Dynamical systems theory for the Gardner equation
Saha, Aparna; Talukdar, B.; Chatterjee, Supriya
2014-02-01
The Gardner equation ut+auux+bu2ux+μuxxx=0 is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation when the effects of higher-order nonlinearity become significant. Using the so-called traveling wave ansatz u (x,t)=φ(ξ), ξ =x-vt (where v is the velocity of the wave) we convert the (1+1)-dimensional partial differential equation to a second-order ordinary differential equation in ϕ with an arbitrary constant and treat the latter equation by the methods of the dynamical systems theory. With some special attention on the equilibrium points of the equation, we derive an analytical constraint for admissible values of the parameters a, b, and μ. From the Hamiltonian form of the system we confirm that, in addition to the usual bright soliton solution, the equation can be used to generate three different varieties of internal waves of which one is a dark soliton recently observed in water [A. Chabchoub et al., Phys. Rev. Lett. 110, 124101 (2013), 10.1103/PhysRevLett.110.124101].
Fractal differential equations and fractal-time dynamical systems
Indian Academy of Sciences (India)
equations. Hence the latter can be used to model fractal-time processes or sublinear dynamical systems. ... for the treatment of diffusion, heat conduction, waves, etc., on self-similar fractals [25–28]. Harmonic ... differential equations offer possibilities of modeling dynamical behaviours naturally for which ordinary differential ...
Differential equations, dynamical systems, and an introduction to chaos
Smale, Stephen; Devaney, Robert L
2003-01-01
Thirty years in the making, this revised text by three of the world''s leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra.The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of the Field''s Medal for his work in dynamical systems.* Developed by award-winning researchers and authors* Provides a rigorous yet accessible introduction to differential equations and dynamical systems* Includes bifurcation theory throughout* Contains numerous explorations for students to embark uponNEW IN THIS EDITION* New contemporary material and updated applications* Revisions throughout the text, including simplification...
Equation-free model reduction for complex dynamical systems
International Nuclear Information System (INIS)
Le Maitre, O. P.; Mathelin, L.; Le Maitre, O. P.
2010-01-01
This paper presents a reduced model strategy for simulation of complex physical systems. A classical reduced basis is first constructed relying on proper orthogonal decomposition of the system. Then, unlike the alternative approaches, such as Galerkin projection schemes for instance, an equation-free reduced model is constructed. It consists in the determination of an explicit transformation, or mapping, for the evolution over a coarse time-step of the projection coefficients of the system state on the reduced basis. The mapping is expressed as an explicit polynomial transformation of the projection coefficients and is computed once and for all in a pre-processing stage using the detailed model equation of the system. The reduced system can then be advanced in time by successive applications of the mapping. The CPU cost of the method lies essentially in the mapping approximation which is performed offline, in a parallel fashion, and only once. Subsequent application of the mapping to perform a time-integration is carried out at a low cost thanks to its explicit character. Application of the method is considered for the 2-D flow around a circular cylinder. We investigate the effectiveness of the reduced model in rendering the dynamics for both asymptotic state and transient stages. It is shown that the method leads to a stable and accurate time-integration for only a fraction of the cost of a detailed simulation, provided that the mapping is properly approximated and the reduced basis remains relevant for the dynamics investigated. (authors)
Continuous monitoring of dynamical systems and master equations
Energy Technology Data Exchange (ETDEWEB)
Lopes Oliveira, L.F. [Programa de Pós-Graduação em Modelagem Matemática e Computacional, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000, Belo Horizonte, MG (Brazil); Rossi, R., E-mail: romeu_rossi@hotmail.com [Universidade Federal de Viçosa, Campus Florestal, 35690-000, Florestal, MG (Brazil); Bosco de Magalhães, A.R.; Peixoto de Faria, J.G. [Programa de Pós-Graduação em Modelagem Matemática e Computacional, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000, Belo Horizonte, MG (Brazil); Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, 30510-000, Belo Horizonte, MG (Brazil); Nemes, M.C. [Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, CP 702, 30161-970, Belo Horizonte, MG (Brazil)
2012-04-30
We illustrate the equivalence between the non-unitary evolution of an open quantum system governed by a Markovian master equation and a process of continuous measurements involving this system. We investigate a system of two coupled modes, only one of them interacting with external degrees of freedom, represented, in the first case, by a finite number of harmonic oscillators, and, in the second, by a sequence of atoms where each one interacts with a single mode during a limited time. Two distinct regimes appear, one of them corresponding to a Zeno-like behavior in the limit of large dissipation. -- Highlights: ► We illustrate the conjecture that non-unitary evolution can be simulated by continuous measurements. ► The relation between unitary and non-unitary couplings define distinct dynamical regimes. ► One regime with large “dissipation constant” is a Zeno-like behavior.
Dynamics of open quantum spin systems : An assessment of the quantum master equation approach
Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.
2016-01-01
Data of the numerical solution of the time-dependent Schrodinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of
A 'User-Friendly' Approach to the Dynamical Equations of Non-Holonomic Systems
Directory of Open Access Journals (Sweden)
Sergio Benenti
2007-03-01
Full Text Available Two effective methods for writing the dynamical equations for non-holonomic systems are illustrated. They are based on the two types of representation of the constraints: by parametric equations or by implicit equations. They can be applied to linear as well as to non-linear constraints. Only the basic notions of vector calculus on Euclidean 3-space and on tangent bundles are needed. Elementary examples are illustrated.
Directory of Open Access Journals (Sweden)
Pål Johan From
2012-04-01
Full Text Available This paper presents the explicit dynamic equations of multibody mechanical systems. This is the second paper on this topic. In the first paper the dynamics of a single rigid body from the Boltzmann--Hamel equations were derived. In this paper these results are extended to also include multibody systems. We show that when quasi-velocities are used, the part of the dynamic equations that appear from the partial derivatives of the system kinematics are identical to the single rigid body case, but in addition we get terms that come from the partial derivatives of the inertia matrix, which are not present in the single rigid body case. We present for the first time the complete and correct derivation of multibody systems based on the Boltzmann--Hamel formulation of the dynamics in Lagrangian form where local position and velocity variables are used in the derivation to obtain the singularity-free dynamic equations. The final equations are written in global variables for both position and velocity. The main motivation of these papers is to allow practitioners not familiar with differential geometry to implement the dynamic equations of rigid bodies without the presence of singularities. Presenting the explicit dynamic equations also allows for more insight into the dynamic structure of the system. Another motivation is to correct some errors commonly found in the literature. Unfortunately, the formulation of the Boltzmann-Hamel equations used here are presented incorrectly. This has been corrected by the authors, but we present here, for the first time, the detailed mathematical details on how to arrive at the correct equations. We also show through examples that using the equations presented here, the dynamics of a single rigid body is reduced to the standard equations on a Lagrangian form, for example Euler's equations for rotational motion and Euler--Lagrange equations for free motion.
Fractal differential equations and fractal-time dynamical systems
Indian Academy of Sciences (India)
These sections are written in more intuitive fashion avoiding the jargon as far as possible. In §3, we discuss some examples of Fα-differential equations. ..... We emphasize the appearance of intersection F ∩ I in the definition of M and m, and also the use of (Sα. F (xi+1) − Sα. F (xi)) as in a Riemann–Stieltjes sum instead.
International Nuclear Information System (INIS)
Mikami, T.
2000-01-01
R. Jordan, D. Kinderlehrer, and F. Otto proposed the discrete-time approximation of the Fokker-Planck equation by the variational formulation. It is determined by the Wasserstein metric, an energy functional, and the Gibbs-Boltzmann entropy functional. In this paper we study the asymptotic behavior of the dynamical systems which describe their approximation of the Fokker-Planck equation and characterize the limit as a solution to a class of variational problems
Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan
2016-04-12
Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.
Winkel, Brian
2012-01-01
We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)
Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor
International Nuclear Information System (INIS)
Saha Ray, S.
2012-01-01
Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.
Elizarova, Tatiana G
2009-01-01
This book presents two interconnected mathematical models generalizing the Navier-Stokes system. The models, called the quasi-gas-dynamic and quasi-hydrodynamic equations, are then used as the basis of numerical methods solving gas- and fluid-dynamic problems.
Dynamics of partial differential equations
Wayne, C Eugene
2015-01-01
This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation. The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...
Directory of Open Access Journals (Sweden)
Sara Cruz y Cruz
2013-01-01
Full Text Available We analyze the dynamical equations obeyed by a classical system with position-dependent mass. It is shown that there is a non-conservative force quadratic in the velocity associated to the variable mass. We construct the Lagrangian and the Hamiltonian for this system and find the modifications required in the Euler-Lagrange and Hamilton's equations to reproduce the appropriate Newton's dynamical law. Since the Hamiltonian is not time invariant, we get a constant of motion suited to write the dynamical equations in the form of the Hamilton's ones. The time-dependent first integrals of motion are then obtained from the factorization of such a constant. A canonical transformation is found to map the variable mass equations to those of a constant mass. As particular cases, we recover some recent results for which the dependence of the mass on the position was already unnoticed, and find new solvable potentials of the Pöschl-Teller form which seem to be new. The latter are associated to either the su(1,1 or the su(2 Lie algebras depending on the sign of the Hamiltonian.
Comprehensive solutions to the Bloch equations and dynamical models for open two-level systems
Skinner, Thomas E.
2018-01-01
The Bloch equation and its variants constitute the fundamental dynamical model for arbitrary two-level systems. Many important processes, including those in more complicated systems, can be modeled and understood through the two-level approximation. It is therefore of widespread relevance, especially as it relates to understanding dissipative processes in current cutting-edge applications of quantum mechanics. Although the Bloch equation has been the subject of considerable analysis in the 70 years since its inception, there is still, perhaps surprisingly, significant work that can be done. This paper extends the scope of previous analyses. It provides a framework for more fully understanding the dynamics of dissipative two-level systems. A solution is derived that is compact, tractable, and completely general, in contrast to previous results. Any solution of the Bloch equation depends on three roots of a cubic polynomial that are crucial to the time dependence of the system. The roots are typically only sketched out qualitatively, with no indication of their dependence on the physical parameters of the problem. Degenerate roots, which modify the solutions, have been ignored altogether. Here the roots are obtained explicitly in terms of a single real-valued root that is expressed as a simple function of the system parameters. For the conventional Bloch equation, a simple graphical representation of this root is presented that makes evident the explicit time dependence of the system for each point in the parameter space. Several intuitive, visual models of system dynamics are developed. A Euclidean coordinate system is identified in which any generalized Bloch equation is separable, i.e., the sum of commuting rotation and relaxation operators. The time evolution in this frame is simply a rotation followed by relaxation at modified rates that play a role similar to the standard longitudinal and transverse rates. These rates are functions of the applied field, which
Peng, NaiFu; Guan, Hui; Wu, ChuiJie
2016-04-01
In this paper, the theory of constructing optimal dynamical systems based on weighted residual presented by Wu & Sha is applied to three-dimensional Navier-Stokes equations, and the optimal dynamical system modeling equations are derived. Then the multiscale global optimization method based on coarse graining analysis is presented, by which a set of approximate global optimal bases is directly obtained from Navier-Stokes equations and the construction of optimal dynamical systems is realized. The optimal bases show good properties, such as showing the physical properties of complex flows and the turbulent vortex structures, being intrinsic to real physical problem and dynamical systems, and having scaling symmetry in mathematics, etc.. In conclusion, using fewer terms of optimal bases will approach the exact solutions of Navier-Stokes equations, and the dynamical systems based on them show the most optimal behavior.
A Dynamic System of Growth and Yield Equations for Pinus patula
Directory of Open Access Journals (Sweden)
Wenceslao Santiago-García
2017-11-01
Full Text Available Sustainable forest management needs tools that can predict how silvicultural treatments will affect cutting stands. Growth and yield systems are an example of these tools because they can represent periods of growth and yield of a stand in numerical terms. The aim of this research was to develop a dynamic growth and yield timber system with the stand-level models approach for Pinus patula in even-aged forests of Ixtlán de Juárez, Oaxaca, Mexico. The data was obtained from two consecutive remeasurements of 66 permanent 400 m2 plots. With this information, prediction and projection equations in the algebraic difference approach for mean diameter at breast height (DBH, basal area and total volume per hectare were fitted through the seemingly unrelated regression technique. Mortality was fitted by the non-linear least squares method. A model of dominant height and site index (Levakovic II with polymorphism was related to basal area, DBH, total volume ha−1 and mortality equations. The growth system generated an average optimal age rotation of 32 years when the current annual increment (CAI was the same as the mean annual increment (MAI for the mean site index and a density of 1500 trees ha−1 at five years. The growth and yield system developed is an important tool for planning forest management of even-aged P. patula forests.
Stella, L.; Lorenz, C. D.; Kantorovich, L.
2014-04-01
The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e.g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
Global dynamics for switching systems and their extensions by linear differential equations
Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin
2018-03-01
Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.
Kadowaki, Tadashi
2018-02-01
We propose a method to interpolate dynamics of von Neumann and classical master equations with an arbitrary mixing parameter to investigate the thermal effects in quantum dynamics. The two dynamics are mixed by intervening to continuously modify their solutions, thus coupling them indirectly instead of directly introducing a coupling term. This maintains the quantum system in a pure state even after the introduction of thermal effects and obtains not only a density matrix but also a state vector representation. Further, we demonstrate that the dynamics of a two-level system can be rewritten as a set of standard differential equations, resulting in quantum dynamics that includes thermal relaxation. These equations are equivalent to the optical Bloch equations at the weak coupling and asymptotic limits, implying that the dynamics cause thermal effects naturally. Numerical simulations of ferromagnetic and frustrated systems support this idea. Finally, we use this method to study thermal effects in quantum annealing, revealing nontrivial performance improvements for a spin glass model over a certain range of annealing time. This result may enable us to optimize the annealing time of real annealing machines.
The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems
Etingof, Pavel
2005-01-01
The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups. The book, which contains many detailed proofs and explicit calculations, will be accessible to graduate students of mathematics, who are familiar with the basics of representation theory of semisimple Lie algebras.
Directory of Open Access Journals (Sweden)
V. Hadžiabdić
2017-01-01
Full Text Available We investigate global dynamics of the following systems of difference equations xn+1=xn/A1+B1xn+C1yn, yn+1=yn2/A2+B2xn+C2yn2, n=0,1,…, where the parameters A1, A2, B1, B2, C1, and C2 are positive numbers and the initial conditions x0 and y0 are arbitrary nonnegative numbers. This system is a version of the Leslie-Gower competition model for two species. We show that this system has rich dynamics which depends on the part of parametric space.
Relativistic three-particle dynamical equations: II. Application to the trinucleon system
International Nuclear Information System (INIS)
Adhikari, S.K.; Tomio, L.
1993-11-01
The contribution of relativistic dynamics on the neutron-deuteron scattering length and triton binding energy is calculated employing five sets tri nucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off-and on-shell variations of two and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (author)
Poincaré, Henri
2017-01-01
Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations’ solutions, such as orbital resonances and horseshoe orbits. Poincaré wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating. .
On the dynamics of a non-local parabolic equation arising from the Gierer-Meinhardt system
Kavallaris, Nikos I.; Suzuki, Takashi
2017-05-01
The purpose of the current paper is to contribute to the comprehension of the dynamics of the shadow system of an activator-inhibitor system known as a Gierer-Meinhardt model. Shadow systems are intended to work as an intermediate step between single equations and reaction-diffusion systems. In the case where the inhibitor’s response to the activator’s growth is rather weak, then the shadow system of the Gierer-Meinhardt model is reduced to a single though non-local equation whose dynamics will be investigated. We mainly focus on the derivation of blow-up results for this non-local equation which can be seen as instability patterns of the shadow system. In particular, a diffusion driven instability (DDI), or Turing instability, in the neighbourhood of a constant stationary solution, which it is destabilised via diffusion-driven blow-up, is obtained. The latter actually indicates the formation of some unstable patterns, whilst some stability results of global-in-time solutions towards non-constant steady states guarantee the occurrence of some stable patterns.
Utility rate equations of group population dynamics in biological and social systems.
Yukalov, Vyacheslav I; Yukalova, Elizaveta P; Sornette, Didier
2013-01-01
We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about [Formula: see text] each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita.
Sternberg, Shlomo
2010-01-01
Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the
Directory of Open Access Journals (Sweden)
Pål Johan From
2012-04-01
Full Text Available This paper presents the explicit dynamic equations of a mechanical system. The equations are presented so that they can easily be implemented in a simulation software or controller environment and are also well suited for system and controller analysis. The dynamics of a general mechanical system consisting of one or more rigid bodies can be derived from the Lagrangian. We can then use several well known properties of Lie groups to guarantee that these equations are well defined. This will, however, often lead to rather abstract formulation of the dynamic equations that cannot be implemented in a simulation software directly. In this paper we close this gap and show what the explicit dynamic equations look like. These equations can then be implemented directly in a simulation software and no background knowledge on Lie theory and differential geometry on the practitioner's side is required. This is the first of two papers on this topic. In this paper we derive the dynamics for single rigid bodies, while in the second part we study multibody systems. In addition to making the equations more accessible to practitioners, a motivation behind the papers is to correct a few errors commonly found in literature. For the first time, we show the detailed derivations and how to arrive at the correct set of equations. We also show through some simple examples that these correspond with the classical formulations found from Lagrange's equations. The dynamics is derived from the Boltzmann--Hamel equations of motion in terms of local position and velocity variables and the mapping to the corresponding quasi-velocities. Finally we present a new theorem which states that the Boltzmann--Hamel formulation of the dynamics is valid for all transformations with a Lie group topology. This has previously only been indicated through examples, but here we also present the formal proof. The main motivation of these papers is to allow practitioners not familiar with
Sagis, L.M.C.; Öttinger, H.C.
2013-01-01
In this paper we present a general model for the dynamic behavior of multiphase systems in which the bulk phases and interfaces have a complex microstructure (for example, immiscible polymer blends with added compatibilizers, or polymer stabilized emulsions with thickening agents dispersed in the
Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations
Aydogmus, F.
2015-02-01
The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the "Heisenberg dream." In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.
Czech Academy of Sciences Publication Activity Database
Maslowski, Bohdan; Schmalfuss, B.
2004-01-01
Roč. 22, č. 6 (2004), s. 1577-1607 ISSN 0736-2994 R&D Projects: GA ČR GA201/01/1197 Institutional research plan: CEZ:AV0Z1019905 Keywords : fractional Brownian motion * random dynamical systems * stationary solutions Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2004 http://www.tandfonline.com/doi/full/10.1081/ SAP -200029498
Decomposition of the Equations of Motion in the Analysis of Dynamics of a 3-DOF Nonideal System
Directory of Open Access Journals (Sweden)
Jan Awrejcewicz
2014-01-01
Full Text Available The dynamic response of a nonlinear system with three degrees of freedom, which is excited by nonideal excitation, is investigated. In the considered system the role of a nonideal source is played by a direct current motor, where the central axis of the rotor is not coincident with the axis of rotation. This translation generates a torque whose magnitude depends on the angular velocity. During the system operation a general coordinate assigned to the nonideal source grows rapidly as a result of rotation. We propose the decomposition of the equations of motion in such a way to extract the solution which is directly related to the rotation of an unbalanced rotor. The remaining part of the solution describes pure oscillation depending on the dynamical behaviour of the whole system. The decomposed equations are solved numerically. The influence of selected system parameters on the rotor vibration is examined. The presented approach can be applied to separate vibration and rotation of motions in many other engineering systems.
Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations
International Nuclear Information System (INIS)
Aydogmus, F.
2015-01-01
The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the “Heisenberg dream.” In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented
International Nuclear Information System (INIS)
Vuillermot, P.A.
1988-01-01
We present and discuss three new theorems concerning the existence of smooth manifolds associated with certain infinite-dimensional dynamical systems defined from nonlinear Klein-Gordon equations of the form u tt (x, t) = u xx (x, t)-g(u(x, t)), where g: R → R is analytic and where (x, t) ε R 2 . In particular, we prove the nonexistence of small amplitude soliton bound state solutions in the classical Φ 4 -theory, a fact recently brought about by the perturbative analysis of Kruskal and Segur [fr
Directory of Open Access Journals (Sweden)
Adrian Petruşel
2015-01-01
Full Text Available We will discuss discrete dynamics generated by single-valued and multivalued operators in spaces endowed with a generalized metric structure. More precisely, the behavior of the sequence (fn(xn∈N of successive approximations in complete generalized gauge spaces is discussed. In the same setting, the case of multivalued operators is also considered. The coupled fixed points for mappings t1:X1×X2→X1 and t2:X1×X2→X2 are discussed and an application to a system of nonlinear integral equations is given.
Pyragas, K.; Lange, F.; Letz, T.; Parisi, J.; Kittel, A.
2001-01-01
We suggest a quantitatively correct procedure for reducing the spatial degrees of freedom of the space-dependent rate equations of a multimode laser that describe the dynamics of the population inversion of the active medium and the mode intensities of the standing waves in the laser cavity. The key idea of that reduction is to take advantage of the small value of the parameter that defines the ratio between the population inversion decay rate and the cavity decay rate. We generalize the reduction procedure for the case of an intracavity frequency doubled laser. Frequency conversion performed by an optically nonlinear crystal placed inside the laser cavity may cause a pronounced instability in the laser performance, leading to chaotic oscillations of the output intensity. Based on the reduced equations, we analyze the dynamical properties of the system as well as the problem of stabilizing the steady state. The numerical analysis is performed considering the specific system of a Nd:YAG (neodymium-doped yttrium aluminum garnet) laser with an intracavity KTP (potassium titanyl phosphate) crystal.
Automotive fuel consumption in Brazil. Applying static and dynamic systems of demand equations
International Nuclear Information System (INIS)
Iootty, Mariana; Pinto, Helder Jr.; Ebeling, Francisco
2009-01-01
This paper aims to investigate and explain the performance of the Brazilian demand for automotive fuels in the period 1970-2005. It estimates the price and income elasticities for all the available fuels in the automotive sector in the country: gasoline, compressed natural gas (CNG), ethanol and diesel. The analysis of the expenditure allocation process among these fuels is carried out through the estimation of a linear approximation of an Almost Ideal Demand System (AIDS) model. Two estimation methods were implemented: the static (through a seemingly unrelated regression) and a dynamic (through a vector error correction model). Specification tests support the use of the latter. The empirical analysis suggests a high substitutability between gasoline and ethanol; being this relation higher than the one observed between gasoline and CNG. The study shows that gasoline, ethanol and diesel are normal goods, and with the exception of ethanol, they are expenditure elastic. CNG was estimated as an inferior good. (author)
Automotive fuel consumption in Brazil: Applying static and dynamic systems of demand equations
Energy Technology Data Exchange (ETDEWEB)
Iootty, Mariana, E-mail: miootty@ie.ufrj.b [IE-UFRJ (Institute of Economics-Federal University of Rio de Janeiro), Energy Economics Group (Brazil); UFRRJ (Federal Rural University of Rio de Janeiro) (Brazil); Pinto, Helder [IE-UFRJ (Institute of Economics-Federal University of Rio de Janeiro), Energy Economics Group (Brazil); Ebeling, Francisco, E-mail: francisco.ebeling@ibp.org.b [Brazilian Petroleum Institute (Brazil)
2009-12-15
This paper aims to investigate and explain the performance of the Brazilian demand for automotive fuels in the period 1970-2005. It estimates the price and income elasticities for all the available fuels in the automotive sector in the country: gasoline, compressed natural gas (CNG), ethanol and diesel. The analysis of the expenditure allocation process among these fuels is carried out through the estimation of a linear approximation of an Almost Ideal Demand System (AIDS) model. Two estimation methods were implemented: the static (through a seemingly unrelated regression) and a dynamic (through a vector error correction model). Specification tests support the use of the latter. The empirical analysis suggests a high substitutability between gasoline and ethanol; being this relation higher than the one observed between gasoline and CNG. The study shows that gasoline, ethanol and diesel are normal goods, and with the exception of ethanol, they are expenditure elastic. CNG was estimated as an inferior good.
Automotive fuel consumption in Brazil. Applying static and dynamic systems of demand equations
Energy Technology Data Exchange (ETDEWEB)
Iootty, Mariana [IE-UFRJ (Institute of Economics - Federal University of Rio de Janeiro), Energy Economics Group (Brazil); UFRRJ (Federal Rural University of Rio de Janeiro) (Brazil); Pinto, Helder Jr. [IE-UFRJ (Institute of Economics - Federal University of Rio de Janeiro), Energy Economics Group (Brazil); Ebeling, Francisco [Brazilian Petroleum Institute (Brazil)
2009-12-15
This paper aims to investigate and explain the performance of the Brazilian demand for automotive fuels in the period 1970-2005. It estimates the price and income elasticities for all the available fuels in the automotive sector in the country: gasoline, compressed natural gas (CNG), ethanol and diesel. The analysis of the expenditure allocation process among these fuels is carried out through the estimation of a linear approximation of an Almost Ideal Demand System (AIDS) model. Two estimation methods were implemented: the static (through a seemingly unrelated regression) and a dynamic (through a vector error correction model). Specification tests support the use of the latter. The empirical analysis suggests a high substitutability between gasoline and ethanol; being this relation higher than the one observed between gasoline and CNG. The study shows that gasoline, ethanol and diesel are normal goods, and with the exception of ethanol, they are expenditure elastic. CNG was estimated as an inferior good. (author)
Linear integral equations and soliton systems
International Nuclear Information System (INIS)
Quispel, G.R.W.
1983-01-01
A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)
Effective evolution equations from quantum dynamics
Benedikter, Niels; Schlein, Benjamin
2016-01-01
These notes investigate the time evolution of quantum systems, and in particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. The focus is primarily on the derivation of time-dependent effective theories (non-equilibrium question) approximating many-body quantum dynamics. The book is divided into seven sections, the first of which briefly reviews the main properties of many-body quantum systems and their time evolution. Section 2 introduces the mean-field regime for bosonic systems and explains how the many-body dynamics can be approximated in this limit using the Hartree equation. Section 3 presents a method, based on the use of coherent states, for rigorously proving the convergence towards the Hartree dynamics, while the fluctuations around the Hartree equation are considered in Section 4. Section 5 focuses on a discussion of a more subtle regime, in which the many-body evolution can be approximated by means of t...
Equation for the optimal trajectory of linear dynamical systems with a quadratic criterion
Czech Academy of Sciences Publication Activity Database
Liu, L.; Křížek, Michal; Šolcová, A.
2010-01-01
Roč. 14, č. 2 (2010), s. 159-170 ISSN 0972-1118 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal control * boundary value problems * Bellman optimality principle * Riccati equation Subject RIV: BA - General Mathematics http://www.pphmj.com/abstract/5544.htm
Dynamical TAP equations for non-equilibrium Ising spin glasses
DEFF Research Database (Denmark)
Roudi, Yasser; Hertz, John
2011-01-01
We derive and study dynamical TAP equations for Ising spin glasses obeying both synchronous and asynchronous dynamics using a generating functional approach. The system can have an asymmetric coupling matrix, and the external fields can be time-dependent. In the synchronously updated model, the TAP...... equations take the form of self consistent equations for magnetizations at time t+1, given the magnetizations at time t. In the asynchronously updated model, the TAP equations determine the time derivatives of the magnetizations at each time, again via self consistent equations, given the current values...... of the magnetizations. Numerical simulations suggest that the TAP equations become exact for large systems....
First-order partial differential equations in classical dynamics
Smith, B. R.
2009-12-01
Carathèodory's classic work on the calculus of variations explores in depth the connection between ordinary differential equations and first-order partial differential equations. The n second-order ordinary differential equations of a classical dynamical system reduce to a single first-order differential equation in 2n independent variables. The general solution of first-order partial differential equations touches on many concepts central to graduate-level courses in analytical dynamics including the Hamiltonian, Lagrange and Poisson brackets, and the Hamilton-Jacobi equation. For all but the simplest dynamical systems the solution requires one or more of these techniques. Three elementary dynamical problems (uniform acceleration, harmonic motion, and cyclotron motion) can be solved directly from the appropriate first-order partial differential equation without the use of advanced methods. The process offers an unusual perspective on classical dynamics, which is readily accessible to intermediate students who are not yet fully conversant with advanced approaches.
Huang, Zhi-Feng; Elder, K R; Provatas, Nikolas
2010-08-01
The dynamics of phase field crystal (PFC) modeling is derived from dynamical density functional theory (DDFT), for both single-component and binary systems. The derivation is based on a truncation up to the three-point direct correlation functions in DDFT, and the lowest order approximation using scale analysis. The complete amplitude equation formalism for binary PFC is developed to describe the coupled dynamics of slowly varying complex amplitudes of structural profile, zeroth-mode average atomic density, and system concentration field. Effects of noise (corresponding to stochastic amplitude equations) and species-dependent atomic mobilities are also incorporated in this formalism. Results of a sample application to the study of surface segregation and interface intermixing in alloy heterostructures and strained layer growth are presented, showing the effects of different atomic sizes and mobilities of alloy components. A phenomenon of composition overshooting at the interface is found, which can be connected to the surface segregation and enrichment of one of the atomic components observed in recent experiments of alloying heterostructures.
McDonough, J M
2009-06-01
Outline of the derivation and mathematical and physical interpretations are presented for a discrete dynamical system known as the "poor man's Navier-Stokes equation." Numerical studies demonstrate that velocity fields produced by this dynamical system are similar to those seen in laboratory experiments and in detailed simulations, and they lead to scaling for the turbulence kinetic energy spectrum in accord with Kolmogorov K41 theory.
Extraction of dynamical equations from chaotic data
International Nuclear Information System (INIS)
Rowlands, G.; Sprott, J.C.
1991-02-01
A method is described for extracting from a chaotic time series a system of equations whose solution reproduces the general features of the original data even when these are contaminated with noise. The equations facilitate calculation of fractal dimension, Lyapunov exponents and short-term predictions. The method is applied to data derived from numerical solutions of the Logistic equation, the Henon equations, the Lorenz equations and the Roessler equations. 10 refs., 5 figs
Singular multiparameter dynamic equations with distributional ...
African Journals Online (AJOL)
In this paper, we consider both singular single and several multiparameter second order dynamic equations with distributional potentials on semi-innite time scales. At rst we construct Weyl's theory for the single singular multiparameter dynamic equation with distributional potentials and we prove that the forward jump of at ...
Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems
van der Heijde, Bram; Fuchs, Marcus; Ribas Tugores, Carles; Schweiger, Gerald; Sartor, Kevin; Basciotti, Daniele; Müller, Dirk; Nytsch-Geusen, Christoph; Wetter, Michael; Helsen, Lieve
2017-01-01
Simulation and optimisation of district heating and cooling networks requires efficient and realistic models of the individual network elements in order to correctly represent heat losses or gains, temperature propagation and pressure drops. Due to more recent thermal networks incorporating meshing decentralised heat and cold sources, the system often has to deal with variable temperatures and mass flow rates, with flow reversal occurring more frequently. This paper presents the mathematical ...
State-dependent neutral delay equations from population dynamics.
Barbarossa, M V; Hadeler, K P; Kuttler, C
2014-10-01
A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.
International Nuclear Information System (INIS)
Turner, L.
1996-01-01
Adhering to the lore that vorticity is a critical ingredient of fluid turbulence, a triad of coupled helicity (vorticity) states of the incompressible Navier-Stokes fluid are followed. Effects of the remaining states of the fluid on the triad are then modeled as a simple driving term. Numerical solution of the equations yield attractors that seem strange and chaotic. This suggests that the unpredictability of nonlinear fluid dynamics (i.e., turbulence) may be traced back to the most primordial structure of the Navier-Stokes equation; namely, the driven triadic interaction. copyright 1996 The American Physical Society
Fractional dynamic calculus and fractional dynamic equations on time scales
Georgiev, Svetlin G
2018-01-01
Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations. Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .
Symbolic dynamics of the Lorenz equations
International Nuclear Information System (INIS)
Fang Hai-ping; Hao Bailin.
1994-07-01
The Lorenz equations are investigated in a wide range of parameters by using the method of symbolic dynamics. First, the systematics of stable periodic orbits in the Lorenz equations is compared with that of the one-dimensional cubic map, which shares the same discrete symmetry with the Lorenz model. The systematics is then ''corrected'' in such a way as to encompass all the known periodic windows of the Lorenz equations with only one exception. Second, in order to justify the above approach and to understand the exceptions, another 1D map with a discontinuity is extracted from an extension of the geometric Lorenz attractor and its symbolic dynamics is constructed. All this has to be done in light of symbolic dynamics of two-dimensional maps. Finally, symbolic dynamics for the actual Poincare return map of the Lorenz equations is constructed in a heuristic way. New periodic windows of the Lorenz equations and their parameters can be predicted from this symbolic dynamics in combination with the 1D cubic map. The extended geometric 2D Lorenz map and the 1D antisymmetric map with a discontinuity describe the topological aspects of the Lorenz equations to high accuracy. (author). 44 refs, 17 figs, 8 tabs
Stability theory for dynamic equations on time scales
Martynyuk, Anatoly A
2016-01-01
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...
da Silva, Roberto; Drugowich de Felício, José Roberto; Martinez, Alexandre Souto
2012-06-01
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature β. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q=1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q≠1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.
Mukherjee, B; Nivedita, M; Mukherjee, D
2014-05-01
Modelling system dynamics in a hyper-eutrophic lake is quite complex especially with a constant influx of detergents and sewage material which continually changes the state variables and interferes with the assessment of the chemical rhythm occurring in polluted conditions as compared to unpolluted systems. In this paper, a carbon and nutrient mass balance model for predicting system dynamics in a complex environment was studied. Studies were conducted at Ranchi lake to understand the altered environmental dynamics in hyper-eutrophic conditions, and its impact on the plankton community. The lake was monitored regularly for five years (2007 - 2011) and the data collected on the carbon flux, nitrates, phosphates and silicates was used to design a mass balance model for evaluating and predicting the system. The model was then used to correlate the chemical rhythm with that of the phytoplankton dynamics and diversity. Nitrates and phosphates were not limiting (mean nitrate and phosphate concentrations were 1.74 and 0.83 mgl⁻¹ respectively). Free carbon dioxide was found to control the system and, interacting with other parameters determined the diversity and dynamics of the plankton community. N/P ratio determined which group of phytoplankton dominated the community, above 5 it favoured the growth of chlorophyceae while below 5 cyanobacteria dominates. TOC/TIC ratio determined the abundance. The overall system was controlled by the availability of free carbon dioxide which served as a limiting factor.
DEFF Research Database (Denmark)
Lodi, C.; Bacher, Peder; Cipriano, J.
2012-01-01
and heat transfer coefficients is fundamental in order to improve the thermo-electrical production.The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement...... reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...... equations, which represent the data driven part.In the present work, both one-state and two-state non-linear grey-box models are considered. In order to validate the results, the residuals are analysed for white-noise properties....
Dynamic data analysis modeling data with differential equations
Ramsay, James
2017-01-01
This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in...
Oscillation theory for second order dynamic equations
Agarwal, Ravi P; O''Regan, Donal
2003-01-01
The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.
Bubble dynamics equations in Newton fluid
International Nuclear Information System (INIS)
Xiao, J
2008-01-01
For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed
Soliton equations and Hamiltonian systems
Dickey, L A
2002-01-01
The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau
Nonoscillation of half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Matucci, S.; Řehák, Pavel
2010-01-01
Roč. 60, č. 5 (2010), s. 1421-1429 ISSN 0898-1221 R&D Projects: GA AV ČR KJB100190701 Grant - others:GA ČR(CZ) GA201/07/0145 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear dynamic equation * time scale * (non)oscillation * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 1.472, year: 2010 http://www.sciencedirect.com/science/article/pii/S0898122110004384
Symbolic-Numeric Integration of the Dynamical Cosserat Equations
Lyakhov, Dmitry A.
2017-08-29
We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.
Ligterink, N.E.
2007-01-01
Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The
Exponential stability of dynamic equations on time scales
Directory of Open Access Journals (Sweden)
Raffoul Youssef N
2005-01-01
Full Text Available We investigate the exponential stability of the zero solution to a system of dynamic equations on time scales. We do this by defining appropriate Lyapunov-type functions and then formulate certain inequalities on these functions. Several examples are given.
International Nuclear Information System (INIS)
Posch, H.A.; Narnhofer, H.; Thirring, W.
1990-01-01
We study the dynamics of classical particles interacting with attractive Gaussian potentials. This system is thermodynamically not stable and exhibits negative specific heat. The results of the computer simulation of the dynamics are discussed in comparison with various theories. In particular, we find that the condensed phase is a stationary solution of the Vlasov equation, but the Vlasov dynamics cannot describe the collapse. 14 refs., 1 tab., 11 figs. (Authors)
Kishi, Ryohei; Nakano, Masayoshi
2011-04-21
A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.
Chaotic dynamics and diffusion in a piecewise linear equation
International Nuclear Information System (INIS)
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-01-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems
Chaotic dynamics and diffusion in a piecewise linear equation
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-03-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.
Nonlinear dynamics in the relativistic field equation
International Nuclear Information System (INIS)
Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An
2007-01-01
We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory
The respiratory system in equations
Maury, Bertrand
2013-01-01
The book proposes an introduction to the mathematical modeling of the respiratory system. A detailed introduction on the physiological aspects makes it accessible to a large audience without any prior knowledge on the lung. Different levels of description are proposed, from the lumped models with a small number of parameters (Ordinary Differential Equations), up to infinite dimensional models based on Partial Differential Equations. Besides these two types of differential equations, two chapters are dedicated to resistive networks, and to the way they can be used to investigate the dependence of the resistance of the lung upon geometrical characteristics. The theoretical analysis of the various models is provided, together with state-of-the-art techniques to compute approximate solutions, allowing comparisons with experimental measurements. The book contains several exercises, most of which are accessible to advanced undergraduate students.
Interactive Dynamic-System Simulation
Korn, Granino A
2010-01-01
Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author
On the transformations of the dynamical equations
Levi-Civita, T.
2009-08-01
In this issue we bring to the reader’s attention a translation of Levi-Civita’s work “Sulle trasformazioni delle equazioni dinamiche”. This paper, written by Levi-Civita at the onset of his career, is remarkable in many respects. Both the main result and the method developed in the paper brought the author in line with the greatest mathematicians of his day and seriously influenced the further progress of geometry and the theory of integrable systems. Speaking modern language the main result of his paper is the deduction of the general geodesic equivalence equation in invariant form and local classification of geodesically equivalent Riemannian metrics in the case of arbitrary dimension, i.e., metrics having the same geodesics considered as unparameterized curves (this classification problem was formulated by Beltrami in 1865). Levi-Civita’s work produced a great impact on further development of the theory of geodesically equivalent metrics and geodesic mappings, and still remains one of the most important tools in this area of differential geometry. In this paper the author uses a new method based on the concept of Riemannian connection, which later has been also referred to as the Levi-Civita connection. This paper is truly a pioneering work in the sense that the real power of covariant differentiation techniques in solving a concrete and highly nontrivial problem from the theory of dynamical systems was demonstrated. The author skillfully operates and weaves together many of the most advanced (for that times) algebraic, geometric and analytic methods. Moreover, an attentive reader can also notice several forerunning ideas of the method of moving frames, which was developed a few decades later by E. Cartan. We hope that the reader will appreciate the style of exposition as well. This work, focused on the essence of the problem and free of manipulation with abstract mathematical terms, is a good example of a classical text of the late 19th century. Owing
Nonlinear integrodifferential equations as discrete systems
Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.
1999-06-01
We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.
On the Schrodinger equation in fluid-dynamical form
International Nuclear Information System (INIS)
Wong, C.Y.
1976-01-01
The fluid-dynamical form of the Schrodinger equations is studied to examine the nature of the quantum forces arising from the quantum potential of Madelung and Bohm. It is found that they are in the form of a stress tensor having diagonal and nondiagonal components. Future studies of these quantum stress tensors in a many-body system may shed some light on the mechanism of spontaneous symmetry breaking and the generation of vorticity in many nuclear systems
Homogenizing atomic dynamics by fractional differential equations
Tang, Shaoqiang; Ying, Yuping
2017-10-01
In this paper, we propose two ways to construct fractional differential equations (FDE) for approximating atomic chain dynamics. Taking harmonic chain as an example, we add a power function of fractional order to Taylor expansion of the dispersion relation, and determine the parameters by matching two selected wave numbers. This approximate function leads to an FDE after considering both directions for wave propagation. As an alternative, we consider the symbol of the force term, and approximate it by a similar function. It also induces an FDE. Both approaches produce excellent agreement with the harmonic chain dynamics. The accuracy may be improved by optimizing the selected wave numbers, or starting with higher order Taylor expansions. When resolved in the lattice constant, the resulting FDE's faithfully reproduce the lattice dynamics. When resolved in a coarse grid instead, they systematically generate homogenized algorithms. Numerical tests are performed to verify the proposed approaches. Moreover, FDE's are also constructed for diatomic chain and anharmonic lattice, to illustrate the generality of the proposed approaches.
Turbulence and Dynamical Systems.
1984-12-31
Dynamical Systems 16. ASBTRACT (Continue on reverse if nemcry and idinitiy by block number) Abstract enclosed. See page 7. iyD, C FILE COZY ... 20... mysterious long-time f behavior of the Euler equation in fluid mechanics. The talk Final Report - APOSR page 2 of C. Schwarz on liquid helium showed to
Energy Technology Data Exchange (ETDEWEB)
Briscese, Fabio [Northumbria University, Department of Mathematics, Physics and Electrical Engineering, Newcastle upon Tyne (United Kingdom); Citta Universitaria, Istituto Nazionale di Alta Matematica Francesco Severi, Gruppo Nazionale di Fisica Matematica, Rome (Italy)
2017-09-15
In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schroedinger-Poisson equations in the large N limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as ℎ ∝ M{sup 5/3}G{sup 1/2}(N/ left angle ρ right angle){sup 1/6}, where is G the gravitational constant, N and M are the number and the mass of the bodies, and left angle ρ right angle is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schroedinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales. (orig.)
Electron transfer dynamics: Zusman equation versus exact theory
International Nuclear Information System (INIS)
Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing
2009-01-01
The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.
Systems With Emergent Dynamics
Stewart, Ian
2002-09-01
Evolutionary biologists often reject deterministic models of evolutionary processes because they equate `deterministic' with `goal-seeking', and have learned the hard way not to trust goal-seeking explanations of evolutionary adaptations. On the other hand, the general theory of dynamical systems potentially has much to offer for evolutionary biology— for example, as a resolution of the conflict between gradualism and punctuated equilibrium. The concept of a system with emergent dynamics retains the deterministic nature of dynamical systems, while eliminating any goal-seeking interpretation. Define an emergent property of a complex system to be a property whose computation from the entity-level rules of the system is intractable (in some reasonable sense). Say that a dynamical system has emergent dynamics if the computation of trajectories is intractable. Then systems with emergent dynamics are deterministic but not goal-seeking. As such, they offer a sensible way to use dynamical systems as models for evolutionary processes in biology, and in other areas. We discuss these issues and examine a few simple aspects of emergence in dynamical systems.
Birkhoff, George D
1927-01-01
His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o
Dynamic modeling of dual-arm cooperating manipulators based on Udwadia–Kalaba equation
Directory of Open Access Journals (Sweden)
Jia Liu
2016-07-01
Full Text Available Dual-arm cooperating manipulators subject to a certain constraint brought about by the desired trajectory and geometric constraint show high nonlinearity and coupling in their dynamic characteristic. Therefore, it is hard to build dynamical equation with traditional Lagrange equation. The Udwadia–Kalaba equation presents a new idea of dynamic modeling of multi-body systems. However, the dynamic modeling of the unconstrained systems still depends on the traditional Lagrange equation and is quite tedious for dual-arm cooperating manipulators. A generalized dynamical equation of multi-link planar manipulators is thus presented and proven to make modeling conveniently. The constraint relationship is established from a new perspective, and the dynamical equation of dual-arm cooperating manipulator subject to the desired trajectory is acquired with the Udwadia–Kalaba equation. The simple approach overcomes the disadvantage of obtaining dynamical equation from traditional Lagrange equation by Lagrange multiplier. The simulation results of varying law of the joint angles and the motion path of the bar prove that the dynamical equation established by this method conforms to reality.
Bifurcation dynamics of the tempered fractional Langevin equation
Energy Technology Data Exchange (ETDEWEB)
Zeng, Caibin, E-mail: macbzeng@scut.edu.cn; Yang, Qigui, E-mail: qgyang@scut.edu.cn [School of Mathematics, South China University of Technology, Guangzhou 510640 (China); Chen, YangQuan, E-mail: ychen53@ucmerced.edu [MESA LAB, School of Engineering, University of California, Merced, 5200 N. Lake Road, Merced, California 95343 (United States)
2016-08-15
Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation, of the Langevin equation perturbed by tempered fractional Brownian motion. However, most standard tools from the well-studied framework of random dynamical systems cannot be applied to systems driven by non-Markovian noise, so it is desirable to construct possible approaches in a non-Markovian framework. We first derive the spectral density function of the considered system based on the generalized Parseval's formula and the Wiener-Khinchin theorem. Then we show that it enjoys interesting and diverse bifurcation phenomena exchanging between or among explosive-like, unimodal, and bimodal kurtosis. Therefore, our procedures in this paper are not merely comparable in scope to the existing theory of Markovian systems but also provide a possible approach to discern P-bifurcation dynamics in the non-Markovian settings.
The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.
Lehtonen, Jussi
2018-01-01
A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.
The Fluid Dynamical Limits of the Linearized Boltzmann Equation.
Campini, Marco
The old question concerning the mathematical formulation of the fluid dynamic limits of kinetic theory is examined by studying the solution of the Cauchy problem for two differently scaled linearized Boltzmann equations on periodic domain as the mean free path of the particles becomes small. Under minimal assumptions on the initial data, by using an a priori estimate, it is possible, in a Hilbert space functional frame, to prove the weak convergence of solutions toward a function that has the form of an infinitesimal maxwellian in the velocity variable. The velocity moments of this function are then proved to satisfy either the linearized Euler or the Stokes system of equations (depending on the chosen scaling), by passing to the limit in the conservation relations derived from the Boltzmann equation. A theorem injecting continuously the intersection of certain weak spaces into a normed one is proved. Together with properties of the Euler semigroup, this allows to show strong convergence of the first three moments of the distribution function toward the macroscopic quantities density, bulk velocity and temperature, solutions of the linearized Euler system. The Stokes case is treated somewhat differently, through the introduction of a result, proved by using the adjoint formulation for linear kinetic equations, that extends the averaging theory of Golse-Lions-Perthame-Sentis. The desired convergence for the divergence-free component of the second moment toward the macroscopic velocity is then shown.
Dynamical System Approaches to Combinatorial Optimization
DEFF Research Database (Denmark)
Starke, Jens
2013-01-01
Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods...
A mixed system of equations of elasticity
Shul'ga, M. O.
2010-09-01
A mixed system of six equations of elasticity is represented as a Hamiltonian (canonical) operator system in one of the spatial coordinates. It is shown that this system is the Euler equations for the Hellinger-Reissner principle with an appropriately modified integrand. One more functional with an operator integrand from which the canonical operator system can be derived is set up
Modeling tree crown dynamics with 3D partial differential equations.
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.
Modeling Tree Crown Dynamics with 3D Partial Differential Equations
Directory of Open Access Journals (Sweden)
Robert eBeyer
2014-07-01
Full Text Available We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth towards light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.
Multiscale functions, scale dynamics, and applications to partial differential equations
Cresson, Jacky; Pierret, Frédéric
2016-05-01
Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.
Lozenge Tiling Dynamics and Convergence to the Hydrodynamic Equation
Laslier, Benoît; Toninelli, Fabio Lucio
2018-01-01
We study a reversible continuous-time Markov dynamics of a discrete (2 + 1)-dimensional interface. This can be alternatively viewed as a dynamics of lozenge tilings of the {L× L} torus, or as a conservative dynamics for a two-dimensional system of interlaced particles. The particle interlacement constraints imply that the equilibrium measures are far from being product Bernoulli: particle correlations decay like the inverse distance squared and interface height fluctuations behave on large scales like a massless Gaussian field. We consider a particular choice of the transition rates, originally proposed in Luby et al. (SIAM J Comput 31:167-192, 2001): in terms of interlaced particles, a particle jump of length n that preserves the interlacement constraints has rate 1/(2n). This dynamics presents special features: the average mutual volume between two interface configurations decreases with time (Luby et al. 2001) and a certain one-dimensional projection of the dynamics is described by the heat equation (Wilson in Ann Appl Probab 14:274-325, 2004). In this work we prove a hydrodynamic limit: after a diffusive rescaling of time and space, the height function evolution tends as {L\\to∞} to the solution of a non-linear parabolic PDE. The initial profile is assumed to be C 2 differentiable and to contain no "frozen region". The explicit form of the PDE was recently conjectured (Laslier and Toninelli in Ann Henri Poincaré Theor Math Phys 18:2007-2043, 2017) on the basis of local equilibrium considerations. In contrast with the hydrodynamic equation for the Langevin dynamics of the Ginzburg-Landau model (Funaki and Spohn in Commun Math Phys 85:1-36, 1997; Nishikawa in Commun Math Phys 127:205-227, 2003), here the mobility coefficient turns out to be a non-trivial function of the interface slope.
Neutral delay equations from and for population dynamics
Directory of Open Access Journals (Sweden)
K. P. Hadeler
2008-07-01
Full Text Available For a certain class of neutral differential equations it is shown that these equations can serve as population models in the sense that they can be interpreted as special cases or caricatures of the standard Gurtin-MacCamy model for a population structured by age with birth and death rate depending on the total adult population. The delayed logistic equation does not belong to this class but the blowfly equation does. These neutral delay equations can be written as forward systems of an ordinary differential equation and a shift map. There are several quite distinct ways to perform the transformation to a system, either following a method of Hale or following more closely the renewal process. Similarly to the delayed logistic equation, the neutral equation (and the blowfly equation as a special case exhibit periodic solutions, although only for a restricted range of parameters.
Modeling ion channel dynamics through reflected stochastic differential equations.
Dangerfield, Ciara E; Kay, David; Burrage, Kevin
2012-05-01
Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.
Fluid dynamical form of the linear and nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Spiegel, E.A.
1980-01-01
The Hamiltonian theory of perfect fluids admits the generalization to cases where the internal energy density depends on the gradient of mass density. Though the fluid dynamical equations are not greatly modified, when they are transformed into wave equations, special cases of the generalized fluid are seen to correspond to familiar Schroedinger equations. The irrotational nonrelativistic case is presented here and some of the advantages of the fluid point of view are mentioned. (orig.)
Stochastic differential equations and a biological system
DEFF Research Database (Denmark)
Wang, Chunyan
1994-01-01
. The simulated results are compared with the experimental data, and it is found that the Euler method is the most simple end efficient method for the stochastic growth model considered. Estimation of the parameters of the growth model is based on the stochastic Kalman filter and a continuous Markov process......The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based...... been developed. Their properties and the relationship between them are discussed. The evolution of a dynamic system or process is usually of great practical interest. In order to simulate the evolution of the process, alternative methods are used to get numerical solutions. In this study, Euler...
Oscillation criteria for fourth-order nonlinear delay dynamic equations
Directory of Open Access Journals (Sweden)
Yunsong Qi
2013-03-01
Full Text Available We obtain criteria for the oscillation of all solutions to a fourth-order nonlinear delay dynamic equation on a time scale that is unbounded from above. The results obtained are illustrated with examples
Chaotic dynamics in the Maxwell-Bloch equations
International Nuclear Information System (INIS)
Holm, D.D.; Kovacic, G.
1992-01-01
In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Bloch equations, we describe how the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to homoclinic chaos in the laser-matter dynamics. We also describe a derivation of the Maxwell-Bloch equations from an action principle
Recent Methodological Advances in Economic Equation Systems.
Theil, Henri; Clements, Kenneth W.
1980-01-01
Examines economic equation systems by describing the simultaneous equation model, its application to the economy as a whole, and a systemwide approach to microeconomics. The systems approach focuses on particular segments of the economy such as consumer spending. (Author/KC)
Methods of mathematical modelling continuous systems and differential equations
Witelski, Thomas
2015-01-01
This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.
Energy Technology Data Exchange (ETDEWEB)
Sternberg, K.
2007-02-08
Molten carbonate fuel cells (MCFCs) allow an efficient and environmentally friendly energy production by converting the chemical energy contained in the fuel gas in virtue of electro-chemical reactions. In order to predict the effect of the electro-chemical reactions and to control the dynamical behavior of the fuel cell a mathematical model has to be found. The molten carbonate fuel cell (MCFC) can indeed be described by a highly complex,large scale, semi-linear system of partial differential algebraic equations. This system includes a reaction-diffusion-equation of parabolic type, several reaction-transport-equations of hyperbolic type, several ordinary differential equations and finally a system of integro-differential algebraic equations which describes the nonlinear non-standard boundary conditions for the entire partial differential algebraic equation system (PDAE-system). The existence of an analytical or the computability of a numerical solution for this high-dimensional PDAE-system depends on the kind of the differential equations and their special characteristics. Apart from theoretical investigations, the real process has to be controlled, more precisely optimally controlled. Hence, on the basis of the PDAE-system an optimal control problem is set up, whose analytical and numerical solvability is closely linked to the solvability of the PDAE-system. Moreover the solution of that optimal control problem is made more difficult by inaccuracies in the underlying database, which does not supply sufficiently accurate values for the model parameters. Therefore the optimal control problem must also be investigated with respect to small disturbances of model parameters. The aim of this work is to analyze the relevant dynamic behavior of MCFCs and to develop concepts for their optimal process control. Therefore this work is concerned with the simulation, the optimal control and the sensitivity analysis of a mathematical model for MCDCs, which can be characterized
Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats
2014-05-01
In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Taylor, Lawrence W., Jr.; Rajiyah, H.
1991-01-01
Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.
Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Lorz, Alexander
2011-01-17
Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.
An Analytical Method For The Solution Of Reactor Dynamic Equations
African Journals Online (AJOL)
Nigeria Journal of Pure and Applied Physics ... One of the challenges of modelling nuclear reactor dynamics on microcomputers is that of finding robust techniques which guarantee the required level of accuracy and at ... In this paper, an analytical method for the solution of nuclear reactor dynamic equations is presented.
Dynamical systems in population biology
Zhao, Xiao-Qiang
2017-01-01
This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...
Solving Algebraic Riccati Equation Real Time for Integrated Vehicle Dynamics Control
Kunnappillil Madhusudhanan, A; Corno, M.; Bonsen, B.; Holweg, E.
2012-01-01
In this paper we present a comparison study of different computational methods to implement State Dependent Riccati Equation (SDRE) based control in real time for a vehicle dynamics control application. Vehicles are mechatronic systems with nonlinear dynamics. One of the promising nonlinear control
Nonlinear dynamics in the Einstein-Friedmann equation
International Nuclear Information System (INIS)
Tanaka, Yosuke; Mizuno, Yuji; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji
2009-01-01
We have studied the gravitational field equations on the basis of general relativity and nonlinear dynamics. The space component of the Einstein-Friedmann equation shows the chaotic behaviours in case the following conditions are satisfied: (i)the expanding ratio: h=x . /x max = +0.14) for the occurrence of the chaotic behaviours in the Einstein-Friedmann equation (0 ≤ λ ≤ +0.14). The numerical calculations are performed with the use of the Microsoft EXCEL(2003), and the results are shown in the following cases; λ = 2b = +0.06 and +0.14.
DEFF Research Database (Denmark)
Thomsen, Per Grove
1996-01-01
A one-dimensional model with axial discretization of engine components has been formulated using tha balance equations for mass energy and momentum and the ideal gas equation of state. ODE's that govern the dynamic behaviour of the regenerator matrix temperatures are included in the model. Known ...... loss mechanisms are coupled directly into the governing equations instead of applying losses as corrections to simulation results from an idealised model....
DEFF Research Database (Denmark)
Thomsen, Per Grove
1996-01-01
A one-dimensional model with axial discretization of engine components has been formulated using tha balance equations for mass energy and momentum and the ideal gas equation of state. ODE's that govern the dynamic behaviour of the regenerator matrix temperatures are included in the model. Known...
Schwinger Dyson equations: Dynamical chiral symmetry breaking and confinement
International Nuclear Information System (INIS)
Roberts, C.D.
1992-01-01
A representative but not exhaustive review of the Schwinger-Dyson equation (SDE) approach to the nonperturbative study of QCD is presented. The main focus is the SDE for the quark self energy but studies of the gluon propagator and quark-gluon vertex are also discussed insofar as they are important to the quark SDE. The scope of this article is the application of these equations to the study of dynamical chiral symmetry breaking, quark confinement and the phenomenology of the spectrum and dynamics of QCD
Particle Systems and Partial Differential Equations I
Gonçalves, Patricia
2014-01-01
This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012. The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory, and to stimulate discussions and possibly new collaborations among researchers with different backgrounds. The book contains lecture notes written by François Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navie...
Nacozy, P. E.
1984-01-01
The equations of motion are developed for a perfectly flexible, inelastic tether with a satellite at its extremity. The tether is attached to a space vehicle in orbit. The tether is allowed to possess electrical conductivity. A numerical solution algorithm to provide the motion of the tether and satellite system is presented. The resulting differential equations can be solved by various existing standard numerical integration computer programs. The resulting differential equations allow the introduction of approximations that can lead to analytical, approximate general solutions. The differential equations allow more dynamical insight of the motion.
Lectures on chaotic dynamical systems
Afraimovich, Valentin
2002-01-01
This book is devoted to chaotic nonlinear dynamics. It presents a consistent, up-to-date introduction to the field of strange attractors, hyperbolic repellers, and nonlocal bifurcations. The authors keep the highest possible level of "physical" intuition while staying mathematically rigorous. In addition, they explain a variety of important nonstandard algorithms and problems involving the computation of chaotic dynamics. The book will help readers who are not familiar with nonlinear dynamics to understand and appreciate sophisticated modern dynamical systems and chaos. Intended for courses in either mathematics, physics, or engineering, prerequisites are calculus, differential equations, and functional analysis.
Dynamical symmetries of semi-linear Schrodinger and diffusion equations
International Nuclear Information System (INIS)
Stoimenov, Stoimen; Henkel, Malte
2005-01-01
Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed
Modified dynamical equation for dye doped nematic liquid crystals
Energy Technology Data Exchange (ETDEWEB)
Manohar, Rajiv, E-mail: rajlu1@rediffmail.co [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India); Misra, Abhishek Kumar; Srivastava, Abhishek Kumar [Liquid Crystal Research Lab, Physics Department, University of Lucknow, Lucknow 226007 (India)
2010-04-15
Dye doped liquid crystals show changed dielectric properties in comparison to pure liquid crystals. These changes are strongly dependent on the concentration of dye. In the present work we have measured dielectric properties of standard nematic liquid crystals E-24 and its two guest host mixtures of different concentrations with Anthraquinone dye D5. The experimental results are fitted using linear response and in the light of this we have proposed some modifications in the dynamical equation for the nematic liquid crystals by introducing two new variables as dye concentration coefficients. The limitations of the proposed equation in high temperature range have also been discussed. With the help of the proposed dynamical equation for the guest-host liquid crystals (GHLCs) it is possible to predict the various parameters like rotational viscosity, dielectric anisotropy and relaxation time for GHLCs at other concentrations of dye in liquid crystals theoretically.
Properties of Some Partial Dynamic Equations on Time Scales
Directory of Open Access Journals (Sweden)
Deepak B. Pachpatte
2013-01-01
Full Text Available The main objective of the paper is to study the properties of the solution of a certain partial dynamic equation on time scales. The tools employed are based on the application of the Banach fixed-point theorem and a certain integral inequality with explicit estimates on time scales.
Integrated vehicle dynamics control using State Dependent Riccati Equations
Bonsen, B.; Mansvelders, R.; Vermeer, E.
2010-01-01
In this paper we discuss a State Dependent Riccati Equations (SDRE) solution for Integrated Vehicle Dynamics Control (IVDC). The SDRE approach is a nonlinear variant of the well known Linear Quadratic Regulator (LQR) and implements a quadratic cost function optimization. A modified version of this
Oscillation of second order neutral dynamic equations with distributed delay
Directory of Open Access Journals (Sweden)
Qiaoshun Yang
2016-06-01
Full Text Available In this paper, we establish new oscillation criteria for second order neutral dynamic equations with distributed delay by employing the generalized Riccati transformation. The obtained theorems essentially improve the oscillation results in the literature. And two examples are provided to illustrate to the versatility of our main results.
Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2017-02-15
The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from the Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.
Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane
Hu, Wenjie; Duan, Yueliang
2018-04-01
We consider a delayed reaction-diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson's blowfly equation and the diffusive Mackey-Glass equation.
A System Dynamic Model of Leader Emergence
2008-03-01
Judge, 2004; Judge, Bono, Ilies, & Gerhardt, 2002; Eagly, Johanneses-Schmidt, & Van Engen , 2003; Taggar, Hackett, & Saha, 1999; Stogdill, 1948...System dynamics emerged from the study of electrical control systems, and when generalized found many useful applications in natural systems outside...of the electrical world (Forrester, 1992). Whereas correlations describe cause and effect relationships in a linear equation, system dynamics
Analytical generation of the dynamical equations for mechanical manipulators
Directory of Open Access Journals (Sweden)
Geir Horn
1995-07-01
Full Text Available A package to generate the symbolic dynamic equations describing the relation between forces and movements for serial mechanical linkages with rigid constituents is presented. The relative movement between the rigid parts is assumed to be either a rotation about an axis or a translation along an axis. Two algorithms are implemented, a Lagrange-Euler method and a Newton-Euler method. The former can be used to solve both the inverse and the forward dynamics problems, while the latter requires fewer arithmetical operations but only allows solution of the inverse dynamics problem. Two test examples are presented, the double pendulum and the modified Stanford manipulator.
Master equations in the microscopic theory of nuclear collective dynamics
International Nuclear Information System (INIS)
Matsuo, M.; Sakata, F.; Marumori, T.; Zhuo, Y.
1988-07-01
In the first half of this paper, the authors describe briefly a recent theoretical approach where the mechanism of the large-amplitude dissipative collective motions can be investigated on the basis of the microscopic theory of nuclear collective dynamics. Namely, we derive the general coupled master equations which can disclose, in the framework of the TDHF theory, not only non-linear dynamics among the collective and the single-particle modes of motion but also microscopic dynamics responsible for the dissipative processes. In the latter half, the authors investigate, without relying on any statistical hypothesis, one possible microscopic origin which leads us to the transport equation of the Fokker-Planck type so that usefullness of the general framework is demonstrated. (author)
Dynamics of second order rational difference equations with open problems and conjectures
Kulenovic, Mustafa RS
2001-01-01
This self-contained monograph provides systematic, instructive analysis of second-order rational difference equations. After classifying the various types of these equations and introducing some preliminary results, the authors systematically investigate each equation for semicycles, invariant intervals, boundedness, periodicity, and global stability. Of paramount importance in their own right, the results presented also offer prototypes towards the development of the basic theory of the global behavior of solutions of nonlinear difference equations of order greater than one. The techniques and results in this monograph are also extremely useful in analyzing the equations in the mathematical models of various biological systems and other applications. Each chapter contains a section of open problems and conjectures that will stimulate further research interest in working towards a complete understanding of the dynamics of the equation and its functional generalizations-many of them ideal for research project...
Bianucci, Marco
2015-05-01
In this paper using a projection approach and defining the adjoint-Lie time evolution of differential operators, that generalizes the ordinary time evolution of functions, we obtain a Fokker-Planck equation for the distribution function of a part of interest of a large class of dynamical systems. The main assumptions are the weak interaction between the part of interest and the rest of the system (typically non linear) and the average linear response to external perturbations of the irrelevant part. We do not use ad hoc statistical assumptions to introduce as given a priori phenomenological equilibrium or transport coefficients. The drift terms induced by the interaction with the irrelevant part is obtained with a procedure that is reminiscent of that developed some years ago by Bianucci and Grigolini (see for example (Bianucci et al 1995 Phys. Rev. E 51 3002)) to derive in a ‘genuine’ way thermodynamics and statistical mechanics of macroscopic variables of interest starting from microscopic dynamics. However here we stay in a more broad and formal context where the system of interest could be dissipative and the interaction between the two systems could be non Hamiltonian, thus the approach of the cited paper can not be used to obtain the diffusion part of the Fokker-Planck equation. To face the problem of dealing with the series of differential operators stemming from the projection approach applied to this general case, we introduce the formalism of the Lie derivative and the corresponding adjoint-Lie time evolution of differential operators. In this theoretical framework we are able to obtain well defined analytic functions both for the drift and the diffusion coefficients of the Fokker-Planck equation. We think that the basic elements of Lie algebra introduced in our projection approach can be useful to achieve even more general and more formally elegant results than those here presented. Thus we consider this paper as a first step of this formal path to
International Nuclear Information System (INIS)
Bianucci, Marco
2015-01-01
In this paper using a projection approach and defining the adjoint-Lie time evolution of differential operators, that generalizes the ordinary time evolution of functions, we obtain a Fokker–Planck equation for the distribution function of a part of interest of a large class of dynamical systems. The main assumptions are the weak interaction between the part of interest and the rest of the system (typically non linear) and the average linear response to external perturbations of the irrelevant part. We do not use ad hoc statistical assumptions to introduce as given a priori phenomenological equilibrium or transport coefficients. The drift terms induced by the interaction with the irrelevant part is obtained with a procedure that is reminiscent of that developed some years ago by Bianucci and Grigolini (see for example (Bianucci et al 1995 Phys. Rev. E 51 3002)) to derive in a ‘genuine’ way thermodynamics and statistical mechanics of macroscopic variables of interest starting from microscopic dynamics. However here we stay in a more broad and formal context where the system of interest could be dissipative and the interaction between the two systems could be non Hamiltonian, thus the approach of the cited paper can not be used to obtain the diffusion part of the Fokker–Planck equation. To face the problem of dealing with the series of differential operators stemming from the projection approach applied to this general case, we introduce the formalism of the Lie derivative and the corresponding adjoint-Lie time evolution of differential operators. In this theoretical framework we are able to obtain well defined analytic functions both for the drift and the diffusion coefficients of the Fokker–Planck equation. We think that the basic elements of Lie algebra introduced in our projection approach can be useful to achieve even more general and more formally elegant results than those here presented. Thus we consider this paper as a first step of this formal
Associative Yang-Baxter equation for quantum (semi-)dynamical R-matrices
Energy Technology Data Exchange (ETDEWEB)
Sechin, Ivan, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru [MIPT, Inststitutskii per. 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); ITEP, B. Cheremushkinskaya Str. 25, Moscow 117218 (Russian Federation); Zotov, Andrei, E-mail: shnbuz@gmail.com, E-mail: zotov@mi.ras.ru [MIPT, Inststitutskii per. 9, Dolgoprudny, Moscow Region 141700 (Russian Federation); ITEP, B. Cheremushkinskaya Str. 25, Moscow 117218 (Russian Federation); Steklov Mathematical Institute RAS, Gubkina Str. 8, Moscow 119991 (Russian Federation)
2016-05-15
In this paper we propose versions of the associative Yang-Baxter equation and higher order R-matrix identities which can be applied to quantum dynamical R-matrices. As is known quantum non-dynamical R-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical R-matrices satisfy the Gervais-Neveu-Felder (or dynamical Yang-Baxter) equation. Relation between the dynamical and non-dynamical cases is described by the IRF (interaction-round-a-face)-Vertex transformation. An alternative approach to quantum (semi-)dynamical R-matrices and related quantum algebras was suggested by Arutyunov, Chekhov, and Frolov (ACF) in their study of the quantum Ruijsenaars-Schneider model. The purpose of this paper is twofold. First, we prove that the ACF elliptic R-matrix satisfies the associative Yang-Baxter equation with shifted spectral parameters. Second, we directly prove a simple relation of the IRF-Vertex type between the Baxter-Belavin and the ACF elliptic R-matrices predicted previously by Avan and Rollet. It provides the higher order R-matrix identities and an explanation of the obtained equations through those for non-dynamical R-matrices. As a by-product we also get an interpretation of the intertwining transformation as matrix extension of scalar theta function likewise R-matrix is interpreted as matrix extension of the Kronecker function. Relations to the Gervais-Neveu-Felder equation and identities for the Felder’s elliptic R-matrix are also discussed.
Associative Yang-Baxter equation for quantum (semi-)dynamical R-matrices
International Nuclear Information System (INIS)
Sechin, Ivan; Zotov, Andrei
2016-01-01
In this paper we propose versions of the associative Yang-Baxter equation and higher order R-matrix identities which can be applied to quantum dynamical R-matrices. As is known quantum non-dynamical R-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical R-matrices satisfy the Gervais-Neveu-Felder (or dynamical Yang-Baxter) equation. Relation between the dynamical and non-dynamical cases is described by the IRF (interaction-round-a-face)-Vertex transformation. An alternative approach to quantum (semi-)dynamical R-matrices and related quantum algebras was suggested by Arutyunov, Chekhov, and Frolov (ACF) in their study of the quantum Ruijsenaars-Schneider model. The purpose of this paper is twofold. First, we prove that the ACF elliptic R-matrix satisfies the associative Yang-Baxter equation with shifted spectral parameters. Second, we directly prove a simple relation of the IRF-Vertex type between the Baxter-Belavin and the ACF elliptic R-matrices predicted previously by Avan and Rollet. It provides the higher order R-matrix identities and an explanation of the obtained equations through those for non-dynamical R-matrices. As a by-product we also get an interpretation of the intertwining transformation as matrix extension of scalar theta function likewise R-matrix is interpreted as matrix extension of the Kronecker function. Relations to the Gervais-Neveu-Felder equation and identities for the Felder’s elliptic R-matrix are also discussed.
Application of flexible model in neutron dynamics equations
International Nuclear Information System (INIS)
Liu Cheng; Zhao Fuyu; Fu Xiangang
2009-01-01
Big errors will occur in the modeling by multimode methodology when the available core physical parameter sets are insufficient. In this paper, the fuzzy logic membership function is introduced to figure out the values of these parameters on any point of lifetime through limited several sets of values, and thus to obtain the neutron dynamics equations on any point of lifetime. In order to overcome the effect of subjectivity in the membership function selection on the parameter calculation, quadratic optimization is carried out to the membership function by genetic algorithm, to result in a more accurate neutron kinetics equation on any point of lifetime. (authors)
Decomposition and Cross-Product-Based Method for Computing the Dynamic Equation of Robots
Directory of Open Access Journals (Sweden)
Ching-Long Shih
2012-08-01
Full Text Available This paper aims to demonstrate a clear relationship between Lagrange equations and Newton-Euler equations regarding computational methods for robot dynamics, from which we derive a systematic method for using either symbolic or on-line numerical computations. Based on the decomposition approach and cross-product operation, a computing method for robot dynamics can be easily developed. The advantages of this computing framework are that: it can be used for both symbolic and on-line numeric computation purposes, and it can also be applied to biped systems, as well as some simple closed-chain robot systems.
Bifurcation methods of dynamical systems for generalized ...
Indian Academy of Sciences (India)
Compacton solution; periodic wave solution; periodic cusp wave solution; generalized KP-BBM equation. Abstract. By applying the bifurcation theory of dynamical system to the generalized KP-BBM equation, the phase portraits of the travelling wave system are obtained. It can be shown that singular straight line in the ...
A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion
Directory of Open Access Journals (Sweden)
Tagade Piyush M.
2017-06-01
Full Text Available This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on the decomposition of the solution into its mean and a random field using a generic Karhunen-Loève expansion. The random field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of equations consists of a partial differential equation (PDE that defines the dynamic evolution of the mean, a set of PDEs to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs define dynamics of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.
Well-posedness of the limiting equation of a noisy consensus model in opinion dynamics
Chazelle, Bernard; Jiu, Quansen; Li, Qianxiao; Wang, Chu
2017-07-01
This paper establishes the global well-posedness of the nonlinear Fokker-Planck equation for a noisy version of the Hegselmann-Krause model. The equation captures the mean-field behavior of a classic multiagent system for opinion dynamics. We prove the global existence, uniqueness, nonnegativity and regularity of the weak solution. We also exhibit a global stability condition, which delineates a forbidden region for consensus formation. This is the first nonlinear stability result derived for the Hegselmann-Krause model.
Dynamic behavior of a nonlinear rational difference equation and generalization
Directory of Open Access Journals (Sweden)
Shi Qihong
2011-01-01
Full Text Available Abstract This paper is concerned about the dynamic behavior for the following high order nonlinear difference equation x n = (x n-k + x n-m + x n-l /(x n-k x n-m + x n-m x n-l +1 with the initial data { x - l , x - l + 1 , … , x - 1 } ∈ ℝ + l and 1 ≤ k ≤ m ≤ l. The convergence of solution to this equation is investigated by introducing a new sequence, which extends and includes corresponding results obtained in the references (Li in J Math Anal Appl 312:103-111, 2005; Berenhaut et al. Appl. Math. Lett. 20:54-58, 2007; Papaschinopoulos and Schinas J Math Anal Appl 294:614-620, 2004 to a large extent. In addition, some propositions for generalized equations are reported.
Improved dynamic equations for the generally configured Stewart platform manipulator
Energy Technology Data Exchange (ETDEWEB)
Pedrammehr, Siamak; Mahboubkhah, Mehran [University of Tabriz, Tabriz (Iran, Islamic Republic of); Khani, Navid [University of Tehran, Tehran (Iran, Islamic Republic of)
2012-03-15
In this paper, a Newton-Euler approach is utilized to generate the improved dynamic equations of the generally configured Stewart platform. Using the kinematic model of the universal joint, the rotational degree of freedom of the pods around the axial direction is taken into account in the formulation. The justifiable direction of the reaction moment on each pod is specified and considered in deriving the dynamic equations. Considering the theorem of parallel axes, the inertia tensors for different elements of the manipulator are obtained in this study. From a theoretical point, the improved formulation is more accurate in comparison with previous ones, and the necessity of the improvement is clear evident from significant differences in the simulation results for the improved model and the model without improvement. In addition to more feasibility of the structure and higher accuracy, the model is highly compatible with computer arithmetic and suitable for online applications for loop control problems in hardware.
Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order
Directory of Open Access Journals (Sweden)
Taher S. Hassan
2016-01-01
Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t, i=1,…,n-1, with x0=x, ϕβ(u≔uβsgnu, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.
Improved dynamic equations for the generally configured Stewart platform manipulator
International Nuclear Information System (INIS)
Pedrammehr, Siamak; Mahboubkhah, Mehran; Khani, Navid
2012-01-01
In this paper, a Newton-Euler approach is utilized to generate the improved dynamic equations of the generally configured Stewart platform. Using the kinematic model of the universal joint, the rotational degree of freedom of the pods around the axial direction is taken into account in the formulation. The justifiable direction of the reaction moment on each pod is specified and considered in deriving the dynamic equations. Considering the theorem of parallel axes, the inertia tensors for different elements of the manipulator are obtained in this study. From a theoretical point, the improved formulation is more accurate in comparison with previous ones, and the necessity of the improvement is clear evident from significant differences in the simulation results for the improved model and the model without improvement. In addition to more feasibility of the structure and higher accuracy, the model is highly compatible with computer arithmetic and suitable for online applications for loop control problems in hardware
Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions
Directory of Open Access Journals (Sweden)
R. Naz
2015-01-01
Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.
Application of cellular neural network (CNN) method to the nuclear reactor dynamics equations
International Nuclear Information System (INIS)
Hadad, K.; Piroozmand, A.
2007-01-01
This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the nuclear reactor dynamic equations. An equivalent electrical circuit is analyzed and the governing equations of a bare, homogeneous reactor core are modeled via CNN. The validity of the CNN result is compared with numerical solution of the system of nonlinear governing partial differential equations (PDE) using MATLAB. Steady state as well as transient simulations, show very good comparison between the two methods. We used our CNN model to simulate space-time response of different reactivity excursions in a typical nuclear reactor. On line solution of reactor dynamic equations is used as an aid to reactor operation decision making. The complete algorithm could also be implemented using very large scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for small size nuclear reactors such as the ones used in space missions
Self-supervised dynamical systems
International Nuclear Information System (INIS)
Zak, Michail
2004-01-01
A new type of dynamical systems which capture the interactions via information flows typical for active multi-agent systems is introduced. The mathematical formalism is based upon coupling the classical dynamical system (with random components caused by uncertainties in initial conditions as well as by Langevin forces) with the corresponding Liouville or the Fokker-Planck equations describing evolution of these uncertainties in terms of probability density. The coupling is implemented by information-based supervising forces which fundamentally change the patterns of probability evolution. It is demonstrated that the probability density can approach prescribed attractors while exhibiting such patterns as shock waves, solitons and chaos in probability space. Applications of these phenomena to information-based neural nets, expectation-based cooperation, self-programmed systems, control chaos using terminal attractors as well as to games with incomplete information, are addressed. A formal similarity between the mathematical structure of the introduced dynamical systems and quantum mechanics is discussed
Resummed memory kernels in generalized system-bath master equations
Mavros, Michael G.; Van Voorhis, Troy
2014-08-01
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the "Landau-Zener resummation" of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.
Liao, David; Tlsty, Thea D
2014-08-06
Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities.
Equilibrium dynamics of the Dean-Kawasaki equation: Mode-coupling theory and its extension
Kim, Bongsoo; Kawasaki, Kyozi; Jacquin, Hugo; van Wijland, Frédéric
2014-01-01
We extend a previously proposed field-theoretic self-consistent perturbation approach for the equilibrium dynamics of the Dean-Kawasaki equation presented in [Kim and Kawasaki, J. Stat. Mech. (2008) P02004, 10.1088/1742-5468/2008/02/P02004]. By taking terms missing in the latter analysis into account we arrive at a set of three new equations for correlation functions of the system. These correlations involve the density and its logarithm as local observables. Our new one-loop equations, which must carefully deal with the noninteracting Brownian gas theory, are more general than the historic mode-coupling one in that a further approximation corresponding to Gaussian density fluctuations leads back to the original mode-coupling equation for the density correlations alone. However, without performing any further approximation step, our set of three equations does not feature any ergodic-nonergodic transition, as opposed to the historical mode-coupling approach.
Susuki, Yoshihiko; Hikihara Takashi; Chiang, HD
2004-01-01
This paper discusses stability boundaries in an electric power system with dc transmission based on a differential-algebraic equation (DAE) system. The DAE system is derived to analyze transient stability of the ac/dc power system: the differential equation represents the dynamics of the generator and the dc transmission, and the algebraic equation the active and reactive power relationship between the ac system and the dc transmission. In this paper complete characterization of stability bou...
Lin, Pao-Ping; Hsieh, Che-Jen
1993-01-01
Describes the Geometer's Sketchpad, a geometric construction kit composed of three manipulatable, dynamic, linked, multiple representation environments: the coordinate system, formulas, and graphs. Examines the use of the environments for studying parameter effects of linear and quadratic functions and for solving linear equations. (MDH)
Integrable systems of partial differential equations determined by structure equations and Lax pair
International Nuclear Information System (INIS)
Bracken, Paul
2010-01-01
It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.
Parametric Resonance in Dynamical Systems
Nijmeijer, Henk
2012-01-01
Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...
Dynamic Interactive Learning Systems
Sabry, Khaled; Barker, Jeff
2009-01-01
This paper reviews and discusses the notions of interactivity and dynamicity of learning systems in relation to information technologies and design principles that can contribute to interactive and dynamic learning. It explores the concept of dynamic interactive learning systems based on the emerging generation of information as part of a…
Dynamic equations of the elasticity theory in metals
International Nuclear Information System (INIS)
Kontorovich, V.M.
1984-01-01
Electron contribution to elasticity forces becomes nonlocal in pure metals at low temperatures, when conduction electron ranges become extraordinary long. Forces, present in equations of lattice motion, are electron distribution functions. Dynamics of conduction electrons becomes essential along with the effect of external magnetic field and self-consistent electric fields. elasticity equat tions are considered in a survey under general assumptions of the modern theory of metals rested upon non-model macroscopic approach. Deformation potential and its symmetric properties and the role of magnetic field symmetry direction are discussed in detail. Effective electron-acoustic wave interaction and the role of electric fields accompanying an elastic wave are considered as an example
Theorems on Existence and Global Dynamics for the Einstein Equations
Directory of Open Access Journals (Sweden)
Rendall Alan
2002-01-01
Full Text Available This article is a guide to theorems on existence and global dynamics of solutions ofthe Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.
Theorems on Existence and Global Dynamics for the Einstein Equations
Directory of Open Access Journals (Sweden)
Rendall Alan D.
2005-10-01
Full Text Available This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.
Theorems on Existence and Global Dynamics for the Einstein Equations.
Rendall, Alan D
2005-01-01
This article is a guide to theorems on existence and global dynamics of solutions of the Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy problem, which is relatively well understood, is surveyed. Global results for solutions with various types of symmetry are discussed. A selection of results from Newtonian theory and special relativity that offer useful comparisons is presented. Treatments of global results in the case of small data and results on constructing spacetimes with prescribed singularity structure or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics connected with the main theme are collected in a separate section.
Ordinary differential equations and mechanical systems
Awrejcewicz, Jan
2014-01-01
This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization, and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples, and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a uniqu...
Dynamics of Variable Mass Systems
Eke, Fidelis O.
1998-01-01
This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.
Dynamics of skyrmions in chiral magnets: Dynamic phase transitions and equation of motion
Lin, Shi-Zeng; Reichhardt, Charles; Batista, Cristian D.; Saxena, Avadh
2014-05-01
We study the dynamics of skyrmions in a metallic chiral magnet. First, we show that skyrmions can be created dynamically by destabilizing the ferromagnetic background state through a spin polarized current. We then treat skyrmions as rigid particles and derive the corresponding equation of motion. The dynamics of skyrmions is dominated by the Magnus force, which accounts for the weak pinning of skyrmions observed in experiments. Finally, we discuss the quantum motion of skyrmions.
Dynamics of skyrmions in chiral magnets: Dynamic phase transitions and equation of motion
Energy Technology Data Exchange (ETDEWEB)
Lin, Shi-Zeng, E-mail: szl@lanl.gov; Reichhardt, Charles; Batista, Cristian D.; Saxena, Avadh [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2014-05-07
We study the dynamics of skyrmions in a metallic chiral magnet. First, we show that skyrmions can be created dynamically by destabilizing the ferromagnetic background state through a spin polarized current. We then treat skyrmions as rigid particles and derive the corresponding equation of motion. The dynamics of skyrmions is dominated by the Magnus force, which accounts for the weak pinning of skyrmions observed in experiments. Finally, we discuss the quantum motion of skyrmions.
Pilyugin, Sergei Yu
2012-01-01
Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.
Solutions of system of P1 equations without use of auxiliary differential equations coupled
International Nuclear Information System (INIS)
Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos
2000-01-01
The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)
Newton-Euler Dynamic Equations of Motion for a Multi-body Spacecraft
Stoneking, Eric
2007-01-01
The Magnetospheric MultiScale (MMS) mission employs a formation of spinning spacecraft with several flexible appendages and thruster-based control. To understand the complex dynamic interaction of thruster actuation, appendage motion, and spin dynamics, each spacecraft is modeled as a tree of rigid bodies connected by spherical or gimballed joints. The method presented facilitates assembling by inspection the exact, nonlinear dynamic equations of motion for a multibody spacecraft suitable for solution by numerical integration. The building block equations are derived by applying Newton's and Euler's equations of motion to an "element" consisting of two bodies and one joint (spherical and gimballed joints are considered separately). Patterns in the "mass" and L'force" matrices guide assembly by inspection of a general N-body tree-topology system. Straightforward linear algebra operations are employed to eliminate extraneous constraint equations, resulting in a minimum-dimension system of equations to solve. This method thus combines a straightforward, easily-extendable, easily-mechanized formulation with an efficient computer implementation.
State-space representation of the reactor dynamics equations
International Nuclear Information System (INIS)
Bernard, J.A.
1995-01-01
This paper describes a novel formulation of the reactor space-independent kinetics equations. The intent is to present these equations in a form that is both compatible with modern control theory and mathematically rigorous. It is desired to write the kinetics equations in the standard state variable representation, x = Ax, where x is the state vector and A is the system matrix and, at the same time, avoid mathematical compromises such as the linearization of an equation about a particular operating point. The advantage to this proposed formulation is that it may allow the lateral transfer of existing control concepts, some that have been developed for other fields, to the operation of nuclear reactors. For example, sliding mode control has been developed to allow robots to function in a robust manner in the presence of changes in the system model. This is necessary because a robot is expected to be capable of picking up an object of unknown mass and moving that object along a specified trajectory. The variability of the object's mass introduces an uncertainty into the system model that is used to deduce the appropriate control action. Thus, the robot controller must be made robust against such variations. Sliding mode control is one means of accomplishing this. A reactor controller might benefit from the same concept if its objective were to cause the reactor power to move along a demanded trajectory despite the presence of some uncertainty in the net amount of reactivity that is present
Dynamic hysteresis modeling including skin effect using diffusion equation model
Energy Technology Data Exchange (ETDEWEB)
Hamada, Souad, E-mail: souadhamada@yahoo.fr [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Louai, Fatima Zohra, E-mail: fz_louai@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Nait-Said, Nasreddine, E-mail: n_naitsaid@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Benabou, Abdelkader, E-mail: Abdelkader.Benabou@univ-lille1.fr [L2EP, Université de Lille1, 59655 Villeneuve d’Ascq (France)
2016-07-15
An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.
Gils, S; Hoveijn, I; Takens, F; Nonlinear Dynamical Systems and Chaos
1996-01-01
Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.
Nonlinear PDEs a dynamical systems approach
Schneider, Guido
2017-01-01
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced...
Discovering governing equations from data by sparse identification of nonlinear dynamics
Brunton, Steven
The ability to discover physical laws and governing equations from data is one of humankind's greatest intellectual achievements. A quantitative understanding of dynamic constraints and balances in nature has facilitated rapid development of knowledge and enabled advanced technology, including aircraft, combustion engines, satellites, and electrical power. There are many more critical data-driven problems, such as understanding cognition from neural recordings, inferring patterns in climate, determining stability of financial markets, predicting and suppressing the spread of disease, and controlling turbulence for greener transportation and energy. With abundant data and elusive laws, data-driven discovery of dynamics will continue to play an increasingly important role in these efforts. This work develops a general framework to discover the governing equations underlying a dynamical system simply from data measurements, leveraging advances in sparsity-promoting techniques and machine learning. The resulting models are parsimonious, balancing model complexity with descriptive ability while avoiding overfitting. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions. This perspective, combining dynamical systems with machine learning and sparse sensing, is explored with the overarching goal of real-time closed-loop feedback control of complex systems. This is joint work with Joshua L. Proctor and J. Nathan Kutz. Video Abstract: https://www.youtube.com/watch?v=gSCa78TIldg
A DYNAMIC SIMULATION OF REVERSE OSMOSIS SYSTEMS
Armijo C., J.; Departamento Académico de Operaciones Unitarias, Facultad de Q. e Ing. Química, Universidad Nacional Mayor de San Marcos Lima, Perú; Condorhuamán C., C.; Departamento Académico de Operaciones Unitarias, Facultad de Q. e Ing. Química Universidad Nacional Mayor de San Marcos Lima, Perú
2014-01-01
This paper develops a mathematical model to simulate dynamically a reverse osmosis system. The model is formed from materials balances macroscopic unsteady state combined with the model membrane transport: diffusion-solution. In this first part, we solve the system of differential equations assuming a completely mixed flow pattern in the reverse osmosis module (module polarization = 1). The system of equations is solved simultaneously by the Runge-Kutta-Fehlberg method. The results indicate t...
Lagrangian structures, integrability and chaos for 3D dynamical equations
International Nuclear Information System (INIS)
Bustamante, Miguel D; Hojman, Sergio A
2003-01-01
In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion
Dissipation equation of motion approach to open quantum systems
Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao
2016-08-01
This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.
Out-of-equilibrium dynamical mean-field equations for the perceptron model
Agoritsas, Elisabeth; Biroli, Giulio; Urbani, Pierfrancesco; Zamponi, Francesco
2018-02-01
Perceptrons are the building blocks of many theoretical approaches to a wide range of complex systems, ranging from neural networks and deep learning machines, to constraint satisfaction problems, glasses and ecosystems. Despite their applicability and importance, a detailed study of their Langevin dynamics has never been performed yet. Here we derive the mean-field dynamical equations that describe the continuous random perceptron in the thermodynamic limit, in a very general setting with arbitrary noise and friction kernels, not necessarily related by equilibrium relations. We derive the equations in two ways: via a dynamical cavity method, and via a path-integral approach in its supersymmetric formulation. The end point of both approaches is the reduction of the dynamics of the system to an effective stochastic process for a representative dynamical variable. Because the perceptron is formally very close to a system of interacting particles in a high dimensional space, the methods we develop here can be transferred to the study of liquid and glasses in high dimensions. Potentially interesting applications are thus the study of the glass transition in active matter, the study of the dynamics around the jamming transition, and the calculation of rheological properties in driven systems.
Fractional Euler-Lagrange Equations Applied to Oscillatory Systems
Directory of Open Access Journals (Sweden)
Sergio Adriani David
2015-04-01
Full Text Available In this paper, we applied the Riemann-Liouville approach and the fractional Euler-Lagrange equations in order to obtain the fractional nonlinear dynamic equations involving two classical physical applications: “Simple Pendulum” and the “Spring-Mass-Damper System” to both integer order calculus (IOC and fractional order calculus (FOC approaches. The numerical simulations were conducted and the time histories and pseudo-phase portraits presented. Both systems, the one that already had a damping behavior (Spring-Mass-Damper and the system that did not present any sort of damping behavior (Simple Pendulum, showed signs indicating a possible better capacity of attenuation of their respective oscillation amplitudes. This implication could mean that if the selection of the order of the derivative is conveniently made, systems that need greater intensities of damping or vibrating absorbers may benefit from using fractional order in dynamics and possibly in control of the aforementioned systems. Thereafter, we believe that the results described in this paper may offer greater insights into the complex behavior of these systems, and thus instigate more research efforts in this direction.
Numerical analysis of systems of ordinary and stochastic differential equations
Artemiev, S S
1997-01-01
This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).
Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation
Wen, Shao-Fang; Shen, Yong-Jun; Wang, Xiao-Na; Yang, Shao-Pu; Xing, Hai-Jun
2016-08-01
In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system.
Dynamic Systems and Control Engineering
International Nuclear Information System (INIS)
Kim, Jong Seok
1994-02-01
This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.
DEFF Research Database (Denmark)
Estupinan, Edgar Alberto; Santos, Ilmar
2009-01-01
elements are supported by fluid film bearings, where the hydrodynamic interaction forces are described by the Reynolds equation. The system of nonlinear equations is numerically solved for three different restrictive conditions of the motion of the crank, where the third case takes into account lateral...... and tilting oscillations of the extremity of the crankshaft. The numerical results of the behaviour of the journal bearings for each case are presented giving some insights into design parameters such as, maximum oil film pressure, minimum oil film thickness, maximum vibration levels and dynamic reaction...
Integrability and nonintegrability of dynamical systems
Goriely, Alain
2001-01-01
This invaluable book examines qualitative and quantitative methods for nonlinear differential equations, as well as integrability and nonintegrability theory. Starting from the idea of a constant of motion for simple systems of differential equations, it investigates the essence of integrability, its geometrical relevance and dynamical consequences. Integrability theory is approached from different perspectives, first in terms of differential algebra, then in terms of complex time singularities and finally from the viewpoint of phase geometry (for both Hamiltonian and non-Hamiltonian systems).
Stability of dynamical systems
Liao, Xiaoxin; Yu, P 0
2007-01-01
The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents
Energy Technology Data Exchange (ETDEWEB)
Schüler, D.; Alonso, S.; Bär, M. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Torcini, A. [CNR-Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi - Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy)
2014-12-15
Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.
Dynamical chiral symmetry breaking and Bethe-Salpeter equation
Energy Technology Data Exchange (ETDEWEB)
Naito, Kenichi [Tokyo Inst. of Tech. (Japan)
1998-08-01
{pi} meson, (pseudo) Nambu-Goldstone particle caused by a spontaneous breaking of chiral symmetry, was studied by use of Bethe-Salpeter (BS) equation in the limits of effective model as a bound state of quark and antiquark. The effective model has nonlocal interaction and proved to satisfy the Gell-Mann-Oaks-Renner (GMOR) mass formula by treating correct Noether current in spite of loss of local chiral invariance of interaction term. GMOR mass formula: M{sub {pi}}{sup 2}f{sub {pi}}{sup 2}{approx_equal}-2m{sub 0}
International Nuclear Information System (INIS)
Bleyer, U.; Muecket, J.P.
1980-01-01
In general the Birkhoff theorem is violated in non-Einsteinian theories of gravitation. We show for theories in which the dynamical equations do not follow from the field equations that time-dependent vacuum solutions are needed in order to join nonstatic spherically symmetric incoherent matter distributions. It is shown for Treder's tetrad theories that such vacuum solutions exist and a continuous and unique junction is possible. In generalization of these results we consider the problem in what theories of gravitation the dynamical equations do not follow from the field equations. This consideration leads to non-Einsteinian theories like bimetric theories or Treder's tetrad theories containing supplementary geometrical quantities which are not dynamical variables of the theory. (author)
An introduction to dynamical systems.
Sobie, Eric A
2011-09-13
This Teaching Resource provides lecture notes, slides, and a problem set that can assist in teaching concepts related to dynamical systems tools for the analysis of ordinary differential equation (ODE)-based models. The concepts are applied to familiar biological problems, and the material is appropriate for graduate students or advanced undergraduates. The lecture explains how equations describing biochemical signaling networks can be derived from diagrams that illustrate the reactions in graphical form. Because such reactions are most frequently described using systems of ODEs, the lecture discusses and illustrates the principles underlying the numerical solution of ODEs. Methods for determining the stability of steady-state solutions of one or two-dimensional ODE systems are covered and illustrated using standard graphical methods. The concept of a bifurcation, a condition at which a system's behavior changes qualitatively, is also introduced. A problem set is included that (i) requires students to implement an ODE model of biochemical reactions using MATLAB and (ii) allows them to explore dynamical systems concepts.
Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.
Ma, Li-Yuan; Zhu, Zuo-Nong
2014-09-01
In this paper, we investigate nonintegrable semidiscrete Hirota equations, including the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation. We focus on the topics on gauge-equivalent structures and dynamical behaviors for the two nonintegrable semidiscrete equations. By using the concept of the prescribed discrete curvature, we show that, under the discrete gauge transformations, the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation are, respectively, gauge equivalent to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We prove that the two discrete gauge transformations are reversible. We study the dynamical properties for the two nonintegrable semidiscrete Hirota equations. The exact spatial period solutions of the two nonintegrable semidiscrete Hirota equations are obtained through the constructions of period orbits of the stationary discrete Hirota equations. We discuss the topic regarding whether the spatial period property of the solution to the nonintegrable semidiscrete Hirota equation is preserved to that of the corresponding gauge-equivalent nonintegrable semidiscrete equations under the action of discrete gauge transformation. By using the gauge equivalent, we obtain the exact solutions to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We also give the numerical simulations for the stationary discrete Hirota equations. We find that their dynamics are much richer than the ones of stationary discrete nonlinear Schrödinger equations.
Synchronization of nonautonomous dynamical systems
Directory of Open Access Journals (Sweden)
Peter E. Kloeden
2003-04-01
Full Text Available The synchronization of two nonautonomous dynamical systems is considered, where the systems are described in terms of a skew-product formalism, i. e., in which an inputed autonomous driving system governs the evolution of the vector field of a differential equation with the passage of time. It is shown that the coupled trajectories converge to each other as time increases for sufficiently large coupling coefficient and also that the component sets of the pullback attractor of the coupled system converges upper semi continuously as the coupling parameter increases to the diagonal of the product of the corresponding component sets of the pullback attractor of a system generated by the average of the vector fields of the original uncoupled systems.
Recursive linearization of multibody dynamics equations of motion
Lin, Tsung-Chieh; Yae, K. Harold
1989-01-01
The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.
Nonautonomous dynamical systems in the life sciences
Pötzsche, Christian
2013-01-01
Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.
Shadowing in dynamical systems
Pilyugin, Sergei Yu
1999-01-01
This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.
Wen, Xiao-Yong; Zhang, Guoqiang
2018-01-01
Under investigation in this paper is the Kundu equation, which may be used to describe the propagation process of ultrashort optical pulses in nonlinear optics. The modulational instability of the plane-wave for the possible reason of the formation of the rogue wave (RW) is studied for the system. Based on our proposed generalized perturbation (n,N ‑ n)-fold Darboux transformation (DT), some new higher-order implicit RW solutions in terms of determinants are obtained by means of the generalized perturbation (1,N ‑ 1)-fold DT, when choosing different special parameters, these results will reduce to the RW solutions of the Kaup-Newell (KN) equation, Chen-Lee-Liu (CLL) equation and Gerjikov-Ivanov (GI) equation, respectively. The relevant wave structures are shown graphically, which display abundant interesting wave structures. The dynamical behaviors and propagation stability of the first-order and second-order RW solutions are discussed by using numerical simulations, the higher-order nonlinear terms for the Kundu equation have an impact on the propagation instability of the RW. The method can also be extended to find the higher-order RW or rational solutions of other integrable nonlinear equations.
Hugoniot equation of state and dynamic strength of boron carbide
Grady, Dennis E.
2015-04-01
Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic
Invitation to dynamical systems
Scheinerman, Edward R
2012-01-01
This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.
Maxwell-Vlasov equations as a continuous Hamiltonian system
International Nuclear Information System (INIS)
Morrison, P.J.
1980-09-01
The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion
Maxwell-Vlasov equations as a continuous Hamiltonian system
International Nuclear Information System (INIS)
Morrison, P.J.
1980-11-01
The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B, and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion
Riccati and Ermakov Equations in Time-Dependent and Time-Independent Quantum Systems
Directory of Open Access Journals (Sweden)
Dieter Schuch
2008-05-01
Full Text Available The time-evolution of the maximum and the width of exact analytic wave packet (WP solutions of the time-dependent Schrödinger equation (SE represents the particle and wave aspects, respectively, of the quantum system. The dynamics of the maximum, located at the mean value of position, is governed by the Newtonian equation of the corresponding classical problem. The width, which is directly proportional to the position uncertainty, obeys a complex nonlinear Riccati equation which can be transformed into a real nonlinear Ermakov equation. The coupled pair of these equations yields a dynamical invariant which plays a key role in our investigation. It can be expressed in terms of a complex variable that linearizes the Riccati equation. This variable also provides the time-dependent parameters that characterize the Green's function, or Feynman kernel, of the corresponding problem. From there, also the relation between the classical and quantum dynamics of the systems can be obtained. Furthermore, the close connection between the Ermakov invariant and the Wigner function will be shown. Factorization of the dynamical invariant allows for comparison with creation/annihilation operators and supersymmetry where the partner potentials fulfil (real Riccati equations. This provides the link to a nonlinear formulation of time-independent quantum mechanics in terms of an Ermakov equation for the amplitude of the stationary state wave functions combined with a conservation law. Comparison with SUSY and the time-dependent problems concludes our analysis.
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
Daniele, C. J.; Lorenzo, C. F.
1979-01-01
Lumped volume dynamic equations are derived using an energy-state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is also formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free-piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.
Simulation and sequential dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Mortveit, H.S.; Reidys, C.M.
1999-06-01
Computer simulations have a generic structure. Motivated by this the authors present a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {yields} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper), which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes.
Integrable coupling system of fractional soliton equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-10-05
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.
International Nuclear Information System (INIS)
Brett, Tobias; Galla, Tobias
2014-01-01
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period
Brett, Tobias; Galla, Tobias
2014-03-28
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.
Dynamics of Information Systems
Hirsch, Michael J; Murphey, Robert
2010-01-01
Our understanding of information and information dynamics has outgrown classical information theory. This book presents the research explaining the importance of information in the evolution of a distributed or networked system. It presents techniques for measuring the value or significance of information within the context of a system
Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation
Rossi, Mariana; Kapil, Venkat; Ceriotti, Michele
2018-03-01
Generalized Langevin Equation (GLE) thermostats have been used very effectively as a tool to manipulate and optimize the sampling of thermodynamic ensembles and the associated static properties. Here we show that a similar, exquisite level of control can be achieved for the dynamical properties computed from thermostatted trajectories. We develop quantitative measures of the disturbance induced by the GLE to the Hamiltonian dynamics of a harmonic oscillator, and show that these analytical results accurately predict the behavior of strongly anharmonic systems. We also show that it is possible to correct, to a significant extent, the effects of the GLE term onto the corresponding microcanonical dynamics, which puts on more solid grounds the use of non-equilibrium Langevin dynamics to approximate quantum nuclear effects and could help improve the prediction of dynamical quantities from techniques that use a Langevin term to stabilize dynamics. Finally we address the use of thermostats in the context of approximate path-integral-based models of quantum nuclear dynamics. We demonstrate that a custom-tailored GLE can alleviate some of the artifacts associated with these techniques, improving the quality of results for the modeling of vibrational dynamics of molecules, liquids, and solids.
Ket-Bra entangled state method for solving master equation of finite-level system
Ren, Yi-Chong; Wang, Shu; Fan, Hong-Yi; Chen, Feng
2017-11-01
In this paper, we first introduce Ket-Bra entangled state method to solve master equation of finite-level system, which can convert master equation into Schrödinger-like equation and solve it with the mature methodology of Schrödinger equation. Then, several physical models include a radioactivity damped 2-level atom driven by classical field, a J- C model with cavity damping, a V-type qutrit under amplitude damping and N-qubits open Heisenberg chain have been solved with KBES method. Furthermore, the dynamic evolution and decoherence process of these models are investigated.
Fault diagnosis for dynamic power system
International Nuclear Information System (INIS)
Thabet, A.; Abdelkrim, M.N.; Boutayeb, M.; Didier, G.; Chniba, S.
2011-01-01
The fault diagnosis problem for dynamic power systems is treated, the nonlinear dynamic model based on a differential algebraic equations is transformed with reduced index to a simple dynamic model. Two nonlinear observers are used for generating the fault signals for comparison purposes, one of them being an extended Kalman estimator and the other a new extended kalman filter with moving horizon with a study of convergence based on the choice of matrix of covariance of the noises of system and measurements. The paper illustrates a simulation study applied on IEEE 3 buses test system.
Bifurcation and chaos in simple jerk dynamical systems
Indian Academy of Sciences (India)
- ferential equation, named as jerk equation, represents an interesting sub-class of dynam- ical systems that can exhibit many major features of the regular and chaotic motion. In this paper, we investigate the global dynamics of a special family ...
Global dynamics of delay equations for populations with competition among immature individuals
Liz, Eduardo; Ruiz-Herrera, Alfonso
2016-04-01
We analyze a population model for two age-structured species allowing for inter- and intra-specific competition at immature life stages. The dynamics is governed by a system of Delay Differential Equations (DDEs) recently introduced by Gourley and Liu. The analysis of this model presents serious difficulties because the right-hand sides of the DDEs depend on the solutions of a system of nonlinear ODEs, and generally cannot be solved explicitly. Using the notion of strong attractor, we reduce the study of the attracting properties of the equilibria of the DDEs to the analysis of a related two-dimensional discrete system. Then, we combine some tools for monotone planar maps and planar competing Lotka-Volterra systems to describe the dynamics of the model with three different birth rate functions. We give easily verifiable conditions for global extinction of one or the two species, and for global convergence of the positive solutions to a coexistence state.
Directory of Open Access Journals (Sweden)
Musa Danjuma SHEHU
2008-06-01
Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.
Rosenbaum, J. S.
1971-01-01
Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.
Parametric Borel summability for some semilinear system of partial differential equations
Directory of Open Access Journals (Sweden)
Hiroshi Yamazawa
2015-01-01
Full Text Available In this paper we study the Borel summability of formal solutions with a parameter of first order semilinear system of partial differential equations with \\(n\\ independent variables. In [Singular perturbation of linear systems with a regular singularity, J. Dynam. Control. Syst. 8 (2002, 313-322], Balser and Kostov proved the Borel summability of formal solutions with respect to a singular perturbation parameter for a linear equation with one independent variable. We shall extend their results to a semilinear system of equations with general independent variables.
Complexity in Dynamical Systems
Moore, Cristopher David
The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.
INTERVAL STATE ESTIMATION FOR SINGULAR DIFFERENTIAL EQUATION SYSTEMS WITH DELAYS
Directory of Open Access Journals (Sweden)
T. A. Kharkovskaia
2016-07-01
Full Text Available The paper deals with linear differential equation systems with algebraic restrictions (singular systems and a method of interval observer design for this kind of systems. The systems contain constant time delay, measurement noise and disturbances. Interval observer synthesis is based on monotone and cooperative systems technique, linear matrix inequations, Lyapunov function theory and interval arithmetic. The set of conditions that gives the possibility for interval observer synthesis is proposed. Results of synthesized observer operation are shown on the example of dynamical interindustry balance model. The advantages of proposed method are that it is adapted to observer design for uncertain systems, if the intervals of admissible values for uncertain parameters are given. The designed observer is capable to provide asymptotically definite limits on the estimation accuracy, since the interval of admissible values for the object state is defined at every instant. The obtained result provides an opportunity to develop the interval estimation theory for complex systems that contain parametric uncertainty, varying delay and nonlinear elements. Interval observers increasingly find applications in economics, electrical engineering, mechanical systems with constraints and optimal flow control.
Some details of proofs of theorems related to the quantum dynamical Yang-Baxter equation
Koornwinder, Tom H.
2000-01-01
This paper gives some further details of proofs of some theorems related to the quantum dynamical Yang-Baxter equation. This mainly expands proofs given in "Lectures on the dynamical Yang-Baxter equation" by P. Etingof and O. Schiffmann, math.QA/9908064. This concerns the intertwining operator, the
Directory of Open Access Journals (Sweden)
Mostafa M.A. Khater
Full Text Available In this article and for the first time, we introduce and describe Khater method which is a new technique for solving nonlinear partial differential equations (PDEs.. We apply this method for each of the following models Bogoyavlenskii equation, couple Boiti-Leon-Pempinelli system and Time-fractional Cahn-Allen equation. Khater method is very powerful, Effective, felicitous and fabulous method to get exact and solitary wave solution of (PDEs.. Not only just like that but it considers too one of the general methods for solving that kind of equations since it involves some methods as we will see in our discuss of the results. We make a comparison between the results of this new method and another method. Keywords: Bogoyavlenskii equations system, Couple Boiti-Leon-Pempinelli equations system, Time-fractional Cahn-Allen equation, Khater method, Traveling wave solutions, Solitary wave solutions
Abstraction of Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Wisniewski, Rafael; Sloth, Christoffer
2011-01-01
To enable formal verification of a dynamical system, given by a set of differential equations, it is abstracted by a finite state model. This allows for application of methods for model checking. Consequently, it opens the possibility of carrying out the verification of reachability and timing re...
Partial differential equations and systems related to Morrey spaces
Ragusa, Maria Alessandra
2012-01-01
This PhD thesis deals with the study of well posedness, existence and regularity properties of solutions of partial differential equations and systems. Preparatory to the study of partial differential equations is the action of some integral operators, that are extensively used. Such results are very useful to obtain regularity properties of solutions of elliptic, parabolic and ultraparabolic equations of second order with discontinuous coefficients, and later of systems. The thesis consists...
Equation-free modeling unravels the behavior of complex ecological systems
DeAngelis, Donald L.; Yurek, Simeon
2015-01-01
Ye et al. (1) address a critical problem confronting the management of natural ecosystems: How can we make forecasts of possible future changes in populations to help guide management actions? This problem is especially acute for marine and anadromous fisheries, where the large interannual fluctuations of populations, arising from complex nonlinear interactions among species and with varying environmental factors, have defied prediction over even short time scales. The empirical dynamic modeling (EDM) described in Ye et al.’s report, the latest in a series of papers by Sugihara and his colleagues, offers a promising quantitative approach to building models using time series to successfully project dynamics into the future. With the term “equation-free” in the article title, Ye et al. (1) are suggesting broader implications of their approach, considering the centrality of equations in modern science. From the 1700s on, nature has been increasingly described by mathematical equations, with differential or difference equations forming the basic framework for describing dynamics. The use of mathematical equations for ecological systems came much later, pioneered by Lotka and Volterra, who showed that population cycles might be described in terms of simple coupled nonlinear differential equations. It took decades for Lotka–Volterra-type models to become established, but the development of appropriate differential equations is now routine in modeling ecological dynamics. There is no question that the injection of mathematical equations, by forcing “clarity and precision into conjecture” (2), has led to increased understanding of population and community dynamics. As in science in general, in ecology equations are a key method of communication and of framing hypotheses. These equations serve as compact representations of an enormous amount of empirical data and can be analyzed by the powerful methods of mathematics.
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297
Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.
Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua
2014-04-02
The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.
Robust Satisfiability of Systems of Equations
Czech Academy of Sciences Publication Activity Database
Franek, Peter; Krčál, M.
2015-01-01
Roč. 62, č. 4 (2015), Article 26 ISSN 0004-5411 R&D Projects: GA ČR GBP202/12/G061 Grant - others:GA MŠk(CZ) LL1201 Institutional support: RVO:67985807 Keywords : nonlinear equations * satisfability * undecibility * topological extensions * uncertainty * robustness Subject RIV: IN - Informatics, Computer Science Impact factor: 1.803, year: 2015
System dynamics with interaction discontinuity
Luo, Albert C J
2015-01-01
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
Bifurcation analysis of the fully symmetric language dynamical equation.
Mitchener, W Garrett
2003-03-01
In this paper, I study a continuous dynamical system that describes language acquisition and communication in a group of individuals. Children inherit from their parents a mechanism to learn their language. This mechanism is constrained by a universal grammar which specifies a restricted set of candidate languages. Language acquisition is not error-free. Children may or may not succeed in acquiring exactly the language of their parents. Individuals talk to each other, and successful communication contributes to biological (or cultural) fitness. I provide a full bifurcation analysis of the case where the parameters are chosen to yield a highly symmetric dynamical system. Populations approach either an incoherent steady state, where many different candidate languages are represented in the population, or a coherent steady state, where the majority of the population speaks a single language. The main result of the paper is a description of how learning reliability affects the stability of these two kinds of equilibria. I rigorously find all fixed points, determine their stabilities, and prove that all populations tend to some fixed point. I also demonstrate that the fixed point representing an incoherent steady state becomes unstable in an S (n)-symmetric transcritical bifurcation as learning becomes more reliable.
Introduction to Chaotic Dynamical Systems
1992-12-01
differential equations to first order systems see Borrelli - Coleman (Ref. 2]. 4 The general form of a linear system of differential equations is x,’ at...pendulum. The process of finding the ex- plicit solution to this system of differential equations is described in Borrelli - Coleman [Ref. 2]. 9 0...independent eigenvectors. The details can be found in Borrelli - Coleman [Ref. 2] and Boyce-DiPrima [Ref. 5]. The c, are determined once an initial
Several Dynamical Properties for a Nonlinear Shallow Water Equation
Directory of Open Access Journals (Sweden)
Ls Yong
2014-01-01
Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R (N is a natural number estimate for the solution are obtained.
From the Hartree dynamics to the Vlasov equation
DEFF Research Database (Denmark)
Benedikter, Niels Patriz; Porta, Marcello; Saffirio, Chiara
2016-01-01
We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise...
207 series solution for the complete golden dynamical equation of ...
African Journals Online (AJOL)
DR. AMINU
solve this equation for comparison with the solutions of Einstein Equation for the photon in the same gravitational field. A value of 1.875” was found as the total deflection angle. Keywords: Gravitational Field, Light, Deflection. INTRODUCTION. In 1916, Einstein, in his Theory of General Relativity. (GR) published that light ...
Understanding and Modeling Teams As Dynamical Systems
Directory of Open Access Journals (Sweden)
Jamie C. Gorman
2017-07-01
Full Text Available By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a considering the question of why study teams as dynamical systems, (b considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals in the context of teams, (c describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area.
Controlling Uncertain Dynamical Systems
Indian Academy of Sciences (India)
... Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 9. Controlling Uncertain Dynamical Systems - Basic Ideas of Adaptive Control. N Ananthkrishnan Rashi Bansal.
Butschli Dynamic Droplet System
DEFF Research Database (Denmark)
Armstrong, R.; Hanczyc, M.
2013-01-01
Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development ...
Geometric theory of discrete nonautonomous dynamical systems
Pötzsche, Christian
2010-01-01
Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations.
Exact solutions for some nonlinear systems of partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)], E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)], E-mail: aramady@yahoo.com
2009-04-30
A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear systems of partial differential equations (PDEs) is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDEs) are obtained. Graphs of the solutions are displayed.
A New Algorithm for System of Integral Equations
Directory of Open Access Journals (Sweden)
Abdujabar Rasulov
2014-01-01
Full Text Available We develop a new algorithm to solve the system of integral equations. In this new method no need to use matrix weights. Beacause of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.
A Direct Derivation of the Equations of Motion for 3D-Flexible Mechanical Systems
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard; Pedersen, Mads Leergaard
1998-01-01
Equations of motion for rigid bodies with the body-fixed co-ordinate system placed at or away from the centre of mass are derived in a clear and direct way by making use of the two basic equations of mechanics (Newton's second law and the corresponding law of angular momentum). The dynamic...... equations for flexible mechanical systems are derived using the principle of virtual work, which introduces inertia in a straightforward manner, because this principle treats inertia as a force. The flexible formulation is exemplified by the use of circular beam elements and some basic matrices are derived...
Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers.
Strümpfer, Johan; Schulten, Klaus
2012-08-14
Calculating the evolution of an open quantum system, i.e., a system in contact with a thermal environment, has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that remained under-utilized so far due to its considerable computational expense. By exploiting concurrent processing on parallel computers the hierarchy equations of motion can be applied to biological-scale systems. Herein we introduce the quantum dynamics software PHI, that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI's scaling and efficiency running on large parallel computers by applying the software to the calculation of inter-complex excitation transfer between the light harvesting complexes 1 and 2 of purple photosynthetic bacteria, a 50 pigment system.
Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids.
Energy Technology Data Exchange (ETDEWEB)
Deng, Jie; Zimmerman, Jonathan A.; Thompson, Aidan Patrick; Brown, William Michael (Oak Ridge National Laboratories, Oak Ridge, TN); Plimpton, Steven James; Zhou, Xiao Wang; Wagner, Gregory John; Erickson, Lindsay Crowl
2011-09-01
Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.
Accelerating the convergence of path integral dynamics with a generalized Langevin equation
Ceriotti, Michele; Manolopoulos, David E.; Parrinello, Michele
2011-02-01
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
Accelerating the convergence of path integral dynamics with a generalized Langevin equation.
Ceriotti, Michele; Manolopoulos, David E; Parrinello, Michele
2011-02-28
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics
Ahmad, Nashat N.
2016-01-01
Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.
Emergence in Dynamical Systems
Directory of Open Access Journals (Sweden)
John Collier
2013-12-01
Full Text Available Emergence is a term used in many contexts in current science; it has become fashionable. It has a traditional usage in philosophy that started in 1875 and was expanded by J. S. Mill (earlier, under a different term and C. D. Broad. It is this form of emergence that I am concerned with here. I distinguish it from uses like ‘computational emergence,’ which can be reduced to combinations of program steps, or its application to merely surprising new features that appear in complex combinations of parts. I will be concerned specifically with ontological emergence that has the logical properties required by Mill and Broad (though there might be some quibbling about the details of their views. I restrict myself to dynamical systems that are embodied in processes. Everything that we can interact with through sensation or action is either dynamical or can be understood in dynamical terms, so this covers all comprehensible forms of emergence in the strong (nonreducible sense I use. I will give general dynamical conditions that underlie the logical conditions traditionally assigned to emergence in nature.The advantage of this is that, though we cannot test logical conditions directly, we can test dynamical conditions. This gives us an empirical and realistic form of emergence, contrary those who say it is a matter of perspective.
Simultaneous exact controllability for Maxwell equations and for a second-order hyperbolic system
Directory of Open Access Journals (Sweden)
Boris V. Kapitonov
2010-02-01
Full Text Available We present a result on "simultaneous" exact controllability for two models that describe two hyperbolic dynamics. One is the system of Maxwell equations and the other a vector-wave equation with a pressure term. We obtain the main result using modified multipliers in order to generate a necessary observability estimate which allow us to use the Hilbert Uniqueness Method (HUM introduced by Lions.
Universal Solutions of Quantum Dynamical Yang-Baxter Equations
Arnaudon, Daniel; Ragoucy, E; Roche, P; Roche, Ph.
1998-01-01
We construct a universal trigonometric solution of the Gervais-Neveu-Felder equation in the case of finite dimensional simple Lie algebras and finite dimensional contragredient simple Lie superalgebras.
Dynamical Signatures of Living Systems
Zak, M.
1999-01-01
One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin and that will constitute the starting point of the proposed approach. As conjectured, the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version), only that type of process has been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and high entropy. At the same time, the evolution of living systems directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies:" it produces new different configurations which are accompanied by an increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion
Arzeliès, Henri
1972-01-01
Relativistic Point Dynamics focuses on the principles of relativistic dynamics. The book first discusses fundamental equations. The impulse postulate and its consequences and the kinetic energy theorem are then explained. The text also touches on the transformation of main quantities and relativistic decomposition of force, and then discusses fields of force derivable from scalar potentials; fields of force derivable from a scalar potential and a vector potential; and equations of motion. Other concerns include equations for fields; transfer of the equations obtained by variational methods int
Energy Technology Data Exchange (ETDEWEB)
Bustamante, Miguel D [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile (Chile); Hojman, Sergio A [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile (Chile)
2003-01-10
In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion.
Wisdom, Jack
2002-01-01
In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.
Modulation equations for spatially periodic systems: derivation and solutions
Schielen, R.; Doelman, A.
1996-01-01
We study a class of partial dierential equations in one spatial dimension, which can be seen as model equations for the analysis of pattern formation in physical systems dened on unbounded, weakly oscillating domains. We perform a linear and weakly nonlinear stability analysis for solutions that
Undergraduate Students' Mental Operations in Systems of Differential Equations
Whitehead, Karen; Rasmussen, Chris
2003-01-01
This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…
Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games
Kant, Gijs; van de Pol, Jan Cornelis; Wijs, A.J.; Bošnački, D.; Edelkamp, S.
Parameterised Boolean Equation Systems (PBESs) are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal μ-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then
Complex dynamical behaviors of compact solitary waves in the perturbed mKdV equation
International Nuclear Information System (INIS)
Yin Jiu-Li; Xing Qian-Qian; Tian Li-Xin
2014-01-01
In this paper, we give a detailed discussion about the dynamical behaviors of compact solitary waves subjected to the periodic perturbation. By using the phase portrait theory, we find one of the nonsmooth solitary waves of the mKdV equation, namely, a compact solitary wave, to be a weak solution, which can be proved. It is shown that the compact solitary wave easily turns chaotic from the Melnikov theory. We focus on the sufficient conditions by keeping the system stable through selecting a suitable controller. Furthermore, we discuss the chaotic threshold for a perturbed system. Numerical simulations including chaotic thresholds, bifurcation diagrams, the maximum Lyapunov exponents, and phase portraits demonstrate that there exists a special frequency which has a great influence on our system; with the increase of the controller strength, chaos disappears in the perturbed system. But if the controller strength is sufficiently large, the solitary wave vibrates violently. (general)
On Critical Behaviour in Systems of Hamiltonian Partial Differential Equations.
Dubrovin, Boris; Grava, Tamara; Klein, Christian; Moro, Antonio
2015-01-01
We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P[Formula: see text]) equation or its fourth-order analogue P[Formula: see text]. As concrete examples, we discuss nonlinear Schrödinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture.
International Conference on Dynamical Systems : Theory and Applications
2016-01-01
The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
International Conference on Dynamical Systems : Theory and Applications
2016-01-01
The book is the second volume of a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
Sketching the General Quadratic Equation Using Dynamic Geometry Software
Stols, G. H.
2005-01-01
This paper explores a geometrical way to sketch graphs of the general quadratic in two variables with Geometer's Sketchpad. To do this, a geometric procedure as described by De Temple is used, bearing in mind that this general quadratic equation (1) represents all the possible conics (conics sections), and the fact that five points (no three of…
Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.
Fouxon, Itzhak; Oz, Yaron
2008-12-31
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.
Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations
International Nuclear Information System (INIS)
Fouxon, Itzhak; Oz, Yaron
2008-01-01
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them
Directory of Open Access Journals (Sweden)
D. Bahuguna
2005-01-01
Full Text Available We consider a retarded differential equation with applications to population dynamics. We establish the convergence of a finite-dimensional approximations of a unique solution, the existence and uniqueness of which are also proved in the process.
System dynamics an introduction for mechanical engineers
Seeler, Karl A
2014-01-01
This essential textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control. The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software. Practical details of machine design are included to motivate the non-mathematically inclined student. This book also: Emphasizes the linear graph method for modeling dynamic systems Offers a systematic approach for creating an engineering model, extracting information, and formulating mathematical analyses Adopts a unifying theme of power flow as the dynamic agent that eases analysis of hybrid systems, such as machinery Presents differential equations as dynamic operators and stresses input/output relationships Introduces Mathcad and programming in MATLAB Allows for use of Open Source Computational Software (R or C) Features over 1000 illustrations
Convex solutions of systems arising from Monge-Ampere equations
Directory of Open Access Journals (Sweden)
Haiyan Wang
2009-10-01
Full Text Available We establish two criteria for the existence of convex solutions to a boundary value problem for weakly coupled systems arising from the Monge-Ampère equations. We shall use fixed point theorems in a cone.
Stochastic equations for complex systems theoretical and computational topics
Bessaih, Hakima
2015-01-01
Mathematical analyses and computational predictions of the behavior of complex systems are needed to effectively deal with weather and climate predictions, for example, and the optimal design of technical processes. Given the random nature of such systems and the recognized relevance of randomness, the equations used to describe such systems usually need to involve stochastics. The basic goal of this book is to introduce the mathematics and application of stochastic equations used for the modeling of complex systems. A first focus is on the introduction to different topics in mathematical analysis. A second focus is on the application of mathematical tools to the analysis of stochastic equations. A third focus is on the development and application of stochastic methods to simulate turbulent flows as seen in reality. This book is primarily oriented towards mathematics and engineering PhD students, young and experienced researchers, and professionals working in the area of stochastic differential equations ...
Study of the dynamics of an equation with two large different-order delays
International Nuclear Information System (INIS)
Kashchenko, I.S.
2016-01-01
The case where the larger delay is proportional to the square of the smaller delay is studied in detail. Regions of stability and instability of the equilibrium state and critical cases are found. In all critical cases, special evolutionary equations (quasinormal forms) are constructed. Their non-local dynamics determines the local behavior of solutions of the original equation [ru
A stochastic differential equation framework for the timewise dynamics of turbulent velocities
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen
2008-01-01
We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density...
Null controllability of a cascade system of Schrodinger equations
Directory of Open Access Journals (Sweden)
Marcos Lopez-Garcia
2016-03-01
Full Text Available This article presents a control problem for a cascade system of two linear N-dimensional Schrodinger equations. We address the problem of null controllability by means of a control supported in a region not satisfying the classical geometrical control condition. The proof is based on the application of a Carleman estimate with degenerate weights to each one of the equations and a careful analysis of the system in order to prove null controllability with only one control force.
Correlated Levy Noise in Linear Dynamical Systems
International Nuclear Information System (INIS)
Srokowski, T.
2011-01-01
Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)
Dynamics of partially thermalized solutions of the Burgers equation
Clark Di Leoni, Patricio; Mininni, Pablo D.; Brachet, Marc E.
2018-01-01
The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments.
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E.
2015-03-01
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Pieprzyk, S.; Brańka, A. C.; Maćkowiak, Sz.; Heyes, D. M.
2018-03-01
The equation of state (EoS) of the Lennard-Jones fluid is calculated using a new set of molecular dynamics data which extends to higher temperature than in previous studies. The modified Benedict-Webb-Rubin (MBWR) equation, which goes up to ca. T ˜ 6, is reparametrized with new simulation data. A new analytic form for the EoS, which breaks the fluid range into two regions with different analytic forms and goes up to ca. T ≃ 35, is also proposed. The accuracy of the new formulas is at least as good as the MBWR fit and goes to much higher temperature allowing it to now encompass the Amagat line. The fitted formula extends into the high temperature range where the system can be well represented by inverse power potential scaling, which means that our specification of the equation of state covers the entire (ρ, T) plane. Accurate analytic fit formulas for the Boyle, Amagat, and inversion curves are presented. Parametrizations of the extrema loci of the isochoric, CV, and isobaric, CP, heat capacities are given. As found by others, a line maxima of CP terminates in the critical point region, and a line of minima of CP terminates on the freezing line. The line of maxima of CV terminates close to or at the critical point, and a line of minima of CV terminates to the right of the critical point. No evidence for a divergence in CV in the critical region is found.
Cosmological dynamical systems
Leon, Genly
2011-01-01
In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...
Dynamics of stochastic systems
Klyatskin, Valery I
2005-01-01
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''''oil slicks''''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of ...
Multidimensional linearizable system of n-wave-type equations
Zenchuk, A. I.
2017-01-01
We propose a linearizable version of a multidimensional system of n-wave-type nonlinear partial differential equations ( PDEs). We derive this system using the spectral representation of its solution via a procedure similar to the dressing method for nonlinear PDEs integrable by the inverse scattering transform method. We show that the proposed system is completely integrable and construct a particular solution.
Nonlinear analysis of a reaction-diffusion system: Amplitude equations
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2012-10-15
A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.
Inverse operator method for solutions of nonlinear dynamical equations and some typical applications
International Nuclear Information System (INIS)
Fang Jinqing; Yao Weiguang
1993-01-01
The inverse operator method (IOM) is described briefly. We have realized the IOM for the solutions of nonlinear dynamical equations by the mathematics-mechanization (MM) with computers. They can then offer a new and powerful method applicable to many areas of physics. We have applied them successfully to study the chaotic behaviors of some nonlinear dynamical equations. As typical examples, the well-known Lorentz equation, generalized Duffing equation and two coupled generalized Duffing equations are investigated by using the IOM and the MM. The results are in good agreement with those given by Runge-Kutta method. So the IOM realized by the MM is of potential application valuable in nonlinear physics and many other fields
Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
Chen, Yusui; You, J. Q.; Yu, Ting
2014-11-01
A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.
Trichotomy for dynamical systems in Banach spaces.
Stoica, Codruţa
2013-01-01
We construct a framework for the study of dynamical systems that describe phenomena from physics and engineering in infinite dimensions and whose state evolution is set out by skew-evolution semiflows. Therefore, we introduce the concept of ω-trichotomy. Characterizations in a uniform setting are proved, using techniques from the domain of nonautonomous evolution equations with unbounded coefficients, and connections with the classic notion of trichotomy are given. The statements are sustained by several examples.
Second International Colloquium on Dynamical Systems
Seade, José; Verjovski, Alberto
1988-01-01
The objective of the meeting was to have together leading specialists in the field of Holomorphic Dynamical Systems in order to present their current reseach in the field. The scope was to cover iteration theory of holomorphic mappings (i.e. rational maps), holomorphic differential equations and foliations. Many of the conferences and articles included in the volume contain open problems of current interest. The volume contains only research articles.
Adiabatically steered open quantum systems: Master equation and optimal phase
International Nuclear Information System (INIS)
Salmilehto, J.; Solinas, P.; Ankerhold, J.; Moettoenen, M.
2010-01-01
We introduce an alternative way to derive the generalized form of the master equation recently presented by J. P. Pekola et al. [Phys. Rev. Lett. 105, 030401 (2010)] for an adiabatically steered two-level quantum system interacting with a Markovian environment. The original derivation employed the effective Hamiltonian in the adiabatic basis with the standard interaction picture approach but without the usual secular approximation. Our approach is based on utilizing a master equation for a nonsteered system in the first superadiabatic basis. It is potentially efficient in obtaining higher-order equations. Furthermore, we show how to select the phases of the adiabatic eigenstates to minimize the local adiabatic parameter and how this selection leads to states which are invariant under a local gauge change. We also discuss the effects of the adiabatic noncyclic geometric phase on the master equation.
Solution of the quantum fluid dynamical equations with radial basis function interpolation
International Nuclear Information System (INIS)
Hu, Xu-Guang; Ho, Tak-San; Rabitz, Herschel; Askar, Attila
2000-01-01
The paper proposes a numerical technique within the Lagrangian description for propagating the quantum fluid dynamical (QFD) equations in terms of the Madelung field variables R and S, which are connected to the wave function via the transformation ψ=exp{(R+iS)/(ℎ/2π)}. The technique rests on the QFD equations depending only on the form, not the magnitude, of the probability density ρ=|ψ| 2 and on the structure of R=(ℎ/2π)/2 ln ρ generally being simpler and smoother than ρ. The spatially smooth functions R and S are especially suitable for multivariate radial basis function interpolation to enable the implementation of a robust numerical scheme. Examples of two-dimensional model systems show that the method rivals, in both efficiency and accuracy, the split-operator and Chebychev expansion methods. The results on a three-dimensional model system indicates that the present method is superior to the existing ones, especially, for its low storage requirement and its uniform accuracy. The advantage of the new algorithm is expected to increase for higher dimensional systems to provide a practical computational tool. (c) 2000 The American Physical Society
Solution of the quantum fluid dynamical equations with radial basis function interpolation
Hu, Xu-Guang; Ho, Tak-San; Rabitz, Herschel; Askar, Attila
2000-05-01
The paper proposes a numerical technique within the Lagrangian description for propagating the quantum fluid dynamical (QFD) equations in terms of the Madelung field variables R and S, which are connected to the wave function via the transformation ψ=exp\\{(R+iS)/ħ\\}. The technique rests on the QFD equations depending only on the form, not the magnitude, of the probability density ρ=\\|ψ\\|2 and on the structure of R=ħ/2 ln ρ generally being simpler and smoother than ρ. The spatially smooth functions R and S are especially suitable for multivariate radial basis function interpolation to enable the implementation of a robust numerical scheme. Examples of two-dimensional model systems show that the method rivals, in both efficiency and accuracy, the split-operator and Chebychev expansion methods. The results on a three-dimensional model system indicates that the present method is superior to the existing ones, especially, for its low storage requirement and its uniform accuracy. The advantage of the new algorithm is expected to increase for higher dimensional systems to provide a practical computational tool.
Characteristic Equation of the Modified Smith predictor to MIMO Systems
Directory of Open Access Journals (Sweden)
Jorge A. Herrera-Cuartas
2013-11-01
Full Text Available The delay in control systems is a feature frequently in real systems due to the transport of objects or information, a series connection of multiple systems or own processing and sensors delay, among others. Recently there have been several studies to identify the external delay MIMO systems, these works are focused on identification and on-line control of MIMO systems and use a multimodel structure based on modified Smith predictor using different search method. It is clear that for the implementation of the algorithm, and to obtain the convergence and stability analysis, it is necessary to have closed-loop equations of modified Smith predictor. However, in these works is not presented the analytical procedure, not be the main object, displaying only the closed loop equations without the procedure for obtaining it. Therefore, to respond, in this paper, we present an analytical way to derive the closed-loop equations of a modified Smith predictor.
Three-parameter relativistic dynamics. 1. Equation of motion, energy conservation
International Nuclear Information System (INIS)
Rogachevskii, A.G.
1995-01-01
A formally geometric analog of the relativistic dynamics of a point charged particle is constructed. Time as a function of the spatial coordinates is taken as the trajectory equation, i.e., the trajectory is a hypersurface in Minkowski space. The dynamics is presented. The law of open-quotes energyclose quotes conservation is examined
Bethe-Salpeter equation for a four fermion system I
Energy Technology Data Exchange (ETDEWEB)
Kim, S.K.; Muller, B.; Greiner, W.
1988-08-01
The authors derive the Bethe-Salpeter equation for bound states of a four-body system. They treat only two-body interaction kernels in the ladder approximation. The equations should be applicable for the description of exotic meson states (q qq-barq-bar states) and the ''poly-positronium'' states discussed in connection with the interpretation of the narrow coincidence peaks in the spectra of electrons and positrons observed in heavy ion collisions.
Selected equation of state in the acentric factor system
International Nuclear Information System (INIS)
Schreiber, D.R.; Pitzer, K.S.
1988-06-01
A new equation of state in the acentric factor system is developed on the basis of high-precision data. The region in critical temperature T/sub r/, critical density P/sub r/ space is identified where there is good agreement as well as the regions of significant departures. The equation fits very well in the critical region. 10 refs., 6 figs., 3 tabs
ALTERNATIVE EQUATIONS FOR DYNAMIC BEHAVIOR OF IONIC CHANNEL ACTIVATION AND INACTIVATION GATES
Directory of Open Access Journals (Sweden)
Mahmut ÖZER
2003-03-01
Full Text Available In this paper, alternative equations for dynamics of ionic channel activation and inactivation gates are proposed based on the path probability method. Dynamic behavior of a voltage-gated ionic channel is modeled by the conventional Hodgkin-Huxley (H-H mathematical formalism. In that model, conductance of the channel is defined in terms of activation and inactivation gates. Dynamics of the activation and inactivation gates is modeled by first-order differential equations dependent on the gate variable and the membrane potential. In the new approach proposed in this study, dynamic behavior of activation and inactivation gates is modeled by a firstorder differential equation dependent on internal energy and membrane potential by using the path probability method which is widely used in statistical physics. The new model doesn't require the time constant and steadystate values which are used explicitly in the H-H model. The numerical results show validity of the proposed method.
Geometric methods of global attraction in systems of delay differential equations
El-Morshedy, Hassan A.; Ruiz-Herrera, Alfonso
2017-11-01
In this paper we deduce criteria of global attraction in systems of delay differential equations. Our methodology is new and consists in "dominating" the nonlinear terms of the system by a scalar function and then studying some dynamical properties of that function. One of the crucial benefits of our approach is that we obtain delay-dependent results of global attraction that cover the best delay-independent conditions. We apply our results in a gene regulatory model and the classical Nicholson's blowfly equation with patch structure.
On the stability of some systems of exponential difference equations
Directory of Open Access Journals (Sweden)
N. Psarros
2018-01-01
Full Text Available In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special case when one of the eigenvalues is equal to -1 and the other eigenvalue has absolute value less than 1, using centre manifold theory. In addition, we study the existence and uniqueness of positive equilibria, the attractivity and the global asymptotic stability of these equilibria of some related systems of difference equations.
Topics in Extended Dynamical Systems
Bhagavatula, Ravi S.
This thesis consists of three chapters. Each chapter is self-contained and is devoted to the investigation of a particular topic in extended dynamical systems. In the first chapter, an approach based on Langevin equations is implemented to understand the non-Gaussian nature of the probability distribution function (PDF) of local diffusive variables in extended dynamical systems, e.g., a passive scalar advected by turbulent velocity fluctuations. Two mechanisms are proposed for the origin of non-Gaussian tails: One relies on the nature of temporal correlations of the fluctuations that couple additively to the diffusive field, leading to exponential and stretched exponential tails in the PDF; the other depends on multiplicative coupling between the diffusive field and the fluctuations, producing algebraic tails in the PDF. The mechanisms are illustrated using models for a passive scalar and also a current driven Josephson junction array. This study indicates that shapes of local PDFs in turbulent states are non-universal and crucially depend on local couplings and time scales. The second chapter establishes the existence of a class of locally conserving chaotic (deterministic) systems that exhibit Generic Scale Invariance--algebraic decay of spatial and temporal correlations without tuning parameters. This study also reveals the similarity between noise and chaos in extended systems as far as long-wavelength and long -time behavior is concerned. Specifically, a two dimensional coupled-map lattice model with a conserved density is numerically shown to exhibit, in agreement with heuristic arguments, algebraic decay of spatio-temporal correlations in chaotic states with simple predictable exponents. The third chapter investigates scaling behavior of earthquakes in seismic zone models in which an earthquake is modeled by a quasi-static description that ignores short -time dynamics during an earthquake. The models incorporate the essential feature of long-ranged stress
Dynamics of the driven Goodwin business cycle equation
Antonova, A. O.; Reznik, S. N.; Todorov, M. D.
2015-10-01
We study dynamics of the Goodwin nonlinear accelerator business cycle model with periodic forced autonomous investment Ia(t) = a(1 - cos ωt), where a and ω are the amplitude and the frequency of investment. We give examples of the parameters a and ω when the chaotic oscillations of income are possible. We find the critical values of amplitude acr (ω): if a > acr (ω) the period of the income equals to the driving period T=2π/ω.
Discrete Spectrum of 2 + 1-Dimensional Nonlinear Schrödinger Equation and Dynamics of Lumps
Directory of Open Access Journals (Sweden)
Javier Villarroel
2016-01-01
Full Text Available We consider a natural integrable generalization of nonlinear Schrödinger equation to 2+1 dimensions. By studying the associated spectral operator we discover a rich discrete spectrum associated with regular rationally decaying solutions, the lumps, which display interesting nontrivial dynamics and scattering. Particular interest is placed in the dynamical evolution of the associated pulses. For all cases under study we find that the relevant dynamics corresponds to a central configuration of a certain N-body problem.
Synchronization dynamics of two different dynamical systems
International Nuclear Information System (INIS)
Luo, Albert C.J.; Min Fuhong
2011-01-01
Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.
Lyapunov equation for infinite-dimensional discrete bilinear systems
International Nuclear Information System (INIS)
Costa, O.L.V.; Kubrusly, C.S.
1991-03-01
Mean-square stability for discrete systems requires that uniform convergence is preserved between input and state correlation sequences. Such a convergence preserving property holds for an infinite-dimensional bilinear system if and only if the associate Lyapunov equation has a unique strictly positive solution. (author)
Algebraic Structure of Dynamical Systems
2017-05-22
dynamical system is a function based upon a finite window size of a sequence. Suppose we have a function ϕ which we know is a symmetry of a system (X...this finite window , we can determine what ϕ(x)i is. Example 4.3. Let (X, T ) be a symbolic dynamical system . Let x = . . . 011011110001 . . .. Suppose...the centralizer of any dynamical system is a group with the operation of composition. Given a dynamical system (X, T ) acted on by Z we say that the
Dynamic Modeling of ALS Systems
Jones, Harry
2002-01-01
The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.
The Sylvester equation and the elliptic Korteweg-de Vries system
Sun, Ying-ying; Zhang, Da-jun; Nijhoff, Frank W.
2017-03-01
The elliptic potential Korteweg-de Vries lattice system is a multi-component extension of the lattice potential Korteweg-de Vries equation, whose soliton solutions are associated with an elliptic Cauchy kernel (i.e., a Cauchy kernel on the torus). In this paper we generalize the class of solutions by allowing the spectral parameter to be a full matrix obeying a matrix version of the equation of the elliptic curve, and for the Cauchy matrix to be a solution of a Sylvester type matrix equation subject to this matrix elliptic curve equation. The construction involves solving the matrix elliptic curve equation by using Toeplitz matrix techniques, and analysing the solution of the Sylvester equation in terms of Jordan normal forms. Furthermore, we consider the continuum limit system associated with the elliptic potential Korteweg-de Vries system, and analyse the dynamics of the soliton solutions, which reveals some new features of the elliptic system in comparison to the non-elliptic case.
How to build master equations for complex systems
Breuer, Heinz-Peter; Petruccione, Francesco
1995-12-01
Typical complex systems, e. g., complex chemical reactions, reaction-diffusion systems, and turbulent fluids are described on a macroscopic level, that is, neglecting fluctuations, with the help of deterministic equations for corresponding variables. In this article it is shown on a phenomenological level, that these systems can be described in terms of integer- or real-valued Markov processes as well, which are governed by master equations. The latter are constructed such that the macroscopic law and the fluctuations around it are reproduced correctly. Stochastic processes defined through master equations can easily be simulated. The efficiency, the stability and the parallelization of the algorithms for stochastic simulations are discussed for some examples. In the last part of the paper it is shown that the same phenomenological approach can be successfully applied to open quantum systems. The wave function is assumed to be a complex valued stochastic process in Hilbert space and the quantum master equation for the statistical operator is regarded as the equation of motion for the two-point correlation function.
Nonlocal Symmetries to Systems of Nonlinear Diffusion Equations
International Nuclear Information System (INIS)
Qu Changzheng; Kang Jing
2008-01-01
In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Those systems have physical applications in soil science, mathematical biology, and invariant curve flows in R 3 . Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.
International Nuclear Information System (INIS)
Elfelsoufi, Z.; Azrar, L.
2016-01-01
In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.
Modelling the heat dynamics of a building using stochastic differential equations
DEFF Research Database (Denmark)
Andersen, Klaus Kaae; Madsen, Henrik; Hansen, Lars Henrik
2000-01-01
This paper describes the continuous time modelling of the heat dynamics of a building. The considered building is a residential like test house divided into two test rooms with a water based central heating. Each test room is divided into thermal zones in order to describe both short and long term...... variations. Besides modelling the heat transfer between thermal zones, attention is put on modelling the heat input from radiators and solar radiation. The applied modelling procedure is based on collected building performance data and statistical methods. The statistical methods are used in parameter...... estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...
Analysis of a quadratic system obtained from a scalar third order differential equation
Directory of Open Access Journals (Sweden)
Fabio Scalco Dias
2010-11-01
Full Text Available In this article, we study the nonlinear dynamics of a quadratic system in the three dimensional space which can be obtained from a scalar third order differential equation. More precisely, we study the stability and bifurcations which occur in a parameter dependent quadratic system in the three dimensional space. We present an analytical study of codimension one, two and three Hopf bifurcations, generic Bogdanov-Takens and fold-Hopf bifurcations.
Chaos for Discrete Dynamical System
Directory of Open Access Journals (Sweden)
Lidong Wang
2013-01-01
Full Text Available We prove that a dynamical system is chaotic in the sense of Martelli and Wiggins, when it is a transitive distributively chaotic in a sequence. Then, we give a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke. We also prove that a dynamical system is distributively chaotic in a sequence, when it is chaotic in the strong sense of Li-Yorke.
Solving Systems of Equations with Techniques from Artificial Intelligence
Directory of Open Access Journals (Sweden)
Irina Maria Terfaloaga
2015-07-01
Full Text Available A frequent problem in numerical analysis is solving the systems of equations. That problem has generated in time a great interest among mathematicians and computer scientists, as evidenced by the large number of numerical methods developed. Besides the classical numerical methods, in the last years were proposed methods inspired by techniques from artificial intelligence. Hybrid methods have been also proposed along the time [15, 19]. The goal of this study is to make a survey of methods inspired from artificial intelligence for solving systems of equations
Multiparameter extrapolation and deflation methods for solving equation systems
Directory of Open Access Journals (Sweden)
A. J. Hughes Hallett
1984-01-01
Full Text Available Most models in economics and the applied sciences are solved by first order iterative techniques, usually those based on the Gauss-Seidel algorithm. This paper examines the convergence of multiparameter extrapolations (accelerations of first order iterations, as an improved approximation to the Newton method for solving arbitrary nonlinear equation systems. It generalises my earlier results on single parameter extrapolations. Richardson's generalised method and the deflation method for detecting successive solutions in nonlinear equation systems are also presented as multiparameter extrapolations of first order iterations. New convergence results are obtained for those methods.
Integrability of dynamical systems algebra and analysis
Zhang, Xiang
2017-01-01
This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.
A Willett type criterion with the best possible constant for linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
vol. 53, - (2009), s. 261-269. ISBN 978-4-931469-49-5. ISSN 1793-4338. [11th International Conference on Difference Equations and Applications. Kyoto, 24.07.2006-28.07.2006] R&D Projects: GA AV ČR KJB1019407 Institutional research plan: CEZ:AV0Z10190503 Keywords : Willett criterion * linear dynamic equation * time scale Subject RIV: BA - General Mathematics
Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations
Abdulwahhab, Muhammad Alim
2016-10-01
Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.
Revisiting the approximate analytical solution of fractional-order gas dynamics equation
Directory of Open Access Journals (Sweden)
Mohammad Tamsir
2016-06-01
Full Text Available In this paper, an approximate analytical solution of the time fractional gas dynamics equation arising in the shock fronts, is obtained using a recent semi-analytical method referred as fractional reduced differential transform method. The fractional derivatives are considered in the Caputo sense. To validate the efficiency and reliability of the method, four numerical examples of the linear and nonlinear gas dynamics equations are considered. Computed results are compared with results available in the literature. It is found that obtained results agree excellently with DTM, and FHATM. The solutions behavior and its effects for different values of the fractional order are shown graphically. The main advantage of the method is easiness to implement and requires small size of computation. Hence, it is a very effective and efficient semi-analytical method for solving the fractional order gas dynamics equation.
Angulo, Gonzalo; Jedrak, Jakub; Ochab-Marcinek, Anna; Pasitsuparoad, Pakorn; Radzewicz, Czesław; Wnuk, Paweł; Rosspeintner, Arnulf
2017-06-28
The dynamics of unimolecular photo-triggered reactions can be strongly affected by the surrounding medium for which a large number of theoretical descriptions have been used in the past. An accurate description of these reactions requires knowing the potential energy surface and the friction felt by the reactants. Most of these theories start from the Langevin equation to derive the dynamics, but there are few examples comparing it with experiments. Here we explore the applicability of a Generalized Langevin Equation (GLE) with an arbitrary potential and a non-Markovian friction. To this end, we have performed broadband fluorescence measurements with sub-picosecond time resolution of a covalently linked organic electron donor-acceptor system in solvents of changing viscosity and dielectric permittivity. In order to establish the free energy surface (FES) of the reaction, we resort to stationary electronic spectroscopy. On the other hand, the dynamics of a non-reacting substance, Coumarin 153, provide the calibrating tool for the non-Markovian friction over the FES, which is assumed to be solute independent. A simpler and computationally faster approach uses the Generalized Smoluchowski Equation (GSE), which can be derived from the GLE for pure harmonic potentials. Both approaches reproduce the measurements in most of the solvents reasonably well. At long times, some differences arise from the errors inherited from the analysis of the stationary solvatochromism and at short times from the excess excitation energy. However, whenever the dynamics become slow, the GSE shows larger deviations than the GLE, the results of which always agree qualitatively with the measured dynamics, regardless of the solvent viscosity or dielectric properties. The method applied here can be used to predict the dynamics of any other reacting system, given the FES parameters and solvent dynamics are provided. Thus no fitting parameters enter the GLE simulations, within the applicability
Refined Fuchs inequalities for systems of linear differential equations
International Nuclear Information System (INIS)
Gontsov, R R
2004-01-01
We refine the Fuchs inequalities obtained by Corel for systems of linear meromorphic differential equations given on the Riemann sphere. Fuchs inequalities enable one to estimate the sum of exponents of the system over all its singular points. We refine these well-known inequalities by considering the Jordan structure of the leading coefficient of the Laurent series for the matrix of the right-hand side of the system in the neighbourhood of a singular point
Some overdetermined systems of complex partial differential equations
International Nuclear Information System (INIS)
Le Hung Son.
1990-01-01
In this paper we extend some properties of analytic functions on several complex variables to solutions of overdetermined systems of complex partial differential equations. It is proved that many global properties of analytic functions are true for solutions of the Vekua system in special cases. The relation between analytic functions and solutions of quasi-linear systems is discussed in the paper. (author). 8 refs
Existence of a coupled system of fractional differential equations
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, Rabha W. [Multimedia unit, Department of Computer System and Technology Faculty of Computer Science & IT, University of Malaya, 50603 Kuala Lumpur (Malaysia); Siri, Zailan [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
From Conformal Invariance towards Dynamical Symmetries of the Collisionless Boltzmann Equation
Directory of Open Access Journals (Sweden)
Stoimen Stoimenov
2015-09-01
Full Text Available Dynamical symmetries of the collisionless Boltzmann transport equation, or Vlasov equation, but under the influence of an external driving force, are derived from non-standard representations of the 2D conformal algebra. In the case without external forces, the symmetry of the conformally-invariant transport equation is first generalized by considering the particle momentum as an independent variable. This new conformal representation can be further extended to include an external force. The construction and possible physical applications are outlined.
On the constraints violation in forward dynamics of multibody systems
Energy Technology Data Exchange (ETDEWEB)
Marques, Filipe [University of Minho, Department of Mechanical Engineering (Portugal); Souto, António P. [University of Minho, Department of Textile Engineering (Portugal); Flores, Paulo, E-mail: pflores@dem.uminho.pt [University of Minho, Department of Mechanical Engineering (Portugal)
2017-04-15
It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton–Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical solution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as a function of the Moore–Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian, and the coordinate partitioning method.
Directory of Open Access Journals (Sweden)
M. W. Dunlop
Full Text Available Magnetic field measurements, taken by the magnetometer experiment (MAM on board the German Equator-S spacecraft, have been used to identify and categorise 131 crossings of the dawn-side magnetopause at low latitude, providing unusual, long duration coverage of the adjacent magnetospheric regions and near magnetosheath. The crossings occurred on 31 orbits, providing unbiased coverage over the full range of local magnetic shear from 06:00 to 10:40 LT. Apogee extent places the spacecraft in conditions associated with intermediate, rather than low, solar wind dynamic pressure, as it processes into the flank region. The apogee of the spacecraft remains close to the magnetopause for mean solar wind pressure. The occurrence of the magnetopause encounters are summarised and are found to compare well with predicted boundary location, where solar wind conditions are known. Most scale with solar wind pressure. Magnetopause shape is also documented and we find that the magnetopause orientation is consistently sunward of a model boundary and is not accounted for by IMF or local magnetic shear conditions. A number of well-established crossings, particularly those at high magnetic shear, or exhibiting unusually high-pressure states, were observed and have been analysed for their boundary characteristics and some details of their boundary and near magnetosheath properties are discussed. Of particular note are the occurrence of mirror-like signatures in the adjacent magnetosheath during a significant fraction of the encounters and a high number of multiple crossings over a long time period. The latter is facilitated by the spacecraft orbit which is designed to remain in the near magnetosheath for average solar wind pressure. For most encounters, a well-ordered, tangential (draped magnetosheath field is observed and there is little evidence of large deviations in local boundary orientations. Two passes corresponding to close conjunctions of the Geotail spacecraft
RESOLUTION DE SYSTEMES D'EQUATIONS DE DISTANCE AVEC INCERTITUDES.
GRANDON, CARLOS; GRANDON, CARLOS
2007-01-01
In this thesis we are interested in a particular class of problems which frequently appear in robotics (and many other areas as chemistry, molecular biology, Computer-Aided Design (CAD), and aeronautics). They are systems of distance equations with uncert 190p.
Local first integrals for systems of differential equations
International Nuclear Information System (INIS)
Zhang Xiang
2003-01-01
The main purpose of this paper is to provide some sufficient conditions for a system of differential equations to have local first integrals in a certain neighbourhood of a singularity. Our results generalize those given in Kwek et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math. Phys. 54 235)
On Coupled System of Navier-Stokes Equations and Temperature
African Journals Online (AJOL)
Dr. Anthony Peter
ABSTRACT. This paper deals with the coupled system of Navier-Stokes equations and temperature (Thermohydraulics) in a strip in the class of spatially non-decaying (infinite-energy) solutions belonging to the properly chosen uniformly local Sobolev spaces. The global well-posedness and dissipativity of the Navier- ...
Simulation of dynamic systems with Matlab and Simulink
Klee, Harold
2011-01-01
Mathematical ModelingDerivation of a Mathematical ModelDifference EquationsFirst Look at Discrete-Time SystemsCase Study: Population Dynamics (Single Species)Continuous-Time SystemsFirst-Order SystemsSecond-Order SystemsSimulation DiagramsHigher-Order SystemsState VariablesNonlinear SystemsCase Study: Submarine Depth Control SystemElementary Numerical IntegrationDiscrete-Time System Approximation of a Continuous-
Projective geometry of systems of second-order differential equations
International Nuclear Information System (INIS)
Aminova, A V; Aminov, N A
2006-01-01
It is proved that every projective connection on an n-dimensional manifold M is locally defined by a system S of n-1 second-order ordinary differential equations resolved with respect to the second derivatives and with right-hand sides cubic in the first derivatives, and that every differential system S defines a projective connection on M. The notion of equivalent differential systems is introduced and necessary and sufficient conditions are found for a system S to be reducible by a change of variables to a system whose integral curves are straight lines. It is proved that the symmetry group of a differential system S is a group of projective transformations in n-dimensional space with the associated projective connection and has dimension ≤n 2 +2n. Necessary and sufficient conditions are found for a system to admit the maximal symmetry group; basis vector fields and structure equations of the maximal symmetry Lie algebra are produced. As an application a classification is given of the systems S of two second-order differential equations admitting three-dimensional soluble symmetry groups.
Management of complex dynamical systems
MacKay, R. S.
2018-02-01
Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.
An equations of motion approach for open shell systems
International Nuclear Information System (INIS)
Yeager, D.L.; McKoy, V.
1975-01-01
A straightforward scheme is developed for extending the equations of motion formalism to systems with simple open shell ground states. Equations for open shell random phase approximation (RPA) are given for the cases of one electron outside of a closed shell in a nondegenerate molecular orbital and for the triplet ground state with two electrons outside of a closed shell in degenerate molecular orbitals. Applications to other open shells and extension of the open shell EOM to higher orders are both straightforward. Results for the open shell RPA for lithium atom and oxygen molecule are given
Periodic solutions to systems of reaction-diffusion equations
Rosen, G.
1976-01-01
Necessary and sufficient conditions are derived for the existence of temporally periodic 'dissipative structure' solutions in weak diffusion with the reaction rate terms dominant in a generic system of reaction-diffusion differential equations. The enumerator index i of the equations denotes the density or concentration of the ith participating molecular or biological species, and D sub i is the diffusivity constant for the ith species while Q sub i (c), an algebraic function of the n-tuple c, expresses the local rate of production of the ith species due to chemical reactions or biological interactions.
Directory of Open Access Journals (Sweden)
Troy Snyder
2018-01-01
Full Text Available The accuracy and utility of rotordynamic models for machinery systems are greatly affected by the accuracy of the constituent dynamic bearing models. Primarily, the dynamic behavior of bearings is modeled as linear combination of mass, damping, and stiffness coefficients that are predicted from a perturbed Reynolds equation. In the present paper, an alternative method using Computational Fluid Dynamics (CFD with a moving boundary is used to predict the dynamic coefficients of slider bearings and the results are compared with the more commonly employed perturbed Reynolds equation model. A linear slider bearing geometry is investigated and the results serve as precursors to similar investigations involving the more complex journal bearing geometries. Time and frequency domain methods for the estimation of dynamic coefficients are shown to give comparable results. For CFD with a moving boundary, temporal inertia is found to have a significant effect for a reduced, squeeze Reynolds number less than one. The temporal inertia effect is captured through an added mass coefficient within the dynamic model of the bearing.
The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations
International Nuclear Information System (INIS)
Chen Jinbing; Qiao Zhijun
2011-01-01
A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebro-geometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.
Controlling Uncertain Dynamical Systems
Indian Academy of Sciences (India)
Author Affiliations. N Ananthkrishnan1 Rashi Bansal2. Head, CAE Analysis & Design Zeus Numerix Pvt Ltd. M-03, SINE, IIT Bombay Powai Mumbai 400076, India. MTech (Aerospace Engineering) with specialization in Dynamics & Control from IIT Bombay.
Cotter, C J; Gottwald, G A; Holm, D D
2017-09-01
In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.
Nambu-Poisson reformulation of the finite dimensional dynamical systems
International Nuclear Information System (INIS)
Baleanu, D.; Makhaldiani, N.
1998-01-01
A system of nonlinear ordinary differential equations which in a particular case reduces to Volterra's system is introduced. We found in two simplest cases the complete sets of the integrals of motion using Nambu-Poisson reformulation of the Hamiltonian dynamics. In these cases we have solved the systems by quadratures
Fully Digital Chaotic Differential Equation-based Systems And Methods
Radwan, Ahmed Gomaa Ahmed
2012-09-06
Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.
Application of the Bayes equation to predicting reactor system reliability
International Nuclear Information System (INIS)
Fullwood, R.R.; Erdmann, R.C.; Rumble, E.T.; Lellouche, G.S.
1977-01-01
Reliability predictions for systems exhibiting few, if any, failures require the use of all available information. The Bayes equation incorporates prior engineering information with test data to provide statistically improved posterior estimates. Classical results agree with those obtained from the Bayes equation by using no prior information. For the case of failure-on-demand, this is equivalent to assuming a 50% mean failure probability for the prior information--hardly an appropriate estimate for a reliable system such as a reactor scram system. The method of Bayes conjugates applied to the cases of aging failure and failure-on-demand yields formulas for calculating mean, standard deviation, and confidence values. Various methods for incorporating prior information are possible. For example, calculating scram failure probabilities by incorporating prior information obtained from fault tree analysis of a scram system with historical test data indicates a mean scram failure probability of approx. 8 x 10 -6 per demand
Mo, Chao-jie; Qin, Li-zi; Yang, Li-jun
2017-10-01
We have derived a hypernetted-chain-like (HNC-like) approximate closure of the Ornstein-Zernike equation for multibody dissipative particle dynamics (MDPD) system in which the classic closures are not directly practicable. We first point out that the Percus's method is applicable to MDPD system in which particles interact with a density-dependent potential. And then an HNC-like closure is derived using Percus's idea and the saddle-point approximation of particle free energy. This HNC-like closure is compared with results of previous researchers, and in many cases, it demonstrates better agreement with computer simulation results. The HNC-like closure is used to predict the cluster crystallization in MDPD. We determine whether the cluster crystallization will happen in a system utilizing the widely applicable Hansen-Verlet freezing criterion and by observing the radial distribution function. The conclusions drawn from the results of the HNC-like closure are in agreement with computer simulation results. We evaluate different weight functions to determine whether they are prone to cluster crystallization. A new effective density-dependent pairwise potential is also proposed to help to explain the tendency to cluster crystallization of MDPD systems.
MINPACK-1, Subroutine Library for Nonlinear Equation System
International Nuclear Information System (INIS)
Garbow, Burton S.
1984-01-01
1 - Description of problem or function: MINPACK1 is a package of FORTRAN subprograms for the numerical solution of systems of non- linear equations and nonlinear least-squares problems. The individual programs are: Identification/Description: - CHKDER: Check gradients for consistency with functions, - DOGLEG: Determine combination of Gauss-Newton and gradient directions, - DPMPAR: Provide double precision machine parameters, - ENORM: Calculate Euclidean norm of vector, - FDJAC1: Calculate difference approximation to Jacobian (nonlinear equations), - FDJAC2: Calculate difference approximation to Jacobian (least squares), - HYBRD: Solve system of nonlinear equations (approximate Jacobian), - HYBRD1: Easy-to-use driver for HYBRD, - HYBRJ: Solve system of nonlinear equations (analytic Jacobian), - HYBRJ1: Easy-to-use driver for HYBRJ, - LMDER: Solve nonlinear least squares problem (analytic Jacobian), - LMDER1: Easy-to-use driver for LMDER, - LMDIF: Solve nonlinear least squares problem (approximate Jacobian), - LMDIF1: Easy-to-use driver for LMDIF, - LMPAR: Determine Levenberg-Marquardt parameter - LMSTR: Solve nonlinear least squares problem (analytic Jacobian, storage conserving), - LMSTR1: Easy-to-use driver for LMSTR, - QFORM: Accumulate orthogonal matrix from QR factorization QRFAC Compute QR factorization of rectangular matrix, - QRSOLV: Complete solution of least squares problem, - RWUPDT: Update QR factorization after row addition, - R1MPYQ: Apply orthogonal transformations from QR factorization, - R1UPDT: Update QR factorization after rank-1 addition, - SPMPAR: Provide single precision machine parameters. 4. Method of solution - MINPACK1 uses the modified Powell hybrid method and the Levenberg-Marquardt algorithm
Modelling biochemical reaction systems by stochastic differential equations with reflection.
Niu, Yuanling; Burrage, Kevin; Chen, Luonan
2016-05-07
In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
New form of the Euler-Bernoulli rod equation applied to robotic systems
Directory of Open Access Journals (Sweden)
Filipović Mirjana
2008-01-01
Full Text Available This paper presents a theoretical background and an example of extending the Euler-Bernoulli equation from several aspects. Euler-Bernoulli equation (based on the known laws of dynamics should be supplemented with all the forces that are participating in the formation of the bending moment of the considered mode. The stiffness matrix is a full matrix. Damping is an omnipresent elasticity characteristic of real systems, so that it is naturally included in the Euler-Bernoulli equation. It is shown that Daniel Bernoulli's particular integral is just one component of the total elastic deformation of the tip of any mode to which we have to add a component of the elastic deformation of a stationary regime in accordance with the complexity requirements of motion of an elastic robot system. The elastic line equation mode of link of a complex elastic robot system is defined based on the so-called 'Euler-Bernoulli Approach' (EBA. It is shown that the equation of equilibrium of all forces present at mode tip point ('Lumped-mass approach' (LMA follows directly from the elastic line equation for specified boundary conditions. This, in turn, proves the essential relationship between LMA and EBA approaches. In the defined mathematical model of a robotic system with multiple DOF (degree of freedom in the presence of the second mode, the phenomenon of elasticity of both links and joints are considered simultaneously with the presence of the environment dynamics - all based on the previously presented theoretical premises. Simulation results are presented. .
Gerbi, Stéphane
2011-12-01
In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.
THE GROSSER ALETSCHGLETSCHER DYNAMICS: FROM A “MINIMAL MODEL” TO A STOCHASTIC EQUATION
Directory of Open Access Journals (Sweden)
Alexander V. Kislov
2016-01-01
Full Text Available Mountain glaciers manifest oscillations at different time-scales. Apart from synchronous reaction to lasting changes, there is asynchronism between climatic forcing and observed anomalies of the glaciers. Based on general theories on the laws of temporal dynamics relating to massive inertial objects, the observed interannual changes of glacier length could result from the accumulation of small anomalies in the heat/water fluxes. Despite the fact that the original model of the dynamics of mountain glaciers is deterministically based on the physical law of conservation of water mass, the model of length change is interpreted as stochastic; from this perspective, it is the Langevin equation that incorporates the action of temperature anomalies and precipitation like random white noise. The process is analogous to Brownian motion. Under these conditions, the Grosser Aletschgletscher (selected as an example is represented by a system undergoing a random walk. It was shown that the possible range of variability covers the observed interval of length fluctuations.
Flux weighted method for solution of stiff neutron dynamic equations and its application
International Nuclear Information System (INIS)
Li Huiyun; Jiao Huixian
1987-12-01
To analyze reactivity event for nuclear power plants, it is necessary to solve the neutron dynamic equations, which is a group of typical stiff constant differential equations. Very small time steps could only be adopted when the group of equations is solved by common methods. However, a large time steps might be selected if the Flux Weighted Medthod introduced in this paper is used. Generally, weighted factor θ i1 is set as a constant. Naturally, this treatment method can decrease the accuracy of calculation for the increase of the steadiness of solving the equations. An accurate theoretical formula of 4 x 4 matrix of θ i1 is rigorously derived so that the accuracy of calculation is ensured, as well as the steadiness of solved equations is increased. This method have the advantage over classical Runge-kutta Method and other methods. The time steps could be increased by a factor of 1 ∼ 3 orders of magnitude so as to save a lot of computating time. The programe solving neutron dynamic equation, which is prepared by using Flux Weighted Method, could be sued for real time analog of training simulator, as well as for analysis and computation of reactivity event (including rod jumping out event)
Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations
International Nuclear Information System (INIS)
Sczaniecki, L.
1981-02-01
A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)
Ergodic theory and dynamical systems
Coudène, Yves
2016-01-01
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of commen...
Integrodifferential equations and delay models in population dynamics
Cushing, Jim M
1977-01-01
These notes are, for the most part, the result of a course I taught at the University of Arizona during the Spring of 1977. Their main purpose is to inves tigate the effect that delays (of Volterra integral type) have when placed in the differential models of mathematical ecology, as far as stability of equilibria and the nature of oscillations of species densities are concerned. A secondary pur pose of the course out of which they evolved was to give students an (at least elementary) introduction to some mathematical modeling in ecology as well as to some purely mathematical subjects, such as stability theory for integrodifferentia1 systems, bifurcation theory, and some simple topics in perturbation theory. The choice of topics of course reflects my personal interests; and while these notes were not meant to exhaust the topics covered, I think they and the list of refer ences come close to covering the literature to date, as far as integrodifferentia1 models in ecology are concerned. I would like to th...
Discrete dynamics of complex systems
Directory of Open Access Journals (Sweden)
Hermann Haken
1997-01-01
Full Text Available This article extends the slaving principle of synergetics to processes with discrete time steps. Starting point is a set of nonlinear difference equations which contain multiplicative noise and which refer to multidimensional state vectors. The system depends on a control parameter. When its value is changed beyond a critical value, an instability of the solution occurs. The stability analysis allows us to divide the system into stable and unstable modes. The original equations can be transformed to a set of difference equations for the unstable and stable modes. The extension of the slaving principle to the time-discrete case then states that all the stable modes can be explicitly expressed by the unstable modes or so-called order-parameters.
Dislocation evolution during plastic deformation: Equations vs. discrete dislocation dynamics study
Davoudi, Kamyar M.; Vlassak, Joost J.
2018-02-01
Equations for dislocation evolution bridge the gap between dislocation properties and continuum descriptions of plastic behavior of crystalline materials. Computer simulations can help us verify these evolution equations and find their fitting parameters. In this paper, we employ discrete dislocation dynamics to establish a continuum-based model for the evolution of the dislocation structure in polycrystalline thin films. Expressions are developed for the density of activated dislocation sources, as well as dislocation nucleation and annihilation rates. We demonstrate how size effect naturally enters the evolution equation. Good agreement between the simulation and the model results is obtained. The current approach is based on a two-dimensional discrete dislocation dynamics model but can be extended to three-dimensional models.
Oscillation theory for a pair of second order dynamic equations with a singular interface
Directory of Open Access Journals (Sweden)
Pallav Kumar Baruah
2008-03-01
Full Text Available In this paper we consider a pair of second order dynamic equations defined on the time scale $I = [a,c]cup [sigma(c,b]$. We impose matching interface conditions at the singular interface $c$. We prove a theorem regarding the relationship between the number of eigenvalues and zeros of the corresponding eigenfunctions.
Hardy inequality on time scales and its application to half-linear dynamic equations
Directory of Open Access Journals (Sweden)
Řehák Pavel
2005-01-01
Full Text Available A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.
Equation of state and adsorption dynamics of soft microgel particles at an air-water interface
Deshmukh, O.S.; Maestro, A.; Duits, M.H.G.; Ende, van den D.T.M.; Cohen Stuart, M.A.; Mugele, F.
2014-01-01
Understanding the adsorption dynamics of soft microgel particles is a key step in designing such particles for potential applications as stimuli-responsive Pickering stabilizers for foams or emulsions. In this study we experimentally determine an equation of state (EOS) for poly
Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.
1996-01-01
Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...
Efficient high-order method for the solution of fluid dynamics equations
International Nuclear Information System (INIS)
Romstedt, P.; Werner, W.
1977-01-01
An asymmetric weighted residual method for the solution of fluid dynamics equations is described that leads to local operators with a finite difference structure independent of the degree of approximating polynomials. It combines high accuracy on a coarse computational mesh and short computing time per space point and thus brings about sizable reductions of running time, relative to conventional methods
A meshless front tracking method for the Euler equations of fluid dynamics
Witteveen, J.A.S.
2009-01-01
A second order front tracking method is developed for solving the Euler equations of inviscid fluid dynamics numerically. Front tracking methods are usually limited to first order accuracy, since they are based on a piecewise constant approximation of the solution. Here the second order convergence
Oscillation and nonoscillation for impulsive dynamic equations on certain time scales
Directory of Open Access Journals (Sweden)
Henderson Johnny
2006-01-01
Full Text Available We discuss the existence of oscillatory and nonoscillatory solutions for first-order impulsive dynamic equations on time scales with certain restrictions on the points of impulse. We will rely on the nonlinear alternative of Leray-Schauder type combined with a lower and upper solutions method.
Peculiarities in power type comparison results for half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2012-01-01
Roč. 42, č. 6 (2012), s. 1995-2013 ISSN 0035-7596 R&D Projects: GA AV ČR KJB100190701 Institutional support: RVO:67985840 Keywords : half-linear dynamic equation * time scale * comparison theorem Subject RIV: BA - General Mathematics Impact factor: 0.389, year: 2012 http://projecteuclid.org/euclid.rmjm/1361800616
Dynamical systems in classical mechanics
Kozlov, V V
1995-01-01
This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics
Relativistic two-and three-particle scattering equations using instant and light-front dynamics
International Nuclear Information System (INIS)
Adhikari, S.K.; Tomio, L.; Frederico, T.
1992-01-01
Starting from the Bethe-Salpeter equation for two particles in the ladder approximation and integrating over the time component of momentum we derive three dimensional scattering integral equations satisfying constraints of unitarity and relativity, both employing the light-front and instant-form variables. The equations we arrive at are those first derived by Weinberg and by Blankenbecler and Sugar, and are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. We extends this procedure to the case of three particles interacting via two-particle separable potentials. Using light-front and instant form variables we suggest a couple of three dimensional three-particle scattering equations satisfying constraints of two and three-particle unitarity and relativity. The three-particle light-front equation is shown to be approximately related by a transformation of variables to one of the instant-form three-particle equations. (author)
Reasoning about Dynamic Normative Systems
Knobbout, Max; Dastani, Mehdi; Meyer, John-Jules Charles
2014-01-01
The use of normative systems is widely accepted as an effective approach to control and regulate the behaviour of agents in multiagent systems. When norms are added to a normative system, the behaviour of such a system changes. As of yet, there is no clear formal methodology to model the dynamics of
Mohammed, K. Elboree
2015-10-01
In this paper, we investigate the traveling wave solutions for the nonlinear dispersive equation, Korteweg-de Vries Zakharov-Kuznetsov (KdV-ZK) equation and complex coupled KdV system by using extended simplest equation method, and then derive the hyperbolic function solutions include soliton solutions, trigonometric function solutions include periodic solutions with special values for double parameters and rational solutions. The properties of such solutions are shown by figures. The results show that this method is an effective and a powerful tool for handling the solutions of nonlinear partial differential equations (NLEEs) in mathematical physics.
Permutation Complexity in Dynamical Systems
Amigo, Jose
2010-01-01
The study of permutation complexity can be envisioned as a new kind of symbolic dynamics whose basic blocks are ordinal patterns, that is, permutations defined by the order relations among points in the orbits of dynamical systems. Since its inception in 2002 the concept of permutation entropy has sparked a new branch of research in particular regarding the time series analysis of dynamical systems that capitalizes on the order structure of the state space. Indeed, on one hand ordinal patterns and periodic points are closely related, yet ordinal patterns are amenable to numerical methods, while periodicity is not. Another interesting feature is that since it can be shown that random (unconstrained) dynamics has no forbidden patterns with probability one, their existence can be used as a fingerprint to identify any deterministic origin of orbit generation. This book is primarily addressed to researchers working in the field of nonlinear dynamics and complex systems, yet will also be suitable for graduate stude...
Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems
Directory of Open Access Journals (Sweden)
Florian Thüroff
2014-11-01
Full Text Available Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system’s dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system’s ordered state nematic, despite purely polar interactions on the level of single particles.
Directory of Open Access Journals (Sweden)
Doronin Fedor Leonidovich
2014-01-01
Full Text Available When designing residential buildings, additional measures for increasing the strength at dynamic effects indoors are not foreseen. The walls of the structure fixed in the framework are not designed for shock wave caused by explosion of utility gas. When designing a building, the task of the special dynamic load is often reduced to the calculation of the safe shock pressure, exceeding of which leads to the destruction of the structures. The wall with the window area under dynamic effects is a blast relief panel, which reduces the excess pressure inside the room. The proposed method of calculating a design with a window unit allows determining the dynamic reaction of the wall on explosive pulse. The proposed calculation technique of the constructions at shock loads allows tracing the changes of the inertial forces and displacements at any stage of dynamic response. The reaction to dynamic loads can be also set for non-monolithic structures, consisting of different materials with different conditions of fastening. Elastoplastic reaction of a brick wall with glass units was determined using step-by-step method of linear acceleration. The calculation of stress-strain state of brick walls with window panes determined the strength properties of the structures close to the monolithic version. The proposed technique of numerical solution of dynamic equations is applied only in the analysis of elastic systems, in which the dynamic characteristics remain unchanged throughout the reaction process.
Vrettas, Michail D; Opper, Manfred; Cornford, Dan
2015-01-01
This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.
Dynamical systems with applications using MATLAB
Lynch, Stephen
2014-01-01
This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox™, and the Symbolic Math Toolbox™, including MuPAD. Features new to the second edition include, sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; chapters on image processing and binary oscillator computing; hundreds of new illustrations, examples, and exercises with solutions; and over eighty up-to-date MATLAB® program files and Simulink model files available online. These files were voted MATLAB® Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB®, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equ...
Collision dynamics of three interacting atoms: The Faddeev equations in a diabatic electronic basis
International Nuclear Information System (INIS)
Kuruoglu, Z.C.; Micha, D.A.
1983-01-01
Starting with all the electrons and nuclei making up a system of three atoms, we introduce a basis of antisymmetrized products of atomic states to define a matrix Hamiltonian partition applicable to atom--diatom collisions. We derive a three-atom generalization of the Faddeev equations in terms of diatomic transition operators. Equations are obtained for three-atom rearrangement transition operators that are then reduced to sets of effective two-body (atom--diatom) equations by introducing separable expansions of the diatomic transition operators. We also discuss the permutational symmetry of identical nuclei and briefly describe how the formalism applies to the H 3 and FH 2 systems
International Nuclear Information System (INIS)
Fukuda, Ikuo; Nakamura, Haruki
2010-01-01
Several molecular dynamics techniques applying the Tsallis generalized distribution are presented. We have developed a deterministic dynamics to generate an arbitrary smooth density function ρ. It creates a measure-preserving flow with respect to the measure ρdω and realizes the density ρ under the assumption of the ergodicity. It can thus be used to investigate physical systems that obey such distribution density. Using this technique, the Tsallis distribution density based on a full energy function form along with the Tsallis index q ≥ 1 can be created. From the fact that an effective support of the Tsallis distribution in the phase space is broad, compared with that of the conventional Boltzmann-Gibbs (BG) distribution, and the fact that the corresponding energy-surface deformation does not change energy minimum points, the dynamics enhances the physical state sampling, in particular for a rugged energy surface spanned by a complicated system. Other feature of the Tsallis distribution is that it provides more degree of the nonlinearity, compared with the case of the BG distribution, in the deterministic dynamics equation, which is very useful to effectively gain the ergodicity of the dynamical system constructed according to the scheme. Combining such methods with the reconstruction technique of the BG distribution, we can obtain the information consistent with the BG ensemble and create the corresponding free energy surface. We demonstrate several sampling results obtained from the systems typical for benchmark tests in MD and from biomolecular systems.
Experimental quantum computing to solve systems of linear equations.
Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2013-06-07
Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.
International Nuclear Information System (INIS)
Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.
2010-01-01
We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delay time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.
Dynamic Ocean Track System Plus -
Department of Transportation — Dynamic Ocean Track System Plus (DOTS Plus) is a planning tool implemented at the ZOA, ZAN, and ZNY ARTCCs. It is utilized by Traffic Management Unit (TMU) personnel...
Optimal q-homotopy analysis method for time-space fractional gas dynamics equation
Saad, K. M.; AL-Shareef, E. H.; Mohamed, Mohamed S.; Yang, Xiao-Jun
2017-01-01
It is well known that the homotopy analysis method is one of the most efficient methods for obtaining analytical or approximate semi-analytical solutions of both linear and non-linear partial differential equations. A more general form of HAM is introduced in this paper, which is called Optimal q-Homotopy Analysis Method (Oq-HAM). It has better convergence properties as compared with the usual HAM, due to the presence of fraction factor associated with the solution. The convergence of q-HAM is studied in details elsewhere (M.A. El-Tawil, Int. J. Contemp. Math. Sci. 8, 481 (2013)). Oq-HAM is applied to the non-linear homogeneous and non-homogeneous time and space fractional gas dynamics equations with initial condition. An optimal convergence region is determined through the residual error. By minimizing the square residual error, the optimal convergence control parameters can be obtained. The accuracy and efficiency of the proposed method are verified by comparison with the exact solution of the fractional gas dynamics equation. Also, it is shown that the Oq-HAM for the fractional gas dynamics equation is equivalent to the exact solution. We obtain graphical representations of the solutions using MATHEMATICA.
System Dynamics and Modified Cumulant Neglect Closure Schemes
DEFF Research Database (Denmark)
Köylüoglu, H. Ugur; Nielsen, Søren R.K.
Dealing with multipeaked problems, the goal of the paper is to improve the quality of the approximations for the expectations appearing in the differential equations written for the statistical moments of the state vector, guided by insight in the system dynamics. For systems with polynomial non-...
Is DNA a nonlinear dynamical system where solitary conformational ...
Indian Academy of Sciences (India)
Unknown
DNA is considered as a nonlinear dynamical system in which solitary conformational waves can be excited. The history of the approach, the ..... nucleotides; K is the coupling constant along each strand;. R0 is the radius of DNA; a is .... Let us note that the system of equations (12)–(17) can be divided into two independent ...
Kashchenko, Sergey A.
2016-12-01
The dynamics of second-order equations with nonlinear delayed feedback and a large coefficient of a delayed equation is investigated using asymptotic methods. Based on special methods of quasi-normal forms, a new construction is elaborated for obtaining the main terms of asymptotic expansions of asymptotic residual solutions. It is shown that the dynamical properties of the above equations are determined mostly by the behavior of the solutions of some special families of parabolic boundary value problems. A comparative analysis of the dynamics of equations with the delayed feedback of three types is carried out.
International Nuclear Information System (INIS)
Kawashima, S.; Matsumara, A.; Nishida, T.
1979-01-01
The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay rate tsup(-5/4)) as t → + infinitely to that of the compressible Navier-Stokes equation for the corresponding initial data. (orig.) 891 HJ/orig. 892 MKO
Dynamical Systems Method and Applications Theoretical Developments and Numerical Examples
Ramm, Alexander G
2012-01-01
Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and
Numerical computation of soliton dynamics for NLS equations in a driving potential
Directory of Open Access Journals (Sweden)
Marco Caliari
2010-06-01
Full Text Available We provide numerical computations for the soliton dynamics of the nonlinear Schrodinger equation with an external potential. After computing the ground state solution r of a related elliptic equation we show that, in the semi-classical regime, the center of mass of the solution with initial datum built upon r is driven by the solution to $ddot x=- abla V(x$. Finally, we provide examples and analyze the numerical errors in the two dimensional case when V is a harmonic potential.
A critical oscillation constant as a variable of time scales for half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2010-01-01
Roč. 60, č. 2 (2010), s. 237-256 ISSN 0139-9918 R&D Projects: GA AV ČR KJB100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : dynamic equation * time scale * half-linear equation * (non)oscillation criteria * Hille-Nehari criteria * Kneser criteria * critical constant * oscillation constant * Hardy inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0009-7
Dynamical equations and transport coefficients for the metals at high pulse electromagnetic fields
International Nuclear Information System (INIS)
Volkov, N B; Chingina, E A; Yalovets, A P
2016-01-01
We offer a metal model suitable for the description of fast electrophysical processes in conductors under influence of powerful electronic and laser radiation of femto- and picosecond duration, and also high-voltage electromagnetic pulses with picosecond front and duration less than 1 ns. The obtained dynamic equations for metal in approximation of one quasineutral liquid are in agreement with the equations received by other authors formerly. New wide-range expressions for the electronic conduction in strong electromagnetic fields are obtained and analyzed. (paper)
Reddy, T. S. R.
1986-01-01
The process of performing an automated stability analysis for an elastic-bladed helicopter rotor is discussed. A symbolic manipulation program, written in FORTRAN, is used to aid in the derivation of the governing equations of motion for the rotor. The blades undergo coupled bending and torsional deformations. Two-dimensional quasi-steady aerodynamics below stall are used. Although reversed flow effects are neglected, unsteady effects, modeled as dynamic inflow are included. Using a Lagrangian approach, the governing equations are derived in generalized coordinates using the symbolic program. The program generates the steady and perturbed equations and writes into subroutines to be called by numerical routines. The symbolic program can operate on both expressions and matrices. For the case of hovering flight, the blade and dynamic inflow equations are converted to equations in a multiblade coordinate system by rearranging the coefficients of the equations. For the case of forward flight, the multiblade equations are obtained through the symbolic program. The final multiblade equations are capable of accommodating any number of elastic blade modes. The computer implementation of this procedure consists of three stages: (1) the symbolic derivation of equations; (2) the coding of the equations into subroutines; and (3) the numerical study after identifying mass, damping, and stiffness coefficients. Damping results are presented in hover and in forward flight with and without dynamic inflow effects for various rotor blade models, including rigid blade lag-flap, elastic flap-lag, flap-lag-torsion, and quasi-static torsion. Results from dynamic inflow effects which are obtained from a lift deficiency function for a quasi-static inflow model in hover are also presented.
Finite-dimensional attractor for a composite system of wave/plate equations with localized damping
International Nuclear Information System (INIS)
Bucci, Francesca; Toundykov, Daniel
2010-01-01
The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping
Zubov, V. I.
Papers are presented on mathematical methods for the analysis of control systems for technical plants and manufacturing processes. Particular attention is given to the mechanics of controlled space flight, the design of automatic control systems, flexible automated complexes, control applications in biomedical research, and chemical technology for the production of new types of materials.
Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
Automated design of complex dynamic systems.
Directory of Open Access Journals (Sweden)
Michiel Hermans
Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.
Periodic solutions of first-order functional differential equations in population dynamics
Padhi, Seshadev; Srinivasu, P D N
2014-01-01
This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, a...
Stochastic optimal control in infinite dimension dynamic programming and HJB equations
Fabbri, Giorgio; Święch, Andrzej
2017-01-01
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite ...
Small-scale properties of the KPZ equation and dynamical symmetry breaking
Hochberg, David; Molina-París, Carmen; Pérez-Mercader, Juan; Visser, Matt
2001-01-01
A functional integral technique is used to study the ultraviolet or short distance properties of the Kardar-Parisi-Zhang (KPZ) equation with white Gaussian noise. We apply this technique to calculate the one-loop effective potential for the KPZ equation. The effective potential is (at least) one-loop ultraviolet renormalizable in 1, 2, and 3 space dimensions, but non-renormalizable in 4 or higher space dimensions. This potential is intimately related to the probability distribution function (PDF) for the spacetime averaged field. For the restricted class of field configurations considered here, the KPZ equation exhibits dynamical symmetry breaking (DSB) via an analog of the Coleman-Weinberg mechanism in 1 and 2 space dimensions, but not in 3 space dimensions.
Nonlinear dynamics in biological systems
Carballido-Landeira, Jorge
2016-01-01
This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...
Failsafe flux limiting and constrained data projections for equations of gas dynamics
Kuzmin, Dmitri; Möller, Matthias; Shadid, John N.; Shashkov, Mikhail
2010-11-01
A new approach to flux limiting for systems of conservation laws is presented. The Galerkin finite element discretization/ L2 projection is equipped with a failsafe mechanism that prevents the birth and growth of spurious local extrema. Within the framework of a synchronized flux-corrected transport (FCT) algorithm, the velocity and pressure fields are constrained using node-by-node transformations from the conservative to the primitive variables. An additional correction step is included to ensure that all the quantities of interest (density, velocity, pressure) are bounded by the physically admissible low-order values. The result is a conservative and bounded scheme with low numerical diffusion. The new failsafe FCT limiter is integrated into a high-resolution finite element scheme for the Euler equations of gas dynamics. Also, bounded L2 projection operators for conservative interpolation/initialization are designed. The performance of the proposed limiting strategy and the need for a posteriori control of flux-corrected solutions are illustrated by numerical examples.
Transient magnetization dynamics in the free energy formulation of the Landau-Lifshitz equation
Energy Technology Data Exchange (ETDEWEB)
Bocklage, Lars, E-mail: lars.bocklage@desy.de [Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany)
2017-05-01
Transient magnetization dynamics are calculated from the Landau-Lifshitz-Gilbert equation. The internal fields are described by partial derivatives of the sample's free energy density. This description allows the calculation of the magnetization trajectory of homogeneously magnetized samples for all kinds of energy contributions. It provides a general solution for transient magnetization dynamics. The model is used to determine the magnetization response to excitation profiles like rectangular or Gaussian pulses, frequency bursts, wavelet excitations, and chirped THz pulses. - Highlights: • A theory of transient magnetization dynamics is developed. • The theory describes transient dynamics magnetization up to the THz regime. • A coherent control of the magnetization is achieved for proper THz pulses.
Equations of states for an ionic liquid under high pressure: A molecular dynamics simulation study
International Nuclear Information System (INIS)
Ribeiro, Mauro C.C.; Pádua, Agílio A.H.; Gomes, Margarida F.C.
2014-01-01
Highlights: • We compare different equation of states, EoS, for an ionic liquid under high pressure. • Molecular dynamics, MD, simulations have been used to evaluate the best EoS. • MD simulations show that a group contribution model can be extrapolated to P ∼ 1.0 GPa. • A perturbed hard-sphere EoS also fits the densities calculated by MD simulations. - Abstract: The high-pressure dependence of density given by empirical equation of states (EoS) for the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (or triflate), [C 4 C 1 im][TfO], is compared with results obtained by molecular dynamics (MD) simulations. Two EoS proposed for [C 4 C 1 im][TfO] in the pressure range of tens of MPa, which give very different densities when extrapolated to pressures beyond the original experiments, are compared with a group contribution model (GCM). The MD simulations provide support that one of the empirical EoS and the GCM is valid in the pressure range of hundreds of MPa. As an alternative to these EoS that are based on modified Tait equations, it is shown that a perturbed hard-sphere EoS based on the Carnahan–Starling–van der Waals equation also fits the densities calculated by MD simulations of [C 4 C 1 im][TfO] up to ∼1.0 GPa
Dynamically reconfigurable photovoltaic system
Okandan, Murat; Nielson, Gregory N.
2016-05-31
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
Efficient Instantiation of Parameterised Boolean Equation Systems to Parity Games
Directory of Open Access Journals (Sweden)
Gijs Kant
2012-10-01
Full Text Available Parameterised Boolean Equation Systems (PBESs are sequences of Boolean fixed point equations with data variables, used for, e.g., verification of modal mu-calculus formulae for process algebraic specifications with data. Solving a PBES is usually done by instantiation to a Parity Game and then solving the game. Practical game solvers exist, but the instantiation step is the bottleneck. We enhance the instantiation in two steps. First, we transform the PBES to a Parameterised Parity Game (PPG, a PBES with each equation either conjunctive or disjunctive. Then we use LTSmin, that offers transition caching, efficient storage of states and both distributed and symbolic state space generation, for generating the game graph. To that end we define a language module for LTSmin, consisting of an encoding of variables with parameters into state vectors, a grouped transition relation and a dependency matrix to indicate the dependencies between parts of the state vector and transition groups. Benchmarks on some large case studies, show that the method speeds up the instantiation significantly and decreases memory usage drastically.
Nonnegative and Compartmental Dynamical Systems
Haddad, Wassim M; Hui, Qing
2010-01-01
This comprehensive book provides the first unified framework for stability and dissipativity analysis and control design for nonnegative and compartmental dynamical systems, which play a key role in a wide range of fields, including engineering, thermal sciences, biology, ecology, economics, genetics, chemistry, medicine, and sociology. Using the highest standards of exposition and rigor, the authors explain these systems and advance the state of the art in their analysis and active control design. Nonnegative and Compartmental Dynamical Systems presents the most complete treatment available o
Howard, Ronald A
2007-01-01
This book is an integrated work published in two volumes. The first volume treats the basic Markov process and its variants; the second, semi-Markov and decision processes. Its intent is to equip readers to formulate, analyze, and evaluate simple and advanced Markov models of systems, ranging from genetics and space engineering to marketing. More than a collection of techniques, it constitutes a guide to the consistent application of the fundamental principles of probability and linear system theory.Author Ronald A. Howard, Professor of Management Science and Engineering at Stanford University
Stability of interconnected dynamical systems described on Banach spaces
Rasmussen, R. D.; Michel, A. N.
1976-01-01
New stability results for a large class of interconnected dynamical systems (also called composite systems or large scale systems) described on Banach spaces are established. In the present approach, the objective is always the same: to analyze large scale systems in terms of their lower order and simpler subsystems and in terms of their interconnecting structure. The present results provide a systematic procedure of analyzing hybrid dynamical systems (i.e., systems that are described by a mixture of different types of equations). To demonstrate the method of analysis advanced, two specific examples are considered.
Controlling dynamics in diatomic systems
Indian Academy of Sciences (India)
Keywords. Iterative method; optimal control theory; diatomic systems; quantum control. Abstract. Controlling molecular energetics using laser pulses is exemplified for nuclear motion in two different diatomic systems. The problem of finding the optimized field for maximizing a desired quantum dynamical target is formulated ...
Opial and Lyapunov type inequalities for half-linear dynamic equations
Czech Academy of Sciences Publication Activity Database
Řehák, Pavel
2004-01-01
Roč. 13, č. 3 (2004), s. 445-458 ISSN 1056-2176 R&D Projects: GA ČR(CZ) GA201/04/0580; GA AV ČR(CZ) KJB1019407 Institutional research plan: CEZ:AV0Z1019905 Keywords : half-linear dynamic equation * time scale * integral inequality Subject RIV: BA - General Mathematics Impact factor: 0.256, year: 2002
Nonlinear dynamics of a soliton gas: Modified Korteweg–de Vries equation framework
Energy Technology Data Exchange (ETDEWEB)
Shurgalina, E.G., E-mail: eshurgalina@mail.ru [Department of Nonlinear Geophysical Processes, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Pelinovsky, E.N. [Department of Nonlinear Geophysical Processes, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod (Russian Federation)
2016-05-27
Dynamics of random multi-soliton fields within the framework of the modified Korteweg–de Vries equation is considered. Statistical characteristics of a soliton gas (distribution functions and moments) are calculated. It is demonstrated that the results sufficiently depend on the soliton gas properties, i.e., whether it is unipolar or bipolar. It is shown that the properties of a unipolar gas are qualitatively similar to the properties of a KdV gas [Dutykh and Pelinovsky (2014) [1
On sequential dynamical systems and simulation
Energy Technology Data Exchange (ETDEWEB)
Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.
1999-06-01
The generic structure of computer simulations motivates a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper) which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes. This will be done using both combinatorial/algebraic techniques and probabilistic techniques. Finally the authors give results on dynamical system properties for some special systems.
Mathematical Modeling and Dimension Reduction in Dynamical Systems
DEFF Research Database (Denmark)
Elmegård, Michael
Processes that change in time are in mathematics typically described by differential equations. These may be applied to model everything from weather forecasting, brain patterns, reaction kinetics, water waves, finance, social dynamics, structural dynamics and electrodynamics to name only a few....... These systems are generically nonlinear and the studies of them often become enormously complex. The framework in which such systems are best understood is via the theory of dynamical systems, where the critical behavior is systematically analyzed by performing bifurcation theory. In that context the current...
DEFF Research Database (Denmark)
Mikkelsen, Frederik Vissing
Broadly speaking, this thesis is devoted to model selection applied to ordinary dierential equations and risk estimation under model selection. A model selection framework was developed for modelling time course data by ordinary dierential equations. The framework is accompanied by the R software...... eective computational tools for estimating unknown structures in dynamical systems, such as gene regulatory networks, which may be used to predict downstream eects of interventions in the system. A recommended algorithm based on the computational tools is presented and thoroughly tested in various...... simulation studies and applications. The second part of the thesis also concerns model selection, but focuses on risk estimation, i.e., estimating the error of mean estimators involving model selection. An extension of Stein's unbiased risk estimate (SURE), which applies to a class of estimators with model...
Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics
Directory of Open Access Journals (Sweden)
Weam Alharbi
2018-04-01
Full Text Available A telegraph equation is believed to be an appropriate model of population dynamics as it accounts for the directional persistence of individual animal movement. Being motivated by the problem of habitat fragmentation, which is known to be a major threat to biodiversity that causes species extinction worldwide, we consider the reaction–telegraph equation (i.e., telegraph equation combined with the population growth on a bounded domain with the goal to establish the conditions of species survival. We first show analytically that, in the case of linear growth, the expression for the domain’s critical size coincides with the critical size of the corresponding reaction–diffusion model. We then consider two biologically relevant cases of nonlinear growth, i.e., the logistic growth and the growth with a strong Allee effect. Using extensive numerical simulations, we show that in both cases the critical domain size of the reaction–telegraph equation is larger than the critical domain size of the reaction–diffusion equation. Finally, we discuss possible modifications of the model in order to enhance the positivity of its solutions.
Noether Symmetry Analysis of the Dynamic Euler-Bernoulli Beam Equation
Johnpillai, A. G.; Mahomed, K. S.; Harley, C.; Mahomed, F. M.
2016-05-01
We study the fourth-order dynamic Euler-Bernoulli beam equation from the Noether symmetry viewpoint. This was earlier considered for the Lie symmetry classification. We obtain the Noether symmetry classification of the equation with respect to the applied load, which is a function of the dependent variable of the underlying equation. We find that the principal Noether symmetry algebra is two-dimensional when the load function is arbitrary and extends for linear and power law cases. For all cases, for each of the Noether symmetries associated with the usual Lagrangian, we construct conservation laws for the equation via the Noether theorem. We also provide a basis of conservation laws by using the adjoint algebra. The Noether symmetries pick out the special value of the power law, which is -7. We consider the Noether symmetry reduction for this special case, which gives rise to a first integral that is used for our numerical code. For this, we then find numerical solutions using an in-built function in MATLAB called bvp4c, which is a boundary value solver for differential equations that are depicted in five figures. The physical solutions obtained are for the deflection of the beam with an increase in displacement. These are given in four figures and discussed.
Ivanov, Rossen I.; Prodanov, Emil M.
2018-01-01
The cosmological dynamics of a quintessence model based on real gas with general equation of state is presented within the framework of a three-dimensional dynamical system describing the time evolution of the number density, the Hubble parameter and the temperature. Two global first integrals are found and examples for gas with virial expansion and van der Waals gas are presented. The van der Waals system is completely integrable. In addition to the unbounded trajectories, stemming from the presence of the conserved quantities, stable periodic solutions (closed orbits) also exist under certain conditions and these represent models of a cyclic Universe. The cyclic solutions exhibit regions characterized by inflation and deflation, while the open trajectories are characterized by inflation in a “fly-by” near an unstable critical point.
Liu, Nan; Wen, Xiao-Yong
2018-03-01
Under consideration in this paper is the Kaup-Newell (KN) lattice equation which is an integrable discretization of the KN equation. Infinitely, many conservation laws and discrete N-fold Darboux transformation (DT) for this system are constructed and established based on its Lax representation. Via the resulting N-fold DT, the discrete multi-dark soliton solutions in terms of determinants are derived from non-vanishing background. Propagation and elastic interaction structures of such solitons are shown graphically. Overtaking interaction phenomena between/among the two, three and four solitons are discussed. Numerical simulations are used to explore their dynamical behaviors of such multi-dark solitons. Numerical results show that their evolutions are stable against a small noise. Results in this paper might be helpful for understanding the propagation of nonlinear Alfvén waves in plasmas.
Analytical solutions for systems of partial differential-algebraic equations.
Benhammouda, Brahim; Vazquez-Leal, Hector
2014-01-01
This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.
A Generalized Representation Formula for Systems of Tensor Wave Equations
Shao, Arick
2011-08-01
In this paper, we generalize the Kirchhoff-Sobolev parametrix of Klainerman and Rodnianski (Hyperbolic Equ. 4(3):401-433, 2007) to systems of tensor wave equations with additional first-order terms. We also present a different derivation, which better highlights that such representation formulas are supported entirely on past null cones. This generalization of (Hyperbolic Equ. 4(3):401-433, 2007) is a key component for extending Klainerman and Rodnianski's breakdown criterion result for Einstein-vacuum spacetimes in (J. Amer. Math. Soc. 23(2):345-382, 2009) to Einstein-Maxwell and Einstein-Yang-Mills spacetimes.
Ferroelectric-antiferroelectric mixed systems. Equation of state, thermodynamic functions
Directory of Open Access Journals (Sweden)
N.A.Korynevskii
2006-01-01
Full Text Available The problem of equation of state for ferroelectric-antiferroelectric mixed systems in the whole region of a concentration change (0≤n≤1 is discussed. The main peculiarity of the presented model turns out to be the possibility for the site dipole momentum to be oriented ferroelectrically in z-direction and antiferroelectrically in x-direction. Such a situation takes place in mixed compounds of KDP type. The different phases (ferro-, antiferro-, paraelectric, dipole glass and some combinations of them have been found and analyzed.
Integrability of a system of two nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Zhukhunashvili, V.Z.
1989-01-01
In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants
Iterative solution of large sparse systems of equations
Hackbusch, Wolfgang
2016-01-01
In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.
International Nuclear Information System (INIS)
Núñez, Jóse; Ramos, Eduardo; Lopez, Juan M
2012-01-01
We describe a hybrid method based on the combined use of the Fourier Galerkin and finite-volume techniques to solve the fluid dynamics equations in cylindrical geometries. A Fourier expansion is used in the angular direction, partially translating the problem to the Fourier space and then solving the resulting equations using a finite-volume technique. We also describe an algorithm required to solve the coupled mass and momentum conservation equations similar to a pressure-correction SIMPLE method that is adapted for the present formulation. Using the Fourier–Galerkin method for the azimuthal direction has two advantages. Firstly, it has a high-order approximation of the partial derivatives in the angular direction, and secondly, it naturally satisfies the azimuthal periodic boundary conditions. Also, using the finite-volume method in the r and z directions allows one to handle boundary conditions with discontinuities in those directions. It is important to remark that with this method, the resulting linear system of equations are band-diagonal, leading to fast and efficient solvers. The benefits of the mixed method are illustrated with example problems. (paper)
Discrete Painlevé equations from Y-systems
International Nuclear Information System (INIS)
Hone, Andrew N W; Inoue, Rei
2014-01-01
We consider T-systems and Y-systems arising from cluster mutations applied to quivers that have the property of being periodic under a sequence of mutations. The corresponding nonlinear recurrences for cluster variables (coefficient-free T-systems) were described in the work of Fordy and Marsh, who completely classified all such quivers in the case of period 1, and characterized them in terms of the skew-symmetric exchange matrix B that defines the quiver. A broader notion of periodicity in general cluster algebras was introduced by Nakanishi, who also described the corresponding Y-systems, and T-systems with coefficients. A result of Fomin and Zelevinsky says that the coefficient-free T-system provides a solution of the Y-system. In this paper, we show that in general there is a discrepancy between these two systems, in the sense that the solution of the former does not correspond to the general solution of the latter. This discrepancy is removed by introducing additional non-autonomous coefficients into the T-system. In particular, we focus on the period 1 case and show that, when the exchange matrix B is degenerate, discrete Painlevé equations can arise from this construction. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)
Dynamic simulation of LMFBR systems
International Nuclear Information System (INIS)
Agrawal, A.K.; Khatib-Rahbar, M.
1980-01-01
This review article focuses on the dynamic analysis of liquid-metal-cooled fast breeder reactor systems in the context of protected transients. Following a brief discussion on various design and simulation approaches, a critical review of various models for in-reactor components, intermediate heat exchangers, heat transport systems and the steam generating system is presented. A brief discussion on choice of fuels as well as core and blanket system designs is also included. Numerical considerations for obtaining system-wide steady-state and transient solutions are discussed, and examples of various system transients are presented. Another area of major interest is verification of phenomenological models. Various steps involved in the code and model verification are briefly outlined. The review concludes by posing some further areas of interest in fast reactor dynamics and safety. (author)
Shotorban, Babak
2010-04-01
The dynamic least-squares kernel density (LSQKD) model [C. Pantano and B. Shotorban, Phys. Rev. E 76, 066705 (2007)] is used to solve the Fokker-Planck equations. In this model the probability density function (PDF) is approximated by a linear combination of basis functions with unknown parameters whose governing equations are determined by a global least-squares approximation of the PDF in the phase space. In this work basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of partial differential equations (PDEs) or ordinary differential equations (ODEs) depending on what phase-space variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential, bivariate bistable neurodynamical system [G. Deco and D. Martí, Phys. Rev. E 75, 031913 (2007)], and bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar observation is made for the bistable neurodynamical system. In both these problems least-squares approximation is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approximation is made only for the particle velocity variable leading to a set of PDEs with time and particle position as independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range of diffusivities.
Shotorban, Babak
2010-04-01
The dynamic least-squares kernel density (LSQKD) model [C. Pantano and B. Shotorban, Phys. Rev. E 76, 066705 (2007)] is used to solve the Fokker-Planck equations. In this model the probability density function (PDF) is approximated by a linear combination of basis functions with unknown parameters whose governing equations are determined by a global least-squares approximation of the PDF in the phase space. In this work basis functions are set to be Gaussian for which the mean, variance, and covariances are governed by a set of partial differential equations (PDEs) or ordinary differential equations (ODEs) depending on what phase-space variables are approximated by Gaussian functions. Three sample problems of univariate double-well potential, bivariate bistable neurodynamical system [G. Deco and D. Martí, Phys. Rev. E 75, 031913 (2007)], and bivariate Brownian particles in a nonuniform gas are studied. The LSQKD is verified for these problems as its results are compared against the results of the method of characteristics in nondiffusive cases and the stochastic particle method in diffusive cases. For the double-well potential problem it is observed that for low to moderate diffusivity the dynamic LSQKD well predicts the stationary PDF for which there is an exact solution. A similar observation is made for the bistable neurodynamical system. In both these problems least-squares approximation is made on all phase-space variables resulting in a set of ODEs with time as the independent variable for the Gaussian function parameters. In the problem of Brownian particles in a nonuniform gas, this approximation is made only for the particle velocity variable leading to a set of PDEs with time and particle position as independent variables. Solving these PDEs, a very good performance by LSQKD is observed for a wide range of diffusivities.
Sotiropoulos, Vassilios; Kaznessis, Yiannis N
2008-01-07
Models involving stochastic differential equations (SDEs) play a prominent role in a wide range of applications where systems are not at the thermodynamic limit, for example, biological population dynamics. Therefore there is a need for numerical schemes that are capable of accurately and efficiently integrating systems of SDEs. In this work we introduce a variable size step algorithm and apply it to systems of stiff SDEs with multiple multiplicative noise. The algorithm is validated using a subclass of SDEs called chemical Langevin equations that appear in the description of dilute chemical kinetics models, with important applications mainly in biology. Three representative examples are used to test and report on the behavior of the proposed scheme. We demonstrate the advantages and disadvantages over fixed time step integration schemes of the proposed method, showing that the adaptive time step method is considerably more stable than fixed step methods with no excessive additional computational overhead.
Li, Bing; Li, Yongkun; Zhang, Xuemei
2016-01-01
In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).
Wood, Julie; Oravecz, Zita; Vogel, Nina; Benson, Lizbeth; Chow, Sy-Miin; Cole, Pamela; Conroy, David E; Pincus, Aaron L; Ram, Nilam
2017-12-15
Life-span theories of aging suggest improvements and decrements in individuals' ability to regulate affect. Dynamic process models, with intensive longitudinal data, provide new opportunities to articulate specific theories about individual differences in intraindividual dynamics. This paper illustrates a method for operationalizing affect dynamics using a multilevel stochastic differential equation (SDE) model, and examines how those dynamics differ with age and trait-level tendencies to deploy emotion regulation strategies (reappraisal and suppression). Univariate multilevel SDE models, estimated in a Bayesian framework, were fit to 21 days of ecological momentary assessments of affect valence and arousal (average 6.93/day, SD = 1.89) obtained from 150 adults (age 18-89 years)-specifically capturing temporal dynamics of individuals' core affect in terms of attractor point, reactivity to biopsychosocial (BPS) inputs, and attractor strength. Older age was associated with higher arousal attractor point and less BPS-related reactivity. Greater use of reappraisal was associated with lower valence attractor point. Intraindividual variability in regulation strategy use was associated with greater BPS-related reactivity and attractor strength, but in different ways for valence and arousal. The results highlight the utility of SDE models for studying affect dynamics and informing theoretical predictions about how intraindividual dynamics change over the life course. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Constraint Embedding Technique for Multibody System Dynamics
Woo, Simon S.; Cheng, Michael K.
2011-01-01
Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with
Dynamics of dissipative systems and computational physics
International Nuclear Information System (INIS)
Adam, Gh.; Scutaru, H.; Ixaru, L.; Adam, S.; Rizea, M.; Stefanescu, E.; Mihalache, D.; Mazilu, D.; Crasovan, L.
2002-01-01
During the first year of research activity in the frame of this project there have been investigated two main topics: I. Dynamics of systems of fermions in complex dissipative media; II. Solitons with topologic charge in dissipative systems. An essential problem of the quantum information systems is the controllability and observability of the quantum states, generally described by Lindblad's master equation with phenomenological coefficients. In its usual form, this equation describes a decay of the mean-values, but not necessarily the expected decaying transitions. The basic and very difficult problem of a dissipative quantum theory is to project the evolution of the total system (the system of interest + the environment) on the space of the system of interest. In this case, one obtains a quantum master equation where the system evolution is described by two terms: 1) a Hamiltonian term for the processes with energy conservation, and 2) a non-Hamiltonian term with coefficients depending on the dissipative coupling. That means that a master equation is based on some approximations enabling the replacement of the operators of the dissipative environment with average value coefficients. It is often assumed that the evolution operators of the dissipative system define a semigroup, not a group as in the case of an isolated system. In this framework, Lindblad obtained a quantum master equation in agreement with all the quantum-mechanical principles. However, the Lindblad master equation was unable to secure a correct description of the decaying states. To do that, one has to take into account the transition operators between the system eigenstates with appropriate coefficients. Within this investigation, we have obtained an equation obeying to this requirement, giving the ρ(t) time derivative in terms of creation-annihilation operators of the single-particle states |i>, and λ ij , representing the dissipative coefficients, the microscopic expressions of which are
Li, DaLei; Lou, Yu-Qing; Esimbek, Jarken
2018-01-01
We study self-similar hydrodynamics of spherical symmetry using a general polytropic (GP) equation of state and derive the GP dynamic Lane-Emden equation (LEE) with a radial inertial force. In reference to Lou & Cao, we solve the GP dynamic LEE for both polytropic index γ = 1 + 1/n and the isothermal case n → +∞; our formalism is more general than the conventional polytropic model with n = 3 or γ = 4/3 of Goldreich & Weber. For proper boundary conditions, we obtain an exact constant solution for arbitrary n and analytic variable solutions for n = 0 and n = 1, respectively. Series expansion solutions are derived near the origin with the explicit recursion formulae for the series coefficients for both the GP and isothermal cases. By extensive numerical explorations, we find that there is no zero density at a finite radius for n ≥ 5. For 0 ≤ n 0 for monotonically decreasing density from the origin and vanishing at a finite radius for c being less than a critical value Ccr. As astrophysical applications, we invoke our solutions of the GP dynamic LEE with central finite boundary conditions to fit the molecular cloud core Barnard 68 in contrast to the static isothermal Bonnor-Ebert sphere by Alves et al. Our GP dynamic model fits appear to be sensibly consistent with several more observations and diagnostics for density, temperature and gas pressure profiles.
Some aspects of the dynamic analysis of piping systems
International Nuclear Information System (INIS)
Galeao, A.C.N.R.
1981-04-01
Some aspects of vibration and dynamic response of piping systems are presented. The following subjects were analysed: sources of dynamic excitation; steady-state response-periodic excitation; resonance; flow induced vibrations; transient response - seismic excitations; non-linear transient response - pipe - whip. For each of these topics, the mathematical models, the governing equations and the approximate methods of solution, showing some numerical results obtained from the literature. (Author) [pt
Bifurcation methods of dynamical systems for handling nonlinear ...
Indian Academy of Sciences (India)
physics pp. 863–868. Bifurcation methods of dynamical systems for handling nonlinear wave equations. DAHE FENG and JIBIN LI. Center for Nonlinear Science Studies, School of Science, Kunming University of Science and Technology .... (b) It can be shown from (15) and (18) that the balance between the weak nonlinear.
The financial accounting model from a system dynamics' perspective
Melse, E.
2006-01-01
This paper explores the foundation of the financial accounting model. We examine the properties of the accounting equation as the principal algorithm for the design and the development of a System Dynamics model. Key to the perspective is the foundational requirement that resolves the temporal
Liu, Chengshi
2010-08-01
We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.
Poola, Praveen Kumar; John, Renu
2017-10-01
We report the results of characterization of red blood cell (RBC) structure and its dynamics with nanometric sensitivity using transport of intensity equation microscopy (TIEM). Conventional transport of intensity technique requires three intensity images and hence is not suitable for studying real-time dynamics of live biological samples. However, assuming the sample to be homogeneous, phase retrieval using transport of intensity equation has been demonstrated with single defocused measurement with x-rays. We adopt this technique for quantitative phase light microscopy of homogenous cells like RBCs. The main merits of this technique are its simplicity, cost-effectiveness, and ease of implementation on a conventional microscope. The phase information can be easily merged with regular bright-field and fluorescence images to provide multidimensional (three-dimensional spatial and temporal) information without any extra complexity in the setup. The phase measurement from the TIEM has been characterized using polymeric microbeads and the noise stability of the system has been analyzed. We explore the structure and real-time dynamics of RBCs and the subdomain membrane fluctuations using this technique.
Directory of Open Access Journals (Sweden)
Muhammad Arshad
Full Text Available The nonlinear Schrödinger equations (NLSEs describe the promulgation of ultra-short pluse in optical fibers. The modify unstable nonlinear Schrödinger equation (mUNLSE is a universal equation of the class of nonlinear integrable systems in NLSEs, which governs certain instabilities of modulated wave-trains. This equation also describes the time evolution of disturbances in marginally stable or unstable media. In the current work, the aim is to investigate the mUNLSE analytically by utilizing proposed modified extended mapping method. New exact solutions are constructed in the different form such as exact dark soliton, exact bright soliton, bright-dark soliton, solitary wave, elliptic function in different form and periodic solutions of mUNLSE. Furthermore, we also present the formation conditions of the bright soliton and dark soliton of this equation. The modulation instability analysis is implemented to discuss the stability analysis of the attained solutions and the movement role of the waves is examined, which confirms that all constructed solutions are exact and stable. Keywords: Modify unstable nonlinear schrödinger equation, Modified extended mapping method, bright and dark solitons, Solitary wave solutions, Elliptic function solutions, periodic solutions
Introduction to Dynamical Systems and Geometric Mechanics
Maruskin, Jared M.
2012-01-01
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explores similar systems that instead evolve on differentiable manifolds. In the study of geometric mechanics, however, additional geometric structures are often present, since such systems arise from the laws of nature that govern the motions of particles, bodies, and even galaxies. In the first part of the text, we discuss linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, PoincarÃ© maps, Floquet theory, the PoincarÃ©-Bendixson theorem, bifurcations, and chaos. The second part of the text begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms. The final chapters cover Lagrangian and Hamiltonian mechanics from a modern geometric perspective, mechanics on Lie groups, and nonholonomic mechanics via both moving frames and fiber bundle decompositions. The text can be reasonably digested in a single-semester introductory graduate-level course. Each chapter concludes with an application that can serve as a springboard project for further investigation or in-class discussion.
Superfluid kinetic equation approach to the dynamics of the 3He A-B phase boundary
International Nuclear Information System (INIS)
Palmeri, J.
1990-01-01
The dynamics of the A-B phase boundary is studied using a nonequilibrium theory inspired by the microscopic approach to flux flow in type-II superconductors, namely a generalized two-fluid model consisting of coupled dynamical equations for the superfluid order parameter and the quasiparticle fluid. The interface mobility is obtained to lowest order in the front velocity in three different dynamical regimes: the gapless, hydrodynamic, and ballistic. Experiments have so far only been performed in the ballistic regime, and in this regime we find that, if only Andreev scattering processes are accounted for in the interface mobility, then the theoretical predictions for the terminal velocity of the planar interface are too big by a factor ∼2. From this we conclude that there may be other important contributions to the interface mobility in the ballistic regime, and we discuss a few possibilities
Solving Systems of Linear Equations with a Superconducting Quantum Processor.
Zheng, Yarui; Song, Chao; Chen, Ming-Cheng; Xia, Benxiang; Liu, Wuxin; Guo, Qiujiang; Zhang, Libo; Xu, Da; Deng, Hui; Huang, Keqiang; Wu, Yulin; Yan, Zhiguang; Zheng, Dongning; Lu, Li; Pan, Jian-Wei; Wang, H; Lu, Chao-Yang; Zhu, Xiaobo
2017-05-26
Superconducting quantum circuits are a promising candidate for building scalable quantum computers. Here, we use a four-qubit superconducting quantum processor to solve a two-dimensional system of linear equations based on a quantum algorithm proposed by Harrow, Hassidim, and Lloyd [Phys. Rev. Lett. 103, 150502 (2009)PRLTAO0031-900710.1103/PhysRevLett.103.150502], which promises an exponential speedup over classical algorithms under certain circumstances. We benchmark the solver with quantum inputs and outputs, and characterize it by nontrace-preserving quantum process tomography, which yields a process fidelity of 0.837±0.006. Our results highlight the potential of superconducting quantum circuits for applications in solving large-scale linear systems, a ubiquitous task in science and engineering.
The foam drainage equation for drainage dynamics in unsaturated porous media
Lehmann, P.; Hoogland, F.; Assouline, S.; Or, D.
2017-07-01
Similarity in liquid-phase configuration and drainage dynamics of wet foam and gravity drainage from unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation—SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. The study provides new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions. Two novel analytical solutions for saturation profile evolution were derived and tested in good agreement with a numerical solution of the SFDE. The study and the proposed solutions rectify the original formulation of foam drainage dynamics of Or and Assouline (2013). The new framework broadens the scope of methods available for quantifying unsaturated flow in porous media, where the intrinsic conductivity and geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.
Real-time dynamics of dissipative quantum systems
International Nuclear Information System (INIS)
Chow, K.S.
1988-01-01
The first part of this thesis motivates a real time approach to the dynamics of dissipative quantum systems. We review previous imaginary time methods for calculating escape rates and discuss their applications to the analysis of data in macroscopic quantum tunneling experiments. In tunneling experiments on heavily damped Superconducting Quantum Interference Devices, the instanton method gave results that compare reasonably well with data. In tunneling experiments on weakly damped Current Biased Josephson Junctions, two problems arise. First, the classical limit of the instanton result disagrees with the classical rate of thermal activation. Second, the instanton method cannot predict the microwave enhancement of escape rates. In the third chapter, we discuss our real time approach to the dynamics of dissipative systems in terms of a kinetic equation for the reduced density matrix. We demonstrate some known equilibrium properties of dissipative systems through the kinetic equation and derived the bath induced widths and energy shifts. In the low damping limit, the kinetic equation reduces to a much simpler master equation. The classical limit of the master equation is completely equivalent to the Fokker-Planck equation that describes thermal activation. In the fourth chapter, we apply the master equation to the problem of tunneling and resonance enhancement of tunneling in weakly damped current biased Josephson junctions. In the classical regime, microwaves of the appropriate frequency induce resonances between many neighboring levels and an asymmetrical resonance peak is measured. We can calibrate the junction parameters by fitting the stationary solution of the master equation to the classical resonance data. In the quantum regime, the stationary solution of the master equation, predicts well-resolved resonance peaks which agree very well with the observed data
Petersson, K J F; Friberg, L E; Karlsson, M O
2010-10-01
Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.
Kinetic Theory of Dynamical Systems
Zon, R. van; Beijeren, H. van; Dorfman, J.R.
1999-01-01
It is generally believed that the dynamics of simple fluids can be considered to be chaotic, at least to the extent that they can be modeled as classical systems of particles interacting with short range, repulsive forces. Here we give a brief introduction to those parts of chaos theory that are
Collective dynamics of multicellular systems
Indian Academy of Sciences (India)
simple model study reveals that cell–cell communication, system size and intrinsic cellular dynamics can lead to ... population/tissue interact, the ensemble can show a unified collective behaviour, which is not just a 'sum of the ..... Authors thank the anonymous referee for critical comments, and the Department of Science.
Mass properties measurement system dynamics
Doty, Keith L.
1993-01-01
The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.
An efficient algorithm for solving nonlinear system of differential equations and applications
Directory of Open Access Journals (Sweden)
Mustafa GÜLSU
2015-10-01
Full Text Available In this article, we apply Chebyshev collocation method to obtain the numerical solutions of nonlinear systems of differential equations. This method transforms the nonlinear systems of differential equation to nonlinear systems of algebraic equations. The convergence of the numerical method are given and their applicability is illustrated with some examples.
Time evolution of many-body localized systems with the flow equation approach
Thomson, S. J.; Schiró, M.
2018-02-01
The interplay between interactions and quenched disorder can result in rich dynamical quantum phenomena far from equilibrium, particularly when many-body localization prevents the system from full thermalization. With the aim of tackling this interesting regime, here we develop a semianalytical flow equation approach to study the time evolution of strongly disordered interacting quantum systems. We apply this technique to a prototype model of interacting spinless fermions in a random on-site potential in both one and two dimensions. Key results include (i) an explicit construction of the local integrals of motion that characterize the many-body localized phase in one dimension, ultimately connecting the microscopic model to phenomenological descriptions, (ii) calculation of these quantities in two dimensions, and (iii) an investigation of the real-time dynamics in the localized phase which reveals the crucial role of l -bit interactions for enhancing dephasing and relaxation.
Estakhr, Ahmad Reza
2013-11-01
``When i meet God, I am going to ask him two questions, why relativity and why turbulence. A. Einstein'' You probably will not need to ask these questions of God, I've already answered both of them. Uμ = γ (c , u (r --> , t)) denotes four-velocity field. Jμ = ρUμ denotes four-current mass density. Estakhr's Material-Geodesic equation is developed analogy of Navier Stokes equation and Einstein Geodesic equation. DJμ/Dτ =dJμ/Dτ +ΓαβμJαUβ =JνΩμν +∂νTμν +ΓαβμJαUβ Covariant formulation of fluid dynamics, describe the motion of fluid substances. The local existence and uniqueness theorem for geodesics states that geodesics on a smooth manifold with an affine connection exist, and are unique. EMG equation is also applicable in different branches of physics, it all depend on what you mean by 4-current density, if you mean 4-current electron number density then it is plasma physics, if you mean 4-current electron charge density then it is DJμ/Dτ =JνFμν +∂νTμν +ΓαβμJαUβ electromagnetism.
Solution of the Noh problem using the universal symmetry of the gas dynamics equations
Ramsey, S. D.; Boyd, Z. M.; Burnett, S. C.
2017-05-01
Noh's constant-velocity shock problem is considered as a two-region solution of the one-dimensional (1D) Euler compressible flow equations, where the equation of state (EOS) closure model is included in the energy equation via an adiabatic bulk modulus. Regardless of the EOS model employed, the resulting system of equations is invariant under a universal group of scaling transformations. When combined with the required velocity field, the resulting equivalent system of ordinary differential equations coupled with the Rankine-Hugoniot shock jump conditions produces at least semi-analytic algebraic Noh solutions in 1D planar symmetry for any EOS. It is also shown for 1D curvilinear symmetries that the existence of a Noh solution is guaranteed only under more restrictive EOS conditions. In the context of this work, example Noh solutions—in some cases featuring arbitrary strength shocks—are derived for various closure models, including ideal gas, a two-parameter Clausius-like EOS, stiff gas, and a Mie-Gruneisen form. A code verification study is provided in the latter case, as an example of the application of the broader theoretical concepts.
System of adjoint P1 equations for neutron moderation
International Nuclear Information System (INIS)
Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos
2000-01-01
In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)
Dynamics for the complex Ginzburg-Landau equation on non-cylindrical domains II: The monotone case
Zhou, Feng; Sun, Chunyou; Cheng, Jiaqi
2018-02-01
In this article, we continue the study of the dynamics of the following complex Ginzburg-Landau equation ∂tu - (λ + iα)Δu + (κ + iβ)|u|p-2u - γu = f(t) on non-cylindrical domains. We assume that the spatial domains are bounded and increase with time, which is different from the diffeomorphism case presented in Zhou and Sun [Discrete Contin. Dyn. Syst., Ser. B 21, 3767-3792 (2016)]. We develop a new penalty function to establish the existence and uniqueness of a variational solution satisfying energy equality as well as some energy inequalities and prove the existence of a D -pullback attractor for the non-autonomous dynamical system generated by this class of solutions.
Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong; Liu, De-Yin
2017-04-01
Effects of quantic nonlinearity on the propagation of the ultrashort optical pulses in a non-Kerr medium, like an optical fiber, can be described by a perturbed nonlinear Schrödinger equation with the power law nonlinearity, which is studied in this paper from a planar-dynamic-system view point. We obtain the equivalent two-dimensional planar dynamic system of such an equation, for which, according to the bifurcation theory and qualitative theory, phase portraits are given. Through the analysis of those phase portraits, we present the relations among the Hamiltonian, orbits of the dynamic system and types of the analytic solutions. Analytic expressions of the periodic-wave solutions, kink- and bell-shaped solitary-wave solutions are derived, and we find that the periodic-wave solutions can be reduced to the kink- and bell-shaped solitary-wave solutions.
Adaptive, dynamic, and resilient systems
Suri, Niranjan
2015-01-01
As the complexity of today's networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas.The book presents the insights of a different group of international experts in each chapter. Reporting on r
Advanced dynamics of mechanical systems
Cheli, Federico
2015-01-01
This book introduces a general approach for schematization of mechanical systems with rigid and deformable bodies. It proposes a systems approach to reproduce the interaction of the mechanical system with different force fields such as those due to the action of fluids or contact forces between bodies, i.e., with forces dependent on the system states, introducing the concepts of the stability of motion. In the first part of the text mechanical systems with one or more degrees of freedom with large motion and subsequently perturbed in the neighborhood of the steady state position are analyzed. Both discrete and continuous systems (modal approach, finite elements) are analyzed. The second part is devoted to the study of mechanical systems subject to force fields, the rotor dynamics, techniques of experimental identification of the parameters, and random excitations. The book will be especially valuable for students of engineering courses in Mechanical Systems, Aerospace, Automation, and Energy but will also b...
Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity
International Nuclear Information System (INIS)
Yepez, Jeffrey
2006-01-01
Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the qubit's energy eigenstates. Comparisons are presented between analytical predictions and numerical predictions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear viscosity is the operative macroscopic scale effective field theory
On the rotational equations of motion in rigid body dynamics when using Euler parameters.
Sherif, Karim; Nachbagauer, Karin; Steiner, Wolfgang
Many models of three-dimensional rigid body dynamics employ Euler parameters as rotational coordinates. Since the four Euler parameters are not independent, one has to consider the quaternion constraint in the equations of motion. This is usually done by the Lagrange multiplier technique. In the present paper, various forms of the rotational equations of motion will be derived, and it will be shown that they can be transformed into each other. Special attention is hereby given to the value of the Lagrange multiplier and the complexity of terms representing the inertia forces. Particular attention is also paid to the rotational generalized external force vector, which is not unique when using Euler parameters as rotational coordinates.
Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
International Nuclear Information System (INIS)
Ardenghi, J.S.; Bechthold, P.; Jasen, P.; Gonzalez, E.; Juan, A.
2014-01-01
The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order O(ℏ 2 )
A Numerical Development in the Dynamical Equations of Solitons in Optical Fibers
Directory of Open Access Journals (Sweden)
Érica Regina Takano Natti
2006-02-01
Full Text Available It was evaluated the numerical resolution of a nonlinear differential equations system that describes the solitons propagation in dielectric optical fibers, through the method of finite elements, which is implemented based on Streamline Upwind Petrov-Galerkin (SUPG and Consistent Approximate Upwind (CAU formulations.
Dynamical systems probabilistic risk assessment
Energy Technology Data Exchange (ETDEWEB)
Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ames, Arlo Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-03-01
Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.
Studying language change using price equation and Pólya-urn dynamics.
Gong, Tao; Shuai, Lan; Tamariz, Mónica; Jäger, Gerhard
2012-01-01
Language change takes place primarily via diffusion of linguistic variants in a population of individuals. Identifying selective pressures on this process is important not only to construe and predict changes, but also to inform theories of evolutionary dynamics of socio-cultural factors. In this paper, we advocate the Price equation from evolutionary biology and the Pólya-urn dynamics from contagion studies as efficient ways to discover selective pressures. Using the Price equation to process the simulation results of a computer model that follows the Pólya-urn dynamics, we analyze theoretically a variety of factors that could affect language change, including variant prestige, transmission error, individual influence and preference, and social structure. Among these factors, variant prestige is identified as the sole selective pressure, whereas others help modulate the degree of diffusion only if variant prestige is involved. This multidisciplinary study discerns the primary and complementary roles of linguistic, individual learning, and socio-cultural factors in language change, and offers insight into empirical studies of language change.
Dynamics of immune system vulnerabilities
Stromberg, Sean P.
The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.
Force identification of dynamic systems using virtual work principle
Xu, Xun; Ou, Jinping
2015-02-01
One of the key inverse problems for estimating dynamic forces acting on a structure is to determine the force expansion and the corresponding solving method. This paper presents a moving least square (MLS) method for fitting dynamic forces, which improves the existing traditional methods. The simulation results show that the force expansion order has a tiny effect on the types of forces, which indicates the MLS method's excellent ability for local approximation and noise immunity as well as good fitting function. Then, the differential equation of motion for the system is transformed into an integral equation by using the virtual work principle, which can eliminate the structural acceleration response without introducing the calculation error. Besides, the transformation derives an expression of velocity by integrating by parts, which diminishes the error propagation of the velocity. Hence, the integral equation of motion for the system has a strong constraint to noise with zero mean value. Finally, this paper puts forward an optimization method to solve the equation. The numerical stability can be enhanced as the matrix inversion calculation is avoided. Illustrative examples involving different types of forces demonstrate that the transformation of the differential equation proposed through virtual work principle can eliminate interference efficiently and is robust for dynamic calculation.
International Nuclear Information System (INIS)
Basharov, A. M.
2012-01-01
It is shown that the effective Hamiltonian representation, as it is formulated in author’s papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are “locked” inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.
DEFF Research Database (Denmark)
Costa, Rafael S.; Machado, Daniel; Rocha, Isabel
2010-01-01
The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters...
Investigating non-Markovian dynamics of quantum open systems
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Lima, L. S.; Miranda, L. L. B.
2018-01-01
We have used the Itô's stochastic differential equation for the double well with additive white noise as a mathematical model for price dynamics of the financial market. We have presented a model which allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents, with respect to the facts of financial markets. We have obtained the mean price in terms of the β parameter that represents the force of the randomness term of the model.
International Nuclear Information System (INIS)
Gaitan, F.; Shenoy, S.R.
1995-05-01
We examine the dynamical consequences of Berry's phase for Josephson junctions, junction arrays, and their vortices. Josephson's equation and the related phase slip voltages are shown to be unaffected by Berry's phase. In an annular Josephson junction, Berry's phase is seen to generate a new current drive on a vortex. In the continuum limit, vortex is expected in a 2D array is shown to map onto that of a 2D film. A Hall sing anomaly is expected arrays; and the merits of arrays for studies of disorder on vortex motion is discussed. (author). 12 refs
Gerbi, Stéphane
2013-01-15
The goal of this work is to study a model of the wave equation with dynamic boundary conditions and a viscoelastic term. First, applying the Faedo-Galerkin method combined with the fixed point theorem, we show the existence and uniqueness of a local in time solution. Second, we show that under some restrictions on the initial data, the solution continues to exist globally in time. On the other hand, if the interior source dominates the boundary damping, then the solution is unbounded and grows as an exponential function. In addition, in the absence of the strong damping, then the solution ceases to exist and blows up in finite time.
International Nuclear Information System (INIS)
Maitri, Rohit V.; Zhang, Chao; Jiang, Jin
2017-01-01
The supercritical water cooled reactor (SCWR) is one of the six Generation IV nuclear reactors. A novel control system design method for the Canadian SCWR, known as CANDU SCWR, is developed in this study. The main dynamic of this reactor can be represented as a multiple input and multiple output (MIMO) system governed by highly non-linear partial differential equations. Even though the non-linear governing equations of such a reactor can be solved using computational fluid dynamics (CFD) techniques, it is difficult to convert the existing non-linear partial differential equations to linear dynamic models to facilitate its control system design. To deal with this problem, a new approach is developed herein, which uses the results from CFD simulations to derive the linear dynamic models around several chosen operating points based on system identification techniques. The derived linear dynamic models have been validated by comparing it with the data from the non-linear dynamic model.
Delay differential systems for tick population dynamics.
Fan, Guihong; Thieme, Horst R; Zhu, Huaiping
2015-11-01
Ticks play a critical role as vectors in the transmission and spread of Lyme disease, an emerging infectious disease which can cause severe illness in humans or animals. To understand the transmission dynamics of Lyme disease and other tick-borne diseases, it is necessary to investigate the population dynamics of ticks. Here, we formulate a system of delay differential equations which models the stage structure of the tick population. Temperature can alter the length of time delays in each developmental stage, and so the time delays can vary geographically (and seasonally which we do not consider). We define the basic reproduction number [Formula: see text] of stage structured tick populations. The tick population is uniformly persistent if [Formula: see text] and dies out if [Formula: see text]. We present sufficient conditions under which the unique positive equilibrium point is globally asymptotically stable. In general, the positive equilibrium can be unstable and the system show oscillatory behavior. These oscillations are primarily due to negative feedback within the tick system, but can be enhanced by the time delays of the different developmental stages.
Dynamic Modeling and Simulation of an Underactuated System
International Nuclear Information System (INIS)
Duarte Madrid, Juan Libardo; Querubín, E González; Henao, P A Ospina
2017-01-01
In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system. (paper)
Dynamic Modeling and Simulation of an Underactuated System
Libardo Duarte Madrid, Juan; Ospina Henao, P. A.; González Querubín, E.
2017-06-01
In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system.
Volkova, Victoriya V; Lu, Zhao; Lanzas, Cristina; Scott, H Morgan; Gröhn, Yrjö T
2013-01-01
The ubiquitous commensal bacteria harbour genes of antimicrobial resistance (AMR), often on conjugative plasmids. Antimicrobial use in food animals subjects their enteric commensals to antimicrobial pressure. A fraction of enteric Escherichia coli in cattle exhibit plasmid-gene mediated AMR to a third-generation cephalosporin ceftiofur. We adapted stochastic differential equations with diffusion approximation (a compartmental stochastic mathematical model) to research the sources and roles of stochasticity in the resistance dynamics, both during parenteral antimicrobial therapy and in its absence. The results demonstrated that demographic stochasticity among enteric E. coli in the occurrence of relevant events was important for the AMR dynamics only when bacterial numbers were depressed during therapy. However, stochasticity in the parameters of enteric E. coli ecology, whether externally or intrinsically driven, contributed to a wider distribution of the resistant E. coli fraction, both during therapy and in its absence, with stochasticities in individual parameters interacting in their contribution.
Gomez-Cabrero, David
2017-05-09
The rise and growth of Systems Biology following the sequencing of the human genome has been astounding. Early on, an iterative wet-dry methodology was formulated which turned out as a successful approach in deciphering biological complexity. Such type of analysis effectively identified and associated molecular network signatures operative in biological processes across different systems. Yet, it has proven difficult to distinguish between causes and consequences, thus making it challenging to attack medical questions where we require precise causative drug targets and disease mechanisms beyond a web of associated markers. Here we review principal advances with regard to identification of structure, dynamics, control, and design of biological systems, following the structure in the visionary review from 2002 by Dr. Kitano. Yet, here we find that the underlying challenge of finding the governing mechanistic system equations enabling precision medicine remains open thus rendering clinical translation of systems biology arduous. However, stunning advances in raw computational power, generation of high-precision multi-faceted biological data, combined with powerful algorithms hold promise to set the stage for data-driven identification of equations implicating a fundamental understanding of living systems during health and disease.
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Neutron stars in compact binary systems: From the equation of state to gravitational radiation
Read, Jocelyn S.
Neutron stars are incredibly dense astrophysical objects that give a unique glimpse of physics at extreme scales. This thesis examines computational and mathematical methods of translating our theoretical understanding of neutron star physics, from the properties of matter to the relativistic behaviour of binary systems, into observable characteristics of astrophysical neutron stars. The properties of neutron star matter are encoded in the equation of state, which has substantial uncertainty. Many equations of state have been proposed based on different models of the underlying physics. These predict various quantities, such as the maximum stable mass, which allow them to be ruled out by astronomical measurements. This thesis presents a natural way to write a general equation of state that can approximate many different candidate equations of state with a few parameters. Astronomical observations are then used to systematically constrain parameter values, instead of ruling out models on a case-by-case basis. Orbiting pairs of neutron stars will release gravitational radiation and spiral in toward each other. The radiation may be observable with ground-based detectors. Until the stars get very close to each other the rate of inspiral is slow, and the orbits are approximately circular. One can numerically find spacetime solutions that satisfy the full set of Einstein equations by imposing an exact helical symmetry. However, we find that the helically-symmetric solution must be matched to a waveless boundary region to achieve convergence. Work with toy models suggests this lack of convergence is intractable, but the agreement of waveless and helical codes validates the use of either approximation to construct state-of-the-art initial data for fully dynamic binary neutron star simulations. The parameterized equation of state can be used with such numerical simulations to systematically explore how the emitted gravitational waves depend on the properties of neutron star
Field theory and weak Euler-Lagrange equation for classical particle-field systems.
Qin, Hong; Burby, Joshua W; Davidson, Ronald C
2014-10-01
It is commonly believed as a fundamental principle that energy-momentum conservation of a physical system is the result of space-time symmetry. However, for classical particle-field systems, e.g., charged particles interacting through self-consistent electromagnetic or electrostatic fields, such a connection has only been cautiously suggested. It has not been formally established. The difficulty is due to the fact that the dynamics of particles and the electromagnetic fields reside on different manifolds. We show how to overcome this difficulty and establish the connection by generalizing the Euler-Lagrange equation, the central component of a field theory, to a so-called weak form. The weak Euler-Lagrange equation induces a new type of flux, called the weak Euler-Lagrange current, which enters conservation laws. Using field theory together with the weak Euler-Lagrange equation developed here, energy-momentum conservation laws that are difficult to find otherwise can be systematically derived from the underlying space-time symmetry.
Master equation for open two-band systems and its applications to Hall conductance
Shen, H. Z.; Zhang, S. S.; Dai, C. M.; Yi, X. X.
2018-02-01
Hall conductivity in the presence of a dephasing environment has recently been investigated with a dissipative term introduced phenomenologically. In this paper, we study the dissipative topological insulator (TI) and its topological transition in the presence of quantized electromagnetic environments. A Lindblad-type equation is derived to determine the dynamics of a two-band system. When the two-band model describes TIs, the environment may be the fluctuations of radiation that surround the TIs. We find the dependence of decay rates in the master equation on Bloch vectors in the two-band system, which leads to a mixing of the band occupations. Hence the environment-induced current is in general not perfectly topological in the presence of coupling to the environment, although deviations are small in the weak limit. As an illustration, we apply the Bloch-vector-dependent master equation to TIs and calculate the Hall conductance of tight-binding electrons in a two-dimensional lattice. The influence of environments on the Hall conductance is presented and discussed. The calculations show that the phase transition points of the TIs are robust against the quantized electromagnetic environment. The results might bridge the gap between quantum optics and topological photonic materials.
Dynamical Systems and Motion Vision.
1988-04-01
TASK Artificial Inteligence Laboratory AREA I WORK UNIT NUMBERS 545 Technology Square . Cambridge, MA 02139 C\\ II. CONTROLLING OFFICE NAME ANO0 ADDRESS...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I.Memo No. 1037 April, 1988 Dynamical Systems and Motion Vision Joachim Heel Abstract: In this... Artificial Intelligence L3 Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s [1 Artificial Intelligence Research is
NATO Advanced Study Institute on Hamiltonian Dynamical Systems and Applications
2008-01-01
Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical systems on finite dimensional phase space as in classical mechanics, or partial differential equations (PDE) which are naturally of infinitely many degrees of freedom. This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems as well as the theory of Hamiltonian systems in infinite dimensional phase space; these are described in depth in this volume. Applications are also presented to several important areas of research, including problems in classical mechanics, continu...
On Rank Driven Dynamical Systems
Veerman, J. J. P.; Prieto, F. J.
2014-08-01
We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.
Simulation of noisy dynamical system by Deep Learning
Yeo, Kyongmin
2017-11-01
Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.
The Equation of State of Triamino-Trinitrobenzene from Density Functional Theory Molecular Dynamics
Wixom, Ryan R.
2017-06-01
The US-uP shock Hugoniot has long been the fundamental relationship used to experimentally define the unreacted equations of state of explosives. These experiments are typically performed on porous or composite samples, providing data that is specific to the density of the samples being tested. However, If the crystalline Hugoniot is known, analytical or numerical methods can be used to transform the US-uP relationship to describe the shock response of the porous material. To obtain an accurate crystalline equation of state for TATB, density functional theory based molecular dynamics were used to map out points on the Hugoniot. Since this method provides the pressure, temperature, density, and internal energy at each point on the Hugoniot, a complete equation of state can be constructed. Isotropic, uniaxial, hydrostatic, and isothermal compression of the simulation cell were used to examine TATB under different thermodynamic conditions. A cusp is observed in the Hugoniot that correlates to loss of aromaticity of the molecule. Results of the calculations will be presented and compared to the available experimental data. Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque NM.
Solving differential–algebraic equation systems by means of index reduction methodology
DEFF Research Database (Denmark)
Sørensen, Kim; Houbak, Niels; Condra, Thomas
2006-01-01
of a number of differential equations and algebraic equations — a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of ordinary differential equations — ODEs....... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper...
Solving differential-algebraic equation systems by means of index reduction methodology
DEFF Research Database (Denmark)
Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph
2006-01-01
of a number of differential equations and algebraic equations - a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of Ordinary- Differential-Equations - ODE’s....... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper...
Musharbash, Eleonora; Nobile, Fabio
2018-02-01
In this paper we propose a method for the strong imposition of random Dirichlet boundary conditions in the Dynamical Low Rank (DLR) approximation of parabolic PDEs and, in particular, incompressible Navier Stokes equations. We show that the DLR variational principle can be set in the constrained manifold of all S rank random fields with a prescribed value on the boundary, expressed in low rank format, with rank smaller then S. We characterize the tangent space to the constrained manifold by means of a Dual Dynamically Orthogonal (Dual DO) formulation, in which the stochastic modes are kept orthonormal and the deterministic modes satisfy suitable boundary conditions, consistent with the original problem. The Dual DO formulation is also convenient to include the incompressibility constraint, when dealing with incompressible Navier Stokes equations. We show the performance of the proposed Dual DO approximation on two numerical test cases: the classical benchmark of a laminar flow around a cylinder with random inflow velocity, and a biomedical application for simulating blood flow in realistic carotid artery reconstructed from MRI data with random inflow conditions coming from Doppler measurements.
Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.
2013-04-01
In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.
Delfau, Jean-Baptiste; Ollivier, Hélène; López, Cristóbal; Blasius, Bernd; Hernández-García, Emilio
2016-10-01
Brownian particles interacting via repulsive soft-core potentials can spontaneously aggregate, despite repelling each other, and form periodic crystals of particle clusters. We study this phenomenon in low-dimensional situations (one and two dimensions) at two levels of description: by performing numerical simulations of the discrete particle dynamics and by linear and nonlinear analysis of the corresponding Dean-Kawasaki equation for the macroscopic particle density. Restricting to low dimensions and neglecting fluctuation effects, we gain analytical insight into the mechanisms of the instability leading to clustering which turn out to be the interplay among diffusion, the intracluster forces, and the forces between neighboring clusters. We show that the deterministic part of the Dean-Kawasaki equation provides a good description of the particle dynamics, including width and shape of the clusters and over a wide range of parameters, and analyze with weakly nonlinear techniques the nature of the pattern-forming bifurcation in one and two dimensions. Finally, we briefly discuss the case of attractive forces.
Experimental Modeling of Dynamic Systems
DEFF Research Database (Denmark)
Knudsen, Morten Haack
2006-01-01
An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...... insight. It is based on a sensitivity approach that is useful for choice of model structure, for experiment design, and for accuracy verification. The method is implemented in the Matlab toolkit Senstools. The method and the presentation have been developed with generally preferred learning styles in mind...
Lewis, Mark A; Marculis, Nathan G; Shen, Zhongwei
2018-01-13
To understand the effects that the climate change has on the evolution of species as well as the genetic consequences, we analyze an integrodifference equation (IDE) models for a reproducing and dispersing population in a spatio-temporal heterogeneous environment described by a shifting climate envelope. Our analysis on the IDE focuses on the persistence criterion, travelling wave solutions, and the inside dynamics. First, the persistence criterion, characterizing the global dynamics of the IDE, is established in terms of the basic reproduction number. In the case of persistence, a unique travelling wave is found to govern the global dynamics. The effects of the size and the shifting speed of the climate envelope on the basic reproduction number, and hence, on the persistence criterion, are also investigated. In particular, the critical domain size and the critical shifting speed are found in certain cases. Numerical simulations are performed to complement the theoretical results. In the case of persistence, we separate the travelling wave and general solutions into spatially distinct neutral fractions to study the inside dynamics. It is shown that each neutral genetic fraction rearranges itself spatially so as to asymptotically achieve the profile of the travelling wave. To measure the genetic diversity of the population density we calculate the Shannon diversity index and related indices, and use these to illustrate how diversity changes with underlying parameters.
Optimal Operation of Radial Distribution Systems Using Extended Dynamic Programming
DEFF Research Database (Denmark)
Lopez, Juan Camilo; Vergara, Pedro P.; Lyra, Christiano
2018-01-01
An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation...... approach is illustrated using real-scale systems and comparisons with commercial programming solvers. Finally, generalizations to consider other EDS operation problems are also discussed....
Yin, Jiuli; Zhao, Liuwei
2014-11-01
In this paper, the dynamics from the shock compacton to chaos in the nonlinearly Schrödinger equation with a source term is investigated in detail. The existence of unclosed homoclinic orbits which are not connected with the saddle point indicates that the system has a discontinuous fiber solution which is a shock compacton. We prove that the shock compacton is a weak solution. The Melnikov technique is used to detect the conditions for the occurrence from the shock compacton to chaos and further analysis of the conditions for chaos suppression. The results show that the system turns to chaos easily under external disturbances. The critical parameter values for chaos appearing are obtained analytically and numerically using the Lyapunov exponents and the bifurcation diagrams.
Revolving scheme for solving a cascade of Abel equations in dynamics of planar satellite rotation
Directory of Open Access Journals (Sweden)
Sergey V. Ershkov
2017-05-01
Full Text Available The main objective for this research was the analytical exploration of the dynamics of planar satellite rotation during the motion of an elliptical orbit around a planet. First, we revisit the results of J. Wisdom et al. (1984, in which, by the elegant change of variables (considering the true anomaly f as the independent variable, the governing equation of satellite rotation takes the form of an Abel ordinary differential equation (ODE of the second kind, a sort of generalization of the Riccati ODE. We note that due to the special character of solutions of a Riccati-type ODE, there exists the possibility of sudden jumping in the magnitude of the solution at some moment of time. In the physical sense, this jumping of the Riccati-type solutions of the governing ODE could be associated with the effect of sudden acceleration/deceleration in the satellite rotation around the chosen principle axis at a definite moment of parametric time. This means that there exists not only a chaotic satellite rotation regime (as per the results of J. Wisdom et al. (1984, but a kind of gradient catastrophe (Arnold, 1992 could occur during the satellite rotation process. We especially note that if a gradient catastrophe could occur, this does not mean that it must occur: such a possibility depends on the initial conditions. In addition, we obtained asymptotical solutions that manifest a quasi-periodic character even with the strong simplifying assumptions e→0, p=1, which reduce the governing equation of J. Wisdom et al. (1984 to a kind of Beletskii’s equation.
Modeling systems containing alkanolamines with the CPA equation of state
DEFF Research Database (Denmark)
Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht
2008-01-01
An association model, the cubic-plus-association (CPA) equation of state (EoS), is applied for the first time to a class of multifunctional compounds (alkanolamines). Three alkanolamines of practical and scientific significance are considered; monoethanolamine (MEA), diethanolamine (DEA...... studied using the CPA equation of state (alcohols, amines, and glycols)....
Diagnostic models of intelligent tutor system for teaching skills to solve algebraic equations
Directory of Open Access Journals (Sweden)
Andrey Grigoriyevich Chukhray
2007-10-01
Full Text Available In this paper one solution for teaching skills to solve n-power algebraic equation by Lobachevsky-Greffe-Dandelen method is described. StudentÃ¢Â€Â™s mistakes are discovered and classified. Based on signal-parametric approach to fault diagnosis in dynamic systems mathematical diagnostic models which allow detecting mistake classes by comparing student calculated results and system calculated results are created. Features of proposed diagnostic models application are presented. Intelligent tutor system is developed and used on Ã¢Â€ÂœAutomatic Control TheoryÃ¢Â€Â practical training by third year students of National Aerospace University.
Substitution dynamical systems spectral analysis
Queffélec, Martine
2010-01-01
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...
Cu(II)-porphyrin molecular dynamics as seen in novel EPR/stochastic Liouville equation study
Hakansson, Par; Nguyen, ThaoNguyen; Nair, Prasanth B; Edge, Ruth; Stulz, Eugen
2013-01-01
Copper porphyrin dissolved in CH2Cl2:Toluene as fluid and frozen solution was studied as a function of temperature with X-band electron paramagnetic resonance (EPR). Quantitative interpretation was obtained with a recently developed Stochastic Liouville simulation method. For the first time we address the large spin system that translates into a 400 000 dimensional Liouville equation solved under slow-motion conditions. With a simple three parameter microscopic model, the temperature dependen...
System dynamics in hydropower plants
Energy Technology Data Exchange (ETDEWEB)
Stuksrud, Dag Birger
1998-12-31
The main purpose of this thesis on system dynamics in hydropower plants was to establish new models of a hydropower system where the turbine/conduits and the electricity supply and generation are connected together as one unit such that possible interactions between the two power regimes can be studied. In order to describe the system dynamics as well as possible, a previously developed analytic model of high-head Francis turbines is improved. The model includes the acceleration resistance in the turbine runner and the draft tube. Expressions for the loss coefficients in the model are derived in order to obtain a purely analytic model. The necessity of taking the hydraulic inertia into account is shown by means of simulations. Unstable behaviour and a higher transient turbine speed than expected may occur for turbines with steep characteristics or large draft tubes. The turbine model was verified previously with respect to a high-head Francis turbine; the thesis performs an experimental verification on a low-head Francis turbine and compares the measurements with simulations from the improved turbine model. It is found that the dynamic turbine model is, after adjustment, capable of describing low-head machines as well with satisfying results. The thesis applies a method called the ``Limited zero-pole method`` to obtain new rational approximations of the elastic behaviour in the conduits with frictional damping included. These approximations are used to provide an accurate state space formulation of a hydropower plant. Simulations performed with the new computer programs show that hydraulic transients such as water-hammer and mass oscillations are reflected in the electric grid. Unstable governing performance in the electric and hydraulic parts also interact. This emphasizes the need for analysing the whole power system as a unit. 63 refs., 149 figs., 4 tabs.
FEQinput—An editor for the full equations (FEQ) hydraulic modeling system
Ancalle, David S.; Ancalle, Pablo J.; Domanski, Marian M.
2017-10-30
IntroductionThe Full Equations Model (FEQ) is a computer program that solves the full, dynamic equations of motion for one-dimensional unsteady hydraulic flow in open channels and through control structures. As a result, hydrologists have used FEQ to design and operate flood-control structures, delineate inundation maps, and analyze peak-flow impacts. To aid in fighting floods, hydrologists are using the software to develop a system that uses flood-plain models to simulate real-time streamflow.Input files for FEQ are composed of text files that contain large amounts of parameters, data, and instructions that are written in a format exclusive to FEQ. Although documentation exists that can aid in the creation and editing of these input files, new users face a steep learning curve in order to understand the specific format and language of the files.FEQinput provides a set of tools to help a new user overcome the steep learning curve associated with creating and modifying input files for the FEQ hydraulic model and the related utility tool, Full Equations Utilities (FEQUTL).
Power system dynamics and control
Kwatny, Harry G
2016-01-01
This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...
Dynamics of a Parametrically Excited System with Two Forcing Terms
Directory of Open Access Journals (Sweden)
Anastasia Sofroniou
2014-09-01
Full Text Available Motivated by the dynamics of a trimaran, an investigation of the dynamic behaviour of a double forcing parametrically excited system is carried out. Initially, we provide an outline of the stability regions, both numerically and analytically, for the undamped linear, extended version of the Mathieu equation. This paper then examines the anticipated form of response of our proposed nonlinear damped double forcing system, where periodic and quasiperiodic routes to chaos are graphically demonstrated and compared with the case of the single vertically-driven pendulum.
Directory of Open Access Journals (Sweden)
Carlos E. Cadenas R.
2017-09-01
Full Text Available In this work a new family of Newton-Halley type methods for solving nonlinear equations is presented. the dynamics of the Newton-Halley family is analyzed for the class of quadratic polynomials and the convergence is established. We find the fixed and critical points. The stable and unstable behaviors are studied. The parameter space associated with the family is studied and finally, some dynamical planes that show different aspects of the dynamics of this family are presented.
Classification of Dynamic Vehicle Routing Systems
DEFF Research Database (Denmark)
Larsen, Allan; Madsen, Oli B.G.; Solomon, Marius M.
2007-01-01
This chapter discusses important characteristics seen within dynamic vehicle routing problems. We discuss the differences between the traditional static vehicle routing problems and its dynamic counterparts. We give an in-depth introduction to the degree of dynamism measure which can be used...... to classify dynamic vehicle routing systems. Methods for evaluation of the performance of algorithms that solve on-line routing problems are discussed and we list some of the most important issues to include in the system objective. Finally, we provide a three-echelon classification of dynamic vehicle routing...... systems based on their degree of dynamism and the system objective....
Optimizing Technology-Oriented Constructional Paramour's of complex dynamic systems
International Nuclear Information System (INIS)
Novak, S.M.
1998-01-01
Creating optimal vibro systems requires sequential solving of a few problems: selecting the basic pattern of dynamic actions, synthesizing the dynamic active systems, optimizing technological, technical, economic and design parameters. This approach is illustrated by an example of a high-efficiency vibro system synthesized for forming building structure components. When using only one single source to excite oscillations, resonance oscillations are imparted to the product to be formed in the horizontal and vertical planes. In order to obtain versatile and dynamically optimized parameters, a factor is introduced into the differential equations of the motion, accounting for the relationship between the parameters, which determine the frequency characteristics of the system and the parameter variation range. This results in obtaining non-sophisticated mathematical models of the system under investigation, convenient for optimization and for engineering design and calculations as well
On some dynamical chameleon systems
Burkin, I. M.; Kuznetsova, O. I.
2018-03-01
It is now well known that dynamical systems can be categorized into systems with self-excited attractors and systems with hidden attractors. A self-excited attractor has a basin of attraction that is associated with an unstable equilibrium, while a hidden attractor has a basin of attraction that does not intersect with small neighborhoods of any equilibrium points. Hidden attractors play the important role in engineering applications because they allow unexpected and potentially disastrous responses to perturbations in a structure like a bridge or an airplane wing. In addition, complex behaviors of chaotic systems have been applied in various areas from image watermarking, audio encryption scheme, asymmetric color pathological image encryption, chaotic masking communication to random number generator. Recently, researchers have discovered the so-called “chameleon systems”. These systems were so named because they demonstrate self-excited or hidden oscillations depending on the value of parameters. The present paper offers a simple algorithm of synthesizing one-parameter chameleon systems. The authors trace the evolution of Lyapunov exponents and the Kaplan-Yorke dimension of such systems which occur when parameters change.
Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan
2018-04-01
The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional
Musashi dynamic image processing system
International Nuclear Information System (INIS)
Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira
1992-01-01
In order to produce transmitted neutron dynamic images using neutron radiography, a real time system called Musashi dynamic image processing system (MDIPS) was developed to collect, process, display and record image data. The block diagram of the MDIPS is shown. The system consists of a highly sensitive, high resolution TV camera driven by a custom-made scanner, a TV camera deflection controller for optimal scanning, which adjusts to the luminous intensity and the moving speed of an object, a real-time corrector to perform the real time correction of dark current, shading distortion and field intensity fluctuation, a real time filter for increasing the image signal to noise ratio, a video recording unit and a pseudocolor monitor to realize recording in commercially available products and monitoring by means of the CRTs in standard TV scanning, respectively. The TV camera and the TV camera deflection controller utilized for producing still images can be applied to this case. The block diagram of the real-time corrector is shown. Its performance is explained. Linear filters and ranked order filters were developed. (K.I.)
Shahab, S.; Erturk, A.
2015-04-01
In this work, Macro-Fiber Composite (MFC)-based piezoelectric structures are employed for underwater mechanical base excitation (vibration energy harvesting) and electrical biomimetic actuation in bending operation at low frequencies. The MFC technology (fiber-based piezoelectric composites with interdigitated electrodes) exploits the effective 33-mode of piezoelectricity and strikes a balance between structural deformation and force levels for actuation to use in underwater locomotion, in addition to offering high power density for energy harvesting to enable battery-less underwater sensors. Following in-air electroelastic composite model development, it is aimed to establish semianalytical models that can predict the underwater dynamics of thin MFC cantilevers for different length-to-width aspect ratios. In-air analytical electroelastic dynamics of MFCs is therefore coupled with added mass and nonlinear hydrodynamic damping effects of fluid to describe the underwater electrohydroelastic dynamics in harvesting and actuation. To this end, passive plates of different aspect ratios are tested to extract and explore the repeatability of the inertia and drag coefficients in Morison's equation. The focus is placed on the first two bending modes in this semianalytical approach. Additionally, nonlinear dependence of the output power density to aspect ratio is characterized theoretically and experimentally in the underwater base excitation problem.
Directory of Open Access Journals (Sweden)
Regnier D.
2017-01-01
Full Text Available Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time dependent generator coordinate method (TDGCM applied under the Gaussian overlap approximation (GOA. However, the computational cost of this method makes it difficult to perform calculations with more than two collective degree of freedom. Meanwhile, it is well-known from both semi-phenomenological and fully microscopic approaches that at least four or five dimensions may play a role in the dynamics of fission. To overcome this limitation, we develop the code FELIX aiming to solve the TDGCM+GOA equation for an arbitrary number of collective variables. In this talk, we report the recent progress toward this enriched description of fission dynamics. We will briefly present the numerical methods adopted as well as the status of the latest version of FELIX. Finally, we will discuss fragments yields obtained within this approach for the low energy fission of major actinides.
Ohkitani, Koji
2015-09-01
We consider incompressible Euler flows in terms of the stream function in two dimensions and the vector potential in three dimensions. We pay special attention to the case with singular distributions of the vorticity, e.g., point vortices in two dimensions. An explicit equation governing the velocity potentials is derived in two steps. (i) Starting from the equation for the stream function [Ohkitani, Nonlinearity 21, T255 (2009)NONLE50951-771510.1088/0951-7715/21/12/T02], which is valid for smooth flows as well, we derive an equation for the complex velocity potential. (ii) Taking a real part of this equation, we find a dynamical equation for the velocity potential, which may be regarded as a refinement of Bernoulli theorem. In three-dimensional incompressible flows, we first derive dynamical equations for the vector potentials which are valid for smooth fields and then recast them in hypercomplex form. The equation for the velocity potential is identified as its real part and is valid, for example, flows with vortex layers. As an application, the Kelvin-Helmholtz problem has been worked out on the basis the current formalism. A connection to the Navier-Stokes regularity problem is addressed as a physical application of the equations for the vector potentials for smooth fields.
A system of abstract measure delay differential equations
Directory of Open Access Journals (Sweden)
Bapurao Dhage
2003-01-01
Full Text Available In this paper existence and uniqueness results for an abstract measure delay differential equation are proved, by using Leray-Schauder nonlinear alternative, under Carathéodory conditions.
Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation
International Nuclear Information System (INIS)
Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng
2016-01-01
We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.
Discrete systems related to the sixth Painleve equation
International Nuclear Information System (INIS)
Ramani, A; Ohta, Y; Grammaticos, B
2006-01-01
We present discrete Painleve equations which can be obtained as contiguity relations of the solutions of the continuous Painleve VI. The derivation is based on the geometry of the affine Weyl group D (1) 4 associated with the bilinear formalism. As an offshoot we also present the contiguity relations of the solutions of the Bureau-Ablowitz-Fokas equation, which is a Miura transformed, 'modified', P VI
A model for closing the inviscid form of the average-passage equation system
Adamczyk, J. J.; Mulac, R. A.; Celestina, M. L.
1986-01-01
A mathematical model is proposed for closing or mathematically completing the system of equations which describes the time average flow field through the blade passages of multistage turbomachinery. These equations referred to as the average passage equation system govern a conceptual model which has proven useful in turbomachinery aerodynamic design and analysis. The closure model is developed so as to insure a consistency between these equations and the axisymmetric through flow equations. The closure model was incorporated into a computer code for use in simulating the flow field about a high speed counter rotating propeller and a high speed fan stage. Results from these simulations are presented.
A Coupled System of Integrodifferential Equations Arising in Liquidity Risk Model
International Nuclear Information System (INIS)
Pham, Huyen; Tankov, Peter
2009-01-01
We study the mathematical aspects of the portfolio/consumption choice problem in a market model with liquidity risk introduced in (Pham and Tankov, Math. Finance, 2006, to appear). In this model, the investor can trade and observe stock prices only at exogenous Poisson arrival times. He may also consume continuously from his cash holdings, and his goal is to maximize his expected utility from consumption. This is a mixed discrete/continuous time stochastic control problem, nonstandard in the literature. We show how the dynamic programming principle leads to a coupled system of Integro-Differential Equations (IDE), and we prove an analytic characterization of this control problem by adapting the concept of viscosity solutions. This coupled system of IDE may be numerically solved by a decoupling algorithm, and this is the topic of a companion paper (Pham and Tankov, Math. Finance, 2006, to appear)
Solution of systems of linear algebraic equations by the method of summation of divergent series
International Nuclear Information System (INIS)
Kirichenko, G.A.; Korovin, Ya.S.; Khisamutdinov, M.V.; Shmojlov, V.I.
2015-01-01
A method for solving systems of linear algebraic equations has been proposed on the basis on the summation of the corresponding continued fractions. The proposed algorithm for solving systems of linear algebraic equations is classified as direct algorithms providing an exact solution in a finite number of operations. Examples of solving systems of linear algebraic equations have been presented and the effectiveness of the algorithm has been estimated [ru
4th International Conference on Particle Systems and Partial Differential Equations
Soares, Ana
2017-01-01
'This book addresses mathematical problems motivated by various applications in physics, engineering, chemistry and biology. It gathers the lecture notes from the mini-course presented by Jean-Christophe Mourrat on the construction of the various stochastic “basic” terms involved in the formulation of the dynamic Ö4 theory in three space dimensions, as well as selected contributions presented at the fourth meeting on Particle Systems and PDEs, which was held at the University of Minho’s Centre of Mathematics in December 2015. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, offering them a forum to present their recent results and discuss their topics of expertise. The meeting was also intended to present to a vast and varied public, including young researchers, the area of interacting particle systems, its underlying motivation, and its relation to partial differential equations. The book w...
Dynamics of a delay differential equation model of hepatitis B virus infection.
Gourley, Stephen A; Kuang, Yang; Nagy, John D
2008-04-01
We formulate and systematically study the global dynamics of a simple model of hepatitis B virus in terms of delay differential equations. This model has two important and novel features compared to the well-known basic virus model in the literature. Specifically, it makes use of the more realistic standard incidence function and explicitly incorporates a time delay in virus production. As a result, the infection reproduction number is no longer dependent on the patient liver size (number of initial healthy liver cells). For this model, the existence and the component values of the endemic steady state are explicitly dependent on the time delay. In certain biologically interesting limiting scenarios, a globally attractive endemic equilibrium can exist regardless of the time delay length.
Existence and asymptotic behavior of the wave equation with dynamic boundary conditions
Graber, Philip Jameson
2012-03-07
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time. © 2012 Springer Science+Business Media, LLC.