Regularity of difference equations on Banach spaces
Agarwal, Ravi P; Lizama, Carlos
2014-01-01
This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semigroup and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.
Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations
Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril
2011-01-01
We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the loc...
Analysis of regularized Navier-Stokes equations, 2
Ou, Yuh-Roung; Sritharan, S. S.
1989-01-01
A practically important regularization of the Navier-Stokes equations was analyzed. As a continuation of the previous work, the structure of the attractors characterizing the solutins was studied. Local as well as global invariant manifolds were found. Regularity properties of these manifolds are analyzed.
Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions
International Nuclear Information System (INIS)
Lin, Hongxia; Du, Lili
2013-01-01
In this paper, we give some new global regularity criteria for three-dimensional incompressible magnetohydrodynamics (MHD) equations. More precisely, we provide some sufficient conditions in terms of the derivatives of the velocity or pressure, for the global regularity of strong solutions to 3D incompressible MHD equations in the whole space, as well as for periodic boundary conditions. Moreover, the regularity criterion involving three of the nine components of the velocity gradient tensor is also obtained. The main results generalize the recent work by Cao and Wu (2010 Two regularity criteria for the 3D MHD equations J. Diff. Eqns 248 2263–74) and the analysis in part is based on the works by Cao C and Titi E (2008 Regularity criteria for the three-dimensional Navier–Stokes equations Indiana Univ. Math. J. 57 2643–61; 2011 Gobal regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor Arch. Rational Mech. Anal. 202 919–32) for 3D incompressible Navier–Stokes equations. (paper)
A Priori Regularity of Parabolic Partial Differential Equations
Berkemeier, Francisco
2018-05-13
In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular initial data. These estimates are obtained by understanding the time decay of norms of solutions. First, we derive regularity results for the heat equation by estimating the decay of Lebesgue norms. Then, we apply similar methods to the Fokker-Planck equation with suitable assumptions on the advection and diffusion. Finally, we conclude by extending our techniques to the porous media equation. The sharpness of our results is confirmed by examining known solutions of these equations. The main contribution of this thesis is the use of functional inequalities to express decay of norms as differential inequalities. These are then combined with ODE methods to deduce estimates for the norms of solutions and their derivatives.
Viscous Regularization of the Euler Equations and Entropy Principles
Guermond, Jean-Luc
2014-03-11
This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, à la [Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.
Traveling waves of the regularized short pulse equation
International Nuclear Information System (INIS)
Shen, Y; Horikis, T P; Kevrekidis, P G; Frantzeskakis, D J
2014-01-01
The properties of the so-called regularized short pulse equation (RSPE) are explored with a particular focus on the traveling wave solutions of this model. We theoretically analyze and numerically evolve two sets of such solutions. First, using a fixed point iteration scheme, we numerically integrate the equation to find solitary waves. It is found that these solutions are well approximated by a finite sum of hyperbolic secants powers. The dependence of the soliton's parameters (height, width, etc) to the parameters of the equation is also investigated. Second, by developing a multiple scale reduction of the RSPE to the nonlinear Schrödinger equation, we are able to construct (both standing and traveling) envelope wave breather type solutions of the former, based on the solitary wave structures of the latter. Both the regular and the breathing traveling wave solutions identified are found to be robust and should thus be amenable to observations in the form of few optical cycle pulses. (paper)
Huang, Yawen; Shao, Ling; Frangi, Alejandro F
2018-03-01
Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.
Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang
2013-01-01
Accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method.
Directory of Open Access Journals (Sweden)
Jinping Tang
2017-01-01
Full Text Available Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative transfer equation (RTE. It is an ill-posed parameter identification problem. Regularization methods have been broadly applied to reconstruct the optical coefficients, such as the total variation (TV regularization and the L1 regularization. In order to better reconstruct the piecewise constant and sparse coefficient distributions, TV and L1 norms are combined as the regularization. The forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped with a split Bregman algorithms for the L1 regularization. We use the adjoint method to compute the Jacobian matrix which dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV and L1 regularizations, the simulation results show the validity and efficiency of the proposed method.
Hidden regularity for a strongly nonlinear wave equation
International Nuclear Information System (INIS)
Rivera, J.E.M.
1988-08-01
The nonlinear wave equation u''-Δu+f(u)=v in Q=Ωx]0,T[;u(0)=u 0 ,u'(0)=u 1 in Ω; u(x,t)=0 on Σ= Γx]0,T[ where f is a continuous function satisfying, lim |s| sup →+∞ f(s)/s>-∞, and Ω is a bounded domain of R n with smooth boundary Γ, is analysed. It is shown that there exist a solution for the presented nonlinear wave equation that satisfies the regularity condition: |∂u/∂ η|ε L 2 (Σ). Moreover, it is shown that there exist a constant C>0 such that, |∂u/∂ η|≤c{ E(0)+|v| 2 Q }. (author) [pt
A Priori Regularity of Parabolic Partial Differential Equations
Berkemeier, Francisco
2018-01-01
In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular
Regularity of the 3D Navier-Stokes equations with viewpoint of 2D flow
Bae, Hyeong-Ohk
2018-04-01
The regularity of 2D Navier-Stokes flow is well known. In this article we study the relationship of 3D and 2D flow, and the regularity of the 3D Naiver-Stokes equations with viewpoint of 2D equations. We consider the problem in the Cartesian and in the cylindrical coordinates.
Maximal Regularity of the Discrete Harmonic Oscillator Equation
Directory of Open Access Journals (Sweden)
Airton Castro
2009-01-01
Full Text Available We give a representation of the solution for the best approximation of the harmonic oscillator equation formulated in a general Banach space setting, and a characterization of lp-maximal regularity—or well posedness—solely in terms of R-boundedness properties of the resolvent operator involved in the equation.
On the regularization in the Callan-Symanzik equation
International Nuclear Information System (INIS)
Fujii, Yasunori; Takahashi, Yasushi
1975-01-01
The conservative approach of canonical theory of broken scale invariance to the Callan-Symanzik equation is pushed further with the Pauli-Villars regulators. The authors confirm that the Callan-Symanzik equation is derived in a completely general manner. (BMS) [de
Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains
Bonito, Andrea
2013-12-01
This note establishes regularity estimates for the solution of the Maxwell equations in Lipschitz domains with non-smooth coefficients and minimal regularity assumptions. The argumentation relies on elliptic regularity estimates for the Poisson problem with non-smooth coefficients. © 2013 Elsevier Ltd.
Regularity criteria for the 3D magneto-micropolar fluid equations via ...
Indian Academy of Sciences (India)
3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations. Keywords. Magneto-micropolar fluid equations; regularity criteria; direction of velocity. 2010 Mathematics Subject Classification. 35Q35, 76W05 ...
Jie, Biao; Cheng, Bo
2014-01-01
Accurate diagnosis of Alzheimer’s disease (AD), as well as its pro-dromal stage (i.e., mild cognitive impairment, MCI), is very important for possible delay and early treatment of the disease. Recently, multi-modality methods have been used for fusing information from multiple different and complementary imaging and non-imaging modalities. Although there are a number of existing multi-modality methods, few of them have addressed the problem of joint identification of disease-related brain regions from multi-modality data for classification. In this paper, we proposed a manifold regularized multi-task learning framework to jointly select features from multi-modality data. Specifically, we formulate the multi-modality classification as a multi-task learning framework, where each task focuses on the classification based on each modality. In order to capture the intrinsic relatedness among multiple tasks (i.e., modalities), we adopted a group sparsity regularizer, which ensures only a small number of features to be selected jointly. In addition, we introduced a new manifold based Laplacian regularization term to preserve the geometric distribution of original data from each task, which can lead to the selection of more discriminative features. Furthermore, we extend our method to the semi-supervised setting, which is very important since the acquisition of a large set of labeled data (i.e., diagnosis of disease) is usually expensive and time-consuming, while the collection of unlabeled data is relatively much easier. To validate our method, we have performed extensive evaluations on the baseline Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the effectiveness of the proposed method. PMID:24505676
Regularity and energy conservation for the compressible Euler equations
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Gwiazda, P.; Swierczewska-Gwiazda, A.; Wiedemann, E.
2017-01-01
Roč. 223, č. 3 (2017), s. 1375-1395 ISSN 0003-9527 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : compressible Euler equations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.392, year: 2016 http://link.springer.com/article/10.1007%2Fs00205-016-1060-5
Loss of regularity in the {K(m, n)} equations
Zilburg, Alon; Rosenau, Philip
2018-06-01
Using a priori estimates we prove that initially nonnegative, smooth and compactly supported solutions of the equations must lose their smoothness within a finite time. Formation of a singularity is a prerequisite for the subsequent emergence of compactons. Numerical studies are presented that demonstrate two manifestations of the emerging singularity: either propagation of the right front downstream or the formation of an oscillatory tail upstream. Formation of one type of motion does not preclude the possible formation of the other at a later time.
Integral equations of the first kind, inverse problems and regularization: a crash course
International Nuclear Information System (INIS)
Groetsch, C W
2007-01-01
This paper is an expository survey of the basic theory of regularization for Fredholm integral equations of the first kind and related background material on inverse problems. We begin with an historical introduction to the field of integral equations of the first kind, with special emphasis on model inverse problems that lead to such equations. The basic theory of linear Fredholm equations of the first kind, paying particular attention to E. Schmidt's singular function analysis, Picard's existence criterion, and the Moore-Penrose theory of generalized inverses is outlined. The fundamentals of the theory of Tikhonov regularization are then treated and a collection of exercises and a bibliography are provided
Low regularity solutions of the Chern-Simons-Higgs equations in the Lorentz gauge
Directory of Open Access Journals (Sweden)
Nikolaos Bournaveas
2009-09-01
Full Text Available We prove local well-posedness for the 2+1-dimensional Chern-Simons-Higgs equations in the Lorentz gauge with initial data of low regularity. Our result improves earlier results by Huh [10, 11].
International Nuclear Information System (INIS)
Hinestroza Gutierrez, D.
2006-08-01
In this work a new and promising algorithm based on the minimization of especial functional that depends on two regularization parameters is considered for the identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)
International Nuclear Information System (INIS)
Hinestroza Gutierrez, D.
2006-12-01
In this work a new and promising algorithm based in the minimization of especial functional that depends on two regularization parameters is considered for identification of the heat conduction coefficient in the parabolic equation. This algorithm uses the adjoint and sensibility equations. One of the regularization parameters is associated with the heat-coefficient (as in conventional Tikhonov algorithms) but the other is associated with the calculated solution. (author)
On the regularity criterion of weak solutions for the 3D MHD equations
Gala, Sadek; Ragusa, Maria Alessandra
2017-12-01
The paper deals with the 3D incompressible MHD equations and aims at improving a regularity criterion in terms of the horizontal gradient of velocity and magnetic field. It is proved that the weak solution ( u, b) becomes regular provided that ( \
Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations
International Nuclear Information System (INIS)
EL Safadi, M.
2007-03-01
We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C ∞ regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)
DEFF Research Database (Denmark)
Klinge, Alex; Müller, Henrik Høeg
Modality: Studies in Form and Function reflects the diversity of theoretical frameworks and the heterogeneity of linguistic phenomena under the general heading of modality. Researchers in the fields of logic, philosophy and linguistics have for many years been pondering the elusive nature...... of modality and grappled with ways of capturing it. The 11 studies included here cover the span from contributions that seek to clarify controversial theoretical constructs to studies which take an empirical approach to linguistic categories and cross-linguistic typological issues. The key concepts addressed...
Regular and chaotic behaviors of plasma oscillations modeled by a modified Duffing equation
International Nuclear Information System (INIS)
Enjieu Kadji, H.G.; Chabi Orou, J.B.; Woafo, P.; Abdus Salam International Centre for Theoretical Physics, Trieste
2005-07-01
The regular and chaotic behavior of plasma oscillations governed by a modified Duffing equation is studied. The plasma oscillations are described by a nonlinear differential equation of the form x + w 0 2 x + βx 2 + αx 3 = 0 which is similar to a Duffing equation. By focusing on the quadratic term, which is mainly the term modifying the Duffing equation, the harmonic balance method and the fourth order Runge-Kutta algorithm are used to derive regular and chaotic motions respectively. A strong chaotic behavior exhibited by the system in that event when the system is subjected to an external periodic forcing oscillation is reported as β varies. (author)
International Nuclear Information System (INIS)
Hudson, S.R.
2010-01-01
A method for approximately solving magnetic differential equations is described. The approach is to include a small diffusion term to the equation, which regularizes the linear operator to be inverted. The extra term allows a 'source-correction' term to be defined, which is generally required in order to satisfy the solvability conditions. The approach is described in the context of computing the pressure and parallel currents in the iterative approach for computing magnetohydrodynamic equilibria.
Fibonacci-regularization method for solving Cauchy integral equations of the first kind
Directory of Open Access Journals (Sweden)
Mohammad Ali Fariborzi Araghi
2017-09-01
Full Text Available In this paper, a novel scheme is proposed to solve the first kind Cauchy integral equation over a finite interval. For this purpose, the regularization method is considered. Then, the collocation method with Fibonacci base function is applied to solve the obtained second kind singular integral equation. Also, the error estimate of the proposed scheme is discussed. Finally, some sample Cauchy integral equations stem from the theory of airfoils in fluid mechanics are presented and solved to illustrate the importance and applicability of the given algorithm. The tables in the examples show the efficiency of the method.
Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations
Athanassoulis, Agissilaos
2018-03-01
We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1 + 1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.
A regularization of the Burgers equation using a filtered convective velocity
International Nuclear Information System (INIS)
Norgard, Greg; Mohseni, Kamran
2008-01-01
This paper examines the properties of a regularization of the Burgers equation in one and multiple dimensions using a filtered convective velocity, which we have dubbed as the convectively filtered Burgers (CFB) equation. A physical motivation behind the filtering technique is presented. An existence and uniqueness theorem for multiple dimensions and a general class of filters is proven. Multiple invariants of motion are found for the CFB equation which are shown to be shared with the viscous and inviscid Burgers equations. Traveling wave solutions are found for a general class of filters and are shown to converge to weak solutions of the inviscid Burgers equation with the correct wave speed. Numerical simulations are conducted in 1D and 2D cases where the shock behavior, shock thickness and kinetic energy decay are examined. Energy spectra are also examined and are shown to be related to the smoothness of the solutions. This approach is presented with the hope of being extended to shock regularization of compressible Euler equations
Regularity criteria for the Navier–Stokes equations based on one component of velocity
Czech Academy of Sciences Publication Activity Database
Guo, Z.; Caggio, M.; Skalák, Zdeněk
2017-01-01
Roč. 35, June (2017), s. 379-396 ISSN 1468-1218 R&D Projects: GA ČR GA14-02067S Grant - others:Západočeská univerzita(CZ) SGS-2016-003; National Natural Science Foundation of China (CN) 11301394 Institutional support: RVO:67985874 Keywords : Navier–Stokes equations * regularity of solutions * regularity criteria * Anisotropic Lebesgue spaces Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.659, year: 2016
Directory of Open Access Journals (Sweden)
Fairouz Zouyed
2015-01-01
Full Text Available This paper discusses the inverse problem of determining an unknown source in a second order differential equation from measured final data. This problem is ill-posed; that is, the solution (if it exists does not depend continuously on the data. In order to solve the considered problem, an iterative method is proposed. Using this method a regularized solution is constructed and an a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.
Regularity criteria for the Navier–Stokes equations based on one component of velocity
Czech Academy of Sciences Publication Activity Database
Guo, Z.; Caggio, M.; Skalák, Zdeněk
2017-01-01
Roč. 35, June (2017), s. 379-396 ISSN 1468-1218 R&D Projects: GA ČR GA14-02067S Grant - others:Západočeská univerzita(CZ) SGS-2016-003; National Natural Science Foundation of China(CN) 11301394 Institutional support: RVO:67985874 Keywords : Navier–Stokes equations * regularity of solutions * regularity criteria * Anisotropic Lebesgue spaces Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.659, year: 2016
On the regularity of mild solutions to complete higher order differential equations on Banach spaces
Directory of Open Access Journals (Sweden)
Nezam Iraniparast
2015-09-01
Full Text Available For the complete higher order differential equation u(n(t=Σk=0n-1Aku(k(t+f(t, t∈ R (* on a Banach space E, we give a new definition of mild solutions of (*. We then characterize the regular admissibility of a translation invariant subspace al M of BUC(R, E with respect to (* in terms of solvability of the operator equation Σj=0n-1AjXal Dj-Xal Dn = C. As application, almost periodicity of mild solutions of (* is proved.
Numerical simulation of the regularized long wave equation by He's homotopy perturbation method
Energy Technology Data Exchange (ETDEWEB)
Inc, Mustafa [Department of Mathematics, Firat University, 23119 Elazig (Turkey)], E-mail: minc@firat.edu.tr; Ugurlu, Yavuz [Department of Mathematics, Firat University, 23119 Elazig (Turkey)
2007-09-17
In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions.
Numerical simulation of the regularized long wave equation by He's homotopy perturbation method
International Nuclear Information System (INIS)
Inc, Mustafa; Ugurlu, Yavuz
2007-01-01
In this Letter, we present the homotopy perturbation method (shortly HPM) for obtaining the numerical solution of the RLW equation. We obtain the exact and numerical solutions of the Regularized Long Wave (RLW) equation for certain initial condition. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Comparison of the results with those of other methods have led us to significant consequences. The numerical solutions are compared with the known analytical solutions
A multiresolution method for solving the Poisson equation using high order regularization
DEFF Research Database (Denmark)
Hejlesen, Mads Mølholm; Walther, Jens Honore
2016-01-01
We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches and regulari......We present a novel high order multiresolution Poisson solver based on regularized Green's function solutions to obtain exact free-space boundary conditions while using fast Fourier transforms for computational efficiency. Multiresolution is a achieved through local refinement patches...... and regularized Green's functions corresponding to the difference in the spatial resolution between the patches. The full solution is obtained utilizing the linearity of the Poisson equation enabling super-position of solutions. We show that the multiresolution Poisson solver produces convergence rates...
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
Boundary Equations and Regularity Theory for Geometric Variational Systems with Neumann Data
Schikorra, Armin
2018-02-01
We study boundary regularity of maps from two-dimensional domains into manifolds which are critical with respect to a generic conformally invariant variational functional and which, at the boundary, intersect perpendicularly with a support manifold. For example, harmonic maps, or H-surfaces, with a partially free boundary condition. In the interior it is known, by the celebrated work of Rivière, that these maps satisfy a system with an antisymmetric potential, from which one can derive the interior regularity of the solution. Avoiding a reflection argument, we show that these maps satisfy along the boundary a system of equations which also exhibits a (nonlocal) antisymmetric potential that combines information from the interior potential and the geometric Neumann boundary condition. We then proceed to show boundary regularity for solutions to such systems.
On Landweber–Kaczmarz methods for regularizing systems of ill-posed equations in Banach spaces
International Nuclear Information System (INIS)
Leitão, A; Alves, M Marques
2012-01-01
In this paper, iterative regularization methods of Landweber–Kaczmarz type are considered for solving systems of ill-posed equations modeled (finitely many) by operators acting between Banach spaces. Using assumptions of uniform convexity and smoothness on the parameter space, we are able to prove a monotony result for the proposed method, as well as to establish convergence (for exact data) and stability results (in the noisy data case). (paper)
Asymptotic properties of spherically symmetric, regular and static solutions to Yang-Mills equations
International Nuclear Information System (INIS)
Cronstrom, C.
1987-01-01
In this paper the author discusses the asymptotic properties of solutions to Yang-Mills equations with the gauge group SU(2), for spherically symmetric, regular and static potentials. It is known, that the pure Yang-Mills equations cannot have nontrivial regular solutions which vanish rapidly at space infinity (socalled finite energy solutions). So, if regular solutions exist, they must have non-trivial asymptotic properties. However, if the asymptotic behaviour of the solutions is non-trivial, then the fact must be explicitly taken into account in constructing the proper action (and energy) for the theory. The elucidation of the appropriate surface correction to the Yang-Mills action (and hence the energy-momentum tensor density) is one of the main motivations behind the present study. In this paper the author restricts to the asymptotic behaviour of the static solutions. It is shown that this asymptotic behaviour is such that surface corrections (at space-infinity) are needed in order to obtain a well-defined (classical) theory. This is of relevance in formulating a quantum Yang-Mills theory
Directory of Open Access Journals (Sweden)
Appleby JohnAD
2010-01-01
Full Text Available We consider the rate of convergence to equilibrium of Volterra integrodifferential equations with infinite memory. We show that if the kernel of Volterra operator is regularly varying at infinity, and the initial history is regularly varying at minus infinity, then the rate of convergence to the equilibrium is regularly varying at infinity, and the exact pointwise rate of convergence can be determined in terms of the rate of decay of the kernel and the rate of growth of the initial history. The result is considered both for a linear Volterra integrodifferential equation as well as for the delay logistic equation from population biology.
Directory of Open Access Journals (Sweden)
Liquan Mei
2014-01-01
Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.
Directory of Open Access Journals (Sweden)
Hamid A. Jalab
2014-01-01
Full Text Available The interest in using fractional mask operators based on fractional calculus operators has grown for image denoising. Denoising is one of the most fundamental image restoration problems in computer vision and image processing. This paper proposes an image denoising algorithm based on convex solution of fractional heat equation with regularized fractional power parameters. The performances of the proposed algorithms were evaluated by computing the PSNR, using different types of images. Experiments according to visual perception and the peak signal to noise ratio values show that the improvements in the denoising process are competent with the standard Gaussian filter and Wiener filter.
Singular pontentials and analytic regularization in classical Yang-Mills equations
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1978-11-01
The class of instanton solutions with 'extension' parameter lambda 2 positive is extended to lambda 2 negative. The nature of the singular sphere of radius 'lambda' is analized in the light of the analytical regularization method. This leads to well defined solutions of the Yang-Mills equations. Some of them are sourceless ('+-io' and 'Vp'), others correspond to currents concentrated on the sphere of singularity ('+' and '-'). Although the equations are non-linear, the 'Vp' solution turns out to be real part of the '+-io' solutions. The anzats of t'Hooft for the superposition of instantons is used to sum the contributions corresponding to lambda 2 with positive and negative signs. A subsequent limiting process allows then the construction of solutions of the 'multipole' type. The general situation of potentials having a denominator D, with a corresponding surface of singularity at D=0, is also considered in the same light [pt
Singular potentials and analytic regularization in classical Yang-Mills equations
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.
1978-10-01
The class of instanton solutions with 'extension' parameter Λ 2 positive is extended to Λ 2 negative. The nature of the singular sphere of radius |Λ| is analized in the light of the analytical regularization method. This leads to well defined solutions of the Yang - Mills equations. Some of them are sourceless ('+- i o' and 'Vp'), others correspond to currents concentrated on the sphere of singularity ('+' and '-'). Although the equations are non-linear, the 'Vp' solutions turns out to be the real part of the '+- i o' solutions. The anzats of t'Hooft for the superposition of instantons is used to sum the contributions corresponding to Λ 2 with positive and negative signs. A subsequent limiting process allows then the construction of solutions of the 'multipole' type. The general situation of potentials having a denominator D, with a corresponding surface of singularity at D=0, is also considered in the same light. (Author) [pt
Provencher, Stephen W.
1982-09-01
CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.
Regularity for 3D Navier-Stokes equations in terms of two components of the vorticity
Directory of Open Access Journals (Sweden)
Sadek Gala
2010-10-01
Full Text Available We establish regularity conditions for the 3D Navier-Stokes equation via two components of the vorticity vector. It is known that if a Leray-Hopf weak solution $u$ satisfies $$ ilde{omega}in L^{2/(2-r}(0,T;L^{3/r}(mathbb{R}^3quad hbox{with }0
John A. D. Appleby
2010-01-01
We consider the rate of convergence to equilibrium of Volterra integrodifferential equations with infinite memory. We show that if the kernel of Volterra operator is regularly varying at infinity, and the initial history is regularly varying at minus infinity, then the rate of convergence to the equilibrium is regularly varying at infinity, and the exact pointwise rate of convergence can be determined in terms of the rate of decay of the kernel and the rate of growth of the initial history. ...
Czech Academy of Sciences Publication Activity Database
Skalák, Zdeněk
2016-01-01
Roč. 437, č. 1 (2016), s. 474-484 ISSN 0022-247X R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985874 Keywords : Navier - Stokes equations * regularity of solutions * regularity criteria Subject RIV: BK - Fluid Dynamics Impact factor: 1.064, year: 2016
Regularity theory for quasilinear elliptic systems and Monge—Ampère equations in two dimensions
Schulz, Friedmar
1990-01-01
These lecture notes have been written as an introduction to the characteristic theory for two-dimensional Monge-Ampère equations, a theory largely developed by H. Lewy and E. Heinz which has never been presented in book form. An exposition of the Heinz-Lewy theory requires auxiliary material which can be found in various monographs, but which is presented here, in part because the focus is different, and also because these notes have an introductory character. Self-contained introductions to the regularity theory of elliptic systems, the theory of pseudoanalytic functions and the theory of conformal mappings are included. These notes grew out of a seminar given at the University of Kentucky in the fall of 1988 and are intended for graduate students and researchers interested in this area.
Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn
Gu, Anhui; Li, Dingshi; Wang, Bixiang; Yang, Han
2018-06-01
We investigate the regularity of random attractors for the non-autonomous non-local fractional stochastic reaction-diffusion equations in Hs (Rn) with s ∈ (0 , 1). We prove the existence and uniqueness of the tempered random attractor that is compact in Hs (Rn) and attracts all tempered random subsets of L2 (Rn) with respect to the norm of Hs (Rn). The main difficulty is to show the pullback asymptotic compactness of solutions in Hs (Rn) due to the noncompactness of Sobolev embeddings on unbounded domains and the almost sure nondifferentiability of the sample paths of the Wiener process. We establish such compactness by the ideas of uniform tail-estimates and the spectral decomposition of solutions in bounded domains.
Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion
Cañizo, J.A.
2010-03-01
We present a new a priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case. © 2009 Elsevier Masson SAS. All rights reserved.
Yaacob, Y.; Yeak, S. H.; Lim, R. S.; Soewono, E.
2015-03-01
Dengue disease has been known as one of widely transmitted vector-borne diseases which potentially affects millions of people throughout the world especially in tropical and sub-tropical countries. One of the main factors contributing in the complication of the transmission process is the mobility of people in which people may get infection in the places far from their home. Here we construct a delay differential equation model for dengue transmission in a closed population where regular visits of people to a mosquito breeding site out of their residency such as traditional market take place daily. Basic reproductive ratio of the system is obtained and depends on the ratio between the outgoing rates of susceptible human and infective human. It is shown that the increase of mobility with different variation of mobility rates may contribute to different level of basic reproductive ratio as well as different level of outbreaks.
Regularization and error estimates for asymmetric backward nonhomogeneous heat equations in a ball
Directory of Open Access Journals (Sweden)
Le Minh Triet
2016-09-01
Full Text Available The backward heat problem (BHP has been researched by many authors in the last five decades; it consists in recovering the initial distribution from the final temperature data. There are some articles [1,2,3] related the axi-symmetric BHP in a disk but the study in spherical coordinates is rare. Therefore, we wish to study a backward problem for nonhomogenous heat equation associated with asymmetric final data in a ball. In this article, we modify the quasi-boundary value method to construct a stable approximate solution for this problem. As a result, we obtain regularized solution and a sharp estimates for its error. At the end, a numerical experiment is provided to illustrate our method.
Quadratic PBW-Algebras, Yang-Baxter Equation and Artin-Schelter Regularity
International Nuclear Information System (INIS)
Gateva-Ivanova, Tatiana
2010-08-01
We study quadratic algebras over a field k. We show that an n-generated PBW-algebra A has finite global dimension and polynomial growth iff its Hilbert series is H A (z) = 1/(1-z) n . A surprising amount can be said when the algebra A has quantum binomial relations, that is the defining relations are binomials xy - c xy zt, c xy is an element of k x , which are square-free and nondegenerate. We prove that in this case various good algebraic and homological properties are closely related. The main result shows that for an n-generated quantum binomial algebra A the following conditions are equivalent: (i) A is a PBW-algebra with finite global dimension; (ii) A is PBW and has polynomial growth; (iii) A is an Artin-Schelter regular PBW-algebra; (iv) A is a Yang-Baxter algebra; (v) H A (z) = 1/(1-z) n ; (vi) The dual A ! is a quantum Grassman algebra; (vii) A is a binomial skew polynomial ring. This implies that the problem of classification of Artin-Schelter regular PBW-algebras of global dimension n is equivalent to the classification of square-free set-theoretic solutions of the Yang-Baxter equation (X,r), on sets X of order n.| (author)
Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations
Hou, Thomas Y.; Liu, Pengfei; Wang, Fei
2018-05-01
We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.
Czech Academy of Sciences Publication Activity Database
Guo, Z.; Kučera, P.; Skalák, Zdeněk
2018-01-01
Roč. 458, č. 1 (2018), s. 755-766 ISSN 0022-247X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985874 Keywords : Navier Stokes equations * conditional regularity * regularity criteria * vorticity * Besov spaces * bony decomposition Subject RIV: BA - General Mathematics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.064, year: 2016
Chamorro, Diego; Lemarié-Rieusset, Pierre-Gilles; Mayoufi, Kawther
2018-04-01
We study the role of the pressure in the partial regularity theory for weak solutions of the Navier-Stokes equations. By introducing the notion of dissipative solutions, due to D uchon and R obert (Nonlinearity 13:249-255, 2000), we will provide a generalization of the Caffarelli, Kohn and Nirenberg theory. Our approach sheels new light on the role of the pressure in this theory in connection to Serrin's local regularity criterion.
Renormalization group equation for interacting Thirring fields in dimensional regularization scheme
International Nuclear Information System (INIS)
Chowdhury, A.R.; Roy, T.; Kar, S.
1976-01-01
The dynamics of two interacting Thirring fields has been investigated within the dimensional regularization framework. The coupling constants are renormalized in the same way as observed in the non-perturbative approach of Ansel'm et al (Sov. Phys. - JETP 36: 608 (1959)). Functionsβsub(i)(g 1 , g 2 , g 3 ) and γsub(i)(g 1 , g 2 , g 3 ), pertaining to the stability and anomalous behaviour of the problem, are computed up to a third order in the coupling parameters. With the help of these, subsidiary non-linear differential equations of the renormalization group are studied in 2-epsilon dimension. The results show up some peculiar features of the theory: a zero of βsub(i)(g 1 , g 2 , g 3 ) corresponding to g 2 approximately α√epsilon, a characteristic of phi theory. The scale invariant limit is reached when g 2 → 0 (i.e. the two Thirring fields are decoupled) and also when g 1 = xg 2 = g 3 , where x is a root of 2x 3 + 2x 2 - 1 = 0. The branch-point zero makes the transition to the epsilon tends to 0 limit non-unique. The anomalous dimensions are obtained and seen to match that of the Dashen-Frishman model (Phys. Lett.; 46B 439 (1973)). The existence of a non-trivial scale invariant limit distinguishes the model from many simple field theories. (author)
Karlin, Ilya
2018-04-01
Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin et al. 1998 Phys. Rev. E 57, 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system. This article is part of the theme issue `Hilbert's sixth problem'.
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří; Penel, P.
2014-01-01
Roč. 46, č. 2 (2014), s. 1681-1700 ISSN 0036-1410 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations * weak solution * regularity criteria Subject RIV: BA - General Mathematics Impact factor: 1.265, year: 2014 http://epubs.siam.org/doi/abs/10.1137/120874874
Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar
2018-06-01
In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.
Dong, Bo-Qing; Jia, Yan; Li, Jingna; Wu, Jiahong
2018-05-01
This paper focuses on a system of the 2D magnetohydrodynamic (MHD) equations with the kinematic dissipation given by the fractional operator (-Δ )^α and the magnetic diffusion by partial Laplacian. We are able to show that this system with any α >0 always possesses a unique global smooth solution when the initial data is sufficiently smooth. In addition, we make a detailed study on the large-time behavior of these smooth solutions and obtain optimal large-time decay rates. Since the magnetic diffusion is only partial here, some classical tools such as the maximal regularity property for the 2D heat operator can no longer be applied. A key observation on the structure of the MHD equations allows us to get around the difficulties due to the lack of full Laplacian magnetic diffusion. The results presented here are the sharpest on the global regularity problem for the 2D MHD equations with only partial magnetic diffusion.
Le, Nam Q.
2018-05-01
We obtain the Hölder regularity of time derivative of solutions to the dual semigeostrophic equations in two dimensions when the initial potential density is bounded away from zero and infinity. Our main tool is an interior Hölder estimate in two dimensions for an inhomogeneous linearized Monge-Ampère equation with right hand side being the divergence of a bounded vector field. As a further application of our Hölder estimate, we prove the Hölder regularity of the polar factorization for time-dependent maps in two dimensions with densities bounded away from zero and infinity. Our applications improve previous work by G. Loeper who considered the cases of densities sufficiently close to a positive constant.
Regularity and mass conservation for discrete coagulation–fragmentation equations with diffusion
Cañ izo, J.A.; Desvillettes, L.; Fellner, K.
2010-01-01
We present a new a priori estimate for discrete coagulation-fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a priori
Regularity criteria for the 3D magneto-micropolar fluid equations via ...
Indian Academy of Sciences (India)
We consider sufficient conditions to ensure the smoothness of solutions to 3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations.
Analysis and regularization of the thin-wire integral equation with reduced kernel
Beurden, van M.C.; Tijhuis, A.G.
2007-01-01
For the straight wire, modeled as a hollow tube, we establish a conditional equivalence relation between the integral equations with exact and reduced kernel. This relation allows us to examine the existence and uniqueness conditions for the integral equation with reduced kernel, based on a local
A regularization method for solving the Poisson equation for mixed unbounded-periodic domains
DEFF Research Database (Denmark)
Spietz, Henrik Juul; Mølholm Hejlesen, Mads; Walther, Jens Honoré
2018-01-01
the regularized unbounded-periodic Green's functions can be implemented in an FFT-based Poisson solver to obtain a convergence rate corresponding to the regularization order of the Green's function. The high order is achieved without any additional computational cost from the conventional FFT-based Poisson solver...... and enables the calculation of the derivative of the solution to the same high order by direct spectral differentiation. We illustrate an application of the FFT-based Poisson solver by using it with a vortex particle mesh method for the approximation of incompressible flow for a problem with a single periodic...
Directory of Open Access Journals (Sweden)
Özkan Güner
2014-01-01
Full Text Available We apply the functional variable method, exp-function method, and (G′/G-expansion method to establish the exact solutions of the nonlinear fractional partial differential equation (NLFPDE in the sense of the modified Riemann-Liouville derivative. As a result, some new exact solutions for them are obtained. The results show that these methods are very effective and powerful mathematical tools for solving nonlinear fractional equations arising in mathematical physics. As a result, these methods can also be applied to other nonlinear fractional differential equations.
On invariant measures for the Vlasov equation with a regular potential
International Nuclear Information System (INIS)
Zhidkov, P.E.
2003-01-01
We consider a Vlasov equation with a smooth bounded potential of interaction between particles in a class of measure-valued solutions and construct a measure which is invariant for this problem in a sense
Gibbon, John D; Pal, Nairita; Gupta, Anupam; Pandit, Rahul
2016-12-01
We consider the three-dimensional (3D) Cahn-Hilliard equations coupled to, and driven by, the forced, incompressible 3D Navier-Stokes equations. The combination, known as the Cahn-Hilliard-Navier-Stokes (CHNS) equations, is used in statistical mechanics to model the motion of a binary fluid. The potential development of singularities (blow-up) in the contours of the order parameter ϕ is an open problem. To address this we have proved a theorem that closely mimics the Beale-Kato-Majda theorem for the 3D incompressible Euler equations [J. T. Beale, T. Kato, and A. J. Majda, Commun. Math. Phys. 94, 61 (1984)CMPHAY0010-361610.1007/BF01212349]. By taking an L^{∞} norm of the energy of the full binary system, designated as E_{∞}, we have shown that ∫_{0}^{t}E_{∞}(τ)dτ governs the regularity of solutions of the full 3D system. Our direct numerical simulations (DNSs) of the 3D CHNS equations for (a) a gravity-driven Rayleigh Taylor instability and (b) a constant-energy-injection forcing, with 128^{3} to 512^{3} collocation points and over the duration of our DNSs confirm that E_{∞} remains bounded as far as our computations allow.
Ito's formula in UMD Banach spaces and regularity of solution of the Zakai equation
Brzezniak, Z.; Van Neerven, J.M.A.M.; Veraar, M.C.; Weis, L.
2008-01-01
Using the theory of stochastic integration for processes with values in a UMD Banach space developed recently by the authors, an Itô formula is proved which is applied to prove the existence of strong solutions for a class of stochastic evolution equations in UMD Banach spaces. The abstract results
Cockrell, C. R.
1989-01-01
Numerical solutions of the differential equation which describe the electric field within an inhomogeneous layer of permittivity, upon which a perpendicularly-polarized plane wave is incident, are considered. Richmond's method and the Runge-Kutta method are compared for linear and exponential profiles of permittivities. These two approximate solutions are also compared with the exact solutions.
Helmers, Michael; Herrmann, Michael
2018-03-01
We consider a lattice regularization for an ill-posed diffusion equation with a trilinear constitutive law and study the dynamics of phase interfaces in the parabolic scaling limit. Our main result guarantees for a certain class of single-interface initial data that the lattice solutions satisfy asymptotically a free boundary problem with a hysteretic Stefan condition. The key challenge in the proof is to control the microscopic fluctuations that are inevitably produced by the backward diffusion when a particle passes the spinodal region.
Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schroedinger Equation
Energy Technology Data Exchange (ETDEWEB)
Amor, Sana Hadj, E-mail: sana_hadjamor@yahoo.fr [Ecole Nationale d' Ingenieurs de Monastir (Tunisia)
2012-12-15
Starting from results already obtained for quasi-periodic co-cycles in SL(2, R), we show that the rotation number of the one-dimensional time-continuous Schroedinger equation with Diophantine frequencies and a small analytic potential has the behavior of a 1/2-Hoelder function. We give also a sub-exponential estimate of the length of the gaps which depends on its label given by the gap-labeling theorem.
Directory of Open Access Journals (Sweden)
H. O. Bakodah
2013-01-01
Full Text Available A method of lines approach to the numerical solution of nonlinear wave equations typified by the regularized long wave (RLW is presented. The method developed uses a finite differences discretization to the space. Solution of the resulting system was obtained by applying fourth Runge-Kutta time discretization method. Using Von Neumann stability analysis, it is shown that the proposed method is marginally stable. To test the accuracy of the method some numerical experiments on test problems are presented. Test problems including solitary wave motion, two-solitary wave interaction, and the temporal evaluation of a Maxwellian initial pulse are studied. The accuracy of the present method is tested with and error norms and the conservation properties of mass, energy, and momentum under the RLW equation.
Existence, regularity and representation of solutions of time fractional wave equations
Directory of Open Access Journals (Sweden)
Valentin Keyantuo
2017-09-01
Full Text Available We study the solvability of the fractional order inhomogeneous Cauchy problem $$ \\mathbb{D}_t^\\alpha u(t=Au(t+f(t, \\quad t>0,\\;1<\\alpha\\le 2, $$ where A is a closed linear operator in some Banach space X and $f:[0,\\infty\\to X$ a given function. Operator families associated with this problem are defined and their regularity properties are investigated. In the case where A is a generator of a $\\beta$-times integrated cosine family $(C_\\beta(t$, we derive explicit representations of mild and classical solutions of the above problem in terms of the integrated cosine family. We include applications to elliptic operators with Dirichlet, Neumann or Robin type boundary conditions on $L^p$-spaces and on the space of continuous functions.
Discrete maximal regularity of time-stepping schemes for fractional evolution equations.
Jin, Bangti; Li, Buyang; Zhou, Zhi
2018-01-01
In this work, we establish the maximal [Formula: see text]-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order [Formula: see text], [Formula: see text], in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis (Math Ann 319:735-758, 2001. doi:10.1007/PL00004457) and its discrete analogue due to Blunck (Stud Math 146:157-176, 2001. doi:10.4064/sm146-2-3). These results generalize the corresponding results for parabolic problems.
Nonlinear stochastic heat equations with cubic nonlinearities and additive Q-regular noise in R^1
Directory of Open Access Journals (Sweden)
Henri Schurz
2010-09-01
Full Text Available Semilinear stochastic heat equations perturbed by cubic-type nonlinearities and additive space-time noise with homogeneous boundary conditions are discussed in R^1. The space-time noise is supposed to be Gaussian in time and possesses a Fourier expansion in space along the eigenfunctions of underlying Lapace operators. We follow the concept of approximate strong (classical Fourier solutions. The existence of unique continuous L^2-bounded solutions is proved. Furthermore, we present a procedure for its numerical approximation based on nonstandard methods (linear-implicit and justify their stability and consistency. The behavior of related total energy functional turns out to be crucial in the presented analysis.
A nearest-neighbour discretisation of the regularized stokeslet boundary integral equation
Smith, David J.
2018-04-01
The method of regularized stokeslets is extensively used in biological fluid dynamics due to its conceptual simplicity and meshlessness. This simplicity carries a degree of cost in computational expense and accuracy because the number of degrees of freedom used to discretise the unknown surface traction is generally significantly higher than that required by boundary element methods. We describe a meshless method based on nearest-neighbour interpolation that significantly reduces the number of degrees of freedom required to discretise the unknown traction, increasing the range of problems that can be practically solved, without excessively complicating the task of the modeller. The nearest-neighbour technique is tested against the classical problem of rigid body motion of a sphere immersed in very viscous fluid, then applied to the more complex biophysical problem of calculating the rotational diffusion timescales of a macromolecular structure modelled by three closely-spaced non-slender rods. A heuristic for finding the required density of force and quadrature points by numerical refinement is suggested. Matlab/GNU Octave code for the key steps of the algorithm is provided, which predominantly use basic linear algebra operations, with a full implementation being provided on github. Compared with the standard Nyström discretisation, more accurate and substantially more efficient results can be obtained by de-refining the force discretisation relative to the quadrature discretisation: a cost reduction of over 10 times with improved accuracy is observed. This improvement comes at minimal additional technical complexity. Future avenues to develop the algorithm are then discussed.
International Nuclear Information System (INIS)
Krivosheev, A S
2000-01-01
In this paper we introduce the notion of regular growth for a system of entire functions of finite order and type. This is a direct and natural generalization of the classical completely regular growth of an entire function. We obtain sufficient and necessary conditions for the solubility of a system of non-homogeneous convolution equations in convex domains of the complex plane. These conditions depend on whether the system of Laplace transforms of the analytic functionals that generate the convolution equations has regular growth. In the case of smooth convex domains, these solubility conditions form a criterion
Energy Technology Data Exchange (ETDEWEB)
Marc O Delchini; Jean E. Ragusa; Ray A. Berry
2015-07-01
We present a new version of the entropy viscosity method, a viscous regularization technique for hyperbolic conservation laws, that is well-suited for low-Mach flows. By means of a low-Mach asymptotic study, new expressions for the entropy viscosity coefficients are derived. These definitions are valid for a wide range of Mach numbers, from subsonic flows (with very low Mach numbers) to supersonic flows, and no longer depend on an analytical expression for the entropy function. In addition, the entropy viscosity method is extended to Euler equations with variable area for nozzle flow problems. The effectiveness of the method is demonstrated using various 1-D and 2-D benchmark tests: flow in a converging–diverging nozzle; Leblanc shock tube; slow moving shock; strong shock for liquid phase; low-Mach flows around a cylinder and over a circular hump; and supersonic flow in a compression corner. Convergence studies are performed for smooth solutions and solutions with shocks present.
Energy Technology Data Exchange (ETDEWEB)
EL Safadi, M
2007-03-15
We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C{sup {infinity}} regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)
International Nuclear Information System (INIS)
Kyed, Mads
2014-01-01
The existence, uniqueness and regularity of time-periodic solutions to the Navier–Stokes equations in the three-dimensional whole space are investigated. We consider the Navier–Stokes equations with a non-zero drift term corresponding to the physical model of a fluid flow around a body that moves with a non-zero constant velocity. The existence of a strong time-periodic solution is shown for small time-periodic data. It is further shown that this solution is unique in a large class of weak solutions that can be considered physically reasonable. Finally, we establish regularity properties for any strong solution regardless of its size. (paper)
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří
2014-01-01
Roč. 139, č. 4 (2014), s. 685-698 ISSN 0862-7959 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * suitable weak solution * regularity Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/144145
2010-06-16
B4) Substituting tui / and tVT /2 from the momentum and energy conservation law equations, Eqs...B9) Substituting tui / and tVT /2 from the momentum and energy conservation law equations, Eqs. (15...Substituting tui / and tVT /2 from the momentum and energy conservation law equations, Eqs. (15) and (16), into Eq. (B13) and then dropping all
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří; Al Baba, Hind
2018-01-01
Roč. 463, č. 1 (2018), s. 222-234 ISSN 0022-247X R&D Projects: GA ČR(CZ) GA17-01747S Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * Navier-type boundary conditions * interior regularity Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 https://www. science direct.com/ science /article/pii/S0022247X18302233?via%3Dihub
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří; Al Baba, Hind
2018-01-01
Roč. 463, č. 1 (2018), s. 222-234 ISSN 0022-247X R&D Projects: GA ČR(CZ) GA17-01747S Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * Navier-type boundary conditions * interior regularity Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 https://www.sciencedirect.com/science/article/pii/S0022247X18302233?via%3Dihub
Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats
2014-05-01
In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Regularity for a clamped grid equation $u_{xxxx}+u_{yyyy}=f $ on a domain with a corner
Directory of Open Access Journals (Sweden)
Tymofiy Gerasimov
2009-04-01
Full Text Available The operator $L=frac{partial ^{4}}{partial x^{4}} +frac{partial ^{4}}{partial y^{4}}$ appears in a model for the vertical displacement of a two-dimensional grid that consists of two perpendicular sets of elastic fibers or rods. We are interested in the behaviour of such a grid that is clamped at the boundary and more specifically near a corner of the domain. Kondratiev supplied the appropriate setting in the sense of Sobolev type spaces tailored to find the optimal regularity. Inspired by the Laplacian and the Bilaplacian models one expect, except maybe for some special angles that the optimal regularity improves when angle decreases. For the homogeneous Dirichlet problem with this special non-isotropic fourth order operator such a result does not hold true. We will show the existence of an interval $( frac{1}{2}pi ,omega _{star }$, $omega _{star }/pi approx 0.528dots$ (in degrees $omega _{star }approx 95.1dots^{circ} $, in which the optimal regularity improves with increasing opening angle.
Directory of Open Access Journals (Sweden)
Hayk Ghazaryan
2010-06-01
Full Text Available In this paper it is proved that all distributional solutions of the non-degenerate, almost hypoelliptic (hypoelliptic by the one of variables equation $P(Du = P(D_{1},D_{2}u = 0$ are infinitely differentiable in the certain strip in $E^{2}$ under a priori assumption that they and its certain derivatives are square integrable with a certain exponential weight.
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří; Penel, P.
2018-01-01
Roč. 2018, March (2018), č. článku 4617020. ISSN 1687-9120 R&D Projects: GA ČR(CZ) GA17-01747S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.643, year: 2016 https://www.hindawi.com/journals/amp/2018/4617020/
Debussche, A.; Glatt-Holtz, N.; Temam, R.; Ziane, M.
2012-07-01
The primitive equations (PEs) are a basic model in the study of large scale oceanic and atmospheric dynamics. These systems form the analytical core of the most advanced general circulation models. For this reason and due to their challenging nonlinear and anisotropic structure, the PEs have recently received considerable attention from the mathematical community. On the other hand, in view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the PEs and more generally. In this work we study a stochastic version of the PEs. We establish the global existence and uniqueness of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, L^{p}_{t}L^{q}_{x} estimates on the pressure and stopping time arguments.
International Nuclear Information System (INIS)
Debussche, A; Glatt-Holtz, N; Temam, R; Ziane, M
2012-01-01
The primitive equations (PEs) are a basic model in the study of large scale oceanic and atmospheric dynamics. These systems form the analytical core of the most advanced general circulation models. For this reason and due to their challenging nonlinear and anisotropic structure, the PEs have recently received considerable attention from the mathematical community. On the other hand, in view of the complex multi-scale nature of the earth's climate system, many uncertainties appear that should be accounted for in the basic dynamical models of atmospheric and oceanic processes. In the climate community stochastic methods have come into extensive use in this connection. For this reason there has appeared a need to further develop the foundations of nonlinear stochastic partial differential equations in connection with the PEs and more generally. In this work we study a stochastic version of the PEs. We establish the global existence and uniqueness of strong, pathwise solutions for these equations in dimension 3 for the case of a nonlinear multiplicative noise. The proof makes use of anisotropic estimates, L p t L q x estimates on the pressure and stopping time arguments
Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie; Benna, Mehdi; Kofman, Wlodek; Herique, Alain
We investigate the inverse problem of imaging the internal structure of comet 67P/ Churyumov-Gerasimenko from radiotomography CONSERT data by using a coupled regularized inversion of the Helmholtz equations. A first set of Helmholtz equations, written w.r.t a basis of 3D Hankel functions describes the wave propagation outside the comet at large distances, a second set of Helmholtz equations, written w.r.t. a basis of 3D Zernike functions describes the wave propagation throughout the comet with avariable permittivity. Both sets are connected by continuity equations over a sphere that surrounds the comet. This approach, derived from GPS water vapor tomography of the atmosphere,will permit a full 3D inversion of the internal structure of the comet, contrary to traditional approaches that use a discretization of space at a fraction of the radiowave wavelength.
International Nuclear Information System (INIS)
Glazov, V.M.; Pavlova, L.M.; Moskvinova, N.A.
1975-01-01
A general solution was obtained for the Prigozhin and Defey equation on the basis of which a liquidus equation was derived describing the primary crystallization of Asub(m)Bsub(n)-type compounds. The Prigozhin and Defey equation described a general case of the melting process of having a narrow homogeneity region at a certain temperature T:(Asub(m)Bsub(n))sub(s) reversible m(A)sub(L) n(B)sub(L). They have obtained a differential equation for the liquids curve describing the equilibrium state between the primary Asub(m)Bsub(n) crystals and the liquid solution. The obtained equation was tested by a comparison with the experimental liquidus curves corresponding to the primary crystallization of gallium and indium sesquitellurides in Ga-Te and In-Te systems. The liquidus curves were made more precise by means of a detailed thermographic study of a series of melts located to the right and left of Ga 2 Te 3 and In 2 Te 3 compounds. Computer calculations of liquidus curves corresponding to the primary crystallization of Ga 2 Te 3 and In 2 Te 3 were carried out with the aid of the last of the above-mentioned equations. The obtained results show that the derived equations can be used in studying the nature of intermolecular reactions in systems in which congruent intermediate phases of complex composition are present
International Nuclear Information System (INIS)
Dyshekov, A.A.; Khapachev, Yu.P.
1997-01-01
It is proposed to use qualitative investigation methods of the differential Takagi equation solutions for the analysis of general properties of wave fields in deformed crystals. The physical interpretation of possible types of the Takagi equation solutions is considered briefly from the viewpoint of the stability theory. The type of solutions are defined by ratios between parameters involved in the equations set. For the Takagi equation these parameters are prescribed by the angular tuning from the precise Bragg angle as well as structural characteristics of the crystal and the deformation profile. The qualitative analysis for the problem of the dynamic X-ray diffraction is carried out for films with the variable deformation gradient and superlattices [ru
DEFF Research Database (Denmark)
Hansen, Lars Kai; Rasmussen, Carl Edward; Svarer, C.
1994-01-01
Regularization, e.g., in the form of weight decay, is important for training and optimization of neural network architectures. In this work the authors provide a tool based on asymptotic sampling theory, for iterative estimation of weight decay parameters. The basic idea is to do a gradient desce...
Regular variation on measure chains
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel; Vitovec, J.
2010-01-01
Roč. 72, č. 1 (2010), s. 439-448 ISSN 0362-546X R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : regularly varying function * regularly varying sequence * measure chain * time scale * embedding theorem * representation theorem * second order dynamic equation * asymptotic properties Subject RIV: BA - General Mathematics Impact factor: 1.279, year: 2010 http://www.sciencedirect.com/science/article/pii/S0362546X09008475
On geodesics in low regularity
Sämann, Clemens; Steinbauer, Roland
2018-02-01
We consider geodesics in both Riemannian and Lorentzian manifolds with metrics of low regularity. We discuss existence of extremal curves for continuous metrics and present several old and new examples that highlight their subtle interrelation with solutions of the geodesic equations. Then we turn to the initial value problem for geodesics for locally Lipschitz continuous metrics and generalize recent results on existence, regularity and uniqueness of solutions in the sense of Filippov.
UNFOLDED REGULAR AND SEMI-REGULAR POLYHEDRA
Directory of Open Access Journals (Sweden)
IONIŢĂ Elena
2015-06-01
Full Text Available This paper proposes a presentation unfolding regular and semi-regular polyhedra. Regular polyhedra are convex polyhedra whose faces are regular and equal polygons, with the same number of sides, and whose polyhedral angles are also regular and equal. Semi-regular polyhedra are convex polyhedra with regular polygon faces, several types and equal solid angles of the same type. A net of a polyhedron is a collection of edges in the plane which are the unfolded edges of the solid. Modeling and unfolding Platonic and Arhimediene polyhedra will be using 3dsMAX program. This paper is intended as an example of descriptive geometry applications.
Linear contextual modal type theory
DEFF Research Database (Denmark)
Schack-Nielsen, Anders; Schürmann, Carsten
Abstract. When one implements a logical framework based on linear type theory, for example the Celf system [?], one is immediately con- fronted with questions about their equational theory and how to deal with logic variables. In this paper, we propose linear contextual modal type theory that gives...... a mathematical account of the nature of logic variables. Our type theory is conservative over intuitionistic contextual modal type theory proposed by Nanevski, Pfenning, and Pientka. Our main contributions include a mechanically checked proof of soundness and a working implementation....
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
This technical report concerns the basic theory and principles for experimental modal analysis. The sections within the report are: Output-only modal analysis software, general digital analysis, basics of structural dynamics and modal analysis and system identification. (au)
Interval matrices: Regularity generates singularity
Czech Academy of Sciences Publication Activity Database
Rohn, Jiří; Shary, S.P.
2018-01-01
Roč. 540, 1 March (2018), s. 149-159 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : interval matrix * regularity * singularity * P-matrix * absolute value equation * diagonally singilarizable matrix Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016
Coordinate-invariant regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-01-01
A general phase-space framework for coordinate-invariant regularization is given. The development is geometric, with all regularization contained in regularized DeWitt Superstructures on field deformations. Parallel development of invariant coordinate-space regularization is obtained by regularized functional integration of the momenta. As representative examples of the general formulation, the regularized general non-linear sigma model and regularized quantum gravity are discussed. copyright 1987 Academic Press, Inc
Meditations on Metaphysical Modality
Willis, Edmund Lindsay James
2011-01-01
Although metaphysical modality has been much discussed and exploited by philosophers, its precise nature is often left unanalysed and obscure. This dissertation marks an attempt to understand it better. After examining modality in general, the specific topic is introduced through consideration of the views of Kripke and Lewis. Comparisons are then made with logical, scientific and conceptual modalities. Finally, it is argued that metaphysical modality is that variety of modality which is alet...
Operational Modal Analysis Tutorial
DEFF Research Database (Denmark)
Brincker, Rune; Andersen, Palle
of modal parameters of practical interest - including the mode shape scaling factor - with a high degree of accuracy. It is also argued that the operational technology offers the user a number of advantages over traditional modal testing. The operational modal technology allows the user to perform a modal......In this paper the basic principles in operational modal testing and analysis are presented and discussed. A brief review of the techniques for operational modal testing and identification is presented, and it is argued, that there is now a wide range of techniques for effective identification...
Kuusisto, Antti
2013-01-01
In recent years, research into the mathematical foundations of modal logic has become increasingly popular. One of the main reasons for this is the fact that modal logic seems to adapt well to the requirements of a wide range of different fields of application. This paper is a summary of some of the author’s contributions to the understanding of modal definability theory.
Directory of Open Access Journals (Sweden)
Giluano Torrengo
2018-05-01
Full Text Available Space and time are two obvious candidates as dimensions of reality. Yet, are they the only two dimensions of reality? Famously, David Lewis maintained the doctrine of ―modal realism‖, the thesis that possible worlds exist and are entities as concrete as the actual world that we live in. In this paper, I will explore the idea that modality can be construed as a dimension along with space and time. However, although Lewis‘ modal realism is the main source of inspiration for this construal of modality, I will argue that something else is required for having a modal dimension.
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Nijholt, Antinus
1980-01-01
Culik II and Cogen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this paper we consider an analogous extension of the LL(k) grammars called the LL-regular grammars. The relation of this class of grammars to other classes of grammars will be shown. Any LL-regular
On a correspondence between regular and non-regular operator monotone functions
DEFF Research Database (Denmark)
Gibilisco, P.; Hansen, Frank; Isola, T.
2009-01-01
We prove the existence of a bijection between the regular and the non-regular operator monotone functions satisfying a certain functional equation. As an application we give a new proof of the operator monotonicity of certain functions related to the Wigner-Yanase-Dyson skew information....
Regular Expression Pocket Reference
Stubblebine, Tony
2007-01-01
This handy little book offers programmers a complete overview of the syntax and semantics of regular expressions that are at the heart of every text-processing application. Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular exp
DEFF Research Database (Denmark)
Modal logic is a subject with ancient roots in the western logical tradition. Up until the last few generations, it was pursued mainly as a branch of philosophy. But in recent years, the subject has taken new directions with connections to topics in computer science and mathematics. This volume...... is the proceedings of the conference of record in its fi eld, Advances in Modal Logic. Its contributions are state-of-the-art papers. The topics include decidability and complexity results for specifi c modal logics, proof theory of modal logic, logics for reasoning about time and space, provability logic, dynamic...... epistemic logic, and the logic of evidence....
Nonoperative modalities to treat symptomatic cervical spondylosis.
LENUS (Irish Health Repository)
Hirpara, Kieran Michael
2012-01-01
Cervical spondylosis is a common and disabling condition. It is generally felt that the initial management should be nonoperative, and these modalities include physiotherapy, analgesia and selective nerve root injections. Surgery should be reserved for moderate to severe myelopathy patients who have failed a period of conservative treatment and patients whose symptoms are not adequately controlled by nonoperative means. A review of the literature supporting various modalities of conservative management is presented, and it is concluded that although effective, nonoperative treatment is labour intensive, requiring regular review and careful selection of medications and physical therapy on a case by case basis.
Accreting fluids onto regular black holes via Hamiltonian approach
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)
2017-08-15
We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)
Covariant field equations in supergravity
Energy Technology Data Exchange (ETDEWEB)
Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)
2017-12-15
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Covariant field equations in supergravity
International Nuclear Information System (INIS)
Vanhecke, Bram; Proeyen, Antoine van
2017-01-01
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Cirstea, C.; Kurz, A.; Pattinson, D.; Schröder, L.; Venema, Y.
2011-01-01
Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large
Regularization methods in Banach spaces
Schuster, Thomas; Hofmann, Bernd; Kazimierski, Kamil S
2012-01-01
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Usually the mathematical model of an inverse problem consists of an operator equation of the first kind and often the associated forward operator acts between Hilbert spaces. However, for numerous problems the reasons for using a Hilbert space setting seem to be based rather on conventions than on an approprimate and realistic model choice, so often a Banach space setting would be closer to reality. Furthermore, sparsity constraints using general Lp-norms or the B
Regularization by External Variables
DEFF Research Database (Denmark)
Bossolini, Elena; Edwards, R.; Glendinning, P. A.
2016-01-01
Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind of regula......Regularization was a big topic at the 2016 CRM Intensive Research Program on Advances in Nonsmooth Dynamics. There are many open questions concerning well known kinds of regularization (e.g., by smoothing or hysteresis). Here, we propose a framework for an alternative and important kind...
Goyvaerts, Jan
2009-01-01
This cookbook provides more than 100 recipes to help you crunch data and manipulate text with regular expressions. Every programmer can find uses for regular expressions, but their power doesn't come worry-free. Even seasoned users often suffer from poor performance, false positives, false negatives, or perplexing bugs. Regular Expressions Cookbook offers step-by-step instructions for some of the most common tasks involving this tool, with recipes for C#, Java, JavaScript, Perl, PHP, Python, Ruby, and VB.NET. With this book, you will: Understand the basics of regular expressions through a
Regularities of Multifractal Measures
Indian Academy of Sciences (India)
First, we prove the decomposition theorem for the regularities of multifractal Hausdorff measure and packing measure in R R d . This decomposition theorem enables us to split a set into regular and irregular parts, so that we can analyze each separately, and recombine them without affecting density properties. Next, we ...
Stochastic analytic regularization
International Nuclear Information System (INIS)
Alfaro, J.
1984-07-01
Stochastic regularization is reexamined, pointing out a restriction on its use due to a new type of divergence which is not present in the unregulated theory. Furthermore, we introduce a new form of stochastic regularization which permits the use of a minimal subtraction scheme to define the renormalized Green functions. (author)
A short proof of increased parabolic regularity
Directory of Open Access Journals (Sweden)
Stephen Pankavich
2015-08-01
Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.
Accretion onto some well-known regular black holes
International Nuclear Information System (INIS)
Jawad, Abdul; Shahzad, M.U.
2016-01-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)
2016-03-15
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)
Accretion onto some well-known regular black holes
Jawad, Abdul; Shahzad, M. Umair
2016-03-01
In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.
Normal modal preferential consequence
CSIR Research Space (South Africa)
Britz, K
2012-12-01
Full Text Available beyond the basic (propositional) KLM postulates, thereby making use of the additional expressivity provided by modal logic. In particular, we show that the additional constraints we impose on the preferential semantics ensure that the rule...
Eigenvectors phase correction in inverse modal problem
Qiao, Guandong; Rahmatalla, Salam
2017-12-01
The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.
Czech Academy of Sciences Publication Activity Database
Kałamajska, A.; Krbec, Miroslav
2015-01-01
Roč. 28, č. 3 (2015), s. 677-713 ISSN 1139-1138 R&D Projects: GA ČR GAP201/10/1920 Institutional research plan: CEZ:AV0Z1019905 Keywords : evolution problems * heat equation * Orlitz-Slobodetskii spaces * Orlitz-Sobolev spaces Subject RIV: BA - General Mathematics Impact factor: 0.631, year: 2015 http://link.springer.com/article/10.1007%2Fs13163-014-0164-4
Analytic stochastic regularization and gange invariance
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1986-05-01
A proof that analytic stochastic regularization breaks gauge invariance is presented. This is done by an explicit one loop calculation of the vaccum polarization tensor in scalar electrodynamics, which turns out not to be transversal. The counterterm structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization, are also analysed. (Author) [pt
Sparse structure regularized ranking
Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin
2014-01-01
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse
Regular expression containment
DEFF Research Database (Denmark)
Henglein, Fritz; Nielsen, Lasse
2011-01-01
We present a new sound and complete axiomatization of regular expression containment. It consists of the conventional axiomatiza- tion of concatenation, alternation, empty set and (the singleton set containing) the empty string as an idempotent semiring, the fixed- point rule E* = 1 + E × E......* for Kleene-star, and a general coin- duction rule as the only additional rule. Our axiomatization gives rise to a natural computational inter- pretation of regular expressions as simple types that represent parse trees, and of containment proofs as coercions. This gives the axiom- atization a Curry......-Howard-style constructive interpretation: Con- tainment proofs do not only certify a language-theoretic contain- ment, but, under our computational interpretation, constructively transform a membership proof of a string in one regular expres- sion into a membership proof of the same string in another regular expression. We...
Supersymmetric dimensional regularization
International Nuclear Information System (INIS)
Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.
1980-01-01
There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed
Regularized maximum correntropy machine
Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin
2015-01-01
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Manifold regularized multitask feature learning for multimodality disease classification.
Jie, Biao; Zhang, Daoqiang; Cheng, Bo; Shen, Dinggang
2015-02-01
Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful data distribution information in each modality, which is essential for subsequent classification. Accordingly, in this paper we propose a manifold regularized multitask feature learning method to preserve both the intrinsic relatedness among multiple modalities of data and the data distribution information in each modality. Specifically, we denote the feature learning on each modality as a single task, and use group-sparsity regularizer to capture the intrinsic relatedness among multiple tasks (i.e., modalities) and jointly select the common features from multiple tasks. Furthermore, we introduce a new manifold-based Laplacian regularizer to preserve the data distribution information from each task. Finally, we use the multikernel support vector machine method to fuse multimodality data for eventual classification. Conversely, we also extend our method to the semisupervised setting, where only partial data are labeled. We evaluate our method using the baseline magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET), and cerebrospinal fluid (CSF) data of subjects from AD neuroimaging initiative database. The experimental results demonstrate that our proposed method can not only achieve improved classification performance, but also help to discover the disease-related brain regions useful for disease diagnosis. © 2014 Wiley Periodicals, Inc.
Toward predicate approaches to modality
Stern, Johannes
2016-01-01
In this volume, the author investigates and argues for, a particular answer to the question: What is the right way to logically analyze modalities from natural language within formal languages? The answer is: by formalizing modal expressions in terms of predicates. But, as in the case of truth, the most intuitive modal principles lead to paradox once the modal notions are conceived as predicates. The book discusses the philosophical interpretation of these modal paradoxes and argues that any satisfactory approach to modality will have to face the paradoxes independently of the grammatical category of the modal notion. By systematizing modal principles with respect to their joint consistency and inconsistency, Stern provides an overview of the options and limitations of the predicate approach to modality that may serve as a useful starting point for future work on predicate approaches to modality. Stern also develops a general strategy for constructing philosophically attractive theories of modal notions conce...
Geometric regularizations and dual conifold transitions
International Nuclear Information System (INIS)
Landsteiner, Karl; Lazaroiu, Calin I.
2003-01-01
We consider a geometric regularization for the class of conifold transitions relating D-brane systems on noncompact Calabi-Yau spaces to certain flux backgrounds. This regularization respects the SL(2,Z) invariance of the flux superpotential, and allows for computation of the relevant periods through the method of Picard-Fuchs equations. The regularized geometry is a noncompact Calabi-Yau which can be viewed as a monodromic fibration, with the nontrivial monodromy being induced by the regulator. It reduces to the original, non-monodromic background when the regulator is removed. Using this regularization, we discuss the simple case of the local conifold, and show how the relevant field-theoretic information can be extracted in this approach. (author)
International Nuclear Information System (INIS)
Cook, J.R.
1988-01-01
The term ''Modal Study'' refers to a research program conducted for the Nuclear Regulatory Commission (NRC) on the level of protection provided by NRC-certified packages during the shipment of spent nuclear fuel form U.S. power reactors. The objective of the study was to examine the response of the packages to actual highway and railway accident conditions. The Modal Study results show that NRC-certified spent fuel casks would perform their safety functions under severe, actual accident conditions. The study also explains how NRC's cask design conditions, which are expressed in engineering terms, relate to actual accident conditions, with which the public is more familiar. The Modal Study, along with other transportation studies, physical testing of casks, and the spent fuel shipment safety record confirm the view that casks provide a high level of public safety during spent fuel transport
Parametric modal transition systems
DEFF Research Database (Denmark)
Beneš, Nikola; Křetínský, Jan; Larsen, Kim Guldstrand
2011-01-01
Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects in the refin......Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects...
Continuum regularized Yang-Mills theory
International Nuclear Information System (INIS)
Sadun, L.A.
1987-01-01
Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions
Manifold Regularized Reinforcement Learning.
Li, Hongliang; Liu, Derong; Wang, Ding
2018-04-01
This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.
Pfau, R.; Steinbach, M.; Woll, B.; Pfau, R.; Steinbach, M.; Woll, B.
2012-01-01
Cross-linguistically, the grammatical categories tense, aspect, and modality - when they are overtly expressed - are generally realized by free morphemes (such as adverbials and auxiliaries) or by bound inflectional markers. The discussion in this chapter will make clear that this generalization
Berto, F.
2015-01-01
I propose a comprehensive account of negation as a modal operator, vindicating a moderate logical pluralism. Negation is taken as a quantifier on worlds, restricted by an accessibility relation encoding the basic concept of compatibility. This latter captures the core meaning of the operator. While
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Regularity conditions of the field on a toroidal magnetic surface
International Nuclear Information System (INIS)
Bouligand, M.
1985-06-01
We show that a field B vector which is derived from an analytic canonical potential on an ordinary toroidal surface is regular on this surface when the potential satisfies an elliptic equation (owing to the conservative field) subject to certain conditions of regularity of its coefficients [fr
Areces, Carlos; Hoffmann, Guillaume; Denis, Alexandre
We present a modal language that includes explicit operators to count the number of elements that a model might include in the extension of a formula, and we discuss how this logic has been previously investigated under different guises. We show that the language is related to graded modalities and to hybrid logics. We illustrate a possible application of the language to the treatment of plural objects and queries in natural language. We investigate the expressive power of this logic via bisimulations, discuss the complexity of its satisfiability problem, define a new reasoning task that retrieves the cardinality bound of the extension of a given input formula, and provide an algorithm to solve it.
Reduction operators of Burgers equation.
Pocheketa, Oleksandr A; Popovych, Roman O
2013-02-01
The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special "no-go" case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf-Cole transformation to a parameterized family of Lie reductions of the linear heat equation.
Constructions, pragmatics and modality
Directory of Open Access Journals (Sweden)
Antonio Fortin
2013-05-01
Full Text Available This paper rejects the commonplace view that the semantics of certain modal deverbal adjectives (MDAs, which have traditionally been assumed to be non-compositional, require complex lexical or syntactic encoding (cf. e.g. Riehemann 1994 and 1998, Booij 2007 and 2010a. Instead, it shows that productive MDA formation is semantically compositional, and that the prima facie idiosyncratic meanings are, in fact, conversational implicatures.
Diverse Regular Employees and Non-regular Employment (Japanese)
MORISHIMA Motohiro
2011-01-01
Currently there are high expectations for the introduction of policies related to diverse regular employees. These policies are a response to the problem of disparities between regular and non-regular employees (part-time, temporary, contract and other non-regular employees) and will make it more likely that workers can balance work and their private lives while companies benefit from the advantages of regular employment. In this paper, I look at two issues that underlie this discussion. The ...
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
'Regular' and 'emergency' repair
International Nuclear Information System (INIS)
Luchnik, N.V.
1975-01-01
Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)
Regularization of divergent integrals
Felder, Giovanni; Kazhdan, David
2016-01-01
We study the Hadamard finite part of divergent integrals of differential forms with singularities on submanifolds. We give formulae for the dependence of the finite part on the choice of regularization and express them in terms of a suitable local residue map. The cases where the submanifold is a complex hypersurface in a complex manifold and where it is a boundary component of a manifold with boundary, arising in string perturbation theory, are treated in more detail.
Regularizing portfolio optimization
International Nuclear Information System (INIS)
Still, Susanne; Kondor, Imre
2010-01-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Regularizing portfolio optimization
Still, Susanne; Kondor, Imre
2010-07-01
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.
Fractional Regularization Term for Variational Image Registration
Directory of Open Access Journals (Sweden)
Rafael Verdú-Monedero
2009-01-01
Full Text Available Image registration is a widely used task of image analysis with applications in many fields. Its classical formulation and current improvements are given in the spatial domain. In this paper a regularization term based on fractional order derivatives is formulated. This term is defined and implemented in the frequency domain by translating the energy functional into the frequency domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization term leads to a simple formulation and design, being applicable to higher dimensions by using the corresponding multidimensional Fourier transform. The proposed regularization term allows for a real gradual transition from a diffusion registration to a curvature registration which is best suited to some applications and it is not possible in the spatial domain. Results with 3D actual images show the validity of this approach.
Regular Single Valued Neutrosophic Hypergraphs
Directory of Open Access Journals (Sweden)
Muhammad Aslam Malik
2016-12-01
Full Text Available In this paper, we define the regular and totally regular single valued neutrosophic hypergraphs, and discuss the order and size along with properties of regular and totally regular single valued neutrosophic hypergraphs. We also extend work on completeness of single valued neutrosophic hypergraphs.
The geometry of continuum regularization
International Nuclear Information System (INIS)
Halpern, M.B.
1987-03-01
This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations
Preferential reasoning for modal logics
CSIR Research Space (South Africa)
Britz, K
2011-11-01
Full Text Available Modal logic is the foundation for a versatile and well-established class of knowledge representation formalisms in artificial intelligence. Enriching modal logics with non-monotonic reasoning capabilities such as preferential reasoning as developed...
Analytic stochastic regularization and gauge theories
International Nuclear Information System (INIS)
Abdalla, E.; Gomes, M.; Lima-Santos, A.
1987-04-01
We prove that analytic stochatic regularization braks gauge invariance. This is done by an explicit one loop calculation of the two three and four point vertex functions of the gluon field in scalar chromodynamics, which turns out not to be geuge invariant. We analyse the counter term structure, Langevin equations and the construction of composite operators in the general framework of stochastic quantization. (author) [pt
Enriched reproducing kernel particle method for fractional advection-diffusion equation
Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam
2018-06-01
The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.
Annotation of Regular Polysemy
DEFF Research Database (Denmark)
Martinez Alonso, Hector
Regular polysemy has received a lot of attention from the theory of lexical semantics and from computational linguistics. However, there is no consensus on how to represent the sense of underspecified examples at the token level, namely when annotating or disambiguating senses of metonymic words...... and metonymic. We have conducted an analysis in English, Danish and Spanish. Later on, we have tried to replicate the human judgments by means of unsupervised and semi-supervised sense prediction. The automatic sense-prediction systems have been unable to find empiric evidence for the underspecified sense, even...
Regularity of Minimal Surfaces
Dierkes, Ulrich; Tromba, Anthony J; Kuster, Albrecht
2010-01-01
"Regularity of Minimal Surfaces" begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is t
Regularities of radiation heredity
International Nuclear Information System (INIS)
Skakov, M.K.; Melikhov, V.D.
2001-01-01
One analyzed regularities of radiation heredity in metals and alloys. One made conclusion about thermodynamically irreversible changes in structure of materials under irradiation. One offers possible ways of heredity transmittance of radiation effects at high-temperature transformations in the materials. Phenomenon of radiation heredity may be turned to practical use to control structure of liquid metal and, respectively, structure of ingot via preliminary radiation treatment of charge. Concentration microheterogeneities in material defect structure induced by preliminary irradiation represent the genetic factor of radiation heredity [ru
Differential equations and finite groups
Put, Marius van der; Ulmer, Felix
2000-01-01
The classical solution of the Riemann-Hilbert problem attaches to a given representation of the fundamental group a regular singular linear differential equation. We present a method to compute this differential equation in the case of a representation with finite image. The approach uses Galois
Advances of operational modal identification
International Nuclear Information System (INIS)
Zhang, L.
2001-01-01
Operational modal analysis has shown many advantages compared to the traditional one. In this paper, the development of ambient modal identification in time domain is summarized. The mathematical models for modal identification have been presented as unified framework for time domain (TD) System realization algorithms, such as polyrefence (PRCE), extended Ibrahim time domain (EITD) and eigensystem realization algorithm (ERA), etc., and recently developed Stochastic subspace technique (SST). The latest technique named as frequency domain decomposition (FDD) is introduced for operational modal identification, which has many advantages as a frequency domain (FD) technique. Applications of the operational modal analysis in civil and mechanical engineering have shown the success and accuracy of the advanced operational modal identification algorithms- FDD and SST techniques. The major issues of TD and FD operational modal identification are also discussed. (author)
On modal cross-coupling in the asymptotic modal limit
Culver, Dean; Dowell, Earl
2018-03-01
The conditions under which significant modal cross-coupling occurs in dynamical systems responding to high-frequency, broadband forcing that excites many modes is studied. The modal overlap factor plays a key role in the analysis of these systems as the modal density (the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap factor is effectively the ratio of the width of a resonant peak (the damping ratio times the resonant frequency) to the average frequency interval between resonant peaks (or rather, the inverse of the modal density). It is shown that this parameter largely determines whether substantial modal cross-coupling occurs in a given system's response. Here, two prototypical systems are considered. The first is a simple rectangular plate whose significant modal cross-coupling is the exception rather than the norm. The second is a pair of rectangular plates attached at a point where significant modal cross-coupling is more likely to occur. We show that, for certain cases of modal density and damping, non-negligible cross coupling occurs in both systems. Under similar circumstances, the constraint force between the two plates in the latter system becomes broadband. The implications of this for using Asymptotic Modal Analysis (AMA) in multi-component systems are discussed.
Viscous Regularization of the Euler Equations and Entropy Principles
Guermond, Jean-Luc; Popov, Bojan
2014-01-01
), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.
Effective field theory dimensional regularization
International Nuclear Information System (INIS)
Lehmann, Dirk; Prezeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed
Effective field theory dimensional regularization
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
2010-12-07
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. ACTION: Regular meeting. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held...
Sparsity regularization for parameter identification problems
International Nuclear Information System (INIS)
Jin, Bangti; Maass, Peter
2012-01-01
The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓ p -penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓ p sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some
An inverse problem in a parabolic equation
Directory of Open Access Journals (Sweden)
Zhilin Li
1998-11-01
Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.
Selection of regularization parameter for l1-regularized damage detection
Hou, Rongrong; Xia, Yong; Bao, Yuequan; Zhou, Xiaoqing
2018-06-01
The l1 regularization technique has been developed for structural health monitoring and damage detection through employing the sparsity condition of structural damage. The regularization parameter, which controls the trade-off between data fidelity and solution size of the regularization problem, exerts a crucial effect on the solution. However, the l1 regularization problem has no closed-form solution, and the regularization parameter is usually selected by experience. This study proposes two strategies of selecting the regularization parameter for the l1-regularized damage detection problem. The first method utilizes the residual and solution norms of the optimization problem and ensures that they are both small. The other method is based on the discrepancy principle, which requires that the variance of the discrepancy between the calculated and measured responses is close to the variance of the measurement noise. The two methods are applied to a cantilever beam and a three-story frame. A range of the regularization parameter, rather than one single value, can be determined. When the regularization parameter in this range is selected, the damage can be accurately identified even for multiple damage scenarios. This range also indicates the sensitivity degree of the damage identification problem to the regularization parameter.
Ensemble manifold regularization.
Geng, Bo; Tao, Dacheng; Xu, Chao; Yang, Linjun; Hua, Xian-Sheng
2012-06-01
We propose an automatic approximation of the intrinsic manifold for general semi-supervised learning (SSL) problems. Unfortunately, it is not trivial to define an optimization function to obtain optimal hyperparameters. Usually, cross validation is applied, but it does not necessarily scale up. Other problems derive from the suboptimality incurred by discrete grid search and the overfitting. Therefore, we develop an ensemble manifold regularization (EMR) framework to approximate the intrinsic manifold by combining several initial guesses. Algorithmically, we designed EMR carefully so it 1) learns both the composite manifold and the semi-supervised learner jointly, 2) is fully automatic for learning the intrinsic manifold hyperparameters implicitly, 3) is conditionally optimal for intrinsic manifold approximation under a mild and reasonable assumption, and 4) is scalable for a large number of candidate manifold hyperparameters, from both time and space perspectives. Furthermore, we prove the convergence property of EMR to the deterministic matrix at rate root-n. Extensive experiments over both synthetic and real data sets demonstrate the effectiveness of the proposed framework.
Metaphysical Modality, Modality of Predicate and the Theory of
Directory of Open Access Journals (Sweden)
l nabavi
2010-05-01
This paper discusses the historical overview of the metaphysical modality firstly and then shows that the theory of "Decisive Necessity” is true and justified in a model of modal logic with equivalent accessibility relation and homogeneous possible world view (fixed domain.
Least square regularized regression in sum space.
Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu
2013-04-01
This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.
A modal method for finite amplitude, nonlinear sloshing
Indian Academy of Sciences (India)
A modal method is used to calculate the two-dimensional sloshing motion of an inviscid liquid in a rectangular container. The full nonlinear problem is reduced to the solution of a system of nonlinear ordinary differential equations for the time varying coefﬁcients in the expansions of the interface and the potential. The effects ...
A modal method for finite amplitude, nonlinear sloshing
Indian Academy of Sciences (India)
Abstract. A modal method is used to calculate the two-dimensional sloshing motion of an inviscid liquid in a rectangular container. The full nonlinear problem is reduced to the solution of a system of nonlinear ordinary differential equations for the time varying coefficients in the expansions of the interface and the potential.
On Modal Refinement and Consistency
DEFF Research Database (Denmark)
Nyman, Ulrik; Larsen, Kim Guldstrand; Wasowski, Andrzej
2007-01-01
Almost 20 years after the original conception, we revisit several fundamental question about modal transition systems. First, we demonstrate the incompleteness of the standard modal refinement using a counterexample due to Hüttel. Deciding any refinement, complete with respect to the standard...
Krull dimension in modal logic
Bezhanishvili, G.; Bezhanishvili, N.; Lucero-Bryan, J.; van Mill, J.
2017-01-01
We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that
Modal Logics for Cryptographic Processes
DEFF Research Database (Denmark)
Frendrup, U.; Huttel, Hans; Jensen, N. J.
2002-01-01
We present three modal logics for the spi-calculus and show that they capture strong versions of the environment sensitive bisimulation introduced by Boreale et al. Our logics differ from conventional modal logics for process calculi in that they allow us to describe the knowledge of an attacker ...
Load Estimation from Modal Parameters
DEFF Research Database (Denmark)
Aenlle, Manuel López; Brincker, Rune; Fernández, Pelayo Fernández
2007-01-01
In Natural Input Modal Analysis the modal parameters are estimated just from the responses while the loading is not recorded. However, engineers are sometimes interested in knowing some features of the loading acting on a structure. In this paper, a procedure to determine the loading from a FRF m...
Regularization method for solving the inverse scattering problem
International Nuclear Information System (INIS)
Denisov, A.M.; Krylov, A.S.
1985-01-01
The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table
Correct Linearization of Einstein's Equations
Directory of Open Access Journals (Sweden)
Rabounski D.
2006-06-01
Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.
Adaptive Regularization of Neural Classifiers
DEFF Research Database (Denmark)
Andersen, Lars Nonboe; Larsen, Jan; Hansen, Lars Kai
1997-01-01
We present a regularization scheme which iteratively adapts the regularization parameters by minimizing the validation error. It is suggested to use the adaptive regularization scheme in conjunction with optimal brain damage pruning to optimize the architecture and to avoid overfitting. Furthermo......, we propose an improved neural classification architecture eliminating an inherent redundancy in the widely used SoftMax classification network. Numerical results demonstrate the viability of the method...
Likelihood ratio decisions in memory: three implied regularities.
Glanzer, Murray; Hilford, Andrew; Maloney, Laurence T
2009-06-01
We analyze four general signal detection models for recognition memory that differ in their distributional assumptions. Our analyses show that a basic assumption of signal detection theory, the likelihood ratio decision axis, implies three regularities in recognition memory: (1) the mirror effect, (2) the variance effect, and (3) the z-ROC length effect. For each model, we present the equations that produce the three regularities and show, in computed examples, how they do so. We then show that the regularities appear in data from a range of recognition studies. The analyses and data in our study support the following generalization: Individuals make efficient recognition decisions on the basis of likelihood ratios.
Consistent Partial Least Squares Path Modeling via Regularization.
Jung, Sunho; Park, JaeHong
2018-01-01
Partial least squares (PLS) path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc), designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.
Optimization of modal filters based on arrays of piezoelectric sensors
International Nuclear Information System (INIS)
Pagani, Carlos C Jr; Trindade, Marcelo A
2009-01-01
Modal filters may be obtained by a properly designed weighted sum of the output signals of an array of sensors distributed on the host structure. Although several research groups have been interested in techniques for designing and implementing modal filters based on a given array of sensors, the effect of the array topology on the effectiveness of the modal filter has received much less attention. In particular, it is known that some parameters, such as size, shape and location of a sensor, are very important in determining the observability of a vibration mode. Hence, this paper presents a methodology for the topological optimization of an array of sensors in order to maximize the effectiveness of a set of selected modal filters. This is done using a genetic algorithm optimization technique for the selection of 12 piezoceramic sensors from an array of 36 piezoceramic sensors regularly distributed on an aluminum plate, which maximize the filtering performance, over a given frequency range, of a set of modal filters, each one aiming to isolate one of the first vibration modes. The vectors of the weighting coefficients for each modal filter are evaluated using QR decomposition of the complex frequency response function matrix. Results show that the array topology is not very important for lower frequencies but it greatly affects the filter effectiveness for higher frequencies. Therefore, it is possible to improve the effectiveness and frequency range of a set of modal filters by optimizing the topology of an array of sensors. Indeed, using 12 properly located piezoceramic sensors bonded on an aluminum plate it is shown that the frequency range of a set of modal filters may be enlarged by 25–50%
2010-09-02
... FARM CREDIT SYSTEM INSURANCE CORPORATION Regular Meeting AGENCY: Farm Credit System Insurance Corporation Board. SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). DATE AND TIME: The meeting of the Board will be held at the offices of the Farm...
Online co-regularized algorithms
Ruijter, T. de; Tsivtsivadze, E.; Heskes, T.
2012-01-01
We propose an online co-regularized learning algorithm for classification and regression tasks. We demonstrate that by sequentially co-regularizing prediction functions on unlabeled data points, our algorithm provides improved performance in comparison to supervised methods on several UCI benchmarks
International Nuclear Information System (INIS)
Tjugum, Stein-Arild
2003-01-01
Different measurement principles and design issues for gamma-ray densitometry for pipe flow are investigated. The dual modality densitometry (DMD) principle for salinity measurement and flow regime identification by multibeam densitometry are tested and verified. The measurement principles are implemented in a compact instrument design with low energy source and compact detectors. The DMD principle is experimentally verified for 3 inch and 2 inch pipes. These measurements are done on homogenous brine/gas mixtures. Both salinity independent GVF measurements and salinity measurements are obtained. The standard deviation of the salinity measurements are about 2 percent. This measurement inaccuracy is mainly caused by inhomogeneity in the liquid/gas distribution, and measurements are thus sensitive to changes in the flow regime. Models for the generation of scattered radiation are developed, and these have been used in the data-analysis and for producing special sensitivity maps for the generation of scattered radiation. The models are a useful tool for further development of the DMD principle. The work on multibeam gamma-ray densitometry has shown that flow regimes can be identified with as few as two detectors. This is verified in the flow-loop tests. Unambiguous flow regime identification will often require that the multibeam measurements are combined with other flow measurements. With a higher number of detectors more detailed information is found, and from the 9-beam measurements with the University of Bergen (UoB) gamma-ray tomography different flow regimes could clearly be identified from time series plots of the data. A laboratory prototype compact gamma-ray densitometer, the MiniGamma, has been built up and tested. Both the DMD measurement principle and the multibeam arrangement for flow regime identification are implemented in the instrument, and are successfully tested. The detector-types tested are CdZnTe semiconductor detectors, a miniature scintillation
Directory of Open Access Journals (Sweden)
José Tomás Alvarado
2009-08-01
Full Text Available This work presents a causal conception of metaphysical modality in which a state of affairs is metaphysically possible if and only if it can be caused (in the past, the present or the future by current entities. The conception is contrasted with what is called the “combinatorial” conception of modality, in which everything can co-exist with anything else. This work explains how the notion of ‘causality’ should be construed in the causal theory, what difference exists between modalities thus defined from nomological modality, how accessibility relations between possible worlds should be interpreted, and what is the relation between the causal conception and the necessity of origin.
Breast ultrasound tomography with total-variation regularization
Energy Technology Data Exchange (ETDEWEB)
Huang, Lianjie [Los Alamos National Laboratory; Li, Cuiping [KARMANOS CANCER INSTIT.; Duric, Neb [KARMANOS CANCER INSTIT
2009-01-01
Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. A new ultrasound breast imaging device (CURE) with a ring array of transducers has been designed and built at Karmanos Cancer Institute, which acquires both reflection and transmission ultrasound signals. To extract the sound-speed information from the breast data acquired by CURE, we have developed an iterative sound-speed image reconstruction algorithm for breast ultrasound transmission tomography based on total-variation (TV) minimization. We investigate applicability of the TV tomography algorithm using in vivo ultrasound breast data from 61 patients, and compare the results with those obtained using the Tikhonov regularization method. We demonstrate that, compared to the Tikhonov regularization scheme, the TV regularization method significantly improves image quality, resulting in sound-speed tomography images with sharp (preserved) edges of abnormalities and few artifacts.
An imbedding theorem and its applications in degenerate elliptic equations
International Nuclear Information System (INIS)
Duong Minh Duc.
1988-06-01
We improve the Rellich-Kondrachov theorem and apply it to study strongly degenerate and singular elliptic equations. We obtain the maximum principle, Harnacks's inequality and global regularity for solutions of those equations. (author). 11 refs
Continuum-regularized quantum gravity
International Nuclear Information System (INIS)
Chan Huesum; Halpern, M.B.
1987-01-01
The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)
International Nuclear Information System (INIS)
Chau Ling-Lie; Ge Mo-Lin; Teh, Rosy.
1984-09-01
The Baecklund Transformations and the hidden symmetry algebra for Self-Dual Yang-Mills Equations, Landau-Lifshitz equations and the Extended Super Yang-Mills fields (N>2) are discussed on the base of the Regular Riemann-Hilbert Transform and the linearization equations. (author)
Fast regularizing sequential subspace optimization in Banach spaces
International Nuclear Information System (INIS)
Schöpfer, F; Schuster, T
2009-01-01
We are concerned with fast computations of regularized solutions of linear operator equations in Banach spaces in case only noisy data are available. To this end we modify recently developed sequential subspace optimization methods in such a way that the therein employed Bregman projections onto hyperplanes are replaced by Bregman projections onto stripes whose width is in the order of the noise level
Linear operator inequalities for strongly stable weakly regular linear systems
Curtain, RF
2001-01-01
We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov
Moiseiwitsch, B L
2005-01-01
Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco
Analytic semigroups and optimal regularity in parabolic problems
Lunardi, Alessandra
2012-01-01
The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p
New regular black hole solutions
International Nuclear Information System (INIS)
Lemos, Jose P. S.; Zanchin, Vilson T.
2011-01-01
In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.
Manifold Regularized Correlation Object Tracking
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2017-01-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped fr...
Approximate modal analysis using Fourier decomposition
International Nuclear Information System (INIS)
Kozar, Ivica; Jericevic, Zeljko; Pecak, Tatjana
2010-01-01
The paper presents a novel numerical approach for approximate solution of eigenvalue problem and investigates its suitability for modal analysis of structures with special attention on plate structures. The approach is based on Fourier transformation of the matrix equation into frequency domain and subsequent removal of potentially less significant frequencies. The procedure results in a much reduced problem that is used in eigenvalue calculation. After calculation eigenvectors are expanded and transformed back into time domain. The principles are presented in Jericevic [1]. Fourier transform can be formulated in a way that some parts of the matrix that should not be approximated are not transformed but are fully preserved. In this paper we present formulation that preserves central or edge parts of the matrix and compare it with the formulation that performs transform on the whole matrix. Numerical experiments on transformed structural dynamic matrices describe quality of the approximations obtained in modal analysis of structures. On the basis of the numerical experiments, from the three approaches to matrix reduction one is recommended.
Condition Number Regularized Covariance Estimation.
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2013-06-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the "large p small n " setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required.
Condition Number Regularized Covariance Estimation*
Won, Joong-Ho; Lim, Johan; Kim, Seung-Jean; Rajaratnam, Bala
2012-01-01
Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to do this, none of them address the ill-conditioning problem directly. In this paper, we propose a maximum likelihood approach, with the direct goal of obtaining a well-conditioned estimator. No sparsity assumption on either the covariance matrix or its inverse are are imposed, thus making our procedure more widely applicable. We demonstrate that the proposed regularization scheme is computationally efficient, yields a type of Steinian shrinkage estimator, and has a natural Bayesian interpretation. We investigate the theoretical properties of the regularized covariance estimator comprehensively, including its regularization path, and proceed to develop an approach that adaptively determines the level of regularization that is required. Finally, we demonstrate the performance of the regularized estimator in decision-theoretic comparisons and in the financial portfolio optimization setting. The proposed approach has desirable properties, and can serve as a competitive procedure, especially when the sample size is small and when a well-conditioned estimator is required. PMID:23730197
Human visual system automatically encodes sequential regularities of discrete events.
Kimura, Motohiro; Schröger, Erich; Czigler, István; Ohira, Hideki
2010-06-01
For our adaptive behavior in a dynamically changing environment, an essential task of the brain is to automatically encode sequential regularities inherent in the environment into a memory representation. Recent studies in neuroscience have suggested that sequential regularities embedded in discrete sensory events are automatically encoded into a memory representation at the level of the sensory system. This notion is largely supported by evidence from investigations using auditory mismatch negativity (auditory MMN), an event-related brain potential (ERP) correlate of an automatic memory-mismatch process in the auditory sensory system. However, it is still largely unclear whether or not this notion can be generalized to other sensory modalities. The purpose of the present study was to investigate the contribution of the visual sensory system to the automatic encoding of sequential regularities using visual mismatch negativity (visual MMN), an ERP correlate of an automatic memory-mismatch process in the visual sensory system. To this end, we conducted a sequential analysis of visual MMN in an oddball sequence consisting of infrequent deviant and frequent standard stimuli, and tested whether the underlying memory representation of visual MMN generation contains only a sensory memory trace of standard stimuli (trace-mismatch hypothesis) or whether it also contains sequential regularities extracted from the repetitive standard sequence (regularity-violation hypothesis). The results showed that visual MMN was elicited by first deviant (deviant stimuli following at least one standard stimulus), second deviant (deviant stimuli immediately following first deviant), and first standard (standard stimuli immediately following first deviant), but not by second standard (standard stimuli immediately following first standard). These results are consistent with the regularity-violation hypothesis, suggesting that the visual sensory system automatically encodes sequential
Elementary Particle Spectroscopy in Regular Solid Rewrite
International Nuclear Information System (INIS)
Trell, Erik
2008-01-01
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology and neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each
Modal and Wave Load Identification by ARMA Calibration
DEFF Research Database (Denmark)
Jensen, Jens Kristian Jehrbo; Kirkegaard, Poul Henning; Brincker, Rune
1992-01-01
In this note, modal parameter and wave load identification by calibration of ARMA models are considered for a simple offshore structure. The theory of identification by ARMA calibration is introduced as an identification technique in the time domain, which can be applied for white noise–excited s......In this note, modal parameter and wave load identification by calibration of ARMA models are considered for a simple offshore structure. The theory of identification by ARMA calibration is introduced as an identification technique in the time domain, which can be applied for white noise...... by an experimental example of a monopile model excited by random waves. The identification results show that the approach is able to give very reliable estimates of the modal parameters. Furthermore, a comparison of the identified wave load process and the calculated load process based on the Morison equation shows...
Lavrentiev regularization method for nonlinear ill-posed problems
International Nuclear Information System (INIS)
Kinh, Nguyen Van
2002-10-01
In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x 0 of non ill-posed problems F(x)=y o , where instead of y 0 noisy data y δ is an element of X with absolut(y δ -y 0 ) ≤ δ are given and F:X→X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x α δ are obtained by solving the singularly perturbed nonlinear operator equation F(x)+α(x-x*)=y δ with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter α has been chosen properly. (author)
Geometric continuum regularization of quantum field theory
International Nuclear Information System (INIS)
Halpern, M.B.
1989-01-01
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs
Modalities in homotopy type theory
DEFF Research Database (Denmark)
Rijke, Egbert; Shulman, Michael; Spitters, Bas
2017-01-01
Univalent homotopy type theory (HoTT) may be seen as a language for the category of ∞-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses......, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the (n-connected, n-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics...
Tricomi, FG
2013-01-01
Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff
Regularization destriping of remote sensing imagery
Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle
2017-07-01
We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.
The Regularity of Optimal Irrigation Patterns
Morel, Jean-Michel; Santambrogio, Filippo
2010-02-01
A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.
Generalized Bregman distances and convergence rates for non-convex regularization methods
International Nuclear Information System (INIS)
Grasmair, Markus
2010-01-01
We generalize the notion of Bregman distance using concepts from abstract convexity in order to derive convergence rates for Tikhonov regularization with non-convex regularization terms. In particular, we study the non-convex regularization of linear operator equations on Hilbert spaces, showing that the conditions required for the application of the convergence rates results are strongly related to the standard range conditions from the convex case. Moreover, we consider the setting of sparse regularization, where we show that a rate of order δ 1/p holds, if the regularization term has a slightly faster growth at zero than |t| p
Creation and annihilation of solitons in the string nonlinear equation
International Nuclear Information System (INIS)
Aguero G, M.A.; Espinosa G, A.A.; Martinez O, J.
1997-01-01
Starting from the cubic-quintic Schroedinger equation it is obtained the nonlinear string equation. This system supports regular and singular solitons. It is shown that two singular solitons could be generated after the interaction of two regular solitons and viceversa. (Author)
Remarks about singular solutions to the Dirac equation
International Nuclear Information System (INIS)
Uhlir, M.
1975-01-01
In the paper singular solutions of the Dirac equation are investigated. They are derived in the Lorentz-covariant way of functions proportional to static multipole fields of scalar and (or) electromagnetic fields and of regular solutions of the Dirac equations. The regularization procedure excluding divergences of total energy, momentum and angular momentum of the spinor field considered is proposed
Barbu, Viorel
2016-01-01
This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.
Metric regularity and subdifferential calculus
International Nuclear Information System (INIS)
Ioffe, A D
2000-01-01
The theory of metric regularity is an extension of two classical results: the Lyusternik tangent space theorem and the Graves surjection theorem. Developments in non-smooth analysis in the 1980s and 1990s paved the way for a number of far-reaching extensions of these results. It was also well understood that the phenomena behind the results are of metric origin, not connected with any linear structure. At the same time it became clear that some basic hypotheses of the subdifferential calculus are closely connected with the metric regularity of certain set-valued maps. The survey is devoted to the metric theory of metric regularity and its connection with subdifferential calculus in Banach spaces
Manifold Regularized Correlation Object Tracking.
Hu, Hongwei; Ma, Bo; Shen, Jianbing; Shao, Ling
2018-05-01
In this paper, we propose a manifold regularized correlation tracking method with augmented samples. To make better use of the unlabeled data and the manifold structure of the sample space, a manifold regularization-based correlation filter is introduced, which aims to assign similar labels to neighbor samples. Meanwhile, the regression model is learned by exploiting the block-circulant structure of matrices resulting from the augmented translated samples over multiple base samples cropped from both target and nontarget regions. Thus, the final classifier in our method is trained with positive, negative, and unlabeled base samples, which is a semisupervised learning framework. A block optimization strategy is further introduced to learn a manifold regularization-based correlation filter for efficient online tracking. Experiments on two public tracking data sets demonstrate the superior performance of our tracker compared with the state-of-the-art tracking approaches.
Hamkins, J.D.; Löwe, B.
2008-01-01
A set theoretical assertion psi is forceable or possible, written lozenge psi, if psi holds in some forcing extension, and necessary, written square psi, if psi holds in all forcing extensions. In this forcing interpretation of modal logic, we establish that if ZFC is consistent, then the
Dimensional regularization in configuration space
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1995-09-01
Dimensional regularization is introduced in configuration space by Fourier transforming in D-dimensions the perturbative momentum space Green functions. For this transformation, Bochner theorem is used, no extra parameters, such as those of Feynman or Bogoliubov-Shirkov are needed for convolutions. The regularized causal functions in x-space have ν-dependent moderated singularities at the origin. They can be multiplied together and Fourier transformed (Bochner) without divergence problems. The usual ultraviolet divergences appear as poles of the resultant functions of ν. Several example are discussed. (author). 9 refs
Regular algebra and finite machines
Conway, John Horton
2012-01-01
World-famous mathematician John H. Conway based this classic text on a 1966 course he taught at Cambridge University. Geared toward graduate students of mathematics, it will also prove a valuable guide to researchers and professional mathematicians.His topics cover Moore's theory of experiments, Kleene's theory of regular events and expressions, Kleene algebras, the differential calculus of events, factors and the factor matrix, and the theory of operators. Additional subjects include event classes and operator classes, some regulator algebras, context-free languages, communicative regular alg
Matrix regularization of 4-manifolds
Trzetrzelewski, M.
2012-01-01
We consider products of two 2-manifolds such as S^2 x S^2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)xSU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N^2 x N^2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S...
PREFERRED MODALITY INFLUENCES ON EXERCISE-INDUCED MOOD CHANGES
Directory of Open Access Journals (Sweden)
Andrew M. Lane
2005-06-01
Full Text Available The present study tested, both retrospectively and prospectively, exercise-induced mood changes among regular exercisers. Specifically, it examined the extent to which preferred exercise modality promoted greater mood benefits. A group of 25 exercise participants (M = 35.5 yr., SD = 10.5 yr. took part in the study. All participants had exercised at least three times a week (M = 3.5, SD = 2.3 during the previous year. Participants completed a 14-item Exercise Preference Questionnaire to provide retrospective evaluations of their most- and least-preferred type of exercise. For the prospective investigation, participants completed the Brunel Mood Scale (BRUMS 15 minutes before and immediately after their most- and least-preferred exercise sessions. One week separated completion of each exercise session. Retrospective assessment of exercise-induced mood changes showed strong support for enhanced mood following the preferred mode of exercise. Also, as hypothesized, prospective results showed that mood enhancement was greater following the preferred exercise modality, but significant mood enhancement also occurred following the least-preferred modality among experienced exercisers. In conclusions, findings support the principle that exercise can provide psychological benefits to its participants, in the form of positive affective outcomes, something that appears to be enhanced by preferred exercise modality. Given the important public health implications of exercise adherence, future research should seek to further investigate the mechanisms of exercise-induced mood enhancement
Regularization of Nonmonotone Variational Inequalities
International Nuclear Information System (INIS)
Konnov, Igor V.; Ali, M.S.S.; Mazurkevich, E.O.
2006-01-01
In this paper we extend the Tikhonov-Browder regularization scheme from monotone to rather a general class of nonmonotone multivalued variational inequalities. We show that their convergence conditions hold for some classes of perfectly and nonperfectly competitive economic equilibrium problems
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
2011-01-20
... Meeting SUMMARY: Notice is hereby given of the regular meeting of the Farm Credit System Insurance Corporation Board (Board). Date and Time: The meeting of the Board will be held at the offices of the Farm... meeting of the Board will be open to the [[Page 3630
Forcing absoluteness and regularity properties
Ikegami, D.
2010-01-01
For a large natural class of forcing notions, we prove general equivalence theorems between forcing absoluteness statements, regularity properties, and transcendence properties over L and the core model K. We use our results to answer open questions from set theory of the reals.
Globals of Completely Regular Monoids
Institute of Scientific and Technical Information of China (English)
Wu Qian-qian; Gan Ai-ping; Du Xian-kun
2015-01-01
An element of a semigroup S is called irreducible if it cannot be expressed as a product of two elements in S both distinct from itself. In this paper we show that the class C of all completely regular monoids with irreducible identity elements satisfies the strong isomorphism property and so it is globally determined.
Fluid queues and regular variation
Boxma, O.J.
1996-01-01
This paper considers a fluid queueing system, fed by N independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index ¿. We show that its fat tail gives rise to an even
Fluid queues and regular variation
O.J. Boxma (Onno)
1996-01-01
textabstractThis paper considers a fluid queueing system, fed by $N$ independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index $zeta$. We show that its fat tail
Empirical laws, regularity and necessity
Koningsveld, H.
1973-01-01
In this book I have tried to develop an analysis of the concept of an empirical law, an analysis that differs in many ways from the alternative analyse's found in contemporary literature dealing with the subject.
1 am referring especially to two well-known views, viz. the regularity and
Regularization in Matrix Relevance Learning
Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael
A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can
Advances in Modal Analysis Using a Robust and Multiscale Method
Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.
2010-12-01
This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.
Advances in Modal Analysis Using a Robust and Multiscale Method
Directory of Open Access Journals (Sweden)
Frisson Christian
2010-01-01
Full Text Available Abstract This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.
International Nuclear Information System (INIS)
Mori, N.; Kobayashi, K.
1996-01-01
A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)
Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S
2014-05-01
We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.
Regular and conformal regular cores for static and rotating solutions
Energy Technology Data Exchange (ETDEWEB)
Azreg-Aïnou, Mustapha
2014-03-07
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Regular and conformal regular cores for static and rotating solutions
International Nuclear Information System (INIS)
Azreg-Aïnou, Mustapha
2014-01-01
Using a new metric for generating rotating solutions, we derive in a general fashion the solution of an imperfect fluid and that of its conformal homolog. We discuss the conditions that the stress–energy tensors and invariant scalars be regular. On classical physical grounds, it is stressed that conformal fluids used as cores for static or rotating solutions are exempt from any malicious behavior in that they are finite and defined everywhere.
Regularization ambiguities in loop quantum gravity
International Nuclear Information System (INIS)
Perez, Alejandro
2006-01-01
One of the main achievements of loop quantum gravity is the consistent quantization of the analog of the Wheeler-DeWitt equation which is free of ultraviolet divergences. However, ambiguities associated to the intermediate regularization procedure lead to an apparently infinite set of possible theories. The absence of an UV problem--the existence of well-behaved regularization of the constraints--is intimately linked with the ambiguities arising in the quantum theory. Among these ambiguities is the one associated to the SU(2) unitary representation used in the diffeomorphism covariant 'point-splitting' regularization of the nonlinear functionals of the connection. This ambiguity is labeled by a half-integer m and, here, it is referred to as the m ambiguity. The aim of this paper is to investigate the important implications of this ambiguity. We first study 2+1 gravity (and more generally BF theory) quantized in the canonical formulation of loop quantum gravity. Only when the regularization of the quantum constraints is performed in terms of the fundamental representation of the gauge group does one obtain the usual topological quantum field theory as a result. In all other cases unphysical local degrees of freedom arise at the level of the regulated theory that conspire against the existence of the continuum limit. This shows that there is a clear-cut choice in the quantization of the constraints in 2+1 loop quantum gravity. We then analyze the effects of the ambiguity in 3+1 gravity exhibiting the existence of spurious solutions for higher representation quantizations of the Hamiltonian constraint. Although the analysis is not complete in 3+1 dimensions - due to the difficulties associated to the definition of the physical inner product - it provides evidence supporting the definitions quantum dynamics of loop quantum gravity in terms of the fundamental representation of the gauge group as the only consistent possibilities. If the gauge group is SO(3) we find
Bounded Perturbation Regularization for Linear Least Squares Estimation
Ballal, Tarig
2017-10-18
This paper addresses the problem of selecting the regularization parameter for linear least-squares estimation. We propose a new technique called bounded perturbation regularization (BPR). In the proposed BPR method, a perturbation with a bounded norm is allowed into the linear transformation matrix to improve the singular-value structure. Following this, the problem is formulated as a min-max optimization problem. Next, the min-max problem is converted to an equivalent minimization problem to estimate the unknown vector quantity. The solution of the minimization problem is shown to converge to that of the ℓ2 -regularized least squares problem, with the unknown regularizer related to the norm bound of the introduced perturbation through a nonlinear constraint. A procedure is proposed that combines the constraint equation with the mean squared error (MSE) criterion to develop an approximately optimal regularization parameter selection algorithm. Both direct and indirect applications of the proposed method are considered. Comparisons with different Tikhonov regularization parameter selection methods, as well as with other relevant methods, are carried out. Numerical results demonstrate that the proposed method provides significant improvement over state-of-the-art methods.
Improvement of transmission loss of a double panel by using active control with a virtual modal mass
Lhuillier , Vincent; Chesné , Simon; Gaudiller , Luc; Pezerat , Charles
2013-01-01
International audience; In this article, modal feedback control is proposed to reduce the sound transmission through finite double panels using lead zirconate titanate ceramic sensors and actuators bonded to the structure. Active control allows adding virtual modal damping and mass to the structure by the use of modal velocities and accelerations. In a first step, the equations describing the structure, the actuators, the acoustic excitation, and the acoustic radiation are detailed. Next, the...
Energy Technology Data Exchange (ETDEWEB)
Iwahara, M [Isuzu Advanced Engineering Center, Ltd., Tokyo (Japan); Sugiura, T; Takaiwa, H; Nagamatsu, A [Tokyo Institute of Technology, Tokyo (Japan)
1997-10-01
An approach is presented for the identification of spatial matrix with modal parameters in the frequency domain. Modal parameters are transformed to spatial matrix with constraints of modal vector orthogonality and characteristic equation. Adding the connecting conditions or unconnected conditions of measuring points, spatial matrix is determined by modal parameters whose number is smaller than that of dimension of spatial matrix. 9 refs., 4 figs., 2 tabs.
Quantum supports and modal logic
International Nuclear Information System (INIS)
Svetlichny, G.
1986-01-01
Recently Foulis, Piron, and Randall introduced a new interpretation of empirical and quantum logics which substitute for the notion of a probabilistic weight a combinatorial notion called a support. The informal use of the notion of ''possible outcomes of experiments'' suggests that this interpretation can be related to corresponding formal notions as treated by modal logic. The purpose of this paper is to prove that in fact supports are in one-to-one correspondence with the sets of possibly true elementary propositions in Kripke models of a set of modal formulas associated to the empirical or quantum logic. This hopefully provides a sufficiently detailed link between the two rather distinct logical systems to shed useful light on both
Modal abstractions of concurrent behavior
DEFF Research Database (Denmark)
Nielson, Flemming; Nanz, Sebastian; Nielson, Hanne Riis
2011-01-01
We present an effective algorithm for the automatic construction of finite modal transition systems as abstractions of potentially infinite concurrent processes. Modal transition systems are recognized as valuable abstractions for model checking because they allow for the validation as well...... as refutation of safety and liveness properties. However, the algorithmic construction of finite abstractions from potentially infinite concurrent processes is a missing link that prevents their more widespread usage for model checking of concurrent systems. Our algorithm is a worklist algorithm using concepts...... from abstract interpretation and operating upon mappings from sets to intervals in order to express simultaneous over- and underapprox-imations of the multisets of process actions available in a particular state. We obtain a finite abstraction that is 3-valued in both states and transitions...
Nonlinear modal analysis in NPP dynamics: a proposal
International Nuclear Information System (INIS)
Suarez Antola, R.
2005-07-01
We propose and briefly suggest how to apply the analytical tools of nonlinear modal analysis (NMA) to problems of nuclear reactor kinetics, NPP dynamics, and NPP instrumentation and control. The proposed method is closely related with recent approaches by modal analysis using the reactivity matrix with feedbacks to couple neutron kinetics with thermal hydraulics in the reactors core. A nonlinear system of ordinary differential equations for mode amplitudes is obtained, projecting the dynamic equations of a model of NPP onto the eigenfunctions of a suitable adjoint operator. A steady state solution of the equations is taken as a reference, and the behaviour of transient solutions in some neighbourhood of the steady state solution is studied by an extension of Liapunov's First Method that enables to cope directly with the non-linear terms in the dynamics. In NPP dynamics these differential equations for the mode amplitudes are of polynomial type of low degree A few dominant modes can usually be identified. These mode amplitudes evolve almost independently of the other modes, more slowly and tending to slave the other mode amplitudes. Using asymptotic methods, it is possible to calculate a closed form analytical approximation to the response to finite amplitude perturbations from the given steady spatial pattern (the origin of the space of mode amplitudes).When there is finite amplitude instability, the method allows us to calculate the threshold amplitude as a well defined function of system's parameters. This is a most significant accomplishment that the other methods cannot afford
Indian Academy of Sciences (India)
regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
Energy functions for regularization algorithms
Delingette, H.; Hebert, M.; Ikeuchi, K.
1991-01-01
Regularization techniques are widely used for inverse problem solving in computer vision such as surface reconstruction, edge detection, or optical flow estimation. Energy functions used for regularization algorithms measure how smooth a curve or surface is, and to render acceptable solutions these energies must verify certain properties such as invariance with Euclidean transformations or invariance with parameterization. The notion of smoothness energy is extended here to the notion of a differential stabilizer, and it is shown that to void the systematic underestimation of undercurvature for planar curve fitting, it is necessary that circles be the curves of maximum smoothness. A set of stabilizers is proposed that meet this condition as well as invariance with rotation and parameterization.
Physical model of dimensional regularization
Energy Technology Data Exchange (ETDEWEB)
Schonfeld, Jonathan F.
2016-12-15
We explicitly construct fractals of dimension 4-ε on which dimensional regularization approximates scalar-field-only quantum-field theory amplitudes. The construction does not require fractals to be Lorentz-invariant in any sense, and we argue that there probably is no Lorentz-invariant fractal of dimension greater than 2. We derive dimensional regularization's power-law screening first for fractals obtained by removing voids from 3-dimensional Euclidean space. The derivation applies techniques from elementary dielectric theory. Surprisingly, fractal geometry by itself does not guarantee the appropriate power-law behavior; boundary conditions at fractal voids also play an important role. We then extend the derivation to 4-dimensional Minkowski space. We comment on generalization to non-scalar fields, and speculate about implications for quantum gravity. (orig.)
Maximum mutual information regularized classification
Wang, Jim Jing-Yan
2014-09-07
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Maximum mutual information regularized classification
Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin
2014-01-01
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
Critical spaces for quasilinear parabolic evolution equations and applications
Prüss, Jan; Simonett, Gieri; Wilke, Mathias
2018-02-01
We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.
Regularized strings with extrinsic curvature
International Nuclear Information System (INIS)
Ambjoern, J.; Durhuus, B.
1987-07-01
We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)
Circuit complexity of regular languages
Czech Academy of Sciences Publication Activity Database
Koucký, Michal
2009-01-01
Roč. 45, č. 4 (2009), s. 865-879 ISSN 1432-4350 R&D Projects: GA ČR GP201/07/P276; GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10190503 Keywords : regular languages * circuit complexity * upper and lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.726, year: 2009
Modality-Constrained Statistical Learning of Tactile, Visual, and Auditory Sequences
Conway, Christopher M.; Christiansen, Morten H.
2005-01-01
The authors investigated the extent to which touch, vision, and audition mediate the processing of statistical regularities within sequential input. Few researchers have conducted rigorous comparisons across sensory modalities; in particular, the sense of touch has been virtually ignored. The current data reveal not only commonalities but also…
Does the modality principle for multimedia learning apply to science classrooms?
Harskamp, Egbert G.; Mayer, Richard E.; Suhre, Cor
2007-01-01
This study demonstrated that the modality principle applies to multimedia learning of regular science lessons in school settings. In the first field experiment, 27 Dutch secondary school students (age 16-17) received a self-paced, web-based multimedia lesson in biology. Students who received lessons
Bardeen regular black hole with an electric source
Rodrigues, Manuel E.; Silva, Marcos V. de S.
2018-06-01
If some energy conditions on the stress-energy tensor are violated, is possible construct regular black holes in General Relativity and in alternative theories of gravity. This type of solution has horizons but does not present singularities. The first regular black hole was presented by Bardeen and can be obtained from Einstein equations in the presence of an electromagnetic field. E. Ayon-Beato and A. Garcia reinterpreted the Bardeen metric as a magnetic solution of General Relativity coupled to a nonlinear electrodynamics. In this work, we show that the Bardeen model may also be interpreted as a solution of Einstein equations in the presence of an electric source, whose electric field does not behave as a Coulomb field. We analyzed the asymptotic forms of the Lagrangian for the electric case and also analyzed the energy conditions.
A modal characterization of Peirce algebras
M. de Rijke (Maarten)
1995-01-01
textabstractPeirce algebras combine sets, relations and various operations linking the two in a unifying setting.This note offers a modal perspective on Peirce algebras.It uses modal logic to characterize the full Peirce algebras.
Combined modalities: chemotherapy/radiotherapy. Meeting summary
International Nuclear Information System (INIS)
Phillips, T.L.
1979-01-01
The effects of combined modalities, the standardization of terminology, the mechanisms of chemotherapeutic interactions with radiation and responses of normal and tumor systems are summarized from information presented at the Conference on Combined Modalities
Tailoring distributed modal sensors for in-plane modal filtering
International Nuclear Information System (INIS)
Donoso, A; Bellido, J C
2009-01-01
In this note we deal with finding the shape of distributed piezoelectric modal sensors for isolating the in-plane mode shapes of plates. The problem is treated by an optimization approach, in which a binary function is used to model the design variable: the polarization profile of the piezoelectric layer. The numerical procedure proposed here allows us to find polarization profiles which take on two values only, i.e. either positive or negative polarization, that make it possible to isolate particular vibration modes in the frequency domain. (technical note)
Variational analysis of regular mappings theory and applications
Ioffe, Alexander D
2017-01-01
This monograph offers the first systematic account of (metric) regularity theory in variational analysis. It presents new developments alongside classical results and demonstrates the power of the theory through applications to various problems in analysis and optimization theory. The origins of metric regularity theory can be traced back to a series of fundamental ideas and results of nonlinear functional analysis and global analysis centered around problems of existence and stability of solutions of nonlinear equations. In variational analysis, regularity theory goes far beyond the classical setting and is also concerned with non-differentiable and multi-valued operators. The present volume explores all basic aspects of the theory, from the most general problems for mappings between metric spaces to those connected with fairly concrete and important classes of operators acting in Banach and finite dimensional spaces. Written by a leading expert in the field, the book covers new and powerful techniques, whic...
General inverse problems for regular variation
DEFF Research Database (Denmark)
Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan
2014-01-01
Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...
Bimodal extinction without cross-modal extinction.
Inhoff, A W; Rafal, R D; Posner, M J
1992-01-01
Three patients with unilateral neurological injury were clinically examined. All showed consistent unilateral extinction in the tactile and visual modalities on simultaneous intramodal stimulation. There was virtually no evidence for cross-modal extinction, however, so that contralateral stimulation of one modality would have extinguished perception of ipsilateral stimuli in the other modality. It is concluded that the attentional system controlling the encoding of tactile and visual stimuli ...
Sound Attenuation in Elliptic Mufflers Using a Regular Perturbation Method
Banerjee, Subhabrata; Jacobi, Anthony M.
2012-01-01
The study of sound attenuation in an elliptical chamber involves the solution of the Helmholtz equation in elliptic coordinate systems. The Eigen solutions for such problems involve the Mathieu and the modified Mathieu functions. The computation of such functions poses considerable challenge. An alternative method to solve such problems had been proposed in this paper. The elliptical cross-section of the muffler has been treated as a perturbed circle, enabling the use of a regular perturbatio...
Differential operators associated with Gegenbauer polynomials - 3. The regular case
International Nuclear Information System (INIS)
Onyango-Otieno, V.P.
1989-07-01
We study the regular case of the Gegenbauer differential equation - ((1-x 2 ) v+1/2 y 1 (x)) 1 +v 2 (1-x 2 ) v-1/2 y(x) = λ(1-x 2 ) v-1/2 y(x), (x is an element of (-1,1),-1/2 w 2 (-1,1) and H p,q 2 (-1,1). (author). 13 refs
Regularization and error estimates for nonhomogeneous backward heat problems
Directory of Open Access Journals (Sweden)
Duc Trong Dang
2006-01-01
Full Text Available In this article, we study the inverse time problem for the non-homogeneous heat equation which is a severely ill-posed problem. We regularize this problem using the quasi-reversibility method and then obtain error estimates on the approximate solutions. Solutions are calculated by the contraction principle and shown in numerical experiments. We obtain also rates of convergence to the exact solution.
Regular behaviors in SU(2) Yang-Mills classical mechanics
International Nuclear Information System (INIS)
Xu Xiaoming
1997-01-01
In order to study regular behaviors in high-energy nucleon-nucleon collisions, a representation of the vector potential A i a is defined with respect to the (a,i)-dependence in the SU(2) Yang-Mills classical mechanics. Equations of the classical infrared field as well as effective potentials are derived for the elastic or inelastic collision of two plane wave in a three-mode model and the decay of an excited spherically-symmetric field
On the theory of drainage area for regular and non-regular points
Bonetti, S.; Bragg, A. D.; Porporato, A.
2018-03-01
The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47, W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219, 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.
Modular sequent calculi for classical modal logics
Gilbert, David; Maffezioli, Paolo
This paper develops sequent calculi for several classical modal logics. Utilizing a polymodal translation of the standard modal language, we are able to establish a base system for the minimal classical modal logic E from which we generate extensions (to include M, C, and N) in a modular manner. Our
Completeness for flat modal fixpoint logics
Santocanale, L.; Venema, Y.
2010-01-01
This paper exhibits a general and uniform method to prove axiomatic completeness for certain modal fixpoint logics. Given a set Γ of modal formulas of the form γ(x,p1,…,pn), where x occurs only positively in γ, we obtain the flat modal fixpoint language L♯(Γ) by adding to the language of polymodal
Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents
Athanassoulis, Agissilaos; Katsaounis, Theodoros; Kyza, Irene
2016-01-01
Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.
Regularized semiclassical limits: Linear flows with infinite Lyapunov exponents
Athanassoulis, Agissilaos
2016-08-30
Semiclassical asymptotics for Schrödinger equations with non-smooth potentials give rise to ill-posed formal semiclassical limits. These problems have attracted a lot of attention in the last few years, as a proxy for the treatment of eigenvalue crossings, i.e. general systems. It has recently been shown that the semiclassical limit for conical singularities is in fact well-posed, as long as the Wigner measure (WM) stays away from singular saddle points. In this work we develop a family of refined semiclassical estimates, and use them to derive regularized transport equations for saddle points with infinite Lyapunov exponents, extending the aforementioned recent results. In the process we answer a related question posed by P.L. Lions and T. Paul in 1993. If we consider more singular potentials, our rigorous estimates break down. To investigate whether conical saddle points, such as -|x|, admit a regularized transport asymptotic approximation, we employ a numerical solver based on posteriori error control. Thus rigorous upper bounds for the asymptotic error in concrete problems are generated. In particular, specific phenomena which render invalid any regularized transport for -|x| are identified and quantified. In that sense our rigorous results are sharp. Finally, we use our findings to formulate a precise conjecture for the condition under which conical saddle points admit a regularized transport solution for the WM. © 2016 International Press.
Physical modalities in chronic pain management.
Rakel, Barbara; Barr, John O
2003-09-01
The following conclusions can be made based on review of the evidence: There is limited but positive evidence that select physical modalities are effective in managing chronic pain associated with specific conditions experienced by adults and older individuals. Overall, studies have provided the most support for the modality of therapeutic exercise. Different physical modalities have similar magnitudes of effects on chronic pain. Therefore, selection of the most appropriate physical modality may depend on the desired functional outcome for the patient, the underlying impairment, and the patient's preference or prior experience with the modality. Certain patient characteristics may decrease the effectiveness of physical modalities, as has been seen with TENS. These characteristics include depression, high trait anxiety, a powerful others locus of control, obesity, narcotic use, and neuroticism. The effect on pain by various modalities is generally strongest in the short-term period immediately after the intervention series, but effects can last as long as 1 year after treatment (e.g., with massage). Most research has tested the effect of physical modalities on chronic low back pain and knee OA. The effectiveness of physical modalities for other chronic pain conditions needs to be evaluated more completely. Older and younger adults often experience similar effects on their perception of pain from treatment with physical modalities. Therefore, use of these modalities for chronic pain in older adults is appropriate, but special precautions need to be taken. Practitioners applying physical modalities need formal training that includes the risks and precautions for these modalities. If practitioners lack formal training in the use of physical modalities, or if modality use is not within their scope of practice, it is important to consult with and refer patients to members of the team who have this specialized training. Use of a multidisciplinary approach to chronic pain
Thin-shell wormholes from the regular Hayward black hole
Energy Technology Data Exchange (ETDEWEB)
Halilsoy, M.; Ovgun, A.; Mazharimousavi, S.H. [Eastern Mediterranean University, Department of Physics, Mersin 10 (Turkey)
2014-03-15
We revisit the regular black hole found by Hayward in 4-dimensional static, spherically symmetric spacetime. To find a possible source for such a spacetime we resort to the nonlinear electrodynamics in general relativity. It is found that a magnetic field within this context gives rise to the regular Hayward black hole. By employing such a regular black hole we construct a thin-shell wormhole for the case of various equations of state on the shell. We abbreviate a general equation of state by p = ψ(σ) where p is the surface pressure which is a function of the mass density (σ). In particular, linear, logarithmic, Chaplygin, etc. forms of equations of state are considered. In each case we study the stability of the thin shell against linear perturbations.We plot the stability regions by tuning the parameters of the theory. It is observed that the role of the Hayward parameter is to make the TSW more stable. Perturbations of the throat with small velocity condition are also studied. The matter of our TSWs, however, remains exotic. (orig.)
Relationship between Static Stiffness and Modal Stiffness of Structures
Directory of Open Access Journals (Sweden)
Tianjian Ji Tianjian Ji
2010-02-01
Full Text Available This paper derives the relationship between the static stiffness and modal stiffness of a structure. The static stiffness and modal stiffness are two important concepts in both structural statics and dynamics. Although both stiffnesses indicate the capacity of the structure to resist deformation, they are obtained using different methods. The former is calculated by solving the equations of equilibrium and the latter can be obtained by solving an eigenvalue problem. A mathematical relationship between the two stiffnesses was derived based on the definitions of two stiffnesses. This relationship was applicable to a linear system and the derivation of relationships does not reveal any other limitations. Verification of the relationship was given by using several examples. The relationship between the two stiffnesses demonstrated that the modal stiffness of the fundamental mode was always larger than the static stiffness of a structure if the critical point and the maximum mode value are at the same node, i.e. for simply supported beam and seven storeys building are 1.5% and 15% respectively. The relationship could be applied into real structures, where the greater the number of modes being considered, the smaller the difference between the modal stiffness and the static stiffness of a structure.
Hamilton-Jacobi theorems for regular reducible Hamiltonian systems on a cotangent bundle
Wang, Hong
2017-09-01
In this paper, some of formulations of Hamilton-Jacobi equations for Hamiltonian system and regular reduced Hamiltonian systems are given. At first, an important lemma is proved, and it is a modification for the corresponding result of Abraham and Marsden (1978), such that we can prove two types of geometric Hamilton-Jacobi theorem for a Hamiltonian system on the cotangent bundle of a configuration manifold, by using the symplectic form and dynamical vector field. Then these results are generalized to the regular reducible Hamiltonian system with symmetry and momentum map, by using the reduced symplectic form and the reduced dynamical vector field. The Hamilton-Jacobi theorems are proved and two types of Hamilton-Jacobi equations, for the regular point reduced Hamiltonian system and the regular orbit reduced Hamiltonian system, are obtained. As an application of the theoretical results, the regular point reducible Hamiltonian system on a Lie group is considered, and two types of Lie-Poisson Hamilton-Jacobi equation for the regular point reduced system are given. In particular, the Type I and Type II of Lie-Poisson Hamilton-Jacobi equations for the regular point reduced rigid body and heavy top systems are shown, respectively.
Noise elimination algorithm for modal analysis
Energy Technology Data Exchange (ETDEWEB)
Bao, X. X., E-mail: baoxingxian@upc.edu.cn [Department of Naval Architecture and Ocean Engineering, China University of Petroleum (East China), Qingdao 266580 (China); Li, C. L. [Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Xiong, C. B. [The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China)
2015-07-27
Modal analysis is an ongoing interdisciplinary physical issue. Modal parameters estimation is applied to determine the dynamic characteristics of structures under vibration excitation. Modal analysis is more challenging for the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of structured low rank approximation combined with the complex exponential method to estimate the modal parameters. Physical experiments using a steel cantilever beam with ten accelerometers mounted, excited by an impulse load, demonstrate that this method can significantly eliminate noise from measured signals and accurately identify the modal frequencies and damping ratios. This study provides a fundamental mechanism of noise elimination using structured low rank approximation in physical fields.
Load Estimation from Natural input Modal Analysis
DEFF Research Database (Denmark)
Aenlle, Manuel López; Brincker, Rune; Canteli, Alfonso Fernández
2005-01-01
One application of Natural Input Modal Analysis consists in estimating the unknown load acting on structures such as wind loads, wave loads, traffic loads, etc. In this paper, a procedure to determine loading from a truncated modal model, as well as the results of an experimental testing programme...... estimation. In the experimental program a small structure subjected to vibration was used to estimate the loading from the measurements and the experimental modal space. The modal parameters were estimated by Natural Input Modal Analysis and the scaling factors of the mode shapes obtained by the mass change...
Modality and Task Switching Interactions using Bi-Modal and Bivalent Stimuli
Sandhu, Rajwant; Dyson, Benjamin J.
2013-01-01
Investigations of concurrent task and modality switching effects have to date been studied under conditions of uni-modal stimulus presentation. As such, it is difficult to directly compare resultant task and modality switching effects, as the stimuli afford both tasks on each trial, but only one modality. The current study investigated task and…
Regularized Statistical Analysis of Anatomy
DEFF Research Database (Denmark)
Sjöstrand, Karl
2007-01-01
This thesis presents the application and development of regularized methods for the statistical analysis of anatomical structures. Focus is on structure-function relationships in the human brain, such as the connection between early onset of Alzheimer’s disease and shape changes of the corpus...... and mind. Statistics represents a quintessential part of such investigations as they are preluded by a clinical hypothesis that must be verified based on observed data. The massive amounts of image data produced in each examination pose an important and interesting statistical challenge...... efficient algorithms which make the analysis of large data sets feasible, and gives examples of applications....
Academic Training Lecture - Regular Programme
PH Department
2011-01-01
Regular Lecture Programme 9 May 2011 ACT Lectures on Detectors - Inner Tracking Detectors by Pippa Wells (CERN) 10 May 2011 ACT Lectures on Detectors - Calorimeters (2/5) by Philippe Bloch (CERN) 11 May 2011 ACT Lectures on Detectors - Muon systems (3/5) by Kerstin Hoepfner (RWTH Aachen) 12 May 2011 ACT Lectures on Detectors - Particle Identification and Forward Detectors by Peter Krizan (University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia) 13 May 2011 ACT Lectures on Detectors - Trigger and Data Acquisition (5/5) by Dr. Brian Petersen (CERN) from 11:00 to 12:00 at CERN ( Bldg. 222-R-001 - Filtration Plant )
An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography
Energy Technology Data Exchange (ETDEWEB)
Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)
2011-11-15
Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used
Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation
International Nuclear Information System (INIS)
Bardsley, Johnathan M; Goldes, John
2009-01-01
In image processing applications, image intensity is often measured via the counting of incident photons emitted by the object of interest. In such cases, image data noise is accurately modeled by a Poisson distribution. This motivates the use of Poisson maximum likelihood estimation for image reconstruction. However, when the underlying model equation is ill-posed, regularization is needed. Regularized Poisson likelihood estimation has been studied extensively by the authors, though a problem of high importance remains: the choice of the regularization parameter. We will present three statistically motivated methods for choosing the regularization parameter, and numerical examples will be presented to illustrate their effectiveness
Modal Structures in flow past a cylinder
Murshed, Mohammad
2017-11-01
With the advent of data, there have been opportunities to apply formalism to detect patterns or simple relations. For instance, a phenomenon can be defined through a partial differential equation which may not be very useful right away, whereas a formula for the evolution of a primary variable may be interpreted quite easily. Having access to data is not enough to move on since doing advanced linear algebra can put strain on the way computations are being done. A canonical problem in the field of aerodynamics is the transient flow past a cylinder where the viscosity can be adjusted to set the Reynolds number (Re). We observe the effect of the critical Re on the certain modes of behavior in time scale. A 2D-velocity field works as an input to analyze the modal structure of the flow using the Proper Orthogonal Decomposition and Koopman Mode/Dynamic Mode Decomposition. This will enable prediction of the solution further in time (taking into account the dependence on Re) and help us evaluate and discuss the associated error in the mechanism.
Limitations of modal analysis of damped structures
International Nuclear Information System (INIS)
Krapf, K.G.; Woelfel, H.
1983-01-01
Quite recently discrete spring-damper elements are increasingly used for the low-tuned supports of nuclear power-plant buildings and equipment (reactor building, turbine-fundaments etc.) to reduce the vibration response due to the dynamic load cases earthquake and airplane crash. Because of this development, it is to be investigated whether the usual modal analysis method is applicable within the design process or should be changed respectively replaced in special cases. The paper contributes to this discussion by demonstrating and valuing the discrepancies in the different ways for the implementation of damping. Different methods for uncoupling (energy weighting, reduction to Rayleigh-damping) are compared with the solution of the coupled equations of motion. In particular vertical vibrations of a spring-damper-supported building on foundation (including ground springs) are examined using a two-degree-of-freedom-system. The results of coupled and (by force) uncoupled methods are interpreted concerning free vibration by comparison of the damping of natural vibrations, natural frequencies and natural mode shapes. The effect on the forced vibrations is shown by floor response spectra to an earthquake accelerogram. (orig./HP)
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2011-01-01
A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a
Consistent Partial Least Squares Path Modeling via Regularization
Directory of Open Access Journals (Sweden)
Sunho Jung
2018-02-01
Full Text Available Partial least squares (PLS path modeling is a component-based structural equation modeling that has been adopted in social and psychological research due to its data-analytic capability and flexibility. A recent methodological advance is consistent PLS (PLSc, designed to produce consistent estimates of path coefficients in structural models involving common factors. In practice, however, PLSc may frequently encounter multicollinearity in part because it takes a strategy of estimating path coefficients based on consistent correlations among independent latent variables. PLSc has yet no remedy for this multicollinearity problem, which can cause loss of statistical power and accuracy in parameter estimation. Thus, a ridge type of regularization is incorporated into PLSc, creating a new technique called regularized PLSc. A comprehensive simulation study is conducted to evaluate the performance of regularized PLSc as compared to its non-regularized counterpart in terms of power and accuracy. The results show that our regularized PLSc is recommended for use when serious multicollinearity is present.
Modal analysis of wave propagation in dispersive media
Abdelrahman, M. Ismail; Gralak, B.
2018-01-01
Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914), 10.1002/andp.19143491002] by the presence of branches in the integral expression of the wave function. In this article a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.
RES: Regularized Stochastic BFGS Algorithm
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Regularized Label Relaxation Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu
2018-04-01
Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.
Imaging of congenital heart disease in adults: choice of modalities.
Orwat, Stefan; Diller, Gerhard-Paul; Baumgartner, Helmut
2014-01-01
Major advances in noninvasive imaging of adult congenital heart disease have been accomplished. These tools play now a key role in comprehensive diagnostic work-up, decision for intervention, evaluation for the suitability of specific therapeutic options, monitoring of interventions and regular follow-up. Besides echocardiography, magnetic resonance (CMR) and computed tomography (CT) have gained particular importance. The choice of imaging modality has thus become a critical issue. This review summarizes strengths and limitations of the different imaging modalities and how they may be used in a complementary fashion. Echocardiography obviously remains the workhorse of imaging routinely used in all patients. However, in complex disease and after surgery echocardiography alone frequently remains insufficient. CMR is particularly useful in this setting and allows reproducible and accurate quantification of ventricular function and comprehensive assessment of cardiac anatomy, aorta, pulmonary arteries and venous return including complex flow measurements. CT is preferred when CMR is contraindicated, when superior spatial resolution is required or when "metallic" artefacts limit CMR imaging. In conclusion, the use of currently available imaging modalities in adult congenital heart disease needs to be complementary. Echocardiography remains the basis tool, CMR and CT should be added considering specific open questions and the ability to answer them, availability and economic issues.
On the Equational Definition of the Least Prefixed Point
DEFF Research Database (Denmark)
Santocanale, Luigi
2003-01-01
We propose a method to axiomatize by equations the least prefixed point of an order preserving function. We discuss its domain of application and show that the Boolean modal μ-calculus has a complete equational axiomatization. The method relies on the existence of a “closed structure” and its rel...
Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games
Kant, Gijs; van de Pol, Jan Cornelis; Wijs, A.J.; Bošnački, D.; Edelkamp, S.
Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal μ-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then
Differential Equations Compatible with KZ Equations
International Nuclear Information System (INIS)
Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.
2000-01-01
We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions
Regularization of the Coulomb scattering problem
International Nuclear Information System (INIS)
Baryshevskii, V.G.; Feranchuk, I.D.; Kats, P.B.
2004-01-01
The exact solution of the Schroedinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the 'optical' theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers
Wave dynamics of regular and chaotic rays
International Nuclear Information System (INIS)
McDonald, S.W.
1983-09-01
In order to investigate general relationships between waves and rays in chaotic systems, I study the eigenfunctions and spectrum of a simple model, the two-dimensional Helmholtz equation in a stadium boundary, for which the rays are ergodic. Statistical measurements are performed so that the apparent randomness of the stadium modes can be quantitatively contrasted with the familiar regularities observed for the modes in a circular boundary (with integrable rays). The local spatial autocorrelation of the eigenfunctions is constructed in order to indirectly test theoretical predictions for the nature of the Wigner distribution corresponding to chaotic waves. A portion of the large-eigenvalue spectrum is computed and reported in an appendix; the probability distribution of successive level spacings is analyzed and compared with theoretical predictions. The two principal conclusions are: 1) waves associated with chaotic rays may exhibit randomly situated localized regions of high intensity; 2) the Wigner function for these waves may depart significantly from being uniformly distributed over the surface of constant frequency in the ray phase space
SAR image regularization with fast approximate discrete minimization.
Denis, Loïc; Tupin, Florence; Darbon, Jérôme; Sigelle, Marc
2009-07-01
Synthetic aperture radar (SAR) images, like other coherent imaging modalities, suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. Numerous approaches have been proposed to filter speckle noise. Markov random field (MRF) modelization provides a convenient way to express both data fidelity constraints and desirable properties of the filtered image. In this context, total variation minimization has been extensively used to constrain the oscillations in the regularized image while preserving its edges. Speckle noise follows heavy-tailed distributions, and the MRF formulation leads to a minimization problem involving nonconvex log-likelihood terms. Such a minimization can be performed efficiently by computing minimum cuts on weighted graphs. Due to memory constraints, exact minimization, although theoretically possible, is not achievable on large images required by remote sensing applications. The computational burden of the state-of-the-art algorithm for approximate minimization (namely the alpha -expansion) is too heavy specially when considering joint regularization of several images. We show that a satisfying solution can be reached, in few iterations, by performing a graph-cut-based combinatorial exploration of large trial moves. This algorithm is applied to joint regularization of the amplitude and interferometric phase in urban area SAR images.
From inactive to regular jogger
DEFF Research Database (Denmark)
Lund-Cramer, Pernille; Brinkmann Løite, Vibeke; Bredahl, Thomas Viskum Gjelstrup
study was conducted using individual semi-structured interviews on how a successful long-term behavior change had been achieved. Ten informants were purposely selected from participants in the DANO-RUN research project (7 men, 3 women, average age 41.5). Interviews were performed on the basis of Theory...... of Planned Behavior (TPB) and The Transtheoretical Model (TTM). Coding and analysis of interviews were performed using NVivo 10 software. Results TPB: During the behavior change process, the intention to jogging shifted from a focus on weight loss and improved fitness to both physical health, psychological......Title From inactive to regular jogger - a qualitative study of achieved behavioral change among recreational joggers Authors Pernille Lund-Cramer & Vibeke Brinkmann Løite Purpose Despite extensive knowledge of barriers to physical activity, most interventions promoting physical activity have proven...
Tessellating the Sphere with Regular Polygons
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
On the equivalence of different regularization methods
International Nuclear Information System (INIS)
Brzezowski, S.
1985-01-01
The R-circunflex-operation preceded by the regularization procedure is discussed. Some arguments are given, according to which the results may depend on the method of regularization, introduced in order to avoid divergences in perturbation calculations. 10 refs. (author)
The uniqueness of the regularization procedure
International Nuclear Information System (INIS)
Brzezowski, S.
1981-01-01
On the grounds of the BPHZ procedure, the criteria of correct regularization in perturbation calculations of QFT are given, together with the prescription for dividing the regularized formulas into the finite and infinite parts. (author)
Application of Turchin's method of statistical regularization
Zelenyi, Mikhail; Poliakova, Mariia; Nozik, Alexander; Khudyakov, Alexey
2018-04-01
During analysis of experimental data, one usually needs to restore a signal after it has been convoluted with some kind of apparatus function. According to Hadamard's definition this problem is ill-posed and requires regularization to provide sensible results. In this article we describe an implementation of the Turchin's method of statistical regularization based on the Bayesian approach to the regularization strategy.
Regular extensions of some classes of grammars
Nijholt, Antinus
Culik and Cohen introduced the class of LR-regular grammars, an extension of the LR(k) grammars. In this report we consider the analogous extension of the LL(k) grammers, called the LL-regular grammars. The relations of this class of grammars to other classes of grammars are shown. Every LL-regular
Experienced Sensory Modalities in Dream Recall
岡田, 斉
2000-01-01
The purpose of the present study is to survey the frequency of visual, auditory, kinaesthetic, cutaneous, organic, gustatory, and olfactory experience in dream recall. A total of 1267 undergraduate students completed a dream recall frequency questionnaire, which contained a question about dream recall frequency and about recall frequency of seven sensory modalities. Results showed that seven sensory modalities were divided into two groups; normally perceived sensory modalities in dreaming, wh...
Global regularization method for planar restricted three-body problem
Directory of Open Access Journals (Sweden)
Sharaf M.A.
2015-01-01
Full Text Available In this paper, global regularization method for planar restricted three-body problem is purposed by using the transformation z = x+iy = ν cos n(u+iv, where i = √−1, 0 < ν ≤ 1 and n is a positive integer. The method is developed analytically and computationally. For the analytical developments, analytical solutions in power series of the pseudotime τ are obtained for positions and velocities (u, v, u', v' and (x, y, x˙, y˙ in both regularized and physical planes respectively, the physical time t is also obtained as power series in τ. Moreover, relations between the coefficients of the power series are obtained for two consequent values of n. Also, we developed analytical solutions in power series form for the inverse problem of finding τ in terms of t. As typical examples, three symbolic expressions for the coefficients of the power series were developed in terms of initial values. As to the computational developments, the global regularized equations of motion are developed together with their initial values in forms suitable for digital computations using any differential equations solver. On the other hand, for numerical evolutions of power series, an efficient method depending on the continued fraction theory is provided.
Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL
International Nuclear Information System (INIS)
Czyszanowski, T; Thienpont, H; Panajotov, K; Dems, M
2008-01-01
We investigate the modal characteristics of a phosphide photonic-crystal vertical-cavity surface-emitting diode laser (VCSEL) by using the three-dimensional, full vectorial plane wave admittance method. A single-defect, photonic crystal is defined as a regular, hexagonal net of holes with varying depths. The modal gain and confinement factors are compared for two VCSEL structures: with emission either through the DBR with the photonic crystal or through the DBR free of photonic crystal. Significant improvement in the beam quality is demonstrated for the second design
A Nonlinear Modal Aeroelastic Solver for FUN3D
Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.
2016-01-01
A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.
On a Linear Equation Arising in Isometric Embedding of Torus-like Surface
Institute of Scientific and Technical Information of China (English)
Chunhe LI
2009-01-01
The solvability of a linear equation and the regularity of the solution are discussed.The equation is arising in a geometric problem which is concerned with the realization of Alexandroff's positive annul in R3.
Class of regular bouncing cosmologies
Vasilić, Milovan
2017-06-01
In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.
Modal bifurcation in a high-Tc superconducting levitation system
International Nuclear Information System (INIS)
Taguchi, D; Fujiwara, S; Sugiura, T
2011-01-01
This paper deals with modal bifurcation of a multi-degree-of-freedom high-T c superconducting levitation system. As modeling of large-scale high-T c superconducting levitation applications, where plural superconducting bulks are often used, it can be helpful to consider a system constituting of multiple oscillators magnetically coupled with each other. This paper investigates nonlinear dynamics of two permanent magnets levitated above high-T c superconducting bulks and placed between two fixed permanent magnets without contact. First, the nonlinear equations of motion of the levitated magnets were derived. Then the method of averaging was applied to them. It can be found from the obtained solutions that this nonlinear two degree-of-freedom system can have two asymmetric modes, in addition to a symmetric mode and an antisymmetric mode both of which also exist in the linearized system. One of the backbone curves in the frequency response shows a modal bifurcation where the two stable asymmetric modes mentioned above appear with destabilization of the antisymmetric mode, thus leading to modal localization. These analytical predictions have been confirmed in our numerical analysis and experiments of free vibration and forced vibration. These results, never predicted by linear analysis, can be important for application of high-T c superconducting levitation systems.
Modalities of hemodialysis: Quality improvement
Directory of Open Access Journals (Sweden)
Ayman Karkar
2012-01-01
Full Text Available Hemodialysis (HD treatment had, over many years, improved the survival rate of patients with end-stage renal disease. However, standard or conventional HD prescription is far from being optimal in replacing the function of normal kidneys. Its unphysiologic clearance pattern and inability to remove all types and sizes of uremic toxins results in inter- and intra-dialysis complications and an unacceptably high rate of cardiovascular morbidity and mortality. Efficiency of HD can be improved by increasing blood and dialysate flow rates, dialyzer size and surface area and duration and frequency of dialysis sessions. Home HD, where short daily or long slow nocturnal HD sessions can conveniently be performed, provides an excellent option for quality of life improvement and reduction in morbidity and mortality. Recent innovations in the specifications of HD machines and improvement in dialysis membranes characteristics and water treatment technology paved the way for achieving quality HD. These advancements have resulted in efficient implementation of adsorption, diffusion and/or convection principles using adsorption HD, hemofiltration, hemodiafiltration (HDF and online HDF modalities in order to achieve optimum HD. Implementation of these innovations resulted in better quality care achievements in clinical practice and reduction in morbidity and mortality rates among HD patients.
Near-to far-field transformation in the aperiodic Fourier modal method
Rook, R.; Pisarenco, M.; Setija, I.D.
2013-01-01
This paper addresses the task of obtaining the far-field spectrum for a finite structure given the near-field calculated by the aperiodic Fourier modal method in contrast-field formulation (AFMM-CFF). The AFMM-CFF efficiently calculates the solution to Maxwell's equations for a finite structure by
A new approach to nonlinear constrained Tikhonov regularization
Ito, Kazufumi
2011-09-16
We present a novel approach to nonlinear constrained Tikhonov regularization from the viewpoint of optimization theory. A second-order sufficient optimality condition is suggested as a nonlinearity condition to handle the nonlinearity of the forward operator. The approach is exploited to derive convergence rate results for a priori as well as a posteriori choice rules, e.g., discrepancy principle and balancing principle, for selecting the regularization parameter. The idea is further illustrated on a general class of parameter identification problems, for which (new) source and nonlinearity conditions are derived and the structural property of the nonlinearity term is revealed. A number of examples including identifying distributed parameters in elliptic differential equations are presented. © 2011 IOP Publishing Ltd.
Regularization of Hamilton-Lagrangian guiding center theories
International Nuclear Information System (INIS)
Correa-Restrepo, D.; Wimmel, H.K.
1985-04-01
The Hamilton-Lagrangian guiding-center (G.C.) theories of Littlejohn, Wimmel, and Pfirsch show a singularity for B-fields with non-vanishing parallel curl at a critical value of vsub(parallel), which complicates applications. The singularity is related to a sudden breakdown, at a critical vsub(parallel), of gyration in the exact particle mechanics. While the latter is a real effect, the G.C. singularity can be removed. To this end a regularization method is defined that preserves the Hamilton-Lagrangian structure and the conservation theorems. For demonstration this method is applied to the standard G.C. theory (without polarization drift). Liouville's theorem and G.C. kinetic equations are also derived in regularized form. The method could equally well be applied to the case with polarization drift and to relativistic G.C. theory. (orig.)
A regularization method for extrapolation of solar potential magnetic fields
Gary, G. A.; Musielak, Z. E.
1992-01-01
The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.
Point-splitting regularization of composite operators and anomalies
International Nuclear Information System (INIS)
Novotny, J.; Schnabl, M.
2000-01-01
The point-splitting regularization technique for composite operators is discussed in connection with anomaly calculation. We present a pedagogical and self-contained review of the topic with an emphasis on the technical details. We also develop simple algebraic tools to handle the path ordered exponential insertions used within the covariant and non-covariant version of the point-splitting method. The method is then applied to the calculation of the chiral, vector, trace, translation and Lorentz anomalies within diverse versions of the point-splitting regularization and a connection between the results is described. As an alternative to the standard approach we use the idea of deformed point-split transformation and corresponding Ward-Takahashi identities rather than an application of the equation of motion, which seems to reduce the complexity of the calculations. (orig.)
Cross-modal decoupling in temporal attention.
Mühlberg, Stefanie; Oriolo, Giovanni; Soto-Faraco, Salvador
2014-06-01
Prior studies have repeatedly reported behavioural benefits to events occurring at attended, compared to unattended, points in time. It has been suggested that, as for spatial orienting, temporal orienting of attention spreads across sensory modalities in a synergistic fashion. However, the consequences of cross-modal temporal orienting of attention remain poorly understood. One challenge is that the passage of time leads to an increase in event predictability throughout a trial, thus making it difficult to interpret possible effects (or lack thereof). Here we used a design that avoids complete temporal predictability to investigate whether attending to a sensory modality (vision or touch) at a point in time confers beneficial access to events in the other, non-attended, sensory modality (touch or vision, respectively). In contrast to previous studies and to what happens with spatial attention, we found that events in one (unattended) modality do not automatically benefit from happening at the time point when another modality is expected. Instead, it seems that attention can be deployed in time with relative independence for different sensory modalities. Based on these findings, we argue that temporal orienting of attention can be cross-modally decoupled in order to flexibly react according to the environmental demands, and that the efficiency of this selective decoupling unfolds in time. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
History of Civil Engineering Modal Analysis
DEFF Research Database (Denmark)
Brincker, Rune
2008-01-01
techniques are available for civil engineering modal analysis. The testing of civil structures defers from the traditional modal testing in the sense, that very often it is difficult, or sometimes impossible, to artificially excite a large civil engineering structure. Also, many times, even though...
Three-valued logics in modal logic
Kooi, Barteld; Tamminga, Allard
2013-01-01
Every truth-functional three-valued propositional logic can be conservatively translated into the modal logic S5. We prove this claim constructively in two steps. First, we define a Translation Manual that converts any propositional formula of any three-valued logic into a modal formula. Second, we
Conformable Fractional Bessel Equation and Bessel Functions
Gökdoğan, Ahmet; Ünal, Emrah; Çelik, Ercan
2015-01-01
In this work, we study the fractional power series solutions around regular singular point x=0 of conformable fractional Bessel differential equation and fractional Bessel functions. Then, we compare fractional solutions with ordinary solutions. In addition, we present certain property of fractional Bessel functions.
Asymptotic behavior of the plasma equation
International Nuclear Information System (INIS)
Kwong, Y.C.
1984-01-01
This paper is concerned with the plasma equation on a bounded smooth domain the N-dimensional Euclidean Space, with non-negative initial data and a homogenous Dirichlet boundary condition. It is known that there exists a finite extinction time T such that the solution decays to zero at T. Berryman and Holland investigated the stability of the profile of the solution as t is approaching T. However, they obtained their results at the expense of some very strong regularity assumptions. By invoking both the nonlinear semi-group theory and a standard regularizing scheme for the equation, the same results are proved without those assumptions by measuring the rate of decay of the solution and estimates are obtained on the time derivative as t is approaching T. As motivated by the regularity assumptions, both the interior and boundary regularities of the solution are studied. Finally, the nonlinearity of the plasma equation is perturbed and the same aspects for the perturbed equation are studied
Partial differential equations and calculus of variations
Leis, Rolf
1988-01-01
This volume contains 18 invited papers by members and guests of the former Sonderforschungsbereich in Bonn (SFB 72) who, over the years, collaborated on the research group "Solution of PDE's and Calculus of Variations". The emphasis is on existence and regularity results, on special equations of mathematical physics and on scattering theory.
Nonlinear anisotropic parabolic equations in Lm
Directory of Open Access Journals (Sweden)
Fares Mokhtari
2014-01-01
Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].
Sparse multivariate measures of similarity between intra-modal neuroimaging datasets
Directory of Open Access Journals (Sweden)
Maria J. Rosa
2015-10-01
Full Text Available An increasing number of neuroimaging studies are now based on either combining more than one data modality (inter-modal or combining more than one measurement from the same modality (intra-modal. To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA. However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA, overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labelling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.
Regularization Techniques for Linear Least-Squares Problems
Suliman, Mohamed
2016-04-01
method deals with discrete ill-posed problems when the singular values of the linear transformation matrix are decaying very fast to a significantly small value. For the both proposed algorithms, the regularization parameter is obtained as a solution of a non-linear characteristic equation. We provide a details study for the general properties of these functions and address the existence and uniqueness of the root. To demonstrate the performance of the derivations, the first proposed COPRA method is applied to estimate different signals with various characteristics, while the second proposed COPRA method is applied to a large set of different real-world discrete ill-posed problems. Simulation results demonstrate that the two proposed methods outperform a set of benchmark regularization algorithms in most cases. In addition, the algorithms are also shown to have the lowest run time.
International Nuclear Information System (INIS)
Shore, B.W.
1981-01-01
The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence
Stochastic dynamic modeling of regular and slow earthquakes
Aso, N.; Ando, R.; Ide, S.
2017-12-01
Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal
The ionisation equation in a relativistic gas
International Nuclear Information System (INIS)
Kichenassamy, S.; Krikorian, R.A.
1983-01-01
By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)
Exact RG flow equations and quantum gravity
de Alwis, S. P.
2018-03-01
We discuss the different forms of the functional RG equation and their relation to each other. In particular we suggest a generalized background field version that is close in spirit to the Polchinski equation as an alternative to the Wetterich equation to study Weinberg's asymptotic safety program for defining quantum gravity, and argue that the former is better suited for this purpose. Using the heat kernel expansion and proper time regularization we find evidence in support of this program in agreement with previous work.
Thermodynamic Product Relations for Generalized Regular Black Hole
International Nuclear Information System (INIS)
Pradhan, Parthapratim
2016-01-01
We derive thermodynamic product relations for four-parametric regular black hole (BH) solutions of the Einstein equations coupled with a nonlinear electrodynamics source. The four parameters can be described by the mass (m), charge (q), dipole moment (α), and quadrupole moment (β), respectively. We study its complete thermodynamics. We compute different thermodynamic products, that is, area product, BH temperature product, specific heat product, and Komar energy product, respectively. Furthermore, we show some complicated function of horizon areas that is indeed mass-independent and could turn out to be universal.
Dimensional regularization and renormalization of Coulomb gauge quantum electrodynamics
International Nuclear Information System (INIS)
Heckathorn, D.
1979-01-01
Quantum electrodynamics is renormalized in the Coulomb gauge with covariant counter terms and without momentum-dependent wave-function renormalization constants. It is shown how to dimensionally regularize non-covariant integrals occurring in this guage, and prove that the 'minimal' subtraction prescription excludes non-covariant counter terms. Motivated by the need for a renormalized Coulomb gauge formalism in certain practical calculations, the author introduces a convenient prescription with physical parameters. The renormalization group equations for the Coulomb gauge are derived. (Auth.)
Regularization by fractional filter methods and data smoothing
International Nuclear Information System (INIS)
Klann, E; Ramlau, R
2008-01-01
This paper is concerned with the regularization of linear ill-posed problems by a combination of data smoothing and fractional filter methods. For the data smoothing, a wavelet shrinkage denoising is applied to the noisy data with known error level δ. For the reconstruction, an approximation to the solution of the operator equation is computed from the data estimate by fractional filter methods. These fractional methods are based on the classical Tikhonov and Landweber method, but avoid, at least partially, the well-known drawback of oversmoothing. Convergence rates as well as numerical examples are presented
Adaptive regularization of noisy linear inverse problems
DEFF Research Database (Denmark)
Hansen, Lars Kai; Madsen, Kristoffer Hougaard; Lehn-Schiøler, Tue
2006-01-01
In the Bayesian modeling framework there is a close relation between regularization and the prior distribution over parameters. For prior distributions in the exponential family, we show that the optimal hyper-parameter, i.e., the optimal strength of regularization, satisfies a simple relation: T......: The expectation of the regularization function, i.e., takes the same value in the posterior and prior distribution. We present three examples: two simulations, and application in fMRI neuroimaging....
Higher derivative regularization and chiral anomaly
International Nuclear Information System (INIS)
Nagahama, Yoshinori.
1985-02-01
A higher derivative regularization which automatically leads to the consistent chiral anomaly is analyzed in detail. It explicitly breaks all the local gauge symmetry but preserves global chiral symmetry and leads to the chirally symmetric consistent anomaly. This regularization thus clarifies the physics content contained in the consistent anomaly. We also briefly comment on the application of this higher derivative regularization to massless QED. (author)
Regularity effect in prospective memory during aging
Directory of Open Access Journals (Sweden)
Geoffrey Blondelle
2016-10-01
Full Text Available Background: Regularity effect can affect performance in prospective memory (PM, but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults. Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30, 16 intermediate adults (40–55, and 25 older adults (65–80. The task, adapted from the Virtual Week, was designed to manipulate the regularity of the various activities of daily life that were to be recalled (regular repeated activities vs. irregular non-repeated activities. We examine the role of several cognitive functions including certain dimensions of executive functions (planning, inhibition, shifting, and binding, short-term memory, and retrospective episodic memory to identify those involved in PM, according to regularity and age. Results: A mixed-design ANOVA showed a main effect of task regularity and an interaction between age and regularity: an age-related difference in PM performances was found for irregular activities (older < young, but not for regular activities. All participants recalled more regular activities than irregular ones with no age effect. It appeared that recalling of regular activities only involved planning for both intermediate and older adults, while recalling of irregular ones were linked to planning, inhibition, short-term memory, binding, and retrospective episodic memory. Conclusion: Taken together, our data suggest that planning capacities seem to play a major role in remembering to perform intended actions with advancing age. Furthermore, the age-PM-paradox may be attenuated when the experimental design is adapted by implementing a familiar context through the use of activities of daily living. The clinical
Regularity effect in prospective memory during aging
Blondelle, Geoffrey; Hainselin, Mathieu; Gounden, Yannick; Heurley, Laurent; Voisin, Hélène; Megalakaki, Olga; Bressous, Estelle; Quaglino, Véronique
2016-01-01
Background: Regularity effect can affect performance in prospective memory (PM), but little is known on the cognitive processes linked to this effect. Moreover, its impacts with regard to aging remain unknown. To our knowledge, this study is the first to examine regularity effect in PM in a lifespan perspective, with a sample of young, intermediate, and older adults.Objective and design: Our study examined the regularity effect in PM in three groups of participants: 28 young adults (18–30), 1...
Harmonic R-matrices for scattering amplitudes and spectral regularization
Energy Technology Data Exchange (ETDEWEB)
Ferro, Livia; Plefka, Jan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Lukowski, Tomasz [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Univ. Berlin (Germany). IRIS Adlershof; Meneghelli, Carlo [Hamburg Univ. (Germany). Fachbereich 11 - Mathematik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Staudacher, Matthias [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany)
2012-12-15
Planar N=4 super Yang-Mills appears to be integrable. While this allows to find this theory's exact spectrum, integrability has hitherto been of no direct use for scattering amplitudes. To remedy this, we deform all scattering amplitudes by a spectral parameter. The deformed tree-level four-point function turns out to be essentially the one-loop R-matrix of the integrable N=4 spin chain satisfying the Yang-Baxter equation. Deformed on-shell three-point functions yield novel three-leg R-matrices satisfying bootstrap equations. Finally, we supply initial evidence that the spectral parameter might find its use as a novel symmetry-respecting regulator replacing dimensional regularization. Its physical meaning is a local deformation of particle helicity, a fact which might be useful for a much larger class of non-integrable four-dimensional field theories.
Regularization of the big bang singularity with random perturbations
Belbruno, Edward; Xue, BingKan
2018-03-01
We show how to regularize the big bang singularity in the presence of random perturbations modeled by Brownian motion using stochastic methods. We prove that the physical variables in a contracting universe dominated by a scalar field can be continuously and uniquely extended through the big bang as a function of time to an expanding universe only for a discrete set of values of the equation of state satisfying special co-prime number conditions. This result significantly generalizes a previous result (Xue and Belbruno 2014 Class. Quantum Grav. 31 165002) that did not model random perturbations. This result implies that the extension from a contracting to an expanding universe for the discrete set of co-prime equation of state is robust, which is a surprising result. Implications for a purely expanding universe are discussed, such as a non-smooth, randomly varying scale factor near the big bang.
Use of regularization method in the determination of ring parameters and orbit correction
International Nuclear Information System (INIS)
Tang, Y.N.; Krinsky, S.
1993-01-01
We discuss applying the regularization method of Tikhonov to the solution of inverse problems arising in accelerator operations. This approach has been successfully used for orbit correction on the NSLS storage rings, and is presently being applied to the determination of betatron functions and phases from the measured response matrix. The inverse problem of differential equation often leads to a set of integral equations of the first kind which are ill-conditioned. The regularization method is used to combat the ill-posedness
Regularization and error assignment to unfolded distributions
Zech, Gunter
2011-01-01
The commonly used approach to present unfolded data only in graphical formwith the diagonal error depending on the regularization strength is unsatisfac-tory. It does not permit the adjustment of parameters of theories, the exclusionof theories that are admitted by the observed data and does not allow the com-bination of data from different experiments. We propose fixing the regulariza-tion strength by a p-value criterion, indicating the experimental uncertaintiesindependent of the regularization and publishing the unfolded data in additionwithout regularization. These considerations are illustrated with three differentunfolding and smoothing approaches applied to a toy example.
Iterative Regularization with Minimum-Residual Methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2007-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
Iterative regularization with minimum-residual methods
DEFF Research Database (Denmark)
Jensen, Toke Koldborg; Hansen, Per Christian
2006-01-01
subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES - their success......We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov...... as regularization methods is highly problem dependent....
A fractional Dirac equation and its solution
International Nuclear Information System (INIS)
Muslih, Sami I; Agrawal, Om P; Baleanu, Dumitru
2010-01-01
This paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit α → 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.
International Nuclear Information System (INIS)
Kazantsev, Daniil; Dobson, Katherine J; Withers, Philip J; Lee, Peter D; Ourselin, Sébastien; Arridge, Simon R; Hutton, Brian F; Kaestner, Anders P; Lionheart, William R B
2014-01-01
There has been a rapid expansion of multi-modal imaging techniques in tomography. In biomedical imaging, patients are now regularly imaged using both single photon emission computed tomography (SPECT) and x-ray computed tomography (CT), or using both positron emission tomography and magnetic resonance imaging (MRI). In non-destructive testing of materials both neutron CT (NCT) and x-ray CT are widely applied to investigate the inner structure of material or track the dynamics of physical processes. The potential benefits from combining modalities has led to increased interest in iterative reconstruction algorithms that can utilize the data from more than one imaging mode simultaneously. We present a new regularization term in iterative reconstruction that enables information from one imaging modality to be used as a structural prior to improve resolution of the second modality. The regularization term is based on a modified anisotropic tensor diffusion filter, that has shape-adapted smoothing properties. By considering the underlying orientations of normal and tangential vector fields for two co-registered images, the diffusion flux is rotated and scaled adaptively to image features. The images can have different greyscale values and different spatial resolutions. The proposed approach is particularly good at isolating oriented features in images which are important for medical and materials science applications. By enhancing the edges it enables both easy identification and volume fraction measurements aiding segmentation algorithms used for quantification. The approach is tested on a standard denoising and deblurring image recovery problem, and then applied to 2D and 3D reconstruction problems; thereby highlighting the capabilities of the algorithm. Using synthetic data from SPECT co-registered with MRI, and real NCT data co-registered with x-ray CT, we show how the method can be used across a range of imaging modalities. (paper)
Clustered iterative stochastic ensemble method for multi-modal calibration of subsurface flow models
Elsheikh, Ahmed H.
2013-05-01
A novel multi-modal parameter estimation algorithm is introduced. Parameter estimation is an ill-posed inverse problem that might admit many different solutions. This is attributed to the limited amount of measured data used to constrain the inverse problem. The proposed multi-modal model calibration algorithm uses an iterative stochastic ensemble method (ISEM) for parameter estimation. ISEM employs an ensemble of directional derivatives within a Gauss-Newton iteration for nonlinear parameter estimation. ISEM is augmented with a clustering step based on k-means algorithm to form sub-ensembles. These sub-ensembles are used to explore different parts of the search space. Clusters are updated at regular intervals of the algorithm to allow merging of close clusters approaching the same local minima. Numerical testing demonstrates the potential of the proposed algorithm in dealing with multi-modal nonlinear parameter estimation for subsurface flow models. © 2013 Elsevier B.V.
Conceptual structure within and between modalities
Directory of Open Access Journals (Sweden)
Katia eDilkina
2013-01-01
Full Text Available Current views of semantic memory share the assumption that conceptual representations are based on multi-modal experience, which activates distinct modality-specific brain regions. This proposition is widely accepted, yet little is known about how each modality contributes to conceptual knowledge and how the structure of this contribution varies across these multiple information sources. We used verbal feature lists, features from drawings and verbal co-occurrence statistics from latent semantic analysis to examine the informational structure in four domains of knowledge: perceptual, functional, encyclopedic and verbal. The goals of the analysis were three-fold: (1 to assess the structure within individual modalities; (2 to compare structures between modalities; and (3 to assess the degree to which concepts organize categorically or randomly.Our results indicated significant and unique structure in all four modalities: perceptually, concepts organize based on prominent features such as shape, size, color and parts; functionally, they group based on use and interaction; encyclopedically, they arrange based on commonality in location or behavior; and verbally, they group associatively or relationally. Visual/perceptual knowledge gives rise to the strongest hierarchical organization and is closest to classic taxonomic structure. Information is organized somewhat similarly in the perceptual and encyclopedic domains, which differs significantly from the structure in the functional and verbal domains. Notably, the verbal modality has the most unique organization, which is not at all categorical but also not random. The idiosyncrasy and complexity of conceptual structure across modalities begs the question of how all of these modality-specific experiences are fused together into coherent, multi-faceted yet unified concepts. Accordingly, both methodological and theoretical implications of the present findings are discussed.
Vibration analysis of the piping system using the modal analysis method, 1
International Nuclear Information System (INIS)
Fujikawa, Takeshi; Kurohashi, Michiya; Inoue, Yoshio
1975-01-01
Modal analysis method was developed for the vibration analysis of piping system in nuclear or chemical plants, with finite element theory, and verified by sinusoidal vibration method. The natural vibration equation for pipings was derived with stiffness, attenuation and mass matrices, and eigenvalues are obtained with usual method, then the forced vibration equation for pipings was derived with the same manner, and the special solutions are given by modal method from the eigenvalues of the natural vibration equation. Three simple piping models (one, two and three dimensional) were made, and the natural vibration frequency was measured with forced input from an electrical dynamic shaker and a sound speaker. The experimental values of natural vibration frequency showed good agreement with the results by the analytical method. Therefore the theoretical approach for piping system vibration was proved to be valid. (Iwase, T.)
NIF Periscope Wall Modal Study Comparison of Results for 2 FEA Models with 2 Modal Tests
International Nuclear Information System (INIS)
Eli, M W; Gerhard, M A; Lee, C L; Sommer, S C; Woehrle, T G
2000-01-01
This report summarizes experimentally and numerically determined modal properties for one of the reinforced concrete end walls of the NIF Periscope Support Structure in Laser Bay 1. Two methods were used to determine these modal properties: (1) Computational finite-element analyses (modal extraction process); and (2) Experimental modal analysis based on measured test data. This report also includes experimentally determined modal properties for a prototype LM3/Polarizer line-replaceable unit (LRU) and a prototype PEPC LRU. Two important parameters, used during the design phase, are validated through testing [ref 1]. These parameters are the natural frequencies and modal damping (of the system in question) for the first several global modes of vibration. Experimental modal testing provides these modal values, along with the corresponding mode shapes. Another important parameter, the input excitation (expected during normal operation of the NIF laser system) [ref 1], can be verified by performing a series of ambient vibration measurements in the vicinity of the particular system (or subsystem) of interest. The topic of ambient input excitation will be covered in a separate report. Due to the large mass of the Periscope Pedestal, it is difficult to excite the entire series of Periscope Pedestal Walls all at once. It was decided that the experimental modal tests would be performed on just one Periscope End Wall in Laser Bay 1. Experimental modal properties for the Periscope End Wall have been used to validate and update the FE analyses. Results from the analyses and modal tests support the conclusion that the Periscope Pedestal will not exceed the stability budget, which is described in reference 1. The results of the modal tests for the Periscope End Wall in Laser Bay 1 have provided examples of modal properties that can be derived from future modal tests of the entire Periscope Assembly (excluding the LRU's). This next series of larger modal tests can be performed
INVARIANTS OF GENERALIZED RAPOPORT-LEAS EQUATIONS
Directory of Open Access Journals (Sweden)
Elena N. Kushner
2018-01-01
its regular orbits, which allow us to classify the generalized Rapoport-Leas equations.
Extending Modal Transition Systems with Structured Labels
DEFF Research Database (Denmark)
Bauer, Sebastian S.; Juhl, Line; Larsen, Kim Guldstrand
2012-01-01
We introduce a novel formalism of label-structured modal transition systems that combines the classical may/must modalities on transitions with structured labels that represent quantitative aspects of the model. On the one hand, the specification formalism is general enough to include models like...... weighted modal transition systems and allows the system developers to employ more complex label refinement than in the previously studied theories. On the other hand, the formalism maintains the desirable properties required by any specification theory supporting compositional reasoning. In particular, we...
Combinatorics of Generalized Bethe Equations
Kozlowski, Karol K.; Sklyanin, Evgeny K.
2013-10-01
A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.
Interface discontinuity factors in the modal Eigenspace of the multigroup diffusion matrix
International Nuclear Information System (INIS)
Garcia-Herranz, N.; Herrero, J.J.; Cuervo, D.; Ahnert, C.
2011-01-01
Interface discontinuity factors based on the Generalized Equivalence Theory are commonly used in nodal homogenized diffusion calculations so that diffusion average values approximate heterogeneous higher order solutions. In this paper, an additional form of interface correction factors is presented in the frame of the Analytic Coarse Mesh Finite Difference Method (ACMFD), based on a correction of the modal fluxes instead of the physical fluxes. In the ACMFD formulation, implemented in COBAYA3 code, the coupled multigroup diffusion equations inside a homogenized region are reduced to a set of uncoupled modal equations through diagonalization of the multigroup diffusion matrix. Then, physical fluxes are transformed into modal fluxes in the Eigenspace of the diffusion matrix. It is possible to introduce interface flux discontinuity jumps as the difference of heterogeneous and homogeneous modal fluxes instead of introducing interface discontinuity factors as the ratio of heterogeneous and homogeneous physical fluxes. The formulation in the modal space has been implemented in COBAYA3 code and assessed by comparison with solutions using classical interface discontinuity factors in the physical space. (author)
A note on a degenerate elliptic equation with applications for lakes and seas
Directory of Open Access Journals (Sweden)
Didier Bresch
2004-03-01
Full Text Available In this paper, we give an intermediate regularity result on a degenerate elliptic equation with a weight blowing up on the boundary. This kind of equations is encountoured when modelling some phenomena linked to seas or lakes. We give some examples where such regularity is useful.
Subcortical processing of speech regularities underlies reading and music aptitude in children
2011-01-01
Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input
Subcortical processing of speech regularities underlies reading and music aptitude in children
Directory of Open Access Journals (Sweden)
Strait Dana L
2011-10-01
Full Text Available Abstract Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to
Subcortical processing of speech regularities underlies reading and music aptitude in children.
Strait, Dana L; Hornickel, Jane; Kraus, Nina
2011-10-17
Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings
Directory of Open Access Journals (Sweden)
Zhao-Qing Wang
2014-01-01
Full Text Available Embedding the irregular doubly connected domain into an annular regular region, the unknown functions can be approximated by the barycentric Lagrange interpolation in the regular region. A highly accurate regular domain collocation method is proposed for solving potential problems on the irregular doubly connected domain in polar coordinate system. The formulations of regular domain collocation method are constructed by using barycentric Lagrange interpolation collocation method on the regular domain in polar coordinate system. The boundary conditions are discretized by barycentric Lagrange interpolation within the regular domain. An additional method is used to impose the boundary conditions. The least square method can be used to solve the overconstrained equations. The function values of points in the irregular doubly connected domain can be calculated by barycentric Lagrange interpolation within the regular domain. Some numerical examples demonstrate the effectiveness and accuracy of the presented method.
A regularized stationary mean-field game
Yang, Xianjin
2016-01-01
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
A regularized stationary mean-field game
Yang, Xianjin
2016-04-19
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
On infinite regular and chiral maps
Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán
2015-01-01
We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.
From recreational to regular drug use
DEFF Research Database (Denmark)
Järvinen, Margaretha; Ravn, Signe
2011-01-01
This article analyses the process of going from recreational use to regular and problematic use of illegal drugs. We present a model containing six career contingencies relevant for young people’s progress from recreational to regular drug use: the closing of social networks, changes in forms...
Automating InDesign with Regular Expressions
Kahrel, Peter
2006-01-01
If you need to make automated changes to InDesign documents beyond what basic search and replace can handle, you need regular expressions, and a bit of scripting to make them work. This Short Cut explains both how to write regular expressions, so you can find and replace the right things, and how to use them in InDesign specifically.
Regularization modeling for large-eddy simulation
Geurts, Bernardus J.; Holm, D.D.
2003-01-01
A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of
2010-07-01
... employee under subsection (a) or in excess of the employee's normal working hours or regular working hours... Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR... not less than one and one-half times their regular rates of pay. Section 7(e) of the Act defines...
On some functional equations related to Steffensen's inequality
Directory of Open Access Journals (Sweden)
Bogdan Choczewski
2004-05-01
Full Text Available We consider the problem, proposed by the second author (cf. [1] of solving functional equations stemming from the Steffensen integral inequality (S, which is applicable in actuarial problems, cf. [4]. Imposing some regularity conditions we find solutions of two equations in two variables, one with two and another with three unknown functions.
Monograph - The Numerical Integration of Ordinary Differential Equations.
Hull, T. E.
The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…
Null controllability of the viscous Camassa–Holm equation with ...
Indian Academy of Sciences (India)
In this paper, we study the null controllability of the viscous Camassa–. Holm equation on the one-dimensional torus. By using a moving distributed control, we obtain that the system is null controllable for a given data with certain regularity. Keywords. Viscous Camassa–Holm equation; null controllability; moving control;.
From the Hartree dynamics to the Vlasov equation
DEFF Research Database (Denmark)
Benedikter, Niels Patriz; Porta, Marcello; Saffirio, Chiara
2016-01-01
We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise...
Cross-modal versus within-modal recall: differences in behavioral and brain responses.
Butler, Andrew J; James, Karin H
2011-10-31
Although human experience is multisensory in nature, previous research has focused predominantly on memory for unisensory as opposed to multisensory information. In this work, we sought to investigate behavioral and neural differences between the cued recall of cross-modal audiovisual associations versus within-modal visual or auditory associations. Participants were presented with cue-target associations comprised of pairs of nonsense objects, pairs of nonsense sounds, objects paired with sounds, and sounds paired with objects. Subsequently, they were required to recall the modality of the target given the cue while behavioral accuracy, reaction time, and blood oxygenation level dependent (BOLD) activation were measured. Successful within-modal recall was associated with modality-specific reactivation in primary perceptual regions, and was more accurate than cross-modal retrieval. When auditory targets were correctly or incorrectly recalled using a cross-modal visual cue, there was re-activation in auditory association cortex, and recall of information from cross-modal associations activated the hippocampus to a greater degree than within-modal associations. Findings support theories that propose an overlap between regions active during perception and memory, and show that behavioral and neural differences exist between within- and cross-modal associations. Overall the current study highlights the importance of the role of multisensory information in memory. Copyright © 2011 Elsevier B.V. All rights reserved.
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
The modality effect and echoic persistence.
Watkins, O C; Watkins, M J
1980-09-01
The modality effect refers to the higher level of recall of the last few items of a list when presentation is auditory as opposed to visual. It is usually attributed to echoic memory. The effect may be sharply reduced by an ostensibly irrelevant auditory item appended to the end of the list. Previous research suggests that this "suffix effect" arises only when the suffix item occurs within 2 sec of the last list item. This finding strengthens the widely held assumption that echoic information decays within 2 sec, and has led to the assumption that if echoic information is to be useful in serial recall it must first be encoded into a more durable modality-independent form. Both assumptions conflict with the research reported here. The first two experiments demonstrate substantial suffix effects with suffix delays of 2 and 4 sec, indicating that echoic information lasts at least 4 sec. This finding implies that echoic information may aid recall directly, an implication that was supported in Experiments 3 and 4. In Experiment 3 serial recall was interrupted with a brief distractor task. The modality effect was smaller when this task was auditory than when it was visual, suggesting that echoic information was still available immediately prior to recency recall. In Experiment 4 list presentation was broken by a 4-sec pause; the modalities of the list halves were combined factorially. Interest focused on the recency positions of the first half. A modality effect was found at these positions when the second half was visual but not when it was auditory. This is contrary to the hypothesis that echoic information is encoded before recall, but is consistent with the hypothesis that echoic information is encoded before recall, but is consistent with the alternative hypothesis that echoic information is used directly at recall. The final two experiments concern the modality effect found when a delay is interpolated between list presentation and recall. Experiment 5 showed that
Regularized quasinormal modes for plasmonic resonators and open cavities
Kamandar Dezfouli, Mohsen; Hughes, Stephen
2018-03-01
Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.
Equating error in observed-score equating
van der Linden, Willem J.
2006-01-01
Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of
DICOM versus HL7 for modality interfacing
Oosterwijk, Herman
1998-01-01
Digital modalities such as CT, MRI, Ultrasound and Computerized Radiography systems, generating softcopy images to be used by a Picture Archiving and Communication System (PACS), need to identify the images properly in order to retrieve and manage them. In many cases, a technologist re-enters patient demographic and study related information at the modality, even although it is usually already present somewhere in the hospital Information System (IS). In order to achieve a higher level of eff...
Models of galaxies - The modal approach
International Nuclear Information System (INIS)
Lin, C.C.; Lowe, S.A.
1990-01-01
The general viability of the modal approach to the spiral structure in normal spirals and the barlike structure in certain barred spirals is discussed. The usefulness of the modal approach in the construction of models of such galaxies is examined, emphasizing the adoption of a model appropriate to observational data for both the spiral structure of a galaxy and its basic mass distribution. 44 refs
Non-local quasi-linear parabolic equations
International Nuclear Information System (INIS)
Amann, H
2005-01-01
This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing
An iterative method for Tikhonov regularization with a general linear regularization operator
Hochstenbach, M.E.; Reichel, L.
2010-01-01
Tikhonov regularization is one of the most popular approaches to solve discrete ill-posed problems with error-contaminated data. A regularization operator and a suitable value of a regularization parameter have to be chosen. This paper describes an iterative method, based on Golub-Kahan
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Hierarchical regular small-world networks
International Nuclear Information System (INIS)
Boettcher, Stefan; Goncalves, Bruno; Guclu, Hasan
2008-01-01
Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as √N with system size N, and leads to super-diffusion with an exact, anomalous exponent d w = 1.306..., but possesses only a trivial fixed point T c = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as ∼2 √(log 2 N 2 ) , exhibits 'ballistic' diffusion (d w = 1), and a non-trivial ferromagnetic transition, T c > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. (fast track communication)
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Coupling regularizes individual units in noisy populations
International Nuclear Information System (INIS)
Ly Cheng; Ermentrout, G. Bard
2010-01-01
The regularity of a noisy system can modulate in various ways. It is well known that coupling in a population can lower the variability of the entire network; the collective activity is more regular. Here, we show that diffusive (reciprocal) coupling of two simple Ornstein-Uhlenbeck (O-U) processes can regularize the individual, even when it is coupled to a noisier process. In cellular networks, the regularity of individual cells is important when a select few play a significant role. The regularizing effect of coupling surprisingly applies also to general nonlinear noisy oscillators. However, unlike with the O-U process, coupling-induced regularity is robust to different kinds of coupling. With two coupled noisy oscillators, we derive an asymptotic formula assuming weak noise and coupling for the variance of the period (i.e., spike times) that accurately captures this effect. Moreover, we find that reciprocal coupling can regularize the individual period of higher dimensional oscillators such as the Morris-Lecar and Brusselator models, even when coupled to noisier oscillators. Coupling can have a counterintuitive and beneficial effect on noisy systems. These results have implications for the role of connectivity with noisy oscillators and the modulation of variability of individual oscillators.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Choi, Kyunghwan; Kim, Pyungkang; Kim, Kyung-Soo; Kim, Soohyun
2017-12-01
One of the long-standing challenges in upper limb prosthetics is restoring the sensory feedback that is missing due to amputation. Two approaches have previously been presented to provide various types of sensory information to users, namely, multi-modality sensory feedback and using an array of single-modality stimulators. However, the feedback systems used in these approaches were too bulky to be embedded in prosthesis sockets. In this paper, we propose an electrocutaneous sensory feedback method that is capable of conveying two modalities simultaneously with only one electrode. The stimulation method, which we call mixed-modality stimulation, utilizes the phenomenon in which the superposition of two electric pulse trains of different frequencies is able to evoke two different modalities (i.e., pressure and tapping) at the same time. We conducted psychophysical experiments in which healthy subjects were required to recognize the intensity of pressure or the frequency of tapping from mixed-modality or two-channel stimulations. The results demonstrated that the subjects were able to discriminate the features of the two modalities in one electrode during mixed-modality stimulation and that the accuracies of successful recognitions (mean ± standard deviation) for the two feedback variables were 84.3 ± 7% for mixed-modality stimulation and 89.5 ± 6% for two-channel dual-modality stimulation, showing no statistically significant difference. Therefore, mixed-modality stimulation is an attractive method for modulating two modalities independently with only one electrode, and it could be used for implementing a compact sensory feedback system that is able to provide two different types of sensory information from prosthetics.
On the Stochastic Wave Equation with Nonlinear Damping
International Nuclear Information System (INIS)
Kim, Jong Uhn
2008-01-01
We discuss an initial boundary value problem for the stochastic wave equation with nonlinear damping. We establish the existence and uniqueness of a solution. Our method for the existence of pathwise solutions consists of regularization of the equation and data, the Galerkin approximation and an elementary measure-theoretic argument. We also prove the existence of an invariant measure when the equation has pure nonlinear damping
Metaphysical Modality, Modality of Predicate and the Theory of "Decisive Necessity”
Directory of Open Access Journals (Sweden)
L. Nabavi
2010-01-01
Full Text Available Aristotle in the Organon (1949: 9,30 a ,15-19 explicitly states that in a categorical syllogism when the minor premise is absolute (without modality operator and the major is necessary, the conclusion will be necessary too. This Aristotle's view has been the source of many conflicts and disputes in the history of logic. The famous logicians and historians of logic in the twentieth century as "Nicholas Rescher" and "Becker" believe that Aristotle's view is justifiable and defensible (at least compared to the first figure only if, the modality of major premise is considered as the property of predicate (modality de re. Today, we know very well that the modality of predicate is closely linked to Metaphysical and philosophical Modality. “Shihab al-Din al- Suhrawardi” in the theory of "Decisive (Battateh Necessity” by accepting this base, explicitly states that, in the beginning, the modality must be mentioned as a part of the predicate and then the modality of relation or copula is summarized and reduced to necessity. The modern formalization of the most important part of this theory is as follows: ("x (àAx É à Bx º ("x □ (àAx É à BxThis paper discusses the historical overview of the metaphysical modality firstly and then shows that the theory of "Decisive Necessity” is true and justified in a model of modal logic with equivalent accessibility relation and homogeneous possible world view (fixed domain.
Stephan, Denise Nadine; Koch, Iring
2016-11-01
The present study was aimed at examining modality-specific influences in task switching. To this end, participants switched either between modality compatible tasks (auditory-vocal and visual-manual) or incompatible spatial discrimination tasks (auditory-manual and visual-vocal). In addition, auditory and visual stimuli were presented simultaneously (i.e., bimodally) in each trial, so that selective attention was required to process the task-relevant stimulus. The inclusion of bimodal stimuli enabled us to assess congruence effects as a converging measure of increased between-task interference. The tasks followed a pre-instructed sequence of double alternations (AABB), so that no explicit task cues were required. The results show that switching between two modality incompatible tasks increases both switch costs and congruence effects compared to switching between two modality compatible tasks. The finding of increased congruence effects in modality incompatible tasks supports our explanation in terms of ideomotor "backward" linkages between anticipated response effects and the stimuli that called for this response in the first place. According to this generalized ideomotor idea, the modality match between response effects and stimuli would prime selection of a response in the compatible modality. This priming would cause increased difficulties to ignore the competing stimulus and hence increases the congruence effect. Moreover, performance would be hindered when switching between modality incompatible tasks and facilitated when switching between modality compatible tasks.
International Nuclear Information System (INIS)
Kaltenbacher, Barbara; Kirchner, Alana; Vexler, Boris
2011-01-01
Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element discretizations based on goal-oriented error estimators. A well-established method for the determination of a regularization parameter is the discrepancy principle where the residual norm, considered as a function i of the regularization parameter, should equal an appropriate multiple of the noise level. We suggest to solve the resulting scalar nonlinear equation by an inexact Newton method, where in each iteration step, a regularized problem is solved at a different discretization level. The proposed algorithm is an extension of the method suggested in Griesbaum A et al (2008 Inverse Problems 24 025025) for linear inverse problems, where goal-oriented error estimators for i and its derivative are used for adaptive refinement strategies in order to keep the discretization level as coarse as possible to save computational effort but fine enough to guarantee global convergence of the inexact Newton method. This concept leads to a highly efficient method for determining the Tikhonov regularization parameter for nonlinear ill-posed problems. Moreover, we prove that with the so-obtained regularization parameter and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization results from the continuous setting can be recovered. As a matter of fact, it is shown that it suffices to use stationary points of the Tikhonov functional. The efficiency of the proposed method is demonstrated by means of numerical experiments. (paper)
Diagrammatic methods in phase-space regularization
International Nuclear Information System (INIS)
Bern, Z.; Halpern, M.B.; California Univ., Berkeley
1987-11-01
Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)
J-regular rings with injectivities
Shen, Liang
2010-01-01
A ring $R$ is called a J-regular ring if R/J(R) is von Neumann regular, where J(R) is the Jacobson radical of R. It is proved that if R is J-regular, then (i) R is right n-injective if and only if every homomorphism from an $n$-generated small right ideal of $R$ to $R_{R}$ can be extended to one from $R_{R}$ to $R_{R}$; (ii) R is right FP-injective if and only if R is right (J, R)-FP-injective. Some known results are improved.
Moduli spaces for linear differential equations and the Painlev'e equations
Put, Marius van der; Saito, Masa-Hiko
2009-01-01
In this paper, we give a systematic construction of ten isomonodromic families of connections of rank two on P1 inducing Painlev´e equations. The classification of ten families is given by considering the Riemann-Hilbert morphism from a moduli space of connections with certain type of regular and
Regularization of absorber or doorway states in heavy-particle collisions
International Nuclear Information System (INIS)
Errea, L.F.; Riera, A.; Sanchez, P.
1994-01-01
We present a unified theoretical basis of the recently proposed regularization method of absorber or doorway states. The theory is applicable to the close-coupling solutions of time-dependent Schroedinger equations corresponding to Hamiltonians containing singular terms and with a partial continuum spectrum. The presentation and illustration are restricted to the treatment of atomic collisions. (author)
Barrera, Begoña Barrios; Figalli, Alessio; Valdinoci, Enrico
2012-01-01
We prove that $C^{1,\\alpha}$ $s$-minimal surfaces are automatically $C^\\infty$. For this, we develop a new bootstrap regularity theory for solutions of integro-differential equations of very general type, which we believe is of independent interest.
Partial regularity of weak solutions to a PDE system with cubic nonlinearity
Liu, Jian-Guo; Xu, Xiangsheng
2018-04-01
In this paper we investigate regularity properties of weak solutions to a PDE system that arises in the study of biological transport networks. The system consists of a possibly singular elliptic equation for the scalar pressure of the underlying biological network coupled to a diffusion equation for the conductance vector of the network. There are several different types of nonlinearities in the system. Of particular mathematical interest is a term that is a polynomial function of solutions and their partial derivatives and this polynomial function has degree three. That is, the system contains a cubic nonlinearity. Only weak solutions to the system have been shown to exist. The regularity theory for the system remains fundamentally incomplete. In particular, it is not known whether or not weak solutions develop singularities. In this paper we obtain a partial regularity theorem, which gives an estimate for the parabolic Hausdorff dimension of the set of possible singular points.
A regularized vortex-particle mesh method for large eddy simulation
DEFF Research Database (Denmark)
Spietz, Henrik Juul; Walther, Jens Honore; Hejlesen, Mads Mølholm
We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible ﬂuid ﬂow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green’s function...... solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the ﬁltered Navier Stokes equations, hence we use the method for Large Eddy...
Regular reduction of relativistic theories of gravitation with a quadratic Lagrangian
International Nuclear Information System (INIS)
Bel, L.; Zia, H.S.
1985-01-01
We consider those relativistic theories of gravitation which generalize Einstein's theory in the sense that their field equations derive from a scalar Lagrangian which, besides the matter term, contains a linear combination of the Ricci scalar, its square, and the square of the Ricci tensor. Using a generalization of a technique which has been used to deal with some dynamical systems, we regularly and covariantly reduce the corresponding fourth-order differential equations to second-order ones. We examine, in particular, at a low order of approximation, these reduced equations in cosmology, and for static and spherically symmetric interior solutions with constant density
Generalized regular genus for manifolds with boundary
Directory of Open Access Journals (Sweden)
Paola Cristofori
2003-05-01
Full Text Available We introduce a generalization of the regular genus, a combinatorial invariant of PL manifolds ([10], which is proved to be strictly related, in dimension three, to generalized Heegaard splittings defined in [12].
Fast and compact regular expression matching
DEFF Research Database (Denmark)
Bille, Philip; Farach-Colton, Martin
2008-01-01
We study 4 problems in string matching, namely, regular expression matching, approximate regular expression matching, string edit distance, and subsequence indexing, on a standard word RAM model of computation that allows logarithmic-sized words to be manipulated in constant time. We show how...... to improve the space and/or remove a dependency on the alphabet size for each problem using either an improved tabulation technique of an existing algorithm or by combining known algorithms in a new way....
Regular-fat dairy and human health
DEFF Research Database (Denmark)
Astrup, Arne; Bradley, Beth H Rice; Brenna, J Thomas
2016-01-01
In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort to......, cheese and yogurt, can be important components of an overall healthy dietary pattern. Systematic examination of the effects of dietary patterns that include regular-fat milk, cheese and yogurt on human health is warranted....
Deterministic automata for extended regular expressions
Directory of Open Access Journals (Sweden)
Syzdykov Mirzakhmet
2017-12-01
Full Text Available In this work we present the algorithms to produce deterministic finite automaton (DFA for extended operators in regular expressions like intersection, subtraction and complement. The method like “overriding” of the source NFA(NFA not defined with subset construction rules is used. The past work described only the algorithm for AND-operator (or intersection of regular languages; in this paper the construction for the MINUS-operator (and complement is shown.
Regularities of intermediate adsorption complex relaxation
International Nuclear Information System (INIS)
Manukova, L.A.
1982-01-01
The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained
Online Manifold Regularization by Dual Ascending Procedure
Sun, Boliang; Li, Guohui; Jia, Li; Zhang, Hui
2013-01-01
We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approache...
Different patterns of modality dominance across development.
Barnhart, Wesley R; Rivera, Samuel; Robinson, Christopher W
2018-01-01
The present study sought to better understand how children, young adults, and older adults attend and respond to multisensory information. In Experiment 1, young adults were presented with two spoken words, two pictures, or two word-picture pairings and they had to determine if the two stimuli/pairings were exactly the same or different. Pairing the words and pictures together slowed down visual but not auditory response times and delayed the latency of first fixations, both of which are consistent with a proposed mechanism underlying auditory dominance. Experiment 2 examined the development of modality dominance in children, young adults, and older adults. Cross-modal presentation attenuated visual accuracy and slowed down visual response times in children, whereas older adults showed the opposite pattern, with cross-modal presentation attenuating auditory accuracy and slowing down auditory response times. Cross-modal presentation also delayed first fixations in children and young adults. Mechanisms underlying modality dominance and multisensory processing are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Multilayer modal actuator-based piezoelectric transformers.
Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung
2007-02-01
An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.
The metaphysics of quantum mechanics: Modal interpretations
Gluck, Stuart Murray
2004-11-01
This dissertation begins with the argument that a preferred way of doing metaphysics is through philosophy of physics. An understanding of quantum physics is vital to answering questions such as: What counts as an individual object in physical ontology? Is the universe fundamentally indeterministic? Are indiscernibles identical? This study explores how the various modal interpretations of quantum mechanics answer these sorts of questions; modal accounts are one of the two classes of interpretations along with so-called collapse accounts. This study suggests a new alternative within the class of modal views that yields a more plausible ontology, one in which the Principle of the Identity of Indisceribles is necessarily true. Next, it shows that modal interpretations can consistently deny that the universe must be fundamentally indeterministic so long as they accept certain other metaphysical commitments: either a perfect initial distribution of states in the universe or some form of primitive dispositional properties. Finally, the study sketches out a future research project for modal interpretations based on developing quantified quantum logic.
Non normal modal analysis of oscillations in boiling water reactors
Energy Technology Data Exchange (ETDEWEB)
Suarez-Antola, Roberto, E-mail: roberto.suarez@miem.gub.uy [Ministerio de Industria, Energia y Mineria (MIEM), Montevideo (Uruguay); Flores-Godoy, Jose-Job, E-mail: job.flores@ibero.mx [Universidad Iberoamericana (UIA), Mexico, DF (Mexico). Dept. de Fisica Y Matematicas
2013-07-01
The first objective of the present work is to construct a simple reduced order model for BWR stability analysis, combining a two nodes nodal model of the thermal hydraulics with a two modes modal model of the neutronics. Two coupled non-linear integral-differential equations are obtained, in terms of one global (in phase) and one local (out of phase) power amplitude, with direct and cross feedback reactivities given as functions of thermal hydraulics core variables (void fractions and temperatures). The second objective is to apply the effective life time approximation to further simplify the nonlinear equations. Linear approximations for the equations of the amplitudes of the global and regional modes are derived. The linearized equation for the amplitude of the global mode corresponds to a decoupled and damped harmonic oscillator. An analytical closed form formula for the damping coefficient, as a function of the parameters space of the BWR, is obtained. The coefficient changes its sign (with the corresponding modification in the decay ratio) when a stability boundary is crossed. This produces a supercritical Hopf bifurcation, with the steady state power of the reactor as the bifurcation parameter. However, the linearized equation for the amplitude of the regional mode corresponds always to an over-damped and always coupled (with the amplitude of the global mode) harmonic oscillator, for every set of possible values of core parameters (including the steady state power of the reactor) in the framework of the present mathematical model. The equation for the above mentioned over damped linear oscillator is closely connected with a non-normal operator. Due to this connection, there could be a significant transient growth of some solutions of the linear equation. This behavior allows a significant shrinking of the basin of attraction of the equilibrium state. The third objective is to apply the above approach to partially study the stability of the regional mode and
Modal Analysis of In-Wheel Motor-Driven Electric Vehicle Based on Bond Graph Theory
Directory of Open Access Journals (Sweden)
Di Tan
2017-01-01
Full Text Available A half-car vibration model of an electric vehicle driven by rear in-wheel motors was developed using bond graph theory and the modular modeling method. Based on the bond graph model, modal analysis was carried out to study the vibration characteristics of the electric vehicle. To verify the effectiveness of the established model, the results were compared to ones computed on the ground of modal analysis and Newton equations. The comparison shows that the vibration model of the electric vehicle based on bond graph theory not only is able to better compute the natural frequency but also can easily determine the deformation mode, momentum mode, and other isomorphism modes and describe the dynamic characteristics of an electric vehicle driven by in-wheel motors more comprehensively than other modal analysis methods.
Soliton solution for nonlinear partial differential equations by cosine-function method
International Nuclear Information System (INIS)
Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.
2007-01-01
In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations
Nonlinear elliptic equations and nonassociative algebras
Nadirashvili, Nikolai; Vlăduţ, Serge
2014-01-01
This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four. Thus this book gives a complete list of dimensions...
Moving interfaces and quasilinear parabolic evolution equations
Prüss, Jan
2016-01-01
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...
Automated Modal Parameter Estimation for Operational Modal Analysis of Large Systems
DEFF Research Database (Denmark)
Andersen, Palle; Brincker, Rune; Goursat, Maurice
2007-01-01
In this paper the problems of doing automatic modal parameter extraction and how to account for large number of data to process are considered. Two different approaches for obtaining the modal parameters automatically using OMA are presented: The Frequency Domain Decomposition (FDD) technique and...
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining
2018-06-01
The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Affirmation Modality in Bulgarian, Macedonian and Serbian
Directory of Open Access Journals (Sweden)
Marcin Grygiel
2015-06-01
Full Text Available Affirmation Modality in Bulgarian, Macedonian and Serbian In the case of affirmation modality the speakers transform their utterances by stressing or attributing a positive value as an additional component added to the semantic structure of a proposition. This type of affirmative polarization is triggered in opposition to negation or hypothetically negative contexts. The goal of the present paper is twofold: on the one hand to compare and contrast affirmative periphrastic constructions in Bulgarian, Macedonian and Serbian and, on the other hand, to ascertain what these constructions reveal regarding the organization of grammatical categories in general and the status of affirmation modality as a coherent and homogenous category with a linguistic validity.
Complete proof systems for weighted modal logic
DEFF Research Database (Denmark)
Larsen, Kim G.; Mardare, Radu
2014-01-01
(WML) is a multi-modal logic that expresses qualitative and quantitative properties of WTSs. While WML has been studied in various contexts and for various application domains, no proof system has been developed for it. In this paper we solve this open problem and propose both weak-complete and strong......The weighted transition systems (WTS) considered in this paper are transition systems having both states and transitions labeled with real numbers: the state labels denote quantitative resources, while the transition labels denote costs of transitions in terms of resources. Weighted Modal Logic....... This work emphasizes a series of similarities between WML and the probabilistic/stochastic modal logics for Markov processes and Harsanyi type spaces, such as the use of particular infinitary rules to guarantee the strong-completeness....
Comparison of particle-radiation-therapy modalities
International Nuclear Information System (INIS)
Fairchild, R.G.; Bond, V.P.
1981-01-01
The characteristics of dose distribution, beam alignment, and radiobiological advantages accorded to high LET radiation were reviewed and compared for various particle beam radiotherapeutic modalities (neutron, Auger electrons, p, π - , He, C, Ne, and Ar ions). Merit factors were evaluated on the basis of effective dose to tumor relative to normal tissue, linear energy transfer (LET), and dose localization, at depths of 1, 4, and 10 cm. In general, it was found that neutron capture therapy using an epithermal neutron beam provided the best merit factors available for depths up to 8 cm. The position of fast neutron therapy on the Merit Factor Tables was consistently lower than that of other particle modalities, and above only 60 Co. The largest body of clinical data exists for fast neutron therapy; results are considered by some to be encouraging. It then follows that if benefits with fast neutron therapy are real, additional gains are within reach with other modalities
Tumour Debulking for Esophageal Cancer - Thermal Modalities
Directory of Open Access Journals (Sweden)
David Fleischer
1992-01-01
Full Text Available Esophageal cancer usually is discovered at a late stage and curative therapy seldom is possible. The prognosis is poor and most therapy is palliative. Endoscopic therapy commonly is employed; two common treatments involve thermal modalities. The Nd:YAG laser has been employed for 10 years and is effective in relieving obstruction in approximately 90% of cases. Re-ohstruction usually occurs in two to three months and repeat treatment may be necessary. Limitations to laser use include the fact that equipment is expensive and there are technical restrictions. An alternative thermal modality is the bipolar coagulation tumour probe which employs bipolar electrocoagulation. It is less expensive and, if the tumour is circumferential, tends to be easier to use. (It should not be used if the cancer is noncircumferential. The advantages and limitations of each modality are addressed.
Applied modal analysis of wind turbine blades
DEFF Research Database (Denmark)
Pedersen, H.B.; Kristensen, O.J.D.
2003-01-01
In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...
Complex harmonic modal analysis of rotor systems
International Nuclear Information System (INIS)
Han, Dong Ju
2015-01-01
Complex harmonic analysis for rotor systems has been proposed from the strict complex modal analysis based upon Floquet theory. In this process the harmonic balance method is adopted, effectively associated with conventional eigenvalue analysis. Also, the harmonic coefficients equivalent to dFRFs in harmonic mode has been derived in practice. The modes are classified from identifying the modal characteristics, and the adaptation of harmonic balance method has been proven by comparing the results of the stability analyses from Floque theory and the eigen analysis. The modal features of each critical speed are depicted in quantitatively and qualitatively by showing that the strengths of each component of the harmonic coefficients are estimated from the order of magnitude analysis according to their harmonic patterns. This effectiveness has been verified by comparing with the numerical solutions
Handbook of integral equations
Polyanin, Andrei D
2008-01-01
This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.
Burman, Erik; Hansbo, Peter; Larson, Mats G.
2018-03-01
Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.
Artificial Vision, New Visual Modalities and Neuroadaptation
Directory of Open Access Journals (Sweden)
Hilmi Or
2012-01-01
Full Text Available To study the descriptions from which artificial vision derives, to explore the new visual modalities resulting from eye surgeries and diseases, and to gain awareness of the use of machine vision systems for both enhancement of visual perception and better understanding of neuroadaptation. Science could not define until today what vision is. However, some optical-based systems and definitions have been established considering some factors for the formation of seeing. The best known system includes Gabor filter and Gabor patch which work on edge perception, describing the visual perception in the best known way. These systems are used today in industry and technology of machines, robots and computers to provide their "seeing". These definitions are used beyond the machinery in humans for neuroadaptation in new visual modalities after some eye surgeries or to improve the quality of some already known visual modalities. Beside this, “the blindsight” -which was not known to exist until 35 years ago - can be stimulated with visual exercises. Gabor system is a description of visual perception definable in machine vision as well as in human visual perception. This system is used today in robotic vision. There are new visual modalities which arise after some eye surgeries or with the use of some visual optical devices. Also, blindsight is a different visual modality starting to be defined even though the exact etiology is not known. In all the new visual modalities, new vision stimulating therapies using the Gabor systems can be applied. (Turk J Oph thal mol 2012; 42: 61-5
Established rheumatoid arthritis - new imaging modalities
DEFF Research Database (Denmark)
McQueen, Fiona M; Østergaard, Mikkel
2007-01-01
in real-time and facilitates diagnostic and therapeutic interventions such as joint aspiration and injection. Exciting experimental modalities are also being developed with the potential to provide not just morphological but functional imaging. Techniques such as positron emission tomography (PET......) and high-resolution computerized tomography. Erosions are very clearly depicted using these modalities and MRI also allows imaging of soft tissues with assessment of joint inflammation. High-resolution ultrasound is a convenient clinical technique for the assessment of erosions, synovitis and tenosynovitis...
Dorsal and ventral streams across sensory modalities
Institute of Scientific and Technical Information of China (English)
Anna Sedda; Federica Scarpina
2012-01-01
In this review,we describe the current models of dorsal and ventral streams in vision,audition and touch.Available theories take their first steps from the model of Milner and Goodale,which was developed to explain how human actions can be efficiently carried out using visual information.Since then,similar concepts have also been applied to other sensory modalities.We propose that advances in the knowledge of brain functioning can be achieved through models explaining action and perception patterns independently from sensory modalities.
Combined modality treatment with radiotherapy and chemotherapy
International Nuclear Information System (INIS)
Tannock, I.F.; Toronto Univ., ON
1989-01-01
The present paper discusses some of the methodological issues which can confound the interpretation of clinical trials of combined modality treatment. It reviews some of the larger randomized trials which have evaluated combined modality treatment in cancers of the head and neck, lung, gastrointestinal tract and bladder. It concludes that adequate trials have yet to be performed in many of thses sites, but that at present, evidence for long-term benefit from adjunctivechemotherapy is meagre. Finally, it suggests some possible mechanisms which might heve limited the benefit of chemotherapy when added to radiation treatment. (Author). 87 refs.; 4 figs.; 4 tabs
A partial differential equation for pseudocontact shift.
Charnock, G T P; Kuprov, Ilya
2014-10-07
It is demonstrated that pseudocontact shift (PCS), viewed as a scalar or a tensor field in three dimensions, obeys an elliptic partial differential equation with a source term that depends on the Hessian of the unpaired electron probability density. The equation enables straightforward PCS prediction and analysis in systems with delocalized unpaired electrons, particularly for the nuclei located in their immediate vicinity. It is also shown that the probability density of the unpaired electron may be extracted, using a regularization procedure, from PCS data.
Some Remarks on Stability of Generalized Equations
Czech Academy of Sciences Publication Activity Database
Outrata, Jiří; Henrion, R.; Kruger, A.Y.
2013-01-01
Roč. 159, č. 3 (2013), s. 681-697 ISSN 0022-3239 R&D Projects: GA AV ČR IAA100750802; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : Parameterized generalized equation * Regular and limiting coderivative * Constant rank CQ * Mathematical program with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.406, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/outrata-some remarks on stability of generalized equations.pdf
Response Modality Variations Affect Determinations of Children's Learning Styles.
Janowitz, Jeffrey M.
The Swassing-Barbe Modality Index (SBMI) uses visual, auditory, and tactile inputs, but only reconstructed output, to measure children's modality strengths. In this experiment, the SBMI's three input modalities were crossed with two output modalities (spoken and drawn) in addition to the reconstructed standard to result in nine treatment…
The Modality-Match Effect in Recognition Memory
Mulligan, Neil W.; Osborn, Katherine
2009-01-01
The modality-match effect in recognition refers to superior memory for words presented in the same modality at study and test. Prior research on this effect is ambiguous and inconsistent. The present study demonstrates that the modality-match effect is found when modality is rendered salient at either encoding or retrieval. Specifically, in…
Improvements in GRACE Gravity Fields Using Regularization
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or
Regular Expression Matching and Operational Semantics
Directory of Open Access Journals (Sweden)
Asiri Rathnayake
2011-08-01
Full Text Available Many programming languages and tools, ranging from grep to the Java String library, contain regular expression matchers. Rather than first translating a regular expression into a deterministic finite automaton, such implementations typically match the regular expression on the fly. Thus they can be seen as virtual machines interpreting the regular expression much as if it were a program with some non-deterministic constructs such as the Kleene star. We formalize this implementation technique for regular expression matching using operational semantics. Specifically, we derive a series of abstract machines, moving from the abstract definition of matching to increasingly realistic machines. First a continuation is added to the operational semantics to describe what remains to be matched after the current expression. Next, we represent the expression as a data structure using pointers, which enables redundant searches to be eliminated via testing for pointer equality. From there, we arrive both at Thompson's lockstep construction and a machine that performs some operations in parallel, suitable for implementation on a large number of cores, such as a GPU. We formalize the parallel machine using process algebra and report some preliminary experiments with an implementation on a graphics processor using CUDA.
Regularities, Natural Patterns and Laws of Nature
Directory of Open Access Journals (Sweden)
Stathis Psillos
2014-02-01
Full Text Available The goal of this paper is to sketch an empiricist metaphysics of laws of nature. The key idea is that there are regularities without regularity-enforcers. Differently put, there are natural laws without law-makers of a distinct metaphysical kind. This sketch will rely on the concept of a natural pattern and more significantly on the existence of a network of natural patterns in nature. The relation between a regularity and a pattern will be analysed in terms of mereology. Here is the road map. In section 2, I will briefly discuss the relation between empiricism and metaphysics, aiming to show that an empiricist metaphysics is possible. In section 3, I will offer arguments against stronger metaphysical views of laws. Then, in section 4 I will motivate nomic objectivism. In section 5, I will address the question ‘what is a regularity?’ and will develop a novel answer to it, based on the notion of a natural pattern. In section 6, I will raise the question: ‘what is a law of nature?’, the answer to which will be: a law of nature is a regularity that is characterised by the unity of a natural pattern.
Modelling dynamic processes in a nuclear reactor by state change modal method
Avvakumov, A. V.; Strizhov, V. F.; Vabishchevich, P. N.; Vasilev, A. O.
2017-12-01
Modelling of dynamic processes in nuclear reactors is carried out, mainly, using the multigroup neutron diffusion approximation. The basic model includes a multidimensional set of coupled parabolic equations and ordinary differential equations. Dynamic processes are modelled by a successive change of the reactor states. It is considered that the transition from one state to another occurs promptly. In the modal method the approximate solution is represented as eigenfunction expansion. The numerical-analytical method is based on the use of dominant time-eigenvalues of a group diffusion model taking into account delayed neutrons.
Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control
Directory of Open Access Journals (Sweden)
Quan Zhang
2014-01-01
Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.
Existence of weak solutions in lower order Sobolev space for a Camassa-Holm-type equation
International Nuclear Information System (INIS)
Lai Shaoyong; Wu Yonghong
2010-01-01
A generalized Camassa-Holm equation containing a nonlinear dissipative effect is investigated. The existence of the weak solution of the equation in lower order Sobolev space H s with 1regularization and some a priori estimates derived from the equation itself.
Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation.
Saveliev, V L; Gorokhovski, M A
2005-07-01
On the basis of the Euler equation and its symmetry properties, this paper proposes a model of stationary homogeneous developed turbulence. A regularized averaging formula for the product of two fields is obtained. An equation for the averaged turbulent velocity field is derived from the Navier-Stokes equation by renormalization-group transformation.
Refinement Checking on Parametric Modal Transition Systems
DEFF Research Database (Denmark)
Benes, Nikola; Kretínsky, Jan; Larsen, Kim Guldstrand
2015-01-01
Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects in the refin...
Dynamic analysis of pipings by Modal Synthesis
International Nuclear Information System (INIS)
Augusto, O.B.; Mattar Neto, M.
1986-01-01
A Modal Synthesis method, the component modes, and its implementation as a post-processor of finite element program is presented. Examples of calculations of stationary and transient vibrations for monitoring pipelines of nuclear power plants are analysed. (M.C.K.) [pt
Established rheumatoid arthritis - new imaging modalities
DEFF Research Database (Denmark)
McQueen, Fiona M; Østergaard, Mikkel
2007-01-01
New imaging modalities are assuming an increasingly important role in the investigation and management of rheumatoid arthritis. It is now possible to obtain information about all tissues within the joint in three dimensions using tomographic techniques such as magnetic resonance imaging (MRI...
Nanomaterials Toxicity and Cell Death Modalities
Directory of Open Access Journals (Sweden)
Daniela De Stefano
2012-01-01
Full Text Available In the last decade, the nanotechnology advancement has developed a plethora of novel and intriguing nanomaterial application in many sectors, including research and medicine. However, many risks have been highlighted in their use, particularly related to their unexpected toxicity in vitro and in vivo experimental models. This paper proposes an overview concerning the cell death modalities induced by the major nanomaterials.
Dual-Modality Breast Tomosynthesis1
Williams, Mark B.; Judy, Patricia G.; Gunn, Spencer; Majewski, Stanislaw
2010-01-01
Pilot clinical evaluation of this dual-modality tomosynthesis system suggests that it is a feasible and accurate method with which to detect and diagnose breast cancer and that specificity and positive predictive value can be improved by adding molecular breast imaging tomosynthesis to x-ray tomosynthesis.
Sensor Placement for Modal Parameter Subset Estimation
DEFF Research Database (Denmark)
Ulriksen, Martin Dalgaard; Bernal, Dionisio; Damkilde, Lars
2016-01-01
The present paper proposes an approach for deciding on sensor placements in the context of modal parameter estimation from vibration measurements. The approach is based on placing sensors, of which the amount is determined a priori, such that the minimum Fisher information that the frequency resp...
Learning Modalities--Should They Be Considered?
Jones, John Paul
The author summarizes and reviews seven research studies which seek to determine the role of individual modal preference as related to learning to read. The seven studies are by Bateman (1968); Robinson (1968); Jones (1970); Bruininks (1968); Cripe (1966); de Hirsh, Jansky, and Langford (1966); and Bursuk (1971). Of these studies, only Bursuk…
The Fourier modal method for aperiodic structures
Pisarenco, M.; Maubach, J.M.L.; Setija, I.D.; Mattheij, R.M.M.
2010-01-01
This paper extends the area of application of the Fourier modal method from periodic structures to non-periodic ones illuminated under arbitrary angles. This is achieved by placing perfectly matched layers at the lateral boundaries and reformulating the problem in terms of a contrast field.
Current diagnostic modalities for vulnerable plaque detection
J.A. Schaar (Johannes); F. Mastik (Frits); E.S. Regar (Eveline); C.A. den Uil (Corstiaan); F.J.H. Gijsen (Frank); J.J. Wentzel (Jolanda); P.W.J.C. Serruys (Patrick); A.F.W. van der Steen (Ton)
2007-01-01
textabstractRupture of vulnerable plaques is the main cause of acute coronary syndrome and myocardial infarction. Identification of vulnerable plaques is therefore essential to enable the development of treatment modalities to stabilize such plaques. Several diagnostic methods are currently tested
Computing modal dispersion characteristics of radially Asymmetric ...
African Journals Online (AJOL)
We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to determine how the modal characteristics change as circular Bragg fiber is ...
Regularity theory for mean-field game systems
Gomes, Diogo A; Voskanyan, Vardan
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Regularity Theory for Mean-Field Game Systems
Gomes, Diogo A.
2016-09-14
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Differential regularization of a non-relativistic anyon model
International Nuclear Information System (INIS)
Freedman, D.Z.; Rius, N.
1993-07-01
Differential regularization is applied to a field theory of a non-relativistic charged boson field φ with λ(φ * φ) 2 self-interaction and coupling to a statistics-changing 0(1) Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the φ * φ * φφ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the β-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to β(λ, e) vanish, and β(λ, ε) itself vanishes when the ''self-dual'' condition relating λ to the gauge coupling e is imposed. (author). 12 refs, 1 fig
Regularity Theory for Mean-Field Game Systems
Gomes, Diogo A.; Pimentel, Edgard A.; Voskanyan, Vardan K.
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
International Nuclear Information System (INIS)
Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.
2004-01-01
We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field. (author)
Online Manifold Regularization by Dual Ascending Procedure
Directory of Open Access Journals (Sweden)
Boliang Sun
2013-01-01
Full Text Available We propose a novel online manifold regularization framework based on the notion of duality in constrained optimization. The Fenchel conjugate of hinge functions is a key to transfer manifold regularization from offline to online in this paper. Our algorithms are derived by gradient ascent in the dual function. For practical purpose, we propose two buffering strategies and two sparse approximations to reduce the computational complexity. Detailed experiments verify the utility of our approaches. An important conclusion is that our online MR algorithms can handle the settings where the target hypothesis is not fixed but drifts with the sequence of examples. We also recap and draw connections to earlier works. This paper paves a way to the design and analysis of online manifold regularization algorithms.
Directory of Open Access Journals (Sweden)
Gilang Anies Saendy
2015-10-01
Full Text Available Dampak perkembangan globalisasi membutuhkan informasi lebih lanjut, terutama informasi tentang modal intelektual perusahaan. Tapi, dalam kondisi nyata informasi modal intelektual masih rendah, yakni sekitar 27-35%. Objek penelitian ini adalah perbankan yang terdapat dalam direktori Pasar Modal Indonesia (ICMD 2010-2013. Jumlah populasi adalah 36 perbankan dan 17 sampel dengan menggunakan purposive sampling. Metode yang digunakan adalah analisis jalur. Hasil penelitian ini menunjukkan bahwa tidak pengaruh antara pelaksanaan GCG untuk pengungkapan modal intelektual dan kinerja keuangan. Selain itu, ada pengaruh positif antara kinerja modal intelektual terhadap kinerja keuangan dan kinerja keuangan untuk pengungkapan modal intelektual. Selanjutnya, hasil penelitian menunjukkan bahwa tidak efek mediasi melalui kinerja keuangan perusahaan antara implementasi GCG dalam pengungkapan modal intelektual. Hasilnya juga mengatakan ada efek mediasi antara pelaksanaan GCG untuk pengungkapan modal intelektual pikir kinerja modal intelektual. The development due to the increase of globalization gives impact to the need of having more information. One of them is the need to have information on company’s intellectual capital. But, in real condition, intellectual capital information is still low. It is about 27-35%. The objects of this research are banks organized in Indonesian Capital Market Directory (ICMD from 2010-2013. Total populations were 36 banks, and finally 17 samples were selected by using purposive sampling. The method used is path analysis. The results of this research show that there is no influence between GCG’s implementation on intellectual capital disclosure and financial performance. However, there are positive influences of intellectual capital performance on the financial performance, and financial performance on the disclosure of intellectual capital. Besides, this research said that there is no effect of mediation through the company
Introduction to differential equations
Taylor, Michael E
2011-01-01
The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Evidentiality, Epistemic Modality, and Epistemic Status
Directory of Open Access Journals (Sweden)
Rezeda Dilshatovna Shakirova
2016-09-01
Full Text Available The article discusses the interaction of evidentiality categories, typical of many Turkic, Finno-Ugric, Samoyed, certain Slavic, and other languages with the categories of epistemic modality, which is widely represented particularly in Germanic languages. The methodological framework of this study consists of the general philosophic, general scientific and private levels. The general philosophic methodology is based on the analytic philosophy, under the linguistic trend of which the language study was carried out to solve philosophic problems. The general scientific methodological bases of the study are related to the principle of identifying similarities and differences of the categories analyzed and the systematicity of description, whereas the descriptive method and techniques thereof are used primarily as the private-linguistic methods. In contrast to evidentiality, indicating the source of information, the epistemic modality marks different level of the information reliability. In the modern German language, the categories studied have a zone of intersection in terms of community within the means of expression, to which modal words and modal verbs as well as the verb scheinen can be primarily related. However, in the modern German language, there is no question of the category of evidentiality in the plane, within which it is currently being studied basing on the material of those languages, to the fragment of the grammatical system of which it is primarily inherent. As a rule, the semantics of evidentiality in these languages provides no information on the degree of reliability of the source of knowledge. To overcome the contradiction of such nature, this work suggests paying attention to the category of epistemic status of an utterance, the semantic structure of which is wider than evidentiality and epistemic modality and includes the level of reliability of the source of knowledge along with the designation thereof. In today's German
Conflict when making decisions about dialysis modality.
Chen, Nien-Hsin; Lin, Yu-Ping; Liang, Shu-Yuan; Tung, Heng-Hsin; Tsay, Shiow-Luan; Wang, Tsae-Jyy
2018-01-01
To explore decisional conflict and its influencing factors on choosing dialysis modality in patients with end-stage renal diseases. The influencing factors investigated include demographics, predialysis education, dialysis knowledge, decision self-efficacy and social support. Making dialysis modality decisions can be challenging for patients with end-stage renal diseases; there are pros and cons to both haemodialysis and peritoneal dialysis. Patients are often uncertain as to which one will be the best alternative for them. This decisional conflict increases the likelihood of making a decision that is not based on the patient's values or preferences and may result in undesirable postdecisional consequences. Addressing factors predisposing patients to decisional conflict helps to facilitate informed decision-making and then to improve healthcare quality. A predictive correlational cross-sectional study design was used. Seventy patients were recruited from the outpatient dialysis clinics of two general hospitals in Taiwan. Data were collected with study questionnaires, including questions on demographics, dialysis modality and predialysis education, the Dialysis Knowledge Scale, the Decision Self-Efficacy scale, the Social Support Scale, and the Decisional Conflict Scale. The mean score on the Decisional Conflict Scale was 29.26 (SD = 22.18). Decision self-efficacy, dialysis modality, predialysis education, professional support and dialysis knowledge together explained 76.4% of the variance in decisional conflict. Individuals who had lower decision self-efficacy, did not receive predialysis education on both haemodialysis and peritoneal dialysis, had lower dialysis knowledge and perceived lower professional support reported higher decisional conflict on choosing dialysis modality. When providing decisional support to predialysis stage patients, practitioners need to increase patients' decision self-efficacy, provide both haemodialysis and peritoneal dialysis
Regular transport dynamics produce chaotic travel times.
Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro
2014-06-01
In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.
PET regularization by envelope guided conjugate gradients
International Nuclear Information System (INIS)
Kaufman, L.; Neumaier, A.
1996-01-01
The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations
Matrix regularization of embedded 4-manifolds
International Nuclear Information System (INIS)
Trzetrzelewski, Maciej
2012-01-01
We consider products of two 2-manifolds such as S 2 ×S 2 , embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N) matrices. A regularization of the 4-sphere is also performed by constructing N 2 ×N 2 matrix representations of the 4-algebra (and as a byproduct of the 3-algebra which makes the regularization of S 3 also possible).
Gravitational Quasinormal Modes of Regular Phantom Black Hole
Directory of Open Access Journals (Sweden)
Jin Li
2017-01-01
Full Text Available We investigate the gravitational quasinormal modes (QNMs for a type of regular black hole (BH known as phantom BH, which is a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three different spacetimes: asymptotically flat, de Sitter (dS, and anti-de Sitter (AdS. In order to consider the standard odd parity and even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd and even parities. The decay rate of perturbation is strongly dependent on the scale parameter b, which measures the coupling strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the thermodynamics of such regular phantom BH is also influenced by b. The obtained results might shed some light on the quantum interpretation of QNM perturbation.
Properties of regular polygons of coupled microring resonators.
Chremmos, Ioannis; Uzunoglu, Nikolaos
2007-11-01
The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.
A general framework for regularized, similarity-based image restoration.
Kheradmand, Amin; Milanfar, Peyman
2014-12-01
Any image can be represented as a function defined on a weighted graph, in which the underlying structure of the image is encoded in kernel similarity and associated Laplacian matrices. In this paper, we develop an iterative graph-based framework for image restoration based on a new definition of the normalized graph Laplacian. We propose a cost function, which consists of a new data fidelity term and regularization term derived from the specific definition of the normalized graph Laplacian. The normalizing coefficients used in the definition of the Laplacian and associated regularization term are obtained using fast symmetry preserving matrix balancing. This results in some desired spectral properties for the normalized Laplacian such as being symmetric, positive semidefinite, and returning zero vector when applied to a constant image. Our algorithm comprises of outer and inner iterations, where in each outer iteration, the similarity weights are recomputed using the previous estimate and the updated objective function is minimized using inner conjugate gradient iterations. This procedure improves the performance of the algorithm for image deblurring, where we do not have access to a good initial estimate of the underlying image. In addition, the specific form of the cost function allows us to render the spectral analysis for the solutions of the corresponding linear equations. In addition, the proposed approach is general in the sense that we have shown its effectiveness for different restoration problems, including deblurring, denoising, and sharpening. Experimental results verify the effectiveness of the proposed algorithm on both synthetic and real examples.
Error estimates in projective solutions of the radon equation
International Nuclear Information System (INIS)
Lubuma, M.S.
1991-04-01
The model Radon equation is the integral equation of the second kind defined by the interior limits of the electrostatic double layer potential relative to a curve with one angular point and characterized by the non compactness of the operator with respect to the maximum norm. It is shown that the solution to this equation is decomposable into a regular part and a finite linear combination of intrinsic singular functions. The maximal regularity of the solution and explicit formulae for the coefficients of the singular functions are given. The regularity permits to specify how slow the convergence of the classical projection method is, while the above mentioned formulae lead to modified projection methods of the Dual Singular Function Method type, with better approximations for the solution and for the coefficients of singularities. (author). 23 refs
On the hierarchy of partially invariant submodels of differential equations
Energy Technology Data Exchange (ETDEWEB)
Golovin, Sergey V [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090 (Russian Federation)], E-mail: sergey@hydro.nsc.ru
2008-07-04
It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.
On the hierarchy of partially invariant submodels of differential equations
Golovin, Sergey V.
2008-07-01
It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.
On the hierarchy of partially invariant submodels of differential equations
International Nuclear Information System (INIS)
Golovin, Sergey V
2008-01-01
It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given
Darboux transformations and linear parabolic partial differential equations
International Nuclear Information System (INIS)
Arrigo, Daniel J.; Hickling, Fred
2002-01-01
Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor
International Nuclear Information System (INIS)
Lebedev, D.R.
1979-01-01
Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown
Vragov’s boundary value problem for an implicit equation of mixed type
Egorov, I. E.
2017-10-01
We study a Vragov boundary value problem for a third-order implicit equation of mixed type with an arbitrary manifold of type switch. These Sobolev-type equations arise in many important applied problems. Given certain constraints on the coefficients and the right-hand side of the equation, we demonstrate, using nonstationary Galerkin method and regularization method, the unique regular solvability of the boundary value problem. We also obtain an error estimate for approximate solutions of the boundary value problem in terms of the regularization parameter and the eigenvalues of the Dirichlet spectral problem for the Laplace operator.
Effective action for scalar fields and generalized zeta-function regularization
International Nuclear Information System (INIS)
Cognola, Guido; Zerbini, Sergio
2004-01-01
Motivated by the study of quantum fields in a Friedmann-Robertson-Walker space-time, the one-loop effective action for a scalar field defined in the ultrastatic manifold RxH 3 /Γ, H 3 /Γ being the finite volume, noncompact, hyperbolic spatial section, is investigated by a generalization of zeta-function regularization. It is shown that additional divergences may appear at the one-loop level. The one-loop renormalizability of the model is discussed and, making use of a generalization of zeta-function regularization, the one-loop renormalization group equations are derived
Fractional Schroedinger equation
International Nuclear Information System (INIS)
Laskin, Nick
2002-01-01
Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations
Ordinary differential equations
Greenberg, Michael D
2014-01-01
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps
Beginning partial differential equations
O'Neil, Peter V
2014-01-01
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or
Regularity and irreversibility of weekly travel behavior
Kitamura, R.; van der Hoorn, A.I.J.M.
1987-01-01
Dynamic characteristics of travel behavior are analyzed in this paper using weekly travel diaries from two waves of panel surveys conducted six months apart. An analysis of activity engagement indicates the presence of significant regularity in weekly activity participation between the two waves.
Regular and context-free nominal traces
DEFF Research Database (Denmark)
Degano, Pierpaolo; Ferrari, Gian-Luigi; Mezzetti, Gianluca
2017-01-01
Two kinds of automata are presented, for recognising new classes of regular and context-free nominal languages. We compare their expressive power with analogous proposals in the literature, showing that they express novel classes of languages. Although many properties of classical languages hold ...
Faster 2-regular information-set decoding
Bernstein, D.J.; Lange, T.; Peters, C.P.; Schwabe, P.; Chee, Y.M.
2011-01-01
Fix positive integers B and w. Let C be a linear code over F 2 of length Bw. The 2-regular-decoding problem is to find a nonzero codeword consisting of w length-B blocks, each of which has Hamming weight 0 or 2. This problem appears in attacks on the FSB (fast syndrome-based) hash function and
Complexity in union-free regular languages
Czech Academy of Sciences Publication Activity Database
Jirásková, G.; Masopust, Tomáš
2011-01-01
Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free-path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html
Regular Gleason Measures and Generalized Effect Algebras
Dvurečenskij, Anatolij; Janda, Jiří
2015-12-01
We study measures, finitely additive measures, regular measures, and σ-additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras.
Regularization of finite temperature string theories
International Nuclear Information System (INIS)
Leblanc, Y.; Knecht, M.; Wallet, J.C.
1990-01-01
The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)
A Sim(2 invariant dimensional regularization
Directory of Open Access Journals (Sweden)
J. Alfaro
2017-09-01
Full Text Available We introduce a Sim(2 invariant dimensional regularization of loop integrals. Then we can compute the one loop quantum corrections to the photon self energy, electron self energy and vertex in the Electrodynamics sector of the Very Special Relativity Standard Model (VSRSM.
Gravitational lensing by a regular black hole
International Nuclear Information System (INIS)
Eiroa, Ernesto F; Sendra, Carlos M
2011-01-01
In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.
Gravitational lensing by a regular black hole
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)
2011-04-21
In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.
Annotation of regular polysemy and underspecification
DEFF Research Database (Denmark)
Martínez Alonso, Héctor; Pedersen, Bolette Sandford; Bel, Núria
2013-01-01
We present the result of an annotation task on regular polysemy for a series of seman- tic classes or dot types in English, Dan- ish and Spanish. This article describes the annotation process, the results in terms of inter-encoder agreement, and the sense distributions obtained with two methods...
Stabilization, pole placement, and regular implementability
Belur, MN; Trentelman, HL
In this paper, we study control by interconnection of linear differential systems. We give necessary and sufficient conditions for regular implementability of a-given linear, differential system. We formulate the problems of stabilization and pole placement as problems of finding a suitable,
12 CFR 725.3 - Regular membership.
2010-01-01
... UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.3 Regular membership. (a) A natural person credit....5(b) of this part, and forwarding with its completed application funds equal to one-half of this... 1, 1979, is not required to forward these funds to the Facility until October 1, 1979. (3...
Supervised scale-regularized linear convolutionary filters
DEFF Research Database (Denmark)
Loog, Marco; Lauze, Francois Bernard
2017-01-01
also be solved relatively efficient. All in all, the idea is to properly control the scale of a trained filter, which we solve by introducing a specific regularization term into the overall objective function. We demonstrate, on an artificial filter learning problem, the capabil- ities of our basic...
On regular riesz operators | Raubenheimer | Quaestiones ...
African Journals Online (AJOL)
The r-asymptotically quasi finite rank operators on Banach lattices are examples of regular Riesz operators. We characterise Riesz elements in a subalgebra of a Banach algebra in terms of Riesz elements in the Banach algebra. This enables us to characterise r-asymptotically quasi finite rank operators in terms of adjoint ...
Regularized Discriminant Analysis: A Large Dimensional Study
Yang, Xiaoke
2018-04-28
In this thesis, we focus on studying the performance of general regularized discriminant analysis (RDA) classifiers. The data used for analysis is assumed to follow Gaussian mixture model with different means and covariances. RDA offers a rich class of regularization options, covering as special cases the regularized linear discriminant analysis (RLDA) and the regularized quadratic discriminant analysis (RQDA) classi ers. We analyze RDA under the double asymptotic regime where the data dimension and the training size both increase in a proportional way. This double asymptotic regime allows for application of fundamental results from random matrix theory. Under the double asymptotic regime and some mild assumptions, we show that the asymptotic classification error converges to a deterministic quantity that only depends on the data statistical parameters and dimensions. This result not only implicates some mathematical relations between the misclassification error and the class statistics, but also can be leveraged to select the optimal parameters that minimize the classification error, thus yielding the optimal classifier. Validation results on the synthetic data show a good accuracy of our theoretical findings. We also construct a general consistent estimator to approximate the true classification error in consideration of the unknown previous statistics. We benchmark the performance of our proposed consistent estimator against classical estimator on synthetic data. The observations demonstrate that the general estimator outperforms others in terms of mean squared error (MSE).
Complexity in union-free regular languages
Czech Academy of Sciences Publication Activity Database
Jirásková, G.; Masopust, Tomáš
2011-01-01
Roč. 22, č. 7 (2011), s. 1639-1653 ISSN 0129-0541 Institutional research plan: CEZ:AV0Z10190503 Keywords : Union-free regular language * one-cycle-free- path automaton * descriptional complexity Subject RIV: BA - General Mathematics Impact factor: 0.379, year: 2011 http://www.worldscinet.com/ijfcs/22/2207/S0129054111008933.html
Bit-coded regular expression parsing
DEFF Research Database (Denmark)
Nielsen, Lasse; Henglein, Fritz
2011-01-01
the DFA-based parsing algorithm due to Dub ´e and Feeley to emit the bits of the bit representation without explicitly materializing the parse tree itself. We furthermore show that Frisch and Cardelli’s greedy regular expression parsing algorithm can be straightforwardly modified to produce bit codings...
Tetravalent one-regular graphs of order 4p2
DEFF Research Database (Denmark)
Feng, Yan-Quan; Kutnar, Klavdija; Marusic, Dragan
2014-01-01
A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified.......A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper tetravalent one-regular graphs of order 4p2, where p is a prime, are classified....