiras, R. Y.; Silva, E. Z. da
2014-01-01
Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials
Stinson, Craig A; Xia, Yu
2016-06-21
Tandem mass spectrometry (MS/MS) coupled with soft ionization is established as an essential platform for lipid analysis; however, determining high order structural information, such as the carbon-carbon double bond (C[double bond, length as m-dash]C) location, remains challenging. Recently, our group demonstrated a method for sensitive and confident lipid C[double bond, length as m-dash]C location determination by coupling online the Paternò-Büchi (PB) reaction with nanoelectrospray ionization (nanoESI) and MS/MS. Herein, we aimed to expand the scope of the PB reaction for lipid analysis by enabling the reaction with infusion ESI-MS/MS at much higher flow rates than demonstrated in the nanoESI setup (∼20 nL min(-1)). In the new design, the PB reaction was effected in a fused silica capillary solution transfer line, which also served as a microflow UV reactor, prior to ESI. This setup allowed PB reaction optimization and kinetics studies. Under optimized conditions, a maximum of 50% PB reaction yield could be achieved for a standard glycerophosphocholine (PC) within 6 s of UV exposure over a wide flow rate range (0.1-10 μL min(-1)). A solvent composition of 7 : 3 acetone : H2O (with 1% acid or base modifier) allowed the highest PB yields and good lipid ionization, while lower yields were obtained with an addition of a variety of organic solvents. Radical induced lipid peroxidation was identified to induce undesirable side reactions, which could be effectively suppressed by eliminating trace oxygen in the solution via N2 purge. Finally, the utility of coupling the PB reaction with infusion ESI-MS/MS was demonstrated by analyzing a yeast polar lipid extract where C[double bond, length as m-dash]C bond locations were revealed for 35 glycerophospholipids (GPs).
Sexton, Catherine J; López-Serrano, Joaquín; Lledós, Agustí; Duckett, Simon B
2008-10-21
Low temperature UV irradiation of solutions of (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe)(2) yields (eta(5)-C(5)Me(5))Rh(eta(3)-CH(2)CHCH(2))(H), which provides controlled access to the 16-electron fragment (eta(5)-C(5)Me(5))Rh(CH(2)[double bond, length as m-dash]CHMe).
Naatz, Hendrik; Lin, Sijie; Li, Ruibin; Jiang, Wen; Ji, Zhaoxia; Chang, Chong Hyun; Köser, Jan; Thöming, Jorg; Xia, Tian; Nel, Andre E; Mädler, Lutz; Pokhrel, Suman
2017-01-24
The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu + /Cu 2+ and Fe 2+ /Fe 3+ redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.
Directory of Open Access Journals (Sweden)
Nirwan Syarif
2016-11-01
Full Text Available This paper reports molecular dynamics simulation of phospholipase A2 (PLA2– substrate that has been done. Non-bonding length, partial atomic charge and electrostatic energy were used to evaluation the interaction between PLA2 and substrate. The research was subjected for three types of PLA2 of different sources, i.e, homo sapien, bovinus and porcinus, by using computer files of their molecular structures. The files with code 3elo, 1bp2, dan 1y6o were downloaded from protein data bank. Substrate structure can be found in 1y60 and was separated from its enzyme structure and docked into two other PLA2 structures for simulation purpose. Molecular dynamics simulations were done for 30000 steps with constant in number of molecules, volume and temperature (NVT. The results showed the existing of flip-flop mechanism as basic feature of PLA2 – substrate reactions. Interaction length analysis results indicated the presence of water molecules on the structures of 1bp2 and 3elo at the time of the simulation was completed. The existence of aspagine at the reaction site confirmed the theory that this amino acid is responsible for the survival of the reaction. the electrostatic energy increased substantially in the interaction after homo sapien PLA2 (3elo and Bovinus (1bp2 with the substrate. Inverse effect took place in the PLA porcinus (1y6o.
Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M
2015-05-04
Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Naik, Amarja P; Salkar, Akshay V; Majik, Mahesh S; Morajkar, Pranay P
2017-07-01
The photocatalytic degradation mechanism of Amaranth, a recalcitrant carcinogenic azo dye, was investigated using mesoporous anatase TiO 2 under sunlight. Mesoporous anatase TiO 2 of a high photocatalytic activity has been synthesized using a sol-gel method and its photocatalytic activity for the degradation of Amaranth dye has been evaluated with respect to Degussa P25. The effect of bi-dentate complexing agents like oxalic acid, ethylene glycol and urea on the surface properties of TiO 2 catalyst has been investigated using TG-DTA, FTIR, HR-TEM, SAED, PXRD, EDS, UV-DRS, PL, BET N 2 adsorption-desorption isotherm studies and BJH analysis. The influence of catalyst properties such as the mesoporous network, pore volume and surface area on the kinetics of degradation of Amaranth as a function of irradiation time under natural sunlight has been monitored using UV-Vis spectroscopy. The highest rate constant value of 0.069 min -1 was obtained for the photocatalytic degradation of Amaranth using TiO 2 synthesized via a urea assisted sol-gel synthesis method. The effect of the reaction conditions such as pH, TiO 2 concentration and Amaranth concentration on the photodegradation rate has been investigated. The enhanced photocatalytic activity of synthesized TiO 2 in comparison with P25 is attributed to the mesoporous nature of the catalyst leading to increased pore diameter, pore volume, surface area and enhanced charge carrier separation efficiency. New intermediates of photocatalytic degradation of Amaranth, namely, sodium-3-hydroxynaphthalene-2,7-disulphonate, 3-hydroxynaphthalene, sodium-4-aminonaphthalenesulphonate and sodium-4-aminobenzenesulphonate have been identified using LC-ESI-MS for the very first time, providing direct evidence for simultaneous bond cleavage pathways (-C-N-) and (-N[double bond, length as m-dash]N-). A new plausible mechanism of TiO 2 catalysed photodegradation of Amaranth along with the comparison of its toxicity to that of its degradation
Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.
2017-12-01
Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.
Directory of Open Access Journals (Sweden)
Xiao-Wei Yu
Full Text Available The key to enzyme function is the maintenance of an appropriate balance between molecular stability and structural flexibility. The lid domain which is very important for "interfacial activation" is the most flexible part in the lipase structure. In this work, rational design was applied to explore the relationship between lid rigidity and lipase activity by introducing a disulfide bond in the hinge region of the lid, in the hope of improving the thermostability of R. chinensis lipase through stabilization of the lid domain without interfering with its catalytic performance. A disulfide bridge between F95C and F214C was introduced into the lipase from R. chinensis in the hinge region of the lid according to the prediction of the "Disulfide by Design" algorithm. The disulfide variant showed substantially improved thermostability with an eleven-fold increase in the t(1/2 value at 60°C and a 7°C increase of T(m compared with the parent enzyme, probably contributed by the stabilization of the geometric structure of the lid region. The additional disulfide bond did not interfere with the catalytic rate (k(cat and the catalytic efficiency towards the short-chain fatty acid substrate, however, the catalytic efficiency of the disulfide variant towards pNPP decreased by 1.5-fold probably due to the block of the hydrophobic substrate channel by the disulfide bond. Furthermore, in the synthesis of fatty acid methyl esters, the maximum conversion rate by RCLCYS reached 95% which was 9% higher than that by RCL. This is the first report on improving the thermostability of the lipase from R. chinensis by introduction of a disulfide bond in the lid hinge region without compromising the catalytic rate.
Equilibrium structure and atomic vibrations of Nin clusters
Borisova, Svetlana D.; Rusina, Galina G.
2017-12-01
The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.
Srinivasulu, G; Bunkan, A J C; Amedro, D; Crowley, J N
2018-01-31
The rate coefficient (k 1 ) for the reaction of OH radicals with perfluoro ethyl vinyl ether (PEVE, C 2 F 5 OCF[double bond, length as m-dash]CF 2 ) has been measured as a function of temperature (T = 207-300 K) using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence (PLP-LIF) at pressures of 50 or 100 Torr N 2 bath gas. In addition, the rate coefficient was measured at 298 K and in one atmosphere of air by the relative-rate technique with loss of PEVE and reference reactant monitored in situ by IR absorption spectroscopy. The rate coefficient has a negative temperature dependence which can be parameterized as: k 1 (T) = 6.0 × 10 -13 exp[(480 ± 38/T)] cm 3 molecule -1 s -1 and a room temperature value of k 1 (298 K) = (3.0 ± 0.3) × 10 -12 cm 3 molecule -1 s -1 . Highly accurate rate coefficients from the PLP-LIF experiments were achieved by optical on-line measurements of PEVE and by performing the measurements at two different apparatuses. The large rate coefficient and the temperature dependence indicate that the reaction proceeds via OH addition to the C[double bond, length as m-dash]C double bond, the high pressure limit already being reached at 50 Torr N 2 . Based on the rate coefficient and average OH levels, the atmospheric lifetime of PEVE was estimated to be a few days.
Directory of Open Access Journals (Sweden)
Bruce S. Hudson
2013-04-01
Full Text Available Zero-point vibrational level averaging for electron spin resonance (ESR and muon spin resonance (µSR hyperfine coupling constants (HFCCs are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on 13C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C6H7, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH2 of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0, can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.
Energy Technology Data Exchange (ETDEWEB)
Anon.
1984-12-15
From 3-6 September the First International Workshop on Local Equilibrium in Strong Interaction Physics took place in Bad-Honnef at the Physics Centre of the German Physical Society. A number of talks covered the experimental and theoretical investigation of the 'hotspots' effect, both in high energy particle physics and in intermediate energy nuclear physics.
African Journals Online (AJOL)
context of antimicrobial therapy in malnutrition. Dialysis has in the past presented technical problems, being complicated and time-consuming. A new dialysis system based on the equilibrium technique has now become available, and it is the principles and practical application of this apparatus (Kontron Diapack; Kontron.
van Damme, E.E.C.
2000-01-01
An outcome in a noncooperative game is said to be self-enforcing, or a strategic equilibrium, if, whenever it is recommended to the players, no player has an incentive to deviate from it.This paper gives an overview of the concepts that have been proposed as formalizations of this requirement and of
Ismail, M.S.
2014-01-01
We introduce a new concept which extends von Neumann and Morgenstern's maximin strategy solution by incorporating `individual rationality' of the players. Maximin equilibrium, extending Nash's value approach, is based on the evaluation of the strategic uncertainty of the whole game. We show that
Chau, Nancy H.
2009-01-01
This paper presents a capability-augmented model of on the job search, in which sweatshop conditions stifle the capability of the working poor to search for a job while on the job. The augmented setting unveils a sweatshop equilibrium in an otherwise archetypal Burdett-Mortensen economy, and reconciles a number of oft noted yet perplexing features of sweatshop economies. We demonstrate existence of multiple rational expectation equilibria, graduation pathways out of sweatshops in complete abs...
International Nuclear Information System (INIS)
Glover, J L; Chantler, C T; Barnea, Z; Rae, N A; Tran, C Q
2010-01-01
The x-ray mass-attenuation coefficients of gold are measured at 91 energies between 14 keV and 21 keV using synchrotron radiation. The measurements are accurate to between 0.08% and 0.1%. The photoelectric mass-absorption coefficients and the imaginary component of the form factors of gold are also determined. The results include the L I edge and are the most accurate and extensive gold dataset available in this energy range. An analysis of the L I edge XAFS showed excellent agreement between the measured and simulated XAFS and yielded highly accurate values of the bond lengths of gold. When our results are compared with earlier measurements and with predictions of major theoretical tabulations, significant discrepancies are noted. The comparison raises questions about the nature of discrepancies between experimental and theoretical values of mass-attenuation coefficients.
Equilibrium Structure of Manganese Trifluoride (MnF3) Molecule
International Nuclear Information System (INIS)
Caliskan, M.
2004-01-01
The symmetry lowering in manganese trifluoride molecule due to Jahn-Teller distortion was demonstrated in both the experimental and computational results. The molecule does not have D 3 h (or C 3 v) symmetry, rather it has C 2 v symmetry it has been shown from electron-diffraction measurements, that even a molecule of D 3 h symmetry in its equilibrium geometry would appear as having C 3 v symmetry. The manganese trifluoride molecular structures is an example of concerted applications of electron diffraction experiment and computation. It was found two lower energy structures with C 2 v symmetry, one corresponding to the ground state and another corresponding to the transition state. In this work we have calculate the equilibrium structure of the MnF 3 in the C 2 v configuration using the Interionic Force Model. We have compared our results for equilibrium bond lengths and bond angles with measured values from electron diffraction and with the results of quantum chemical calculations. The agreement can be considered as very reasonable
Luca Anderlini; Daniele Terlizzese
2009-01-01
We build a simple model of trust as an equilibrium phenomenon, departing from standard "selfish" preferences in a minimal way. Agents who are on the receiving end of an other to transact can choose whether to cheat and take away the entire surplus, taking into account a "cost of cheating." The latter has an idiosyncratic component (an agent's type), and a socially determined one. The smaller the mass of agents who cheat, the larger the cost of cheating suffered by those who cheat. Depending o...
Amide proton temperature coefficients as hydrogen bond indicators in proteins
International Nuclear Information System (INIS)
Cierpicki, Tomasz; Otlewski, Jacek
2001-01-01
Correlations between amide proton temperature coefficients (Δσ HN /ΔT) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than -4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between -4 and -1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in α-helices are on average 1 ppb/K more negative than in β-sheets. In consequence, a number of amide protons in α-helices involved in hydrogen bonds shorter than 2 A show Δσ HN /ΔT 10 helices and 98% in β-turns have temperature coefficients more positive than -4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than -2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures
de Oliveira, Mário J
2017-01-01
This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...
Statistical thermodynamics of equilibrium polymers at interfaces
Gucht, van der J.; Besseling, N.A.M.
2002-01-01
The behavior of a solution of equilibrium polymers (or living polymers) at an interface is studied, using a Bethe-Guggenheim lattice model for molecules with orientation dependent interactions. The density profile of polymers and the chain length distribution are calculated. For equilibrium polymers
Shape characteristics of equilibrium and non-equilibrium fractal clusters.
Mansfield, Marc L; Douglas, Jack F
2013-07-28
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other
TDDFT study on intramolecular hydrogen bond of photoexcited methyl salicylate.
Qu, Peng; Tian, Dongxu
2014-01-01
The equilibrium geometries, IR-spectra and transition mechanism of intramolecular hydrogen-bonded methyl salicylate in excited state were studied using DFT and TDDFT with 6-31++G (d, p) basis set. The length of hydrogen bond OH⋯OC is decreased from 1.73 Å in the ground state to 1.41 and 1.69 Å in the excited S1 and S3 states. The increase of bond length for HO and CO group also indicates that in excited state the hydrogen bond OH⋯OC is strengthened. IR spectra show HO and CO stretching bands are strongly redshifted by 1387 and 67 cm(-1) in the excited S1 and S3 states comparing to the ground state. The excitation energy and the absorption spectrum show the S3 state is the main excited state of the low-lying excited states. By analyzing the frontier molecular orbitals, the transition from the ground state to the excited S1 and S3 states was predicted to be the π→π∗ mode. Copyright © 2013 Elsevier B.V. All rights reserved.
Fundamental length and relativistic length
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1988-01-01
It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem
Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...
Pollack, Rachel H.
2000-01-01
Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. What is a hydrogen bond? Precise definition of a hydrogen bond is still elusive!1. Several criteria are listed usually for X-H•••Y, X and Y initially thought to be F, O and N only1. Structural: The X-Y bond length is less than the sum of their van der Waals radii. X-H•••Y is ...
The chemical bond in inorganic chemistry the bond valence model
Brown, I David
2016-01-01
The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.
DEFF Research Database (Denmark)
Shim, Irene; Kingcade, Joseph E.; Gingerich, Karl A.
1988-01-01
-lying electronic states of the NiGe molecule have all been characterized by the symmetry of the hole in the 3d shell of Ni. The dissociation energy of the NiGe molecule has been determined from our high temperature mass spectrometric equilibrium data in combination with the theoretical results as D [open circle] 0...... =286.8±10.9 kJ mol−1. The standard heat of formation of the NiGe molecule has been obtained as DeltaH [open circle] f,298 =514±12 kJ mol−1. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....
Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.
Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M
2018-05-15
Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.
International Nuclear Information System (INIS)
Pradhan, T.
1975-01-01
The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)
Ion exchange equilibrium constants
Marcus, Y
2013-01-01
Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and
Quantity Constrained General Equilibrium
Babenko, R.; Talman, A.J.J.
2006-01-01
In a standard general equilibrium model it is assumed that there are no price restrictions and that prices adjust infinitely fast to their equilibrium values.In case of price restrictions a general equilibrium may not exist and rationing on net demands or supplies is needed to clear the markets.In
Directory of Open Access Journals (Sweden)
T. Paul de Cock
2014-08-01
Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.
Savelyev, Alexey; MacKerell, Alexander D.
2015-01-01
Recently, we reported the differential impact of the monovalent cations Li+, Na+, K+ and Rb+ on DNA conformational properties. These were identified from variations in the calculated solution-state X-ray DNA spectra as a function of the ion type in the solvation buffer in MD simulations using our recently developed polarizable force field based on the classical Drude oscillator. Changes in the DNA structure were found to mainly involve variations in the minor groove width. Because minor groove dimensions vary significantly in protein-DNA complexes and have been shown to play a critical role in both specific and nonspecific DNA readout, understanding the origins of the observed differential DNA modulation by the first-group monovalent ions is of great biological importance. In the present study we show that the primary microscopic mechanism for the phenomenon is the formation of the water-mediated hydrogen bonds between solvated cations located inside the minor groove and simultaneously to two DNA strands, a process whose intensity and impact on DNA structure depends on both the type of the ion and DNA sequence. Additionally, it is shown that formation of such ion-DNA hydrogen bond complexes appreciably modulates the conformation of the backbone by increasing the population of the BII substate. Notably, the differential impact of the ions on DNA conformational behavior is only predicted by the Drude polarizable model for DNA, with virtually no effect observed from MD simulations utilizing the additive CHARMM36 model. Analysis of dipole moments of the water shows the Drude SWM4 model to possess high sensitivity to changes in the local environment, which indicates the important role of electronic polarization in the salt-dependent conformational properties. This also suggests that inclusion of polarization effects is required to model even relatively simple biological systems such as DNA in various ionic solutions. PMID:26575937
Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case.
Mroczyńska, Karina; Kaczorowska, Małgorzata; Kolehmainen, Erkki; Grubecki, Ireneusz; Pietrzak, Marek; Ośmiałowski, Borys
2015-01-01
The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance of conformational equilibrium and its influence on association in solution. Moreover, the associates were observed by mass spectrometry. The DFT-based computations for complexes and single bond rotational barriers supports experimental data and helps understanding the properties of multiply hydrogen bonded complexes.
Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis
Isaev, A. N.
2016-03-01
Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.
DEFF Research Database (Denmark)
Najbjerg, Heidi; Young, Jette F; Bertram, Hanne Christine S.
2011-01-01
from conjugated double bonds (5.65, 5.94, and 6.28 ppm) in cells exposed to vaccenic acid, revealing that vaccenic acid upon uptake by the HepG2 cells is converted into a conjugated fatty acid. Upon exposure of the HepG2 cells to either butyric acid (C4:0), caproic acid (C6:0), lauric acid (C12...
Brignole, Esteban Alberto
2013-01-01
Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and
International Nuclear Information System (INIS)
Balter, H.S.
1994-01-01
This work studies the behaviour of radionuclides when it produce a desintegration activity,decay and the isotopes stable creation. It gives definitions about the equilibrium between activity of parent and activity of the daughter, radioactive decay,isotope stable and transient equilibrium and maxim activity time. Some considerations had been given to generators that permit a disgregation of two radioisotopes in equilibrium and its good performance. Tabs
Local equilibrium in bird flocks
Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene
2016-12-01
The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.
Equilibrium and non-equilibrium metal-ceramic interfaces
International Nuclear Information System (INIS)
Gao, Y.; Merkle, K.L.
1992-01-01
Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au
Locking a molecular bond: A case study of CsI
DEFF Research Database (Denmark)
Szakács, Tamás; Amstrup, Bjarne; Gross, Peter
1994-01-01
This paper treats the problem of locking a molecular bond at a length other than the equilibrium distance, with the help of optical electric fields. Locking conditions for single-color fields are examined, and slowly decaying locked wave functions are sought. These were functions are then used...... as target functions in an optimal control procedure. The resultant solution is an optimal field that creates a wave function as close as possible to the target function, followed by the application of a locking single-color field that can keep a large part of this wave function at the given position...
Energy Technology Data Exchange (ETDEWEB)
Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne
2013-05-01
In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.
Weckhuysen, B.M.; Wachs, I.E.
1996-01-01
An empirical correlation is described for relating Raman stretching frequencies of chromium—oxygen (Cr—O) bonds to their bond lengths in chromium oxide reference compounds. An exponential fit of crystallographically determined Cr—O bond lengths to Cr—O Raman symmetric stretching frequencies
Kleppe, J.; Borm, P.E.M.; Hendrickx, R.L.P.
2008-01-01
Fall back equilibrium is a refinement of the Nash equilibrium concept. In the underly- ing thought experiment each player faces the possibility that, after all players decided on their action, his chosen action turns out to be blocked. Therefore, each player has to decide beforehand on a back-up
Li, Yang; Tu, Xingchen; Wang, Minglang; Wang, Hao; Sanvito, Stefano; Hou, Shimin
2014-01-01
© 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.
Li, Yang
2014-11-07
© 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.
Kondo length in bosonic lattices
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
Small angle neutron scattering (SANS) under non-equilibrium conditions
International Nuclear Information System (INIS)
Oberthur, R.C.
1984-01-01
The use of small angle neutron scattering (SANS) for the study of systems under non-equilibrium conditions is illustrated by three types of experiments in the field of polymer research: - the relaxation of a system from an initial non-equilibrium state towards equilibrium, - the cyclic or repetitive installation of a series of non-equilibrium states in a system, - the steady non-equilibrium state maintained by a constant dissipation of energy within the system. Characteristic times obtained in these experiments with SANS are compared with the times obtained from quasi-elastic neutron and light scattering, which yield information about the equilibrium dynamics of the system. The limits of SANS applied to non-equilibrium systems for the measurement of relaxation times at different length scales are shown and compared to the limits of quasielastic neutron and light scattering
Equilibrium and non equilibrium in fragmentation
International Nuclear Information System (INIS)
Dorso, C.O.; Chernomoretz, A.; Lopez, J.A.
2001-01-01
Full text: In this communication we present recent results regarding the interplay of equilibrium and non equilibrium in the process of fragmentation of excited finite Lennard Jones drops. Because the general features of such a potential resemble the ones of the nuclear interaction (fact that is reinforced by the similarity between the EOS of both systems) these studies are not only relevant from a fundamental point of view but also shed light on the problem of nuclear multifragmentation. We focus on the microscopic analysis of the state of the fragmenting system at fragmentation time. We show that the Caloric Curve (i e. the functional relationship between the temperature of the system and the excitation energy) is of the type rise plateau with no vapor branch. The usual rise plateau rise pattern is only recovered when equilibrium is artificially imposed. This result puts a serious question on the validity of the freeze out hypothesis. This feature is independent of the dimensionality or excitation mechanism. Moreover we explore the behavior of magnitudes which can help us determine the degree of the assumed phase transition. It is found that no clear cut criteria is presently available. (Author)
Structure phenomena in the bond zone of explosively bonded plates
International Nuclear Information System (INIS)
Livne, Z.
1979-12-01
In the bond areas of couples of explosively bonded plates, there are often zones, generally designated as ''molten pockets'', which have undergone melting and solidification. The object of the present study was to investigate molten pockets, which have a decisive effect on bond quality. The experimental samples for the study were chosen in consideration of the mutual behaviour of the plates constituting the couples, according to their equilibrium phase diagrams. To facilitate the investigation, large plates were bonded under conditions that enabled to to obtain wavy bond zones that included relatively large molten pockets. To clarify the complex nature of molten pockets and their surroundings, a wide variety of methods were employed. It was found that the shape and composition of molten pockets largely depend upon the mechanism of formation of both the bond wave and the molten pockets. It was also found that the composition of molten pockets is not homogeneous, which is manifest in the modification of the composition of the pockets, the solidification morphology, the phases, which have been identified by X-ray diffraction, and the bond strenght and hardness. Moreover, the different solidification morphologies revealed by metallography were found to depend upon the types of plates bonded, the bonding conditions and the location of pockets in the wavy interface. For molten pockets, cooling rates of 10 4 to 10 5 (degC/sec) have been deduced from interdendritic spacing, and found to be in good agreement with calculations after a mathematical model. It seems that the fast cooling rates and the steep temperature gradients are at the origin of the particular solidification phenomena observed in molten pockets
Chemical Principles Revisited: Chemical Equilibrium.
Mickey, Charles D.
1980-01-01
Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)
Equilibrium and non-equilibrium phenomena in arcs and torches
Mullen, van der J.J.A.M.
2000-01-01
A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.
Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.
Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao
2018-02-26
The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.
Reynolds, Cathryn
1989-01-01
The combined effect of the "Serrano" decision and Proposition 13 left California school districts with aging, overcrowded facilities. Chico schools won a $18.5 million general obligation bond election for facilities construction. With $11 billion needed for new school construction, California will need to tap local sources. A sidebar…
Money and bonds: an equivalence theorem
Narayana R. Kocherlakota
2007-01-01
This paper considers four models in which immortal agents face idiosyncratic shocks and trade only a single risk-free asset over time. The four models specify this single asset to be private bonds, public bonds, public money, or private money respectively. I prove that, given an equilibrium in one of these economies, it is possible to pick the exogenous elements in the other three economies so that there is an outcome-equivalent equilibrium in each of them. (The term ?exogenous variables? ref...
Directory of Open Access Journals (Sweden)
Katalin Martinás
2007-02-01
Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.
DIAGNOSIS OF FINANCIAL EQUILIBRIUM
Directory of Open Access Journals (Sweden)
SUCIU GHEORGHE
2013-04-01
Full Text Available The analysis based on the balance sheet tries to identify the state of equilibrium (disequilibrium that exists in a company. The easiest way to determine the state of equilibrium is by looking at the balance sheet and at the information it offers. Because in the balance sheet there are elements that do not reflect their real value, the one established on the market, they must be readjusted, and those elements which are not related to the ordinary operating activities must be eliminated. The diagnosis of financial equilibrium takes into account 2 components: financing sources (ownership equity, loaned, temporarily attracted. An efficient financial equilibrium must respect 2 fundamental requirements: permanent sources represented by ownership equity and loans for more than 1 year should finance permanent needs, and temporary resources should finance the operating cycle.
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
Computing Equilibrium Chemical Compositions
Mcbride, Bonnie J.; Gordon, Sanford
1995-01-01
Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.
International Nuclear Information System (INIS)
Anderson, R.C.
1976-01-01
A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions
Eberl, Gérard
2016-08-01
The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.
Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges
Bilić, Ante
2013-01-01
Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green\\'s function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the form of thiolated linear acenes, shows an anomalous length dependence of the conductance, which at first exhibits a drop and a minimum, followed by an evident rise. The length trend is shown to arise because of a gradual transformation in the transport mechanism, which changes from being governed by a continuum of out-of-plane π type and in-plane state channels to being fully controlled by a single, increasingly more resonant, occupied π state channel. For the set of nanoribbons with a wider profile, a steady increase is observed across the whole length range, owing to the absence of the former transport mechanism. The predicted trends are confirmed by the inclusion of self-interaction correction in the calculations. For both sets of nanoribbons the replacement of the strongly coupling thiol groups by weakly bonding phenathroline has been found to cause a strong attenuation with the length and a generally low conductance. © 2013 American Institute of Physics.
Love Thy Neighbor: Bonding versus Bridging Trust
Poulsen, Odile; Svendsen, Gert Tinggaard
2005-01-01
We study how trust is generated in society. In a two-sector model, we analyze two communities. In the bonding community people do not trust people outside their regular networks. In the bridging community people choose to trust strangers when they meet them. The hypothesis is that when trust is only bonding, it cannot accumulate. Our theoretical contribution is to show that when trust is only bonding then the economy’s level of trust moves to an unstable equilibrium that may under certain con...
Equilibrium shoreface profiles
DEFF Research Database (Denmark)
Aagaard, Troels; Hughes, Michael G
2017-01-01
Large-scale coastal behaviour models use the shoreface profile of equilibrium as a fundamental morphological unit that is translated in space to simulate coastal response to, for example, sea level oscillations and variability in sediment supply. Despite a longstanding focus on the shoreface...... profile and its relevance to predicting coastal response to changing environmental conditions, the processes and dynamics involved in shoreface equilibrium are still not fully understood. Here, we apply a process-based empirical sediment transport model, combined with morphodynamic principles to provide......; there is no tuning or calibration and computation times are short. It is therefore easily implemented with repeated iterations to manage uncertainty....
Hydrodynamic slip length as a surface property
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2016-02-01
Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.
Microeconomics : Equilibrium and Efficiency
Ten Raa, T.
2013-01-01
Microeconomics: Equilibrium and Efficiency teaches how to apply microeconomic theory in an innovative, intuitive and concise way. Using real-world, empirical examples, this book not only covers the building blocks of the subject, but helps gain a broad understanding of microeconomic theory and
Differential Equation of Equilibrium
African Journals Online (AJOL)
user
ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...
Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay
International Nuclear Information System (INIS)
Prince, J.R.
1979-01-01
Equations describing serial radioactive decay are reviewed along with published descriptions or transient and secular equilibrium. It is shown that terms describing equilibrium are not used in the same way by various authors. Specific definitions are proposed; they suggest that secular equilibrium is a subset of transient equilibrium
Vogt, Natalja; Marochkin, Ilya I; Rykov, Anatolii N
2018-04-18
The accurate molecular structure of picolinic acid has been determined from experimental data and computed at the coupled cluster level of theory. Only one conformer with the O[double bond, length as m-dash]C-C-N and H-O-C[double bond, length as m-dash]O fragments in antiperiplanar (ap) positions, ap-ap, has been detected under conditions of the gas-phase electron diffraction (GED) experiment (Tnozzle = 375(3) K). The semiexperimental equilibrium structure, rsee, of this conformer has been derived from the GED data taking into account the anharmonic vibrational effects estimated from the ab initio force field. The equilibrium structures of the two lowest-energy conformers, ap-ap and ap-sp (with the synperiplanar H-O-C[double bond, length as m-dash]O fragment), have been fully optimized at the CCSD(T)_ae level of theory in conjunction with the triple-ζ basis set (cc-pwCVTZ). The quality of the optimized structures has been improved due to extrapolation to the quadruple-ζ basis set. The high accuracy of both GED determination and CCSD(T) computations has been disclosed by a correct comparison of structures having the same physical meaning. The ap-ap conformer has been found to be stabilized by the relatively strong NH-O hydrogen bond of 1.973(27) Å (GED) and predicted to be lower in energy by 16 kJ mol-1 with respect to the ap-sp conformer without a hydrogen bond. The influence of this bond on the structure of picolinic acid has been analyzed within the Natural Bond Orbital model. The possibility of the decarboxylation of picolinic acid has been considered in the GED analysis, but no significant amounts of pyridine and carbon dioxide could be detected. To reveal the structural changes reflecting the mesomeric and inductive effects due to the carboxylic substituent, the accurate structure of pyridine has been also computed at the CCSD(T)_ae level with basis sets from triple- to 5-ζ quality. The comprehensive structure computations for pyridine as well as for
Equilibrium and pre-equilibrium emissions in proton-induced ...
Indian Academy of Sciences (India)
necessary for the domain of fission-reactor technology for the calculation of nuclear transmutation ... tions occur in three stages: INC, pre-equilibrium and equilibrium (or compound. 344. Pramana ... In the evaporation phase of the reaction, the.
Gated equilibrium bloodpool scintigraphy
International Nuclear Information System (INIS)
Reinders Folmer, S.C.C.
1981-01-01
This thesis deals with the clinical applications of gated equilibrium bloodpool scintigraphy, performed with either a gamma camera or a portable detector system, the nuclear stethoscope. The main goal has been to define the value and limitations of noninvasive measurements of left ventricular ejection fraction as a parameter of cardiac performance in various disease states, both for diagnostic purposes as well as during follow-up after medical or surgical intervention. Secondly, it was attempted to extend the use of the equilibrium bloodpool techniques beyond the calculation of ejection fraction alone by considering the feasibility to determine ventricular volumes and by including the possibility of quantifying valvular regurgitation. In both cases, it has been tried to broaden the perspective of the observations by comparing them with results of other, invasive and non-invasive, procedures, in particular cardiac catheterization, M-mode echocardiography and myocardial perfusion scintigraphy. (Auth.)
Problems in equilibrium theory
Aliprantis, Charalambos D
1996-01-01
In studying General Equilibrium Theory the student must master first the theory and then apply it to solve problems. At the graduate level there is no book devoted exclusively to teaching problem solving. This book teaches for the first time the basic methods of proof and problem solving in General Equilibrium Theory. The problems cover the entire spectrum of difficulty; some are routine, some require a good grasp of the material involved, and some are exceptionally challenging. The book presents complete solutions to two hundred problems. In searching for the basic required techniques, the student will find a wealth of new material incorporated into the solutions. The student is challenged to produce solutions which are different from the ones presented in the book.
DEFF Research Database (Denmark)
Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P
2008-01-01
Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...
Equilibrium statistical mechanics
Jackson, E Atlee
2000-01-01
Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t
DEFF Research Database (Denmark)
Bollerslev, Tim; Sizova, Natalia; Tauchen, George
Stock market volatility clusters in time, carries a risk premium, is fractionally inte- grated, and exhibits asymmetric leverage effects relative to returns. This paper develops a first internally consistent equilibrium based explanation for these longstanding empirical facts. The model is cast i......, and the dynamic cross-correlations of the volatility measures with the returns calculated from actual high-frequency intra-day data on the S&P 500 aggregate market and VIX volatility indexes....
Molecular equilibrium with condensation
International Nuclear Information System (INIS)
Sharp, C.M.; Huebner, W.F.
1990-01-01
Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs
Bonding pathways of high-pressure chemical transformations
International Nuclear Information System (INIS)
Hu Anguang; Zhang Fan
2013-01-01
A three-stage bonding pathway towards high-pressure chemical transformations from molecular precursors or intermediate states has been identified by first-principles simulations. With the evolution of principal stress tensor components in the response of chemical bonding to compressive loading, the three stages can be defined as the van der Waals bonding destruction, a bond breaking and forming reaction, and equilibrium of new bonds. The three-stage bonding pathway leads to the establishment of a fundamental principle of chemical bonding under compression. It reveals that during high-pressure chemical transformation, electrons moving away from functional groups follow anti-addition, collision-free paths to form new bonds in counteracting the local stress confinement. In applying this principle, a large number of molecular precursors were identified for high-pressure chemical transformations, resulting in new materials. (fast track communication)
Equilibrium calculations, ch. 6
International Nuclear Information System (INIS)
Deursen, A.P.J. van
1976-01-01
A calculation is presented of dimer intensities obtained in supersonic expansions. There are two possible limiting considerations; the dimers observed are already present in the source, in thermodynamic equilibrium, and are accelerated in the expansion. Destruction during acceleration is neglected, as are processes leading to newly formed dimers. On the other hand one can apply a kinetic approach, where formation and destruction processes are followed throughout the expansion. The difficulty of this approach stems from the fact that the density, temperature and rate constants have to be known at all distances from the nozzle. The simple point of view has been adopted and the measured dimer intensities are compared with the equilibrium concentration in the source. The comparison is performed under the assumption that the detection efficiency for dimers is twice the detection efficiency for monomers. The experimental evidence against the simple point of view that the dimers of the onset region are formed in the source already, under equilibrium conditions, is discussed. (Auth.)
Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.
Tian, Huanhuan; Zhang, Li; Wang, Moran
2015-08-15
Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.
Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding
Directory of Open Access Journals (Sweden)
Steve Scheiner
2018-05-01
Full Text Available Tetrel atoms T (T = Si, Ge, Sn, and Pb can engage in very strong noncovalent interactions with nucleophiles, which are commonly referred to as tetrel bonds. The ability of such bonds to bind various anions is assessed with a goal of designing an optimal receptor. The Sn atom seems to form the strongest bonds within the tetrel family. It is most effective in the context of a -SnF3 group and a further enhancement is observed when a positive charge is placed on the receptor. Connection of the -SnF3 group to either an imidazolium or triazolium provides a strong halide receptor, which can be improved if its point of attachment is changed from the C to an N atom of either ring. Aromaticity of the ring offers no advantage nor is a cyclic system superior to a simple alkyl amine of any chain length. Placing a pair of -SnF3 groups on a single molecule to form a bipodal dicationic receptor with two tetrel bonds enhances the binding, but falls short of a simple doubling. These two tetrel groups can be placed on opposite ends of an alkyl diamine chain of any length although SnF3+NH2(CH2nNH2SnF3+ with n between 2 and 4 seems to offer the strongest halide binding. Of the various anions tested, OH− binds most strongly: OH− > F− > Cl− > Br− > I−. The binding energy of the larger NO3− and HCO3− anions is more dependent upon the charge of the receptor. This pattern translates into very strong selectivity of binding one anion over another. The tetrel-bonding receptors bind far more strongly to each anion than an equivalent number of K+ counterions, which leads to equilibrium ratios in favor of the former of many orders of magnitude.
Noncompact Equilibrium Points and Applications
Directory of Open Access Journals (Sweden)
Zahra Al-Rumaih
2012-01-01
Full Text Available We prove an equilibrium existence result for vector functions defined on noncompact domain and we give some applications in optimization and Nash equilibrium in noncooperative game.
Equilibrium thermodynamics - Callen's postulational approach
Jongschaap, R.J.J.; Öttinger, Hans Christian
2001-01-01
In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates
MHD equilibrium with toroidal rotation
International Nuclear Information System (INIS)
Li, J.
1987-03-01
The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)
Screening length in dusty plasma crystals
International Nuclear Information System (INIS)
Nikolaev, V S; Timofeev, A V
2016-01-01
Particles interaction and value of the screening length in dusty plasma systems are of great interest in dusty plasma area. Three inter-particle potentials (Debye potential, Gurevich potential and interaction potential in the weakly collisional regime) are used to solve equilibrium equations for two dusty particles suspended in a parabolic trap. The inter-particle distance dependence on screening length, trap parameter and particle charge is obtained. The functional form of inter-particle distance dependence on ion temperature is investigated and compared with experimental data at 200-300 K in order to test used potentials applicability to dusty plasma systems at room temperatures. The preference is given to the Yukawa-type potential including effective values of particle charge and screening length. The estimated effective value of the screening length is 5-15 times larger than the Debye length. (paper)
Pluijm, van der R.; Vermeltfoort, A.Th.
1992-01-01
Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial
Non-equilibrium thermodynamics
De Groot, Sybren Ruurds
1984-01-01
The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn
Proposal of new bonding technique 'Instantaneous Liquid Phase (ILP) Bonding'
International Nuclear Information System (INIS)
Zhang, Yue-Chang; Nakagawa, Hiroji; Matsuda, Fukuhisa.
1987-01-01
A new bonding technique named ''Instantaneous Liquid Phase (ILP) bonding'' suitable mainly for welding dissimilar materials was proposed by which instantaneous melting of one or two of the faying surfaces is utilized. The processes of ILP bonding are mainly consisted of three stages, namely the first stage forming thin liquid layer by rapid heating, the second stage joining both specimens by thin liquid layer, and the third stage cooling the specimens rapidly to avoid the formation of brittle layer. The welding temperatures of the specimens to be welded in ILP bonding are generally differentiated from each other. ILP bonding was applied for a variety of combinations of dissimilar materials of aluminum, aluminum alloys, titanium, titanium alloy, carbon steel, austenitic stainless steel, copper and tungsten, and for similar materials of stainless steel and nickel-base alloy. There were no microvoids in these welding joints, and the formation of brittle layer at the bonding interface was suppressed. The welded joints of Al + Ti, Cu + carbon steel and Cu + austenitic stainless steel showed the fracture in base metal having lower tensile strength. Further, the welded joints of Al + carbon steel, Al alloy + Ti, Al alloy + carbon steel or + austenitic stainless steel, Ti + carbon steel or + austenitic stainless steel showed better tensile properties in the comparison with diffusion welding. Furthermore, ILP bonding was available for welding same materials susceptible to hot cracking. Because of the existence of liquid layer, the welding pressure required was extremely low, and preparation of faying surface by simple tooling or polishing by no.80 emery paper was enough. The change in specimen length before and after welding was relatively little, only depending on the thickness of liquid layer. The welding time was very short, and thus high welding efficiency was obtained. (author)
Non-equilibrium dynamics due to moving deflagration front at RDX/HTPB interface
Chaudhuri, Santanu; Joshi, Kaushik; Lacevic, Naida
Reactive dissipative particle dynamics (DPD-RX), a promising tool in characterizing the sensitivity and performance of heterogeneous solid propellants like polymer bonded explosives (PSXs), requires further testing for non-equilibrium dynamics. It is important to understand detailed atomistic chemistry for developing coarse grain reactive models needed for the DPD-RX. In order to obtain insights into combustion chemistry of RDX/HTPB binder, we used reactive molecular dynamics (RMD) to obtain energy up-pumping and reaction mechanisms at RDX/HTPB interface when exposed to a self-sustaining deflagration front. Hot spots are ignited near and away from the heterogeneous interface using the thermal pulse. The results show that the hot spot near interface significantly delays the transition from ignition to deflagration. We will present the mechanical response and the combustion chemistry of HTPB when the propagating deflagration front hits the polymer binder. We will discuss our efforts to incorporate this RMD based chemistry into the DPD-RX which will enable us to perform such non-equilibrium dynamics simulations on large-length scale with microstructural heterogeneities. Funding from DTRA Grant Number HDTRA1-15-1-0034 is acknowledged.
Climate reconstructions derived from global glacier length records
Klok, E.J.; Oerlemans, J.
2004-01-01
As glacier length fluctuations provide useful information about past climate, we derived historic fluctuations in the equilibrium-line altitude (ELA) on the basis of 19 glacier length records from different parts of the world. We used a model that takes into account the geometry of the glacier,
DEFF Research Database (Denmark)
Rimmer, Nina Røhr
2016-01-01
Undervisningsmateriale. A bond is a debt security, similar to an ”I Owe You document” (IOU). When you purchase a bond, you are lending money to a government, municipality, corporation, federal agency or other entity known as the issuer. In return for the loan, the issuer promises to pay you...... a specified rate of interest during the life of the bond and to repay the face value of the bond (the principal) when it “matures,” or comes due. Among the types of bonds you can choose from are: Government securities, municipal bonds, corporate bonds, mortgage and asset-backed securities, federal agency...... securities and foreign government bonds....
Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G
2016-05-01
The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fluids with highly directional attractive forces. IV. Equilibrium polymerization
International Nuclear Information System (INIS)
Wertheim, M.S.
1986-01-01
The author investigates approximation methods for systems of molecules interacting by core repulsion and highly directional attraction due to several attraction sites. The force model chosen imitates a chemical bond by providing for bond saturation when binding occurs. The dense fluid is an equilibrium mixture of s-mers with mutual repulsion. The author uses a previously derived reformulation of statistical thermodynamics in which the particle species are monomeric units with a specified set of attraction sites bonded. Thermodynamic perturbation theory (TPT) and integral equations of two types are derived. The use of TPT is illustrated by explicit calculation for a molecular model with two attraction sites capable of forming chain and ring polymers. Successes and defects of TPT are discussed. The integral equations for pair correlations between particles of specified bonding include calculation of self-consistent densities of species. Methods of calculating thermodynamic properties from the solutions of integral equations are given
Wire bonding in microelectronics
Harman, George G
2010-01-01
Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...
Stock vs. Bond Yields, and Demographic Fluctuations
DEFF Research Database (Denmark)
Gozluklu, Arie; Morin, Annaïg
This paper analyzes the strong comovement between real stock and nominal bond yields at generational (low) frequencies. Life-cycle patterns in savings behavior in an overlapping generations model with cash-in-advance constraints explain this persistent comovement between financial yields. We argue...... that the slow-evolving time-series covariation due to changing population age structure accounts for the equilibrium relation between stock and bond markets. As a result, by exploiting the demographic information into distant future, the forecasting performance of evaluation models improves. Finally, using...
Equilibrium of the kink source experiment
International Nuclear Information System (INIS)
Marklin, G.
1985-01-01
The kink source experiment (KSX) was conceived of as a method of injecting helicity into a spheromak making special use of the m = 1 helical Taylor state. It has a Z pinch as a helicity generating source, connected to a flux conserver through an entrance region. Since the entrance region is a long (length > diameter) cyclinder, the magnetic field should be close to the helical Taylor state, which is the minimum energy configuration of a magnetized plasma in an infinite cylinder with no net flux. This paper will be concerned with modeling the actual fields in the entrance region of the KSX using zero-beta ideal MHD equilibrium theory
Impedance of finite length resistive cylinder
Directory of Open Access Journals (Sweden)
S. Krinsky
2004-11-01
Full Text Available We determine the impedance of a cylindrical metal tube (resistor of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a. In the equilibrium regime, ka^{2}≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka^{2}≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.
Chord length distribution for a compound capsule
International Nuclear Information System (INIS)
Pitřík, Pavel
2017-01-01
Chord length distribution is a factor important in the calculation of ionisation chamber responses. This article describes Monte Carlo calculations of the chord length distribution for a non-convex compound capsule. A Monte Carlo code was set up for generation of random chords and calculation of their lengths based on the input number of generations and cavity dimensions. The code was written in JavaScript and can be executed in the majority of HTML viewers. The plot of occurrence of cords of different lengths has 3 peaks. It was found that the compound capsule cavity cannot be simply replaced with a spherical cavity of a triangular design. Furthermore, the compound capsule cavity is directionally dependent, which must be taken into account in calculations involving non-isotropic fields of primary particles in the beam, unless equilibrium of the secondary charged particles is attained. (orig.)
Equilibrium models and variational inequalities
Konnov, Igor
2007-01-01
The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...
Grinding kinetics and equilibrium states
Opoczky, L.; Farnady, F.
1984-01-01
The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.
Mental Equilibrium and Rational Emotions
Eyal Winter; Ignacio Garcia-Jurado; Jose Mendez-Naya; Luciano Mendez-Naya
2009-01-01
We introduce emotions into an equilibrium notion. In a mental equilibrium each player "selects" an emotional state which determines the player's preferences over the outcomes of the game. These preferences typically differ from the players' material preferences. The emotional states interact to play a Nash equilibrium and in addition each player's emotional state must be a best response (with respect to material preferences) to the emotional states of the others. We discuss the concept behind...
Para-equilibrium phase diagrams
International Nuclear Information System (INIS)
Pelton, Arthur D.; Koukkari, Pertti; Pajarre, Risto; Eriksson, Gunnar
2014-01-01
Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase
A Partial Equilibrium Theory for Drops and Capillary Liquids
International Nuclear Information System (INIS)
Searcy, Alan W.; Beruto, Dario T.; Barberis, Fabrizio
2006-01-01
The two-century old theory of Young and Laplace retains a powerful influence on surface and interface studies because it quantitatively predicts the height of rise of capillary liquids from the contact angles of drops. But the classical theory does not acknowledge that equilibrium requires separate minimization of partial free energies of one-component liquids bonded to immiscible solids. We generalize a theorem of Gibbs and Curie to obtain a partial equilibrium (PE) theory that does so and that also predicts the height of capillary rise from contact angles of drops. Published observations and our own measurements of contact angles of water bonded to glass and Teflon surfaces support the conclusion of PE theory that contact angles of meniscuses and of drops are different dependent variables. PE theory provides thermodynamic and kinetic guidance to nanoscale processes that the classical theory obscures, as illustrated by examples in our concluding section
Local approximation of a metapopulation's equilibrium.
Barbour, A D; McVinish, R; Pollett, P K
2018-04-18
We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.
A modification of the Schomaker—Stevenson rule for prediction of single bond distances
Blom, Richard; Haaland, Arne
1985-04-01
A modification of the Schomaker—Stevenson rule: ?c = 8.5 pm, n = 1.4, significantly reduces the discrepancy between experimental calculated bond lengths for every polar bonds between main group elements.
Study on the Connecting Length of CFRP
Liu, Xiongfei; Li, Yue; Li, Zhanguo
2018-05-01
The paper studied the varying mode of shear stress in the connecting zone of CFRP. Using epoxy resin (EP) as bond material, performance of specimens with different connecting length of CFRP was tested to obtain the conclusion. CFRP-confined concrete column was tested subsequently to verify the conclusion. The results show that: (1) The binding properties of modified epoxy resin with CFRP is good; (2) As the connecting length increased, the ultimate tensile strength of CFRP increased as well in the range of the experiment parameters; (3) Tensile strength of CFRP can reach the ultimate strength when the connecting length is 90mm;(4) The connecting length of 90mm of CFRP meet the reinforcement requirements.
International Nuclear Information System (INIS)
Roh, Heui-Seol
2015-01-01
Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms
Fundamental functions in equilibrium thermodynamics
Horst, H.J. ter
In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using
Crystal structure and hydrogen bonding in N-(1-deoxy-β-d-fructopyranos-1-yl-2-aminoisobutyric acid
Directory of Open Access Journals (Sweden)
Valeri V. Mossine
2018-01-01
Full Text Available The title compound, alternatively called d-fructose-2-aminoisobutyric acid (FruAib, C10H19NO7, (I, crystallizes exclusively in the β-pyranose form, with two conformationally non-equivalent molecules [(IA and (IB] in the asymmetric unit. In solution, FruAib establishes an equilibrium, with 75.6% of the population consisting of β-pyranose, 10.4% β-furanose, 10.1% α-furanose, 3.0% α-pyranose and <0.7% the acyclic forms. The carbohydrate ring in (I has the normal 2C5 chair conformation and the amino acid portion is in the zwitterion form. Bond lengths and valence angles compare well with the average values from related pyranose structures. All carboxyl, hydroxy and ammonium groups are involved in hydrogen bonding and form a three-dimensional network of infinite chains that are connected through homodromic rings and short chains. Intramolecular hydrogen bonds bridge the amino acid and sugar portions in both molecules. A comparative Hirshfeld surfaces analysis of FruAib and four other sugar–amino acids suggests an increasing role of intramolecular heteroatom interactions in crystal structures with an increasing proportion of C—H bonds.
Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur
DEFF Research Database (Denmark)
Du, Lin; Tang, Shanshan; Hansen, Anne Schou
2017-01-01
complexes are more stable and form stronger hydrogen bonds compared to complexes with MeOH and EtOH, which are comparable, and only for the stronger hydrogen bond donor (TFE) are the small differences in acceptor molecules highlighted. The equilibrium constant for complex formation was determined from......The Osingle bondH⋯O and Osingle bondH⋯S hydrogen bonds were investigated by gas phase FTIR spectroscopy of alcohol–dimethylether and alcohol–dimethylsulfide complexes, with alcohols of increasing hydrogen bond donor strength; methanol (MeOH), ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). The TFE...
A Multiperiod Equilibrium Pricing Model
Directory of Open Access Journals (Sweden)
Minsuk Kwak
2014-01-01
Full Text Available We propose an equilibrium pricing model in a dynamic multiperiod stochastic framework with uncertain income. There are one tradable risky asset (stock/commodity, one nontradable underlying (temperature, and also a contingent claim (weather derivative written on the tradable risky asset and the nontradable underlying in the market. The price of the contingent claim is priced in equilibrium by optimal strategies of representative agent and market clearing condition. The risk preferences are of exponential type with a stochastic coefficient of risk aversion. Both subgame perfect strategy and naive strategy are considered and the corresponding equilibrium prices are derived. From the numerical result we examine how the equilibrium prices vary in response to changes in model parameters and highlight the importance of our equilibrium pricing principle.
Non-equilibrium phase transitions
Henkel, Malte; Lübeck, Sven
2009-01-01
This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.
Persistent local chemical bonds in intermetallic phase formation
Energy Technology Data Exchange (ETDEWEB)
Bai, Yanwen [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Xubo [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Shuo; Huang, Yuying [Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)
2014-05-01
We found a direct evidence for the existence of the local chemical Bi–In bonds in the BiIn{sub 2} melt. These bonds are strong and prevail, dominating the structure evolution of the intermetallic clusters. From the local structure of the melt-quenched BiIn{sub 2} ribbon, the chemical Bi–In bonds strengthen compared with those in the equilibrium solidified alloy. The chemical bonds in BiIn{sub 2} melt retain to solid during a rapid quenching process. The results suggest that the intermetallic clusters in the melt evolve into the as-quenched intermetallic phase, and the intermetallic phase originates from the chemical bonds between unlike atoms in the melt. The chemical bonds preserve the chemical ordered clusters and dominate the clusters evolution.
Hot Tip: Nominal Exchange Rates and Inflation Indexed Bond Yields
Richard H. Clarida
2013-01-01
This paper derives a structural relationship between the nominal exchange rate, national price levels, and observed yields on long maturity inflation - indexed bonds. This relationship can be interpreted as defining the fair value of the exchange rate that will prevail in any model or real world economy in which inflation indexed bonds are traded. An advantage of our derivation is that it does not require restrictive assumptions on financial market equilibrium to be operational. We take our t...
... the future bonding of the child and parent. Adoptive parents may be concerned about bonding with their ... general emotional support. And it's OK to ask family members and friends for help in the days — ...
Non-equilibrium supramolecular polymerization.
Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M
2017-09-18
Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.
Spontaneity and Equilibrium: Why "?G Equilibrium" Are Incorrect
Raff, Lionel M.
2014-01-01
The fundamental criteria for chemical reactions to be spontaneous in a given direction are generally incorrectly stated as ?G equilibrium are also misstated as being ?G = 0 or ?A = 0. Following a brief review of the…
Directory of Open Access Journals (Sweden)
Asir Intisar Khan
2015-12-01
Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.
Anil V. Mishra; Umaru B. Conteh
2014-01-01
This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...
Canela, Andrés; Klatt, Peter; Blasco, María A
2007-01-01
Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.
Helical axis stellarator equilibrium model
International Nuclear Information System (INIS)
Koniges, A.E.; Johnson, J.L.
1985-02-01
An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift
Indian Academy of Sciences (India)
... all resembling H bonds. Non-linear H bonds due to secondary interactions. C-H stretching frequency shows blue shift. Heavy atom distances are longer than the sum of van der Waals radii. Formed a task group through IUPAC to come up with a modern definition of H bond. 15 international experts including Desiraju.
Chemical bond fundamental aspects of chemical bonding
Frenking, Gernot
2014-01-01
This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica
Bunch length measurements in the SLC damping ring
International Nuclear Information System (INIS)
Decker, F.J.; Limberg, T.; Minty, M.; Ross, M.
1993-05-01
The synchrotron light of the SLC damping ring was used to measure the bunch length with a streak camera at different times in the damping cycle. There are bunch length oscillations after injection, different equilibrium length during the cycle due to rf manipulations to avoid microwave instability oscillations, and just before extraction there is a longitudinal phase space rotation (bunch muncher) to shorten the bunch length. Measurements under these different conditions are presented and compared with BPM pulse height signals. Calibration and adjustment issues and the connection of the streak camera to the SLC control system are also discussed
Numerical Verification Of Equilibrium Chemistry
International Nuclear Information System (INIS)
Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.
2010-01-01
A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.
Equilibrium ignition for ICF capsules
International Nuclear Information System (INIS)
Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.
1993-01-01
There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative
On the local equilibrium condition
International Nuclear Information System (INIS)
Hessling, H.
1994-11-01
A physical system is in local equilibrium if it cannot be distinguished from a global equilibrium by ''infinitesimally localized measurements''. This should be a natural characterization of local equilibrium, but the problem is to give a precise meaning to the qualitative phrase ''infinitesimally localized measurements''. A solution is suggested in form of a Local Equilibrium Condition (LEC), which can be applied to linear relativistic quantum field theories but not directly to selfinteracting quantum fields. The concept of local temperature resulting from LEC is compared to an old approach to local temperature based on the principle of maximal entropy. It is shown that the principle of maximal entropy does not always lead to physical states if it is applied to relativistic quantum field theories. (orig.)
Directory of Open Access Journals (Sweden)
Gabriel J. Turbay
2011-03-01
Full Text Available The strategic equilibrium of an N-person cooperative game with transferable utility is a system composed of a cover collection of subsets of N and a set of extended imputations attainable through such equilibrium cover. The system describes a state of coalitional bargaining stability where every player has a bargaining alternative against any other player to support his corresponding equilibrium claim. Any coalition in the sable system may form and divide the characteristic value function of the coalition as prescribed by the equilibrium payoffs. If syndicates are allowed to form, a formed coalition may become a syndicate using the equilibrium payoffs as disagreement values in bargaining for a part of the complementary coalition incremental value to the grand coalition when formed. The emergent well known-constant sum derived game in partition function is described in terms of parameters that result from incumbent binding agreements. The strategic-equilibrium corresponding to the derived game gives an equal value claim to all players. This surprising result is alternatively explained in terms of strategic-equilibrium based possible outcomes by a sequence of bargaining stages that when the binding agreements are in the right sequential order, von Neumann and Morgenstern (vN-M non-discriminatory solutions emerge. In these solutions a preferred branch by a sufficient number of players is identified: the weaker players syndicate against the stronger player. This condition is referred to as the stronger player paradox. A strategic alternative available to the stronger players to overcome the anticipated not desirable results is to voluntarily lower his bargaining equilibrium claim. In doing the original strategic equilibrium is modified and vN-M discriminatory solutions may occur, but also a different stronger player may emerge that has eventually will have to lower his equilibrium claim. A sequence of such measures converges to the equal
Thermodynamic evolution far from equilibrium
Khantuleva, Tatiana A.
2018-05-01
The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.
Relevance of equilibrium in multifragmentation
International Nuclear Information System (INIS)
Furuta, Takuya; Ono, Akira
2009-01-01
The relevance of equilibrium in a multifragmentation reaction of very central 40 Ca + 40 Ca collisions at 35 MeV/nucleon is investigated by using simulations of antisymmetrized molecular dynamics (AMD). Two types of ensembles are compared. One is the reaction ensemble of the states at each reaction time t in collision events simulated by AMD, and the other is the equilibrium ensemble prepared by solving the AMD equation of motion for a many-nucleon system confined in a container for a long time. The comparison of the ensembles is performed for the fragment charge distribution and the excitation energies. Our calculations show that there exists an equilibrium ensemble that well reproduces the reaction ensemble at each reaction time t for the investigated period 80≤t≤300 fm/c. However, there are some other observables that show discrepancies between the reaction and equilibrium ensembles. These may be interpreted as dynamical effects in the reaction. The usual static equilibrium at each instant is not realized since any equilibrium ensemble with the same volume as that of the reaction system cannot reproduce the fragment observables
Slip length crossover on a graphene surface
Energy Technology Data Exchange (ETDEWEB)
Liang, Zhi, E-mail: liangz3@rpi.edu [Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Keblinski, Pawel, E-mail: keplip@rpi.edu [Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)
2015-04-07
Using equilibrium and non-equilibrium molecular dynamics simulations, we study the flow of argon fluid above the critical temperature in a planar nanochannel delimited by graphene walls. We observe that, as a function of pressure, the slip length first decreases due to the decreasing mean free path of gas molecules, reaches the minimum value when the pressure is close to the critical pressure, and then increases with further increase in pressure. We demonstrate that the slip length increase at high pressures is due to the fact that the viscosity of fluid increases much faster with pressure than the friction coefficient between the fluid and the graphene. This behavior is clearly exhibited in the case of graphene due to a very smooth potential landscape originating from a very high atomic density of graphene planes. By contrast, on surfaces with lower atomic density, such as an (100) Au surface, the slip length for high fluid pressures is essentially zero, regardless of the nature of interaction between fluid and the solid wall.
Telomere length and depression
DEFF Research Database (Denmark)
Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line
2017-01-01
BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...
International Nuclear Information System (INIS)
Kim, Sang-Ho; Heo, Hoe-Jun; Kang, Chung-Yun; Yoon, Tae-Jin
2016-01-01
Open cell Cu foam, which has been widely utilized in various industries because of its high thermal conductivity, lightweight and large surface area, was successfully joined with Cu plate by diffusion bonding. To prevent excessive deformation of the Cu foam during bonding process, the bonding pressure should be lower than 500 kPa at 800 ℃ for 60 min and bonding pressure should be lowered with increasing holding time. The bonding strength was evaluated by tensile tests. The tensile load of joints increased with the bonding pressure and holding time. In the case of higher bonding pressure or time, the bonded length at the interface was usually longer than the cross-sectional length of the foam, so fracture occurred at the foam. For the same reason, base metal (foam) fracture mainly occurred at the node-plate junction rather than in the strut-plate junction because the bonded surface area of the node was relatively larger than that of the strut.
Effect of the Alkyl Chain Length on the Adsorption Properties of Malonamide Chelating Resins
International Nuclear Information System (INIS)
Ismail, I.M.; Nogami, M.; Suzuki, K.
2004-01-01
In order to investigate the effect of the alkyl chain length of malonamide chelating resins on the rate of uptake of U(VI) ions and Ce(III) Ions, lV,N,N',N'-tetraethyl malonamide (TEMA), N,N,N',N'-tetra-n-propyl malonamide (TPrMA), lV,lV,N',N'-tetra-n-butyl malonamide (TBMA) and N,l V,N',N'-tetra-n-pentyl malonamide (Tamp) chelating resins were synthesized by chemically bonding these function groups to CMS-DVB co-polymer beads. N,lV,N',N'-tetraphenyl malonamide (TPhMA) chelating resin was also investigated and the results of these resins were compared with those of N,lY,N',N-tetra methylmalonamide (TMMA) previously reported. The batch technique was used to study the thermodynamic equilibrium, in terms of distribution coefficient, and the kinetics of the adsorption U(VI) and Ce(III) ions from 3 M HNO 3 , Acid, and 3 M NaNO 3 + 0.05 M HNO 3 , Salt, media. The introduction ratio of the function group into the polymer base and the uptake of U(VI) ions and C(III) ions were found to decrease with the increase in the alkyl chain length. The uptake was found to diminish in case of TPhMA resin due to the decrease of the function group ratio and the steric-hinder effect
Amplification of Chirality in Hydrogen-Bonded Tetrarosette Helices
Mateos timoneda, Miguel; Crego Calama, Mercedes; Reinhoudt, David
2006-01-01
The amplification of chirality in hydrogen-bonded tetrarosette assemblies under thermodynamic equilibrium is described. The extent of the chiral amplification obtained by means of “sergeants-and-soldiers” experiments depends only on the structure of the assembly and it is independent of the
Macroeconomic Stability in a Model with Bond Transaction Services
Directory of Open Access Journals (Sweden)
Massimiliano Marzo
2018-02-01
Full Text Available Cochrane (2014 shows that high-powered money balances and short-term government bonds can be considered as perfect substitutes for the U.S economy during the past twenty years. We build on this claim and consider a variant of the standard cashless new-Keynesian model with two types of government bonds, which can be thought of as short- and long-term bonds. The first one has a macroeconomic role in the sense that it provides transaction services in addition to generating a yield. The other type of government bond pays only an interest rate. Consistent with previous findings, the Taylor principle is not a panacea for equilibrium determinacy in a model without money. When the government bond market matters beyond the need for fiscal solvency, monetary policy rules do not need to comply with the Taylor principle for unique equilibria to exist.
Quasi-equilibrium in glassy dynamics: an algebraic view
International Nuclear Information System (INIS)
Franz, Silvio; Parisi, Giorgio
2013-01-01
We study a chain of identical glassy systems in a constrained equilibrium, where each bond of the chain is forced to remain at a preassigned distance to the previous one. We apply this description to mean-field glassy systems in the limit of a long chain where each bond is close to the previous one. We show that this construction defines a pseudo-dynamic process that in specific conditions can formally describe real relaxational dynamics for long times. In particular, in mean-field spin glass models we can recover in this way the equations of Langevin dynamics in the long time limit at the dynamical transition temperature and below. We interpret the formal identity as evidence that in these situations the configuration space is explored in a quasi-equilibrium fashion. Our general formalism, which relates dynamics to equilibrium, puts slow dynamics in a new perspective and opens the way to the computation of new dynamical quantities in glassy systems. (paper)
Reconstruction of equilibrium trajectories during whole-body movements.
Domen, K; Latash, M L; Zatsiorsky, V M
1999-03-01
The framework of the equilibrium-point hypothesis was used to reconstruct equilibrium trajectories (ETs) of the ankle, hip and body center of mass during quick voluntary hip flexions ('Japanese courtesy bow') by standing subjects. Different spring loads applied to the subject's back were used to introduce smooth perturbations that are necessary to reconstruct ETs based on a series of trials at the same task. Time patterns of muscle torques were calculated using inverse dynamics techniques. A second-order linear model was employed to calculate the instantaneous position of the spring-like joint or center of mass characteristic at different times during the movement. ETs of the joints and of the center of mass had significantly different shapes from the actual trajectories. Integral measures of electromyographic bursts of activity in postural muscles demonstrated a relation to muscle length corresponding to the equilibrium-point hypothesis.
Local Equilibrium and Retardation Revisited.
Hansen, Scott K; Vesselinov, Velimir V
2018-01-01
In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Inflation of the screening length induced by Bjerrum pairs
Zwanikken, J.W.; van Roij, R.H.H.G.
2009-01-01
Within a modified Poisson–Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale 1/¯κ over which electric fields are screened in electrolyte solutions, taking into account a simple association–dissociation equilibrium between free ions and Bjerrum pairs. At low densities
Testing independence of fragment lengths within VNTR loci
Energy Technology Data Exchange (ETDEWEB)
Geisser, S. (Univ. of Minnesota, Minneapolis, MN (United States)); Johnson, W. (Univ. of California, Davis, CA (United States))
1993-11-01
Methods that were devised to test independence of the bivariate fragment lengths obtained from VNTR loci are applied to several population databases. It is shown that for many of the probes independence (Hardy-Weinberg equilibrium) cannot be sustained. 3 refs., 3 tabs.
Noland, R.A.; Walker, D.E.
1961-06-13
A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.
International Nuclear Information System (INIS)
Chandra, A.K.; Rao, V.S.
1996-01-01
The simplest prototypical hydrogen transfer reaction, i.e., H + H 2 → H 2 + H, is studied by the quantum-mechanical ab initio methods. Results reveal that during this reaction free valence which almost equals the square of the spin density develops on the migrating hydrogen atom. Bond orders are calculated using Mayer's formalism. Both the variations of bond orders and bond lengths along the reaction path are examined. This analysis reveals that the bond formation and bond cleavage processes in this reaction are not perfectly synchronous. The bond clevage process is slightly more advanced on the reaction path. 38 refs., 6 figs., 2 tabs
Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G
2014-01-01
This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks. Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material. However, copper wire bonding has several process and reliability concerns due to its material properties. Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation. In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed. The book also discusses best practices and re...
International Nuclear Information System (INIS)
Bruyere, M.; Vallee, A.; Collette, C.
1986-09-01
Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated
Crystallochemistry of rhenium compounds with metal-metal bonds
International Nuclear Information System (INIS)
Koz'min, P.A.; Surazhskaya, M.D.
1980-01-01
A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation
X-ray diffraction and chemical bonding
International Nuclear Information System (INIS)
Bats, J.W.
1976-01-01
Chemical bonds are investigated in sulfamic acid (H 3 N-SO 3 ), sodium sulfonlate dihydrate (H 2 NC 6 H 4 SO 3 Na.2H 2 O), 2,5-dimercaptothiadiazole (HS-C 2 N 2 S-SH), sodium cyanide dihydrate (NaCN.2H 2 O), sodium thiocyanate (NaSCN) and ammonium thiocyanate (NH 4 SCN) by X-ray diffraction, and if necessary completed with neutron diffraction. Crystal structures and electron densities are determined together with bond length and angles. Also the effects of thermal motion are discussed
Equilibrium Arrival Times to Queues
DEFF Research Database (Denmark)
Breinbjerg, Jesper; Østerdal, Lars Peter
We consider a non-cooperative queueing environment where a finite number of customers independently choose when to arrive at a queueing system that opens at a given point in time and serves customers on a last-come first-serve preemptive-resume (LCFS-PR) basis. Each customer has a service time...... requirement which is identically and independently distributed according to some general probability distribution, and they want to complete service as early as possible while minimizing the time spent in the queue. In this setting, we establish the existence of an arrival time strategy that constitutes...... a symmetric (mixed) Nash equilibrium, and show that there is at most one symmetric equilibrium. We provide a numerical method to compute this equilibrium and demonstrate by a numerical example that the social effciency can be lower than the effciency induced by a similar queueing system that serves customers...
Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding
Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming
2016-01-01
Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859
Relativistic distances, sizes, lengths
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1992-01-01
Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs
Spontaneity and Equilibrium: Why "?G Equilibrium" Are Incorrect
Raff, Lionel M.
2014-01-01
The fundamental criteria for chemical reactions to be spontaneous in a given direction are generally incorrectly stated as ?G chemistry textbooks and even in some more advanced texts. Similarly, the criteria for equilibrium are also misstated as being ?G = 0 or ?A = 0. Following a brief review of the…
Equilibrium problems for Raney densities
Forrester, Peter J.; Liu, Dang-Zheng; Zinn-Justin, Paul
2015-07-01
The Raney numbers are a class of combinatorial numbers generalising the Fuss-Catalan numbers. They are indexed by a pair of positive real numbers (p, r) with p > 1 and 0 0 and similarly use both methods to identify the equilibrium problem for (p, r) = (θ/q + 1, 1/q), θ > 0 and q \\in Z+ . The Wiener-Hopf method is used to extend the latter to parameters (p, r) = (θ/q + 1, m + 1/q) for m a non-negative integer, and also to identify the equilibrium problem for a family of densities with moments given by certain binomial coefficients.
Equilibrium in a Production Economy
Energy Technology Data Exchange (ETDEWEB)
Chiarolla, Maria B., E-mail: maria.chiarolla@uniroma1.it [Universita di Roma ' La Sapienza' , Dipartimento di Metodi e Modelli per l' Economia, il Territorio e la Finanza, Facolta di Economia (Italy); Haussmann, Ulrich G., E-mail: uhaus@math.ubc.ca [University of British Columbia, Department of Mathematics (Canada)
2011-06-15
Consider a closed production-consumption economy with multiple agents and multiple resources. The resources are used to produce the consumption good. The agents derive utility from holding resources as well as consuming the good produced. They aim to maximize their utility while the manager of the production facility aims to maximize profits. With the aid of a representative agent (who has a multivariable utility function) it is shown that an Arrow-Debreu equilibrium exists. In so doing we establish technical results that will be used to solve the stochastic dynamic problem (a case with infinite dimensional commodity space so the General Equilibrium Theory does not apply) elsewhere.
Incentives in Supply Function Equilibrium
DEFF Research Database (Denmark)
Vetter, Henrik
2014-01-01
The author analyses delegation in homogenous duopoly under the assumption that the firm-managers compete in supply functions. In supply function equilibrium, managers’ decisions are strategic complements. This reverses earlier findings in that the author finds that owners give managers incentives...... to act in an accommodating way. As a result, optimal delegation reduces per-firm output and increases profits to above-Cournot profits. Moreover, in supply function equilibrium the mode of competition is endogenous. This means that the author avoids results that are sensitive with respect to assuming...
Equilibrium in a Production Economy
International Nuclear Information System (INIS)
Chiarolla, Maria B.; Haussmann, Ulrich G.
2011-01-01
Consider a closed production-consumption economy with multiple agents and multiple resources. The resources are used to produce the consumption good. The agents derive utility from holding resources as well as consuming the good produced. They aim to maximize their utility while the manager of the production facility aims to maximize profits. With the aid of a representative agent (who has a multivariable utility function) it is shown that an Arrow-Debreu equilibrium exists. In so doing we establish technical results that will be used to solve the stochastic dynamic problem (a case with infinite dimensional commodity space so the General Equilibrium Theory does not apply) elsewhere.
The Equilibrium Rule--A Personal Discovery
Hewitt, Paul G.
2016-01-01
Examples of equilibrium are evident everywhere and the equilibrium rule provides a reasoned way to view all things, whether in static (balancing rocks, steel beams in building construction) or dynamic (airplanes, bowling balls) equilibrium. Interestingly, the equilibrium rule applies not just to objects at rest but whenever any object or system of…
Non equilibrium atomic processes and plasma spectroscopy
International Nuclear Information System (INIS)
Kato, Takako
2003-01-01
Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)
Deviations from thermal equilibrium in plasmas
International Nuclear Information System (INIS)
Burm, K.T.A.L.
2004-01-01
A plasma system in local thermal equilibrium can usually be described with only two parameters. To describe deviations from equilibrium two extra parameters are needed. However, it will be shown that deviations from temperature equilibrium and deviations from Saha equilibrium depend on one another. As a result, non-equilibrium plasmas can be described with three parameters. This reduction in parameter space will ease the plasma describing effort enormously
Non-equilibrium fluctuation-induced interactions
International Nuclear Information System (INIS)
Dean, David S
2012-01-01
We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.
Transversely Compressed Bonded Joints
DEFF Research Database (Denmark)
Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik
2012-01-01
The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...
Accurate characterization of wafer bond toughness with the double cantilever specimen
Turner, Kevin T.; Spearing, S. Mark
2008-01-01
The displacement loaded double cantilever test, also referred to as the "Maszara test" and the "crack opening method" by the wafer bonding community, is a common technique used to evaluate the interface toughness or surface energy of direct wafer bonds. While the specimen is widely used, there has been a persistent question as to the accuracy of the method since the actual specimen geometry differs from the ideal beam geometry assumed in the expression used for data reduction. The effect of conducting the test on whole wafer pairs, in which the arms of cantilevers are wide plates rather than slender beams, is examined in this work using finite element analysis. A model is developed to predict the equilibrium shape of the crack front and to develop a corrected expression for calculating interface toughness from crack length measurements obtained in tests conducted on whole wafer pairs. The finite element model, which is validated through comparison to experiments, demonstrates that using the traditional beam theory-based expressions for data reduction can lead to errors of up to 25%.
Understanding Thermal Equilibrium through Activities
Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra
2015-01-01
Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…
Thermodynamic theory of equilibrium fluctuations
International Nuclear Information System (INIS)
Mishin, Y.
2015-01-01
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.
Equilibrium theory : A salient approach
Schalk, S.
1999-01-01
Whereas the neoclassical models in General Equilibrium Theory focus on the existence of separate commodities, this thesis regards 'bundles of trade' as the unit objects of exchange. Apart from commodities and commodity bundles in the neoclassical sense, the term `bundle of trade' includes, for
Essays in general equilibrium theory
Konovalov, A.
2001-01-01
The thesis focuses on various issues of general equilibrium theory and can approximately be divided into three parts. The first part of the thesis studies generalized equilibria in the Arrow-Debreu model in the situation where the strong survival assumption is not satisfied. Chapter four deals with
Financial equilibrium with career concerns
Directory of Open Access Journals (Sweden)
Amil Dasgupta
2006-03-01
Full Text Available What are the equilibrium features of a financial market where a sizeable proportion of traders face reputational concerns? This question is central to our understanding of financial markets, which are increasingly dominated by institutional investors. We construct a model of delegated portfolio management that captures key features of the US mutual fund industry and embed it in an asset pricing framework. We thus provide a formal model of financial equilibrium with career concerned agents. Fund managers differ in their ability to understand market fundamentals, and in every period investors choose a fund. In equilibrium, the presence of career concerns induces uninformed fund managers to churn, i.e., to engage in trading even when they face a negative expected return. Churners act as noise traders and enhance the level of trading volume. The equilibrium relationship between fund return and net fund flows displays a skewed shape that is consistent with stylized facts. The robustness of our core results is probed from several angles.
Equilibrium with arbitrary market structure
DEFF Research Database (Denmark)
Grodal, Birgit; Vind, Karl
2005-01-01
. The complete market predicted by this theory is clearly unrealistic, and Radner [10] formulated and proved existence of equilibrium in a multiperiod model with incomplete markets. In this paper the Radner result is extended. Radner assumed a specific structure of markets, independence of preferences...
Nash equilibrium with lower probabilities
DEFF Research Database (Denmark)
Groes, Ebbe; Jacobsen, Hans Jørgen; Sloth, Birgitte
1998-01-01
We generalize the concept of Nash equilibrium in mixed strategies for strategic form games to allow for ambiguity in the players' expectations. In contrast to other contributions, we model ambiguity by means of so-called lower probability measures or belief functions, which makes it possible...
DEFF Research Database (Denmark)
Tell, Michael
2015-01-01
Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...
An Easy and Effective Demonstration of Enzyme Stereospecificity and Equilibrium Thermodynamics
Herdman, Chelsea; Dickman, Michael
2011-01-01
Enzyme stereospecificity and equilibrium thermodynamics can be demonstrated using the coupling of two amino acid derivatives by Thermoase C160. This protease will catalyze peptide bond formation between Z-L-AspOH and L-PheOMe to form the Aspartame precursor Z-L-Asp-L-PheOMe. Reaction completion manifests itself by precipitation of the product. As…
The chemical bond as an emergent phenomenon.
Golden, Jon C; Ho, Vinh; Lubchenko, Vassiliy
2017-05-07
We first argue that the covalent bond and the various closed-shell interactions can be thought of as symmetry broken versions of one and the same interaction, viz., the multi-center bond. We use specially chosen molecular units to show that the symmetry breaking is controlled by density and electronegativity variation. We show that the bond order changes with bond deformation but in a step-like fashion, regions of near constancy separated by electronic localization transitions. These will often cause displacive transitions as well so that the bond strength, order, and length are established self-consistently. We further argue on the inherent relation of the covalent, closed-shell, and multi-center interactions with ionic and metallic bonding. All of these interactions can be viewed as distinct sectors on a phase diagram with density and electronegativity variation as control variables; the ionic and covalent/secondary sectors are associated with on-site and bond-order charge density wave, respectively, the metallic sector with an electronic fluid. While displaying a contiguity at low densities, the metallic and ionic interactions represent distinct phases separated by discontinuous transitions at sufficiently high densities. Multi-center interactions emerge as a hybrid of the metallic and ionic bond that results from spatial coexistence of delocalized and localized electrons. In the present description, the issue of the stability of a compound is that of the mutual miscibility of electronic fluids with distinct degrees of electron localization, supra-atomic ordering in complex inorganic compounds coming about naturally. The notions of electronic localization advanced hereby suggest a high throughput, automated procedure for screening candidate compounds and structures with regard to stability, without the need for computationally costly geometric optimization.
DEFF Research Database (Denmark)
Olesen, Solveig Gaarn; Hammerum, Steen
2009-01-01
It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....
Pion nucleus scattering lengths
International Nuclear Information System (INIS)
Huang, W.T.; Levinson, C.A.; Banerjee, M.K.
1971-09-01
Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs
Gap length distributions by PEPR
International Nuclear Information System (INIS)
Warszawer, T.N.
1980-01-01
Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)
Relativistic length agony continued
Directory of Open Access Journals (Sweden)
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
On generalized operator quasi-equilibrium problems
Kum, Sangho; Kim, Won Kyu
2008-09-01
In this paper, we will introduce the generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which generalize the operator equilibrium problem due to Kazmi and Raouf [K.R. Kazmi, A. Raouf, A class of operator equilibrium problems, J. Math. Anal. Appl. 308 (2005) 554-564] into multi-valued and quasi-equilibrium problems. Using a Fan-Browder type fixed point theorem in [S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994) 493-519] and an existence theorem of equilibrium for 1-person game in [X.-P. Ding, W.K. Kim, K.-K. Tan, Equilibria of non-compact generalized games with L*-majorized preferences, J. Math. Anal. Appl. 164 (1992) 508-517] as basic tools, we prove new existence theorems on generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which includes operator equilibrium problems.
Non-Equilibrium Properties from Equilibrium Free Energy Calculations
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.
The coevolution of long-term pair bonds and cooperation.
Song, Z; Feldman, M W
2013-05-01
The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair-matching distribution of the population, and the latter often emerges as a collective outcome of individual pair-bonding traits, which are also under selection. Here, we develop an analytical model and individual-based simulations to study the coevolution of long-term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long-term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long-term pair bonds lead to assortative interactions through pair-matching dynamics, they may promote the prevalence of cooperation. In addition to the pay-off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair-bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Equilibrium studies of helical axis stellarators
International Nuclear Information System (INIS)
Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.
1984-01-01
The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit
Students’ misconceptions on solubility equilibrium
Setiowati, H.; Utomo, S. B.; Ashadi
2018-05-01
This study investigated the students’ misconceptions of the solubility equilibrium. The participants of the study consisted of 164 students who were in the science class of second year high school. Instrument used is two-tier diagnostic test consisting of 15 items. Responses were marked and coded into four categories: understanding, misconception, understand little without misconception, and not understanding. Semi-structured interviews were carried out with 45 students according to their written responses which reflected different perspectives, to obtain a more elaborated source of data. Data collected from multiple methods were analyzed qualitatively and quantitatively. Based on the data analysis showed that the students misconceptions in all areas in solubility equilibrium. They had more misconceptions such as in the relation of solubility and solubility product, common-ion effect and pH in solubility, and precipitation concept.
Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties
International Nuclear Information System (INIS)
Savchenko, A.M.; Konovalov, Yu.V.; Yuferov, O.I.
2005-01-01
Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically [ru
Nature of the spin-glass phase at experimental length scales
International Nuclear Information System (INIS)
Alvarez Baños, R; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Maiorano, A; Martin-Mayor, V; Monforte-Garcia, J; Perez-Gaviro, S; Ruiz-Lorenzo, J J; Seoane, B; Tarancon, A; Guidetti, M; Mantovani, F; Schifano, S F; Tripiccione, R; Marinari, E; Parisi, G; Muñoz Sudupe, A; Navarro, D
2010-01-01
We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64T c . We demonstrate the relevance of equilibrium finite size simulations to understanding experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a timescale of 1 h can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies in ensuring equilibration in parallel tempering simulations
An introduction to equilibrium thermodynamics
Morrill, Bernard; Hartnett, James P; Hughes, William F
1973-01-01
An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a
Money Inventories in Search Equilibrium
Berentsen, Aleksander
1998-01-01
The paper relaxes the one unit storage capacity imposed in the basic search-theoretic model of fiat money with indivisible real commodities and indivisible money. Agents can accumulate as much money as they want. It characterizes the stationary distributions of money and shows that for reasonable parameter values (e.g. production cost, discounting, degree of specialization) a monetary equilibrium exists. There are multiple stationary distributions of a given amount of money, which differ in t...
Smarandache, Florentin
2013-09-01
Let's denote by VE the speed of the Earth and byVR the speed of the rocket. Both travel in the same direction on parallel trajectories. We consider the Earth as a moving (at a constant speed VE -VR) spacecraft of almost spherical form, whose radius is r and thus the diameter 2r, and the rocket as standing still. The non-proper length of Earth's diameter, as measured by the astronaut is: L = 2 r√{ 1 -|/VE -VR|2 c2 } rocket! Also, let's assume that the astronaut is laying down in the direction of motion. Therefore, he would also shrink, or he would die!
Directory of Open Access Journals (Sweden)
P. R. Parthasarathy
2001-01-01
Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.
Directory of Open Access Journals (Sweden)
Yibin Mu
2013-07-01
Full Text Available African bond markets have been steadily growing in recent years, but nonetheless remain undeveloped. African countries would benefit from greater access to financing and deeper financial markets. This paper compiles a unique set of data on government securities and corporate bond markets in Africa. It then applies an econometric model to analyze the key determinants of African government securities market and corporate bond market capitalization. Government securities market capitalization is directly related to better institutions and interest rate volatility, and inversely related to smaller fiscal deficits, higher interest rate spreads, exchange rate volatility, and current and capital account openness. Corporate bond market capitalization is directly linked to economic size, the level of development of the economy and financial markets, better institutions, and interest rate volatility, and inversely related to higher interest rate spreads and current account openness. Policy implications follow.
Directory of Open Access Journals (Sweden)
MOHD H. MOHD HASHIM
2016-04-01
Full Text Available The existing reinforced concrete structures may require rehabilitation and strengthening to overcome deficiencies due to defect and environmental deterioration. Fibre Reinforced Polymer (FRP-concrete bonding systems can provide solution for the deficiencies, but the durability of the bonded joint needs to be investigated for reliable structural performance. In this research the interfacial bonding behaviour of CFRP-concrete system under tropical climate exposure is main interest. A 300 mm concrete prism was bonded with CFRP plate on its two sides and exposed for 3, 6, and 9 months to laboratory environment, continuous natural weather, and wet-dry exposure in 3.5% saltwater solution at room and 40 °C temperature. The prisms were subjected to tension and compression load under bonding test to measure the strain and determine stress distribution and shear stress transfer behaviour. The results of the bonding test showed that load transfer was fairly linear and uniform at lower load level and changed to non-linear and non- uniform at higher load level. The force transfers causes the shear stress distribution being shifted along the bonded length. The combination of climate effects may have provided better curing of the bonded joints, but longer duration of exposure may be required to weaken the bond strength. Nevertheless, CFRP-concrete bonding system was only minimally affected under the tropical climate and salt solution.
Ramm, Peter; Taklo, Maaike M V
2011-01-01
Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.
International Nuclear Information System (INIS)
Peters, R.D.
1978-01-01
The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force
Effective Debye length in closed nanoscopic systems: a competition between two length scales.
Tessier, Frédéric; Slater, Gary W
2006-02-01
The Poisson-Boltzmann equation (PBE) is widely employed in fields where the thermal motion of free ions is relevant, in particular in situations involving electrolytes in the vicinity of charged surfaces. The applications of this non-linear differential equation usually concern open systems (in osmotic equilibrium with an electrolyte reservoir, a semi-grand canonical ensemble), while solutions for closed systems (where the number of ions is fixed, a canonical ensemble) are either not appropriately distinguished from the former or are dismissed as a numerical calculation exercise. We consider herein the PBE for a confined, symmetric, univalent electrolyte and quantify how, in addition to the Debye length, its solution also depends on a second length scale, which embodies the contribution of ions by the surface (which may be significant in high surface-to-volume ratio micro- or nanofluidic capillaries). We thus establish that there are four distinct regimes for such systems, corresponding to the limits of the two parameters. We also show how the PBE in this case can be formulated in a familiar way by simply replacing the traditional Debye length by an effective Debye length, the value of which is obtained numerically from conservation conditions. But we also show that a simple expression for the value of the effective Debye length, obtained within a crude approximation, remains accurate even as the system size is reduced to nanoscopic dimensions, and well beyond the validity range typically associated with the solution of the PBE.
Quantum dynamical semigroups and approach to equilibrium
International Nuclear Information System (INIS)
Frigerio, A.
1977-01-01
For a quantum dynamical semigroup possessing a faithful normal stationary state, some conditions are discussed, which ensure the uniqueness of the equilibrium state and/or the approach to equilibrium for arbitrary initial condition. (Auth.)
Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
Haskins, Justin B; Kınacı, Alper; Sevik, Cem; Çağın, Tahir
2014-06-28
Determining the lattice thermal conductivity (κ) of nanostructures is especially challenging in that, aside from the phonon-phonon scattering present in large systems, the scattering of phonons from the system boundary greatly influences heat transport, particularly when system length (L) is less than the average phonon mean free path (MFP). One possible route to modeling κ in these systems is through molecular dynamics (MD) simulations, inherently including both phonon-phonon and phonon-boundary scattering effects in the classical limit. Here, we compare current MD methods for computing κ in nanostructures with both L ⩽ MFP and L ≫ MFP, referred to as mean free path constrained (cMFP) and unconstrained (uMFP), respectively. Using a (10,0) CNT (carbon nanotube) as a benchmark case, we find that while the uMFP limit of κ is well-defined through the use of equilibrium MD and the time-correlation formalism, the standard equilibrium procedure for κ is not appropriate for the treatment of the cMFP limit because of the large influence of boundary scattering. To address this issue, we define an appropriate equilibrium procedure for cMFP systems that, through comparison to high-fidelity non-equilibrium methods, is shown to be the low thermal gradient limit to non-equilibrium results. Further, as a means of predicting κ in systems having L ≫ MFP from cMFP results, we employ an extrapolation procedure based on the phenomenological, boundary scattering inclusive expression of Callaway [Phys. Rev. 113, 1046 (1959)]. Using κ from systems with L ⩽ 3 μm in the extrapolation, we find that the equilibrium uMFP κ of a (10,0) CNT can be predicted within 5%. The equilibrium procedure is then applied to a variety of carbon-based nanostructures, such as graphene flakes (GF), graphene nanoribbons (GNRs), CNTs, and icosahedral fullerenes, to determine the influence of size and environment (suspended versus supported) on κ. Concerning the GF and GNR systems, we find that
The geometry of finite equilibrium sets
DEFF Research Database (Denmark)
Balasko, Yves; Tvede, Mich
2009-01-01
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely noncollinear....
Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.
Hu, Yujing; Gao, Yang; An, Bo
2015-07-01
An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.
The Geometry of Finite Equilibrium Datasets
DEFF Research Database (Denmark)
Balasko, Yves; Tvede, Mich
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely non collinear....
Open problems in non-equilibrium physics
International Nuclear Information System (INIS)
Kusnezov, D.
1997-01-01
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions
The concept of equilibrium in organization theory
Gazendam, H.W.M.
1998-01-01
Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or
The concept of equilibrium in organization theory
Gazendam, Henk W.M.
1997-01-01
Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or
Open problems in non-equilibrium physics
Energy Technology Data Exchange (ETDEWEB)
Kusnezov, D.
1997-09-22
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.
EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas
International Nuclear Information System (INIS)
Colonna, G.; D'Angola, A.
2012-01-01
EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.
Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.
Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza
2015-01-01
A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.
Directory of Open Access Journals (Sweden)
M. Konrad
2004-01-01
Full Text Available In this paper we analyze the performance of a bond layer between the multi-filament yarn and the cementitious matrix. The performance of the bond layer is a central issue in the development of textile-reinforced concrete. The changes in the microstructure during the loading result in distinguished failure mechanisms on the micro, meso and macro scales. The paper provides a brief review of these effects and describes a modeling strategy capable of reflecting the failure process. Using the model of the bond layer we illuminate the correspondence between the disorder in the microstructure of the yarn and the bonding behavior at the meso- and macro level. Particular interest is paid to the influence of irregularities in the micro-structure (relative differences in filament lengths, varying bond quality, bond-free length for different levels of local bond quality between the filament surface and the matrix.
Kawakatsu, T.; Matsuyama, A.; Ohta, T.; Tanaka, H.; Tanaka, S.
2011-07-01
, Culture, Sports, Science and Technology (MEXT) of Japan. We thank those who contributed to this symposium as well as members of the 'Soft Matter Physics' project for their valuable discussions and collaborations. Non-equilibrium soft matter contents Insights on raft behavior from minimal phenomenological models G Garbès Putzel and M Schick Dynamical membrane curvature instability controlled by intermonolayer friction Anne-Florence Bitbol, Jean-Baptiste Fournier, Miglena I Angelova and Nicolas Puff Numerical investigations of the dynamics of two-component vesicles Takashi Taniguchi, Miho Yanagisawa and Masayuki Imai Asymmetric distribution of cone-shaped lipids in a highly curved bilayer revealed by a small angle neutron scattering technique Y Sakuma, N Urakami, T Taniguchi and M Imai Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers Fumihiko Tanaka, Tsuyoshi Koga, Isamu Kaneda and Françoise M Winnik Morphology and rheology of an immiscible polymer blend subjected to a step electric field under shear flow H Orihara, Y Nishimoto, K Aida, Y H Na, T Nagaya and S Ujiie Surfactant-induced friction reduction for hydrogels in the boundary lubrication regime Kosuke Kamada, Hidemitsu Furukawa, Takayuki Kurokawa, Tomohiro Tada, Taiki Tominaga, Yukihiro Nakano and Jian Ping Gong Fabrication and structural analysis of polyrotaxane fibers and films Yasuhiro Sakai, Kentaro Ueda, Naoya Katsuyama, Koji Shimizu, Shunya Sato, Jun Kuroiwa, Jun Araki, Akira Teramoto, Koji Abe, Hideaki Yokoyama and Kohzo Ito Micellization kinetics of diblock copolymers in a homopolymer matrix: a self-consistent field study Raghuram Thiagarajan and David C Morse Hierarchical self-assembly of two-length-scale multiblock copolymers Gerrit ten Brinke, Katja Loos, Ivana Vukovic and Gerrit Gobius du Sart Kaleidoscopic morphologies from ABC star-shaped terpolymers Yushu Matsushita, Kenichi Hayashida, Tomonari Dotera and Atsushi Takano Direct and inverted nematic
Thermal equilibrium in Einstein's elevator.
Sánchez-Rey, Bernardo; Chacón-Acosta, Guillermo; Dagdug, Leonardo; Cubero, David
2013-05-01
We report fully relativistic molecular-dynamics simulations that verify the appearance of thermal equilibrium of a classical gas inside a uniformly accelerated container. The numerical experiments confirm that the local momentum distribution in this system is very well approximated by the Jüttner function-originally derived for a flat spacetime-via the Tolman-Ehrenfest effect. Moreover, it is shown that when the acceleration or the container size is large enough, the global momentum distribution can be described by the so-called modified Jüttner function, which was initially proposed as an alternative to the Jüttner function.
Contrasting bonding behavior of thiol molecules on carbon fullerene structures
International Nuclear Information System (INIS)
Mixteco-Sanchez, J.C.; Guirado-Lopez, R.A.
2003-01-01
We have performed semiempirical as well as ab initio density-functional theory (DFT) calculations at T=0 to analyze the equilibrium configurations and electronic properties of spheroidal C 60 as well as of cylindrical armchair (5,5) and (8,8) fullerenes passivated with SCH 3 and S(CH 2 ) 2 CH 3 thiols. Our structural results reveal that the lowest-energy configurations of the adsorbates strongly depend on their chain length and on the structure of the underlying substrate. In the low-coverage regime, both SCH 3 and S(CH 2 ) 2 CH 3 molecules prefer to organize into a molecular cluster on one side of the C 60 surface, providing thus a less protective organic coating for the carbon structure. However, with increasing the number of adsorbed thiols, a transition to a more uniform distribution is obtained, which actually takes place for six and eight adsorbed molecules when using S(CH 2 ) 2 CH 3 and SCH 3 chains, respectively. In contrast, for the tubelike arrangements at the low-coverage regime, a quasi-one-dimensional zigzag organization of the adsorbates along the tubes is always preferred. The sulfur-fullerene bond is considerably strong and is at the origin of outward and lateral displacements of the carbon atoms, leading to the stabilization of three-membered rings on the surface (spheroidal structures) as well as to sizable nonuniform radial deformations (cylindrical configurations). The electronic spectrum of our thiol-passivated fullerenes shows strong variations in the energy difference between the highest occupied and lowest unoccupied molecular orbitals as a function of the number and distribution of adsorbed thiols, opening thus the possibility to manipulate the transport properties of these compounds by means of selective adsorption mechanisms
Mann, Stephen
2009-10-01
Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic-organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction-diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.
Romanian government bond market
Directory of Open Access Journals (Sweden)
Cornelia POP
2012-12-01
Full Text Available The present paper aims to present the level of development reached by Romanian government bond market segment, as part of the country financial market. The analysis will be descriptive (the data series available for Romania are short, based on the secondary data offered by the official bodies involved in the process of issuing and trading the Romanian government bonds (Romanian Ministry of Public Finance, Romanian National Bank and Bucharest Stock Exchange, and also on secondary data provided by the Federation of European Stock Exchanges.To enhance the market credibility as a benchmark, a various combination of measures is necessary; among these measures are mentioned: the extension of the yield curve; the issuance calendars in order to improve transparency; increasing the disclosure of information on public debt issuance and statistics; holding regular meetings with dealers, institutional investors and rating agencies; introducing a system of primary dealers; establishing a repurchase (repo market in the government bond market. These measures will be discussed based on the evolution presented inside the paper.The paper conclude with the fact that, until now, the Romanian government bond market did not provide a benchmark for the domestic financial market and that further efforts are needed in order to increase the government bond market transparency and liquidity.
Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan
2018-06-01
This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.
Safe and Liquid Mortgage Bonds
DEFF Research Database (Denmark)
Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper
This paper shows that strict match pass-through funding of covered bonds provides safe and liquid mortgage bonds. Despite a 30% drop in house prices during the 2008 global crisis Danish mortgage bonds remained as liquid as most European government bonds. The Danish pass-through system effectively...... eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...
Silverberg, Lee J.; Raff, Lionel M.
2015-01-01
Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…
Approach to transverse equilibrium in axial channeling
International Nuclear Information System (INIS)
Fearick, R.W.
2000-01-01
Analytical treatments of channeling rely on the assumption of equilibrium on the transverse energy shell. The approach to equilibrium, and the nature of the equilibrium achieved, is examined using solutions of the equations of motion in the continuum multi-string model. The results show that the motion is chaotic in the absence of dissipative processes, and a complicated structure develops in phase space which prevent the development of the simple equilibrium usually assumed. The role of multiple scattering in smoothing out the equilibrium distribution is investigated
Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence
DEFF Research Database (Denmark)
Hammerum, Steen
2009-01-01
Spectroscopic, energetic and structural information obtained by DFT and G3-type computational studies demonstrates that charged proton donors can form moderately strong hydrogen bonds to simple alkyl radicals. The presence of these bonds stabilizes the adducts and modifies their structure......, and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...... acceptors than formaldehyde molecules, while propyl radicals are as good as H2O. The hydrogen bond strength appears to depend on the proton affinity of the proton donor and on the ionization energy of the acceptor alkyl radical, not on the donor-acceptor proton affinity difference, reflecting...
Imploding to equilibrium of helically symmetric theta pinches
International Nuclear Information System (INIS)
Sharky, N.N.
1978-01-01
The time-dependent, single-fluid, dissipative magnetohydrodynamic equations are solved in helical coordinates (r,phi), where phi = THETA-kz, k = 2π/L and L is the periodicity length in the z-direction. The two-dimensional numerical calculations simulate theta pinches which have an l = 1 helical field added to them. Given the applied magnetic fields and the initial state of the plasma, we study the time evolution of the system. The plasma is found to experience two kinds of oscillations, occurring on different time scales. These are the radial compression oscillations, and the slower helical oscillations of the plasma column. The plasma motion is followed until these oscillations disappear and an equilibrium is nearly reached. Hence given the amplitude and the rise time of the applied magnetic fields, the calculations allow one to relate the initial state of a cold, homogeneous plasma to its final equilibrium state where it is heated and compressed
Directory of Open Access Journals (Sweden)
Jarosław Poznański
Full Text Available Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.
Poznański, Jarosław; Poznańska, Anna; Shugar, David
2014-01-01
Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.
The length and time scales of water's glass transitions
Limmer, David T.
2014-06-01
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
The length and time scales of water's glass transitions.
Limmer, David T
2014-06-07
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
Pre-equilibrium plasma dynamics
Energy Technology Data Exchange (ETDEWEB)
Heinz, U.
1986-01-01
Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs. (LEW)
Non-equilibrium phase transition
International Nuclear Information System (INIS)
Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.
1998-01-01
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken
Pre-equilibrium plasma dynamics
International Nuclear Information System (INIS)
Heinz, U.
1986-01-01
Approaches towards understanding and describing the pre-equilibrium stage of quark-gluon plasma formation in heavy-ion collisions are reviewed. Focus is on a kinetic theory approach to non-equilibrium dynamics, its extension to include the dynamics of color degrees of freedom when applied to the quark-gluon plasma, its quantum field theoretical foundations, and its relationship to both the particle formation stage at the very beginning of the nuclear collision and the hydrodynamic stage at late collision times. The usefulness of this approach to obtain the transport coefficients in the quark-gluon plasma and to derive the collective mode spectrum and damping rates in this phase are discussed. Comments are made on the general difficulty to find appropriated initial conditions to get the kinetic theory started, and a specific model is given that demonstrates that, once given such initial conditions, the system can be followed all the way through into the hydrodynamical regime. 39 refs., 7 figs
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason
2011-04-12
We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.
Hydrogen bonded supramolecular materials
Li, Zhan-Ting
2015-01-01
This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed
Jonsson, Annika; Walter, Tony
2017-08-01
Where do people feel closest to those they have lost? This article explores how continuing bonds with a deceased person can be rooted in a particular place or places. Some conceptual resources are sketched, namely continuing bonds, place attachment, ancestral places, home, reminder theory, and loss of place. The authors use these concepts to analyze interview material with seven Swedes and five Britons who often thought warmly of the deceased as residing in a particular place and often performing characteristic actions. The destruction of such a place, by contrast, could create a troubling, haunting absence, complicating the deceased's absent-presence.
Finite length thermal equilibria of a pure electron plasma column
International Nuclear Information System (INIS)
Prasad, S.A.; O'Neil, T.M.
1979-01-01
The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be confined by static magnetic and electric fields. Since the electrons make a significant contribution to the electric field, only certain density profiles are consistent with Poisson's equation. The class of such distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is small compared with the dimensions of the column, the density is essentially constant out to some surface of revolution and then falls off abruptly. The falloff in density is a universal function when measured along the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the shape of the surface of revolution is simplified by passage to the limit of zero Debye length
Directory of Open Access Journals (Sweden)
Jonathan Maiangwa
2017-05-01
Full Text Available The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent
Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons
Energy Technology Data Exchange (ETDEWEB)
Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.
2017-01-17
Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [
Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid
2016-01-01
To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.
Hu, Peiguang; Chen, Limei; Deming, Christopher P; Bonny, Lewis W; Lee, Hsiau-Wei; Chen, Shaowei
2016-10-07
Stable platinum nanoparticles were prepared by the self-assembly of 1-dodecyne and dodec-1-deuteroyne onto bare platinum colloid surfaces. The nanoparticles exhibited consistent core size and optical properties. FTIR and NMR measurements confirmed the formation of Pt-vinylidene (Pt[double bond, length as m-dash]C[double bond, length as m-dash]CH-) interfacial linkages rather than Pt-acetylide (Pt-C[triple bond, length as m-dash]C-) and platinum-hydride (Pt-H) bonds.
International Nuclear Information System (INIS)
Dittmer, Jens; Kim, Chul-Hyun; Bodenhausen, Geoffrey
2003-01-01
The bond lengths and dynamics of intra- and intermolecular hydrogen bonds in an RNA kissing complex have been characterized by determining the NMR relaxation rates of various double- and triple-quantum coherences that involve an imino proton and two neighboring nitrogen-15 nuclei belonging to opposite bases. New experiments allow one to determine the chemical shift anisotropy of the imino protons. The bond lengths derived from dipolar relaxation and the lack of modulations of the nitrogen chemical shifts indicate that the intermolecular hydrogen bonds which hold the kissing complex together are very similar to the intramolecular hydrogen bonds in the double-stranded stem of the RNA
Boson spectra and correlations for thermal locally equilibrium systems
International Nuclear Information System (INIS)
Sinyukov, Y.M.
1999-01-01
The single- and multi-particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for a boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wavelengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeably grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough. (author)
Equilibrium calculations and mode analysis
International Nuclear Information System (INIS)
Herrnegger, F.
1987-01-01
The STEP asymptotic stellarator expansion procedure was used to study the MHD equilibrium and stability properties of stellarator configurations without longitudinal net-current, which also apply to advanced stellarators. The effects of toroidal curvature and magnetic well, and the Shafranov shift were investigated. A classification of unstable modes in toroidal stellarators is given. For WVII-A coil-field configurations having a β value of 1% and a parabolic pressure profile, no free-boundary modes are found. This agrees with the experimental fact that unstable behavior of the plasma column is not observed for this parameter range. So a theoretical β-limit for stability against ideal MHD modes can be estimated by mode analysis for the WVII-A device
Stellar Equilibrium in Semiclassical Gravity.
Carballo-Rubio, Raúl
2018-02-09
The phenomenon of quantum vacuum polarization in the presence of a gravitational field is well understood and is expected to have a physical reality, but studies of its backreaction on the dynamics of spacetime are practically nonexistent outside of the specific context of homogeneous cosmologies. Building on previous results of quantum field theory in curved spacetimes, in this Letter we first derive the semiclassical equations of stellar equilibrium in the s-wave Polyakov approximation. It is highlighted that incorporating the polarization of the quantum vacuum leads to a generalization of the classical Tolman-Oppenheimer-Volkoff equation. Despite the complexity of the resulting field equations, it is possible to find exact solutions. Aside from being the first known exact solutions that describe relativistic stars including the nonperturbative backreaction of semiclassical effects, these are identified as a nontrivial combination of the black star and gravastar proposals.
Risk premia in general equilibrium
DEFF Research Database (Denmark)
Posch, Olaf
This paper shows that non-linearities can generate time-varying and asymmetric risk premia over the business cycle. These (empirical) key features become relevant and asset market implications improve substantially when we allow for non-normalities in the form of rare disasters. We employ explici......'s effective risk aversion.......This paper shows that non-linearities can generate time-varying and asymmetric risk premia over the business cycle. These (empirical) key features become relevant and asset market implications improve substantially when we allow for non-normalities in the form of rare disasters. We employ explicit...... solutions of dynamic stochastic general equilibrium models, including a novel solution with endogenous labor supply, to obtain closed-form expressions for the risk premium in production economies. We find that the curvature of the policy functions affects the risk premium through controlling the individual...
Neoclassical equilibrium in gyrokinetic simulations
International Nuclear Information System (INIS)
Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph.
2009-01-01
This paper presents a set of model collision operators, which reproduce the neoclassical equilibrium and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on an entropy variational principle, which allows one to perform a fast calculation of the neoclassical diffusivity and poloidal velocity. It is shown that the force balance equation is recovered at lowest order in the expansion parameter, the normalized gyroradius, hence allowing one to calculate correctly the radial electric field. Also, the conventional neoclassical transport and the poloidal velocity are reproduced in the plateau and banana regimes. The advantages and drawbacks of the various model operators are discussed in view of the requirements for neoclassical and turbulent transport.
QUIL: a chemical equilibrium code
International Nuclear Information System (INIS)
Lunsford, J.L.
1977-02-01
A chemical equilibrium code QUIL is described, along with two support codes FENG and SURF. QUIL is designed to allow calculations on a wide range of chemical environments, which may include surface phases. QUIL was written specifically to calculate distributions associated with complex equilibria involving fission products in the primary coolant loop of the high-temperature gas-cooled reactor. QUIL depends upon an energy-data library called ELIB. This library is maintained by FENG and SURF. FENG enters into the library all reactions having standard free energies of reaction that are independent of concentration. SURF enters all surface reactions into ELIB. All three codes are interactive codes written to be used from a remote terminal, with paging control provided. Plotted output is also available
Pre-equilibrium gamma emissions
International Nuclear Information System (INIS)
Ghosh, Sudip
1993-01-01
Together with the direct reaction and the compound nuclear emissions the pre-equilibrium (PEQ) or pre-compound processes give a fairly complete picture of nuclear reactions induced by light ions at energies of some tens of MeV. PEQ particle emissions covering the higher energy continuum spectra have been investigated in detail both experimentally and theoretically. In contrast, very little work has been done on PEQ γ- emissions. The reason is that in spite of extensive work done on PEQ particle emissions, the mechanism is not yet fully understood. Also, the PEQ γ-emission cross-sections (∼ micro barns) are very small compared to the PEQ particle emission cross-sections (∼ milli barns). Yet apart from the academic interest the understanding of PEQ γ-emissions is important for applied fusion research etc. In this paper the PEQ γ-emissions is discussed and the work done in this field is reviewed. (author). 14 refs
Equilibrium Analysis in Cake Cutting
DEFF Research Database (Denmark)
Branzei, Simina; Miltersen, Peter Bro
2013-01-01
Cake cutting is a fundamental model in fair division; it represents the problem of fairly allocating a heterogeneous divisible good among agents with different preferences. The central criteria of fairness are proportionality and envy-freeness, and many of the existing protocols are designed...... to guarantee proportional or envy-free allocations, when the participating agents follow the protocol. However, typically, all agents following the protocol is not guaranteed to result in a Nash equilibrium. In this paper, we initiate the study of equilibria of classical cake cutting protocols. We consider one...... of the simplest and most elegant continuous algorithms -- the Dubins-Spanier procedure, which guarantees a proportional allocation of the cake -- and study its equilibria when the agents use simple threshold strategies. We show that given a cake cutting instance with strictly positive value density functions...
Integration of European Bond Markets
DEFF Research Database (Denmark)
Christiansen, Charlotte
2014-01-01
I investigate the time variation in the integration of EU government bond markets. The integration is measured by the explanatory power of European factor portfolios for the individual bond markets for each year. The integration of the government bond markets is stronger for EMU than non-EMU memb......I investigate the time variation in the integration of EU government bond markets. The integration is measured by the explanatory power of European factor portfolios for the individual bond markets for each year. The integration of the government bond markets is stronger for EMU than non...
Amalgam shear bond strength to dentin using different bonding agents.
Vargas, M A; Denehy, G E; Ratananakin, T
1994-01-01
This study evaluated the shear bond strength of amalgam to dentin using five different bonding agents: Amalgambond Plus, Optibond, Imperva Dual, All-Bond 2, and Clearfil Liner Bond. Flat dentin surfaces obtained by grinding the occlusal portion of 50 human third molars were used for this study. To contain the amalgam on the tooth surface, cylindrical plastic molds were placed on the dentin and secured with sticky wax. The bonding agents were then applied according to the manufacturers' instructions or light activated and Tytin amalgam was condensed into the plastic molds. The samples were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. Analysis by one-way ANOVA indicated significant difference between the five groups (P < 0.05). The bond strength of amalgam to dentin was significantly higher with Amalgambond Plus using the High-Performance Additive than with the other four bonding agents.
Equilibrium Solubility of CO2 in Alkanolamines
DEFF Research Database (Denmark)
Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas
2014-01-01
Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....
Convertible bond valuation focusing on Chinese convertible bond market
Yang, Ke
2010-01-01
This paper mainly discusses the methods of valuation of convertible bonds in Chinese market. Different from common convertible bonds in European market, considering the complicate features of Chinese convertible bond, this paper represents specific pricing approaches for pricing convertible bonds with different provisions along with the increment of complexity of these provisions. More specifically, this paper represents the decomposing method and binomial tree method for pricing both of Non-...
Mathematical models and equilibrium in irreversible microeconomics
Directory of Open Access Journals (Sweden)
Anatoly M. Tsirlin
2010-07-01
Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.
Directory of Open Access Journals (Sweden)
Mehdi Ravadgar
2013-09-01
Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP in the second group, TBXT composite was bonded with the conventional method of acid etching and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.
Directory of Open Access Journals (Sweden)
Mehdi Ravadgar
2013-09-01
Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.
The effects of government bond purchases on leverage constraints of banks and non-financial firms
Kühl, Michael
2016-01-01
This paper investigates how government bond purchases affect leverage-constrained banks and non-financial firms by utilising a stochastic general equilibrium model. My results indicate that government bond purchases not only reduce non-financial firms' borrowing costs, amplified through a reduction in expected defaults, but also lower banks' profit margins. In an economy in which loans priced at par dominate in banks' balance sheets - as a reflection of the euro area's structure - the leverag...
Finite-size polyelectrolyte bundles at thermodynamic equilibrium
Sayar, M.; Holm, C.
2007-01-01
We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.
Collapse and equilibrium of rotating, adiabatic clouds
International Nuclear Information System (INIS)
Boss, A.P.
1980-01-01
A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand
Equilibrium sampling by reweighting nonequilibrium simulation trajectories.
Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin
2016-03-01
Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.
Static Equilibrium Configurations of Charged Metallic Bodies
African Journals Online (AJOL)
Key words: Static equilibrium, charged metallic body, potential energy, projected gradient method. ... television, radio, internet, microwave ovens, mobile telephones, satellite communication systems, radar systems, electrical motors, electrical.
Kolano, Christoph; Helbing, Jan; Sander, Wolfram; Hamm, Peter
Transient two-dimensional infrared spectroscopy (T2D-IR) has been used to observe in real time the non-equilibrium structural dynamics of intramolecular hydrogen bond breaking in a small cyclic disulfide-bridged peptide.
Why are Hydrogen Bonds Directional?
Indian Academy of Sciences (India)
century and most chemists appear to think of 'chemi- cal bond' as ..... These complexes, in their global min- ima, have ... taneously act as hydrogen bond donor and acceptor displaying ... also has a local minimum, which is linear and similar to.
Directory of Open Access Journals (Sweden)
Kožul Nataša
2014-01-01
Full Text Available In the broadest sense, yield curve indicates the market's view of the evolution of interest rates over time. However, given that cost of borrowing it closely linked to creditworthiness (ability to repay, different yield curves will apply to different currencies, market sectors, or even individual issuers. As government borrowing is indicative of interest rate levels available to other market players in a particular country, and considering that bond issuance still remains the dominant form of sovereign debt, this paper describes yield curve construction using bonds. The relationship between zero-coupon yield, par yield and yield to maturity is given and their usage in determining curve discount factors is described. Their usage in deriving forward rates and pricing related derivative instruments is also discussed.
Non-equilibrium dynamics of single polymer adsorption to solid surfaces
Panja, D.; Barkema, G.T.; Kolomeisky, A.B.
2009-01-01
The adsorption of polymers to surfaces is crucial for understanding many fundamental processes in nature. Recent experimental studies indicate that the adsorption dynamics is dominated by non-equilibrium effects. We investigate the adsorption of a single polymer of length N to a planar solid surface
Field reversal experiments (FRX). [Equilibrium, confinement, and stability
Energy Technology Data Exchange (ETDEWEB)
Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.
1978-01-01
The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centers the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFC's with a major radius R = 2-6 cm, minor radius a approximately 2 cm, and a total length l approximately 35 cm. The observed temperatures are T/sub e/ approximately 100 eV and T/sub i/ = 150-350 eV with a peak density n approximately 2 x 10/sup 15/ cm/sup -3/. After the plasma reaches equilibrium, the RFC remains stable for up to 30 ..mu..s followed by the rapid growth of the rotational m = 2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behavior of the m = 2 mode qualitatively agrees with the theoretically predicted instability for rotational velocities exceeding some critical value.
Ahlberg, Johan; Jansson, Anton
2016-01-01
Hybrid securities do not constitute a new phenomenon in the Swedish capital markets. Most commonly, hybrids issued by Swedish real estate companies in recent years are preference shares. Corporate hybrid bonds on the other hand may be considered as somewhat of a new-born child in the family of hybrid instruments. These do, as all other hybrid securities, share some equity-like and some debt-like characteristics. Nevertheless, since 2013 the interest for the instrument has grown rapidly and ha...
Barrieu, Pauline; Louberge, Henri
2009-01-01
Natural catastrophes attract regularly the attention of media and have become a source of public concern. From a financial viewpoint, natural catastrophes represent idiosyncratic risks, diversifiable at the world level. But for reasons analyzed in this paper reinsurance markets are unable to cope with this risk completely. Insurance-linked securities, such as cat bonds, have been issued to complete the international risk transfer process, but their development is disappointing so far. This pa...
Specific features of plasma equilibrium in closed mixed-type stellarators
International Nuclear Information System (INIS)
Shafranov, V.D.; Mikhajlov, M.I.
1992-01-01
High values of rotational transformation (i/2π>1) are studied in terms of their usefulness for plasma equilibrium using stellarators with spatial magnetic axis and circular cross section of averaged magnetic surfaces. It is shown that, in contrast to a conventional stellarator with circular magnetic axis, where ultimate equilibrium pressure grows proportionally (i/2π) 2 equilibrium in lost in more complex stellarators consisting of heterogeneous sections as rotational transformation approaches, over period of the system, whole-number values. At the same time, in case when the transformation approaches a whole-number value of i/2π, short-circuit of secondary currents occurs within one of the periods of the system and ultimate equilibrium pressure value can exceed that in a conventional stellarator having the same length of the system and rotational transformation value
Martorelli, Roberto
2016-01-01
We analyze the equilibrium configuration for a modulated beam with sharp boundaries exposed to the fields self-generated by the interaction with a plasma. Through a semi-analytical approach we show the presence of multiple equilibrium configurations and we determine the one more suitable for wakefield excitation. Once pointed out the absence of confinement for the front of the beam and the consequently divergence driven by the emittance, we study the evolution of the equilibrium configuration while propagating in the plasma, discarding all the others time-dependencies. We show the onset of a rigid backward drift of the equilibrium configuration and we provide an explanation in the increasing length of the first bunch.
Optimal Investment in Structured Bonds
DEFF Research Database (Denmark)
Jessen, Pernille; Jørgensen, Peter Løchte
The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...
2010-10-01
... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 10 Bonds. (a... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA... of the NSA-LUMPSUMREP Contract, the standard form of individual performance bond (Standard Form 25...
Deuteriation of an asymmetric short hydrogen bond. X-ray crystal structure of KF.(CH2CO2D)2
International Nuclear Information System (INIS)
Emsley, J.; Jones, D.J.; Kuroda, R.
1981-01-01
Deuteriation of the strong hydrogen bonds of KF.(CH 2 CO 2 H) 2 shows no isotope effect on the bond lengths. The only significant change is in the bond angle at the fluoride ion which widens to 128.5 from 116 0 . The i.r. spectrum shows very little change. Since the O-H ... F - hydrogen bonds are highly asymmetric, these observations challenge previous predictions about the effects of deuteriation on such bonds. (author)
A new equilibrium trading model with asymmetric information
Directory of Open Access Journals (Sweden)
Lianzhang Bao
2018-03-01
Full Text Available Taking arbitrage opportunities into consideration in an incomplete market, dealers will pricebonds based on asymmetric information. The dealer with the best offering price wins the bid. The riskpremium in dealer’s offering price is primarily determined by the dealer’s add-on rate of change tothe term structure. To optimize the trading strategy, a new equilibrium trading model is introduced.Optimal sequential estimation scheme for detecting the risk premium due to private inforamtion isproposed based on historical prices, and the best bond pricing formula is given with the accordingoptimal trading strategy. Numerical examples are provided to illustrate the economic insights underthe certain stochastic term structure interest rate models.
RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS
Energy Technology Data Exchange (ETDEWEB)
Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)
2015-12-15
We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.
Physical mechanisms of Cu-Cu wafer bonding
International Nuclear Information System (INIS)
Rebhan, B.
2014-01-01
Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct
Numerical study of optimal equilibrium cycles for pressurized water reactors
International Nuclear Information System (INIS)
Mahlers, Y.P.
2003-01-01
An algorithm based on simulated annealing and successive linear programming is applied to solve equilibrium cycle optimization problems for pressurized water reactors. In these problems, the core reload scheme is represented by discrete variables, while the cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are treated as continuous variables. The enrichments are considered to be distinct in all feed fuel assemblies. The number of batches and their sizes are not fixed and also determined by the algorithm. An important feature of the algorithm is that all the parameters are determined by the solution of one optimization problem including both discrete and continuous variables. To search for the best reload scheme, simulated annealing is used. The optimum cycle length as well as uranium enrichment and loading of burnable poison in each feed fuel assembly are determined for each reload pattern examined using successive linear programming. Numerical results of equilibrium cycle optimization for various values of the effective price of electricity and fuel reprocessing cost are studied
Pullout Performances of Grouted Rockbolt Systems with Bond Defects
Xu, Chang; Li, Zihan; Wang, Shanyong; Wang, Shuren; Fu, Lei; Tang, Chunan
2018-03-01
This paper presents a numerical study on the pullout behaviour of fully grouted rockbolts with bond defects. The cohesive zone model (CZM) is adopted to model the bond-slip behaviour between the rockbolt and grout material. Tensile tests were also conducted to validate the numerical model. The results indicate that the defect length can obviously influence the load and stress distributions along the rockbolt as well as the load-displacement response of the grouted system. Moreover, a plateau in the stress distribution forms due to the bond defect. The linear limit and peak load of the load-displacement response decrease as the defect length increases. A bond defect located closer to the loaded end leads to a longer nonlinear stage in the load-displacement response. However, the peak loads measured from the specimens made with various defect locations are almost approximately the same. The peak load for a specimen with the defects equally spaced along the bolt is higher than that for a specimen with defects concentrated in a certain zone, even with the same total defect length. Therefore, the dispersed pattern of bond defects would be much safer than the concentrated pattern. For the specimen with dispersed defects, the peak load increases with an increase in the defect spacing, even if the total defect length is the same. The peak load for a grouted rockbolt system with defects increases with an increases in the bolt diameter. This work leads to a better understanding of the load transfer mechanism for grouted rockbolt systems with bond defects, and paves the way towards developing a general evaluation method for damaged rockbolt grouted systems.
Performance of various density functionals for the hydrogen bonds in DNA base pairs
van der Wijst, T.; Fonseca Guerra, C.; Swart, M.; Bickelhaupt, F.M.
2006-01-01
We have investigated the performance of seven popular density functionals (B3LYP, BLYP, BP86, mPW, OPBE, PBE, PW91) for describing the geometry and stability of the hydrogen bonds in DNA base pairs. For the gas-phase situation, the hydrogen-bond lengths and strengths in the DNA pairs have been
DEFF Research Database (Denmark)
Pawlowski, F; Jorgensen, P; Olsen, Jeppe
2002-01-01
A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...
Equilibrium figures in geodesy and geophysics.
Moritz, H.
There is an enormous literature on geodetic equilibrium figures, but the various works have not always been interrelated, also for linguistic reasons (English, French, German, Italian, Russian). The author attempts to systematize the various approaches and to use the standard second-order theory for a study of the deviation of the actual earth and of the equipotential reference ellipsoid from an equilibrium figure.
Equilibrium theory of island biogeography: A review
Angela D. Yu; Simon A. Lei
2001-01-01
The topography, climatic pattern, location, and origin of islands generate unique patterns of species distribution. The equilibrium theory of island biogeography creates a general framework in which the study of taxon distribution and broad island trends may be conducted. Critical components of the equilibrium theory include the species-area relationship, island-...
Gibbs equilibrium averages and Bogolyubov measure
International Nuclear Information System (INIS)
Sankovich, D.P.
2011-01-01
Application of the functional integration methods in equilibrium statistical mechanics of quantum Bose-systems is considered. We show that Gibbs equilibrium averages of Bose-operators can be represented as path integrals over a special Gauss measure defined in the corresponding space of continuous functions. We consider some problems related to integration with respect to this measure
Do intertidal flats ever reach equilibrium?
Maan, D.C.; van Prooijen, B.C.; Wang, Z.B.; de Vriend, H.J.
2015-01-01
Various studies have identified a strong relation between the hydrodynamic forces and the equilibrium profile for intertidal flats. A thorough understanding of the interplay between the hydrodynamic forces and the morphology, however, concerns more than the equilibrium state alone. We study the
Vertical field and equilibrium calculation in ETE
International Nuclear Information System (INIS)
Montes, Antonio; Shibata, Carlos Shinya.
1996-01-01
The free-boundary MHD equilibrium code HEQ is used to study the plasma behaviour in the tokamak ETE, with optimized compensations coils and vertical field coils. The changes on the equilibrium parameters for different plasma current values are also investigated. (author). 5 refs., 4 figs., 2 tabs
Non-equilibrium modelling of distillation
Wesselingh, JA; Darton, R
1997-01-01
There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase
Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio
2015-01-01
A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…
On the definition of equilibrium and non-equilibrium states in dynamical systems
Akimoto, Takuma
2008-01-01
We propose a definition of equilibrium and non-equilibrium states in dynamical systems on the basis of the time average. We show numerically that there exists a non-equilibrium non-stationary state in the coupled modified Bernoulli map lattice.
Inflation of the screening length induced by Bjerrum pairs.
Zwanikken, Jos; van Roij, René
2009-10-21
Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.
Non-equilibrium dynamics of one-dimensional Bose gases
International Nuclear Information System (INIS)
Langen, T.
2013-01-01
Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom
Hydrogen bonding in ionic liquids.
Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P
2015-03-07
Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak
Information-theoretic equilibrium and observable thermalization
Anzà, F.; Vedral, V.
2017-03-01
A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.
Disturbances in equilibrium function after major earthquake.
Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi
2012-01-01
Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.
A tensegrity model for hydrogen bond networks in proteins
Directory of Open Access Journals (Sweden)
Robert P. Bywater
2017-05-01
Full Text Available Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance (“closure” is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins (“domains” as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating
A tensegrity model for hydrogen bond networks in proteins.
Bywater, Robert P
2017-05-01
Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.
Additional disulfide bonds in insulin
DEFF Research Database (Denmark)
Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper
2015-01-01
The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...
International Nuclear Information System (INIS)
Boldyrev, A.I.; Simons, J.
1992-01-01
Chemical binding of two monovalent Rydberg species to form a singlet-state Rydberg dimer molecule is predicted to be possible Ab initio electronic structure methods that include electron correlation (at levels up through QCISD(T)/6-31++G** MP2(full)/6-31++G** + ZPE) are shown to be essential to achieving a proper description of such bonding. The (NH 4 ) molecule, selected as the prototype for this study, is shown to be bound with respect to its Rydberg-species fragments, 2NH 4 by 7.5-9.7 kcal/mol, depending on the level of treatment of electron correlation, and to be electronically stable (by ca.4 eV) with respect to (NH 4 ) 2 + at the neutral's equilibrium geometry. The (NH 4 ) 2 Rydberg dimer is thermodynamically unstable with respect to 2NH 3 + H 2 by 86-89 kcal/mol mol yet possesses all real vibrational frequencies; it is thus a metastable molecular held together by a weak Rydberg bond. The dissociation energy of the (NH 4 ) 2 + cation to form NH 4 + + NH 4 is found to be larger than that of the neutral (NH 4 ) 2 . 12 refs., 4 figs., 9 tabs
BOOK REVIEW: Relativistic Figures of Equilibrium
Mars, M.
2009-08-01
Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting
Research on the Bond Anchorage Properties of Alkali-Activated Slag Cementitious Material
Zhu, J.; Zheng, W. Z.; Leng, Y. F.; Qin, C. Z.; Xu, Z. Z.
2017-12-01
By bond-anchorage property tests at 20°C ∼500°C, the distribution of shear stress between carbon fiber sheets and concrete at all levels of loading and anchorage lengths were measured, which means the bond lengths during CFRP sheets are pulled off at the same time when the concrete is torn and stripped were gotten. The failure modes were obtained. In addition, the failure loads were measured, and the calculated formulas of anchorage lengths were identified by fitting at high temperature. It can be seen that the anchorage lengths of carbon fiber sheets increase with increasing temperature at 20°C ∼100°C, the anchorage lengths of carbon fiber sheets decrease with increasing temperature at 100°C ∼500°C. Tests prove that AASCM has favorable high-temperature resistant and bond anchorage properties.
Chemical theory and modelling through density across length scales
International Nuclear Information System (INIS)
Ghosh, Swapan K.
2016-01-01
One of the concepts that has played a major role in the conceptual as well as computational developments covering all the length scales of interest in a number of areas of chemistry, physics, chemical engineering and materials science is the concept of single-particle density. Density functional theory has been a versatile tool for the description of many-particle systems across length scales. Thus, in the microscopic length scale, an electron density based description has played a major role in providing a deeper understanding of chemical binding in atoms, molecules and solids. Density concept has been used in the form of single particle number density in the intermediate mesoscopic length scale to obtain an appropriate picture of the equilibrium and dynamical processes, dealing with a wide class of problems involving interfacial science and soft condensed matter. In the macroscopic length scale, however, matter is usually treated as a continuous medium and a description using local mass density, energy density and other related property density functions has been found to be quite appropriate. The basic ideas underlying the versatile uses of the concept of density in the theory and modelling of materials and phenomena, as visualized across length scales, along with selected illustrative applications to some recent areas of research on hydrogen energy, soft matter, nucleation phenomena, isotope separation, and separation of mixture in condensed phase, will form the subject matter of the talk. (author)
Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies
International Nuclear Information System (INIS)
Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou
1997-01-01
The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)
Local Nash equilibrium in social networks.
Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong
2014-08-29
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.
Teaching Chemical Equilibrium with the Jigsaw Technique
Doymus, Kemal
2008-03-01
This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students’ understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes was randomly assigned as the non-jigsaw group (control) and other as the jigsaw group (cooperative). Students participating in the jigsaw group were divided into four “home groups” since the topic chemical equilibrium is divided into four subtopics (Modules A, B, C and D). Each of these home groups contained four students. The groups were as follows: (1) Home Group A (HGA), representin g the equilibrium state and quantitative aspects of equilibrium (Module A), (2) Home Group B (HGB), representing the equilibrium constant and relationships involving equilibrium constants (Module B), (3) Home Group C (HGC), representing Altering Equilibrium Conditions: Le Chatelier’s principle (Module C), and (4) Home Group D (HGD), representing calculations with equilibrium constants (Module D). The home groups then broke apart, like pieces of a jigsaw puzzle, and the students moved into jigsaw groups consisting of members from the other home groups who were assigned the same portion of the material. The jigsaw groups were then in charge of teaching their specific subtopic to the rest of the students in their learning group. The main data collection tool was a Chemical Equilibrium Achievement Test (CEAT), which was applied to both the jigsaw and non-jigsaw groups The results indicated that the jigsaw group was more successful than the non-jigsaw group (individual learning method).
Oerlemans, J.
2007-01-01
Length records of two pairs of glaciers are used to reconstruct the equilibrium-line altitude (ELA) and to estimate glacier response times. The method is based on the assumption that neighbouring glaciers should be subject to the same climatic forcing, and that differences in the length records are
Driving force for hydrophobic interaction at different length scales.
Zangi, Ronen
2011-03-17
We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society
Nonideal plasmas as non-equilibrium media
International Nuclear Information System (INIS)
Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A
2003-01-01
Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations
MHD equilibrium identification on ASDEX-Upgrade
International Nuclear Information System (INIS)
McCarthy, P.J.; Schneider, W.; Lakner, K.; Zehrfeld, H.P.; Buechl, K.; Gernhardt, J.; Gruber, O.; Kallenbach, A.; Lieder, G.; Wunderlich, R.
1992-01-01
A central activity accompanying the ASDEX-Upgrade experiment is the analysis of MHD equilibria. There are two different numerical methods available, both using magnetic measurements which reflect equilibrium states of the plasma. The first method proceeds via a function parameterization (FP) technique, which uses in-vessel magnetic measurements to calculate up to 66 equilibrium parameters. The second method applies an interpretative equilibrium code (DIVA) for a best fit to a different set of magnetic measurements. Cross-checks with the measured particle influxes from the inner heat shield and the divertor region and with visible camera images of the scrape-off layer are made. (author) 3 refs., 3 figs
Numerical method for partial equilibrium flow
International Nuclear Information System (INIS)
Ramshaw, J.D.; Cloutman, L.D.; Los Alamos, New Mexico 87545)
1981-01-01
A numerical method is presented for chemically reactive fluid flow in which equilibrium and nonequilibrium reactions occur simultaneously. The equilibrium constraints on the species concentrations are established by a quadratic iterative procedure. If the equilibrium reactions are uncoupled and of second or lower order, the procedure converges in a single step. In general, convergence is most rapid when the reactions are weakly coupled. This can frequently be achieved by a judicious choice of the independent reactions. In typical transient calculations, satisfactory accuracy has been achieved with about five iterations per time step
The Conceptual Change Approach to Teaching Chemical Equilibrium
Canpolat, Nurtac; Pinarbasi, Tacettin; Bayrakceken, Samih; Geban, Omer
2006-01-01
This study investigates the effect of a conceptual change approach over traditional instruction on students' understanding of chemical equilibrium concepts (e.g. dynamic nature of equilibrium, definition of equilibrium constant, heterogeneous equilibrium, qualitative interpreting of equilibrium constant, changing the reaction conditions). This…
Neutron diffraction of α, β and γ cyclodextrins: hydrogen bonding patterns
International Nuclear Information System (INIS)
Hingerty, B.E.; Klar, B.; Hardgrove, G.; Betzel, C.; Saenger, W.
1983-01-01
Cyclodextrins (CD's) are torus-shaped molecules composed of six (α), seven (β) or eight (γ) (1 → 4) linked glucoses. α-CD has been shown to have two different structures with well-defined hydrogen bonds, one tense and the other relaxed. An induced-fit-like mechanism for α-CD complex formation has been proposed. Circular hydrogen bond networks have also been found for α-CD due to the energetically favored cooperative effect. β-CD with a disordered water structure possesses an unusual flip-flop hydrogen bonding system of the type O-H H-O representing an equilibrium between two states; O-H O reversible H-O. γ-CD with a disordered water structure similar to β-CD also possesses the flip-flop hydrogen bond. This study demonstrates that hydrogen bonds are operative in disordered systems and display dynamics even in the solid state
Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda
2006-08-24
The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.
Fatigue aging of adhesive bonds
International Nuclear Information System (INIS)
DeLollis, N.J.
1979-01-01
A year long study has been made of the effect of fatigue on the bond between two epoxy encapsulant formulations and a fused alumina disc. The variables studied included isothermal aging at temperatures up to and including the cure temperature and cyclic thermal aging from +74 to -54 0 C. The encapsulants were glass microballoon filled epoxies differing only in curing agents. One was cured with an aromatic amine eutectic (Shell Curing Agent Z). The other was cured with diethanolamine. The Z cured encapsulant bond failed completely at the bond interface with little or no aging; infrared evidence indicated a soluble interlayer as a possible cause of failure. The diethanolamine cured encapsulant survived a year of isothermal aging with little or no evidence of bond degradation. Cyclic thermal aging resulted in gradual bond failure with time. An extrapolation of the cyclic aging data indicates that the stresses induced by thermal cycling would result in complete bond failure in about 1200 days
How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?
Directory of Open Access Journals (Sweden)
Farzin Heravi
2015-10-01
Full Text Available Objectives: The objective of this study was to assess the effect of new bonding techniques on enamel surface.Materials and Methods: Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using Trans- bondXT and, in the second group, the same brackets were bonded with MaxcemElite. The shear bond strength (SBS of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI scores in each group were also measured.Results: There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval.Conclusion: Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely todamage the enamel.
Composite interlayer for diffusion bonding
International Nuclear Information System (INIS)
1976-01-01
A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)
Dissipation and the relaxation to equilibrium
International Nuclear Information System (INIS)
Evans, Denis J; Williams, Stephen R; Searles, Debra J
2009-01-01
Using the recently derived dissipation theorem and a corollary of the transient fluctuation theorem (TFT), namely the second-law inequality, we derive the unique time independent, equilibrium phase space distribution function for an ergodic Hamiltonian system in contact with a remote heat bath. We prove under very general conditions that any deviation from this equilibrium distribution breaks the time independence of the distribution. Provided temporal correlations decay, we show that any nonequilibrium distribution that is an even function of the momenta eventually relaxes (not necessarily monotonically) to the equilibrium distribution. Finally we prove that the negative logarithm of the microscopic partition function is equal to the thermodynamic Helmholtz free energy divided by the thermodynamic temperature and Boltzmann's constant. Our results complement and extend the findings of modern ergodic theory and show the importance of dissipation in the process of relaxation towards equilibrium
Computation of Phase Equilibrium and Phase Envelopes
DEFF Research Database (Denmark)
Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp
formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...
Intermittent many-body dynamics at equilibrium
Danieli, C.; Campbell, D. K.; Flach, S.
2017-06-01
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.
Moisture transport and equilibrium in organic coatings
Wel, van der G.K.; Adan, O.C.G.
2000-01-01
Improving coating performance in regard of protection of substrates and structures against moisturerelated degradation requires detailed knowledge of underlying transport mechanisms. In this paper a review is given on transport and equilibrium sorption of moisture in polymer films and organic
Non-equilibrium entropy in excited nuclei
International Nuclear Information System (INIS)
Betak, E.
1991-06-01
The time-dependent behaviour of entropy in excited nuclei is investigated. In distinction to recent claims, it is shown that no self-organization is involved in pre-equilibrium nuclear reactions. (author). 9 refs.; 4 figs
Plasma equilibrium and instabilities in tokamaks
International Nuclear Information System (INIS)
Caldas, I.L.; Vannucci, A.
1985-01-01
A phenomenological introduction of some of the main theoretical and experimental features on equilibrium and instabilities in tokamaks is presented. In general only macroscopic effects are considered, being the plasma described as a fluid. (L.C.) [pt
"Secrets" of High Pressure Phase Equilibrium Experiment.
Czech Academy of Sciences Publication Activity Database
Wichterle, Ivan
2005-01-01
Roč. 54, č. 11 (2005), s. 477-479 ISSN 0022-9830 Institutional research plan: CEZ:AV0Z40720504 Keywords : vapour-liquid equilibrium * experimental work Subject RIV: CF - Physical ; Theoretical Chemistry
Averaged description of 3D MHD equilibrium
International Nuclear Information System (INIS)
Medvedev, S.Yu.; Drozdov, V.V.; Ivanov, A.A.; Martynov, A.A.; Pashekhonov, Yu.Yu.; Mikhailov, M.I.
2001-01-01
A general approach by S.A.Galkin et al. in 1991 to 2D description of MHD equilibrium and stability in 3D systems was proposed. The method requires a background 3D equilibrium with nested flux surfaces to generate the metric of a Riemannian space in which the background equilibrium is described by the 2D equation of Grad-Shafranov type. The equation can be solved then varying plasma profiles and shape to get approximate 3D equilibria. In the framework of the method both planar axis conventional stellarators and configurations with spatial magnetic axis can be studied. In the present report the formulation and numerical realization of the equilibrium problem for stellarators with planar axis is reviewed. The input background equilibria with nested flux surfaces are taken from vacuum magnetic field approximately described by analytic scalar potential
Equilibrium-torus bifurcation in nonsmooth systems
DEFF Research Database (Denmark)
Zhusubahyev, Z.T.; Mosekilde, Erik
2008-01-01
Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium...... point. We obtain the chart of dynamic modes and show that there is a region of parameter space in which the system has a single stable node equilibrium point. Under variation of the parameters, this equilibrium may disappear as it collides with a discontinuity boundary between two smooth regions...... in the phase space. The disappearance of the equilibrium point is accompanied by the soft appearance of an unstable focus period-1 orbit surrounded by a resonant or ergodic torus. Detailed numerical calculations are supported by a theoretical investigation of the normal form map that represents the piecewise...
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Wafer bonding applications and technology
Gösele, Ulrich
2004-01-01
During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.
A simplified indirect bonding technique
Directory of Open Access Journals (Sweden)
Radha Katiyar
2014-01-01
Full Text Available With the advent of lingual orthodontics, indirect bonding technique has become an integral part of practice. It involves placement of brackets initially on the models and then their transfer to teeth with the help of transfer trays. Problems encountered with current indirect bonding techniques used are (1 the possibility of adhesive flash remaining around the base of the brackets which requires removal (2 longer time required for the adhesive to gain enough bond strength for secure tray removal. The new simplified indirect bonding technique presented here overcomes both these problems.
DEFF Research Database (Denmark)
Prasad, Ramjee
2016-01-01
Modern dexterous communication technology is progressively enabling humans to communicate their information through them with speech (aural) and media (optical) as underpinning essence. Humans realize this kind of aural and optical information by their optical and auditory senses. However, due...... to certain constraints, the ability to incorporate the other three sensory features namely, olfactory, gustatory, and tactile are still far from reality. Human bond communication is a novel concept that incorporates olfactory, gustatory, and tactile that will allow more expressive and holistic sensory...... information exchange through communication techniques for more human sentiment centric communication. This concept endorses the need of inclusion of other three senses and proposes an innovative approach of holistic communication for future communication network....
The Theory of Variances in Equilibrium Reconstruction
International Nuclear Information System (INIS)
Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren
2008-01-01
The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature
Quasi-equilibrium interpretation of aging dynamics
International Nuclear Information System (INIS)
Franz, S.; Virasoro, M.A.
2000-04-01
We develop an interpretation of the off-equilibrium dynamical solution of mean-field glassy models in terms of quasi-equilibrium concepts. We show that the relaxation of the 'thermoremanent magnetization' follows a generalized version of the Onsager regression postulate of induced fluctuations. We then find the rationale for the equality between the fluctuation-dissipation ratio and the rate of growth of the configurational entropy close to the asymptotic state, found empirically in mean-field solutions. (author)
Equivalence of Equilibrium Propagation and Recurrent Backpropagation
Scellier, Benjamin; Bengio, Yoshua
2017-01-01
Recurrent Backpropagation and Equilibrium Propagation are algorithms for fixed point recurrent neural networks which differ in their second phase. In the first phase, both algorithms converge to a fixed point which corresponds to the configuration where the prediction is made. In the second phase, Recurrent Backpropagation computes error derivatives whereas Equilibrium Propagation relaxes to another nearby fixed point. In this work we establish a close connection between these two algorithms....
Non-equilibrium dog-flea model
Ackerson, Bruce J.
2017-11-01
We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.
Internal equilibrium layer growth over forest
DEFF Research Database (Denmark)
Dellwik, E.; Jensen, N.O.
2000-01-01
the magnitude of the scatter. Different theoretical friction velocity profiles for the Internal Boundary Layer (IBL) are tested against the forest data. The results yield information on the Internal Equilibrium Layer (IEL) growth and an equation for the IEL height fur neutral conditions is derived. For stable...... conditions the results indicate that very long fetches are required in order to measure parameters in equilibrium with the actual surface....
Equilibrium fluctuation energy of gyrokinetic plasma
International Nuclear Information System (INIS)
Krommes, J.A.; Lee, W.W.; Oberman, C.
1985-11-01
The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8π = 1/2T/[1 + (klambda/sub D/) 2 ] valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs
International Nuclear Information System (INIS)
Freire, J J
2008-01-01
The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches
Energy Technology Data Exchange (ETDEWEB)
Freire, J J [Departamento de Ciencias y Tecnicas FisicoquImicas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), Senda del Rey 9, 28040 Madrid (Spain)], E-mail: jfreire@invi.uned.es
2008-07-16
The bond fluctuation model with a bond potential has been applied to investigation of the glass transition of linear chains and chains with a regular disposition of small branches. Cooling and subsequent heating curves are obtained for the chain energies and also for the mean acceptance probability of a bead jump. In order to mimic different trends to vitrification, a factor B gauging the strength of the bond potential with respect to the long-range potential (i.e. the intramolecular or intermolecular potential between indirectly bonded beads) has been introduced. (A higher value of B leads to a preference for the highest bond lengths and a higher total energy, implying a greater tendency to vitrify.) Different cases have been considered for linear chains: no long-range potential, no bond potential and several choices for B. Furthermore, two distinct values of B have been considered for alternate bonds in linear chains. In the case of the branched chains, mixed models with different values of B for bonds in the main chain and in the branches have also been investigated. The possible presence of ordering or crystallization has been characterized by calculating the collective light scattering function of the different samples after annealing at a convenient temperature below the onset of the abrupt change in the curves associated with a thermodynamic transition. It is concluded that ordering is inherited more efficiently in the systems with branched chains and also for higher values of B. The branched molecules with the highest B values in the main chain bonds exhibit two distinct transitions in the heating curves, which may be associated with two glass transitions. This behavior has been detected experimentally for chains with relatively long flexible branches.
Support of the extremal measure in a vector equilibrium problem
International Nuclear Information System (INIS)
Lapik, M A
2006-01-01
A generalization of the Mhaskar-Saff functional is obtained for a vector equilibrium problem with an external field. As an application, the supports of the equilibrium measures are found in a special vector equilibrium problem with Nikishin matrix.
30 CFR 281.33 - Bonds and bonding requirements.
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.33...
29 CFR 2580.412-19 - Term of the bond, discovery period, other bond clauses.
2010-07-01
... SECURITY ACT OF 1974 TEMPORARY BONDING RULES General Bond Rules § 2580.412-19 Term of the bond, discovery... 29 Labor 9 2010-07-01 2010-07-01 false Term of the bond, discovery period, other bond clauses... new bond must be obtained each year. There is nothing in the Act that prohibits a bond for a term...
Short hydrogen bonds in the catalytic mechanism of serine proteases
Directory of Open Access Journals (Sweden)
VLADIMIR LESKOVAC
2008-04-01
Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.
Physical mechanisms of copper-copper wafer bonding
International Nuclear Information System (INIS)
Rebhan, B.; Hingerl, K.
2015-01-01
The study of the physical mechanisms driving Cu-Cu wafer bonding allowed for reducing the bonding temperatures below 200 °C. Metal thermo-compression Cu-Cu wafer bonding results obtained at such low temperatures are very encouraging and suggest that the process is possible even at room temperature if some boundary conditions are fulfilled. Sputtered (PVD) and electroplated Cu thin layers were investigated, and the analysis of both metallization techniques demonstrated the importance of decreasing Cu surface roughness. For an equal surface roughness, the bonding temperature of PVD Cu wafers could be even further reduced due to the favorable microstructure. Their smaller grain size enhances the length of the grain boundaries (observed on the surface prior bonding), acting as efficient mass transfer channels across the interface, and hence the grains are able to grow over the initial bonding interface. Due to the higher concentration of random high-angle grain boundaries, this effect is intensified. The model presented is explaining the microstructural changes based on atomic migration, taking into account that the reduction of the grain boundary area is the major driving force to reduce the Gibbs free energy, and predicts the subsequent microstructure evolution (grain growth) during thermal annealing
Khanh, Phan Quoc; Plubtieng, Somyot; Sombut, Kamonrat
2014-01-01
The purpose of this paper is introduce several types of Levitin-Polyak well-posedness for bilevel vector equilibrium and optimization problems with equilibrium constraints. Base on criterion and characterizations for these types of Levitin-Polyak well-posedness we argue on diameters and Kuratowski’s, Hausdorff’s, or Istrǎtescus measures of noncompactness of approximate solution sets under suitable conditions, and we prove the Levitin-Polyak well-posedness for bilevel vector equilibrium and op...
Noble gas bond and the behaviour of XeO3 under pressure.
Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng
2017-10-18
Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.
The influence of humidity on accuracy length measurement on polymer parts
DEFF Research Database (Denmark)
Madruga, Daniel González; Alexiou, A.; Dalla Costa, Giuseppe
2016-01-01
The work deals with an experimental study of the influence of humidity on accurate length measurements on ABS parts. Polymer parts absorb water from the ambient until they reach hygroscopic equilibrium. Water content causes an expansion of the polymer part. The relationship between the water cont...
Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond.
Lu, Norman; Chung, Wei-Cheng; Ley, Rebecca M; Lin, Kwan-Yu; Francisco, Joseph S; Negishi, Ei-Ichi
2016-03-03
Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.
Does length or neighborhood size cause the word length effect?
Jalbert, Annie; Neath, Ian; Surprenant, Aimée M
2011-10-01
Jalbert, Neath, Bireta, and Surprenant (2011) suggested that past demonstrations of the word length effect, the finding that words with fewer syllables are recalled better than words with more syllables, included a confound: The short words had more orthographic neighbors than the long words. The experiments reported here test two predictions that would follow if neighborhood size is a more important factor than word length. In Experiment 1, we found that concurrent articulation removed the effect of neighborhood size, just as it removes the effect of word length. Experiment 2 demonstrated that this pattern is also found with nonwords. For Experiment 3, we factorially manipulated length and neighborhood size, and found only effects of the latter. These results are problematic for any theory of memory that includes decay offset by rehearsal, but they are consistent with accounts that include a redintegrative stage that is susceptible to disruption by noise. The results also confirm the importance of lexical and linguistic factors on memory tasks thought to tap short-term memory.
Indian Academy of Sciences (India)
An overview of general classification scheme, medicinal importance and crystal structure analysis with emphasis on the role of hydrogen bonding in some alkaloids is presented in this paper. The article is based on a general kind of survey while crystallographic analysis and role of hydrogen bonding are limited to only ...
Distance criterion for hydrogen bond
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.
Optimal Investment in Structured Bonds
DEFF Research Database (Denmark)
Jessen, Pernille; Jørgensen, Peter Løchte
2012-01-01
of the article is to provide possible explanations for the puzzle of why small retail investors hold structured bonds. The investment universe consists of a stock index, a risk-free bank account, and a structured bond containing an option written on another index. We apply expected utility maximization...
Fusion-bonded fluidic interconnects
Fazal, I.; Elwenspoek, Michael Curt
2008-01-01
A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are
Keeping disease at arm's length
DEFF Research Database (Denmark)
Lassen, Aske Juul
2015-01-01
active ageing change everyday life with chronic disease, and how do older people combine an active life with a range of chronic diseases? The participants in the study use activities to keep their diseases at arm’s length, and this distancing of disease at the same time enables them to engage in social...... and physical activities at the activity centre. In this way, keeping disease at arm’s length is analysed as an ambiguous health strategy. The article shows the importance of looking into how active ageing is practised, as active ageing seems to work well in the everyday life of the older people by not giving...... emphasis to disease. The article is based on ethnographic fieldwork and uses vignettes of four participants to show how they each keep diseases at arm’s length....
Continuously variable focal length lens
Adams, Bernhard W; Chollet, Matthieu C
2013-12-17
A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.
CEBAF Upgrade Bunch Length Measurements
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)
2016-05-01
Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.
On the equilibrium of a linear Extrap pinch
International Nuclear Information System (INIS)
Lehnert, B.
1982-01-01
The equilibrium is studied of a pinched linear plasma column of 'Extrap' type which is confined in a purely transverse magnetic field, partly arising from currents in a set of external conductor rods being introduced for stabilizing purposes. The axial and transverse losses are separated in a simplified theoretical model for which stability is assumed as a working hypothesis and anomalous transport as well as impurity radiation are neglected. Then, the reduction of the axial heat transport by the magnetic field will have a substantial effect on the over-all heat balance, thus leading to high temperatures at large axial lengths of the plasma column. Conditions near ignition should become possible at technically realistic linear dimensions and pinch currents. (orig.)
Positron annihilation in germanium in thermal equilibrium at high temperature
Energy Technology Data Exchange (ETDEWEB)
Uedono, Akira; Moriya, Tsuyoshi; Komuro, Naoyuki; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Ikari, Atsushi
1996-09-01
Annihilation characteristics of positrons in Ge in thermal equilibrium at high temperature were studied using a monoenergetic positron beam. Precise measurements of Doppler broadening profiles of annihilation radiation were performed in the temperature range between 300 K and 1211 K. The line shape parameters of Doppler broadening profiles were found to be almost constant at 300-600 K. The changes in these parameters were observed to start above 600 K. This was attributed to both the decrease in the fraction of positrons annihilating with core electrons and the lowering of the crystal symmetry around the region detected by positron-electron pairs. This suggests that behaviors of positrons are dominated by some form of positron-lattice coupling in Ge at high temperatures. The temperature dependence of the diffusion length of positrons was also discussed. (author)
Directory of Open Access Journals (Sweden)
Minkwan Ju
2015-01-01
Full Text Available This study intends to investigate the flexural bond performance of glass fiber-reinforced polymer (GFRP reinforcing bar under repeated loading. The flexural bond tests reinforced with GFRP reinforcing bars were carried out according to the BS EN 12269-1 (2000 specification. The bond test consisted of three loading schemes: static, monotonic, and variable-amplitude loading to simulate ambient loading conditions. The empirical bond length based on the static test was 225 mm, whereas it was 317 mm according to ACI 440 1R-03. Each bond stress on the rib is released and bonding force is enhanced as the bond length is increased. Appropriate level of bond length may be recommended with this energy-based analysis. For the monotonic loading test, the bond strengths at pullout failure after 2,000,000 cycles were 10.4 MPa and 6.5 MPa, respectively: 63–70% of the values from the static loading test. The variable loading test indicated that the linear cumulative damage theory on GFRP bonding may not be appropriate for estimating the fatigue limit when subjected to variable-amplitude loading.
SOCIAL BONDING: REGULATION BY NEUROPEPTIDES
Directory of Open Access Journals (Sweden)
Claudia eLieberwirth
2014-06-01
Full Text Available Affiliative social relationships (e.g., among spouses, family members, and friends play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT and arginine vasopressin (AVP, in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed.
Fusion-bonded fluidic interconnects
International Nuclear Information System (INIS)
Fazal, I; Elwenspoek, M C
2008-01-01
A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C
Sibling bereavement and continuing bonds.
Packman, Wendy; Horsley, Heidi; Davies, Betty; Kramer, Robin
2006-11-01
Historically, from a Freudian and medical model perspective, emotional disengagement from the deceased was seen as essential to the successful adaptation of bereavement. A major shift in the bereavement literature has occurred and it is now generally accepted that despite the permanence of physical separation, the bereaved remains involved and connected to the deceased and can be emotionally sustained through continuing bonds. The majority of literature has focused on adults and on the nature of continuing bonds following the death of a spouse. In this article, the authors demonstrate how the continuing bonds concept applies to the sibling relationship. We describe the unique continued relationship formed by bereaved children and adolescents following a sibling loss, highlight the factors that influence the siblings continuing bonds expressions, and offer clinical interventions. In our view, mental health professionals can play an important role in helping parents encourage activities that may facilitate the creation and maintenance of continuing bonds in their children.
Continuous lengths of oxide superconductors
Kroeger, Donald M.; List, III, Frederick A.
2000-01-01
A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.
Summary of neutron scattering lengths
International Nuclear Information System (INIS)
Koester, L.
1981-12-01
All available neutron-nuclei scattering lengths are collected together with their error bars in a uniform way. Bound scattering lengths are given for the elements, the isotopes, and the various spin-states. They are discussed in the sense of their use as basic parameters for many investigations in the field of nuclear and solid state physics. The data bank is available on magnetic tape, too. Recommended values and a map of these data serve for an uncomplicated use of these quantities. (orig.)
Overview of bunch length measurements
International Nuclear Information System (INIS)
Lumpkin, A. H.
1999-01-01
An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed
Hait, Diptarka; Head-Gordon, Martin
2018-05-01
Double hybrid (DH) density functionals are amongst the most accurate density functional approximations developed so far, largely due to the incorporation of correlation effects from unoccupied orbitals via second order perturbation theory (PT2). The xDH family of DH functionals calculate energy directly from orbitals optimized by a lower level approach like B3LYP, without self-consistent optimization. XYG3 and XYGJ-OS are two widely used xDH functionals that are known to be quite accurate at equilibrium geometries. Here, we show that the XYG3 and XYGJ-OS functionals can be ill behaved for stretched bonds well beyond the Coulson-Fischer point, predicting unphysical dipole moments and humps in potential energy curves for some simple systems like the hydrogen fluoride molecule. Numerical experiments and analysis show that these failures are not due to PT2. Instead, a large mismatch at stretched bond-lengths between the reference B3LYP orbitals and the optimized orbitals associated with the non-PT2 part of XYG3 leads to an unphysically large non-Hellman-Feynman contribution to first order properties like forces and electron densities.
Bonding techniques for flexural strengthening of R.C. beams using CFRP laminates
Directory of Open Access Journals (Sweden)
Alaa Morsy
2013-09-01
Full Text Available This paper presents an experimental study of an alternative method of attaching FRP laminates to reinforced concrete beams by the way of fasting steel rivets through the FRP laminate and concrete substrate. Five full scale R.C. beams were casted and strengthened in flexural using FRP laminate bonded with conventional epoxy and compared with other beams strengthened with FRP laminate and bonded with fastener “steel rivets” of 50 mm length and 10 mm diameter. Based on experimental evidence the beam strengthened with conventional bonding methods failed due to de-bonding with about 13% increase over the un-strengthened beam. On the other hand, the beams strengthened with FRP laminate and bonded by four steel fastener rivets only failed by de-bonding also but at higher flexural capacity with increase 19% over the un-strengthened beam.
Directory of Open Access Journals (Sweden)
João Carlos Gomes
2008-01-01
Full Text Available New dental restorative materials have been developed to meet not only the functional demands, but esthetics as well, and in the last few years an enormous range of new materials has appeared for use in dentistry. Among them, several adhesive systems, and different operative techniques for each group materials. Therefore, is indispensable for the professional to know about the properties, characteristics, and association of these materials with the dental structures, in order to select and use them correctly. Should conventional self-etching adhesive systems be used? This question encouraged this literature review to be conducted, with the aim of comparing the conventional adhesive systems with the self-etching systems and to look for scientific data that would help professionals to choose which adhesive system to use. When compared to conventional systems, it was noted that the self-etching systems show less sensitivity to technique, especially as regards errors the operator could commit. The self-etching systems, particularly the 2-step type, have shown equivalent values of bond strength, marginal microleakage and performance, therefore, will be an option for direct composite resin restorations in posterior teeth.
Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case
Karina Mroczyńska; Małgorzata Kaczorowska; Erkki Kolehmainen; Ireneusz Grubecki; Marek Pietrzak; Borys Ośmiałowski
2015-01-01
Summary The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance...
Equilibrium 𝛽-limits in classical stellarators
Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.
2017-12-01
A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.
Aerospace Applications of Non-Equilibrium Plasma
Blankson, Isaiah M.
2016-01-01
Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).
Development of a Thermal Equilibrium Prediction Algorithm
International Nuclear Information System (INIS)
Aviles-Ramos, Cuauhtemoc
2002-01-01
A thermal equilibrium prediction algorithm is developed and tested using a heat conduction model and data sets from calorimetric measurements. The physical model used in this study is the exact solution of a system of two partial differential equations that govern the heat conduction in the calorimeter. A multi-parameter estimation technique is developed and implemented to estimate the effective volumetric heat generation and thermal diffusivity in the calorimeter measurement chamber, and the effective thermal diffusivity of the heat flux sensor. These effective properties and the exact solution are used to predict the heat flux sensor voltage readings at thermal equilibrium. Thermal equilibrium predictions are carried out considering only 20% of the total measurement time required for thermal equilibrium. A comparison of the predicted and experimental thermal equilibrium voltages shows that the average percentage error from 330 data sets is only 0.1%. The data sets used in this study come from calorimeters of different sizes that use different kinds of heat flux sensors. Furthermore, different nuclear material matrices were assayed in the process of generating these data sets. This study shows that the integration of this algorithm into the calorimeter data acquisition software will result in an 80% reduction of measurement time. This reduction results in a significant cutback in operational costs for the calorimetric assay of nuclear materials. (authors)
Partial chemical equilibrium in fluid dynamics
International Nuclear Information System (INIS)
Ramshaw, J.D.
1980-01-01
An analysis is given for the flow of a multicomponent fluid in which an arbitrary number of chemical reactions may occur, some of which are in equilibrium while the others proceed kinetically. The primitive equations describing this situation are inconvenient to use because the progress rates omega-dot/sub s/ for the equilibrium reactions are determined implicitly by the associated equilibrium constraint conditions. Two alternative equivalent equation systems that are more pleasant to deal with are derived. In the first system, the omega-dot/sub s/ are eliminated by replacing the transport equations for the chemical species involved in the equilibrium reactions with transport equations for the basic components of which these species are composed. The second system retains the usual species transport equations, but eliminates the nonlinear algebraic equilibrium constraint conditions by deriving an explicit expression for the omega-dot/sub s/. Both systems are specialized to the case of an ideal gas mixture. Considerations involved in solving these equation systems numerically are discussed briefly
Density functional study of the bonding in small silicon clusters
International Nuclear Information System (INIS)
Fournier, R.; Sinnott, S.B.; DePristo, A.E.
1992-01-01
We report the ground electronic state, equilibrium geometry, vibrational frequencies, and binding energy for various isomers of Si n (n = 2--8) obtained with the linear combination of atomic orbitals-density functional method. We used both a local density approximation approach and one with gradient corrections. Our local density approximation results concerning the relative stability of electronic states and isomers are in agreement with Hartree--Fock and Moller--Plesset (MP2) calculations [K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988)]. The binding energies calculated with the gradient corrected functional are in good agreement with experiment (Si 2 and Si 3 ) and with the best theoretical estimates. Our analysis of the bonding reveals two limiting modes of bonding and classes of silicon clusters. One class of clusters is characterized by relatively large s atomic populations and a large number of weak bonds, while the other class of clusters is characterized by relatively small s atomic populations and a small number of strong bonds
Making a robust carbon-cobalt(III) bond
DEFF Research Database (Denmark)
Larsen, Erik; Madsen, Anders Østergaard; Kofod, Pauli
2009-01-01
The coordination ion with a well-characterized carbon-cobalt(III) bond, the (1,4,7-triazacyclononane)(1,6-diamino-3-thia-4-hexanido)cobalt(III) dication, [Co(tacn)(C-aeaps)](2+) (aeaps, for aminoethylaminopropylsulfide), has been reacted with iodomethane, and the S-methyl thionium derivative has...... been isolated. The crystal structure of the resulting [Co(tacn)(C-aeaps-SCH(3))]Br(3) x 3 H(2)O at 122 K has been determined by X-ray diffraction techniques to verify the structure. The crystal structure determination shows that the carbon-cobalt bond length is even shorter (2.001(4) A) than in [Co......(tacn)(C-aeaps)](2+) participates in bonding to cobalt(III), having implications for the transformation between the carbon- and sulfur-bound forms of the aeaps ligand....
Diet, nutrition and telomere length.
Paul, Ligi
2011-10-01
The ends of human chromosomes are protected by DNA-protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA. Copyright © 2011 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Ben Ruktantichoke
2011-06-01
Full Text Available In this study water flowed through a straight horizontal plastic tube placed at the bottom of a large tank of water. The effect of changing the length of tubing on the velocity of flow was investigated. It was found that the Hagen-Poiseuille Equation is valid when the effect of water entering the tube is accounted for.
Finite length Taylor Couette flow
Streett, C. L.; Hussaini, M. Y.
1987-01-01
Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.
Energy Technology Data Exchange (ETDEWEB)
Hamid, Ahmed M.; El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G. [Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2014-08-07
Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C{sub 5}H{sub 5}N{sup +·}(HCN){sub n} and C{sub 4}H{sub 4}N{sub 2}{sup +·}(HCN){sub n} clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C{sub 5}H{sub 5}NH{sup +}(HCN){sub n} has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH{sup δ+}⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH{sup +}⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH{sup +}⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH{sup δ+}⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CH{sup δ+}⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH{sup δ+} centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.
Influence of collective excitations on pre-equilibrium and equilibrium processes
International Nuclear Information System (INIS)
Ignatyuk, A.V.; Lunev, V.P.
1990-01-01
The influence of the collective states excitations on equilibrium and preequilibrium processes in reaction is discussed. It is shown that for a consistent description of the contribution of preequilibrium and equilibrium compound processes collective states should be taken into account in the level density calculations. The microscopic and phenomenological approaches for the level density calculations are discussed. 13 refs.; 8 figs
A note on existence of mixed solutions to equilibrium problems with equilibrium constraints
Czech Academy of Sciences Publication Activity Database
Červinka, Michal
2007-01-01
Roč. 2007, č. 24 (2007), s. 27-44 ISSN 1212-074X R&D Projects: GA AV ČR IAA1030405 Institutional research plan: CEZ:AV0Z10750506 Keywords : equilibrium problems with equilibrium constraints * variational analysis * mixed strategy Subject RIV: BA - General Mathematics
Dannhauser, Walter
1980-01-01
Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)
Fragility and cooperativity concepts in hydrogen-bonded organic glasses
Energy Technology Data Exchange (ETDEWEB)
Delpouve, N., E-mail: delpouve.nicolas@gmail.com [AMME-LECAP EA 4528 International Laboratory, University of Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France); Vuillequez, A.; Saiter, A.; Youssef, B.; Saiter, J.M. [AMME-LECAP EA 4528 International Laboratory, University of Rouen, Avenue de l' Universite BP 12, 76801 Saint Etienne du Rouvray (France)
2012-09-01
Molecular dynamics at the glass transition of three lactose/oil glassy systems have been investigated according to the cooperativity and fragility approaches. From Donth's approach, the cooperativity length is estimated by modulated temperature calorimetric measurements. Results reveal that modification of the disaccharide by oil leads to increase the disorder degree in the lactose, the size of the cooperative domains and the fragility index. These particular hydrogen-bonded organic glasses follow the general tendency observed on organic and inorganic polymers: the higher the cooperativity length, the higher the value of the fragility index at T{sub g}.
Fragility and cooperativity concepts in hydrogen-bonded organic glasses
International Nuclear Information System (INIS)
Delpouve, N.; Vuillequez, A.; Saiter, A.; Youssef, B.; Saiter, J.M.
2012-01-01
Molecular dynamics at the glass transition of three lactose/oil glassy systems have been investigated according to the cooperativity and fragility approaches. From Donth's approach, the cooperativity length is estimated by modulated temperature calorimetric measurements. Results reveal that modification of the disaccharide by oil leads to increase the disorder degree in the lactose, the size of the cooperative domains and the fragility index. These particular hydrogen-bonded organic glasses follow the general tendency observed on organic and inorganic polymers: the higher the cooperativity length, the higher the value of the fragility index at T g .
Non-Equilibrium Thermodynamics in Multiphase Flows
Mauri, Roberto
2013-01-01
Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...
Module description of TOKAMAK equilibrium code MEUDAS
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Masaei; Hayashi, Nobuhiko; Matsumoto, Taro; Ozeki, Takahisa [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
2002-01-01
The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)
Computational studies in tokamak equilibrium and transport
International Nuclear Information System (INIS)
Braams, B.J.
1986-01-01
This thesis is concerned with some problems arising in the magnetic confinement approach to controlled thermonuclear fusion. The work address the numerical modelling of equilibrium and transport properties of a confined plasma and the interpretation of experimental data. The thesis is divided in two parts. Part 1 is devoted to some aspects of the MHD equilibrium problem, both in the 'direct' formulation (given an equation for the plasma current, the corresponding equilibrium is to be determined) and in the 'inverse' formulation (the interpretation of measurements at the plasma edge). Part 2 is devoted to numerical studies of the edge plasma. The appropriate Navier-Stokes system of fluid equations is solved in a two-dimensional geometry. The main interest of this work is to develop an understanding of particle and energy transport in the scrape-off layer and onto material boundaries, and also to contribute to the conceptual design of the NET/INTOR tokamak reactor experiment. (Auth.)
Scaling studies of spheromak formation and equilibrium
International Nuclear Information System (INIS)
Geddes, C.G.; Kornack, T.W.; Brown, M.R.
1998-01-01
Formation and equilibrium studies have been performed on the Swarthmore Spheromak Experiment (SSX). Spheromaks are formed with a magnetized coaxial plasma gun and equilibrium is established in both small (d small =0.16 m) and large (d large =3d small =0.50 m) copper flux conservers. Using magnetic probe arrays it has been verified that spheromak formation is governed solely by gun physics (in particular the ratio of gun current to flux, μ 0 I gun /Φ gun ) and is independent of the flux conserver dimensions. It has also been verified that equilibrium is well described by the force free condition ∇xB=λB (λ=constant), particularly early in decay. Departures from the force-free state are due to current profile effects described by a quadratic function λ=λ(ψ). Force-free SSX spheromaks will be merged to study magnetic reconnection in simple magnetofluid structures. copyright 1998 American Institute of Physics
Regret Theory and Equilibrium Asset Prices
Directory of Open Access Journals (Sweden)
Jiliang Sheng
2014-01-01
Full Text Available Regret theory is a behavioral approach to decision making under uncertainty. In this paper we assume that there are two representative investors in a frictionless market, a representative active investor who selects his optimal portfolio based on regret theory and a representative passive investor who invests only in the benchmark portfolio. In a partial equilibrium setting, the objective of the representative active investor is modeled as minimization of the regret about final wealth relative to the benchmark portfolio. In equilibrium this optimal strategy gives rise to a behavioral asset priciting model. We show that the market beta and the benchmark beta that is related to the investor’s regret are the determinants of equilibrium asset prices. We also extend our model to a market with multibenchmark portfolios. Empirical tests using stock price data from Shanghai Stock Exchange show strong support to the asset pricing model based on regret theory.
Non-equilibrium quantum heat machines
Alicki, Robert; Gelbwaser-Klimovsky, David
2015-11-01
Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.
Relativistic Fluid Dynamics Far From Local Equilibrium
Romatschke, Paul
2018-01-01
Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.
Answer Sets in a Fuzzy Equilibrium Logic
Schockaert, Steven; Janssen, Jeroen; Vermeir, Dirk; de Cock, Martine
Since its introduction, answer set programming has been generalized in many directions, to cater to the needs of real-world applications. As one of the most general “classical” approaches, answer sets of arbitrary propositional theories can be defined as models in the equilibrium logic of Pearce. Fuzzy answer set programming, on the other hand, extends answer set programming with the capability of modeling continuous systems. In this paper, we combine the expressiveness of both approaches, and define answer sets of arbitrary fuzzy propositional theories as models in a fuzzification of equilibrium logic. We show that the resulting notion of answer set is compatible with existing definitions, when the syntactic restrictions of the corresponding approaches are met. We furthermore locate the complexity of the main reasoning tasks at the second level of the polynomial hierarchy. Finally, as an illustration of its modeling power, we show how fuzzy equilibrium logic can be used to find strong Nash equilibria.
Module description of TOKAMAK equilibrium code MEUDAS
International Nuclear Information System (INIS)
Suzuki, Masaei; Hayashi, Nobuhiko; Matsumoto, Taro; Ozeki, Takahisa
2002-01-01
The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)
Non-equilibrium quantum heat machines
International Nuclear Information System (INIS)
Alicki, Robert; Gelbwaser-Klimovsky, David
2015-01-01
Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound. (paper)
Interfaces at equilibrium: A guide to fundamentals.
Marmur, Abraham
2017-06-01
The fundamentals of the thermodynamics of interfaces are reviewed and concisely presented. The discussion starts with a short review of the elements of bulk thermodynamics that are also relevant to interfaces. It continues with the interfacial thermodynamics of two-phase systems, including the definition of interfacial tension and adsorption. Finally, the interfacial thermodynamics of three-phase (wetting) systems is discussed, including the topic of non-wettable surfaces. A clear distinction is made between equilibrium conditions, in terms of minimizing energies (internal, Gibbs or Helmholtz), and equilibrium indicators, in terms of measurable, intrinsic properties (temperature, chemical potential, pressure). It is emphasized that the equilibrium indicators are the same whatever energy is minimized, if the boundary conditions are properly chosen. Also, to avoid a common confusion, a distinction is made between systems of constant volume and systems with drops of constant volume. Copyright © 2016 Elsevier B.V. All rights reserved.
Approach to chemical equilibrium in thermal models
International Nuclear Information System (INIS)
Boal, D.H.
1984-01-01
The experimentally measured (μ - , charged particle)/(μ - ,n) and (p,n/p,p') ratios for the emission of energetic nucleons are used to estimate the time evolution of a system of secondary nucleons produced in a direct interaction of a projectile or captured muon. The values of these ratios indicate that chemical equilibrium is not achieved among the secondary nucleons in noncomposite induced reactions, and this restricts the time scale for the emission of energetic nucleons to be about 0.7 x 10 -23 sec. It is shown that the reason why thermal equilibrium can be reached so rapidly for a particular nucleon species is that the sum of the particle spectra produced in multiple direct reactions looks surprisingly thermal. The rate equations used to estimate the reaction times for muon and nucleon induced reactions are then applied to heavy ion collisions, and it is shown that chemical equilibrium can be reached more rapidly, as one would expect
How Is the Enamel Affected by Different Orthodontic Bonding Agents and Polishing Techniques?
Heravi, Farzin; Shafaee, Hooman; Abdollahi, Mojtaba; Rashed, Roozbeh
2015-03-01
The objective of this study was to assess the effect of new bonding techniques on enamel surface. Sixty upper central incisors were randomly divided into two equal groups. In the first group, metal brackets were bonded using TransbondXT and, in the second group, the same brackets were bonded with Maxcem Elite. The shear bond strength (SBS) of both agents to enamel was measured and the number and length of enamel cracks before bonding, after debonding and after polishing were compared. The number of visible cracks and the adhesive remnant index (ARI) scores in each group were also measured. There were significantly more enamel cracks in the Transbond XT group after debonding and polishing compared to the Maxcem Elite group. There was no significant difference in the length of enamel cracks between the two groups; but, in each group, a significant increase in the length of enamel cracks was noticeable after debonding. Polishing did not cause any statistically significant change in crack length. The SBS of Maxcem Elite was significantly lower than that of Transbond XT (95% confidence interval). Maxcem Elite offers clinically acceptable bond strength and can thus be used as a routine adhesive for orthodontic purposes since it is less likely to damage the enamel.
A Study of Bond of Structural Timber and Carbon Fiber Reinforced Polymer Plate
Directory of Open Access Journals (Sweden)
Yongtaeg LEE
2015-11-01
Full Text Available The increase of well-being culture of problem related to environmental depletion of resource is not the growing interest in timber the natural material of construction markets. Also, the perception for historic preservation has been increased in respond to heightened interest. However, it is fairly difficult for architectural properties to maintain their durability because it was made by timber construction. Preventing traditional structure from damage and structural performance reduction is paramount in maintenance problem. A number of studies of reinforced method have been conducted in order to solve such a problem. In this paper, external bonded reinforcement and near-surface mounted was used as a way to reinforce timber structure’s durability. Bond strength for specimens with different bond length was investigated. As a result showed, maximum bond strength in bond length 300 mm from all method, was found to be not increased of bond strength over the certain bond length.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9702
Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice
International Nuclear Information System (INIS)
Baumgaertner, F.; Kim, M.-A.
1990-01-01
The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)
Bošnjak, I; Bojović, V; Šegvić-Bubić, T; Bielen, A
2014-03-01
Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.
Directory of Open Access Journals (Sweden)
Kuburović Miloš
2002-01-01
Full Text Available During dry flue gas desulphurisation (FGD dry particles of reagents are inserted (injected in the stream of flue gas, where they bond SO2. As reagents, the most often are used compounds of calcium (CaCO3, CaO or Ca(OH2. Knowledge of free energy and equilibrium constants of chemical reactions during dry FGD is necessary for understanding of influence of flue gas temperature to course of these chemical reactions as well as to SO2 bonding from flue gases.
Relativistic contributions to the bonding in Cu2
International Nuclear Information System (INIS)
Martin, R.L.
1983-01-01
The influence of relativity on the spectroscopic parameters of Cu 2 has been investigated by evaluating the mass-velocity and one electron Darwin terms of the Breit--Pauli Hamiltonian in the first order of perturbation theory. The relativistic corrections are of the order of 10% of the SCF and GVB results and result in a deeper (approx.1.5 kcal), stiffer (approx.15 cm - 1 ) well, with the bond length contracted by about 0.1a 0
Quantum gambling based on Nash-equilibrium
Zhang, Pei; Zhou, Xiao-Qi; Wang, Yun-Long; Liu, Bi-Heng; Shadbolt, Pete; Zhang, Yong-Sheng; Gao, Hong; Li, Fu-Li; O'Brien, Jeremy L.
2017-06-01
The problem of establishing a fair bet between spatially separated gambler and casino can only be solved in the classical regime by relying on a trusted third party. By combining Nash-equilibrium theory with quantum game theory, we show that a secure, remote, two-party game can be played using a quantum gambling machine which has no classical counterpart. Specifically, by modifying the Nash-equilibrium point we can construct games with arbitrary amount of bias, including a game that is demonstrably fair to both parties. We also report a proof-of-principle experimental demonstration using linear optics.
Asymptotic stability estimates near an equilibrium point
Dumas, H. Scott; Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia
2017-07-01
We use the error bounds for adiabatic invariants found in the work of Chartier, Murua and Sanz-Serna [3] to bound the solutions of a Hamiltonian system near an equilibrium over exponentially long times. Our estimates depend only on the linearized system and not on the higher order terms as in KAM theory, nor do we require any steepness or convexity conditions as in Nekhoroshev theory. We require that the equilibrium point where our estimate applies satisfy a type of formal stability called Lie stability.
Entropy and equilibrium via games of complexity
Topsøe, Flemming
2004-09-01
It is suggested that thermodynamical equilibrium equals game theoretical equilibrium. Aspects of this thesis are discussed. The philosophy is consistent with maximum entropy thinking of Jaynes, but goes one step deeper by deriving the maximum entropy principle from an underlying game theoretical principle. The games introduced are based on measures of complexity. Entropy is viewed as minimal complexity. It is demonstrated that Tsallis entropy ( q-entropy) and Kaniadakis entropy ( κ-entropy) can be obtained in this way, based on suitable complexity measures. A certain unifying effect is obtained by embedding these measures in a two-parameter family of entropy functions.
Equilibrium calculations for helical axis stellarators
International Nuclear Information System (INIS)
Hender, T.C.; Carreras, B.A.
1984-04-01
An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations
Equilibrium distribution function in collisionless systems
International Nuclear Information System (INIS)
Pergamenshchik, V.M.
1988-01-01
Collisionless systems of a large number of N particles interacting by Coulomb forces are widely spread in cosmic and laboratory plasma. A statistical theory of equilibrium state of collisionless Coulomb systems which evolution obeys Vlasov equation is proposed. The developed formalism permits a sequential consideration of such distributed in one-particle six-dimensional phase space of a system and to obtain a simple result: equilibrium distribution function has the form of Fermi-Dirac distribution and doesn't depend on initial state factors
Micro Data and General Equilibrium Models
DEFF Research Database (Denmark)
Browning, Martin; Hansen, Lars Peter; Heckman, James J.
1999-01-01
Dynamic general equilibrium models are required to evaluate policies applied at the national level. To use these models to make quantitative forecasts requires knowledge of an extensive array of parameter values for the economy at large. This essay describes the parameters required for different...... economic models, assesses the discordance between the macromodels used in policy evaluation and the microeconomic models used to generate the empirical evidence. For concreteness, we focus on two general equilibrium models: the stochastic growth model extended to include some forms of heterogeneity...
Thermodynamic equilibrium in relativistic rotating systems
International Nuclear Information System (INIS)
Suen, W.M.; Washington Univ., St. Louis, MO; Young, K.
1988-01-01
The thermodynamic equilibrium configurations of relativistic rotating stars are studied using the maximum entropy principle. It is shown that the heuristic arguments for the equilibrium conditions can be developed into a maximum entropy principle in which the variations are carried out in a fixed background spacetime. This maximum principle with the fixed background assumption is technically simpler than, but has to be justified by, a maximum entropy principle without the assumption. Such a maximum entropy principle is formulated in this paper, showing that the general relativistic system can be treated on the same footing as other long-range force systems. (author)
The empirical equilibrium structure of diacetylene
Thorwirth, S.; Harding, M. E.; Muders, D.; Gauss, J.
2008-01-01
High-level quantum-chemical calculations are reported at the MP2 and CCSD(T) levels of theory for the equilibrium structure and the harmonic and anharmonic force fields of diacetylene, HCCCCH. The calculations were performed employing Dunning's hierarchy of correlation-consistent basis sets cc-pVXZ, cc-pCVXZ, and cc-pwCVXZ, as well as the ANO2 basis set of Almloef and Taylor. An empirical equilibrium structure based on experimental rotational constants for thirteen isotopic species of diacety...
MHD equilibrium of heliotron J plasmas
International Nuclear Information System (INIS)
Suzuki, Yasuhiro; Nakamura, Yuji; Kondo, Katsumi; Nakajima, Noriyoshi; Hayashi, Takaya
2004-01-01
MHD equilibria of Heliotron J plasma are investigated by using HINT code. By assuming some profiles of the current density, effects of the net toroidal currents on the magnetohydrodynamics (MHD) equilibrium are investigated. If the rotational transform can be controlled by the currents, the generation of good flux surfaces is expected. In order to study equilibria with self-consistent bootstrap current, the boozer coordinates are constructed by converged HINT equilibrium as a preliminary study. Obtained spectra are compared with ones of VMEC code and both results are consistent. (author)
Current control necessary for toroidal plasma equilibrium
International Nuclear Information System (INIS)
Nagao, S.
1987-01-01
It is shown that a significant amount of dipole current is necessary for the plasma equilibrium of toroidal configurations in general. Through the vector product with the poloidal field, this dipole current force has to balance with the hoop force of plasma pressure itself of the annular shape. The measurement of such a current of dipole type may be interesting for the confirmation of the plasma equilibrium in the toroidal system. Moreover it is certained that there is a new mode of a tokamak operation with such a dipole current component and with smaller vertical field than that based on the classical tokamak theory. (author) [pt
Algorithm For Hypersonic Flow In Chemical Equilibrium
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
Computing Properties Of Chemical Mixtures At Equilibrium
Mcbride, B. J.; Gordon, S.
1995-01-01
Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.
On financial equilibrium with intermediation costs
DEFF Research Database (Denmark)
Markeprand, Tobias Ejnar
2008-01-01
This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium correspond......This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium...
14 CFR 67.205 - Ear, nose, throat, and equilibrium.
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.205..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class airman..., vertigo or a disturbance of equilibrium. ...
14 CFR 67.105 - Ear, nose, throat, and equilibrium.
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.105..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class airman... may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium. ...
14 CFR 67.305 - Ear, nose, throat, and equilibrium.
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.305..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class airman... by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium. ...
46 CFR 42.20-12 - Conditions of equilibrium.
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Conditions of equilibrium. 42.20-12 Section 42.20-12... BY SEA Freeboards § 42.20-12 Conditions of equilibrium. The following conditions of equilibrium are... stability. Through an angle of 20 degrees beyond its position of equilibrium, the vessel must meet the...
Statistical equilibrium equations for trace elements in stellar atmospheres
Kubat, Jiri
2010-01-01
The conditions of thermodynamic equilibrium, local thermodynamic equilibrium, and statistical equilibrium are discussed in detail. The equations of statistical equilibrium and the supplementary equations are shown together with the expressions for radiative and collisional rates with the emphasize on the solution for trace elements.
Roll bonding of strained aluminium
DEFF Research Database (Denmark)
Staun, Jakob M.
2003-01-01
This report investigates roll bonding of pre-strained (å ~ 4) aluminium sheets to produce high strain material from high purity aluminium (99.996%) and commercial pure aluminium (99.6%). The degree of bonding is investigated by optical microscopy and ultrasonic scanning. Under the right...... of the cross rolled volume fraction is found. To further asses this effect, and the anisotropy, it is necessary to acquire knowledge about both texture and microstructure, e.g. by TEM. Roll bonding of pre-strained aluminium is found to be a possible alternative to ARB in the quest for ultra-fine grained...
Direct Bonded Pontic (Laporan Kasus
Directory of Open Access Journals (Sweden)
Suhandi Sidjaja
2015-10-01
Full Text Available Advanced science and technology in dentistry enable dental practitioners to modified she bonding techniques in tooth replacement. A pontic made of composite resin bonded to etched enamel of the adjacent teeth can be used in the replacement of one missing anterior tooth with a virgin or sowed adpicent tooth. The advantages of this technique include a one visit treatment, cow cost, good esthetics, less side effects and easy repair or rebounding. Clinical evaluation showed a high success rate therefore with a proper diagnosis and a perfect skill of the direct bonded technique this treatment can be used as an alternative restoration.
Role of the Disulfide Bond in Prion Protein Amyloid Formation: A Thermodynamic and Kinetic Analysis.
Honda, Ryo
2018-02-27
Prion diseases are associated with the structural conversion of prion protein (PrP) to a β-sheet-rich aggregate, PrP Sc . Previous studies have indicated that a reduction of the disulfide bond linking C179 and C214 of PrP yields an amyloidlike β-rich aggregate in vitro. To gain mechanistic insights into the reduction-induced aggregation, here I characterized how disulfide bond reduction modulates the protein folding/misfolding landscape of PrP, by examining 1) the equilibrium stabilities of the native (N) and aggregated states relative to the unfolded (U) state, 2) the transition barrier separating the U and aggregated states, and 3) the final structure of amyloidlike misfolded aggregates. Kinetic and thermodynamic experiments revealed that disulfide bond reduction decreases the equilibrium stabilities of both the N and aggregated states by ∼3 kcal/mol, without changing either the amyloidlike aggregate structure, at least at the secondary structural level, or the transition barrier of aggregation. Therefore, disulfide bond reduction modulates the protein folding/misfolding landscape by entropically stabilizing disordered states, including the U and transition state of aggregation. This also indicates that the equilibrium stability of the N state, but not the transition barrier of aggregation, is the dominant factor determining the reduction-induced aggregation of PrP. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Does the nervous system use equilibrium-point control to guide single and multiple joint movements?
Bizzi, E; Hogan, N; Mussa-Ivaldi, F A; Giszter, S
1992-12-01
The hypothesis that the central nervous system (CNS) generates movement as a shift of the limb's equilibrium posture has been corroborated experimentally in studies involving single- and multijoint motions. Posture may be controlled through the choice of muscle length-tension curve that set agonist-antagonist torque-angle curves determining an equilibrium position for the limb and the stiffness about the joints. Arm trajectories seem to be generated through a control signal defining a series of equilibrium postures. The equilibrium-point hypothesis drastically simplifies the requisite computations for multijoint movements and mechanical interactions with complex dynamic objects in the environment. Because the neuromuscular system is springlike, the instantaneous difference between the arm's actual position and the equilibrium position specified by the neural activity can generate the requisite torques, avoiding the complex "inverse dynamic" problem of computing the torques at the joints. The hypothesis provides a simple, unified description of posture and movement as well as contact control task performance, in which the limb must exert force stably and do work on objects in the environment. The latter is a surprisingly difficult problem, as robotic experience has shown. The prior evidence for the hypothesis came mainly from psychophysical and behavioral experiments. Our recent work has shown that microstimulation of the frog spinal cord's premotoneural network produces leg movements to various positions in the frog's motor space. The hypothesis can now be investigated in the neurophysiological machinery of the spinal cord.
Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation
Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.
2016-11-01
Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.
Hydrogen bond dynamical properties of adsorbed liquid water monolayers with various TiO2 interfaces
English, Niall J.; Kavathekar, Ritwik S.; MacElroy, J. M. D.
2012-12-01
Equilibrium classical molecular dynamics (MD) simulations have been performed to investigate the hydrogen-bonding kinetics of water in contact with rutile-(110), rutile-(101), rutile-(100), and anatase-(101) surfaces at room temperature (300 K). It was observed that anatase-(101) exhibits the longest-lived hydrogen bonds in terms of overall persistence, followed closely by rutile-(110). The relaxation times, defined as the integral of the autocorrelation of the hydrogen bond persistence function, were also longer for these two cases, while decay of the autocorrelation function was slower. The increased number and overall persistence of hydrogen bonds in the adsorbed water monolayers at these surfaces, particularly for anatase-(101), may serve to promote possible water photolysis activity thereon.
International Nuclear Information System (INIS)
Fan Runhua; Qi Liang; Sun Kangning; Min Guanghui; Gong Hongyu
2006-01-01
Fe 3 Al with D0 3 -ordered structure is one of the few structural intermetallics that can be disordered using non-equilibrium processing techniques. The bonding and magnetic character of the stoichiometric Fe 3 Al, with D0 3 -ordered or disordered structure, have been studied using the empirical electron theory of solid and molecular (EET). It was found that the magnetic property is basically dictated by the chemical bonding. There is a change of the character of the interatomic bonds from 3d(Fe)-3p(Al) for the D0 3 -ordered Fe 3 Al to 4sp(Fe)-3p(Al) for the disordered Fe 3 Al. For the latter, while the Fe 3d electrons participating in bonding is reduced, the mean magnetic moment is increased
The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.
Kaupp, Martin
2007-01-15
The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Kuz'mina, N.P.; Martynenko, L.I.
1996-01-01
X-ray diffraction data on β-diketonates and carboxylates of rare earths (3) have been analyzed. Essential features of the compounds structure have been formulated. It is shown that in the compounds mentioned irregular distortions of chelate cycles over the length and angles of bonds are observed, there is no regularity in the ratios of metal-ligand bridge and chelate bond lengths both in the series of compounds of different composition and inside one compound. 2 refs
Magnasco, Valerio
2008-01-01
Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…
Directory of Open Access Journals (Sweden)
Eric Costello
2011-01-01
Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.
Energy Technology Data Exchange (ETDEWEB)
Abbehausen, Camilla; Paiva, Raphael E.F. de [Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Formiga, Andre L.B., E-mail: formiga@iqm.unicamp.br [Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Corbi, Pedro P. [Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP (Brazil)
2012-10-26
Highlights: Black-Right-Pointing-Pointer Tautomeric equilibrium in solution. Black-Right-Pointing-Pointer Spectroscopic and theoretical studies. Black-Right-Pointing-Pointer UV-Vis theoretical and experimental spectra. Black-Right-Pointing-Pointer {sup 1}H NMR theoretical and experimental spectra. -- Abstract: The tautomeric equilibrium of the thione/thiol forms of 1,3-thiazolidine-2-thione was studied by nuclear magnetic resonance, infrared and ultraviolet-visible spectroscopies. Density functional theory was used to support the experimental data and indicates the predominance of the thione tautomer in the solid state, being in agreement with previously reported crystallographic data. In solution, the tautomeric equilibrium was evaluated using {sup 1}H NMR at different temperatures in four deuterated solvents acetonitrile, dimethylsulfoxide, chloroform and methanol. The equilibrium constants, K = (thiol)/(thione), and free Gibbs energies were obtained by integration of N bonded hydrogen signals at each temperature for each solvent, excluding methanol. The endothermic tautomerization is entropy-driven and the combined effect of solvent and temperature can be used to achieve almost 50% thiol concentrations in solution. The nature of the electronic transitions was investigated theoretically and the assignment of the bands was made using time-dependent DFT as well as the influence of solvent on the energy of the most important bands of the spectra.
Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies
Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad
2018-02-01
Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.
Minimal Length, Measurability and Gravity
Directory of Open Access Journals (Sweden)
Alexander Shalyt-Margolin
2016-03-01
Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.
HINT computation of LHD equilibrium with zero rotational transform surface
International Nuclear Information System (INIS)
Kanno, Ryutaro; Toi, Kazuo; Watanabe, Kiyomasa; Hayashi, Takaya; Miura, Hideaki; Nakajima, Noriyoshi; Okamoto Masao
2004-01-01
A Large Helical Device equilibrium having a zero rotational transform surface is studied by using the three dimensional MHD equilibrium code, HINT. We find existence of the equilibrium but with formation of the two or three n=0 islands composing a homoclinic-type structure near the center, where n is a toroidal mode number. The LHD equilibrium maintains the structure, when the equilibrium beta increases. (author)
International Nuclear Information System (INIS)
Volkov, M.K.; Osipov, A.A.
1983-01-01
The msub(π)asub(0)sup(1/2)=0.1, msub(π)asub(0)sup(3/2)=-0.1, msub(π)asub(0)sup((-))=0.07, msub(π)sup(3)asub(1)sup(1/2)=0.018, msub(π)sup(3)asub(1)aup(3/2)=0.002, msub(π)sup(3)asub(1)sup((-))=0.0044, msub(π)sup(5)asub(2)sup(1/2)=2.4x10sup(-4) and msub(π)sup(5)asub(2)sup(3/2)=-1.2x10sup(-4) scattering lengths are calculated in the framework of the composite meson model which is based on four-quark interaction. The decay form factors of (rho, epsilon, S*) → 2π, (K tilde, K*) → Kπ are used. The q 2 -terms of the quark box diagrams are taken into account. It is shown that the q 2 -terms of the box diagrams give the main contribution to the s-wave scattering lengths. The diagrams with the intermediate vector mesons begin to play the essential role at calculation of the p- and d-wave scattering lengths
dimensional architectures via hydrogen bonds
Indian Academy of Sciences (India)
Administrator
organization and has potential applications in the field of magnetism ... The concepts of crystal engineering ... 4. However, the utilization of hydrogen bond supramolecular syn- ... sembling the coordination networks by designing the ligands ...
Hydrogen bonding in tight environments
DEFF Research Database (Denmark)
Pirrotta, Alessandro; Solomon, Gemma C.; Franco, Ignacio
2016-01-01
The single-molecule force spectroscopy of a prototypical class of hydrogen-bonded complexes is computationally investigated. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The force-extension (F-L) isotherms...... of the host-guest complexes are simulated using classical molecular dynamics and the MM3 force field, for which a refined set of hydrogen bond parameters was developed from MP2 ab initio computations. The F-L curves exhibit peaks that signal conformational changes during elongation, the most prominent...... of which is in the 60-180 pN range and corresponds to the force required to break the hydrogen bonds. These peaks in the F-L curves are shown to be sensitive to relatively small changes in the chemical structure of the host molecule. Thermodynamic insights into the supramolecular assembly were obtained...
Adhesives for orthodontic bracket bonding
Directory of Open Access Journals (Sweden)
Déborah Daniella Diniz Fonseca
2010-04-01
Full Text Available The advent of acid etching, introduced by Buonocore in 1955, brought the possibility of bonding between the bracket base and enamel, contributing to more esthetic and conservative orthodontics. This direct bracket bonding technique has brought benefits such as reduced cost and time in performing the treatment, as well as making it easier to perform oral hygiene. The aim of this study was to conduct a survey of published studies on orthodontic bracket bonding to dental enamel. It was verified that resin composites and glass ionomer are the most studied and researched materials for this purpose. Resin-modified glass ionomer, with its biocompatibility, capacity of releasing fluoride and no need for acid etching on the tooth structure, has become increasingly popular among dentists. However, due to the esthetic and mechanical properties of light polymerizable resin composite, it continues to be one of the adhesives of choice in the bracket bonding technique and its use is widely disseminated.
Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations
Sayar, Mehmet; Holm, Christian
2010-09-01
We present the results of molecular-dynamics simulations on the salt concentration dependence of the formation of polyelectrolyte bundles in thermodynamic equilibrium. Extending our results on salt-free systems we investigate here deficiency or excess of trivalent counterions in solution. Our results reveal that the trivalent counterion concentration significantly alters the bundle size and size distribution. The onset of bundle formation takes place at earlier Bjerrum length values with increasing trivalent counterion concentration. For the cases of 80%, 95%, and 100% charge compensation via trivalent counterions, the net charge of the bundles decreases with increasing size. We suggest that competition among two different mechanisms, counterion condensation and merger of bundles, leads to a nonmonotonic change in line-charge density with increasing Bjerrum length. The investigated case of having an abundance of trivalent counterions by 200% prohibits such a behavior. In this case, we find that the difference in effective line-charge density of different size bundles diminishes. In fact, the system displays an isoelectric point, where all bundles become charge neutral.
Equilibrium Configurations of a Fiber in a Flow
Guerron, Pamela; Berghout, Christopher; Nita, Bogdan; Vaidya, Ashwin
2013-11-01
The aim of this study is to understand the coupled dynamics of flexible fibers in a fluid flow. In particular, we examine the equilibrium configurations of the fiber with changing Reynolds numbers, orientations and lengths of the fiber. Our study is motivated by biological phenomena such as ciliary bending, flexing of plants and trees in winds etc. Our approach to resolving this problem has been threefold: experimental, numerical and theoretical. In our experiments we create physical models of variable length fibers inserted into a basal body structure, which is then suspended in a flow tank and positioned at different angles. The structure (fibers) are subjected to different velocities of water flow, ranging from 0m/s to 0.53 m/s in increments of 0.038 m/s. The results of the experiment were analyzed using Adobe Photoshop and the effect of the above mentioned parameters upon the shape of the fiber is analyzed. In addition, we also simulate this problem using the software Comsol and also create a simple, toy mathematical model incorporating the competing effects of tension and fluid drag on the fiber to obtain a closed form expression. Our various approaches point to consistent results.
Method to improve commercial bonded SOI material
Maris, Humphrey John; Sadana, Devendra Kumar
2000-07-11
A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.
International Nuclear Information System (INIS)
Saller, H.A.; Hodge, E.S.; Paprocki, S.J.; Dayton, R.W.
1987-01-01
A method of making a fuel-containing structure for nuclear reactors is described comprising providing an assembly comprising fuel units consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, the cladding sheets being of greater width and length than the core plates whereby recesses are formed at the ends and sides of the core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in the recesses. The assembly further comprises second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000 0 F, arranged between a pair of the second side pieces and the cladding plates of two adjacent fuel units. The filler plates have the same thickness as the second side pieces. The method further comprises enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through the envelope; applying inert gas under a pressure of about 10,000 psi to the outside of the envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal
Lee, Chiho; Son, Hyewon; Park, Sungnam
2015-07-21
Two-dimensional infrared (2DIR) spectroscopy, which has been proven to be an excellent experimental method for studying thermally-driven chemical processes, was successfully used to investigate the acid dissociation equilibrium of HN3 in methanol (CH3OH) and dimethyl sulfoxide (DMSO) for the first time. Our 2DIR experimental results indicate that the acid-base equilibrium occurs on picosecond timescales in CH3OH but that it occurs on much longer timescales in DMSO. Our results imply that the different timescales of the acid-base equilibrium originate from different proton transfer mechanisms between the acidic (HN3) and basic (N3(-)) species in CH3OH and DMSO. In CH3OH, the acid-base equilibrium is assisted by the surrounding CH3OH molecules which can directly donate H(+) to N3(-) and accept H(+) from HN3 and the proton migrates through the hydrogen-bonded chain of CH3OH. On the other hand, the acid-base equilibrium in DMSO occurs through the mutual diffusion of HN3 and N3(-) or direct proton transfer. Our 2DIR experimental results corroborate different proton transfer mechanisms in the acid-base equilibrium in protic (CH3OH) and aprotic (DMSO) solvents.
Effect of quantum nuclear motion on hydrogen bonding
McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.
2014-05-01
This work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 - 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.
Effect of quantum nuclear motion on hydrogen bonding
International Nuclear Information System (INIS)
McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.
2014-01-01
This work considers how the properties of hydrogen bonded complexes, X–H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O–H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 − 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends
Electro-optical parameters of bond polarizability model for aluminosilicates.
Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam
2006-04-06
Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.
Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases
International Nuclear Information System (INIS)
Campostrini, Massimo; Vicari, Ettore
2010-01-01
We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.
Equilibrium-constant expressions for aqueous plutonium
International Nuclear Information System (INIS)
Silver, G.L.
2010-01-01
Equilibrium-constant expressions for Pu disproportionation reactions traditionally contain three or four terms representing the concentrations or fractions of the oxidation states. The expressions can be rewritten so that one of the oxidation states is replaced by a term containing the oxidation number of the plutonium. Experimental estimations of the numerical values of the constants can then be checked in several ways. (author)
On the Existence of Evolutionary Learning Equilibriums
Directory of Open Access Journals (Sweden)
Masudul Alam Choudhury
2011-12-01
Full Text Available The usual kinds of Fixed-Point Theorems formalized on the existence of competitive equilibrium that explain much of economic theory at the core of economics can operate only on bounded and closed sets with convex mappings. But these conditions are hardly true of the real world of economic and financial complexities and perturbations. The category of learning sets explained by continuous fields of interactive, integrative and evolutionary behaviour caused by dynamic preferences at the individual and institutional and social levels cannot maintain the assumption of closed, bounded and convex sets. Thus learning sets and multi-system inter-temporal relations explained by pervasive complementarities and participation between variables and entities, and evolution by learning, have evolutionary equilibriums. Such a study requires a new methodological approach. This paper formalizes such a methodology for evolutionary equilibriums in learning spaces. It briefly points out the universality of learning equilibriums in all mathematical structures. For a particular case though, the inter-systemic interdependence between sustainable development and ethics and economics in the specific understanding of learning domain is pointed out.
Conditions for the Existence of Market Equilibrium.
Bryant, William D. A.
1997-01-01
Maintains that most graduate-level economics textbooks rarely mention the need for consumers to be above their minimum wealth position as a condition for market equilibrium. Argues that this omission leaves students with a mistaken sense about the range of circumstances under which market equilibria can exist. (MJP)
General Equilibrium Models: Improving the Microeconomics Classroom
Nicholson, Walter; Westhoff, Frank
2009-01-01
General equilibrium models now play important roles in many fields of economics including tax policy, environmental regulation, international trade, and economic development. The intermediate microeconomics classroom has not kept pace with these trends, however. Microeconomics textbooks primarily focus on the insights that can be drawn from the…
Equilibrium thermodynamics in modified gravitational theories
International Nuclear Information System (INIS)
Bamba, Kazuharu; Geng, C.-Q.; Tsujikawa, Shinji
2010-01-01
We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,φ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field φ. This comes from a suitable definition of an energy-momentum tensor of the 'dark' component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S in non-equilibrium thermodynamics and an entropy production term.
Non-equilibrium thermodynamics and physical kinetics
Bikkin, Halid
2014-01-01
This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.
Pre-equilibrium complex particle emission
International Nuclear Information System (INIS)
Bĕták, E.
2002-01-01
Semi-classical (phenomenological) pre-equilibrium emission of clusters of nucleons (complex particles) such as deuterons, tritons, helions and α particles from reactions induced by light projectiles (nucleons to α’s) is addressed. The main attention is given to the hard components in the emission energetic spectra, which play an increasing role at incident energies above 20 MeV, and are currently attributed to a presence of some kind of pre-equilibrium processes. In addition, the mechanisms of cluster reactions show special features such as the competition between pickup and knockout processes and the contributions of several successive steps in the reaction. The main frame used here to illustrate the processes and interplays of the competing mechanisms of pre-equilibrium cluster formation and emission, namely the coalescence, pick-up and knock-out, is the pre-equilibrium exciton model. It obviously contains the process of clusterization itself as its organic part. The most important case of complex particles with the largest amount of experimental data is that of alpha emission, which therefore naturally attracts most of the attention and where the widest range of possible mechanisms is available on the market. The loosely bound ejectiles, on the other side, are usually not able to demonstrate all features of the whole spectrum of contributing mechanisms, but they are nevertheless an important link between the nucleon emission and the cluster one.
Economic Equilibrium and Soviet Economic Reform
Herbert E. Scarf
1991-01-01
The paper, prepared for a Roundtable on Major Economic Problems in the U.S. and the U.S.S.R., discusses some aspects of price theory ñ in particular, the theory of general equilibrium -ñ which may offer some theoretical insights about the economic problems to be encountered during the transition from Socialism to private markets in the Soviet Union.
Tenancy and Soil Conservation in Market Equilibrium
Lichtenberg, Erik
2001-01-01
A theoretical analysis of equilibrium contracts between risk neutral landlords and tenants when tenants' soil exploitation is non-contractible indicates that landlords will overinvest in conservation structures. An empirical model using farm-level data provides evidence that investment in contractible soil conservation measures is greater on rental land.